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A B S T R A C T

In seismic structural engineering, different methods are used to evaluate performance. Simplified approaches 
provide conservative estimates, while advanced analyses achieve higher precision at the cost of significant 
computational effort. Nonlinear Time History Analysis (NTHA) remains the most reliable method, but its high 
computational demand has led many researchers to propose simplified models, often resulting in conservative 
outcomes. This study proposes an Artificial Intelligence (AI)-based method to approximate NTHA. An Autore
gressive Neural Network (ARNN) is developed to generate complete time-history responses of structures with 
minimal error relative to NTHA. Using ground motion data and the first three fundamental periods as inputs, the 
ARNN replicates NTHA responses with high accuracy. Unlike conventional surrogate models that predict only 
peak responses, the ARNN produces the entire response history. The ARNN is further integrated with a moment- 
based reliability framework employing the four-moment Pearson distribution (4M-Pearson), enabling efficient 
and accurate seismic reliability assessment. A three-story base-isolated steel structure is analyzed as a case study. 
Results demonstrate that the proposed ARNN achieves high precision in predicting both structural time-history 
responses and seismic reliability.

1. Introduction

In structural engineering, the primary objective is to ensure that a 
designed structure satisfies prescribed performance thresholds while 
accounting for inherent uncertainties in loads and material properties. 
To address these uncertainties, structural design often adopts a proba
bilistic framework. Unlike conventional approaches that apply safety 
factors without a clear link to safety levels, the probabilistic approach 
introduces load and capacity factors that explicitly define the structural 
reliability level [1,2]. From a probabilistic perspective, the probability 
of failure (Pf) of a structural system can be expressed as shown in Eq. (1). 

Pf =

∫

G(θ)≤0
fθ(θ)dθ (1) 

The parameter set θ represents the random variables associated with 
uncertainties in the system components, consisting of nrv variables, i.e., θ 

= {θ1, θ2 …, θnrv}. A limit state function G(θ) is used to distinguish 
between safe and failed conditions, where failure occurs when G(θ) < 0. 
The function G(θ) may be defined in terms of drift or stress ratios, which 
commonly govern structural failure, while θ may represent load and 
material parameters. The term f(θ) denotes the joint probability density 
function (PDF) of the system, often the PDF distribution of G(θ). Inte
grating f(θ) over the failure domain (G(θ) < 0) yields the probability of 
structural failure. Although mathematically feasible, defining the failure 
limit state is often complex and cannot always be expressed in closed- 
form equations, but rather through a series of simulations. For this 
reason, Eq. (1) is commonly reformulated into a discrete form, as shown 
in Eq. (2). Here, nsample denotes the number of discrete samples, and I [⋅]
is the failure indicator, which equals one if failure occurs and zero 
otherwise. In this approach, Pf is evaluated discretely through numerous 
simulation samples, a process referred to as Monte Carlo Simulation 
(MCS) [3] where it is known for its robustness but computationally 
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intensive. 

Pf(MCS) =
1

nsample

∑nsample

i=1
{I[G(θ) ≤ 0]} (2) 

In seismic structural engineering, reliability assessment remains 
particularly challenging because the Pf is typically very low, requiring 
an extremely large number of MCS samples. Moreover, each seismic 
simulation is itself computationally demanding. These two factors make 
seismic reliability analysis especially resource-intensive. To address 
these challenges, researchers have proposed various frameworks, either 
by improving reliability assessment methods or by developing simplified 
yet conservative seismic design approaches.

From the reliability perspective, efforts to reduce the required sam
ple size can generally be classified into three categories: sampling-based 
methods [4–10], response surface methods [11–17], and analytical 
methods [18–21]. Sampling-based methods retain the MCS framework 
but employ strategies to decrease the required number of samples. For 
example, Thedy et al. [6] proposed a multi-sphere importance sampling 
framework in which several hyperspheres are deployed within the safety 
domain to exclude unnecessary MCS samples, thereby reducing the 
number of function evaluations. Similarly, Au et al. [7] introduced 
subset simulation, which leverages conditional probability formulations 
to estimate extremely small failure probabilities through a sequence of 
more moderate failure probability events. In general, sampling-based 
methods manipulate either the geometry of the sampling domain or 
the sampling strategy itself to reduce computational demand. In 
contrast, response surface methods focus on replacing the original limit 
state function with an efficient surrogate model, thereby reducing the 
need for repeated evaluations of the true function. With the growing 
adoption and advancement of Artificial Intelligence (AI), such surro
gates have gained increasing popularity. For instance, Echard et al. [14]
applied the Kriging model to replicate complex limit state functions. The 
Kriging surrogate is constructed using a relatively small sample size, 
selected through adaptive sampling strategies to ensure both efficiency 
in sample number and effectiveness in capturing influential regions of 
the response surface. Unlike sampling-based or surrogate approaches, 
analytical methods aim to approximate the system PDF f(θ), as expressed 
in Eq. (1). Once f(θ) is formulated, the structural failure probability Pf 
can be evaluated through mathematical integration. The First-Order 
Reliability Method (FORM) [18] is one of the most widely adopted ap
proaches due to its computational simplicity, where the limit state 
function is approximated using a linear Taylor expansion. More recently, 
Zhao et al. [20] introduced a surrogate PDF approach in which the 
distribution is constructed from the first three or four statistical mo
ments, providing an efficient means to approximate the system 
reliability.

As mentioned earlier, beyond reliability methods, a major challenge 
in seismic reliability analysis lies in the seismic evaluation method itself. 
Design codes typically provide several options for evaluating structural 
performance. For example, the American Society of Civil Engineers 
(ASCE) code [22] permits four methods: Equivalent Lateral Force (ELF), 
Response Spectrum Method (RSM), Linear Time History Analysis 
(LTHA), and Nonlinear Time History Analysis (NTHA). Each method 
involves trade-offs between computational efficiency and result accu
racy. Among these, ELF and RSM are the most computationally efficient, 
relying on critical assumptions to produce conservative designs with 
minimal computational effort. Both ELF and RSM analyze structures in 
the linear-elastic domain but introduce coefficients such as R (response 
modification factor) and Cd (deflection amplification factor) to 
approximate inelastic behavior. By contrast, NTHA provides the highest 
level of accuracy, as it captures both pre-peak and post-yield behavior of 
materials and structures. However, due to its step-by-step integration 
scheme and nonlinear treatment of stiffness and damping, NTHA re
quires substantial computational resources, making it impractical for 
routine design evaluations despite its accuracy.

This study aims to perform an efficient seismic reliability assessment 
of structures while preserving the accuracy of NTHA. Directly incorpo
rating NTHA into reliability analysis remains computationally expensive 
compared to linear approach. Therefore, this work seeks to develop an 
alternative approach that achieves NTHA-level accuracy with substan
tially reduced computational effort. Several previous studies have 
investigated the seismic reliability assessment of structures [23–27]. 
Shen et al. [26], for example, employed the Probability Density Evolu
tion Method (PDEM), which solves the Generalized Density Evolution 
Equation (GDEE) to construct the system PDF. Other studies [23,27]
adopted Incremental Dynamic Analysis (IDA) to examine the effects of 
ground motion characteristics and variations in peak ground accelera
tion (PGA), and subsequently integrated reliability methods, such as 
moment-based approaches, to construct the system PDF. With ad
vancements in computational power and AI, this study introduces an 
Autoregressive Neural Network (ARNN) model designed to generate 
complete time-history responses of structures. The ARNN takes as input 
the first three fundamental periods of the structure, along with previous 
ground motion and structural response data, to predict the next response 
step. Its autoregressive design enables the predicted response at each 
step to serve as input for the subsequent step, thereby producing a full 
time-history response. Training data for the ARNN are generated 
through extensive numerical simulations in SAP2000, covering various 
combinations of mass, stiffness, and ground motions. Since this work 
requires a large number of ground motion records, artificial seismic 
inputs are produced using the Kanai–Tajimi model [28]. Efforts to 
replace computationally intensive seismic evaluations have been re
ported in the literature [29–32]. However, most existing surrogate 
models predict only peak responses, such as maximum story drift or base 
shear. For example, Kim et al. [31] combined neural networks (NN) and 
convolutional neural networks (CNN) to predict maximum responses of 
single-degree-of-freedom systems. Other studies utilized machine 
learning to predict damage detection [33,34] or even serviceability level 
[35]. While such approaches achieve reasonable accuracy, they cannot 
fully replace NTHA, which provides complete time-history responses 
and more accurate result. For reliability analysis, this study adopts 
moment based reliability method from Zhao et al. [20]. Although the 
surrogate ARNN model is capable of efficiently predicting structural 
time-history responses, its autoregressive nature requires a large number 
of sequential predictions for each seismic simulation. As a result, 
adopting MCS with the ARNN still demands considerable computational 
effort. To address this, the present study integrates the ARNN with a 
moment-based method, specifically the four-moment Pearson distribu
tion (4M-P), to construct the overall system failure PDF. This approach 
minimizes the required number of ARNN simulations while maintaining 
high accuracy in reliability estimation.

The paper is organized as follows. Section 2 highlights the novelty 
and significance of the proposed framework. Section 3 presents the 
methodology, including data collection and ARNN training procedures. 
Section 4 demonstrates the capability of the developed ARNN to predict 
structural time-history responses using a numerical example of a three- 
story structure equipped with a Bouc–Wen base isolation system, along 
with the corresponding reliability analysis using the 4M-P method. 
Section 5 provides concluding remarks, and Section 6 discusses the 
limitations and potential future research directions.

2. Research significance

Integrating seismic structural reliability analysis with NTHA remains 
computationally challenging. As discussed earlier, most previous studies 
have sacrificed accuracy to achieve feasible computation times, often 
relying on simplified seismic evaluation methods. In contrast, the pre
sent study develops an ARNN model capable of reproducing NTHA re
sults with high accuracy while significantly reducing computation time. 
By further integrating this model with the 4M-P reliability assessment 
method, the proposed framework makes it possible to achieve seismic 
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reliability analysis with NTHA-level accuracy an outcome that was 
previously considered computationally challenging.

The key contributions and novel features of this study are summa
rized as follows: 

1. The present study develops a simplified yet accurate ARNN model. 
While several studies have introduced AI-based models to replicate 
NTHA results [36–38], this work proposes a distinct ARNN frame
work that requires substantially fewer training samples. The model 
uses input features consisting of ground motions with varying char
acteristics and PGA, while structural properties are represented by 
fundamental periods rather than mass, stiffness, and damping pa
rameters. This formulation yields a simpler yet highly accurate sur
rogate model. For the three-story base-isolated structure analyzed, 
only 100–150 SAP2000 simulations were needed to train the ARNN 
to a high level of accuracy. Section 4 presents a detailed comparison 
demonstrating the predictive performance of the proposed ARNN 
relative to SAP2000 results.

2. Integration of ARNN with a 4M-P for efficient reliability assessment. 
Direct application of MCS using the ARNN remains computationally 
demanding due to both the low probability of failure and the 
autoregressive nature of the model. To overcome this, the study 
adopts the 4M-P method, which requires only 50–100 ARNN pre
dictions to compute the first four statistical moments that serve as 
inputs for the Pearson distribution. Since the ARNN is designed to 
accommodate variations in structural properties and ground mo
tions, the resulting reliability assessment inherently accounts for 
uncertainties in both loading and structural parameters.

3. The constructed ARNN is trained to predict the structural response 
time history based on ground motion and structural parameters. 
When integrated with the 4M-P method for reliability assessment, 
the framework can incorporate both record-to-record variability of 
seismic ground motions and uncertainties in structural parameters. 
This combination enables seismic structural reliability analysis with 

NTHA-level accuracy an achievement rarely reported in the 
literature.

3. Methodology

This study primary objective is to assess reliability of structure 
considering uncertainty from ground motion record to record variability 
and structure parameter uncertainty sourced from mass and stiffness. To 
attain this objective, the framework general scheme procedure is pre
sented in Fig. 1. The overall procedure consists of two major phases in 
which Phase 1: Construct Autoregressive Neural Network model the 
followed with Phase 2: Compute Pf using 4M-P method. The first phase 
has objective to construct accurate ARNN model that produce complete 
structure response time history. The detail description on Phase 1 and 2 
will be explained in Sections 3.1 and 3.2 respectively.

3.1. Construct Autoregressive Neural Network (ARNN)

This phase requires the collection of training data through ground 
motion generation and structural simulations with varying parameters, 
paired systematically to cover a wide range of scenarios. To automate 
the NTHA, the SAP2000 Open Application Programming Interface 
(OAPI) is employed, enabling large-scale simulations. The overall ARNN 
construction process is summarized in the following steps: 

• Step 1: The structural model is developed in SAP2000 to perform 
NTHA. A script-based modeling approach is adopted through the 
SAP2000 OAPI, enabling automated generation of multiple simula
tion cases. In this step, the upper and lower bounds of structural 
parameters and ground motion properties are also defined, along 
with the number of training samples ntrain. Typically, 100–300 sim
ulations are sufficient to train the model for structures ranging from 
three to six stories.

• Step 2: A total of ntrain ground motions are generated using the 
Kanai–Tajimi model. This study does not impose restrictions on the 

Fig. 1. General procedure of ARGNN construction.
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type of ground motion generation technique used; when sufficient 
real earthquake records are available, their use is generally prefer
able. However, the selected approach must allow flexible adjustment 
of ground-motion parameters during the reliability analysis phase. A 
ground-motion database is not employed in this study due to the 
limited availability of records exhibiting the specific frequency 
characteristics required for ARNN training and parameter vari
ability. Consequently, the present work adopts the Kanai–Tajimi 
artificial ground-motion generator [28] without any modification to 
produce the seismic inputs for both ARNN training and reliability 
assessments. The Kanai–Tajimi model implementation used in this 
study is based on an open-source MATLAB code provided in the 
referenced literature [39]. The original Kanai–Tajimi model defines 
a power spectral density function (S) to characterize earthquake 
motions based on a single-degree-of-freedom (SDOF) assumption, as 
expressed in Eq. (3).

S = S0
ω4

g +
(
2ξgωgω

)2

(
ω2

g − ω2
)
+
(
2ξgωgω

)2 (3) 

S0 =
2ξgσ2

g

πωg

(
4ξ2

g + 1
) (4) 

Where ωg and ξg are ground frequency and damping ratio, S0 defined as 
constant spectral intensity on bed rock. While ω is the frequency vector 
for power spectral density construction. S0 could be defined using Eq. (4)
where σ2

g defines the ground acceleration variance. The Kanai–Tajimi 
model is commonly utilized because it can reproduce ground motion 
characteristics through controllable parameters such as dominant fre
quency and variance. Nevertheless, accelerations generated directly 
from Eq. (3) correspond to a stationary process, while actual earthquake 
records are inherently non-stationary. To overcome this discrepancy, an 
envelope function is introduced, modifying the stationary Kanai–Tajimi 
excitation into a time-dependent form. The mathematical expression of 
this envelope function is given in Eq. (5). 

E(t) =
(

e
eps

t
tn

)−
eps(log(T90))

1+eps(log(T90)− 1)
exp
(

eps(log(T90))

1 + eps(log(T90) − 1)
t

eps × tn

)

(5) 

Where eps, tn, and T90 defined as normalized duration at peak, ground 
motion duration, and value at 90 % of the duration. The envelope 
function adjusts only the amplitude of the motion, shaping the accel
eration history to resemble seismic activity while maintaining the 
original ground motion characteristics described in Eq. (3) and Eq. (4). 
To generate ground motions, five key parameters in which ωg, ξg, σg, T90, 
and eps from Eqs. (3)–(5) are taken as random generated number follow 
normal distribution with COV (Coefficient of Variation) = 0.1. Fig. 2
illustrates the response spectrum of the randomly generated ground 
motions. In Fig. 2(a), the response spectrum for a dominant period of 
0.5 s is shown, demonstrating that the algorithm successfully generates 
acceleration spectra with the intended dominant frequency and spectral 
shape. Meanwhile, Fig. 2(b) presents a comparison of ground motions 
generated for dominant periods of 2.0 s and 0.5 s using the Kanai-Tajimi 
algorithm.

• Step 3: Generate n number of mass and stiffness of structure com
bination. This combination later will be paired with n ground motion 
for NTHA analysis to generate training data. As shown in Step 2 and 
3, training data has variation in ground motion record to record 
variability and structure parameter, that makes the constructed 
ARNN later could handle various input of ground motion and 
structure parameter. Further, the computer reliability analysis at 
later step could accounted the uncertainty in ground motion and 
structure parameters and high accuracy of NTHA result.

• Step 4: Perform NTHA analysis using SAP2000. This step is per
formed automatically using OAPI feature from SAP2000. The ntrain 
number of ground motion and structure parameters is assigned into 
structure constructed in Step 1 to generate ntrain number of structure 
response. The response on each floor of structure together with input 
ground motion, structure parameters and structure periods are 
recorded for training data.

• Step 5: Once the training data are generated in Step 4, the next stage 
is the development of the ARNN. The detailed architecture of the 

Fig. 2. Random generated artificial ground motions response spectrum.

Fig. 3. Network architecture of ARNN.
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proposed ARNN is illustrated in Fig. 3. The ARNN is designed in an 
autoregressive manner, meaning that the predicted output at step i is 
used as part of the input for step i + 1. By repeating this process 
throughout the entire ground motion duration, a complete structural 
response time history can be obtained. Fig. 4 further illustrates the 
autoregressive prediction mechanism. The ARNN incorporates three 
input segments, as shown in Fig. 3 and Fig. 4. First, Structural 
Properties (SP) are represented not by mass, stiffness, and damping 
directly, but by the first two fundamental periods (T) extracted 
through modal analysis. This approach provides a compact yet 
effective representation of structural characteristics.

Second, Ground Motion (GM) input is included by taking several 
preceding steps of the acceleration record. Specifically, to compute the 
structural response at time step 1, the ground motion data from steps 
1− Nwg to 1 are used, where Nwg denotes the number of preceding ground 
motion steps. In this study, Nwg = 25. Third, the previous Structural 
Response (SR) history is also provided as input. Unlike the ground mo
tion input, which includes data up to the current step, the structural 
response input spans from steps 1 − Nwr to 0, i.e., the step immediately 
prior to the target response step. The optimal values of Nwg and Nwr were 
determined through a trial-and-error process. For Nwr, the recommended 
value is equal to at least cover the half of the first fundamental period 
time window. For example, if the fundamental period of structure is 
1.5 s and the time increment of NTHA is 0.005 s, then half of funda
mental period is 0.75 s divided by 0.005 s, which is equivalent to Nwr 
= 150. Assigning larger value of Nwr will be conservative but required 
more computation time while not sufficient Nwr value results in lower 
prediction accuracy. For both the NTHA and ARNN analyses, a fixed 
time increment of 0.005 s is employed to ensure consistency between 
the numerical simulations and the autoregressive predictions.

3.2. Failure probability (Pf) assessment using 4M-P

After constructing the ARNN, the framework proceeds to the second 
phase, where reliability assessment is conducted to evaluate Pf. Surro
gate models such as response surface method are commonly paired with 
MCS, as their predictions require negligible computational cost. How
ever, due to the autoregressive nature of ARNN, thousands of predictions 
are still required for a single ground motion record. When very small 
failure probabilities are considered, combining ARNN with MCS remains 
computationally demanding. To address this issue, the present study 
integrates ARNN with an analytical reliability method, namely the 4M-P 
approach. Compared with sampling-based approaches, analytical 

methods require fewer samples but may exhibit reduced accuracy for 
highly nonlinear problems, particularly in the case of FORM, which 
relies only on the first two statistical moments. In contrast, the 4M-P 
method incorporates up to the fourth moment, providing improved 
representation of nonlinear failure limit states. This phase, employing 
the 4M-P method, consists of two main steps, as described below.

• Step 1: The first four moments of the failure limit state are computed 
using the ARNN predictions. These moments are defined as shown in 
Eq. (6), where the time history ARNN output transformed into 
structure failure indicator (Ĝ) to represents the structural condition. 
In this study, the first four moments are denoted as α1 (mean), α2 
(standard deviation), α3 (skewness), and α4 (kurtosis). While Zhao 
et al. [20] employed the point estimation method to calculate mo
ments, the present study evaluates each sample using the ARNN, 
enabling a more robust computation as expressed in Eq. (6). In 
Section 4, the effect of different sample sizes (nsample) on the accuracy 
of the computed moments will be compared against MCS results.

α1 =
1

nsample

∑nsample

i=1
Ĝi

α2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nsample

∑nsample

i=1
(Ĝi − α1)

2

√
√
√
√

α3 =

1
nsample

∑nsample

i=1
(Ĝi − α1)

3

α3
2

α4 =

1
nsample

∑nsample

i=1
(Ĝi − α1)

4

α4
2

(6) 

• Step 2: In the second step, once the system moments have been 
determined, the Pearson distribution PDF is constructed using the 
formulation shown in Eq. (7). Unlike conventional distributions that 
rely only on the first two moments (mean and standard deviation), 
the Pearson distribution incorporates information from the first four 
moments. Evaluating these moments, as described in the previous 
step, requires far fewer samples than directly estimating Pf, partic
ularly for systems with extremely low failure probabilities. As indi
cated in Eq. (7), the Pearson distribution consists of multiple types, 
from TYPE 0 to TYPE 7, with the specific type determined by the 
computed variables a, b, c, d, r0, r1, r2, and Δ. These equations are 

Fig. 4. Autoregressive scheme of ARNN.
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calculated based on α3 (skewness) and α4 (kurtosis). The resulting 
PDF initially has zero mean and unit standard deviation; it is then 
adjusted using the identified α1 and α2. Using this adjusted PDF, the 
failure probability Pf is computed according to the concept in Eq. (1). 
By applying this approach with the surrogate PDF from Eq. (7), the 
final Pf is obtained as formulated in Eq. (8). Where x is a set of 
random variables vector in standard normal dimension. 

TYPE0 : f(x) =
1̅̅
̅̅̅̅

2π
√ exp

(
− x2

2

)

→Δ = 0 ∩ b = 0 

TYPE1 : f(x) = (x − r2)
− ar2 − b̅̅

Δ
√

(r2 − x)
ar1+b̅̅

Δ
√

→Δ > 0 ∩ b ∕= 0 ∩ d < 0 

TYPE2 : f(x) =
(
−

c
d
− x2

)− a
2d→Δ > 0 ∩ b = 0 

TYPE3 : f(x) = (c + bx)
ac− b2

b2 exp

(
−

az
b

)

→Δ > 0 ∩ b ∕= 0 ∩ d = 0 

TYPE4 : f(x)

=
(
c + bx + dx2)−

a
2dexp

((
ab − 2bd
d
̅̅̅̅̅̅̅
− Δ

√

)

tan− 1

(
b + 2dx
̅̅̅̅̅̅̅
− Δ

√

))

→Δ

< 0 ∩ b ∕= 0 

TYPE5 : f(x) = |x − r0|
−

a
dexp

(
ar0 + b

d(x − r0)

)

→Δ = 0 ∩ b ∕= 0 

TYPE6 − 1 : f(x) = (r1 − x)
ar1+b̅̅

Δ
√

(r2 − x)
ar1+b̅̅

Δ
√

→Δ > 0 ∩ b < 0 ∩ d > 0

TYPE6 − 2 : f(x) = (x − r1)
ar1+b̅̅

Δ
√

(x − r2)
ar1+b̅̅

Δ
√

→Δ > 0 ∩ b > 0 ∩ d > 0 

TYPE7 : f(x) =
(c

d
+ x2

)− a
2d→Δ < 0 ∩ b = 0 

a = 10α4 − 12α3
2 − 18 c = 4α4 − 3α3

2 Δ = b2 − 4cd r1 =
− b −

̅̅̅
Δ

√

2d

b = α3(α4 + 3) d = 4α4 − 3α3
2 r0 = −

b
2d

r2 =
− b −

̅̅̅
Δ

√

2d
(7) 

Pf =

∫

G≤0
fx(xα2 + α1) (8) 

4. Numerical example: three-story steel structure equipped with 
base isolation

This section presents a numerical example using a three-story steel 

structure equipped with base isolation. Fig. 5 illustrates the structural 
geometry and section details. Several design codes permit the use of a 
linearized base isolation model, in which the isolator is represented by 
an equivalent linear spring and damping value derived from its me
chanical properties, as demonstrated in previous studies [40–42]. This 
linearization enables the use of LTHA, offering significant computa
tional savings at the cost of reduced accuracy due to the simplification of 
nonlinear isolator behavior. In contrast, the present study aims to 
employ an AI-based approach that closely replicates the NTHA response 
with minimal error.

In the current numerical example, the structure is assumed to be 
constructed with A36 steel. The base isolation is modeled using a 
Bouc–Wen spring element, with an elastic stiffness K = 4.5 kN/mm and 
effective stiffness Keff = 1.1 kN/mm. The isolator is assumed to have a 
yield force of 57 kN and a post-yield stiffness ratio of 0.2. Typically, 
structures with base isolation are designed to remain elastic under 
design-level earthquakes; therefore, in this numerical example, the 
structure is assumed to remain elastic, with nonlinearity arising solely 
from the base isolation device. Rayleigh proportional damping of 3 % is 
applied to two selected periods, 0.01 s and 5 s, to account for higher- 
mode and nonlinear-period responses, respectively. NTHA is per
formed using the commercial software SAP2000, employing the Hil
ber–Hughes–Taylor (HHT) direct integration method, with α = 0.5 and β 
= 0.25. The NTHA results from SAP2000 are used both for training the 
ARNN and for validation.

The presented structure is intended solely to demonstrate the ARNN 
prediction accuracy and the reliability evaluation framework described 
in Section 3; therefore, the geometry in Fig. 5 does not fully comply with 
any design code. The focus of this example is on assessing the accuracy 
of the ARNN relative to SAP2000 NTHA results and evaluating the ef
ficiency of the Pf computation using a limited number of samples. This 
section is divided into two subsections. Section 4.1 presents the ARNN 
construction, including the training data generation process, boundary 
conditions, and ARNN hyperparameters. The prediction accuracy of the 
ARNN-generated structural response time histories is compared to 
SAP2000 results. Section 4.2 demonstrates the computation of the fail
ure probability (Pf) using the Pearson distribution-based 4M-P method.

4.1. Construction of ARNN and prediction accuracy

Using the method described in Section 3.1, the ARNN model is 
constructed to predict the displacement time history of each story. It 
should be noted that a separate ARNN model is developed for each story. 
The network architecture consists of four hidden layers, each with 50 

Fig. 5. Three story structure with base isolation.

Table 1 
Considered ground motion parameters.

Ground Motion Training Data

Random Variable Symbol Mean Unit COV Distribution

Standard deviation of 
excitation

σg 0.3 - 0.1 Normal

Site damping ratio ζg 0.3 %
Value at 90 % of the duration T90 0.3 g
Normalized duration time 

when peak occurred
eps 0.3 -

Peak Ground Acceleration PGA 0.2 g
Dominant frequency of 

earthquake excitation
ωn 2 rad 0.2

Table 2 
Lower and upper bound limit for structure parameters.

Random Variable Symbol Unit Lower limit Upper Limit

Live Load on Story 1, 2, 3 LL tf/ 
m2

0.1 0.3

Elastic Modulus on Story 1, 2, 3 E MPa 1 × 105 3 × 105
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nodes. The training is performed using a Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) quasi-Newton algorithm, which 
minimizes the mean squared error (MSE). The L-BFGS solver employs a 
standard line-search method with an approximation of the Hessian 
matrix. The training process is terminated after 1.5 × 104 iterations. The 
seismic time increment is set to 5 × 10− 3 s. Table 1 and Table 2 present 
the boundaries of the variables considered for ground motion variability 
and structural components, respectively. Parameters σg, ζg, T90, eps, tn, 
and ωn control the characteristics of the generated ground motions 
within the Kanai–Tajimi model, as described in Section 3.1. With the 
base isolation in place, the numerical structure exhibits a fundamental 
period of 1.45 s when the structural parameters are assigned their mean 
values. Dead load is assumed to be 0.2 tf/m², and the total structural 
mass is derived from self-weight, dead load, and half of the live load. 
These loads are applied prior to performing the NTHA.

In this numerical example, 125 samples of ground motion parame
ters, as listed in Table 1, are generated using a Latin Hypercube Sam
pling (LHS) strategy, assuming a normal distribution. These are paired 
with 125 samples of structural parameters, generated via LHS with 
uniform distributions within the boundaries specified in Table 2. The 
resulting 125 combinations of ground motion and structural parameters 
are used as training data for NTHA simulations. In addition to the NTHA 
response records, the first two modal periods obtained from modal 
analysis are included as input for the ARNN training, as described in 

Section 3.1.
After training the ARNN, an independent set of 30 ground motion 

and structural parameter samples is generated outside the training 
dataset for validation. These samples cover a range of ground motion 
characteristics, structural properties, and seismic intensities, with pa
rameters randomly selected within the boundaries defined in Table 1
and Table 2. Each of these 30 cases is analyzed using NTHA in SAP2000, 
and the results are used to validate the ARNN predictions. Fig. 6 presents 
the maximum story displacement predicted by the ARNN against the 
corresponding SAP2000 results. Prediction accuracy is evaluated using 
four metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and the coefficient of 
determination (R2). Table 3 summarizes these error metrics for each 

Fig. 6. Validation result on maximum displacement of ARNN prediction vs SAP2000 result.

Table 3 
Measured error on 30 testing data.

Error Indicator on 30 Testing 
Data

Maximum Displacement

Base 
Isolation

1st 
Story

2nd 
Story

3rd 
Story

MAPE (%) 7.04 7.76 5.81 4.22
MAE (mm) 2.74 4.37 4.18 3.07
RMSE (mm) 3.48 5.58 6.01 3.96
R2 0.99 0.99 0.98 0.99
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story, including the base isolation. The ARNN demonstrates high accu
racy, with MAPE ranging from 4.22 % to 7.76 %, R2 values above 0.98, 
and relatively low MAE and RMSE values.

Since the ARNN produces the complete time history response, pre
senting all 30 test cases within this article is impractical. Therefore, only 
three representative cases are shown, with parameters listed in Table 4. 
These cases cover ground motions with varying characteristics and PGA 
ranging from 0.19 to 0.28 g, as well as structural parameters in terms of 
mass and stiffness. Figs. 7–9 presents the NTHA results and ARNN pre
dictions for the cases in Table 4. It includes: (a) top-story displacement 
time histories for fixed-base (non-isolated) and base-isolated structures, 
(b) comparison of ARNN-predicted and SAP2000 top-story displacement 
histories, and (c) hysteresis curves of the base isolation from ARNN and 
SAP2000. The structural periods for these cases range from 1.41 s to 
1.52 s. The comparison between fixed-base and base-isolated responses 
illustrates the significance of base isolation nonlinearity in the overall 
structural response. For the three test cases, the average reduction in 
top-story displacement due to base isolation is approximately 50 %, 

which is consistent with typical base isolation performance.
The ARNN predictions closely match the NTHA results, capturing 

both displacement time histories and base isolator hysteresis behavior. 
All computations were performed on an Intel 13th Gen i7-1360P CPU. 
While a single NTHA simulation requires approximately 20 min, the 
ARNN predicts the complete time history for a single ground motion in 
about 2 s, demonstrating a significant reduction in computational effort.

From Fig. 7–9, it is evident that the constructed ARNN accurately 
reproduces the displacement time histories obtained from SAP2000. 
Moreover, the ARNN effectively accounts for record-to-record vari
ability in ground motion as well as variations in structural parameters, 
including story stiffness and mass.

4.2. Failure probability (Pf) assessment using 4M-P

With the surrogate model constructed in Section 4.2, reliability 
assessment is performed in this section using the 4M-P method. This 
moment-based approach computes the failure probability (Pf) by first 

Table 4 
Several testing data for validation.

Test Story Artificial EQ parameter

Modulus (× 103 MPa) Live Load (× 10− 1 tf/m2) PGA (g) ζ σ fEQ T90 eps

1 2 3 1 2 3

1 286.43 245.57 168.42 1.86 1.04 1.33 0.21 0.31 0.32 2.10 0.32 0.28
2 106.52 114.70 232.47 1.63 2.56 1.68 0.28 0.26 0.27 1.87 0.29 0.31
3 219.06 237.37 202.90 2.42 1.71 2.98 0.19 0.27 0.29 2.19 0.31 0.29

Fig. 7. Result of test 1 (structure Tfund = 1.41 s).
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determining the first four moments of the limit state function, which are 
then used to construct a Pearson distribution. The resulting surrogate 
PDF represents the probability distribution of the limit state function. 
Table 5 lists the assumed random variables for the investigated struc
ture. In this study, uncertainties are considered to originate from SP, 
including mass and stiffness, and GM parameters, including 
Kanai–Tajimi parameters and PGA. Based on previous studies [43], the 
largest source of uncertainty arises from ground motion variability, 
including PGA. Consequently, the uncertainties associated with the base 
isolation parameters are assumed negligible and are not considered in 
this study. For the numerical example, failure is defined as the event 
where the story drift ratio exceeds a threshold δ. The failure probability 
is formulated as shown in Eq. (9)., where f(x,α1,α2) is the Pearson PDF 
constructed using the four moments. Since the surrogate PDF is known, 
the failure probability can be computed using numerical integration 
over the failure domain. The drift ratio is obtained directly from the 
ARNN-predicted time history responses. As shown in Section 4.1, the 
ARNN provides highly accurate predictions, with maximum displace
ment errors in terms of MAPE ranging from 4 % to 7 %. 

Pf =

∫

Ĝ(SP,GM)≤δ
fx(xα2 +α1)dx (9) 

In this study, the first four moments of the system mean, standard 
deviation, skewness, and kurtosis are computed using different sample 
sizes to investigate their sensitivity. Table 6 presents the identified 
moments obtained with sample sizes of 400, 600, and 800 using Eq. (7). 
The computation procedure has been described in Section 3.2. Each 
sample set is evaluated using the ARNN, which provides a significantly 
more efficient approach compared to performing full NTHA. As shown 
in Table 6, the values of α1 (mean) and α2 (standard deviation) exhibit 

minimal variation across sample sizes of 400 and 600. However, for 
higher-order moments, α3 (skewness) and α4 (kurtosis), convergence is 
achieved only when the sample size approaches 800.

Using this computed moments of different sample size, Pearson 
distribution PDF is constructed as shown in Fig. 10(a)–(c) showing the 
PDF of top story, 2nd story, and 1st story respectively.

Besides the 4M-P PDF estimation, two additional methods MCS using 
ARNN (MCS + ARNN) and MCS integrated with the Equivalent Line
arized Method (MCS + ELM) were also conducted for comparison. For 
the MCS + ARNN, a PDF was constructed using 3000 Monte Carlo 
samples, as shown in Fig. 10. It should be noted that this MCS was 
performed using the surrogate ARNN model to generate structural re
sponses for each sample. The purpose of including the MCS + ARNN 
approach is to demonstrate the accuracy and efficiency of the 4M-P 
method, which can construct a comparable PDF using a much smaller 
sample size than the 3000 samples required by MCS + ARNN. Per
forming MCS directly with NTHA while accounting for ground-motion 
variability and structural parameter randomness is computationally 
prohibitive in this study. As discussed in Section 4.1, a single NTHA 
requires approximately 20 min, making large-scale MCS infeasible. 
Although the ARNN predictions significantly reduce computational cost, 
MCS with ARNN still remains challenging, as accurate reliability 
assessment typically requires hundreds of thousands of samples. 
Therefore, in the present study, the MCS + ARNN simulation is limited 
to 3000 samples due to computational constraints.

The third reliability assessment method evaluated in this study is 
MCS + ELM, in which the reliability analysis is performed through MCS 
while the structural responses are obtained using LTHA based on the 
Equivalent Linearized Method. This method is widely adopted and 
permitted in seismic design codes. In the present study, the ELM 

Fig. 8. Result of test 2 (structure Tfund = 1.52 s).
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procedure follows ASCE 7-22, where the base isolator is idealized as a 
linear spring characterized by an effective stiffness (Keff) and effective 
damping (ζeff), computed using Eq. (10). 

Keff =
|F+| + |F− |

|Δ+| + |Δ− |

ςeff =
2
π

Eloop

Keff (|Δ+| + |Δ− |)
2

(10) 

Here |F+|and |F− | denote the peak positive and negative isolator forces, 
which are equal to 220 kN in this study. Similarly, |Δ+|and|Δ− | represent 

the peak positive and negative isolator displacements, equal to 200 mm. 
Eloop is the energy dissipated within a single hysteresis cycle. Using Eq. 
(10), the computed values of Keff and ζeff are 1.1kN/mm and 0.126, 
respectively. With these effective properties, the base isolator is modeled 
as a linear spring having stiffness Keff and damping ratio ζeff. Subse
quently, LTHA combined with MCS is used to construct the corre
sponding PDF, labeled as MCS + ELM in Fig. 10, using 3000 samples.

As shown in Fig. 10, the proposed 4M-P approach successfully re
produces the PDF generated by MCS. For a more detailed comparison, 
the failure probability (Pf) is evaluated under drift ratio thresholds of 
0.5 %, 0.75 %, and 1.00 % using discrete integration. Table 7 summa
rizes the comparison of Pf values obtained from MCS and 4M-P, along 
with the error ε, defined as the difference between the two approaches. 
The results show that for Pf > 0.2, the relative error remains below 10 %. 

Fig. 9. Result of test 3 (structure Tfund = 1.45 s).

Table 5 
Considered random variables.

Random Variable Symbol Mean Unit COV Distribution

Uncertainty Sourced from Ground Motion
Standard deviation of 

excitation
σg 0.3 - 0.1 Normal

Site damping ratio ζg 0.3 %
Value at 90 % of the 

duration
T90 0.3 g

Normalized duration time 
when peak occurred

eps 0.3 -

Peak Ground Acceleration PGA 0.2 g
Dominant frequency of 

earthquake excitation
ωn 2 rad 0.2

Uncertainty Sourced from Ground Motion
Live Load on Story 1, 2, 3 LL 0.2 tf/ 

m2
0.1 Normal

Elastic Modulus on Story 1, 
2, 3

E 2 × 105 MPa

Table 6 
Computed moments using different sample size.

Story 
Drift (δ)

nsample Moments

α1 

(Mean)
α2 (Standard 
Deviation)

α3 

(Skewness)
α4 

(Kurtosis)

Top Story 400 0.31 0.10 1.33 5.71
600 0.32 0.10 1.49 6.70
800 0.31 0.09 1.47 6.80

2nd Story 400 0.30 0.10 3.02 26.05
600 0.31 0.10 2.48 19.26
800 0.31 0.09 2.26 17.20

1st Story 400 0.62 0.20 2.49 16.63
600 0.62 0.19 2.21 14.55
800 0.62 0.19 2.05 12.98
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Higher discrepancies in Pf at lower probability levels are likely due to 
the limited MCS sample size, which restricts the accuracy of rare event 
estimation.

For the linearized method, the MCS + ELM results show an 

underprediction compared to those obtained using ARNN. This obser
vation is consistent with findings in the literature [44], which report that 
equivalent linearized models for base isolators tend to underestimate 
structural displacement. As also illustrated in Fig. 10, the discrepancy 
between ARNN and ELM increases with story height, with ELM consis
tently underpredicting the drift response. Table 8 presents the Pf values 
computed from MCS + ELM under different drift thresholds, showing 
significantly lower Pf estimates compared to the ARNN-based assess
ment in Table 7 due to the underprediction of ELM.

All three assessment methods 4M-P, MCS + ARNN, and MCS + ELM 
consistently indicate that the lower story governs the critical failure 
limit state, exhibiting the largest drift ratio, which is nearly twice that of 
the upper stories, as shown in Fig. 10. The second and third stories 
display relatively similar drift ratios. A similar trend is also observed in 
the ELM-based evaluation. In terms of failure probability (Pf), Table 7
shows that the base story has a Pf value approximately an order of 
magnitude higher than that of the upper stories.

Overall, the procedure outlined in Section 3 and validated in Section 
4 demonstrates that the proposed framework can assess the failure 
probability of base-isolated steel structures under ground motion and 
structural parameter uncertainties with accuracy comparable to NTHA, 
but at a fraction of the computational cost.

5. Conclusion

This study proposes a framework to assess the failure probability of a 
three-story base-isolated structure by incorporating uncertainties from 
both ground motion and structural parameters. Unlike most reliability 
studies, which typically focus on uncertainties in either structural or 
seismic parameters, the present framework integrates both sources of 
uncertainty while maintaining NTHA-level accuracy. To achieve 
computational efficiency, an Artificial Neural Network in the form of an 
ARNN is developed to predict displacement time history responses. In 
contrast to many AI-based approaches that predict only peak structural 
indicators, the constructed ARNN generates complete displacement time 
histories with acceptable accuracy, as demonstrated in Section 4.1. The 
integration of this surrogate model with a 4M-P enables efficient 
assessment of system failure probability through the construction of a 
surrogate Pearson distribution.

The main findings of this study are summarized as follows: 

Fig. 10. Comparison of PDF generated using MCS and 4M-P.

Table 7 
Computed Pf and error between 4M-P method and MCS.

Drift Threshold 4M-P nsample Top Story 2nd Story 1st Story

4M-P Method (ε) MCS 4M-P Method (ε) MCS 4M-P Method (ε) MCS

Pf (δ > 0.50 %) 400 5.21 × 10− 2 16.7 4.46 × 10− 2 4.24 × 10− 2 13.0 3.75 × 10− 2 7.08 × 10− 1 0.8 7.14 × 10− 1

600 5.25 × 10− 2 17.6 4.28 × 10− 2 14.0 7.24 × 10− 1 1.4
800 4.51 × 10− 2 0.9 3.89 × 10− 2 3.8 7.23 × 10− 1 1.3

Pf (δ > 0.75 %) 400 2.14 × 10− 3 40.2 3.57 × 10− 2 5.09 × 10− 3 78.2 2.86 × 10− 3 1.83 × 10− 1 6.1 1.95 × 10− 1

600 2.77 × 10− 3 22.5 4.38 × 10− 3 53.2 1.80 × 10− 1 7.9
800 2.13 × 10− 3 40.4 3.55 × 10− 3 24.4 1.76 × 10− 1 9.5

Pf (δ > 1.00 %) 400 7.65 × 10− 5 - 0 8.44 × 10− 4 18.2 7.14 × 10− 4 4.85 × 10− 2 0.1 4.86 × 10− 2

600 1.63 × 10− 4 - 6.59 × 10− 4 7.8 4.21 × 10− 2 13.2
800 1.21 × 10− 4 - 4.87 × 10− 4 31.8 3.92 × 10− 2 19.4

Table 8 
Computed Pf Using MCS + ELM approach.

Drift Threshold ELM + MCS

Top Story 2nd Story 1st Story

Pf (δ > 0.50 %) 0 0 0
Pf (δ > 0.75 %) 2.50 × 10− 3 0 0
Pf (δ>1.00 %) 4.02 × 10− 1 6.29 × 10− 2 8.57 × 10− 3
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1. The ARNN model demonstrates high efficiency in terms of required 
training data. For the three-story steel base-isolated structure 
examined in this study, only about 125 NTHA simulations generated 
using Kanai–Tajimi ground motions with variations in structural 
parameters are needed for effective training.

2. Validation using 30 independent test cases not included in the 
training dataset shows strong agreement with SAP2000 NTHA re
sults. The ARNN predictions achieve MAPE values of 3–7 %, with 
correlation coefficients exceeding 0.98. The selected displacement 
time histories further confirm that the ARNN successfully captures 
record-to-record ground-motion variability as well as changes in key 
structural parameters such as mass and stiffness.

3. The proposed ARNN reduces the computational demand drastically, 
requiring approximately 2 s per prediction compared to ~ 20 min 
per NTHA run. The study also demonstrates that the 4M-P method, 
using only 800 samples, successfully reproduces the drift-ratio 
probability distribution obtained from MCS + ARNN. The failure 
probabilities estimated by 4M-P show relative errors below 10 % for 
cases with Pf > 0.2; larger deviations for small Pf are attributed to the 
limited MCS sample size.

4. Although the ELM provides a simplified linear approach with 
reduced computational effort compared to full NTHA, it consistently 
underpredicts structural displacement and drift ratios, resulting in 
unconservative reliability estimates. In terms of computation time, 
the ELM-based LTHA requires ~ 8 s still higher than the ARNN 
prediction time for single simulation.

Overall, the proposed framework enables seismic reliability assess
ment of base-isolated structures with accuracy comparable to NTHA 
while explicitly incorporating uncertainties from both ground motion 
and structural parameters. Although errors remain due to ARNN pre
diction accuracy and surrogate distribution construction, these are 
within acceptable engineering limits (MAPE 4–7 % for ARNN pre
dictions and < 10 % error for 4M-P reliability estimation). The study 
highlights the potential of combining AI-based surrogate models with 
advanced probabilistic methods to achieve computationally efficient yet 
accurate reliability assessments for practical structural design and 
evaluation.

6. Limitation and future direction

The present study aims to introduce an efficient framework for 
structural reliability assessment by integrating ARNN with NTHA 
simulation data and the 4M-P reliability assessment method. However, 
several limitations remain, as outlined below: 

1. The developed ARNN model uses four hidden layers with 50 nodes 
each, without further hyperparameter tuning, including the window 
data sizes Nwr and Nwg. Due to the high computational cost of the 
ARNN training phase, optimization of these parameters was not 
performed.

2. The ARNN training 4M-P reliability assessment relied on artificial 
ground motions generated using the Kanai–Tajimi model. Although 
these motions are reasonably realistic, they cannot fully capture 
certain characteristics of real earthquakes, such as near-fault effects 
or complex out-of-phase behavior.

3. The study is limited to a low-complexity, three-story base-isolated 
structure, which may not represent more complex structural systems.

4. While the 4M-P reliability method provides efficient and reasonably 
accurate PDF estimation, it has limitations regarding input moments, 
as discussed by Zhao et al. [20].

These limitations suggest several potential research directions: 

1. Optimization of ARNN hyperparameters to improve predictive 
accuracy.

2. Use of more advanced or real ground-motion datasets, including 
near-fault records.

3. Application of ARNN to more complex structures, such as bridges, 
systems with additional damping devices, or structures considering 
soil–structure interaction.

4. Integration with alternative or complementary reliability assessment 
methods.
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