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ABSTRACT

In seismic structural engineering, different methods are used to evaluate performance. Simplified approaches
provide conservative estimates, while advanced analyses achieve higher precision at the cost of significant
computational effort. Nonlinear Time History Analysis (NTHA) remains the most reliable method, but its high
computational demand has led many researchers to propose simplified models, often resulting in conservative
outcomes. This study proposes an Artificial Intelligence (AI)-based method to approximate NTHA. An Autore-
gressive Neural Network (ARNN) is developed to generate complete time-history responses of structures with
minimal error relative to NTHA. Using ground motion data and the first three fundamental periods as inputs, the
ARNN replicates NTHA responses with high accuracy. Unlike conventional surrogate models that predict only
peak responses, the ARNN produces the entire response history. The ARNN is further integrated with a moment-
based reliability framework employing the four-moment Pearson distribution (4M-Pearson), enabling efficient
and accurate seismic reliability assessment. A three-story base-isolated steel structure is analyzed as a case study.
Results demonstrate that the proposed ARNN achieves high precision in predicting both structural time-history

responses and seismic reliability.

1. Introduction

In structural engineering, the primary objective is to ensure that a
designed structure satisfies prescribed performance thresholds while
accounting for inherent uncertainties in loads and material properties.
To address these uncertainties, structural design often adopts a proba-
bilistic framework. Unlike conventional approaches that apply safety
factors without a clear link to safety levels, the probabilistic approach
introduces load and capacity factors that explicitly define the structural
reliability level [1,2]. From a probabilistic perspective, the probability
of failure (Pp) of a structural system can be expressed as shown in Eq. (1).

p=[ g M
G(0)<0
The parameter set @ represents the random variables associated with

uncertainties in the system components, consisting of n,, variables, i.e., §
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={61, 02 ..., 6nn}. A limit state function G(@) is used to distinguish
between safe and failed conditions, where failure occurs when G(6) < 0.
The function G(#) may be defined in terms of drift or stress ratios, which
commonly govern structural failure, while § may represent load and
material parameters. The term f(f) denotes the joint probability density
function (PDF) of the system, often the PDF distribution of G(6). Inte-
grating f(@) over the failure domain (G(@) < 0) yields the probability of
structural failure. Although mathematically feasible, defining the failure
limit state is often complex and cannot always be expressed in closed-
form equations, but rather through a series of simulations. For this
reason, Eq. (1) is commonly reformulated into a discrete form, as shown
in Eq. (2). Here, nsgmple denotes the number of discrete samples, and I [-]
is the failure indicator, which equals one if failure occurs and zero
otherwise. In this approach, Pyis evaluated discretely through numerous
simulation samples, a process referred to as Monte Carlo Simulation
(MCS) [3] where it is known for its robustness but computationally
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intensive.
1 Msample
Priucs) = > {1Ge) < 0]} 2
nmmple =1

In seismic structural engineering, reliability assessment remains
particularly challenging because the Py is typically very low, requiring
an extremely large number of MCS samples. Moreover, each seismic
simulation is itself computationally demanding. These two factors make
seismic reliability analysis especially resource-intensive. To address
these challenges, researchers have proposed various frameworks, either
by improving reliability assessment methods or by developing simplified
yet conservative seismic design approaches.

From the reliability perspective, efforts to reduce the required sam-
ple size can generally be classified into three categories: sampling-based
methods [4-10], response surface methods [11-17], and analytical
methods [18-21]. Sampling-based methods retain the MCS framework
but employ strategies to decrease the required number of samples. For
example, Thedy et al. [6] proposed a multi-sphere importance sampling
framework in which several hyperspheres are deployed within the safety
domain to exclude unnecessary MCS samples, thereby reducing the
number of function evaluations. Similarly, Au et al. [7] introduced
subset simulation, which leverages conditional probability formulations
to estimate extremely small failure probabilities through a sequence of
more moderate failure probability events. In general, sampling-based
methods manipulate either the geometry of the sampling domain or
the sampling strategy itself to reduce computational demand. In
contrast, response surface methods focus on replacing the original limit
state function with an efficient surrogate model, thereby reducing the
need for repeated evaluations of the true function. With the growing
adoption and advancement of Artificial Intelligence (AI), such surro-
gates have gained increasing popularity. For instance, Echard et al. [14]
applied the Kriging model to replicate complex limit state functions. The
Kriging surrogate is constructed using a relatively small sample size,
selected through adaptive sampling strategies to ensure both efficiency
in sample number and effectiveness in capturing influential regions of
the response surface. Unlike sampling-based or surrogate approaches,
analytical methods aim to approximate the system PDF f(#), as expressed
in Eq. (1). Once f(6) is formulated, the structural failure probability Py
can be evaluated through mathematical integration. The First-Order
Reliability Method (FORM) [18] is one of the most widely adopted ap-
proaches due to its computational simplicity, where the limit state
function is approximated using a linear Taylor expansion. More recently,
Zhao et al. [20] introduced a surrogate PDF approach in which the
distribution is constructed from the first three or four statistical mo-
ments, providing an efficient means to approximate the system
reliability.

As mentioned earlier, beyond reliability methods, a major challenge
in seismic reliability analysis lies in the seismic evaluation method itself.
Design codes typically provide several options for evaluating structural
performance. For example, the American Society of Civil Engineers
(ASCE) code [22] permits four methods: Equivalent Lateral Force (ELF),
Response Spectrum Method (RSM), Linear Time History Analysis
(LTHA), and Nonlinear Time History Analysis (NTHA). Each method
involves trade-offs between computational efficiency and result accu-
racy. Among these, ELF and RSM are the most computationally efficient,
relying on critical assumptions to produce conservative designs with
minimal computational effort. Both ELF and RSM analyze structures in
the linear-elastic domain but introduce coefficients such as R (response
modification factor) and Cy (deflection amplification factor) to
approximate inelastic behavior. By contrast, NTHA provides the highest
level of accuracy, as it captures both pre-peak and post-yield behavior of
materials and structures. However, due to its step-by-step integration
scheme and nonlinear treatment of stiffness and damping, NTHA re-
quires substantial computational resources, making it impractical for
routine design evaluations despite its accuracy.
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This study aims to perform an efficient seismic reliability assessment
of structures while preserving the accuracy of NTHA. Directly incorpo-
rating NTHA into reliability analysis remains computationally expensive
compared to linear approach. Therefore, this work seeks to develop an
alternative approach that achieves NTHA-level accuracy with substan-
tially reduced computational effort. Several previous studies have
investigated the seismic reliability assessment of structures [23-27].
Shen et al. [26], for example, employed the Probability Density Evolu-
tion Method (PDEM), which solves the Generalized Density Evolution
Equation (GDEE) to construct the system PDF. Other studies [23,27]
adopted Incremental Dynamic Analysis (IDA) to examine the effects of
ground motion characteristics and variations in peak ground accelera-
tion (PGA), and subsequently integrated reliability methods, such as
moment-based approaches, to construct the system PDF. With ad-
vancements in computational power and Al, this study introduces an
Autoregressive Neural Network (ARNN) model designed to generate
complete time-history responses of structures. The ARNN takes as input
the first three fundamental periods of the structure, along with previous
ground motion and structural response data, to predict the next response
step. Its autoregressive design enables the predicted response at each
step to serve as input for the subsequent step, thereby producing a full
time-history response. Training data for the ARNN are generated
through extensive numerical simulations in SAP2000, covering various
combinations of mass, stiffness, and ground motions. Since this work
requires a large number of ground motion records, artificial seismic
inputs are produced using the Kanai-Tajimi model [28]. Efforts to
replace computationally intensive seismic evaluations have been re-
ported in the literature [29-32]. However, most existing surrogate
models predict only peak responses, such as maximum story drift or base
shear. For example, Kim et al. [31] combined neural networks (NN) and
convolutional neural networks (CNN) to predict maximum responses of
single-degree-of-freedom systems. Other studies utilized machine
learning to predict damage detection [33,34] or even serviceability level
[35]. While such approaches achieve reasonable accuracy, they cannot
fully replace NTHA, which provides complete time-history responses
and more accurate result. For reliability analysis, this study adopts
moment based reliability method from Zhao et al. [20]. Although the
surrogate ARNN model is capable of efficiently predicting structural
time-history responses, its autoregressive nature requires a large number
of sequential predictions for each seismic simulation. As a result,
adopting MCS with the ARNN still demands considerable computational
effort. To address this, the present study integrates the ARNN with a
moment-based method, specifically the four-moment Pearson distribu-
tion (4M-P), to construct the overall system failure PDF. This approach
minimizes the required number of ARNN simulations while maintaining
high accuracy in reliability estimation.

The paper is organized as follows. Section 2 highlights the novelty
and significance of the proposed framework. Section 3 presents the
methodology, including data collection and ARNN training procedures.
Section 4 demonstrates the capability of the developed ARNN to predict
structural time-history responses using a numerical example of a three-
story structure equipped with a Bouc-Wen base isolation system, along
with the corresponding reliability analysis using the 4M-P method.
Section 5 provides concluding remarks, and Section 6 discusses the
limitations and potential future research directions.

2. Research significance

Integrating seismic structural reliability analysis with NTHA remains
computationally challenging. As discussed earlier, most previous studies
have sacrificed accuracy to achieve feasible computation times, often
relying on simplified seismic evaluation methods. In contrast, the pre-
sent study develops an ARNN model capable of reproducing NTHA re-
sults with high accuracy while significantly reducing computation time.
By further integrating this model with the 4M-P reliability assessment
method, the proposed framework makes it possible to achieve seismic
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Fig. 1. General procedure of ARGNN construction.

reliability analysis with NTHA-level accuracy an outcome that was
previously considered computationally challenging.

The key contributions and novel features of this study are summa-
rized as follows:

1. The present study develops a simplified yet accurate ARNN model.
While several studies have introduced Al-based models to replicate
NTHA results [36-38], this work proposes a distinct ARNN frame-
work that requires substantially fewer training samples. The model
uses input features consisting of ground motions with varying char-
acteristics and PGA, while structural properties are represented by
fundamental periods rather than mass, stiffness, and damping pa-
rameters. This formulation yields a simpler yet highly accurate sur-
rogate model. For the three-story base-isolated structure analyzed,
only 100-150 SAP2000 simulations were needed to train the ARNN
to a high level of accuracy. Section 4 presents a detailed comparison
demonstrating the predictive performance of the proposed ARNN
relative to SAP2000 results.

2. Integration of ARNN with a 4M-P for efficient reliability assessment.
Direct application of MCS using the ARNN remains computationally
demanding due to both the low probability of failure and the
autoregressive nature of the model. To overcome this, the study
adopts the 4M-P method, which requires only 50-100 ARNN pre-
dictions to compute the first four statistical moments that serve as
inputs for the Pearson distribution. Since the ARNN is designed to
accommodate variations in structural properties and ground mo-
tions, the resulting reliability assessment inherently accounts for
uncertainties in both loading and structural parameters.

3. The constructed ARNN is trained to predict the structural response
time history based on ground motion and structural parameters.
When integrated with the 4M-P method for reliability assessment,
the framework can incorporate both record-to-record variability of
seismic ground motions and uncertainties in structural parameters.
This combination enables seismic structural reliability analysis with

NTHA-level accuracy an achievement rarely reported in the
literature.

3. Methodology

This study primary objective is to assess reliability of structure
considering uncertainty from ground motion record to record variability
and structure parameter uncertainty sourced from mass and stiffness. To
attain this objective, the framework general scheme procedure is pre-
sented in Fig. 1. The overall procedure consists of two major phases in
which Phase 1: Construct Autoregressive Neural Network model the
followed with Phase 2: Compute Py using 4M-P method. The first phase
has objective to construct accurate ARNN model that produce complete
structure response time history. The detail description on Phase 1 and 2
will be explained in Sections 3.1 and 3.2 respectively.

3.1. Construct Autoregressive Neural Network (ARNN)

This phase requires the collection of training data through ground
motion generation and structural simulations with varying parameters,
paired systematically to cover a wide range of scenarios. To automate
the NTHA, the SAP2000 Open Application Programming Interface
(OAPI) is employed, enabling large-scale simulations. The overall ARNN
construction process is summarized in the following steps:

e Step 1: The structural model is developed in SAP2000 to perform
NTHA. A script-based modeling approach is adopted through the
SAP2000 OAPI, enabling automated generation of multiple simula-
tion cases. In this step, the upper and lower bounds of structural
parameters and ground motion properties are also defined, along
with the number of training samples ngqi,. Typically, 100-300 sim-
ulations are sufficient to train the model for structures ranging from
three to six stories.

e Step 2: A total of ngq;, ground motions are generated using the
Kanai-Tajimi model. This study does not impose restrictions on the
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Fig. 2. Random generated artificial ground motions response spectrum.

type of ground motion generation technique used; when sufficient
real earthquake records are available, their use is generally prefer-
able. However, the selected approach must allow flexible adjustment
of ground-motion parameters during the reliability analysis phase. A
ground-motion database is not employed in this study due to the
limited availability of records exhibiting the specific frequency
characteristics required for ARNN training and parameter vari-
ability. Consequently, the present work adopts the Kanai-Tajimi
artificial ground-motion generator [28] without any modification to
produce the seismic inputs for both ARNN training and reliability
assessments. The Kanai-Tajimi model implementation used in this
study is based on an open-source MATLAB code provided in the
referenced literature [39]. The original Kanai-Tajimi model defines
a power spectral density function (S) to characterize earthquake
motions based on a single-degree-of-freedom (SDOF) assumption, as
expressed in Eq. (3).

o} + (2§ga)ga))2

S=S5
U(wg - aﬂ) + (2§gwgw)2

3

2¢,00

So = - (4§§ + 1)

G

Where o, and ¢, are ground frequency and damping ratio, So defined as
constant spectral intensity on bed rock. While w is the frequency vector
for power spectral density construction. Sy could be defined using Eq. (4)
where agz defines the ground acceleration variance. The Kanai-Tajimi
model is commonly utilized because it can reproduce ground motion
characteristics through controllable parameters such as dominant fre-
quency and variance. Nevertheless, accelerations generated directly
from Eq. (3) correspond to a stationary process, while actual earthquake
records are inherently non-stationary. To overcome this discrepancy, an
envelope function is introduced, modifying the stationary Kanai-Tajimi
excitation into a time-dependent form. The mathematical expression of
this envelope function is given in Eq. (5).
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eps Too
(et Tepsllog(Too)-1) eps(log(Too)) t
B = (eps t,,) P <1 + eps(log(Teg) — 1) eps x t, )

Where eps, t,;, and Tyo defined as normalized duration at peak, ground
motion duration, and value at 90 % of the duration. The envelope
function adjusts only the amplitude of the motion, shaping the accel-
eration history to resemble seismic activity while maintaining the
original ground motion characteristics described in Eq. (3) and Eq. (4).
To generate ground motions, five key parameters in which wg, &g, 6, Too,
and eps from Egs. (3)—(5) are taken as random generated number follow
normal distribution with COV (Coefficient of Variation) = 0.1. Fig. 2
illustrates the response spectrum of the randomly generated ground
motions. In Fig. 2(a), the response spectrum for a dominant period of
0.5 s is shown, demonstrating that the algorithm successfully generates
acceleration spectra with the intended dominant frequency and spectral
shape. Meanwhile, Fig. 2(b) presents a comparison of ground motions
generated for dominant periods of 2.0 s and 0.5 s using the Kanai-Tajimi
algorithm.

e Step 3: Generate n number of mass and stiffness of structure com-
bination. This combination later will be paired with n ground motion
for NTHA analysis to generate training data. As shown in Step 2 and
3, training data has variation in ground motion record to record
variability and structure parameter, that makes the constructed
ARNN later could handle various input of ground motion and
structure parameter. Further, the computer reliability analysis at
later step could accounted the uncertainty in ground motion and
structure parameters and high accuracy of NTHA result.

Step 4: Perform NTHA analysis using SAP2000. This step is per-
formed automatically using OAPI feature from SAP2000. The ngqin
number of ground motion and structure parameters is assigned into
structure constructed in Step 1 to generate ngq;, number of structure
response. The response on each floor of structure together with input
ground motion, structure parameters and structure periods are
recorded for training data.

e Step 5: Once the training data are generated in Step 4, the next stage
is the development of the ARNN. The detailed architecture of the
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proposed ARNN is illustrated in Fig. 3. The ARNN is designed in an
autoregressive manner, meaning that the predicted output at step i is
used as part of the input for step i + 1. By repeating this process
throughout the entire ground motion duration, a complete structural
response time history can be obtained. Fig. 4 further illustrates the
autoregressive prediction mechanism. The ARNN incorporates three
input segments, as shown in Fig. 3 and Fig. 4. First, Structural
Properties (SP) are represented not by mass, stiffness, and damping
directly, but by the first two fundamental periods (T) extracted
through modal analysis. This approach provides a compact yet
effective representation of structural characteristics.

Second, Ground Motion (GM) input is included by taking several
preceding steps of the acceleration record. Specifically, to compute the
structural response at time step 1, the ground motion data from steps
1-Ny, to 1 are used, where Ny, denotes the number of preceding ground
motion steps. In this study, Ny, = 25. Third, the previous Structural
Response (SR) history is also provided as input. Unlike the ground mo-
tion input, which includes data up to the current step, the structural
response input spans from steps 1 — N, to 0, i.e., the step immediately
prior to the target response step. The optimal values of Ny, and N, were
determined through a trial-and-error process. For Ny, the recommended
value is equal to at least cover the half of the first fundamental period
time window. For example, if the fundamental period of structure is
1.5 s and the time increment of NTHA is 0.005 s, then half of funda-
mental period is 0.75 s divided by 0.005 s, which is equivalent to N,
= 150. Assigning larger value of N,,, will be conservative but required
more computation time while not sufficient N,,, value results in lower
prediction accuracy. For both the NTHA and ARNN analyses, a fixed
time increment of 0.005 s is employed to ensure consistency between
the numerical simulations and the autoregressive predictions.

3.2. Failure probability (P) assessment using 4M-P

After constructing the ARNN, the framework proceeds to the second
phase, where reliability assessment is conducted to evaluate Py. Surro-
gate models such as response surface method are commonly paired with
MCS, as their predictions require negligible computational cost. How-
ever, due to the autoregressive nature of ARNN, thousands of predictions
are still required for a single ground motion record. When very small
failure probabilities are considered, combining ARNN with MCS remains
computationally demanding. To address this issue, the present study
integrates ARNN with an analytical reliability method, namely the 4M-P
approach. Compared with sampling-based approaches, analytical

methods require fewer samples but may exhibit reduced accuracy for
highly nonlinear problems, particularly in the case of FORM, which
relies only on the first two statistical moments. In contrast, the 4M-P
method incorporates up to the fourth moment, providing improved
representation of nonlinear failure limit states. This phase, employing
the 4M-P method, consists of two main steps, as described below.

e Step 1: The first four moments of the failure limit state are computed
using the ARNN predictions. These moments are defined as shown in
Eq. (6), where the time history ARNN output transformed into

structure failure indicator (6) to represents the structural condition.
In this study, the first four moments are denoted as @; (mean), ay
(standard deviation), a3 (skewness), and a4 (kurtosis). While Zhao
et al. [20] employed the point estimation method to calculate mo-
ments, the present study evaluates each sample using the ARNN,
enabling a more robust computation as expressed in Eq. (6). In
Section 4, the effect of different sample sizes (154mple) On the accuracy
of the computed moments will be compared against MCS results.

1 e

Gi

a =
nsample =1

1 e

(Gi—m)?

ay =
nsample =1

Lo ©
>, (Gi—am)
Nsample =1

az =

3
a3

1 Tsample

> (Gi—m)

_ nsample i=1

Qa4 ag
e Step 2: In the second step, once the system moments have been
determined, the Pearson distribution PDF is constructed using the
formulation shown in Eq. (7). Unlike conventional distributions that
rely only on the first two moments (mean and standard deviation),
the Pearson distribution incorporates information from the first four
moments. Evaluating these moments, as described in the previous
step, requires far fewer samples than directly estimating Py, partic-
ularly for systems with extremely low failure probabilities. As indi-
cated in Eq. (7), the Pearson distribution consists of multiple types,
from TYPE O to TYPE 7, with the specific type determined by the
computed variables q, b, c, d, ro, r1, r2, and A. These equations are
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calculated based on a3 (skewness) and a4 (kurtosis). The resulting
PDF initially has zero mean and unit standard deviation; it is then
adjusted using the identified a7 and a,. Using this adjusted PDF, the
failure probability Pyis computed according to the concept in Eq. (1).
By applying this approach with the surrogate PDF from Eq. (7), the
final Py is obtained as formulated in Eq. (8). Where x is a set of
random variables vector in standard normal dimension.

.2
TYPEO : f(x) :\/Lz_ﬂexp(Tx)—m =0Nb=0

—ary—b ar;+b

TYPEL : f(x) = (x—r3) VA (r;—x) VA A >0Nb#0Nd<0

TYPE2 : f(x) = (7(51 fx2>ﬂ—>A >0Nb=0

ac—b?

TYPE3 : f(x) = (c + bx) °

(’%)—»A>Omb7é0rwd:0

TYPE4 : f(x)
_a ab — 2bd b + 2dx
= (¢ + bx + dx?) 2de ——— |tan! A
e +ve a2) B (20 n (2 287) ) -
<0Nb#0
a aro+b
. = |x—r,|7d —or= =
TYPES : f(x) = |x — 1| exp(d(x7r0))—>A 0Nb+#0
ar;+b ar;+b
TYPE6 —1:f(x)=(r1 —x) VA (r,—x) VA -A>0Nb<0Nd>0
ar;+b ar;+b

TYPE6 —2:f(x)=(x—1) V4 (x—12) VA A >0Nb>0Nd>0

_a
TYPE7 : f(x) = (f+x2) M_A<0nb=0

d
a=10as — 12052 —18 ¢ —=4ay —3as> A=b>—4ded 1 :_bz;d\/z
b —b—A
b=as(as + 3) d = 4a4 — 3a3® h="5q =757
@
P = / Fulxaz +a) ®
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4. Numerical example: three-story steel structure equipped with
base isolation

This section presents a numerical example using a three-story steel
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Table 1
Considered ground motion parameters.

Ground Motion Training Data

Random Variable Symbol Mean Unit COV  Distribution

Standard deviation of oy 0.3 - 0.1 Normal
excitation

Site damping ratio e 0.3 %

Value at 90 % of the duration Too 0.3 g

Normalized duration time eps 0.3 -
when peak occurred

Peak Ground Acceleration PGA 0.2 g

Dominant frequency of Wn 2 rad 0.2

earthquake excitation

structure equipped with base isolation. Fig. 5 illustrates the structural
geometry and section details. Several design codes permit the use of a
linearized base isolation model, in which the isolator is represented by
an equivalent linear spring and damping value derived from its me-
chanical properties, as demonstrated in previous studies [40-42]. This
linearization enables the use of LTHA, offering significant computa-
tional savings at the cost of reduced accuracy due to the simplification of
nonlinear isolator behavior. In contrast, the present study aims to
employ an Al-based approach that closely replicates the NTHA response
with minimal error.

In the current numerical example, the structure is assumed to be
constructed with A36 steel. The base isolation is modeled using a
Bouc-Wen spring element, with an elastic stiffness K = 4.5 kN/mm and
effective stiffness K¢ = 1.1 kN/mm. The isolator is assumed to have a
yield force of 57 kN and a post-yield stiffness ratio of 0.2. Typically,
structures with base isolation are designed to remain elastic under
design-level earthquakes; therefore, in this numerical example, the
structure is assumed to remain elastic, with nonlinearity arising solely
from the base isolation device. Rayleigh proportional damping of 3 % is
applied to two selected periods, 0.01 s and 5 s, to account for higher-
mode and nonlinear-period responses, respectively. NTHA is per-
formed using the commercial software SAP2000, employing the Hil-
ber-Hughes-Taylor (HHT) direct integration method, with @ = 0.5 and
= 0.25. The NTHA results from SAP2000 are used both for training the
ARNN and for validation.

The presented structure is intended solely to demonstrate the ARNN
prediction accuracy and the reliability evaluation framework described
in Section 3; therefore, the geometry in Fig. 5 does not fully comply with
any design code. The focus of this example is on assessing the accuracy
of the ARNN relative to SAP2000 NTHA results and evaluating the ef-
ficiency of the Py computation using a limited number of samples. This
section is divided into two subsections. Section 4.1 presents the ARNN
construction, including the training data generation process, boundary
conditions, and ARNN hyperparameters. The prediction accuracy of the
ARNN-generated structural response time histories is compared to
SAP2000 results. Section 4.2 demonstrates the computation of the fail-
ure probability (Py) using the Pearson distribution-based 4M-P method.

4.1. Construction of ARNN and prediction accuracy

Using the method described in Section 3.1, the ARNN model is
constructed to predict the displacement time history of each story. It
should be noted that a separate ARNN model is developed for each story.
The network architecture consists of four hidden layers, each with 50

Table 2
Lower and upper bound limit for structure parameters.
Random Variable Symbol  Unit Lower limit ~ Upper Limit
Live Load on Story 1, 2, 3 LL tf/ 0.1 0.3
2
m’
Elastic Modulus on Story 1, 2,3 E MPa 1 x 10° 3 x10°
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Fig. 6. Validation result on maximum displacement of ARNN prediction vs SAP2000 result.

nodes. The training is performed using a Limited-memory Broyden—
Fletcher-Goldfarb—Shanno (L-BFGS) quasi-Newton algorithm, which
minimizes the mean squared error (MSE). The L-BFGS solver employs a
standard line-search method with an approximation of the Hessian
matrix. The training process is terminated after 1.5 x 10*iterations. The
seismic time increment is set to 5 x 10~ s. Table 1 and Table 2 present
the boundaries of the variables considered for ground motion variability
and structural components, respectively. Parameters cg, g, Too, €ps, tn,
and wp control the characteristics of the generated ground motions
within the Kanai-Tajimi model, as described in Section 3.1. With the
base isolation in place, the numerical structure exhibits a fundamental
period of 1.45 s when the structural parameters are assigned their mean
values. Dead load is assumed to be 0.2 tf/m?, and the total structural
mass is derived from self-weight, dead load, and half of the live load.
These loads are applied prior to performing the NTHA.

In this numerical example, 125 samples of ground motion parame-
ters, as listed in Table 1, are generated using a Latin Hypercube Sam-
pling (LHS) strategy, assuming a normal distribution. These are paired
with 125 samples of structural parameters, generated via LHS with
uniform distributions within the boundaries specified in Table 2. The
resulting 125 combinations of ground motion and structural parameters
are used as training data for NTHA simulations. In addition to the NTHA
response records, the first two modal periods obtained from modal
analysis are included as input for the ARNN training, as described in

Table 3
Measured error on 30 testing data.

Error Indicator on 30 Testing Maximum Displacement

D
ata Base 1st 2nd 3rd

Isolation Story Story Story

MAPE (%) 7.04 7.76 5.81 4.22

MAE (mm) 2.74 4.37 4.18 3.07

RMSE (mm) 3.48 5.58 6.01 3.96

R? 0.99 0.99 0.98 0.99

Section 3.1.

After training the ARNN, an independent set of 30 ground motion
and structural parameter samples is generated outside the training
dataset for validation. These samples cover a range of ground motion
characteristics, structural properties, and seismic intensities, with pa-
rameters randomly selected within the boundaries defined in Table 1
and Table 2. Each of these 30 cases is analyzed using NTHA in SAP2000,
and the results are used to validate the ARNN predictions. Fig. 6 presents
the maximum story displacement predicted by the ARNN against the
corresponding SAP2000 results. Prediction accuracy is evaluated using
four metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and the coefficient of
determination (Rz). Table 3 summarizes these error metrics for each
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Table 4
Several testing data for validation.
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Test Story Artificial EQ parameter
Modulus (x 10° MPa) Live Load (x 107! tf/m?) PGA (g) 14 o fro Too eps
1 2 3 1 2 3
1 286.43 245.57 168.42 1.86 1.04 1.33 0.21 0.31 0.32 2.10 0.32 0.28
2 106.52 114.70 232.47 1.63 2.56 1.68 0.28 0.26 0.27 1.87 0.29 0.31
3 219.06 237.37 202.90 2.42 1.71 2.98 0.19 0.27 0.29 2.19 0.31 0.29
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Fig. 7. Result of test 1 (structure Tf,g = 1.41 s).

story, including the base isolation. The ARNN demonstrates high accu-
racy, with MAPE ranging from 4.22 % to 7.76 %, R? values above 0.98,
and relatively low MAE and RMSE values.

Since the ARNN produces the complete time history response, pre-
senting all 30 test cases within this article is impractical. Therefore, only
three representative cases are shown, with parameters listed in Table 4.
These cases cover ground motions with varying characteristics and PGA
ranging from 0.19 to 0.28 g, as well as structural parameters in terms of
mass and stiffness. Figs. 7-9 presents the NTHA results and ARNN pre-
dictions for the cases in Table 4. It includes: (a) top-story displacement
time histories for fixed-base (non-isolated) and base-isolated structures,
(b) comparison of ARNN-predicted and SAP2000 top-story displacement
histories, and (c) hysteresis curves of the base isolation from ARNN and
SAP2000. The structural periods for these cases range from 1.41 s to
1.52 s. The comparison between fixed-base and base-isolated responses
illustrates the significance of base isolation nonlinearity in the overall
structural response. For the three test cases, the average reduction in
top-story displacement due to base isolation is approximately 50 %,

which is consistent with typical base isolation performance.

The ARNN predictions closely match the NTHA results, capturing
both displacement time histories and base isolator hysteresis behavior.
All computations were performed on an Intel 13th Gen i7-1360P CPU.
While a single NTHA simulation requires approximately 20 min, the
ARNN predicts the complete time history for a single ground motion in
about 2 s, demonstrating a significant reduction in computational effort.

From Fig. 7-9, it is evident that the constructed ARNN accurately
reproduces the displacement time histories obtained from SAP2000.
Moreover, the ARNN effectively accounts for record-to-record vari-
ability in ground motion as well as variations in structural parameters,
including story stiffness and mass.

4.2. Failure probability (Py) assessment using 4M-P

With the surrogate model constructed in Section 4.2, reliability
assessment is performed in this section using the 4M-P method. This
moment-based approach computes the failure probability (Py) by first
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Fig. 8. Result of test 2 (structure Tppng = 1.52 5).

determining the first four moments of the limit state function, which are
then used to construct a Pearson distribution. The resulting surrogate
PDF represents the probability distribution of the limit state function.
Table 5 lists the assumed random variables for the investigated struc-
ture. In this study, uncertainties are considered to originate from SP,
including mass and stiffness, and GM parameters, including
Kanai-Tajimi parameters and PGA. Based on previous studies [43], the
largest source of uncertainty arises from ground motion variability,
including PGA. Consequently, the uncertainties associated with the base
isolation parameters are assumed negligible and are not considered in
this study. For the numerical example, failure is defined as the event
where the story drift ratio exceeds a threshold &. The failure probability
is formulated as shown in Eq. (9)., where f(x,a;,a2) is the Pearson PDF
constructed using the four moments. Since the surrogate PDF is known,
the failure probability can be computed using numerical integration
over the failure domain. The drift ratio is obtained directly from the
ARNN-predicted time history responses. As shown in Section 4.1, the
ARNN provides highly accurate predictions, with maximum displace-
ment errors in terms of MAPE ranging from 4 % to 7 %.
P = / Fulxas +ay)dx ©
G(SP.GM)<5

In this study, the first four moments of the system mean, standard
deviation, skewness, and kurtosis are computed using different sample
sizes to investigate their sensitivity. Table 6 presents the identified
moments obtained with sample sizes of 400, 600, and 800 using Eq. (7).
The computation procedure has been described in Section 3.2. Each
sample set is evaluated using the ARNN, which provides a significantly
more efficient approach compared to performing full NTHA. As shown
in Table 6, the values of a; (mean) and a5 (standard deviation) exhibit

minimal variation across sample sizes of 400 and 600. However, for
higher-order moments, a3 (skewness) and a4 (kurtosis), convergence is
achieved only when the sample size approaches 800.

Using this computed moments of different sample size, Pearson
distribution PDF is constructed as shown in Fig. 10(a)-(c) showing the
PDF of top story, 2nd story, and 1st story respectively.

Besides the 4M-P PDF estimation, two additional methods MCS using
ARNN (MCS + ARNN) and MCS integrated with the Equivalent Line-
arized Method (MCS + ELM) were also conducted for comparison. For
the MCS + ARNN, a PDF was constructed using 3000 Monte Carlo
samples, as shown in Fig. 10. It should be noted that this MCS was
performed using the surrogate ARNN model to generate structural re-
sponses for each sample. The purpose of including the MCS + ARNN
approach is to demonstrate the accuracy and efficiency of the 4M-P
method, which can construct a comparable PDF using a much smaller
sample size than the 3000 samples required by MCS + ARNN. Per-
forming MCS directly with NTHA while accounting for ground-motion
variability and structural parameter randomness is computationally
prohibitive in this study. As discussed in Section 4.1, a single NTHA
requires approximately 20 min, making large-scale MCS infeasible.
Although the ARNN predictions significantly reduce computational cost,
MCS with ARNN still remains challenging, as accurate reliability
assessment typically requires hundreds of thousands of samples.
Therefore, in the present study, the MCS + ARNN simulation is limited
to 3000 samples due to computational constraints.

The third reliability assessment method evaluated in this study is
MCS + ELM, in which the reliability analysis is performed through MCS
while the structural responses are obtained using LTHA based on the
Equivalent Linearized Method. This method is widely adopted and
permitted in seismic design codes. In the present study, the ELM
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Table 5
Considered random variables.
Random Variable Symbol  Mean Unit COV  Distribution
Uncertainty Sourced from Ground Motion
Standard deviation of oy 0.3 0.1 Normal
excitation
Site damping ratio e 0.3 %
Value at 90 % of the Too 0.3 g
duration
Normalized duration time eps 0.3
when peak occurred
Peak Ground Acceleration PGA 0.2 g
Dominant frequency of Wn 2 rad 0.2
earthquake excitation
Uncertainty Sourced from Ground Motion
Live Load on Story 1, 2, 3 LL 0.2 tf/ 0.1 Normal
m2
Elastic Modulus on Story 1, E 2x10° MPa

2,3

procedure follows ASCE 7-22, where the base isolator is idealized as a
linear spring characterized by an effective stiffness (K,g) and effective
damping ({.f), computed using Eq. (10).
[F +|F]
AT +1a7]
_ g Eloop

7 Ko (JA*] +147])°

Ky =
10)
Seff

Here |F'|and |F~| denote the peak positive and negative isolator forces,
which are equal to 220 kN in this study. Similarly, |[A* |and|A~| represent

10

Table 6
Computed moments using different sample size.
Story Nsample Moments
Drift (3) o ay (Standard az ay
(Mean) Deviation) (Skewness) (Kurtosis)
Top Story 400 0.31 0.10 1.33 5.71
600 0.32 0.10 1.49 6.70
800 0.31 0.09 1.47 6.80
2nd Story 400 0.30 0.10 3.02 26.05
600 0.31 0.10 2.48 19.26
800 0.31 0.09 2.26 17.20
1st Story 400 0.62 0.20 2.49 16.63
600 0.62 0.19 2.21 14.55
800 0.62 0.19 2.05 12.98

the peak positive and negative isolator displacements, equal to 200 mm.
Ejqp is the energy dissipated within a single hysteresis cycle. Using Eq.
(10), the computed values of K and (,p are 1.1kN/mm and 0.126,
respectively. With these effective properties, the base isolator is modeled
as a linear spring having stiffness Ker and damping ratio (.. Subse-
quently, LTHA combined with MCS is used to construct the corre-
sponding PDF, labeled as MCS + ELM in Fig. 10, using 3000 samples.
As shown in Fig. 10, the proposed 4M-P approach successfully re-
produces the PDF generated by MCS. For a more detailed comparison,
the failure probability (Py) is evaluated under drift ratio thresholds of
0.5 %, 0.75 %, and 1.00 % using discrete integration. Table 7 summa-
rizes the comparison of Py values obtained from MCS and 4M-P, along
with the error ¢, defined as the difference between the two approaches.
The results show that for Py > 0.2, the relative error remains below 10 %.
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underprediction compared to those obtained using ARNN. This obser-
vation is consistent with findings in the literature [44], which report that
equivalent linearized models for base isolators tend to underestimate
structural displacement. As also illustrated in Fig. 10, the discrepancy
between ARNN and ELM increases with story height, with ELM consis-
tently underpredicting the drift response. Table 8 presents the Py values
computed from MCS + ELM under different drift thresholds, showing
significantly lower Py estimates compared to the ARNN-based assess-
ment in Table 7 due to the underprediction of ELM.

All three assessment methods 4M-P, MCS + ARNN, and MCS + ELM
consistently indicate that the lower story governs the critical failure
limit state, exhibiting the largest drift ratio, which is nearly twice that of
the upper stories, as shown in Fig. 10. The second and third stories
display relatively similar drift ratios. A similar trend is also observed in
the ELM-based evaluation. In terms of failure probability (Py), Table 7
shows that the base story has a Py value approximately an order of
magnitude higher than that of the upper stories.

Overall, the procedure outlined in Section 3 and validated in Section
4 demonstrates that the proposed framework can assess the failure
probability of base-isolated steel structures under ground motion and
structural parameter uncertainties with accuracy comparable to NTHA,
but at a fraction of the computational cost.

5. Conclusion

This study proposes a framework to assess the failure probability of a
three-story base-isolated structure by incorporating uncertainties from
both ground motion and structural parameters. Unlike most reliability
studies, which typically focus on uncertainties in either structural or
seismic parameters, the present framework integrates both sources of
uncertainty while maintaining NTHA-level accuracy. To achieve
computational efficiency, an Artificial Neural Network in the form of an
ARNN is developed to predict displacement time history responses. In
contrast to many Al-based approaches that predict only peak structural
indicators, the constructed ARNN generates complete displacement time
histories with acceptable accuracy, as demonstrated in Section 4.1. The
integration of this surrogate model with a 4M-P enables efficient
assessment of system failure probability through the construction of a
surrogate Pearson distribution.

The main findings of this study are summarized as follows:

Table 8
Computed Py Using MCS + ELM approach.

Drift Threshold ELM + MCS
Higher discrepancies in Py at lower probability levels are likely due to Top Story 2nd Story 1st Story
the limited MCS sample size, which restricts the accuracy of rare event Py (6 > 0.50 %) 0 0 0
estimation. P (5 > 0.75 %) 2.50 x 1073 0 0
. . -1 —2 -3
For the linearized method, the MCS + ELM results show an Py (6>1.00 %) 4.02 x 10 6.29 x 10 8.57 x 10
Table 7
Computed Py and error between 4M-P method and MCS.
Drift Threshold AM-P Nggmpte Top Story 2nd Story 1st Story
4M-P Method (¢) MCS 4M-P Method (¢) MCS 4M-P Method (¢) MCS
P (6 > 0.50 %) 400 5.21 x 1072 16.7 4.46 x 1072 4.24 x 1072 13.0 3.75 x 102 7.08 x 107! 0.8 7.14 x 107!
600 5.25 x 1072 17.6 4.28 x 1072 14.0 7.24 x 107! 1.4
800 4.51 x 1072 0.9 3.89 x 1072 3.8 7.23 x 107! 1.3
P (6 > 0.75 %) 400 214 x 1073 40.2 3.57 x 1072 5.09 x 1072 78.2 2.86 x 1072 1.83x 107! 6.1 1.95 x 107!
600 2.77 x 1073 22.5 4.38 x 1073 53.2 1.80 x 107! 7.9
800 213 x 1073 40.4 3.55 x 1072 24.4 1.76 x 107! 9.5
P (6 > 1.00 %) 400 7.65 x 107° - 0 8.44 x 10°* 18.2 7.14 x 1074 4.85x 102 0.1 4.86 x 102
600 1.63 x 104 6.59 x 1074 7.8 4.21 x 1072 13.2
800 1.21 x 107* 4.87 x 1074 31.8 3.92 x 1072 19.4

11
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1. The ARNN model demonstrates high efficiency in terms of required
training data. For the three-story steel base-isolated structure
examined in this study, only about 125 NTHA simulations generated
using Kanai-Tajimi ground motions with variations in structural
parameters are needed for effective training.

2. Validation using 30 independent test cases not included in the
training dataset shows strong agreement with SAP2000 NTHA re-
sults. The ARNN predictions achieve MAPE values of 3-7 %, with
correlation coefficients exceeding 0.98. The selected displacement
time histories further confirm that the ARNN successfully captures
record-to-record ground-motion variability as well as changes in key
structural parameters such as mass and stiffness.

3. The proposed ARNN reduces the computational demand drastically,
requiring approximately 2 s per prediction compared to ~ 20 min
per NTHA run. The study also demonstrates that the 4M-P method,
using only 800 samples, successfully reproduces the drift-ratio
probability distribution obtained from MCS + ARNN. The failure
probabilities estimated by 4M-P show relative errors below 10 % for
cases with Py > 0.2; larger deviations for small Pyare attributed to the
limited MCS sample size.

4. Although the ELM provides a simplified linear approach with
reduced computational effort compared to full NTHA, it consistently
underpredicts structural displacement and drift ratios, resulting in
unconservative reliability estimates. In terms of computation time,
the ELM-based LTHA requires ~ 8 s still higher than the ARNN
prediction time for single simulation.

Overall, the proposed framework enables seismic reliability assess-
ment of base-isolated structures with accuracy comparable to NTHA
while explicitly incorporating uncertainties from both ground motion
and structural parameters. Although errors remain due to ARNN pre-
diction accuracy and surrogate distribution construction, these are
within acceptable engineering limits (MAPE 4-7 % for ARNN pre-
dictions and < 10 % error for 4M-P reliability estimation). The study
highlights the potential of combining Al-based surrogate models with
advanced probabilistic methods to achieve computationally efficient yet
accurate reliability assessments for practical structural design and
evaluation.

6. Limitation and future direction

The present study aims to introduce an efficient framework for
structural reliability assessment by integrating ARNN with NTHA
simulation data and the 4M-P reliability assessment method. However,
several limitations remain, as outlined below:

1. The developed ARNN model uses four hidden layers with 50 nodes
each, without further hyperparameter tuning, including the window
data sizes Ny, and Ny, Due to the high computational cost of the
ARNN training phase, optimization of these parameters was not
performed.

2. The ARNN training 4M-P reliability assessment relied on artificial
ground motions generated using the Kanai-Tajimi model. Although
these motions are reasonably realistic, they cannot fully capture
certain characteristics of real earthquakes, such as near-fault effects
or complex out-of-phase behavior.

3. The study is limited to a low-complexity, three-story base-isolated
structure, which may not represent more complex structural systems.

4. While the 4M-P reliability method provides efficient and reasonably
accurate PDF estimation, it has limitations regarding input moments,
as discussed by Zhao et al. [20].

These limitations suggest several potential research directions:

1. Optimization of ARNN hyperparameters to improve predictive
accuracy.

Structures 84 (2026) 111069

2. Use of more advanced or real ground-motion datasets, including
near-fault records.

3. Application of ARNN to more complex structures, such as bridges,
systems with additional damping devices, or structures considering
soil-structure interaction.

4. Integration with alternative or complementary reliability assessment
methods.
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