

Delft University of Technology

Latent space modeling of parametric and time-dependent PDEs using neural ODEs

Longhi, Alessandro; Lathouwers, Danny; Perkó, Zoltán

DOI
10.1016/j.cma.2025.118394
Publication date
2026
Document Version
Final published version
Published in
Computer Methods in Applied Mechanics and Engineering

Citation (APA)
Longhi, A., Lathouwers, D., & Perkó, Z. (2026). Latent space modeling of parametric and time-dependent
PDEs using neural ODEs. Computer Methods in Applied Mechanics and Engineering, 448, Article 118394.
https://doi.org/10.1016/j.cma.2025.118394

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cma.2025.118394
https://doi.org/10.1016/j.cma.2025.118394

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Latent space modeling of parametric and time-dependent PDEs
using neural ODEs

Alessandro Longhi ∗, Danny Lathouwers, Zoltán Perkó
Department of Radiation Science and Technology, TU Delft University of Technology, Mekelweg 15, Delft, 2629JB, the Netherlands

a r t i c l e i n f o

Keywords:
Partial differential equations
Surrogate modeling
Dimensionality reduction
Neural ordinary differential equations

 a b s t r a c t

Partial Differential Equations (PDEs) are central to science and engineering. Since solving them is
computationally expensive, a lot of effort has been put into approximating their solution operator
via both traditional and recently increasingly Deep Learning (DL) techniques. In this paper, we
propose an autoregressive and data-driven method using the analogy with classical numerical
solvers for time-dependent, parametric and (typically) nonlinear PDEs. We present how Dimen-
sionality Reduction (DR) can be coupled with Neural Ordinary Differential Equations (NODEs)
in order to learn the solution operator of arbitrary PDEs accounting both for (continuous) time
and parameter dependency. The idea of our work is that it is possible to map the high-fidelity
(i.e., high-dimensional) PDE solution space into a reduced (low-dimensional) space, which subse-
quently exhibits dynamics governed by a (latent) Ordinary Differential Equation (ODE). Solving
this (easier) ODE in the reduced space allows avoiding solving the PDE in the high-dimensional
solution space, thus decreasing the computational burden for repeated calculations for e.g., un-
certainty quantification or design optimization purposes. The main outcome of this work is the
importance of exploiting DR as opposed to the recent trend of building large and complex archi-
tectures: we show that by leveraging DR we can deliver not only more accurate predictions, but
also a considerably lighter and faster DL model compared to existing methodologies.

1. Introduction

Physical simulations are crucial to all areas of physics and engineering, such as fluid dynamics, nuclear physics, climate science,
etc. Although a lot of work has been done in constructing robust and quick numerical Partial Differential Equations (PDE) solvers
[1], traditional solvers such as finite element methods are still computationally expensive when the system is complex. This is a
problem especially when repeated evaluations of a model for different initial conditions and parameters are needed, which is typical
in sensitivity analysis, design optimization or uncertainty quantification studies [2,3]. To overcome such time limitations, decades of
extensive research has been put into building so called surrogate models, i.e., faster to evaluate but accurate enough approximations
of the original complex model describing the physical system of interest.

The first studies on surrogate modeling fall under the umbrella of Reduced Order Modeling (ROM) [4] methods, with the pioneering
work on Proper Orthogonal Decomposition (POD) by Lumley in 1967 [5]. The main assumption of ROM is that a system determined
by 𝑁 (potentially infinite) degrees of freedom (full space) can instead be projected into a lower dimensional space of dimension 𝑛
(reduced space), hence its evolution can be calculated by solving a much smaller system of 𝑛 ≪ 𝑁 equations. A common way of

∗ Corresponding author.
 E-mail address: a.longhi@tudelft.nl (A. Longhi).

https://doi.org/10.1016/j.cma.2025.118394
Received 20 May 2025; Received in revised form 1 September 2025; Accepted 6 September 2025

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Available online 23 September 2025
0045-7825/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://orcid.org/0009-0008-5808-2164

N

n

$n\ll N$

$s(x,t)$

$s(x,t)\approx \sum _{k=1}^n a_k(t)V_k(x)$

$a_k(t)$

$V_k(x)$

x

n

$a_k(t)$

$s(x,t)$

$h(t)\in \mathbb {R}^D$

$\frac {dh(t)}{dt}=f_\theta (h(t),t)$

$f_{\theta }$

$h(t)$

2

2

t_i

t_{i+1}

Δt

$\Delta t'<\Delta t$

3

Δt

3

f

\begin {align}\frac {d}{dt}\varepsilon (t|\pmb {\mu })=f(\varepsilon (t|\pmb {\mu }),\pmb {\mu }),\quad \text \quad f\in \mathcal {F}:\mathcal {E}\times \mathcal {D}_{\pmb {\mu }}\rightarrow \mathcal {E}, \label {eq:ODE}\end {align}

f

f

f

f_i

i

f_i

f

f

$\mathcal {V}$

$\mathcal {S}$

$\mathcal {S}^0$

\begin {align}\left \{ \begin {aligned} & \mathcal {V} = \{v|v:\partial \mathcal {D}_{\mathbf {x}}\times \mathcal {D}_t\rightarrow \mathbb {R}^m\,;\lVert v_i \rVert _2<\infty \,\forall \,i\in [1,\ldots ,m]\,\,; v\in \mathcal {C}^2\},\\ & \mathcal {S} = \{s|s:\mathcal {D}_{\mathbf {x}}\times \mathcal {D}_t\rightarrow \mathbb {R}^m\,;\lVert s_i \rVert _2<\infty \,\forall \, i \,\in [1,\ldots ,m]\,\,; s\in \mathcal {C}^2\},\\ & \mathcal {S}^0\subseteq \mathcal {S}^t = \{s(x,t=\tilde {t}|\pmb {\mu })|s(x,t=\tilde {t}|\pmb {\mu }):\mathcal {D}_{\mathbf {x}}\rightarrow \mathbb {R}^m, \forall \tilde {t}\in \mathcal {D}_t, \pmb {\mu }\in \mathcal {D}_{\pmb {\mu }}\}, \end {aligned} \right . \label {Xeqn1-1}\end {align}

$\mathcal {S}^t$

$\mathcal {D}_{\mathbf {x}}\subseteq \mathbb {R}^n$

$\mathbf {x}$

$\mathcal {D}_{t}\subseteq \mathbb {R}^+$

$\partial \mathcal {D}_{\mathbf {x}}\subseteq \mathbb {R}^n$

$\mathcal {D}_{\mathbf {x}}$

$\mathcal {D}_{\pmb {\mu }}\subseteq \mathbb {R}^z$

$\pmb {\mu } = (\mu _1,\mu _2,\ldots , \mu _z)$

\begin {align}\left \{ \begin {aligned} &\hat {\mathcal {N}}(s(\mathbf {x},t|\pmb {\mu }),\mathbf {x},t,\pmb {\mu })= g(\mathbf {x},t,\pmb {\mu }) \\ &s(\tilde {\mathbf {x}},t|\pmb {\mu }) = v(\tilde {\mathbf {x}},t,\pmb {\mu }) \\ &s(\mathbf {x},t=0|\pmb {\mu }) = s^0(\mathbf {x},\pmb {\mu }), \end {aligned} \right . \label {eq:PDEsystem}\end {align}

$\hat {\mathcal {N}}(s(\mathbf {x},t|\pmb {\mu }),\mathbf {x},t,\pmb {\mu })$

$g(\mathbf {x}, t ,\pmb {\mu })$

$s\in \mathcal {S}$

$v\in \mathcal {V}$

$s^0\in \mathcal {S}^0$

$\mathbf {x}\in \mathcal {D}_{\mathbf {x}}$

$\pmb {\mu }\in \mathcal {D}_{\pmb {\mu }}$

$\tilde {\mathbf {x}}\in \partial \mathcal {D}_{\mathbf {x}}$

$t\in \mathcal {D}_{t}$

$\pmb {\mu }$

$(\cdot ,\pmb {\mu })$

$(\cdot |\pmb {\mu })$

$v(\tilde {\mathbf {x}},t, \pmb {\mu })$

$g(\mathbf {x},t,\pmb {\mu }) = 0$

$\hat {\mathcal {N}} = \hat {\mathcal {N}}(s(\mathbf {x},t|\pmb {\mu }),\mathbf {x},\pmb {\mu })$

t

$\hat {\mathcal {S}}$

$\hat {\mathcal {H}}$

\begin {align}\hat {\mathcal {S}}:\mathcal {S}^0\times \mathcal {D}_{t}\times \mathcal {D}_{\pmb {\mu }}\rightarrow \mathcal {S}\quad \text {and}\quad \hat {\mathcal {H}}:\mathcal {S}^t\times \mathcal {D}_{\Delta t}\times \mathcal {D}_{\pmb {\mu }}\rightarrow \mathcal {S}^t, \label {eq:global&auto-op}\end {align}

$\mathcal {D}_{\Delta t}\subseteq \mathbb {R}^+$

$\hat {\mathcal {S}}$

$(s^0,t,\pmb {\mu })$

$s(\mathbf {x},t|\pmb {\mu })$

$\hat {\mathcal {H}}$

$(s(\mathbf {x},t=\tilde {t}|\pmb {\mu }), \Delta t, \pmb {\mu })$

$s(\mathbf {x},\tilde {t}+\Delta t|\pmb {\mu })$

s

t

s^0

t

t

s

t

s

$t+\Delta t$

t

$s(t)$

s^0

$s(t+\Delta t)$

$\mathcal {S}$

s

$\mathbf {X} = \{x_k|x_k\in \mathcal {D}_{\mathbf {x}}, x_k = (x_k^1,\ldots ,x_k^n),k=0,\ldots ,N_\mathbf {x}\}$

$\partial \mathbf {X} = \{\tilde {x}_k|\tilde {x}_k\in \partial \mathcal {D}_{\mathbf {x}}, \tilde {x}_k = (\tilde {x}_k^1,\ldots ,\tilde {x}_k^n), k=0,\ldots ,N_{\tilde {\mathbf {x}}}\}$

$\mathcal {D}_{\mathbf {x}}$

$\pmb {\mathcal {X}} = \mathbf {X}\cup \partial \mathbf {X}$

$\pmb {M} = \{\pmb {\mu }\in \mathcal {D}_{\pmb {\mu }},\pmb {\mu }=(\mu _0,\mu _1,\ldots ,\mu _z)\}$

$\pmb {\mu }$

$\mathbf {T} = \{t|t\in \mathcal {D}_{t},t=(t_0,t_1,\ldots ,t_{F})\}$

$\mathcal {S}$

$\mathcal {S}^0$

$\pmb {\mathcal {X}}$

$\pmb {T}$

$\mathcal {S}_r=\{s_{r}(\mathbf {x},t|\pmb {\mu })|\mathbf {x}\in \pmb {\mathcal {X}}, t\in \mathbf {T}, \pmb {\mu }\in \pmb {M}\}\subset {\mathbb {R}^{|\pmb {\mathcal {X}}|\times n\times m}}$

$\mathcal {S}^{0}_r=\{s^0_{r}(\mathbf {x},\pmb {\mu })|\mathbf {x}\in \pmb {\mathcal {X}},\pmb {\mu }\in \pmb {M}\}\subset \mathcal {S}_r$

r

s

$s_r(\mathbf {x},t_0|\pmb {\mu }) = s_r^0(\mathbf {x},\pmb {\mu })$

s_r

$s_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu },s_r^0)$

s_r^0

s^0

$\mathcal {E}$

\begin {align}\mathcal {E}=\{\varepsilon (t|\pmb {\mu })|\varepsilon (t|\pmb {\mu })= (\varepsilon _1(t|\pmb {\mu }), \ldots ,\varepsilon _{\lambda }(t|\pmb {\mu })), t\in \mathcal {D}_t, \pmb {\mu }\in \mathcal {D}_{\pmb {\mu }}\}\subset {\mathbb {R}^{\lambda }}, \label {Xeqn4-4}\end {align}

$\lambda \ll |\mathcal {X}|\cdot nm$

$\varepsilon (t|\pmb {\mu })\in \mathcal {E}$

$s\in \mathcal {S}$

$\pmb {\mu }$

$\varepsilon (t|\pmb {\mu })$

$s(\mathbf {x},t|\pmb {\mu })$

$\varepsilon _i(t)$

s

s

$\mathcal {S}_r$

$\varepsilon (t|\pmb {\mu })$

$\mathcal {S}$

$\varepsilon (t|\pmb {\mu })$

$\mathcal {S}$

$\mathcal {S}$

$\mathcal {E}$

$\varphi $

$\psi $

\begin {align}\varphi : \mathcal {S}\rightarrow \mathcal {E}\quad \text {and}\quad \psi : \mathcal {E}\rightarrow \mathcal {S}, \label {eq:AE}\end {align}

$\varphi \circ \psi =\psi \circ \varphi = \mathds {1}$

$\varphi $

$\psi $

$\varphi _\theta :\mathcal {S}_r\rightarrow \mathcal {E}$

$\psi _\theta :\mathcal {E}\rightarrow \mathcal {S}_r$

$\varepsilon $

$\mathcal {E}$

$\mathcal {E}$

$\pmb {\mu }\in \pmb {M}$

f

t

$\mathcal {E}$

$\hat {\mathcal {N}}$

$g(\mathbf {x},t,\pmb {\mu })$

t

$f = f(\varepsilon (t|\pmb {\mu }),\pmb {\mu },t)$

t

$\pmb {\mu }$

\begin {align}\label {eq:processor} \pi :\mathcal {E}\times \mathcal {F}\times \mathcal {D}_{\pmb {\mu }}\times \mathcal {D}_{\Delta t}\rightarrow \mathcal {E},\end {align}

$\varepsilon (t|\pmb {\mu })$

\begin {align}\pi (\varepsilon (t_i|\pmb {\mu }),f,\pmb {\mu },\Delta t_{i+1,i}) = \varepsilon (t_i|\pmb {\mu })+\int _{t_i}^{t_{i+1}}f(\varepsilon (t|\pmb {\mu }),\pmb {\mu }) \,dt, \label {eq:NODE}\end {align}

$\Delta t_{i+1,i} = t_{i+1}-t_i$

$\pmb {\mu }$

f

$\pi (\varepsilon (t_i|\pmb {\mu }),f,\pmb {\mu },\Delta t_{i+1,i})= \varepsilon (t_{i+1}|\pmb {\mu })$

$\varphi $

$\psi $

$\pi $

$\pi $

f

$f_\theta $

f

$\pi _\theta $

$\pi $

$\mathcal {E}$

\begin {align}\pi _\theta (\varepsilon (t_{i}|\pmb {\mu }), \pmb {\mu },\Delta t_{i+1,i}) = ODESolve(\varepsilon (t_{i}|\pmb {\mu }),\pmb {\mu },\Delta t_{i+1,i}), \label {Xeqn9-9}\end {align}

$f_\theta $

$\varepsilon (t|\pmb {\mu })$

$\varepsilon (t|\pmb {\mu })$

\begin {align}\pi _\theta (\varepsilon (t_{i}|\pmb {\mu }),\pmb {\mu },\Delta t_{i+1,i}) = \varepsilon (t_i|\pmb {\mu })+\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i}|\pmb {\mu }),\pmb {\mu }). \label {Xeqn10-10}\end {align}

$\pi $

$\hat {\mathcal {H}}$

$\mathcal {E}$

$\pi $

$\mathcal {S}_r$

$\mathcal {E}$

$\pi _\theta $

\begin {align}\mathcal {L}_{1,i} = \frac {||s_r(\mathbf {x},t_i|\pmb {\mu })-\psi _\theta \circ \varphi _\theta (s_r(\mathbf {x},t_i|\pmb {\mu })||_2}{||s_r(\mathbf {x},t_i|\pmb {\mu })||_2} \label {Xeqn11-11}\end {align}

\begin {align}\left \{ \begin {aligned} &\varepsilon _i^{\pmb {\mu }} = \varphi _\theta (s(\mathbf {x},t_i|\pmb {\mu })),\\ &\varepsilon _{i}^{\pmb {\mu },k} = \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{i,i-1})\circ \ldots \circ \pi _\theta (\varepsilon _{i-k}^{\pmb {\mu }},\pmb {\mu },\Delta t_{i-k+1,i-k}), \\ \end {aligned} \right . \label {eq:notation-simplified}\end {align}

\begin {align}\left \{ \begin {aligned} &\mathcal {L}_{2,i}^{T,k_1} = \frac {||\varepsilon _i^{\pmb {\mu }}-\varepsilon _{i}^{\pmb {\mu },k_1}||_2}{||\varepsilon _i^{\pmb {\mu }}||_2},\\ &\mathcal {L}_{2,i}^{A,k_2} = \frac {||\varepsilon _i^{\pmb {\mu }}-\varepsilon _i^{\pmb {\mu },i}||_2}{||\varepsilon _i^{\pmb {\mu }}||_2}, \end {aligned} \right . \label {eq:L2-loss}\end {align}

T

A

$\mathcal {L}_{2,i}^{T,k_1}$

$\varepsilon _{i}^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },k_1}$

$\pi _\theta $

$\varepsilon _{i-k_1}^{\pmb {\mu }}$

$s_r(\mathbf {x},t_{i-k_1}|\pmb {\mu })$

k_1

s^0_r

$\varphi _\theta $

$\varepsilon _0^{\pmb {\mu }}$

$\varepsilon _0^{\pmb {\mu }}$

$\pi _\theta $

$\pmb {\mu }$

$\Delta t_{i+i,i}$

$\psi _\theta $

$\varepsilon _{i}^{\pmb {\mu },i}$

$\tilde {s}_r(\mathbf {x},t_i|\pmb {\mu })$

$\varphi _\theta $

s_r^0

$\lambda $

$\lambda $

$\varepsilon $

$\pi _\theta $

$\pi _\theta $

$\varepsilon _0^{\pmb {\mu }}$

$\mathcal {L}^{T,k_1}_{2,i}$

$k_1= F$

$\mathcal {L}^{A,k_2}_{2,i}$

$\varepsilon _{i}^{\pmb {\mu }}$

$\varepsilon _i^{\pmb {\mu },i} = \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{i,i-1})\circ \ldots \circ \pi _\theta (\varepsilon _{0}^{\pmb {\mu }},\pmb {\mu },\Delta t_{1,0})$

$\pi _\theta $

s_r^0

k_2

t_i

s_r^0

$\pi _\theta $

i

t_{i-k_2}

t_i

$\mathcal {L}^{T,k_1}_{2,i}$

$\mathcal {L}^{A,k_2}_{2,i}$

$k_1=k_2= F$

t_{i-k}

$\tilde {s}_r(\mathbf {x},t_i|\pmb {\mu }) = \psi _\theta \circ \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{i,i-1})\circ \ldots \circ \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{1,0})\circ \varphi _\theta (s^0_r)$

$\mathcal {L}^{T,1}_{2,i}$

$\mathcal {L}^{A,k_2}_{2,i}$

k_2

$k_2>1$

k_2

$k_1>1$

$\mathcal {L}^{T,k_1}_{2,i}$

t_{i-k}

$\mathcal {L}_{2,i}=\beta \mathcal {L}^{T,k_1}_{2,i}+\gamma \mathcal {L}^{A,k_2}_{2,i}$

$\beta $

$\gamma $

$\beta =1$

$\gamma =0$

$k_1=1$

$\beta =1$

$\gamma =1$

$k_1=1$

k_2

$k_2 = 1$

1

2

$\mathcal {L}_{1,i}$

$\mathcal {L}^{T,1}_{2,i}$

$\mathcal {L}^{A,1}_{2,i}$

k_2

$\pi _\theta $

$\varepsilon (t|\pmb {\mu })$

$\Delta t_{i+1,1}$

$\Delta t_{i+1,1}/\alpha $

$\alpha \in [1,\infty)$

$s_r(\mathbf {x},t_i|\pmb {\mu })$

$i\in \{0,F\}$

$\varphi _\theta $

$\varepsilon _i^{\pmb {\mu }}$

$\psi _\theta $

$\tilde {s}_r(\mathbf {x},t_i|\pmb {\mu })$

$\mathcal {L}_1$

$\pi _\theta $

$\varepsilon _i^{\pmb {\mu }}$

$i\in \{0,F-1\}$

$\varepsilon _{i}^{\pmb {\mu },1}$

$i\in \{1,F\}$

$\mathcal {L}_2^{T,1}$

T

$\varepsilon _i^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },1}$

$\pi _\theta $

$\varepsilon _0^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },i}$

$i\in \{1,F\}$

$\mathcal {L}_2^{A,k_2}$

A

$\varepsilon _i^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },i}$

$\pi _\theta $

$\varepsilon _i^{\pmb {\mu }}$

$i\in \{0,F-1\}$

$\varepsilon _i^{\pmb {\mu }}$

$\varepsilon ^{\pmb {\mu },1}_{m}$

$\Delta t_{m,i-1}$

$[0,\Delta t_{i,i-1}]$

$\pi _\theta $

$\varepsilon ^{\pmb {\mu },1}_{m}$

$\Delta t_{i,i-1}-\Delta t_{m,i}$

$\tilde {\varepsilon }_{i}^{\pmb {\mu }}$

$\mathcal {L}_3$

$\varepsilon _i^{\pmb {\mu }}$

$\tilde {\varepsilon }_{i}^{\pmb {\mu }}$

$\pmb {\mu }$

$\pmb {\mu }$

t

Δt

$\Delta t = 0.05$

$\Delta t = 0.02$

t

Δt

$\zeta $

$\nu =0.001,0.01$

$\nu $

$\zeta = 0.1,1.0,7.0$

$\nu =0.1,1.0,4.0$

\begin {align}\label {eq:L3} \left \{ \begin {aligned} &\mathcal {L}_{3,i} =\frac {||\varepsilon _i^{\pmb {\mu }}-\tilde {\varepsilon }_{i}^{\pmb {\mu }}||_2}{||\varepsilon _i^{\pmb {\mu }}||_2}\ \\ &\tilde {\varepsilon }_{i}^{\pmb {\mu }} = \pi _\theta (\cdot ,(\Delta t_{i,i-1}-\Delta t_{m,i}))\circ \pi _\theta (\varepsilon _{i-1}^{\pmb {\mu }},\pmb {\mu },\Delta t_{m,i-1}), \end {aligned} \right .\end {align}

$\Delta t_{m,i-1}\in [0,\Delta t_{i,i-1}]$

$i-1<m<i$

$\mathcal {L}_{3,i}$

$\mathcal {L}_{rg}$

$\mathcal {L}_{rg} = \lambda _{rg}\sum _{i=0}^F ||\varepsilon _i^{\pmb {\mu }}||_1/\lambda $

$\lambda _{rg}\in \mathbb {R}^+$

$s_r^0(\mathbf {x},\pmb {\mu })$

\begin {align}\begin {aligned} \mathcal {L}_{tr} &= \frac {1}{F}\sum _{i=0}^F \alpha \mathcal {L}_{1,i}+\frac {1}{F}\sum _{i=1}^{F}\left [\beta \mathcal {L}_{2,i}^{T,k_1}+\gamma \mathcal {L}_{2,i}^{A,k_2}+\delta \mathcal {L}_{3,i}\right]+ \mathcal {L}_{rg} \\ & = \alpha \mathcal {L}_{1}+\beta \mathcal {L}_{2}^{T,k_1}+\gamma \mathcal {L}_{2}^{A,k_2}+\delta \mathcal {L}_{3} + \mathcal {L}_{rg}, \end {aligned} \label {Xeqn15-15}\end {align}

k_1

k_2

$\alpha $

$\beta $

$\gamma $

$\delta $

$\mathcal {L}_{tr}$

$\mathcal {L}_{vl}$

\begin {align}\mathcal {L}_{vl} = \mathcal {L}_{tr} + \sum _{i=1}^{F} \frac {||s_r(\mathbf {x},t_i|\pmb {\mu }) - \tilde {s}_r(\mathbf {x},t_i|\pmb {\mu })||_2}{||s_r(\mathbf {x},t_i|\pmb {\mu })||_2}. \label {Xeqn16-16}\end {align}

$\pmb {\mu }$

t

$\pmb {\mu }$

$\pmb {\mu }$

\begin {align}\text {nRMSE} &=\frac {1}{N_u\,N_{\pmb {\mu }}F}\,\sum _{i=1}^{N_u}\sum _{p=1}^{N_{\pmb {\mu }}}\sum _{j=1}^F \frac {||s_r(\mathbf {x},t_j|\pmb {\mu }_p,s_{r,i}^0)-\tilde {s}_r(\mathbf {x},t_j|\pmb {\mu }_p,s_{r,i}^0))||_2}{||s_r(\mathbf {x},t_j|\pmb {\mu }_p,s_{r,i}^0)||_2},\label {eq:nRMSE}\\ \text {nRMSE}(\pmb {\mu }) &=\frac {1}{N_u\,F}\,\sum _{i=1}^{N_u}\sum _{j=1}^F \frac {||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)-\tilde {s}_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0))||_2}{||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2},\label {eq:mu-nRMSE}\\ \text {NODE-nRMSE}(\pmb {\mu }) &=\frac {1}{N_u\,F}\,\sum _{i=1}^{N_u}\sum _{j=1}^F \frac {||\varphi _\theta \circ s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)-\tilde {\varepsilon }(t_j|\pmb {\mu },s_{r,i}^0))||_2}{||\varphi _\theta \circ s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2},\label {eq:NODE-nRMSE}\\ \text {AE-nRMSE}(\pmb {\mu }) &=\frac {1}{N_u\,F}\,\sum _{i=1}^{N_u}\sum _{j=1}^F \frac {||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)-\psi _\theta \circ \varphi _\theta \circ s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2}{||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2},\label {eq:AE-nRMSE}\\ \text {nRMSE}(t) &=\frac {1}{N_u\,N_{\pmb {\mu }}}\,\sum _{i=1}^{N_u}\sum _{p=1}^{N_{\pmb {\mu }}}\frac {||s_r(\mathbf {x},t|\pmb {\mu }_p,s_{r,i}^0)-\tilde {s}_r(\mathbf {x},t|\pmb {\mu }_p,s_{r,i}^0))||_2}{||s_r(\mathbf {x},t|\pmb {\mu }_p,s_{r,i}^0)||_2},\label {eq:t-nRMSE}\end {align}

\begin {align}\label {eq:advection} \left \{ \begin {aligned} &\partial _t s(\mathbf {x},t|\pmb {\mu })+\zeta \partial _x s(\mathbf {x},t|\pmb {\mu })= 0,\quad x\in (0,1),\, t\in (0,2]\\ & s(\mathbf {x},0|\pmb {\mu }) = s^0(\mathbf {x},\pmb {\mu }),\, x\in (0,1). \end {aligned} \right .\end {align}

$\zeta =0.1$

\begin {align}\label {eq:burger} \left \{ \begin {aligned} &\partial _t s(\mathbf {x},t|\pmb {\mu })+\partial _x(s^2(\mathbf {x},t|\pmb {\mu })/2)-\nu /\pi \partial _{xx}s(\mathbf {x},t|\pmb {\mu })\quad x\in (0,1),\, t\in (0,2]\\ & s(\mathbf {x},0|\pmb {\mu }) = s^0(\mathbf {x},\pmb {\mu }),\, x\in (0,1), \end {aligned} \right .\end {align}

$\nu =0.001$

\begin {align}\label {eq:sw} \begin {aligned} &\partial _t h+\partial _x h u + \partial _y h v = 0, \\ &\partial _t h u +\partial _x \left (u^2~h + \frac {1}{2} g_r h^2 \right)+\partial _y u v h = -g_r h\partial _x b, \\ & \partial _t h v +\partial _x \left (v^2~h + \frac {1}{2} g_r h^2 \right)+\partial _y u v h = -g_r h\partial _y b, \end {aligned}\end {align}

$\pmb {\mu }$

s^0

$\dagger $

Δt

$\star $

Δt

$\pmb {\mu }$

s^0

$\dagger $

Δt

$\star $

Δt

$\Delta t = 0.05$

$\Delta t = 0.01$

3

$\Delta t=0.05$

$\Delta t = 0.01$

$\pmb {\mu }$

s^0

$\Delta t = 0.01$

$\Delta t = 0.05$

$\Delta t = 0.01$

$\Delta t = 0.01$

$\star $

$\dagger $

1

$\mathcal {L}_{2,i}^{T,1}$

3

\begin {align}\label {eq:molenkamp} \begin {aligned} &\partial _t q(x,y,t)+u\partial _x q(x,y,t) + v\partial _y q(x,y,t)+\lambda _3 q(x,y,t) = 0 \\ &q(x,y,0) = \lambda _1\,0.01^{\lambda _2 h(x,y,0)^2},\quad h(x,y,0)=\sqrt {(x-\lambda _4+\frac {1}{2})^2+(y-\lambda _5)^2}, \end {aligned}\end {align}

2

$\mathcal {L}_{2,i}^{T,1}$

$\mathcal {L}_{tr}$

$\mathcal {L}_{vl}$

$k_2 =1$

1

30

$p(k_2)$

k_2

$\gamma \,\mathcal {L}_{2,i}^{A,k_2}$

$\gamma = \gamma _0<1$

$\gamma _0$

$\gamma =1$

$\zeta $

0.1

7.0

1.0

$f_\theta $

0.7

2.0

$\nu $

$\nu =1.0$

$\nu =4.0$

$\nu =0.001$

$\nu =0.01$

$\Delta t = 0.05$

$\Delta t = 0.02$

$\lambda = 5$

$\pmb {\mu }$

$\pmb {\mu }$

$\zeta $

$\nu \geq 0.1$

0.1

$\nu =0.001$

$\nu =4.0$

$\nu =4.0$

2.0

$\nu =0.001$

0.001

$\nu =0.01$

$\nu =1.0$

5

$f_\theta $

$\zeta = 0.1, 1.0,7.0$

5

$\zeta = 0.1,1.0,7.0$

$\pmb {\mu }$

$\pmb {\mu }$

$\pmb {\mu }$

$(\pmb {\mu })$

$0.5/\zeta $

$\zeta = 0.1$

$\zeta = 4.0$

$\mathcal {L}_{3,i}$

$\gamma _0$

$p(k_2)$

$\mathcal {E}$

$\nu =0.001$

100

$\zeta =0.01$

$\zeta $

$\mathcal {E}$

$f_\theta $

$\mathcal {E}$

$f_\theta $

$t_i\in \mathbf {T}$

\begin {align}\label {eq:rungekutta-reduced} \varepsilon (t_{i+1}|\pmb {\mu }) = \varepsilon (t_{i}|\pmb {\mu }) + \Delta t_{i+1,i}\sum _{j=1}^q h_j b_j,\end {align}

q

$\Delta t_{i+1,i} = t_{i+1}-t_i$

\begin {align*}b_1 = &f(\varepsilon (t_{i}|\pmb {\mu }),t_{i},\pmb {\mu }),\\ b_2 = &f(\varepsilon (t_{i}|\pmb {\mu })+(a_{2,1}b_1)\Delta t_{i+1,i},t_i+c_2\Delta t_{i+1,i},\pmb {\mu }),\\ & \vdots \\ b_k = & f(\varepsilon (t_{i}|\pmb {\mu })+\sum _{l=1}^{k-1}a_{k,l}b_l\Delta t_{i+1,i}, t_i+c_k\Delta t_{i+1,i},\pmb {\mu }).\end {align*}

a_{ij}

h_j

c_j

i

$i+1$

$\Delta t_{i+1,i}$

$\pi _\theta $

$\Delta t_{i+1,i}$

$\pi _\theta $

$\varepsilon (t|\pmb {\mu })$

$\pmb {\mu }$

\begin {align}\varepsilon (t_{i+1}) = \varepsilon (t_{i})+\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i})), \label {Xeqn18-A.2}\end {align}

t_m

$t_i<t_m<t_{i+1}$

$f_\theta $

\begin {align}\left \{ \begin {aligned} &\varepsilon (t_{i+1}) = \varepsilon (t_{i})+\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i})), \\ &\varepsilon (t_{i+1}) = \varepsilon (t_{m}) + (\Delta t_{i+1,i}-\Delta t_{m,i})\, f_\theta (\varepsilon (t_{m}))), \end {aligned} \right . \label {eq:two-generalization}\end {align}

$\varepsilon (t_{m}) = \varepsilon (t_{i})+\Delta t_{m,i}\,f_\theta (\varepsilon (t_{i}))$

\begin {align}f_\theta (\varepsilon (t_{i})) = f_\theta (\varepsilon (t_{m})), \label {Xeqn20-A.4}\end {align}

$f_\theta $

$\pi _\theta $

$\Delta t_{i+1,i}$

$f_\theta $

$\varepsilon (t)$

$\mathcal {E}$

\begin {align}\varepsilon (t_{i+1}) = \varepsilon (t_{i})+\Delta t_{i+1,i}f_\theta \left (\varepsilon (t_{i})+\frac {1}{2}\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i}))\right), \label {Xeqn21-A.5}\end {align}

$f_\theta $

$\Delta t_{i+1,i}/2$

$f_\theta $

\begin {align}\left \{ \begin {aligned} &\varepsilon (t_{i+1}|\pmb {\mu }) = \varepsilon (t_{i}|\pmb {\mu }) + \Delta t_{i+1,i}f_\theta (\varepsilon (t^{i+1}_i|\pmb {\mu })), \\ &\varepsilon (t_{i+1}|\pmb {\mu })= \varepsilon (t_{i}|\pmb {\mu })+\Delta t_{m,i} f_\theta (\varepsilon (t^m_i|\pmb {\mu }))+ (\Delta t_{i+1,i}-\Delta t_m)f_\theta (\varepsilon (t^{i+1}_m|\pmb {\mu })), \end {aligned} \right . \label {eq:two-generalization-RK-2}\end {align}

$t_i<t_m<t_{i+1}$

$t^{j}_k = \frac {t_j+t_k}{2}$

$\varepsilon (t^{j}_k|\pmb {\mu }) =\varepsilon (t_{k}|\pmb {\mu })+\frac { \Delta t_{j,k}}{2}f_\theta (\varepsilon (t_{k}|\pmb {\mu }))$

\begin {align}\Delta t_{i+1,i}f_\theta (\varepsilon (t^{i+1}_i|\pmb {\mu })) = \Delta t_{m,i} f_\theta (\varepsilon (t^m_i|\pmb {\mu }))+ (\Delta t_{i+1,i}-\Delta t_m)f_\theta (\varepsilon (t^{i+1}_m|\pmb {\mu })), \label {Xeqn23-A.7}\end {align}

\begin {align}\begin {aligned} &\Delta t_{i+1,i}f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{i+1,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))\right]= \Delta t_{m,i} f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))\right]+ \\ &+(\Delta t_{i+1,i}-\Delta t_m)f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))+\frac { \Delta t_{i+1,m}}{2}f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))\right]\right], \end {aligned} \label {Xeqn24-A.8}\end {align}

$\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu })) = \varepsilon (t_m|\pmb {\mu })$

$f_\theta $

$f_\theta $

$\mathcal {E}$

$\mathcal {S}$

$f_\theta $

$\Delta t_{i+1,i}$

$f_\theta $

$\mathcal {E}$

$\varphi _\theta $

$\pi _\theta $

$\psi _\theta $

$\varphi _\theta $

$\varphi _\theta $

m

$s(\mathbf {x},t|\pmb {\mu })$

N

x

y

$Fe = [Fe_1,\ldots ,Fe_{L-2}]$

$Ke = [Ke_1,\ldots ,Ke_{L-2}]$

$j\in \{2,L-2\}$

$\lambda $

1

2

$\pi _\theta $

$f_\theta $

f

$f_\theta (\varepsilon (t|\pmb {\mu }),\pmb {\mu })$

$\varepsilon (t|\pmb {\mu })$

$\pmb {\mu }$

$\pmb {\mu }$

$\varepsilon (t|\pmb {\mu })$

$f_\theta :\mathbb {R}^{\lambda +z}\rightarrow \mathbb {R}^{\lambda }$

z

$\pmb {\mu }$

$\lambda $

$\varepsilon (t|\pmb {\mu })$

$\pmb {\mu }$

$\alpha :\mathbb {R}^z\rightarrow \mathbb {R}^{\lambda }$

$\tau :\mathbb {R}^z\rightarrow \mathbb {R}^{\lambda }$

$f_\theta $

$\alpha (\pmb {\mu })\odot \varepsilon (t|\pmb {\mu })$

$\tau (\pmb {\mu })$

$\odot $

$\alpha $

$\tau $

$f_\theta $

$\psi _\theta $

$\psi _\theta $

x

y

$L-1$

$=1$

m

s

$Fd = [Fd_1,\ldots ,Fd_{L-2}]$

$Ke = [Kd_1,\ldots ,Kd_{L-2}]$

$j\in \{3,L-1\}$

s

$\pmb {\mu }$

$\Delta t_{i+1,i}$

y

$y\rightarrow \frac {y-min(D_y)}{max(D_y)-min(D_y)}$

$max(D_y)$

$min(D_y)$

D_y

y

s

$(max(D_s),min(D_s))$

$\pmb {\mu }$

$\mu _i$

z

$(max(D_{\mu _i}),min(D_{\mu _i}))$

$i\in \{1,z\}$

200

$\gamma _{lr}$

5000

$q=4$

$\mathcal {L}_{tr}$

$\mathcal {L}_{vl}$

\begin {align}\mathcal {L}_{vl} = \mathcal {L}_{tr} + \sum _{i=1}^{F} \frac {||s_r\rb {\mathbf {x},t_i|\pmb {\mu }} - \tilde {s}_r\rb {\mathbf {x},t_i|\pmb {\mu }}||_2}{||s_r\rb {\mathbf {x},t_i|\pmb {\mu }}||_2}, \label {Xeqn25-C.1}\end {align}

$s_r\rb {\mathbf {x},t_i|\pmb {\mu }}$

t_i

$\pmb {\mu }$

$\lambda _{rg}$

0

$f_\theta $

$1e-6$

$f_\theta $

$s(\mathbf {x},t|\zeta)$

$T_\zeta = \frac {0.5}{\zeta }$

$\pmb {\mu }=\zeta $

$f_\theta $

$\sqb {\sin \rb {\frac {2\pi }{0.5/\zeta }t}, \cos \rb {\frac {2\pi }{0.5/\zeta }t}}$

$f_\theta $

$\zeta \in \cb { 0.05,1.05,7.05}$

$\zeta $

8000

1000

$\zeta \in \sqb {0.5, 7.05}$

$\zeta \in \cb {0.1,1.0,7.0}$

$\zeta $

$\zeta $

$\nu \in \cb {0.11,1.1,4.1}$

$\nu $

8000

1000

$\mathcal {L}_{2}^{T,k_1}$

$\mathcal {L}_{2}^{A,k_2}$

$\mathcal {L}_{2,i}^{T}$

$\mathcal {L}_{2,i}^{A}$

$\varphi _\theta $

$\pi _\theta $

$\mathcal {L}_{2,i}^{T,k_1}$

$\mathcal {L}_{2,i}^{A,k_2}$

$\beta $

$\gamma $

$\mathcal {E}$

$\nu =0.001$

1325

$\SI {13.5}{\hour }$

200

500

$\SI {24.4}{\hour }$

0.003

0.0001

$\SI {176}{\second }$

4336

$\SI {6.1}{\second }$

$\SI {7.3}{\hour }$

$\SI {18}{\second }$

500

$\SI {2.5}{\hour }$

500

20

1724

$\SI {10}{\second }$

$\SI {4.8}{\hour }$

500

20

1330

$\SI {25.1}{\hour }$

500

20

1607

$\SI {48}{\hour }$

500

20

1366

$\SI {3.3}{\hour }$

0.003

0.0001

1000

40

96

1

8

6

$\mathcal {L}_3$

t

q

$\mathcal {L}_3$

q

q

Δt

$\Delta t = 0.01)$

$\mathcal {L}_3$

q

$\nu =0.001$

q

t

$\Delta t = 0.05$

$\Delta t = 0.01$

q

t

$q=3$

$q=4$

$\Delta t =0.05$

$\Delta t =0.01$

$q=4$

$q=1$

$\Delta t=0.05$

$\Delta t=0.01$

q

Δt

t

$\nu =0.001$

$\mathcal {L}_{tr}$

$\mathcal {L}_3$

$\delta =0$

$\Delta t =0.05$

$\Delta t =0.01$

$\mathcal {L}_3$

$\gamma _0$

$p(k_2)$

$\gamma \,\mathcal {L}_{2,i}^{A,k_2}$

$\gamma $

$\gamma = \gamma _0<1$

$\gamma _0$

$\gamma =1$

$\gamma _0$

$\gamma _0=0$

$\gamma _0$

0

0.002

$\gamma _0 = 0.01,0.1,1$

$\gamma _0$

$p(k_2)$

$p(k_2)$

$p(k_2)$

k_2

1

$\varphi _\theta $

$\psi _\theta $

$f_\theta $

$\mathcal {E}$

$f_\theta $

$\mathcal {E}$

$f_\theta $

$\varepsilon (t|\pmb {\mu })$

$\zeta $

$\nu $

30

$\varepsilon $

$\varepsilon (t|\pmb {\mu })$

$\zeta $

$\nu $

$\pmb {\mu }$

$\pmb {\mu }$

$\pmb {\mu }$

$\pmb {\mu }$

3

$\zeta $

$s\rb {0,t|\pmb {\mu }}=s\rb {1,t|\pmb {\mu }}$

\begin {align}s^0(\mathbf {x},\pmb {\mu }) = \sum _{i=1,\ldots ,N}A_i \sin (k_i x+\phi _i), \label {Xeqn27-F.2}\end {align}

$k_i = 2\pi \,{n_i}/L_x$

n_1

L_x

A_i

$[0,1]$

$\phi _i$

$(0,2\pi)$

x

$[0,1]$

$[0,2]$

$\nu $

$[0,1]$

$[0,2]$

u,v

h

b

g_r

128×128

$\rb {x,y}$

$[-1,1]\times [-1,1]$

$[0,1]$

$[0,1]$

$u=-2\pi y$

$v = 2\pi x$

$(x,y)\in [-1,1]$

\begin {align}\begin {aligned} &q(x,y,t) = \lambda _1 0.01^{\lambda _2 h(x,y,t)^2}\exp ^{-\lambda _3 t},\\ &h(x,y,t) = \sqrt {(x-\lambda _4+\frac {1}{2}\cos (2\pi t))^2+(y-\lambda _5-\frac {1}{2}\sin (2\pi t))^2}. \end {aligned} \label {Xeqn31-F.6}\end {align}

5

$\lambda _1,\ldots ,\lambda _5$

$\lambda _1\in [1,20]$

$\lambda _2\in [2,4]$

$\lambda _3\in [1,5]$

$\lambda _4\in [-0.1,0.1]$

$\lambda _5\in [-0.1,0.1]$

128×128

$\rb {x,y}$

$[-1,1]\times [-1,1]$

$[0,1]$

N_u

$N_{\pmb {\mu }}$

F

$s^0_{r,i}$

i

$\tilde {\varepsilon }(t_j|\pmb {\mu }_p,s_{r,i}^0))=\pi _\theta (\cdot ,\pmb {\mu }_p,\Delta t_{j,j-1})\circ \ldots \circ \pi _\theta (\cdot ,\pmb {\mu }_p,\Delta t_{1,0})\circ \varphi _\theta (s^0_{r,i})$

t_j

$\pmb {\mu }$

$\pmb {\mu }$

$(\pmb {\mu })$

$\pmb {\mu }$

$(\pmb {\mu })$

$\pmb {\mu }$

t

t

$e_r\rb {\mathbf {x},t}$

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

\begin {align}\label {eq:relative-error} e_r\rb {\mathbf {x},t} = \frac {|s_r(\mathbf {x},t|\pmb {\mu })-\tilde {s}_r(\mathbf {x},t|\pmb {\mu })|}{||s_r(\mathbf {x},t|\pmb {\mu })||_2},\end {align}

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

4

$\pmb {\mu }_1$

$\pmb {\mu }_2$

$\pmb {\mu }_3$

$\pmb {\mu }_4$

$s_r(\mathbf {x},t|\pmb {\mu })$

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

e_r

4

$\pmb {\mu }$

4

$s^0_{r,1}$

$s^0_{r,2}$

$s^0_{r,3}$

$s^0_{r,4}$

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

e_r

4

$s^0_{r,1}$

$s^0_{r,2}$

$s^0_{r,3}$

$s^0_{r,4}$

2

4

$\zeta =0.4$

$\zeta =0.7$

$\zeta =2.0$

$\zeta =4.0$

t

x

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

e_r

2

4

$\zeta =0.4$

$\zeta =0.7$

$\zeta =2.0$

$\zeta =4.0$

$\nu =0.001$

$\nu =0.001$

mailto:a.longhi@tudelft.nl
https://doi.org/10.1016/j.cma.2025.118394
https://doi.org/10.1016/j.cma.2025.118394
http://creativecommons.org/licenses/by/4.0/

A. Longhi et al.

proceeding, under the name of reduce basis methods, is by assuming that the solution field 𝑠(𝑥, 𝑡) of a PDE can be approximated as:
𝑠(𝑥, 𝑡) ≈

∑𝑛
𝑘=1 𝑎𝑘(𝑡)𝑉𝑘(𝑥) with 𝑎𝑘(𝑡) being time-dependent coefficients and 𝑉𝑘(𝑥) being independent variable 𝑥 dependent functions,

the latter constituting an orthonormal basis (the reduced basis). Once the optimal basis is found the system is completely described
by the 𝑛 coefficients 𝑎𝑘(𝑡). The same concept of Dimensionality Reduction (DR) is known in the Deep Learning (DL) field under the
name of manifold hypothesis [6–9], analogously stating that high-dimensional data typically lie in low dimensional manifolds (due to
correlations, symmetries, noise in data, etc.). In DL jargon, this reduced space is usually named latent space.

Several recent works explore the potential of DL for surrogate modeling, both following the ideas of traditional ROM approaches
and proposing new paradigms. A non exhaustive list of methods that integrate DL techniques with ROM concepts is provided in Fresca
and Manzoni[10], Bhattacharya et al. [11], Lee and Carlberg[12], Solera-Rico et al. [13], Li et al. [14]. Among these works, DL is
used to approximate the mapping between full space and reduced space, to determine the coefficients of the reduced basis and/or to
map initial states of the PDE into the PDE solution 𝑠(𝑥, 𝑡). Lusch et al. [15] implements concepts from Koopman Operator theory [16]
for dynamical models, where the linearity of the Koopman Operator is exploited to advance in time the dynamical fields in a reduced
space. The Sparse Identification of Nonlinear Dynamics (SINDy) is proposed in Brunton et al. [17], where the reduced vectors are
assumed to follow a dynamics governed by a library of functions determined a priori.

Recently, Neural Operators (NO) [18,19], i.e., DL models whose objective is the approximation of operators instead of functions -
contrary to what is typical in DL - have found applications in surrogate modeling tasks. As in the case of PDEs we deal with a mapping
between infinite-dimensional functional spaces (from the space of initial and boundary conditions to the solution space of the PDE),
the approximated operator is called the solution operator of the PDE. The (chronologically) first works on Neural Operators are the
DeepONets [20] and the Fourier Neural Operator [21]. Since these publications, the literature on NO has flourished, with many
theoretical and empirical studies [18,22–28]. In some related works Graph Deep Learning has been used for surrogate modeling to
generalize to different geometries [29–32]. Beside DR, our model also leverages Neural ODEs [33] (NODEs), which are a class of
Neural Networks (NNs) where the state of the system ℎ(𝑡) ∈ ℝ𝐷 behaves according to 𝑑ℎ(𝑡)𝑑𝑡 = 𝑓𝜃(ℎ(𝑡), 𝑡), with 𝑓𝜃 being parametrized
by a NN. NODEs present the advantage of modeling the dynamics of ℎ(𝑡) continuously in time.

1.1. Related works

Among the large literature on Neural Operators and methods at the intersection between DL and ROM, there are four sets of
papers closest to our work:

1. papers that use AutoEncoders to map the PDE solution space into a reduced space but do not model the latent dynamics continu-
ously (as we do by using a Neural ODE), like [34–36];

2. papers that use AutoEncoders to map the PDE solution space into a reduced space and model the latent dynamics through a Neural
ODE like [37,38,38–41];

3. papers based on the Latent Space Dynamics Identification framework, such as He et al. [42], Bonneville et al. [43], Park et al. [44],
Anderson et al. [45];

4. papers that build surrogate models of parametric and time-dependent PDEs using architectures with no use of dimensionality
reduction and Neural ODEs like [46,47]. In these works the different methodologies are built on Neural Fields, Transformers,
Neural Operators and/or Graph Neural Networks.

1.2. Contributions

In this work we propose an autoregressive DL-based method for solving parametrized, time-dependent and (typically) nonlinear
PDEs exploiting dimensionality reduction and Neural ODEs. Our novel contributions, especially compared to the papers in set 2 of
Section 1.1, are the following:

• We construct a model that allows for the variation of both the PDE’s parameters and initial conditions. We do so by defining
two mappings parametrized by 2 NNs: a close-to bijective mapping between the full (high-fidelity) PDE solution space and the
latent (low-fidelity) space via an AutoEncoder (AE) and a mapping from the latent vector at time 𝑡𝑖 to the next latent vector at
time 𝑡𝑖+1 modeled by a (latent) NODE.

• Training on a given Δ𝑡 we show that our model can generalize at testing time to finer time steps Δ𝑡′ < Δ𝑡. To this regard we
also study the connection between the order of the Runge–Kutta solver used to solve the NODE in latent space and the time
generalization capabilities of the model. Additionally, in Section 2.6, we introduce a term of the loss function which enhance time
generalization.

• We show a simple but effective strategy to train this model combining a Teacher Forcing type of training with an approach which
takes into account the Autoregressive nature of this model at testing time.

• We achieve computational speed up compared to standard numerical PDE solvers thanks to 3 factors: doing inference at a Δ𝑡
higher than what is usually required by standard numerical solvers, solving an ODE instead of a PDE and advancing in time in a
low dimensional space instead of the full original space.

• We test our methodology on a series of PDE benchmarks (using [48] among others) and show that thanks to DR, our model is (at
least 2 times) lighter and (at least 2 times) faster than current Deep Learning based State of the Art (SOTA) methods.

The distinction of our work compared to the papers in set 3 of Section 1.1 is as follows:

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

2

A. Longhi et al.

• Greater flexibility in modeling latent dynamics: [42–44] model the low dimensional dynamics through an ODE by using variants of the
SINDy [17] algorithm, which needs an a priori selected library of candidate functions to construct the source the ODE (right-hand
side function 𝑓 (6) later). We instead use a NN to approximate 𝑓 , requiring no a priori knowledge about the functional form of the
source and allowing for greater flexibility. Anderson et al. [45] also uses a NN to approximate 𝑓 , but uses only Teacher-Forcing
losses in training. As we explain 2.5 however, adding Autoregressive loss terms to the training can greatly improve performance.

• Better handling of parameter variations: our model allows for the (simultaneous) variation of both the initial condition of the PDE
and of general parameters (like boundary condition and PDE parameters) by delegating the treatment of the initial condition
directly to the AutoEncoder and the treatment of the parameters to the NODE (as input to the source function 𝑓 allowing learned
non-linear dependencies). In contrast, in He et al. [42], Bonneville et al. [43], Park et al. [44] a different 𝑓𝑖 is obtained for each
parameter instance 𝑖, necessitating interpolation of the different 𝑓𝑖 values at inference time and limiting the dependency of 𝑓 on
the parameters to the complexity of the prescribed interpolation scheme. Only in Anderson et al. [45] are the parameters an input
to 𝑓 , similar to our work.

• Proven simultaneous generalization to initial conditions and parameters: our extensive experiments demonstrates how our method can
achieve generalization when initial conditions and the PDE parameters are simultaneously varied, contrary to all works of He
et al. [42], Bonneville et al. [43], Park et al. [44], Anderson et al. [45], which never vary them at the same time. In addition, we
also compare our model to several recently published methods featuring Neural Fields, Transformers, Neural Operators and Graph
Neural Networks, which are not considered in He et al. [42], Bonneville et al. [43], Park et al. [44], Anderson et al. [45];

• Detailed study of time generalization: we perform several experiments to study our methods ability to generalize in time, contrary
to all the papers of He et al. [42], Bonneville et al. [43], Park et al. [44], Anderson et al. [45].

2. Methodology

2.1. Mathematical background

Let  ,  and 0 be the functional spaces of the boundary condition functions, PDE solution functions and the initial condition
functions of a given PDE, respectively. These functions are required to satisfy some properties, such that:

⎧

⎪

⎨

⎪

⎩

 = {𝑣|𝑣 ∶ 𝜕𝐱 ×𝑡 → ℝ𝑚 ; ‖𝑣𝑖‖2 <∞∀ 𝑖 ∈ [1,… , 𝑚] ; 𝑣 ∈ 2},

 = {𝑠|𝑠 ∶ 𝐱 ×𝑡 → ℝ𝑚 ; ‖𝑠𝑖‖2 < ∞∀ 𝑖 ∈ [1,… , 𝑚] ; 𝑠 ∈ 2},

0 ⊆  𝑡 = {𝑠(𝑥, 𝑡 = 𝑡|𝜇𝜇𝜇)|𝑠(𝑥, 𝑡 = 𝑡|𝜇𝜇𝜇) ∶ 𝐱 → ℝ𝑚,∀𝑡 ∈ 𝑡,𝜇𝜇𝜇 ∈ 𝜇𝜇𝜇},

(1)

where  𝑡 is the set of all possible states, 𝐱 ⊆ ℝ𝑛 is the domain of independent variables 𝐱, 𝑡 ⊆ ℝ+ is the temporal domain and
𝜕𝐱 ⊆ ℝ𝑛 the boundary of 𝐱 and 𝜇𝜇𝜇 ⊆ ℝ𝑧 is a domain for the vector 𝜇𝜇𝜇 = (𝜇1, 𝜇2,… , 𝜇𝑧), containing information about the PDE
parameters, the geometry of the problem and whatever quantity defines the physical system. We are interested in solving general
PDEs of the form of:

⎧

⎪

⎨

⎪

⎩

̂ (𝑠(𝐱, 𝑡|𝜇𝜇𝜇), 𝐱, 𝑡,𝜇𝜇𝜇) = 𝑔(𝐱, 𝑡,𝜇𝜇𝜇)
𝑠(𝐱̃, 𝑡|𝜇𝜇𝜇) = 𝑣(𝐱̃, 𝑡,𝜇𝜇𝜇)

𝑠(𝐱, 𝑡 = 0|𝜇𝜇𝜇) = 𝑠0(𝐱,𝜇𝜇𝜇),

(2)

where ̂ (𝑠(𝐱, 𝑡|𝜇𝜇𝜇), 𝐱, 𝑡,𝜇𝜇𝜇) is a (typically) nonlinear integro-differential operator, 𝑔(𝐱, 𝑡,𝜇𝜇𝜇) is the forcing term, 𝑠 ∈  is the PDE solution,
𝑣 ∈  and 𝑠0 ∈ 0 are the boundary and initial conditions, 𝐱 ∈ 𝐱, 𝜇𝜇𝜇 ∈ 𝜇𝜇𝜇 , 𝐱̃ ∈ 𝜕𝐱, 𝑡 ∈ 𝑡. The different elements of the system of
Eq. (2) have either an explicit dependency on 𝜇𝜇𝜇, signaled by (⋅,𝜇𝜇𝜇), or an implicit dependency, signaled by (⋅|𝜇𝜇𝜇). Although (2) describes
a very general PDE system and our method description addresses this fully general case, in the experiments shown in Section 3 we
fix 𝑣(𝐱̃, 𝑡,𝜇𝜇𝜇), i.e., it is not an input to the NN, we choose 𝑔(𝐱, 𝑡,𝜇𝜇𝜇) = 0 and ̂ = ̂ (𝑠(𝐱, 𝑡|𝜇𝜇𝜇), 𝐱,𝜇𝜇𝜇), i.e., without explicit 𝑡 dependence.

In the context of surrogate modeling for parametric PDEs, one usually approximates by means of a NN either the Solution Operator
̂ (global approach) or the Evolution Operator ̂ (autoregressive approach), where

̂ ∶ 0 ×𝑡 ×𝜇𝜇𝜇 →  and ̂ ∶  𝑡 ×Δ𝑡 ×𝜇𝜇𝜇 →  𝑡, (3)

with Δ𝑡 ⊆ ℝ+. When approximating ̂, the NN is given as input (𝑠0, 𝑡,𝜇𝜇𝜇) to output 𝑠(𝐱, 𝑡|𝜇𝜇𝜇), while when approximating ̂, the NN is
given as input (𝑠(𝐱, 𝑡 = 𝑡|𝜇𝜇𝜇),Δ𝑡,𝜇𝜇𝜇) to output 𝑠(𝐱, 𝑡 + Δ𝑡|𝜇𝜇𝜇). While the former can approximate the solution 𝑠 at any point in time 𝑡 with
just one call of the solver, the latter requires advancing iteratively in time by predicting the solution at the next time step from the
solution at the previous time step as input, starting from 𝑠0. Although the global approach has a (potential) advantage in terms of
computational speed, we propose an autoregressive method for the following reasons:

• Most PDEs represent causal physical phenomena, hence their solution evolution at time 𝑡 only depends on the system state at 𝑡.
Therefore, as it is done in classical numerical solvers, only the solution 𝑠 at time 𝑡 is necessary for the prediction of 𝑠 at time 𝑡 + Δ𝑡.
This fact is not respected by global approaches.

• Global approaches require in general a high number of NN weights, as a mapping for arbitrary 𝑡 is required, contrary to autore-
gressive methods, as the state 𝑠(𝑡) carries more information than 𝑠0 to predict 𝑠(𝑡 + Δ𝑡).

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

3

A. Longhi et al.

While the two approaches are clearly different from a theoretical perspective, from a purely architectural point of view they are very
similar, as an architecture conceived as global can always be used autoregressively and vice-versa. It is primarily the training strategy
that determines whether a global or autoregressive logic is followed.

In what follows we show how to approximate with a NN the (latent) Evolution Operator that governs the dynamics of the reduced
space to which the full space  is mapped.

2.2. Discretization

In order to work with solution functions 𝑠 computationally it is necessary to discretize the independent variable (typically spatial
at least), temporal and parametric domains. We thus define: 𝐗 = {𝑥𝑘|𝑥𝑘 ∈ 𝐱 , 𝑥𝑘 = (𝑥1𝑘,… , 𝑥𝑛𝑘), 𝑘 = 0,… , 𝑁𝐱} as the set of points inside
the domain of independent variables; 𝜕𝐗 = {𝑥̃𝑘|𝑥̃𝑘 ∈ 𝜕𝐱 , 𝑥̃𝑘 = (𝑥̃1𝑘,… , 𝑥̃𝑛𝑘), 𝑘 = 0,… , 𝑁𝐱̃} as the set of points on the boundary of the
independent variables of the domain 𝐱;  = 𝐗 ∪ 𝜕𝐗, 𝑀𝑀𝑀 = {𝜇𝜇𝜇 ∈ 𝜇𝜇𝜇 ,𝜇𝜇𝜇 = (𝜇0, 𝜇1,… , 𝜇𝑧)} as the set of parameter points 𝜇𝜇𝜇; 𝐓 = {𝑡|𝑡 ∈
𝑡, 𝑡 = (𝑡0, 𝑡1,… , 𝑡𝐹)} as the set of discrete points in time. We also define the solution and the initial condition sets, as the sets of functions
living in  and 0 discretized on  and 𝑇𝑇𝑇 : 𝑟 = {𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇)|𝐱 ∈  , 𝑡 ∈ 𝐓,𝜇𝜇𝜇 ∈𝑀𝑀𝑀} ⊂ ℝ||×𝑛×𝑚 and 0

𝑟 = {𝑠0𝑟 (𝐱,𝜇𝜇𝜇)|𝐱 ∈  ,𝜇𝜇𝜇 ∈𝑀𝑀𝑀} ⊂ 𝑟,
where 𝑟 is a subscript that indicates a discretized representation of 𝑠. Obviously, 𝑠𝑟(𝐱, 𝑡0|𝜇𝜇𝜇) = 𝑠0𝑟 (𝐱,𝜇𝜇𝜇). We will signal the implicit
parameter dependency of 𝑠𝑟 using the notation 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇). In principle we have 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇, 𝑠0𝑟), but for notational ease we will drop the
implicit dependence on 𝑠0𝑟 . Although we are using a finite difference approach for discretization, our methodology is fully general to
other discretization schemes too (finite volumes, finite elements, etc.)

2.3. Reduced space and (latent) neural ODEs

We want to build a method that at inference time maps the initial condition 𝑠0 into its reduced representation and then evolves
it in time (according to the PDE parameters) autoregressively. The first building block of our methodology is the mapping between
the full and the reduced space by an AutoEncoder. Let  be the reduced (latent) set

 = {𝜀(𝑡|𝜇𝜇𝜇)|𝜀(𝑡|𝜇𝜇𝜇) = (𝜀1(𝑡|𝜇𝜇𝜇),… , 𝜀𝜆(𝑡|𝜇𝜇𝜇)), 𝑡 ∈ 𝑡,𝜇𝜇𝜇 ∈ 𝜇𝜇𝜇} ⊂ ℝ𝜆, (4)

with 𝜆 ≪ || ⋅ 𝑛𝑚 being the dimension of the latent space. Each time-dependent vector 𝜀(𝑡|𝜇𝜇𝜇) ∈  has a one-to-one correspondence
with a given solution function 𝑠 ∈  (implicitly depending on the parameter 𝜇𝜇𝜇), so that by computing the dynamics of 𝜀(𝑡|𝜇𝜇𝜇) we can
reconstruct the original trajectory of 𝑠(𝐱, 𝑡|𝜇𝜇𝜇). Each dimension 𝜀𝑖(𝑡) is an intrinsic representation of the corresponding function 𝑠 and
embodies the correlations, symmetries and fundamental information about the original object 𝑠 (for a deeper understanding of the
nature and the desiderata of a latent representation, see Eastwood and Williams[49], Higgins et al. [50]). Although we will work with
discretized functions belonging to 𝑟, each vector 𝜀(𝑡|𝜇𝜇𝜇) is in principle associated with the original continuous function belonging to
 (i.e., 𝜀(𝑡|𝜇𝜇𝜇) should be independent of the discretization of ).

The mathematical operators mapping  to  and viceversa are the Encoder 𝜑 and the Decoder 𝜓 , such that:
𝜑 ∶  →  and 𝜓 ∶  →  , (5)

with 𝜑◦𝜓 = 𝜓◦𝜑 = 1, together forming the AutoEncoder. We approximate 𝜑 and 𝜓 by two NNs, respectively 𝜑𝜃 ∶ 𝑟 →  and 𝜓𝜃 ∶
 → 𝑟. The second building block concerns the dynamics of the vectors 𝜀 belonging to the reduced set  . We assume that the
temporal dynamics of  follows an ODE:

𝑑
𝑑𝑡
𝜀(𝑡|𝜇𝜇𝜇) = 𝑓 (𝜀(𝑡|𝜇𝜇𝜇),𝜇𝜇𝜇), 𝑓 ∈  ∶  ×𝜇𝜇𝜇 →  , (6)

where 𝜇𝜇𝜇 ∈𝑀𝑀𝑀 is the vector of PDE parameters.𝑓 does not depend explicitly on 𝑡 since the PDEs we work with do not have explicit time
dependence, making the dynamics of  an autonomous system. If instead ̂ or 𝑔(𝐱, 𝑡,𝜇𝜇𝜇) had an explicit dependence on 𝑡, we would
have 𝑓 = 𝑓 (𝜀(𝑡|𝜇𝜇𝜇),𝜇𝜇𝜇, 𝑡) and would treat 𝑡 in the model simply as an additional dimension of 𝜇𝜇𝜇. We can now define the Processor

𝜋 ∶  ×  ×𝜇𝜇𝜇 ×Δ𝑡 →  , (7)

as the mathematical operator that advances the latent vector 𝜀(𝑡|𝜇𝜇𝜇) in time according to Eq. (6):

𝜋(𝜀(𝑡𝑖|𝜇𝜇𝜇), 𝑓 ,𝜇𝜇𝜇,Δ𝑡𝑖+1,𝑖) = 𝜀(𝑡𝑖|𝜇𝜇𝜇) + ∫

𝑡𝑖+1

𝑡𝑖
𝑓 (𝜀(𝑡|𝜇𝜇𝜇),𝜇𝜇𝜇) 𝑑𝑡, (8)

with Δ𝑡𝑖+1,𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and the 𝜇𝜇𝜇 dependency being controlled by 𝑓 . Clearly, 𝜋(𝜀(𝑡𝑖|𝜇𝜇𝜇), 𝑓 ,𝜇𝜇𝜇,Δ𝑡𝑖+1,𝑖) = 𝜀(𝑡𝑖+1|𝜇𝜇𝜇). In summary, 𝜑 and 𝜓
describe the mapping between the full order and reduced order representation of the system, while 𝜋 describes the dynamics of the
system. For notational convenience, we will drop the dependence of 𝜋 on 𝑓 .

We now define 𝑓𝜃 as a NN which approximates 𝑓 and 𝜋𝜃 as the discrete approximation of 𝜋 which advances in time the vectors
belonging to  by solving the integral of Eq. (8), using known integration schemes (see in Appendix A):

𝜋𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇),𝜇𝜇𝜇,Δ𝑡𝑖+1,𝑖) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝜀(𝑡𝑖|𝜇𝜇𝜇),𝜇𝜇𝜇,Δ𝑡𝑖+1,𝑖), (9)

as it is done in Neural ODEs (NODEs) [33,51]. Hence, by approximating 𝑓𝜃 , we approximate the time derivative of 𝜀(𝑡|𝜇𝜇𝜇) and not
𝜀(𝑡|𝜇𝜇𝜇) itself. For example, in the case of the explicit Euler scheme [52]:

𝜋𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇),𝜇𝜇𝜇,Δ𝑡𝑖+1,𝑖) = 𝜀(𝑡𝑖|𝜇𝜇𝜇) + Δ𝑡𝑖+1,𝑖 𝑓𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇),𝜇𝜇𝜇). (10)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

4

A. Longhi et al.

The Processor 𝜋 is the equivalent of the Evolution Operator ̂ of Eq. (3) but acting on the reduced space  of discrete intrinsic
representations: as such 𝜋 does not need to be equipped with the notion of (spatial) discretization invariance as in the case of Neural
Operators.

2.4. Training of the model

The model we defined in Section 2.3 requires the optimization of two training processes which we consider coupled: the training
of the AE which regulates the mappings between 𝑟 and  and the training of 𝜋𝜃 which regulates the latent dynamics described by
Eq. (6). The latter can be approached by combining a Teacher Forcing (TF) and an Autoregressive (AR) strategy. We thus define:

1,𝑖 =
||𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇) − 𝜓𝜃◦𝜑𝜃(𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇)||2

||𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇)||2
(11)

as the term which governs the AE training. By introducing
{

𝜀𝜇𝜇𝜇𝑖 = 𝜑𝜃(𝑠(𝐱, 𝑡𝑖|𝜇𝜇𝜇)),

𝜀𝜇𝜇𝜇,𝑘𝑖 = 𝜋𝜃(⋅,𝜇𝜇𝜇,Δ𝑡𝑖,𝑖−1)◦… ◦𝜋𝜃(𝜀
𝜇𝜇𝜇
𝑖−𝑘,𝜇𝜇𝜇,Δ𝑡𝑖−𝑘+1,𝑖−𝑘),

(12)

we define the two terms which govern the latent dynamics:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇 ,𝑘12,𝑖 =
||𝜀𝜇𝜇𝜇𝑖 − 𝜀

𝜇𝜇𝜇,𝑘1
𝑖 ||2

||𝜀𝜇𝜇𝜇𝑖 ||2
,

𝐴,𝑘22,𝑖 =
||𝜀𝜇𝜇𝜇𝑖 − 𝜀

𝜇𝜇𝜇,𝑖
𝑖 ||2

||𝜀𝜇𝜇𝜇𝑖 ||2
,

(13)

where 𝑇 identifies the TF approach and 𝐴 the AR one. The term 𝑇 ,𝑘12,𝑖 (TF), penalizes the difference between the expected latent
vector 𝜀𝜇𝜇𝜇𝑖 and the predicted latent vector 𝜀

𝜇𝜇𝜇,𝑘1
𝑖 obtained by applying autoregressively 𝜋𝜃 to 𝜀𝜇𝜇𝜇𝑖−𝑘1 , which comes from encoding the true

field 𝑠𝑟(𝐱, 𝑡𝑖−𝑘1 |𝜇𝜇𝜇) (hence the name Teacher-Forcing, as the true input 𝑘1 steps earlier, is fed into the NN). Using TF when training
autoregressive models is known to cause potential distribution shift [29], representing a problem at inference time: as depicted in
Fig. 1, at testing time the input of 𝜋𝜃 is the previous output of 𝜋𝜃 starting from 𝜀𝜇𝜇𝜇0 , contrary to what 

𝑇 ,𝑘1
2,𝑖 penalizes (unless 𝑘1 = 𝐹 ,

i.e., the full length of the time series). To avoid this mismatch between training and inference, we introduced 𝐴,𝑘22,𝑖 (AR), which
penalizes the difference between the expected latent vector 𝜀𝜇𝜇𝜇𝑖 and the predicted latent vector 𝜀

𝜇𝜇𝜇,𝑖
𝑖 = 𝜋𝜃(⋅,𝜇𝜇𝜇,Δ𝑡𝑖,𝑖−1)◦… ◦𝜋𝜃(𝜀

𝜇𝜇𝜇
0 ,𝜇𝜇𝜇,Δ𝑡1,0)

obtained by repeated application of 𝜋𝜃 starting from the encoded representation of the initial condition 𝑠0𝑟 , as it is done at testing time.
𝑘2 denotes the number of steps in time from which the gradients of the backpropagation algorithm flow, i.e., the predicted latent
vector at time 𝑡𝑖 is obtained by encoding the initial condition 𝑠0𝑟 and fully evolving it autoregressively (by applying 𝜋𝜃 𝑖 times), but the
gradients of the backpropagation algorithm flow only from the predicted latent vector at time 𝑡𝑖−𝑘2 up to 𝑡𝑖. It follows that 

𝑇 ,𝑘1
2,𝑖 and

𝐴,𝑘22,𝑖 are computed in the same way only if 𝑘1 = 𝑘2 = 𝐹 . By truncating the gradients flow at time 𝑡𝑖−𝑘, we are implementing a form
of Truncated Backpropagation Through Time (TBPTT) as it is usually done for gradients stability purposes when training Recurrent

Fig. 1. Workings of our proposed method at testing time. The initial condition 𝑠0𝑟 is mapped trough the Encoder 𝜑𝜃 into its latent representation 𝜀𝜇𝜇𝜇0 .
Subsequently the vector 𝜀𝜇𝜇𝜇0 is advanced in time autoregressively by repeated evaluation of the processor 𝜋𝜃 , conditioned to the vector of parameters
𝜇𝜇𝜇 and to the size of the temporal jump Δ𝑡𝑖+𝑖,𝑖. The Decoder 𝜓𝜃 is used to map back each predicted latent vector 𝜀𝜇𝜇𝜇,𝑖𝑖 into the corresponding field
𝑠̃𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇). Notice that 𝜑𝜃 is applied only to the initial condition 𝑠0𝑟 . The colored dots represent the 𝜆 different values of the 𝜆-dimensional vector 𝜀
for a given moment in time.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

5

A. Longhi et al.

Neural Networks (RNNs) [53]. Fig. 1 shows a summary of the method at testing time, where the predicted solution is computed as
𝑠̃𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇) = 𝜓𝜃◦𝜋𝜃(⋅,𝜇𝜇𝜇,Δ𝑡𝑖,𝑖−1)◦… ◦𝜋𝜃(⋅,𝜇𝜇𝜇,Δ𝑡1,0)◦𝜑𝜃(𝑠0𝑟).

2.5. Combining teacher forcing with autoregressive

How do we combine AR and TF strategies in practice? We start by considering the loss 𝑇 ,12,𝑖 , the simplest form of TF strategy
with the advantage of being computationally efficient and stable, but at the cost of making the training agnostic to the autoregressive
nature of the model at testing time and not addressing the accumulation of errors which is typical of autoregressive models. 𝐴,𝑘22,𝑖
instead, regardless of the chosen 𝑘2, already reflects during training the autoregressive modality used at testing; it has however
the disadvantage of being computationally more demanding (for 𝑘2 > 1) and more difficult to train the larger 𝑘2 is. If 𝑘1 > 1, 𝑇 ,𝑘12,𝑖
introduces a certain degree of ’autoregressiveness’ as well, although the latent vector at time 𝑡𝑖−𝑘 is still provided by the true solution.
Among the several possible training strategies, here we list the two we used, with 2,𝑖 = 𝛽𝑇 ,𝑘12,𝑖 + 𝛾𝐴,𝑘22,𝑖 , where 𝛽 and 𝛾 weigh the
importance of the terms:

1. set 𝛽 = 1, 𝛾 = 0 and 𝑘1 = 1, using only the TF term.
2. set 𝛽 = 1, 𝛾 = 1, 𝑘1 = 1 and dynamically increase 𝑘2 during the training, starting with 𝑘2 = 1. This strategy has the advantage of
taking into account the AR term gradually during the training.

Our experiments have shown that although for some systems strategy 1 is enough, more complex datasets require using strategy 2,
mainly due to two separate behaviors in our observations. First, that in the early stages of the training, 1,𝑖, 𝑇 ,12,𝑖 and 

𝐴,1
2,𝑖 play the

important role of building a latent space whose dynamics is described by Eq. (6); and second, that in the later stages of the training,
with 𝑘2 becoming larger (and the computed gradients more complex), the autoregressive nature of the model is increasingly taken
into account, with 𝜋𝜃 becoming more robust to the accumulation of errors.

2.6. Generalization in the time domain

As shown in Fig. A.10 we expect our models to be trained on a given set of time-steps, but we want them to generalize to time-steps
not seen during the training phase (such as intermediate times). For this reason, we introduce a last term of the loss function as:

⎧

⎪

⎨

⎪

⎩

3,𝑖 =
||𝜀𝜇𝜇𝜇𝑖 − 𝜀̃

𝜇𝜇𝜇
𝑖 ||2

||𝜀𝜇𝜇𝜇𝑖 ||2
𝜀̃𝜇𝜇𝜇𝑖 = 𝜋𝜃(⋅, (Δ𝑡𝑖,𝑖−1 − Δ𝑡𝑚,𝑖))◦𝜋𝜃(𝜀

𝜇𝜇𝜇
𝑖−1,𝜇𝜇𝜇,Δ𝑡𝑚,𝑖−1),

(14)

where Δ𝑡𝑚,𝑖−1 ∈ [0,Δ𝑡𝑖,𝑖−1] is a randomly sampled intermediate time step and 𝑖 − 1 < 𝑚 < 𝑖. In Appendix A.1 we further detail 3,𝑖.
In some cases we also found it beneficial to add a regularization term 𝑟𝑔 to the latent vectors, such as 𝑟𝑔 = 𝜆𝑟𝑔

∑𝐹
𝑖=0 ||𝜀

𝜇𝜇𝜇
𝑖 ||1∕𝜆, with

𝜆𝑟𝑔 ∈ ℝ+.
Thus, during model training for a given 𝑠0𝑟 (𝐱,𝜇𝜇𝜇), the gradients are computed based on the final loss function of:

𝑡𝑟 =
1
𝐹

𝐹
∑

𝑖=0
𝛼1,𝑖 +

1
𝐹

𝐹
∑

𝑖=1

[

𝛽𝑇 ,𝑘12,𝑖 + 𝛾𝐴,𝑘22,𝑖 + 𝛿3,𝑖

]

+ 𝑟𝑔

= 𝛼1 + 𝛽
𝑇 ,𝑘1
2 + 𝛾𝐴,𝑘22 + 𝛿3 + 𝑟𝑔 ,

(15)

where 𝑘1 and 𝑘2 depend on the chosen strategy of Section 2.5 and 𝛼, 𝛽, 𝛾 and 𝛿 weigh the importance of each term. We use 𝑡𝑟 for
training and 𝑣𝑙 for validation:

𝑣𝑙 = 𝑡𝑟 +
𝐹
∑

𝑖=1

||𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇) − 𝑠̃𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇)||2
||𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇)||2

. (16)

Fig. 2 visualizes our training methodology.

3. Results

In this section we compare our method with a series of SOTA methods from Hagnberger et al. [46] and [48]. The datasets we use
for comparison are taken from Takamoto et al. [48]. A complete description of the PDEs can be found Appendix F. In Appendix C we
list all the training and hyperparameter details and in Appendix D the methods used for comparison. We use as metrics the total error
nRMSE, the parametetric total error nRMSE(𝜇𝜇𝜇), the temporal total error nRMSE(𝑡), the parametric neural ODE error NODE-nRMSE(𝜇𝜇𝜇)
and the parametric AutoEncoder error AE-nRMSE(𝜇𝜇𝜇) defined in Eqs. (F.7), (F.8), (F.11), (F.9) and (F.10).

3.1. PDEs with fixed parameter

In this Section we are going to apply our method to the 1D Advection Eq. (F.1) (𝜁 = 0.1), to the 1D Burgers’ Eq. (F.3) (𝜈 = 0.001)
and to the 2D Shallow-Water (SW) Eq. (F.4). In Tables 1 and 3 we compare our results to the ones obtained (on the same dataset), in
Takamoto et al. [48] and Hagnberger et al. [46]. In Table 1 we show that our proposed model achieves a lower nRMSE compared to

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

6

A. Longhi et al.

Fig. 2. A representation of the training procedure. a) The time series of fields 𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇), with 𝑖 ∈ {0, 𝐹 }, is processed by the Encoder 𝜑𝜃 and the
corresponding latent vectors 𝜀𝜇𝜇𝜇𝑖 are obtained; these are subsequently mapped back to the full space by means of the Decoder 𝜓𝜃 which generates the
time series of reconstructed fields ̃𝑠𝑟(𝐱, 𝑡𝑖|𝜇𝜇𝜇), allowing for the computation of 1. b) The Processor 𝜋𝜃 receives as input the sequence of latent vectors
𝜀𝜇𝜇𝜇𝑖 with 𝑖 ∈ {0, 𝐹 − 1} and predicts the latent vectors 𝜀𝜇𝜇𝜇,1𝑖 with 𝑖 ∈ {1, 𝐹 }. 𝑇 ,12 , where 𝑇 stands for Teacher-Forcing, is thus computed with inputs 𝜀𝜇𝜇𝜇𝑖
and 𝜀𝜇𝜇𝜇,1𝑖 . c) The Processor 𝜋𝜃 is applied autoregressively to the initial latent vector 𝜀𝜇𝜇𝜇0 and the whole time series of vectors 𝜀𝜇𝜇𝜇,𝑖𝑖 is reconstructed with
𝑖 ∈ {1, 𝐹 }; 𝐴,𝑘22 , where 𝐴 stands for Autoregressive, is thus computed with inputs 𝜀𝜇𝜇𝜇𝑖 and 𝜀𝜇𝜇𝜇,𝑖𝑖 . d) The Processor 𝜋𝜃 takes as input the sequence of latent
vectors 𝜀𝜇𝜇𝜇𝑖 with 𝑖 ∈ {0, 𝐹 − 1} and outputs for each 𝜀𝜇𝜇𝜇𝑖 an intermediate vector 𝜀𝜇𝜇𝜇,1𝑚 with a time-step Δ𝑡𝑚,𝑖−1 randomly sampled from [0,Δ𝑡𝑖,𝑖−1]. Last, 𝜋𝜃
advances in time each 𝜀𝜇𝜇𝜇,1𝑚 with a time-step of Δ𝑡𝑖,𝑖−1 − Δ𝑡𝑚,𝑖 to get the predicted vectors 𝜀̃𝜇𝜇𝜇𝑖 ; 3 is thus computed with inputs 𝜀𝜇𝜇𝜇𝑖 and 𝜀̃𝜇𝜇𝜇𝑖 .

Table 1
nRMSE on test dataset for fixed 𝜇𝜇𝜇 and varying 𝑠0 for the 1D Advection and
Burgers datasets. The column with † refers to testing with the Δ𝑡 of the
training, while the one with ⋆ with a smaller Δ𝑡. Cells are empty when
comparison was not found in literature.
 PDE Model † nRMSE, Δ𝑡 = 0.05 s ⋆ nRMSE, Δ𝑡 = 0.01 s

 (Ours) 𝟎.𝟎𝟎𝟔𝟔 𝟎.𝟎𝟎𝟔𝟔
 FNO 0.0190 0.0258
 MP-PDE 0.0195
 UNet 0.0079

 1D Advection CORAL 0.0198 0.9656
 Galerkin 0.0621
 OFormer 0.0118
 VCNeF 0.0165 0.0165
 VCNeF-R 0.0113
 (Ours) 𝟎.𝟎𝟑𝟕𝟑 𝟎.𝟎𝟑𝟗𝟗
 FNO 0.0987 0.1154
 MP-PDE 0.3046
 UNet 0.0566

 1D Burgers CORAL 0.2221 0.6186
 Galerkin 0.1651
 OFormer 0.1035
 VCNeF 0.0824 0.0831
 VCNeF-R 0.0784

Table 2
The total error nRMSE on test dataset
for fixed 𝜇𝜇𝜇 and varying 𝑠0 for the 2D
Shallow-Water dataset.
 PDE Model nRMSE, Δ𝑡 = 0.01 s

 (Ours) 𝟎.𝟎𝟎𝟐𝟓
 FNO 0.0044

 2D SW U-Net 0.0830
 PINN 0.0170

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

7

A. Longhi et al.

Table 3
nRMSE on test dataset for fixed 𝜇𝜇𝜇 and varying 𝑠0 for the 2D Shallow-Water dataset.
The columns with † refer to testing with the Δ𝑡 of the training, while the one with ⋆
with a smaller Δ𝑡. Our model is trained on Δ𝑡 = 0.05 s, while the others on Δ𝑡 = 0.01 s.

 PDE Model † nRMSE, Δ𝑡 = 0.05 s † nRMSE,Δ𝑡 = 0.01 s ⋆ nRMSE,Δ𝑡 = 0.01 s

 (Ours) 0.0028 𝟎.𝟎𝟎𝟑𝟐
 FNO 0.0044

 2D SW U-Net 0.0830
 PINN 0.0170

Fig. 3. Distribution of the nRMSE(𝜇𝜇𝜇) across the test sample for the parametric 1D Advection. Regular font on the x axes refers to training parameter
values, while bold ones to testing parameters (but in both cases testing initial conditions). We compare our methodology (yellow) with other
published methods (taken from Hagnberger et al. [46]). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

a series of common methods used in Scientific Machine Learning for the 3 cases. Furthermore, we observe that our model achieves a
better generalization in time than the other methods in the Burgers’ and Advection cases, meaning that we got little to none increase
of the nRMSE when going from testing on the training Δ𝑡 = 0.05 s to testing on a smaller Δ𝑡 = 0.01 s. For the SW dataset, in Table 2
we show how are model performs when trained and tested on Δ𝑡 = 0.01 s. In addition, in Table 3 we show that even if our model is
trained with Δ𝑡 = 0.05 s while the others with Δ𝑡 = 0.01 s, we still get a lower nRMSE when testing on Δ𝑡 = 0.01 s (thus the comparison
on the same number of time-steps is only between our method in the column with ⋆ and the other methods in the columns with †).
For the experiments in this section we used Strategy 1 of Section 2.5, as using 𝑇 ,12,𝑖 alone was sufficient to reach acceptable results.

3.2. PDEs with varying parameters

In this section we experiment with 3 datasets where we both vary the initial conditions and the PDE parameters: 1D Advection
Eq. (F.1), the 1D Burgers’ Eq. (F.3) and the 2D Molenkamp Test (F.5). In all three cases we use Strategy 2 of Section 2.5, since only
using 𝑇 ,12,𝑖 optimized correctly 𝑡𝑟 but resulted in a larger value of 𝑣𝑙. We start with 𝑘2 = 1 and we increase it by 1 every 30 epochs
until the maximum length of the time series is reached. We thus define 𝑝(𝑘2) as the number of epochs needed to increase 𝑘2 by 1. To
make the training more stable, we introduce gradually the 𝛾 𝐴,𝑘22,𝑖 term by starting with a 𝛾 = 𝛾0 < 1 and increasing it every epoch by
an amount of 𝛾0 until 𝛾 = 1. In Figs. 3 and 4 we show a comparison of our methodology (yellow) with the cFNO, cOFormer and VCNeF

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

8

A. Longhi et al.

Fig. 4. Distribution of the nRMSE(𝜇𝜇𝜇) across the test sample for the parametric 1D Burgers’. Regular font on x axes refers to training parameters,
while bold ones to testing parameters (but in both cases testing initial conditions). We compare our methodology (yellow) with other published
methods (taken from Hagnberger et al. [46]). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Comparison of the temporal error nRMSE(𝑡) between our model (red) and the VCNeF (green) for the test dataset of the Molenkamp ap-
plication. We study the difference between applying at inference the same Δ𝑡 as used for the training (Δ𝑡 = 0.05 s) and a smaller one Δ𝑡 = 0.02 s.
The nRMSE(𝑡) of our model only slightly increases when decreasing the Δ𝑡, while VCNeF struggles with inference at intermediate time-steps. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of the parametric Neural ODE error and the parametric AutoEncoder error for the parametric Advection problem. Left figure:
the NODE-nRMSE on the latent vectors predicted by the NODE is computed on the test set. The error is larger on the testing parameters (bold ones),
signaling a struggle of the NODE to correctly reconstruct the dynamics of unseen parameters, both in interpolation and in extrapolation. Right
figure: the AE-nRMSE on the solution fields is computed by applying consecutively the Encoder and the Decoder on the test set. While the error is
increasing with increasing velocity 𝜁 , the AutoEncoder does not struggle with testing parameters.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

9

A. Longhi et al.

Fig. 7. Comparison of the parametric Neural ODE error and the parametric AutoEncoder error for the parametric Burgers’ problem. Left figure:
the NODE-nRMSE on the latent vectors predicted by the NODE is computed on the test set. The error is larger on the testing parameters (bold ones)
for larger parameters. For smaller testing parameters like 𝜈 = 0.001, 0.01 there is no noticeable increase in error. Right figure: the AE-nRMSE on the
solution fields is computed by applying consecutively the Encoder and the Decoder on the test set. There is no correlation between the error and 𝜈
being used or not in the training.

Fig. 8. Performance comparison of 5 training strategies to the ’Baseline’ of Fig. 3 to overcome poor parameter generalization (in interpolation and
extrapolation) of the NODE for the parametric Advection dataset. Only strategies that use more data during the training close to 𝜁 = 0.1, 1.0, 7.0
(’Data-points closer to test points’ and ’Uniform parameter sampling’) improve the prediction at test point (bold characters).

from Hagnberger et al. [46]. In both cases, we show the distribution across the test samples of training (regular font) and testing (bold
font) parameters when using testing initial conditions. From Fig. 3, we see that our model has a lower median than the compared
methods on the training velocities 𝜁 , while it struggles with testing parameters, similar to cFNO, cOFormer and VCNeF too. This is
likely a dataset issue yielding insufficient generalization, with 0.1 and 7.0 both being outside the training range and 1.0 possessing a
dynamic not easily interpolated by 𝑓𝜃 with the information coming from the points 0.7 and 2.0. Similarly for the Burgers’ case in Fig. 4,
the median of the nRMSE given by our model is lower than the compared methods for all parameters 𝜈 except 𝜈 = 1.0 and 𝜈 = 4.0.
In this case our model - similar to the ones used for comparison - is able to generalize better than in the Advection example to test
parameters, as in the case of 𝜈 = 0.001 and 𝜈 = 0.01. Given the discrepancy in the ability of the models to generalize to different testing
parameters, more accurate strategies for adaptively selecting parameter points for training should be researched. In Figs. 3 and 4,
although we show also training parameters, the corresponding initial conditions belong to the testing set, thus we are extrapolating
on the initial conditions even when the parameters are the ones used during training. In Fig. 5 we compare our method with VCNeF
on the Molenkamp test when testing on Δ𝑡 = 0.05 s (same as the one in training) and when Δ𝑡 = 0.02 s: our method achieves a lower
nRMSE and is able to generalize to intermediate time points better than VCNeF. Noticeably, with the Molenkamp test we use a latent
space of dimension 𝜆 = 5, which is equal to the actual number of degrees of freedom of the PDE solution (Eq. (F.5)). In Appendix C.4,
we compare the number of parameters and the inference speed of the methods used and we show that our proposed method is lighter
and faster at inference.

3.3. Discussion

Although in Tables 1–3 and Figs. 3–5 we have shown that our method achieves a comparable or lower nRMSE when compared
to other methods, there are noticeable issues that must be addressed. In particular, Figs. 3 and 4 signal problems in generalization
to unseen parameters both in interpolation (within training range) and extrapolation (outside training range). In order to properly
analyze such model failures we first need to decouple two error sources: the error coming from the AE and the error coming

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

10

A. Longhi et al.

Fig. 9. Adding more training data-points closer to 𝜈 = 0.1, 1.0, 4.0 at training improves the generalization to test parameters (bold characters) for
the parametric Burgers dataset of Fig. 4.

from the NODE. In Fig. 6 we show on the left the parametric Neural ODE error NODE-nRMSE(𝜇𝜇𝜇) (Eq. (F.9)) at inference computed
between the latent vectors predicted by the NODE and the ones computed by the Encoder on the testing set: the error is larger on
the testing parameters (bold characters). Conversely, on the right of Fig. 6 we show the AE-nRMSE(𝜇𝜇𝜇) (Eq. (F.10)) computed when
applying the Encoder and then the Decoder on the test set: the error is not larger for testing parameters, while there is a correlation
with the magnitude of the velocity 𝜁 . We conduct an analogous study on the parametric Burgers’ case in Fig. 7: again, the error on
unseen parameters is coming from a poor prediction of the NODE. Interestingly, in the left plot of Fig. 7 we see that the error on the
unseen parameters is considerably larger for values of 𝜈 ≥ 0.1: because for values smaller than 0.1 the sampling is finer, this suggests
that a finer sampling of the parameter would improve the generalization. From this decoupling experiment we conclude that the
generalization issues (both in extrapolation and interpolation) of our model are coming from a low generalization power of the
NODE. Furthermore, generalization in interpolation and extrapolation are equally affected by the sampling: in Fig. 4 our model can
extrapolate at 𝜈 = 0.001 but fails to do so at 𝜈 = 4.0. However, the distance from the point 𝜈 = 4.0 to the closest point included in
the training set is 2.0, while the distance of the closest point to 𝜈 = 0.001 belonging to the training set is 0.001. Similarly, the point
𝜈 = 0.01 is well interpolated, while 𝜈 = 1.0 is not (but again, they are at different distances from their closest point belonging to the
training set.)

Focusing firstly on the parametric Advection dataset, we test 5 approaches to overcome the generalization issue: latent regulariza-
tion, weight decay of the latent space evolution ODE source term 𝑓𝜃 , information about solution period of the Advection equation through
positional encoding of time and data-points closer to test points 𝜁 = 0.1, 1.0, 7.0 (more details are given in Appendix C.1) and uniform
parameter sampling. In Fig. 8, we compare the 5 approaches: only using training data closer to 𝜁 = 0.1, 1.0, 7.0 reduces the test error,
although we see that for ’Data-points closer to test points’, there is still a significant gap in the nRMSE(𝜇𝜇𝜇) between testing parameters
and training parameters. Interestingly, when ’Uniform parameter sampling is used’, we notice a stabilization of the nRMSE(𝜇𝜇𝜇) across
parameters at the expense of the nRMSE(𝜇𝜇𝜇) for training parameters which increases: this signals a potential overfitting regime in the
baseline, where the model is hyper-optimized for the training parameters.

In Fig. 9 we perform a sampling closer to the test points for the parametric Burgers’ case as well (more details are provided in
Appendix C.1). For this dataset we see that adding training points closer to the test points reduces the nRMSE(𝜇𝜇𝜇) on test parameters
much more than in the Advection case.

In conclusion, the experiments performed in this Section highlighted two elements: the generalization error (both in interpolation
and extrapolation) is caused by the NODE and intelligent data sampling must be adopted in order to overcome this issue. Furthermore,
we see that generalization is much easier for the Burgers’ case rather than the Advection case: this may signal a struggle of our method
to generalize well in the case of transport-like phenomena, potentially due to the spectral bias phenomena addressed in Anderson
et al. [45], i.e., the tendency of NN architectures to approximate better low frequency signals. We see from the right plot of Fig. 6 that
the AutoEncoder indeed approximates better low frequency signals (the period of the solution is given by 0.5∕𝜁); however we do not
see such phenomenon on the left plot of Fig. 6, where the error at 𝜁 = 0.1 is much larger than the error at 𝜁 = 4.0. Such observations,
together with the findings of Fig. 8, indicate that the sampling is more of an issue than the spectral bias.

3.4. Ablation studies

In Appendix E.1 we conduct ablation studies regarding how the choice of the ODE solver and 3,𝑖 impact the capabilities of the
method and the generalization in time. In Appendix E.2 we show sensitivity studies concerning 𝛾0 and 𝑝(𝑘2) for the Autoregressive
training. In Appendix E.3 we experiment with decoupling the AE from the NODE during training.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

11

A. Longhi et al.

4. Conclusions

In this work we showed how Dimensionality Reduction and Neural ODEs can be coupled to construct a surrogate model of time-
dependent and parametric PDEs. Our model inherits from these two paradigms two important features which are desiderata when
building DL models that substitute standard numerical solvers, i.e., fast computational inference and continuity in time. The
former is achieved thanks to the low dimensionality of the reduced space  , while the latter by the definition of the latent dynamics
through the ODE of Eq. (6). In Section 3 we showed that our methodology surpasses in accuracy several state of the art methods on
different benchmarks used in the Scientific Machine Learning field. In addition, our model requires significantly less NN’s weights
(thus less memory) and is computationally faster at inference compared to other published methodologies (Tables C.8 and C.9);
for these reasons relying on dimensionality reduction as opposed to large and overparametrized architectures is going to be key in the
future for building fast and memory efficient surrogate models of complex physical systems.

5. Limitations and future research directions

The main limitation of our method is the use of CNNs for Encoding and Decoding, which hinders its applicability to non-uniform
meshes and makes it necessary to re-train models if inference needs to be done on grid points not used at training: future research
will explore using Neural Operators for the construction of the Encoder and the Decoder. Another aspect which should be improved
concerns the definition of an efficient sampling strategy as done in He et al. [42], Bonneville et al. [43] to determine which PDE
parameters should be used during training in order to be able to overcome the poor generalization to new ones for some datasets, as
evident from 3.2 and 3.3. Finally, while leaving the construction of  and definition of the function 𝑓𝜃 general gives flexibility to the
fitting of the training dataset, researching into the interpretability of both  and 𝑓𝜃 can at the same time improve our understanding of
NNs and build more accurate surrogate models: for example in Cha and Thiyagalingam[54] a method is proposed to disentangle the
latent space dimensions in order to obtain the true generative factors of the high-dimensional images (in the surrogate modeling case
those would be the generative factors of the PDE solution); especially interesting would be combining interpretability with physical
constraints, as it is done in Park et al. [44], where the latent dynamics is forced to respect the first and second laws of thermodynamics.

Source code

Source code is available at https://github.com/Aleartulon/AE_NODE.

CRediT authorship contribution statement

Alessandro Longhi: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization; Danny Lathouwers: Supervision, Resources, Project administration, Methodology, Funding ac-
quisition, Formal analysis, Conceptualization; Zoltán Perkó: Conceptualization, Methodology, Formal analysis, Resources, Writing –
review & editing, Supervision, Project administration, Funding acquisition.

Data availability

Most data used are publicly available (links are given in the paper). The ones not available can be made so upon request.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests:

Alessandro Longhi reports financial support was provided by European Union. If there are other authors, they declare that they
have no known competing financial interests or personal relationships that could have appeared to influence the work reported in
this paper.

Acknowledgments

Funded by the European Union under the grant agreement no. 101059682. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the European Commission-Euratom. Neither the
European Union nor the granting authority can be held responsible for them. This work has been developed within ASSAS (Artificial
intelligence for Simulation of Severe AccidentS), a Horizon Europe funded project targeting the development of nuclear severe accident
simulators.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

12

https://github.com/Aleartulon/AE_NODE

A. Longhi et al.

Appendix A. Runge–Kutta schemes

Runge–Kutta methods [52] are a family of numerical methods for the solution of Ordinary Differential Equations (ODEs). They
belong to the category of one-step methods, as such they do not use any information from previous time steps. Given 𝑡𝑖 ∈ 𝐓, a standard
explicit Runge–Kutta method would solve Eq. (6) as:

𝜀(𝑡𝑖+1|𝜇𝜇𝜇) = 𝜀(𝑡𝑖|𝜇𝜇𝜇) + Δ𝑡𝑖+1,𝑖
𝑞
∑

𝑗=1
ℎ𝑗𝑏𝑗 , (A.1)

where 𝑞 is called the stage of the Runge–Kutta approximation, Δ𝑡𝑖+1,𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and:
𝑏1 =𝑓 (𝜀(𝑡𝑖|𝜇𝜇𝜇), 𝑡𝑖,𝜇𝜇𝜇),

𝑏2 =𝑓 (𝜀(𝑡𝑖|𝜇𝜇𝜇) + (𝑎2,1𝑏1)Δ𝑡𝑖+1,𝑖, 𝑡𝑖 + 𝑐2Δ𝑡𝑖+1,𝑖,𝜇𝜇𝜇),

⋮

𝑏𝑘 =𝑓 (𝜀(𝑡𝑖|𝜇𝜇𝜇) +
𝑘−1
∑

𝑙=1
𝑎𝑘,𝑙𝑏𝑙Δ𝑡𝑖+1,𝑖, 𝑡𝑖 + 𝑐𝑘Δ𝑡𝑖+1,𝑖,𝜇𝜇𝜇).

The matrix composed by 𝑎𝑖𝑗 is known as Runge–Kutta matrix, ℎ𝑗 are the weights and 𝑐𝑗 are the nodes, with their values given by the
Butcher tableau [55].

Fig. A.10. Time evolution of a one dimensional 𝜀(𝑡|𝜇𝜇𝜇) is shown (dot line). The red points indicate the steps in time used during the training, at
intervals of Δ𝑡𝑖+1,1, and the green points show the points in time that can be predicted at testing time at distance of Δ𝑡𝑖+1,1∕𝛼, where 𝛼 ∈ [1,∞). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A.1. The effect of the stage of RK on time generalization

In this work we use a fixed Runge–Kutta time stepper, and to go from the state 𝑖 to the state 𝑖 + 1 we do not step trough intermediate
states. We defined the Processor of Eq. (7) with a Δ𝑡𝑖+1,𝑖 dependency as we want to perform inference even at temporal discretizations
finer than the one used at training. Although this task may look trivial as 𝜋𝜃 directly takes Δ𝑡𝑖+1,𝑖 as input, it raises the following issue
when solving the ODE. Let us consider a processor 𝜋𝜃 which evolves in time the latent vector 𝜀(𝑡|𝜇𝜇𝜇) using an Euler integration scheme
(from here on we omit the 𝜇𝜇𝜇 dependency for ease of reading):

𝜀(𝑡𝑖+1) = 𝜀(𝑡𝑖) + Δ𝑡𝑖+1,𝑖 𝑓𝜃(𝜀(𝑡𝑖)), (A.2)

and let us define a moment in time 𝑡𝑚 such that 𝑡𝑖 < 𝑡𝑚 < 𝑡𝑖+1. We want 𝑓𝜃 to satisfy the following conditions:
{

𝜀(𝑡𝑖+1) = 𝜀(𝑡𝑖) + Δ𝑡𝑖+1,𝑖 𝑓𝜃(𝜀(𝑡𝑖)),

𝜀(𝑡𝑖+1) = 𝜀(𝑡𝑚) + (Δ𝑡𝑖+1,𝑖 − Δ𝑡𝑚,𝑖) 𝑓𝜃(𝜀(𝑡𝑚))),
(A.3)

where 𝜀(𝑡𝑚) = 𝜀(𝑡𝑖) + Δ𝑡𝑚,𝑖 𝑓𝜃(𝜀(𝑡𝑖)). By taking the difference of the two Equations of (A.3) we get that

𝑓𝜃(𝜀(𝑡𝑖)) = 𝑓𝜃(𝜀(𝑡𝑚)), (A.4)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

13

A. Longhi et al.

i.e., when we use the Euler scheme 𝑓𝜃 must be a constant if we want 𝜋𝜃 to be coherent with its predictions at the variation of Δ𝑡𝑖+1,𝑖.
Notice that a constant 𝑓𝜃 would imply a linear time dependence of 𝜀(𝑡) (the dotline of Fig. A.10 would be a line), meaning that the
construction of  would be subjected to a strong constraint, thus limiting the expressiveness of the AE. For a RK method of order 2
instead:

𝜀(𝑡𝑖+1) = 𝜀(𝑡𝑖) + Δ𝑡𝑖+1,𝑖𝑓𝜃
(

𝜀(𝑡𝑖) +
1
2
Δ𝑡𝑖+1,𝑖 𝑓𝜃(𝜀(𝑡𝑖))

)

, (A.5)

where 𝑓𝜃 is evaluated at Δ𝑡𝑖+1,𝑖∕2. We want 𝑓𝜃 to respect the following system:
{

𝜀(𝑡𝑖+1|𝜇𝜇𝜇) = 𝜀(𝑡𝑖|𝜇𝜇𝜇) + Δ𝑡𝑖+1,𝑖𝑓𝜃(𝜀(𝑡𝑖+1𝑖 |𝜇𝜇𝜇)),

𝜀(𝑡𝑖+1|𝜇𝜇𝜇) = 𝜀(𝑡𝑖|𝜇𝜇𝜇) + Δ𝑡𝑚,𝑖𝑓𝜃(𝜀(𝑡𝑚𝑖 |𝜇𝜇𝜇)) + (Δ𝑡𝑖+1,𝑖 − Δ𝑡𝑚)𝑓𝜃(𝜀(𝑡𝑖+1𝑚 |𝜇𝜇𝜇)),
(A.6)

where 𝑡𝑖 < 𝑡𝑚 < 𝑡𝑖+1, 𝑡𝑗𝑘 =
𝑡𝑗+𝑡𝑘
2 and 𝜀(𝑡𝑗𝑘|𝜇𝜇𝜇) = 𝜀(𝑡𝑘|𝜇𝜇𝜇) +

Δ𝑡𝑗,𝑘
2 𝑓𝜃(𝜀(𝑡𝑘|𝜇𝜇𝜇)). By taking the difference of System (A.6) we get:

Δ𝑡𝑖+1,𝑖𝑓𝜃(𝜀(𝑡𝑖+1𝑖 |𝜇𝜇𝜇)) = Δ𝑡𝑚,𝑖𝑓𝜃(𝜀(𝑡𝑚𝑖 |𝜇𝜇𝜇)) + (Δ𝑡𝑖+1,𝑖 − Δ𝑡𝑚)𝑓𝜃(𝜀(𝑡𝑖+1𝑚 |𝜇𝜇𝜇)), (A.7)

which, by going back to full notation, results in the following Equation:

Δ𝑡𝑖+1,𝑖𝑓𝜃

[

𝜀(𝑡𝑖|𝜇𝜇𝜇) +
Δ𝑡𝑖+1,𝑖

2
𝑓𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇))

]

= Δ𝑡𝑚,𝑖𝑓𝜃

[

𝜀(𝑡𝑖|𝜇𝜇𝜇) +
Δ𝑡𝑚,𝑖
2

𝑓𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇))
]

+

+ (Δ𝑡𝑖+1,𝑖 − Δ𝑡𝑚)𝑓𝜃

[

𝜀(𝑡𝑖|𝜇𝜇𝜇) +
Δ𝑡𝑚,𝑖
2

𝑓𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇)) +
Δ𝑡𝑖+1,𝑚

2
𝑓𝜃

[

𝜀(𝑡𝑖|𝜇𝜇𝜇) +
Δ𝑡𝑚,𝑖
2

𝑓𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇))
]]

,
(A.8)

where 𝜀(𝑡𝑖|𝜇𝜇𝜇) +
Δ𝑡𝑚,𝑖
2 𝑓𝜃(𝜀(𝑡𝑖|𝜇𝜇𝜇)) = 𝜀(𝑡𝑚|𝜇𝜇𝜇). The constraint to which 𝑓𝜃 is now subjected allows for a more complex form of 𝑓𝜃 which in

turns results in a reduced space  more capable of adapting to the complexity of the original space . It follows that, if we require
𝑓𝜃 to generalize to a variable Δ𝑡𝑖+1,𝑖, the higher the stage of the Runge–Kutta scheme used, the more complex 𝑓𝜃 can be and the more
complex the reduced space  can be.

Appendix B. Architecture details

As detailed in Section 2.3, our model is made up of three components: an Encoder 𝜑𝜃 , a Processor 𝜋𝜃 and a Decoder 𝜓𝜃 .

Table B.4
The structure of the Encoder 𝜑𝜃 layer by layer, for a 2D case. 𝑚 is the dimension of the so-
lution field 𝑠(𝐱, 𝑡|𝜇𝜇𝜇), 𝑁 is the size of the spatial discretization of the field in the 𝑥 and in the
𝑦 axis, 𝐹𝑒 = [𝐹𝑒1,… , 𝐹 𝑒𝐿−2] is the vector of convolutional filters, 𝐾𝑒 = [𝐾𝑒1,… , 𝐾𝑒𝐿−2] is
the vector of kernels , 𝑗 ∈ {2, 𝐿 − 2} and 𝜆 is the latent dimension. The Flat layer takes all
the features coming from the last Convolutional layer and flattens them in a 1D vector.
This example is easily reduced to the 1D case.
 Layer Number Input size Output size Filters Kernel Stride
1 (Convolutional) [𝑚,𝑁,𝑁] [𝐹𝑒1 , 𝑁,𝑁] 𝐹𝑒1 [𝐾𝑒1 , 𝐾𝑒1] [1, 1]
2 (Convolutional) [𝐹𝑒1 , 𝑁,𝑁] [𝐹𝑒2 ,

𝑁
2
, 𝑁

2
] 𝐹𝑒2 [𝐾𝑒2 , 𝐾𝑒2] [2, 2]

⋮
𝑗 (Convolutional) [𝐹𝑒𝑗−1 ,

𝑁
2𝑗−2

, 𝑁
2𝑗−2

] [𝐹𝑒𝑗 ,
𝑁
2𝑗−1

, 𝑁
2𝑗−1

] 𝐹𝑒𝑗 [𝐾𝑒𝑗 , 𝐾𝑒𝑗] [2, 2]
⋮
𝐿 − 1 (Flat layer)
𝐿 (Linear) [𝐹𝑒𝐿−2 ×

𝑁
2𝐿−3

× 𝑁
2𝐿−3

] [𝜆]

Encoder. We build 𝜑𝜃 as a series of Convolutional layers [56] followed by a final Linear layer as in the 2D example of Table B.4.
The first layer has stride 1 to do a preprocessing of the fields and the subsequent layers up to the Flat layer halve each spatial

dimension by 2. We use as activation function after each Convolutional layer the GELU function [57] and we do not use any activation
function after the final Linear layer to not constrain the values of the latent space. We experimented with Batch Normalization [58]
and Layer Normalization layers [59] between the Convolutional layers and the GELU function but we did not notice any improvements
in the results. The weights of all the layers are initialized with the Kaiming (uniform) initialization [60]. Notice that we are not using
any Pooling layer [61] to reduce the dimensionality but only strided Convolutions, as Pooling layers would enforce translational
invariance which is not always a desired property.

Processor. Inside the Processor 𝜋𝜃 , in practice only the function 𝑓𝜃 which approximates 𝑓 of Eq. (6) is parametrized by a NN with
𝑓𝜃(𝜀(𝑡|𝜇𝜇𝜇),𝜇𝜇𝜇) being a function of both 𝜀(𝑡|𝜇𝜇𝜇) and 𝜇𝜇𝜇. We experimented with the parameter dependency in two ways:

• 𝜇𝜇𝜇 is simply concatenated to the reduced vector 𝜀(𝑡|𝜇𝜇𝜇). In this case 𝑓𝜃 ∶ ℝ𝜆+𝑧 → ℝ𝜆, where 𝑧 is the dimensionality of 𝜇𝜇𝜇 and 𝜆 the
latent dimension.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

14

A. Longhi et al.

Table B.5
The structure of the Decoder 𝜓𝜃 layer by layer, for a 2D case. ’T.’ stands for ’Transposed’.
 Layer Number Input size Output size Filters Kernel Stride
1 (Linear) [𝜆] [𝐹𝑑1 ×

𝑁
2𝐿−3

× 𝑁
2𝐿−3

]
2 (Reshape layer)
⋮
𝑗 (T. Convolutional) [𝐹𝑑𝑗−2 ,

𝑁
2𝐿−𝑗

, 𝑁
2𝐿−𝑗

] [𝐹𝑑𝑗−1 ,
𝑁

2𝐿−𝑗−1
, 𝑁
2𝐿−𝑗−1

] 𝐹𝑑𝑗−1 [𝐾𝑑𝑗−1 , 𝐾𝑑𝑗−1] [2, 2]
⋮
𝐿 − 1 (T. Convolutional) [𝐹𝑑𝐿−3 ,

𝑁
2
, 𝑁

2
] [𝐹𝑑𝐿−2 , 𝑁,𝑁] 𝐹𝑑𝐿−2 [𝐾𝑑𝐿−3 , 𝐾𝑑𝐿−3] [2, 2]

𝐿 (T. Convolutional) [𝐹𝑑𝐿−2 , 𝑁,𝑁] [𝑚,𝑁,𝑁] [𝑚] [𝐾𝑑𝐿−2 , 𝐾𝑑𝐿−2] [1, 1]

• The vector 𝜀(𝑡|𝜇𝜇𝜇) is conditioned to 𝜇𝜇𝜇 through a FiLM layer [62]. This means defining the function 𝛼 ∶ ℝ𝑧 → ℝ𝜆 and the function
𝜏 ∶ ℝ𝑧 → ℝ𝜆. The input to 𝑓𝜃 will thus be 𝛼(𝜇𝜇𝜇)⊙ 𝜀(𝑡|𝜇𝜇𝜇) + 𝜏(𝜇𝜇𝜇), where ⊙ is the Hadamard product. 𝛼 and 𝜏 are chosen to be simple
Linear layers.

In both cases 𝑓𝜃 is built as a sequence of Linear layers followed by the GELU activation function. Importantly the activation function
is not used after the last Linear layer as this is a regression problem.

Decoder. We build 𝜓𝜃 as a Linear layer followed by a series of Transposed Convolutional layers [56] as shown in Table B.5. The initial
Linear layer and the last Transposed Convolutional layer are not followed by an activation function while the other Transposed
Convolutional layers are followed by a GELU function. We do not use any activation function for the Linear layer for symmetry
with the Encoder, while for the last layer of the Decoder because this is a regression task. After the Reshape layer each Transposed
(T.) Convolutional layer doubles the dimensionality in both 𝑥 and 𝑦 dimensions until the layer number 𝐿 − 1. The last layer does
not increase the dimensionality of the input (stride = 1) and is just used to go to the final dimensionality 𝑚 of the solution field 𝑠.
𝐹𝑑 = [𝐹𝑑1,… , 𝐹 𝑑𝐿−2] is the vector of convolutional filters, 𝐾𝑒 = [𝐾𝑑1,… , 𝐾𝑑𝐿−2] is the vector of kernels, 𝑗 ∈ {3, 𝐿 − 1}.

B.1. Normalization of the inputs

In order to facilitate the training process we normalize the inputs, as standard Deep Learning practice. We use a max-min nor-
malization both for the input fields 𝑠 and for the parameters 𝜇𝜇𝜇. We do not normalize Δ𝑡𝑖+1,𝑖. By max-min normalization, we mean the
following: given an input 𝑦, we transform it accordingly to 𝑦→ 𝑦−𝑚𝑖𝑛(𝐷𝑦)

𝑚𝑎𝑥(𝐷𝑦)−𝑚𝑖𝑛(𝐷𝑦)
, where 𝑚𝑎𝑥(𝐷𝑦) and 𝑚𝑖𝑛(𝐷𝑦) are computed over the

training datasets 𝐷𝑦 to which 𝑦 belongs. In our experiments 𝑠 is a scalar field so we only compute one tuple (𝑚𝑎𝑥(𝐷𝑠), 𝑚𝑖𝑛(𝐷𝑠)). In the
case of 𝜇𝜇𝜇 instead, since each parameter 𝜇𝑖 can belong to a different scale, we compute 𝑧 tuples (𝑚𝑎𝑥(𝐷𝜇𝑖), 𝑚𝑖𝑛(𝐷𝜇𝑖)) with 𝑖 ∈ {1, 𝑧}.
We normalize accordingly the parameters for all the datasets while the input fields for all the datasets but the Burgers’ Equation and
the parametric Advection.

Appendix C. Training and hyperparameter details

In all the experiments we use the Adam optimizer [63] and we stop the training if the validation loss has not decreased for 200
epochs. We use an Exponential Learning Rate Scheduler, with a decay parameter 𝛾𝑙𝑟. We set 5000 as the maximum number of epochs.
In all the experiments, unless otherwise specified, we used 𝑞 = 4 as the stage of the RK algorithm. We use 𝑡𝑟 for training and 𝑣𝑙 for
validation, defined as

𝑣𝑙 = 𝑡𝑟 +
𝐹
∑

𝑖=1

||𝑠𝑟
(

𝐱, 𝑡𝑖|𝜇𝜇𝜇
)

− 𝑠̃𝑟
(

𝐱, 𝑡𝑖|𝜇𝜇𝜇
)

||2

||𝑠𝑟
(

𝐱, 𝑡𝑖|𝜇𝜇𝜇
)

||2
, (C.1)

with 𝑠𝑟
(

𝐱, 𝑡𝑖|𝜇𝜇𝜇
) being the ground truth solution at time 𝑡𝑖 and parameters 𝜇𝜇𝜇.

In Table C.6 we detail the training-validation-test splits and the hyperparameters of our model for the experiments of Section 3.1.
In Table C.7 we detail the training-validation-test splits and the hyperparameters of our model for the experiments of Section 3.2.

C.1. Strategies for the improvement of parameter generalization

In Section 3.3 we experiment with possible methods to improve the generalization abilities of our model to testing parameters.
Fig. 8 compares the performance of the following five strategies to that of the baseline in Fig. 3 for the parametric Advection dataset:
1. Latent regularization: we increase the value of 𝜆𝑟𝑔 (set to 0 in the baseline) to check whether the generalization benefits from
suppressing unimportant degrees of freedom of the latent space.

2. Weight decay of latent space evolution ODE source term 𝑓𝜃 : we set the ’weight decay’ parameter of the Adam optimizer to 1𝑒 − 6
(lower would largely increase the nRMSE) for the NN weights of 𝑓𝜃 to prevent overfitting it to the training data.

3. Information about solution period: we exploit the knowledge that the PDE solution 𝑠(𝐱, 𝑡|𝜁) has a period 𝑇𝜁 = 0.5
𝜁 by augmenting the

vector of parameters 𝜇𝜇𝜇 = 𝜁 that is given as input to 𝑓𝜃 with the vector
[

sin
(

2𝜋
0.5∕𝜁 𝑡

)

, cos
(

2𝜋
0.5∕𝜁 𝑡

)]

, informing 𝑓𝜃 with the explicit
periodicity of the solution.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

15

A. Longhi et al.

Table C.6
Training and hyperparameter details for the PDEs with fixed parameters. Training, valida-
tion and test rows signal which time series are taken from the datasets, i.e., 1–8000 means
between the 1st and the 8000th series were taken. Initial learning rate (LR) and architecture
details are included, together with regularization details.
 Parameter 1D Advection 1D Burgers 2D Shallow-Water
 Training 1–8000 1–8000 1–800
 Validation 8001–9000 8001–9000 801–900
 Test 9001–10000 9001–10000 901–1000
 Initial LR 0.001 0.0014 0.001
𝛾𝑙𝑟 0.997 0.999 0.999
 Batch Size 16 32 16
𝐹𝑒 [8,16,32,64,64,64,64] [8,16,32,32,32,32,32] [8,32,32,32,32,32,32]
𝐹𝑑 [64,64,64,64,32,16,1] [32,32,32,32,32,16,1,1] [32,32,32,32,32,16,1,1]
𝐾𝑒 [5,5,5,5,5,5,5] [5,5,3,3,3,3,3] [5,5,3,3,3,3,3]
𝐾𝑑 [6,6,6,6,6,6,5] [4,4,4,4,4,4,3,3] [4,4,4,4,4,4,3,3]
𝑓𝜃 layer no. 2 4 2
𝑓𝜃 neuron no. 50 200 50
𝜆 30 30 20
𝜆𝑟𝑔 0.0 0.001 0.001

Table C.7
Training and hyperparameter details for the PDEs with varying parameters. Train and Test
parameter (par.) rows signal which PDE parameter values were selected. Train, Validation
(Val.) and Test data rows show which time series are taken from the datasets, i.e., 1–8000
means between the 1st and the 8000th series were taken, while for Molenkamp the number
of uniformly sampled parameter values are given. Initial learning rate (LR) and architecture
details are included, together with regularization details. The Molenkamp problem had GELU
activation functions in the last layer of the Encoder and the first layer of the Decoder.
 Parameter 1D Advection 1D Burgers 2D Molenkamp
 PDE par. 𝜁 𝜈 𝜆1 ,… , 𝜆5
 Train par. 0.2, 0.4, 0.7, 2.0, 4.0 0.002, 0.004, 0.02, 0.04, 0.2, 0.4, 2.0 Uniform sampling
 Test par. 0.1, 1.0, 7.0 0.001, 0.01, 0.1, 1.0, 4.0 Uniform sampling
 Train data 1–8000/𝜁 1–8000 5000
 Val. data 8000–9000/𝜁 8000–9000 200
 Test data 9000–10000/𝜁 9000–10000 100
 LR 0.0018 0.0018 0.0015
𝛾𝑙𝑟 0.995 0.995 0.995
 Batch Size 64 124 16
𝐹𝑒 [8,16,32,32,32,32,32] [8,32,32,32,32,32,32] [8,16,32,32,32,32,32]
𝐹𝑑 [32,32,32,32,32,16,1] [32,32,32,32,32,16,1,1] [32,32,32,32,32,16,1,1]
𝐾𝑒 [5,5,3,3,3,3,3] [5,5,3,3,3,3,3] [5,5,3,3,3,3,3]
𝐾d [4,4,4,4,4,4,3] [4,4,4,4,4,4,3,3] [4,4,4,4,4,4,3,3]
𝑓𝜃 Layers 4×200 4×200 2×100
𝜆 30 30 5
𝜆𝑟𝑔 0.0 0.0 0.0
𝛾0 1∕500 1∕1000 1∕500

4. Data-points closer to test points: we add points 𝜁 ∈ {0.05, 1.05, 7.05} to the training data set. Each added 𝜁 has the same 8000 initial
conditions for training and 1000 conditions for validation as the baseline, as explained in Appendix C.

5. Uniform parameter sampling: we use 𝜁 ∈ [0.5, 7.05] values sampled uniformly with steps of 0.05 as training values. We exclude from
the training set 𝜁 ∈ {0.1, 1.0, 7.0}. The training initial conditions (per parameter 𝜁) are the first initial conditions from the 1st to the
250th used by the baseline and the initial conditions for validation are the ones from the 250th to the 300th used by the baseline
(Appendix C). So we use less initial conditions per 𝜁 compared to the baseline case.

Fig. 9 compares the performance the "Data-points closer to test points’ strategy to that of the baseline in Fig. 4) for the Burgers’
case. We add points 𝜈 ∈ {0.11, 1.1, 4.1} to the training data set. Each added 𝜈 has the same 8000 initial conditions for training and 1000
conditions for validation as the baseline, as explained in Appendix C.

C.2. Training instabilities

𝑇 ,𝑘12 and especially 𝐴,𝑘22 can involve complex gradients. During the training, this can sometimes lead the NN to be stuck in the
trivial minimum for 𝑇2,𝑖 and 𝐴2,𝑖 which consists in 𝜑𝜃 and 𝜋𝜃 returning a constant output. Based on our experiments some datasets
are particularly sensitive to this problem, while others are not affected by it, and the following measures help avoiding the trivial
solution:

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

16

A. Longhi et al.

Table C.8
Comparison of the inference time. The dataset used
is the Burger’s one with 𝜈 = 0.001. We do not con-
sider the time spent for sending the batches from
the CPU to the GPU; the time measured is the time
taken to do inference on the whole testing dataset
of 1000 initial conditions with a batchsize of 64.
Inference time shows the mean and standard devi-
ation, which we computed for our model by doing
inference 100 times. Values of models used for com-
parisons are taken from Hagnberger et al. [46].
 Time resolution Model Inference time [ms]

 Ours 466.73±68.38

 FNO 917.77±2.51

 41 VCNeF 2244.04±6.65

 Galerkin 2415.99±54.56

 VCNeF s. 4853.17±75.29

 OFormer 6025.75±12.75

 Ours 932.43136.588

 FNO 1912.19±56.03

 81 VCNeF 4422.65±4.11

 Galerkin 4940.80±89.44

 VCNeF s. 9701.80±84.48

 OFormer 12081.98±19.39

 Ours 1440.67±250.29

 FNO 2808.04±82.22

 121 VCNeF 6606.41±3.0

 Galerkin 7908.18±96.52

 VCNeF s. 14577.00±112.83

 OFormer 17965.47±14.19

 Ours 1846.729±270.72

 FNO 3733.10±62.94

 161 VCNeF 6084.04±9.37

 Galerkin 10295.78±116.50

 VCNeF s. 19449.80±113.73

 OFormer 24108.24±6.45

 Ours 2389.07386.02

 FNO 4614.21±97.52

 201 VCNeF 7584.48±1.86

 Galerkin 13151.47±93.95

 VCNeF s. 24252.38±101.41

 OFormer 29986.81±6.35

 Ours 2773.019406.31

 FNO 5572.07±109.23

 240 VCNeF 8935.28±7.08

 Galerkin 15600.60±262.51

 VCNeF s. 29063.89±79.58

 OFormer 35900.51±6.71

• Removing the biases from the Encoder.
• Using (Batch/Layer) Normalization layers in the Encoder (not necessarily after each convolution).
• Careful tuning of the learning rate (lowering the learning rate or increasing the batch size).
• Warm up of the learning rate.
• Turning off the more complex 𝑇 ,𝑘12,𝑖 and 𝐴,𝑘22,𝑖 terms for the initial epochs (e.g., during the warm up of the learning rate) by
setting 𝛽 and 𝛾 to zero, if the instabilities come mostly from these terms. This allows for an initial construction of  with simpler
constraints.

C.3. Hardware details

For training we use either an NVIDIA A40 40 GB or an NVIDIA A100 80GB PCIe depending on availabilities.

C.4. Model size and inference speed

In Table C.9 we show the number of NNs weights associated with our model and the models used for comparison from Hagnberger
et al. [46]. In Table C.8 we report the inference time for the Burgers’ dataset with 𝜈 = 0.001. We do not consider the time spent for
sending the batches from the CPU to the GPU; the time measured is the time taken to do inference on the whole testing dataset of

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

17

A. Longhi et al.

Table C.9
Model size of the different architectures. In the first line of
the 1D Advection case we show the number of weights of
our model for 𝜁 = 0.01/𝜁 varying.

 Model size (# NNs weights)
 Model Advection Burgers’ Molenkamp
 Ours 188,549 / 214,461 216,657 166,825
 Galerkin T. 530,305 530,305 –
 FNO 549,569 549,569 –
 U-Net 557,137 557,137 –
 MP-PDE 614,929 614,929 –
 OFormer 660,814 660,814 –
 VCNeF 793,825 793,825 1,594,005

1000 initial conditions with a batchsize of 64. We use an NVIDIA A100 80GB PCIe to conduct the inference test. Inference time of
other methods is from Hagnberger et al. [46] where they use an NVIDIA A100-SXM4 80GB GPU.

C.5. Training budget

This section summarizes the available information about the training budgets for both our method and the ones used for compar-
ison. For the Molenkamp test we trained the method of comparison ourselves. For all other experiments, the information we have
about the trainings of comparison methods comes from Hagnberger et al. [46] as we directly compare to the results within.

C.5.0.1. Molenkamp test. Our method was trained for 1325 epochs in a total time of 13.5 h, and training stopped because the validation
loss had not decreased for 200 epochs. The comparison VCNeF method of Hagnberger et al. [46] was trained for 500 epochs for a total
time of 24.4 h, using the ’One Cycle Scheduler’ [64], with maximum learning rate of 0.2, initial and final division factors of 0.003 and
0.0001, respectively, with each epoch taking approximately 176 s. Both trainings used the same GPU (NVIDIA A100 80GB PCIe).

Not parametric-1D Burgers. Our model has been trained for 4336 epochs, each of which taking approximately 6.1 s on a single NVIDIA
A100 80GB PCIe, for a total of 7.3 h. The comparison VCNeF training took 18 s per epoch and was trained for 500 epochs in parallel
on 4 NVIDIA A100-SXM4 80GB GPUs, for a total of 2.5 h. Appendix E.3 of Hagnberger et al. [46] gives no additional information
about training times; only stating that all methods have been trained for 500 epochs, except for MP-PDE using 20 epochs.

Not parametric-1D advection. Our model has been trained for 1724 epochs, each taking approximately 10 s on a single NVIDIA A100
80GB PCIe, for a total of 4.8 h. Comparison methods have been trained for 500 epochs, except for MP-PDE using 20 epochs, without
any additional information available.

Parametric 1D Burgers. Our model has been trained for 1330 epochs on a single NVIDIA A100 80GB PCIe, for a total of 25.1 h.
Comparison methods have been trained for 500 epochs, except for MP-PDE using 20 epochs, without any additional information
available.

Parametric 1D advection. Our model has been trained for 1607 epochs on a single NVIDIA A100 80GB PCIe, for a total of 48 h.
Comparison methods have been trained for 500 epochs, except for MP-PDE using 20 epochs, without any additional information
available.

Shallow water equations. Our model has been trained for 1366 epochs on a single NVIDIA A100 80GB PCIe, for a total of 3.3 h.

Appendix D. Methods used for comparison

In Section 3 we compare our model to the following methods:

Fourier neural operator (FNO). Li et al. [21]: it is a particular case of a Neural Operator, i.e., a class of models which approximate
operators and that can thus perform mapping from infinite-dimensional spaces to infinite-dimensional spaces. The name comes from
the assumption that the Kernel of the operator layer is a convolution of two functions, which makes it possible to exploit the Fast
Fourier Transform under particular circumstances.

cFNO. Takamoto et al. [47]: it is an adaptation of the FNO methodology which allows to add the PDE parameters as input.

Message passing neural PDE solver (MP-PDE). Brandstetter et al. [29]: it leverages Graph Neural Networks (GNNs) for building sur-
rogate models of PDEs. All the components are based on neural message passing which representationally contain classical methods
such as finite volumes, Weighted Essentially Non-Oscillatory (WENO) schemes and finite differences.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

18

A. Longhi et al.

U-Net. Ronneberger et al. [65]: it is a method based on an Encoder-Decoder architecture with skip connections between the down-
sampling and upsampling procedures. Originally it emerged for image segmentation tasks and but has since been applied to the field
of PDE solving as well [27].

Coordinate-based model for operator learning (CORAL). Serrano et al. [66]: it is a method which leverages Neural Fields [67] for the
solution of PDEs on general geometries and general time discretizations.

Galerkin transformer (Galerkin). Cao[68]: it is a Neural Operator based on the self-attention mechanism from Transformers with a
novel layer normalization scheme mimicking the Petrov–Galerkin projection.

Operator transformer (OFormer). Li et al. [69]: it is a Neural Operator which leverages the fact that the self-attention layer of Trans-
formers is a special case of an Operator Layer (as shown in Kovachki et al. [18]) to build a PDE solver.

cOFormer. It is an adaptation of the OFormer architecture which allows for the query of PDE parameters as inputs, following what
is done in Takamoto et al. [48].

Vectorized conditional neural fields (VCNeF). Hagnberger et al. [46]: it is a transformer based model which leverages neural fields to
represent the solution of a PDE at any spatial point continuously in time. For the Molenkamp test we implemented the VCNeF method
from the Git-Hub repository of Hagnberger et al. [46], using the same ’One Cycle Scheduler’ [64] with maximum learning rate at 0.2,
initial division factor 0.003 and final division factor 0.0001 for training. We employ 1000 epochs, a batch size of 40, an embedding
size of 96, 1 transformer layer with 8 heads and 6 modulation blocks.

Physics-informed neural networks (PINN). Raissi et al. [70]: it is a class of methods which uses the physical knowledge of the system
(in this case the PDE) to improve the approximate solution of the PDE by the NN (via e.g., penalizing the PDE residual too in the
loss).

The above methods have been implemented in Hagnberger et al. [46] (for the 1D Advection and 1D Burgers results) and [48] (for
the 2D Shallow Water results) and we used the reported values to compare our results to in Section 3.

Appendix E. Ablation studies

E.1. The role of the ODE solver and of 3 in time generalization

In Fig. E.11a we show the effect of the stage 𝑞 of the RK algorithm used to solve Eq. (6) for the Burgers’ dataset with 𝜈 = 0.001.
We see that by increasing 𝑞 not only the nRMSE(𝑡) (from Eq. (F.11)) is lowered, but also the gap between the trajectory of Δ𝑡 = 0.05
(used during training) and Δ𝑡 = 0.01 is decreased, i.e., the larger the 𝑞 the better the generalization in time during inference. This is
particularly clear when looking at the nRMSE(𝑡) of 𝑞 = 3 and 𝑞 = 4, since for Δ𝑡 = 0.05 they are almost the same, while for Δ𝑡 = 0.01
it is noticeably lower when 𝑞 = 4. In Fig. E.11b we do the same experiment with the Advection dataset: here only for 𝑞 = 1 there is a
big gap between the prediction at Δ𝑡 = 0.05 and Δ𝑡 = 0.01.

In Fig. E.11c once again we show the same pattern for the Molenkamp dataset: increasing the value of 𝑞 results in a better capability
of the model to generalize in time during inference by taking a smaller Δ𝑡.

In Fig. E.11d we show a comparison of the nRMSE(𝑡) on the Burgers’ dataset with 𝜈 = 0.001 between using the full loss 𝑡𝑟 and
switching off 3 by setting 𝛿 = 0: while for Δ𝑡 = 0.05 (the one used at training) the two curves are comparable, for Δ𝑡 = 0.01 a huge
gap is present. This result is in line with the reasoning that 3 helps the model to generalize in time, as explained Section 2.6.

E.2. Impact of 𝛾0 and 𝑝(𝑘2) in the autoregressive strategy

The autoregressive term 𝛾 𝐴,𝑘22,𝑖 during the training is multiplied by a scalar 𝛾, where initially 𝛾 = 𝛾0 < 1 and is increased every
epoch by an amount of 𝛾0 until 𝛾 = 1. In Fig. E.12 we vary the value of 𝛾0 from 0 (Teacher Forcing) to 0.002. We also experimented
with higher values (𝛾0 = 0.01, 0.1, 1) but resulted in NaN errors in the training. We see a trend where the higher the value of 𝛾0 the
lower the error; however it comes with a more unstable training process which may require careful hyperparameters tuning.

Furthermore, in Fig. E.13 we experiment with varying the value of 𝑝(𝑘2) on the parametric Burgers dataset, where 𝑝(𝑘2) is the
amount of epochs needed for 𝑘2 to be increased by 1: no significant difference is present in the three experiments.

E.3. Coupling of AE and NODE

In Section 2 we stated that the training of the AutoEncoder was coupled with the training of the Neural ODE. This choice was
rooted in the assumption that training the encoder 𝜑𝜃 and the decoder 𝜓𝜃 together with 𝑓𝜃 pushes the NNs’s weights towards a
minimum such that the latent space  allows for an easier modeling of the latent dynamics through 𝑓𝜃 , since  and 𝑓𝜃 are built at
the same time. In this section we give some empirical results backing up such decision.

Firstly, how different is the latent space found when the training is coupled from when it is not coupled? In Fig. E.14 we show the
Time evolution for a given initial condition and for a given parameter instance from the test set of the corresponding latent vector 𝜀,

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

19

A. Longhi et al.

Fig. E.11. nRMSE(𝑡) when varying the stage 𝑞 of the RK algorithm to solve the ODE of Eq. (6) for the Burgers’ (a), Advection (b) and Molenkamp
datasets (c) and when using 3 in the training (d). In (a)-(c) the same 𝑞 is used at training and inference. Increasing 𝑞 improves the predictions
when using the same Δ𝑡 as during training (Δ𝑡 = 0.01) and also yields better generalization in time. In (d) the presence of 3 at training (red curves)
improves the generalization in time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

20

A. Longhi et al.

Fig. E.12. We show the impact of the scheduling chosen for the autoregressive term with the variation of 𝛾0. Teacher Forcing is equivalent to 𝛾0 = 0.

Fig. E.13. We show the impact of varying the term 𝑝(𝑘2). No noticeable difference is present at its variation.

both for the parametric Advection and Burgers case. In both cases the most evident difference between coupling and not is the scale
of the variation of each latent dimension: it is larger for the not coupled models and very small for the coupled one, as shown in
Fig. E.15. Finally, in Fig. E.17 we compare the nRMSE(𝜇𝜇𝜇) distribution of both the parametric Advection and parametric Burgers case
when the system is trained coupled and when not: the error is smaller when the training is performed coupled.

We thus observed 3 phenomena:

• the error of the AutoEncoder is smaller when the training is not coupled (Fig. E.16);
• the shape of the latent space is not dramatically different in the two cases (Figs. E.14 and E.15). The main distinction is observed
in the scale of the variation of each dimension of the latent vectors over time, which is considerably smaller in the coupled case;

• the approximation error of the PDE solution is smaller when the training is coupled (Fig. E.17).

It is difficult by looking at Fig. E.14 to justify why it is true that the latent space found in the coupled case is more easily approximated
by the NODE, we only report what we observed experimentally. We conclude by reporting that training the two processes decoupled
results in a much more stable training process, which did not require the use of the tricks documented in Appendix C.2 as in the
coupled case.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

21

A. Longhi et al.

Fig. E.14. Time evolution of the latent vector 𝜀(𝑡|𝜇𝜇𝜇) for a given initial condition and parameter instance (𝜁 for Advection and 𝜈 for Burgers). Each
color corresponds to a different dimension of the latent vector, 30 in total. We compare the time evolution for both the parametric Advection (top)
and the parametric Burgers (bottom) cases, between the two training strategies: the Autoencoder training coupled to the latent space dynamics
optimization (right) and not (left).

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

22

A. Longhi et al.

Fig. E.15. Time evolution of a chosen latent variable from the latent vector 𝜀(𝑡|𝜇𝜇𝜇) for a given initial condition and parameter instance (𝜁 for
Advection and 𝜈 for Burgers). Although at smaller scales than in the coupled case, the latent variables show similar variations in time.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

23

A. Longhi et al.

Fig. E.16. Comparison of the AE-nRMSE(𝜇𝜇𝜇) when encoding and decoding the test set, both for the parametric Advection (top) and the parametric
Burgers datasets (bottom). In both cases, the AE-nRMSE(𝜇𝜇𝜇) is lower when the AutoEncoder is trained independently from learning the latent space
dynamics.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

24

A. Longhi et al.

Fig. E.17. Comparison of the nRMSE(𝜇𝜇𝜇) with (red) and without (blue) coupling the training of the AutoEncoder and the Neural ODE, both for the
parametric Advection (top) and the Burgers advection datasets (bottom). Bold characters signal testing parameter values not included in the training
set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Appendix F. Datasets

Unless stated otherwise, the solutions of the PDEs described in this section used in our model training come from Takamoto
et al. [48].

F.1. 1D advection equation

The 1D Advection Equation is a linear PDE which transports the initial condition with a constant velocity 𝜁 :
{

𝜕𝑡𝑠(𝐱, 𝑡|𝜇𝜇𝜇) + 𝜁𝜕𝑥𝑠(𝐱, 𝑡|𝜇𝜇𝜇) = 0, 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 2]

𝑠(𝐱, 0|𝜇𝜇𝜇) = 𝑠0(𝐱,𝜇𝜇𝜇), 𝑥 ∈ (0, 1).
(F.1)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

25

A. Longhi et al.

Periodic boundary conditions are considered (i.e., 𝑠(0, 𝑡|𝜇𝜇𝜇) = 𝑠(1, 𝑡|𝜇𝜇𝜇)) and as initial condition a super-position of sinusoidal waves is
used:

𝑠0(𝐱,𝜇𝜇𝜇) =
∑

𝑖=1,…,𝑁
𝐴𝑖 sin(𝑘𝑖𝑥 + 𝜙𝑖), (F.2)

where 𝑘𝑖 = 2𝜋 𝑛𝑖∕𝐿𝑥 with 𝑛1 being random integers, 𝐿𝑥 is the domain size, 𝐴𝑖 are random numbers from the interval [0, 1] and 𝜙𝑖
are the phases chosen randomly in (0, 2𝜋). We use 256 equidistant spatial points 𝑥 in the interval [0, 1] and for training 41 uniform
timesteps in the interval [0, 2].

F.2. 1D Burgers’ equation

The Burgers’s equation is a non-linear PDE used in various modeling tasks such as fluid dynamics and traffic flows:
{

𝜕𝑡𝑠(𝐱, 𝑡|𝜇𝜇𝜇) + 𝜕𝑥(𝑠2(𝐱, 𝑡|𝜇𝜇𝜇)∕2) − 𝜈∕𝜋𝜕𝑥𝑥𝑠(𝐱, 𝑡|𝜇𝜇𝜇) 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 2]

𝑠(𝐱, 0|𝜇𝜇𝜇) = 𝑠0(𝐱,𝜇𝜇𝜇), 𝑥 ∈ (0, 1),
(F.3)

where 𝜈 is the diffusion coefficient. The initial conditions and the boundary conditions are the same as in Section F.1. We use 256
equidistant spatial points in the interval [0, 1] and for training 41 uniform timesteps in the interval [0, 2].

F.3. 2D shallow water equations

The 2D Shallow Water Equations are a system of hyperbolic PDEs derived from the Navier Stokes equations and describe the
flow of fluids, primarily water, in situations where the horizontal dimensions (length and width) are much larger than the vertical
dimension (depth):

𝜕𝑡ℎ + 𝜕𝑥ℎ𝑢 + 𝜕𝑦ℎ𝑣 = 0,

𝜕𝑡ℎ𝑢 + 𝜕𝑥
(

𝑢2 ℎ + 1
2
𝑔𝑟ℎ

2
)

+ 𝜕𝑦𝑢𝑣ℎ = −𝑔𝑟ℎ𝜕𝑥𝑏,

𝜕𝑡ℎ𝑣 + 𝜕𝑥
(

𝑣2 ℎ + 1
2
𝑔𝑟ℎ

2
)

+ 𝜕𝑦𝑢𝑣ℎ = −𝑔𝑟ℎ𝜕𝑦𝑏,

(F.4)

where 𝑢, 𝑣 are the horizontal and vertical velocities, ℎ is the water depth and 𝑏 is a spatially varying bathymetry. 𝑔𝑟 is the gravitational
acceleration. We use 128 × 128 equidistant spatial points (𝑥, 𝑦) in the interval [−1, 1] × [−1, 1] and for training 21 uniform timesteps in
the interval [0, 1], while the compared methods use 101 uniform timesteps in the interval [0, 1].

F.4. 2D molenkamp test

The Molenkamp test is a two dimensional advection problem, whose exact solution is given by a Gaussian function which is
transported trough a circular path without modifying its shape. Here we add a reaction term which makes the Gaussian shape decay
over time:

𝜕𝑡𝑞(𝑥, 𝑦, 𝑡) + 𝑢𝜕𝑥𝑞(𝑥, 𝑦, 𝑡) + 𝑣𝜕𝑦𝑞(𝑥, 𝑦, 𝑡) + 𝜆3𝑞(𝑥, 𝑦, 𝑡) = 0

𝑞(𝑥, 𝑦, 0) = 𝜆1 0.01𝜆2ℎ(𝑥,𝑦,0)
2
, ℎ(𝑥, 𝑦, 0) =

√

(𝑥 − 𝜆4 +
1
2
)2 + (𝑦 − 𝜆5)2,

(F.5)

with 𝑢 = −2𝜋𝑦 and 𝑣 = 2𝜋𝑥 and (𝑥, 𝑦) ∈ [−1, 1]. For this problem an exact solution exists:
𝑞(𝑥, 𝑦, 𝑡) = 𝜆10.01𝜆2ℎ(𝑥,𝑦,𝑡)

2
exp−𝜆3𝑡,

ℎ(𝑥, 𝑦, 𝑡) =
√

(𝑥 − 𝜆4 +
1
2
cos(2𝜋𝑡))2 + (𝑦 − 𝜆5 −

1
2
sin(2𝜋𝑡))2.

(F.6)

The PDE depends on 5 parameters 𝜆1,… , 𝜆5, which control the magnitude of the initial Gaussian, the size of the cloud, the speed of
decay, and the initial coordinates x and y. The ranges of the parameters are taken from Alsayyari et al. [71]: 𝜆1 ∈ [1, 20], 𝜆2 ∈ [2, 4],
𝜆3 ∈ [1, 5], 𝜆4 ∈ [−0.1, 0.1], 𝜆5 ∈ [−0.1, 0.1]. We use 128 × 128 equidistant spatial points (𝑥, 𝑦) in the interval [−1, 1] × [−1, 1] and for
training 21 uniform timesteps in the interval [0, 1].

F.5. Test error metrics

We use as testing metrics the Normalized-Root-Mean-Squared-Error, defined in different ways according to which quantities are
averaged over:

nRMSE = 1
𝑁𝑢𝑁𝜇𝜇𝜇𝐹

𝑁𝑢
∑

𝑖=1

𝑁𝜇𝜇𝜇
∑

𝑝=1

𝐹
∑

𝑗=1

||𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇𝑝, 𝑠0𝑟,𝑖) − 𝑠̃𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇𝑝, 𝑠
0
𝑟,𝑖))||2

||𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇𝑝, 𝑠0𝑟,𝑖)||2
, (F.7)

nRMSE(𝜇𝜇𝜇) = 1
𝑁𝑢 𝐹

𝑁𝑢
∑

𝑖=1

𝐹
∑

𝑗=1

||𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠0𝑟,𝑖) − 𝑠̃𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠
0
𝑟,𝑖))||2

||𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠0𝑟,𝑖)||2
, (F.8)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

26

A. Longhi et al.

NODE-nRMSE(𝜇𝜇𝜇) = 1
𝑁𝑢 𝐹

𝑁𝑢
∑

𝑖=1

𝐹
∑

𝑗=1

||𝜑𝜃◦𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠0𝑟,𝑖) − 𝜀̃(𝑡𝑗 |𝜇𝜇𝜇, 𝑠
0
𝑟,𝑖))||2

||𝜑𝜃◦𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠0𝑟,𝑖)||2
, (F.9)

AE-nRMSE(𝜇𝜇𝜇) = 1
𝑁𝑢 𝐹

𝑁𝑢
∑

𝑖=1

𝐹
∑

𝑗=1

||𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠0𝑟,𝑖) − 𝜓𝜃◦𝜑𝜃◦𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠
0
𝑟,𝑖)||2

||𝑠𝑟(𝐱, 𝑡𝑗 |𝜇𝜇𝜇, 𝑠0𝑟,𝑖)||2
, (F.10)

nRMSE(𝑡) = 1
𝑁𝑢𝑁𝜇𝜇𝜇

𝑁𝑢
∑

𝑖=1

𝑁𝜇𝜇𝜇
∑

𝑝=1

||𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇𝑝, 𝑠0𝑟,𝑖) − 𝑠̃𝑟(𝐱, 𝑡|𝜇𝜇𝜇𝑝, 𝑠
0
𝑟,𝑖))||2

||𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇𝑝, 𝑠0𝑟,𝑖)||2
, (F.11)

where 𝑁𝑢, 𝑁𝜇𝜇𝜇 and 𝐹 are the number of initial conditions, parameter instances and time steps used at testing, respectively, and
𝑠0𝑟,𝑖 stands for the 𝑖th initial condition. 𝜀̃(𝑡𝑗 |𝜇𝜇𝜇𝑝, 𝑠0𝑟,𝑖)) = 𝜋𝜃(⋅,𝜇𝜇𝜇𝑝,Δ𝑡𝑗,𝑗−1)◦… ◦𝜋𝜃(⋅,𝜇𝜇𝜇𝑝,Δ𝑡1,0)◦𝜑𝜃(𝑠0𝑟,𝑖) is the latent vector predicted by the
NODE at time 𝑡𝑗 during inference. Thus:

• nRMSE is the total error;
• nRMSE(𝜇𝜇𝜇) is the parametric total error, i.e., total error for any parameter instance 𝜇𝜇𝜇;
• NODE-nRMSE(𝜇𝜇𝜇) is the parametric Neural ODE error, i.e., the total error for any parameter instance 𝜇𝜇𝜇 coming from the NODE
prediction;

• AE-nRMSE(𝜇𝜇𝜇) is the parametric AutoEncoder error, i.e., the total error per for any parameter instance 𝜇𝜇𝜇 coming purely from the
autoencoder;

• nRMSE(𝑡) is the temporal total error, i.e., the total error for any time step 𝑡.

We also define the relative error 𝑒𝑟(𝐱, 𝑡) as a more spatially meaningful error measure between the predicted field 𝑠̃𝑟(𝐱, 𝑡|𝜇𝜇𝜇) and the
ground truth field 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇):

𝑒𝑟(𝐱, 𝑡) =
|𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇) − 𝑠̃𝑟(𝐱, 𝑡|𝜇𝜇𝜇)|

||𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇)||2
, (F.12)

where the numerator is the point-wise absolute value of the difference between 𝑠̃𝑟(𝐱, 𝑡|𝜇𝜇𝜇) and 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇) (hence it has the same dimen-
sionality as 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇)), while the denominator is a scalar.

Appendix G. Additional images

Fig. G.18 shows our model’s performance in the Molenkamp test for 4 different parameter values 𝜇𝜇𝜇 listed in Table G.10. Fig. G.19
displays the predictions of our model on the Shallow-Water test case for 4 different initial conditions 𝑠0𝑟,1, 𝑠0𝑟,2, 𝑠0𝑟,3 and 𝑠0𝑟,4. Fig. G.20
shows our model’s performance on the 1D Advection test case for 2 different initial conditions and 4 different velocities: 𝜁 = 0.4,
𝜁 = 0.7, 𝜁 = 2.0 and 𝜁 = 4.0. Finally, Fig. G.21 displays the prediction for the Burgers case with 𝜈 = 0.001 for two different initial
conditions.

Table G.10
The 4 different parameter vectors used in the
Molenkamp test.

𝜇𝜇𝜇1 𝜇𝜇𝜇2 𝜇𝜇𝜇3 𝜇𝜇𝜇4

𝜆1 2.452 19.8578 11.7423 16.8555
𝜆2 2.373 2.5791 3.9285 3.4449
𝜆3 2.791 1.9388 2.5638 2.6506
𝜆4 0.053 0.0959 0.0384 0.0502
𝜆5 0.0125 -0.0857 0.0200 0.0423

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

27

A. Longhi et al.

Fig. G.18. Model predictions over time on the Molenkamp test dataset for 4 different parameter combinations 𝜇𝜇𝜇1, 𝜇𝜇𝜇2, 𝜇𝜇𝜇3 and 𝜇𝜇𝜇4. The vertical
colorbar refers to the prediction 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇) and ground truth ̃𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇) fields (top and middle rows for each parameter vector), while the horizontal one
to the relative error 𝑒𝑟 of Eq. (F.12) (bottom rows for each parameter vector). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. G.19. Model predictions over time on the Shallow-Water test dataset for 4 different initial conditions 𝑠0𝑟,1, 𝑠0𝑟,2, 𝑠0𝑟,3 and 𝑠0𝑟,4. The vertical colorbar
refers to the prediction 𝑠̃𝑟(𝐱, 𝑡|𝜇𝜇𝜇) and ground truth 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇) fields (top and middle rows for each initial condition), while the horizontal one to the
relative error 𝑒𝑟 of Eq. (F.12) (bottom rows for each initial condition). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

28

A. Longhi et al.

Fig. G.20. Predictions of our model on the parametric Advection dataset for 2 different initial conditions (odd and even columns) and 4 different
velocities: 𝜁 = 0.4, 𝜁 = 0.7, 𝜁 = 2.0 and 𝜁 = 4.0. Each plot is a heat map with time 𝑡 on the horizontal axis and space 𝑥 on the vertical axis. The vertical
colorbar refers to the prediction 𝑠̃𝑟(𝐱, 𝑡|𝜇𝜇𝜇) (top) and the ground truth 𝑠𝑟(𝐱, 𝑡|𝜇𝜇𝜇) (middle) fields, while the horizontal one refers to the relative error
𝑒𝑟 of Eq. (F.12) (bottom row). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. G.21. Predictions of our model on the Burgers’ dataset with 𝜈 = 0.001. The two rows correspond to two different initial conditions.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

29

A. Longhi et al.

References

[1] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics (Texts in Applied Mathematics), Springer-Verlag, Berlin, Heidelberg, 2006.
[2] R. Iman, J. Helton, An investigation of uncertainty and sensitivity analysis techniques for computer-models, Risk Anal. 8 (2006) 71–90. https://doi.org/10.

1111/j.1539-6924.1988.tb01155.x
[3] Z. Perkó, L. Gilli, D. Lathouwers, J.L. Kloosterman, Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis, J. Comput.

Phys. 260 (2014) 54–84. https://doi.org/10.1016/j.jcp.2013.12.025
[4] A. Quarteroni, G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, Springer International Publishing, 2014. https://doi.org/10.1007/

978-3-319-02090-7
[5] J.L. Lumley, The structure of inhomogeneous turbulent flows, Atmos. Turbul. Wave Propag. (1967) 166–178. https://cir.nii.ac.jp/crid/1573387449825294592.
[6] C. Fefferman, S. Mitter, H. Narayanan, Testing the manifold hypothesis, J. Am. Math. Soc. 29 (4) (2016) 983–1049. https://doi.org/10.1090/jams/852
[7] S. Goldt, M. Mézard, F. Krzakala, L. Zdeborová, Modeling the influence of data structure on learning in neural networks: the hidden manifold model, Phys. Rev.

X 10 (4) (2020) 041044.
[8] T. Cohen, M. Welling, Learning the irreducible representations of commutative lie groups, in: International Conference on Machine Learning, PMLR, 2014, pp.

1755–1763.
[9] I. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, A. Lerchner, Towards a definition of disentangled representations, arXiv preprint

arXiv:1812.02230 (2018).
[10] S. Fresca, A. Manzoni, POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition,

Comput. Methods Appl. Mech. Eng. 388 (2022) 114181. https://www.sciencedirect.com/science/article/pii/S0045782521005120. https://doi.org/https://doi.
org/10.1016/j.cma.2021.114181

[11] K. Bhattacharya, B. Hosseini, N.B. Kovachki, A.M. Stuart, Model reduction and neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021) 121–157.
[12] K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020)

108973. https://doi.org/10.1016/j.jcp.2019.108973
[13] A. Solera-Rico, C. Sanmiguel Vila, M. Gómez-López, Y. Wang, A. Almashjary, S.T.M. Dawson, R. Vinuesa, Variational autoencoders and transformers for reduced-

order modelling of fluid flows, Nat. Commun. 15 (1) (2024). https://doi.org/10.1038/s41467-024-45578-4
[14] Z. Li, S. Patil, F. Ogoke, D. Shu, W. Zhen, M. Schneier, J.R. Buchanan, A. Barati Farimani, Latent neural PDE solver: a reduced-order modeling framework for

partial differential equations, J. Comput. Phys. 524 (2025) 113705. https://doi.org/10.1016/j.jcp.2024.113705
[15] B. Lusch, J.N. Kutz, S.L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nat. Commun. 9 (1) (2018). https://doi.org/10.1038/

s41467-018-07210-0
[16] J. Nathan Kutz, J.L. Proctor, S.L. Brunton, Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems,

Complexity 2018 (1) (2018). https://doi.org/10.1155/2018/6010634
[17] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci.

113 (15) (2016) 3932–3937. https://doi.org/10.1073/pnas.1517384113
[18] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: learning maps between function spaces with appli-

cations to PDEs, J. Mach. Learn. Res. 24 (89) (2023) 1–97. http://jmlr.org/papers/v24/21-1524.html.
[19] F. Bartolucci, E. de Bezenac, B. Raonic, R. Molinaro, S. Mishra, R. Alaifari, Representation equivalent neural operators: a framework for alias-free operator

learning, in: Thirty-seventh Conference on Neural Information Processing Systems, 2023. https://openreview.net/forum?id=7LSEkvEGCM.
[20] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat.

Mach. Intell. 3 (3) (2021) 218–229. https://doi.org/10.1038/s42256-021-00302-5
[21] Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential equations,

in: International Conference on Learning Representations, 2021. https://openreview.net/forum?id=c8P9NQVtmnO.
[22] B. Raonic, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, E. de Bézenac, Convolutional neural operators for robust and accurate learning

of PDEs, Adv. Neural Inf. Process. Syst. 36 (2023) 77187–77200.
[23] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, G.E. Karniadakis, A comprehensive and fair comparison of two neural operators (with practical extensions)

based on FAIR data, Comput. Methods Appl. Mech. Eng. 393 (2022) 114778. https://doi.org/10.1016/j.cma.2022.114778
[24] Z. Hao, Z. Wang, H. Su, C. Ying, Y. Dong, S. Liu, Z. Cheng, J. Song, J. Zhu, Gnot: a general neural operator transformer for operator learning, in: International

Conference on Machine Learning, PMLR, 2023, pp. 12556–12569.
[25] G. Kissas, J.H. Seidman, L.F. Guilhoto, V.M. Preciado, G.J. Pappas, P. Perdikaris, Learning operators with coupled attention, J. Mach. Learn. Res. 23 (215) (2022)

1–63.
[26] Z. Li, N. Kovachki, C. Choy, B. Li, J. Kossaifi, S. Otta, M.A. Nabian, M. Stadler, C. Hundt, K. Azizzadenesheli, et al., Geometry-informed neural operator for

large-scale 3d pdes, Adv. Neural Inf. Process. Syst. 36 (2024).
[27] J.K. Gupta, J. Brandstetter, Towards multi-spatiotemporal-scale generalized pde modeling, arXiv preprint arXiv:2209.15616 (2022).
[28] P. Jin, S. Meng, L. Lu, MIONet: Learning multiple-input operators via tensor product, SIAM J. Sci. Comput. 44 (6) (2022) A3490–A3514.
[29] J. Brandstetter, D.E. Worrall, M. Welling, Message passing neural PDE solvers, in: International Conference on Learning Representations, 2022. https:

//openreview.net/forum?id=vSix3HPYKSU.
[30] F. Pichi, B. Moya, J.S. Hesthaven, A graph convolutional autoencoder approach to model order reduction for parametrized PDEs, J. Comput. Phys. 501 (2024)

112762. https://doi.org/10.1016/j.jcp.2024.112762
[31] N.R. Franco, S. Fresca, F. Tombari, A. Manzoni, Deep learning-based surrogate models for parametrized PDEs: handling geometric variability through graph

neural networks, Chaos 33 (12) (2023). https://doi.org/10.1063/5.0170101
[32] L. Equer, T.K. Rusch, S. Mishra, Multi-scale message passing neural pde solvers, arXiv preprint arXiv:2302.03580 (2023).
[33] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst. 31 (2018).
[34] S. Wiewel, M. Becher, N. Thuerey, Latent space physics: towards learning the temporal evolution of fluid flow, Comput. Graph. Forum 38 (2) (2019) 71–82.

https://doi.org/10.1111/cgf.13620
[35] P.Y. Chen, J. Xiang, D.H. Cho, Y. Chang, G.A. Pershing, H.T. Maia, M.M. Chiaramonte, K. Carlberg, E. Grinspun, CROM: continuous reduced-order modeling of

PDEs using implicit neural representations, International Conference on Learning Representations (2023).
[36] T. Wang, C. Wang, Latent neural operator for solving forward and inverse PDE problems, in: The Thirty-eighth Annual Conference on Neural Information

Processing Systems, 2024. https://openreview.net/forum?id=VLw8ZyKfcm.
[37] D.M. Knigge, D. Wessels, R. Valperga, S. Papa, J.-J. Sonke, E.J. Bekkers, S. Gavves, Space-time continuous PDE forecasting using equivariant neural fields, in:

The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. https://openreview.net/forum?id=wN5AgP0DJ0.
[38] Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, p. gallinari, Continuous PDE dynamics forecasting with implicit neural representations, in: The

Eleventh International Conference on Learning Representations, 2023. https://openreview.net/forum?id=B73niNjbPs.
[39] X. Xie, S. Mowlavi, M. Benosman, Smooth and Sparse Latent Dynamics in Operator Learning with Jerk Regularization, arXiv preprint arXiv:2402.15636 (2024).
[40] Q. Zhuang, J.M. Lorenzi, H.-J. Bungartz, D. Hartmann, Model order reduction based on Runge–Kutta neural networks, Data-Centric Eng. 2 (2021). https:

//doi.org/10.1017/dce.2021.15
[41] T. Wen, K. Lee, Y. Choi, Reduced-order modeling for parameterized PDEs via implicit neural representations, NeurIPS 2023 Workshop: Machine Learning and

the Physical Sciences (2023).
[42] X. He, Y. Choi, W.D. Fries, J.L. Belof, J.-S. Chen, gLaSDI: parametric physics-informed greedy latent space dynamics identification, J. Comput. Phys. 489 (2023)

112267. https://doi.org/10.1016/j.jcp.2023.112267

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

30

http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0001
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1016/j.jcp.2013.12.025
https://doi.org/10.1016/j.jcp.2013.12.025
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1007/978-3-319-02090-7
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0005
https://cir.nii.ac.jp/crid/1573387449825294592
https://doi.org/10.1090/jams/852
https://doi.org/10.1090/jams/852
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0007
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0007
http://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1812.02230
https://www.sciencedirect.com/science/article/pii/S0045782521005120
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0010
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1038/s41467-024-45578-4
https://doi.org/10.1038/s41467-024-45578-4
https://doi.org/10.1016/j.jcp.2024.113705
https://doi.org/10.1016/j.jcp.2024.113705
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1155/2018/6010634
https://doi.org/10.1155/2018/6010634
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0017
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0017
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0018
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0018
https://openreview.net/forum?id=7LSEkvEGCM
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0020
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0020
https://openreview.net/forum?id=c8P9NQVtmnO
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0021
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0021
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.1016/j.cma.2022.114778
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0023
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0023
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0024
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0024
http://arxiv.org/abs/2209.15616
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0026
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0027
https://openreview.net/forum?id=vSix3HPYKSU
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0027
https://openreview.net/forum?id=vSix3HPYKSU
https://doi.org/10.1016/j.jcp.2024.112762
https://doi.org/10.1016/j.jcp.2024.112762
https://doi.org/10.1063/5.0170101
https://doi.org/10.1063/5.0170101
http://arxiv.org/abs/2302.03580
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0030
https://doi.org/10.1111/cgf.13620
https://doi.org/10.1111/cgf.13620
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0032
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0032
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0033
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0033
https://openreview.net/forum?id=VLw8ZyKfcm
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0034
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0034
https://openreview.net/forum?id=wN5AgP0DJ0
https://openreview.net/forum?id=B73niNjbPs
http://arxiv.org/abs/2402.15636
https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0037
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0037
https://doi.org/10.1016/j.jcp.2023.112267
https://doi.org/10.1016/j.jcp.2023.112267

A. Longhi et al.

[43] C. Bonneville, Y. Choi, D. Ghosh, J.L. Belof, GPLaSDI: Gaussian process-based interpretable latent space dynamics identification through deep autoencoder,
Comput. Methods Appl. Mech. Eng. 418 (2024) 116535. https://doi.org/10.1016/j.cma.2023.116535

[44] J.S.R. Park, S.W. Cheung, Y. Choi, Y. Shin, tLaSDI: thermodynamics-informed latent space dynamics identification, Comput. Methods Appl. Mech. Eng. 429
(2024) 117144. https://doi.org/10.1016/j.cma.2024.117144

[45] W. Anderson, K. Chung, Y. Choi, mLaSDI: Multi-stage latent space dynamics identification, arXiv preprint arXiv:2506.09207 (2025).
[46] J. Hagnberger, M. Kalimuthu, D. Musekamp, M. Niepert, Vectorized conditional neural fields: a framework for solving time-dependent parametric partial differ-

ential equations, in: R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, F. Berkenkamp (Eds.), Proceedings of the 41st International Conference
on Machine Learning, 235 of Proceedings of Machine Learning Research, PMLR, 2024, pp. 17189–17223. https://proceedings.mlr.press/v235/hagnberger24a.html.

[47] M. Takamoto, F. Alesiani, M. Niepert, Learning neural pde solvers with parameter-guided channel attention, in: International Conference on Machine Learning,
PMLR, 2023, pp. 33448–33467.

[48] M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pflüger, M. Niepert, Pdebench: an extensive benchmark for scientific machine learning, Adv.
Neural Inf. Process. Syst. 35 (2022) 1596–1611.

[49] C. Eastwood, C.K.I. Williams, A framework for the quantitative evaluation of disentangled representations, in: International Conference on Learning Represen-
tations, 2018. https://api.semanticscholar.org/CorpusID:19571619.

[50] I. Higgins, D. Amos, D. Pfau, S. Racanière, L. Matthey, D.J. Rezende, A. Lerchner, Towards a Definition of Disentangled Representations, abs/1812.02230 (2018).
https://api.semanticscholar.org/CorpusID:54447715.

[51] P. Kidger, On Neural Differential Equations, abs/2202.02435 (2022). https://api.semanticscholar.org/CorpusID:246634262.
[52] U.M. Ascher, L.R. Petzold, Computer methods for ordinary differential equations and differential-algebraic equations, 1998. https://api.semanticscholar.org/

CorpusID:32366732.
[53] C. Aicher, N.J. Foti, E.B. Fox, Adaptively truncating backpropagation through time to control gradient bias, in: R.P. Adams, V. Gogate (Eds.), Proceedings of

The 35th Uncertainty in Artificial Intelligence Conference, 115 of Proceedings of Machine Learning Research, PMLR, 2020, pp. 799–808. https://proceedings.mlr.
press/v115/aicher20a.html.

[54] J. Cha, J. Thiyagalingam, Orthogonality-enforced latent space in autoencoders: an approach to learning disentangled representations, in: A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning, 202 of Proceedings of Machine Learning
Research, PMLR, 2023, pp. 3913–3948. https://proceedings.mlr.press/v202/cha23b.html.

[55] J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes, J. Aust. Math. Soc. 3 (2) (1963) 185–201. https://doi.org/10.1017/
S1446788700027932

[56] V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, 2016, https://arxiv.org/abs/1603.07285. https://doi.org/10.48550/ARXIV.1603.
07285

[57] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv preprint arXiv:1606.08415 (2016).
[58] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Volume 37, ICML’15, JMLR.org, 2015, p. 448–456.
[59] J.L. Ba, Layer normalization, arXiv preprint arXiv:1607.06450 (2016).
[60] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026–1034.
[61] H. Gholamalinezhad, H. Khosravi, Pooling methods in deep neural networks, a review, arXiv preprint arXiv:2009.07485 (2020).
[62] E. Perez, F. Strub, H. De Vries, V. Dumoulin, A. Courville, Film: visual reasoning with a general conditioning layer, in: Proceedings of the AAAI Conference on

Artificial Intelligence, 32, 2018.
[63] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
[64] L.N. Smith, N. Topin, Super-convergence: very fast training of neural networks using large learning rates, in: Artificial Intelligence and Machine Learning for

Multi-Domain Operations Applications, 11006, SPIE, 2019, pp. 369–386.
[65] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18, Springer, 2015, pp. 234–241.
[66] L. Serrano, L.L. Boudec, A.K. Koupaï, T.X. Wang, Y. Yin, J.-N. Vittaut, P. Gallinari, Operator learning with neural fields: tackling PDEs on general geometries,

in: NeurIPS, 2023.
[67] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, S. Sridhar, Neural fields in visual computing and beyond, in:

Computer Graphics Forum, 41, Wiley Online Library, 2022, pp. 641–676.
[68] S. Cao, Choose a transformer: Fourier or Galerkin, in: A. Beygelzimer, Y. Dauphin, P. Liang, J.W. Vaughan (Eds.), Advances in Neural Information Processing

Systems, 2021. https://openreview.net/forum?id=ssohLcmn4-r.
[69] Z. Li, K. Meidani, A.B. Farimani, Transformer for partial differential equations’ operator learning, Trans. Mach. Learn. Res. (2023). , https://openreview.net/

forum?id=EPPqt3uERT.
[70] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
[71] F. Alsayyari, Z. Perkó, M. Tiberga, J.L. Kloosterman, D. Lathouwers, A fully adaptive nonintrusive reduced-order modelling approach for parametrized time-

dependent problems, Comput. Methods Appl. Mech. Eng. 373 (2021) 113483. https://doi.org/10.1016/j.cma.2020.113483

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

31

https://doi.org/10.1016/j.cma.2023.116535
https://doi.org/10.1016/j.cma.2023.116535
https://doi.org/10.1016/j.cma.2024.117144
https://doi.org/10.1016/j.cma.2024.117144
http://arxiv.org/abs/2506.09207
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0041
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0041
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0041
https://proceedings.mlr.press/v235/hagnberger24a.html
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0042
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0042
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0043
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0043
https://api.semanticscholar.org/CorpusID:19571619
http://arxiv.org/abs/1812.02230
https://api.semanticscholar.org/CorpusID:54447715
http://arxiv.org/abs/2202.02435
https://api.semanticscholar.org/CorpusID:246634262
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0045
https://api.semanticscholar.org/CorpusID:32366732
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0045
https://api.semanticscholar.org/CorpusID:32366732
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0046
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0046
https://proceedings.mlr.press/v115/aicher20a.html
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0046
https://proceedings.mlr.press/v115/aicher20a.html
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0047
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0047
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0047
https://proceedings.mlr.press/v202/cha23b.html
https://doi.org/10.1017/S1446788700027932
https://doi.org/10.1017/S1446788700027932
https://doi.org/10.1017/S1446788700027932
https://doi.org/10.1017/S1446788700027932
https://arxiv.org/abs/1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2009.07485
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0052
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0052
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0053
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0053
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0054
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0054
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0055
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0055
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0056
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0056
https://openreview.net/forum?id=ssohLcmn4-r
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0057
https://openreview.net/forum?id=EPPqt3uERT
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0057
https://openreview.net/forum?id=EPPqt3uERT
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.cma.2020.113483
https://doi.org/10.1016/j.cma.2020.113483

	Latent space modeling of parametric and time-dependent PDEs using neural ODEs
	1 Introduction
	1.1 Related works
	1.2 Contributions

	2 Methodology
	2.1 Mathematical background
	2.2 Discretization
	2.3 Reduced space and (latent) neural ODEs
	2.4 Training of the model
	2.5 Combining teacher forcing with autoregressive
	2.6 Generalization in the time domain

	3 Results
	3.1 PDEs with fixed parameter
	3.2 PDEs with varying parameters
	3.3 Discussion
	3.4 Ablation studies

	4 Conclusions
	5 Limitations and future research directions
	A Runge–Kutta schemes
	A.1 The effect of the stage of RK on time generalization

	B Architecture details
	B.1 Normalization of the inputs

	C Training and hyperparameter details
	C.1 Strategies for the improvement of parameter generalization
	C.2 Training instabilities
	C.3 Hardware details
	C.4 Model size and inference speed
	C.5 Training budget

	D Methods used for comparison
	E Ablation studies
	E.1 The role of the ODE solver and of L3 in time generalization
	E.2 Impact of 0 and p(k2) in the autoregressive strategy
	E.3 Coupling of AE and NODE

	F Datasets
	F.1 1D advection equation
	F.2 1D Burgers' equation
	F.3 2D shallow water equations
	F.4 2D molenkamp test
	F.5 Test error metrics

	G Additional images

