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Abstract

With the recent development of control systems, event-triggered control (ETC) has been in-
troduced to prevent unnecessary usage of resources, which often happens under time-based
control implementations. This thesis presents a novel approach to periodic event-triggered
control (PETC) that aims at reducing the number of transmissions between the controller
and the sensors even further. This goal is particularly important in networked control sys-
tems (NCSs), where communication and computation resources are scarce. In this report, a
relaxed triggering condition is introduced that relies on bounding the Lyapunov function of
the continuous-time closed-loop system with an exponentially decaying function, rather than
requiring its monotone decrease. The relaxed PETC achieves significantly less transmissions
compared to existing PETC implementations. The thesis pushes the limit of event-triggered
control even further, by introducing an algorithm for a scheduler of NCS that allows to skip
some of the events. This can be seen as a ‘last resort’ approach, that postpones the trans-
mission as much as possible. It is inspired by methods used in self-triggered control (STC)
and scheduling event-based NCS. Reducing the communication between the plant and the
controller introduces some trade-offs that are also discussed in this report. Finally, several
modifications of presented ideas are given that can be applied depending on the main objec-
tives on the performance of the control loop.
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Chapter 1

Introduction

Fast development of technology in recent years allowed the design control systems in which
sensors, controllers and actuators communicate through a shared digital network. This kind
of design is called networked control system (NCS) and has numerous advantages. Most
importantly the architecture is flexible, which results in an easier configuration of the elements
of the network. Moreover the amount of wiring, as well as installation costs, can be reduced
and the maintenance is less expensive. Because of that, NCSs have been used in many areas,
including unmanned vehicles [4], remote surgeries [5], power plants [6], process control [7] and
more.

However, the use of NCSs creates new challenges for the engineers. First of all, the com-
munication resources are limited and usually only one element of the network can transmit
at a particular time. This limits the number of control loops that can be connected using
the same network and creates the possibility of communication conflicts when more than one
element requests access to the network. Because of that, it is important to minimize the
usage of the bandwidth by each controller. Another challenges introduced by NCSs are, e.g.,
communication delays or packet losses.

One solution to the problem of limited bandwidth resources can be event-triggered control
(ETC), that first emerged in the ’90s (e.g. [8] and [9]). Unlike in periodic control, which
is a standard choice for digital implementation of a feedback controller [10], in ETC the
communication between a sensor and a controller is aperiodic. The new measurement is sent
to the controller only when a continuously monitored (usually state-dependent) triggering
condition is violated. This way the number of communications through the network is reduced.
A specific type of ETC is periodic ETC (PETC), which was introduced in [11]. Here, the
triggering condition is verified only in periodic sampling instants, what is a more natural
way for digital systems. Apart from a more direct design and easier analysis, PETC has the
advantage of preventing Zeno behaviour by design, which may not be the case in a standard
ETC ([12]).

Another aperiodic control strategy that aims at reducing the number of transmissions via
network is self-triggered control (STC), first proposed in [13]. The idea is to predict the
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2 Introduction

next communication instant based on the triggering condition, instead of monitoring the
plant. STC has the advantage over ETC that it does not require dedicated hardware used
to monitor the triggering condition and it is easier to schedule, since the triggering time is
known ahead. However, STC requires more computations performed online and is less robust
against disturbances. Usually more conservatism has to be involved in order to include the
effect of the disturbances into the prediction [14].
Aperiodic control strategies can sometimes provide better system performance, compared to
periodic control, due to its ability to adjust to the current situation (e.g. how far from the
equilibrium the states are or how large the disturbances are), as stated in [15]. Many of
them, however, still involve a lot of conservatism, that can negatively affect the number of
communication instants. One source of conservatism lies in imposing monotone decrease of
the Lyapunov function of the system [15–20], while this is not necessary to maintain stability.
The main goal of this thesis is to find a PETC implementation that involves little conservatism
and aims at minimizing the number of communication instants. The motivation behind it is
reducing the usage of computational and communication resources in order to allow sharing
one network by more plants, as well as saving energy. PETC is chosen as the primary control
strategy, because of its robustness towards disturbances and less conservatism involved when
compared to STC. In the case of highly congested NCSs, a scheduling technique for STC
is used to postpone the event of the relaxed PETC even further. One of the drawbacks of
STC, which is a considerable amount of computations online, is mitigated by introducing
data structures that can be precomputed offline.

1-1 Notation

R+ denotes the set of non-negative real numbers, while R+
0 the same set including 0. N is

a set of natural numbers excluding 0 and N0 including 0. For a vector x ∈ Rn, we denote
by |x| :=

√
xTx its 2-norm. For a matrix A ∈ Rn×m, we denote by AT its transpose. For a

symmetric square matrix P ∈ Rn×n, we write P � 0 (P � 0) if P is positive (semi–)definite.
By λm(P ) and λM (P ) we denote the minimum and maximum eigenvalue of P , respectively.
Solutions of an autonomous system with state x and initial condition x0 are denoted by
xx0(t); if it has exogenous inputs u and δ, a trajectory is denoted by xx0uδ(t) For a signal
w : R+

0 → Rnw , its L2-norm is denoted by ||w||L2 := (
∫∞
0 w(t)2dt)

1
2 , while its L∞-norm is

denoted by ||w||∞ := ess supt|w(t)|. We say w ∈ L∞ if ||w||∞ <∞. A function β : R+
0 → R+

0
is said to be a K-function if it is continuous, strictly increasing and β(0) = 0. Also, it is
said to be a K∞-function if it is a K-function and β(s) → ∞ as s → ∞. For any function
f : R+

0 → Rn and t ≥ 0, we use f(t+) to denote the limit f(t+) = lim
s→t,s>t

f(s).

1-2 Problem formulation

Consider a linear time-invariant (LTI) system under a standard ETC strategy of the form:

d

dt
x = Apx+Bpû+ Eδ (1-1)

û = Kx̂ (1-2)

Aleksandra Szymanek Master of Science Thesis



1-2 Problem formulation 3

where x ∈ Rnx denotes the states of the plant, û ∈ U ⊂ Rnu is the control input, δ ∈ W
⊂ Rnδ is the unknown disturbance vector and x̂ ∈ Rnx is the last measurement available to
the controller. Matrices Ap, Bp and E are known and matrix K is designed such that the
real part of the eigenvalues of (Ap +BpK) is negative. The linear feedback control law (1-2)
is implemented with sample and hold strategy and is updated only when a new measurement
x̂ is sent to the controller.

Before stating the objective of this work, let us define the necessary stability and performance
notions.

Definition 1-2.1 (GES). The system (1-1)-(1-2) is said to be globally exponentially stable
(GES), if there exist σ ∈ R+ and ρ ∈ R+, such that for any x(0) = x0 ∈ Rnx and δ ≡ 0 all
corresponding solutions to (1-1) satisfy: |x(t)| ≤ σ|x0|e−ρt for all t ∈ R+

0 .

Definition 1-2.2 (EISS). The system (1-1) is said to be exponentially input-to-state stable
(EISS), if there exist σ ∈ R+, ρ ∈ R+ and γ ∈ K∞, such that for any x(0) = x0 ∈ Rnx
and δ ∈ L∞ all corresponding solutions to (1-1) satisfy: |x(t)| ≤ σ|x0|e−ρt + γ(||δ||∞) for all
t ∈ R+

0 . Furthermore, if there is a g < ∞ satisfying γ(d) ≤ gd,∀d ∈ R+, we call g the L∞
gain from disturbance to state.

As described in the last chapter of my literature survey ([21]) the primary goal of this MSc
project is to design a PETC strategy for (1-1), such that the number of communications
between the sensor and the controller is reduced compared to existing event-triggered imple-
mentations. The roadmap of the project consists of 3 main parts:

1. Designing a relaxed triggering condition for PETC, that aims at postponing
the occurrence of the event as much as possible, while still ensuring global exponential
stability. In this part, a standard PETC is considered and the novelty lies mainly in
the new triggering condition. The results of this step of the roadmap can be found in
chapter 2. This part is also the subject of [22] that has been accepted to the Conference
on Decision and Control in 2019.

2. Predicting the time of several consecutive events in the future by a scheduler,
if the control action is not updated. There exist systems with an oscillatory behaviour
that experience multiple events according to the triggering condition from the first part.
This is illustrated in Fig. 1-1, which shows how the value of the triggering condition C
could possibly evolve in time. In the classical ETC, the control action would be updated
as soon as C > 0, what corresponds to the first red dot in Fig. 1-1. However, if the
control action is not updated, chances are that more events will occur in the future and
more red dots will be present in the plot. The idea is to find a method of predicting their
occurrences in a way that the number of computations performed online is kept small
such that our PETC does not transform into STC. This part is inspired by methods
used in scheduling of ETC and STC and therefore its end result is a scheduler that is
able to efficiently predict future events. Detailed explanation on this topic can be found
in chapter 3.

3. Relaxed PETC combined with the scheduler. This part merges the concepts
introduced in the earlier points of the roadmap. The information from the intelligent
sensory system under PETC is passed down to the scheduler. Based on this information
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4 Introduction

Figure 1-1: A possible trajectory of the triggering condition.

the next events can be predicted and the scheduler can grant access to the network
only during the time interval when, e.g., the last predicted event will happen. This
way, we guarantee that the control update will occur in a time interval that is safe to
trigger (green regions in Fig. 1-1). All the previous events can be ignored which in turn
contributes to reducing the overall number of communications through the network.
This concept is the interest of chapter 4.
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Chapter 2

A relaxed triggering condition for
PETC

This chapter explains in detail how the first step of our roadmap has been done. The new
triggering condition that reduces the number of communication instants is designed for a
standard PETC, and hence some preliminaries about this control strategy are given first.
After presenting the main results, a comparison of all the discussed control strategies is
given. For an introduction to event-triggered control (ETC) the reader is referred to [10] or
[21].

The subject of this chapter has been accepted to the 58th Conference on Decision and Control
(2019) [22].

2-1 Periodic event-triggered control

2-1-1 Sampling strategy

Periodic event-triggered control (PETC) is a type of event-triggered control (Fig. 2-1) where
the triggering condition is checked periodically. At every sampling instant tk = k∆, k ∈ N

Figure 2-1: Schematic of ETC closed loop [1].

Master of Science Thesis Aleksandra Szymanek



6 A relaxed triggering condition for PETC

with ∆ being some properly chosen sampling interval, an intelligent sensory system tests the
current sample of the system’s state against a given triggering condition C : R2nx → R. If it
is enabled, the current measurement is sent to the controller that updates the control action.
This situation is called an event and the time at which it happens - triggering time ti, i ∈ N.
The control input is held constant until the next event, what can be described with:

u(t) = u(ti) = û = Kx(ti) = Kx̂(t), ∀t ∈ [ti, ti+1), i ∈ N, (2-1)

x̂(t) =
{
x(tk), when C

(
x(tk), x̂(tk)

)
> 0,

x̂(tk), when C
(
x(tk), x̂(tk)

)
≤ 0.

(2-2)

If the value of the triggering condition is below 0, then the system does not require attention.
The new measurement is only sent to the controller when the value of the condition at the
sampling time tk is positive. The difference with respect to the standard ETC (called also
continuous ETC or CETC) is that the triggering times can only be multiples of the sampling
interval ∆. This way Zeno behaviour is prevented in PETC by design. Furthermore, since
the condition is only checked in periodic sequence of measurement times {tk}k∈N, it is an
inequality, as opposite to the equality condition in CETC. It is due to the fact that the exact
moment of equality could be missed by an intelligent sensory system, because it does not
monitor the condition continuously.

2-1-2 Existing triggering conditions

The choice of a triggering condition is strictly related to the system’s performance that one
would like to achieve. One of its most important indicators is the convergence rate of the
Lyapunov function, which is a measure of how fast the states converge to the equilibrium.
In an ‘ideal’ continuous-time closed loop with state feedback, the system has the following
dynamics:

ẋ = Apx+BpKx

The eigenvalues of (Ap +BpK) are negative and the system is asymptotically stable. In this
case there exists a Lyapunov function V (x) = xTPx with some positive definite matrix P ,
which satisfies

(Ap +BpK)TP + P (Ap +BpK) = −Q, (2-3)

with Q � 0. Therefore, the Lyapunov function decreases with a rate specified by the matrix
Q. We define the decay rate of the Lyapunov function as the largest λ0 ∈ R+ that satisfies
V (xx0(t)) ≤ V (x0)e−λ0t,∀t ∈ R+

0 ,∀x0 ∈ Rnx . For the continuous-time closed-loop system and
given P and Q satisfying (2-3), this is λ0 = λm(P−1Q).

The dynamics of the Lyapunov function is dependent on the values of x and x̂, that can be put
together in one vector ξ :=

[
xT x̂T

]T
. A significant number of existing triggering conditions

can be expressed in a quadratic form: C(ξ(tk)) := ξT (tk)Qξ(tk), Q ∈ Rnξ×nξ , which will also
be adopted in this work. The advantage of this formulation is that most of the triggering
conditions for a CETC can be written as quadratic conditions for PETC. Moreover, in [1]
one can find a set of linear matrix inequalities (LMIs) to check guarantees on stability and
performance of the system under PETC, if the condition is formulated as a quadratic one and
the whole system as an impulsive one.
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2-1 Periodic event-triggered control 7

A common triggering condition used in ETC is based on the state error. The control action
is updated when the difference between the last sent measurement and current state exceeds
a state-dependent threshold. After translating it to PETC, one obtains:

|x̂(tk)− x(tk)| > σ|x(tk)| → Q =
[
(1− σ)2I −I
−I I

]
(2-4)

As explained in [19] for a standard ETC, if σ ∈ [0, 1) then the Lyapunov function is guaranteed
to be decreasing.

Another triggering condition [1] is based directly on the Lyapunov function of the
discretized system (1-1):

x(tk+1) = Ax(tk) +Bu(tk) (2-5)

with
A = eA

p∆ and B =
∫ ∆

0
eA

psBpds. (2-6)

When disturbances are not present, the system is fully deterministic. The idea is to update
the control action when the predicted value of the Lyapunov function at the next sampling
instant tk+1 is greater than the current one. This ensures that the Lyapunov function is
decreasing from sample to sample and can be written with:

(Ax(tk) +BKx̂(tk))TP (Ax(tk) +BKx̂(tk)) > βxT (tk)Px(tk),

Q =
[
ATPA− βP ATPBK
(BK)TPA (BK)TPBK

]
,

(2-7)

where β ∈ [0, 1) is a design parameter. After choosing all the required parameters, both above
mentioned triggering conditions can be checked through solving LMIs. If there is a feasible
solution, the PETC implementation is guaranteed to be stable with a chosen convergence rate
ρ (Definition 1-2.1) and L2-gain from disturbance to state smaller than or equal to a desired
value γ. An important advantage of this method is that it can be applied to any PETC with
a quadratic triggering condition and LMIs can be solved efficiently. As far as disadvantages
are concerned, LMIs are prone to numerical errors and introduce some conservatism. As a
result, the true convergence rate is bigger than prescribed ρ what leads to an increase in the
number of events.

One of the very few ETC implementations where the monotone decrease of the Lyapnuov
function is not required was presented in [23]. Here, it is only bounded by a piecewise
continuous linear function, which is sufficient for maintaining stability and results in a more
relaxed triggering condition. However, it was only done for CETC and because of that the
effect of disturbances can be neglected. The main result of this chapter uses a similar idea,
but it is done for PETC and does not require an internal clock.

2-1-3 Dynamic PETC

Dynamic triggering [24] is one of the proposed control strategies in which the monotone
decrease of the Lyapunov function is not required. Instead, the Lyapunov function should
be decreasing on average. This is equivalent to saying that the triggering condition can be
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8 A relaxed triggering condition for PETC

violated at some instances, provided that it is non-positive on average. For that, a dynamic
variable η has to be introduced, which for the case of CETC takes the form of:

η̇ = −β(η)− C(x(t), x̂(t)), η(0) = η0 (2-8)

where β is a locally Lipschitz continuous class K∞ function and η0 ∈ R+
0 . This dynamic

variable can be seen as a filtered value of the triggering condition or as a buffer that stores
unnecessary decrease of the Lyapunov function to balance it out when it is increasing. Events
occur according to the new triggering condition:

t0 = 0, ti+1 = inf{t > ti|η(t)− θC(x(t), x̂(t)) ≤ 0, t ∈ R} (2-9)

where θ ∈ R+
0 is an additional design parameter. The greater the value of θ the closer this

event-triggered mechanism (ETM) is to the static one.

Dynamic triggering has been also applied to PETC ([2]), where the main idea is the same
but the dynamics of η are slightly modified.

d

dt
η(t) = −2ρη, t ∈ (tk, tk+1)

η(t+) = ηT (ξ(tk), η(t)), t ∈ {ti}i∈N
η(t+) = ηN (ξ(tk), η(t)), t ∈ {tk}k∈N\{ti}i∈N

(2-10)

where ηT : R2nx ×R→ R and ηN : R2nx ×R→ R. Similarly to [1], stability and performance
of the system under dynamic PETC can also be checked with an LMI-based method. In this
case also the functions ηN and ηT can be designed using the solution of the LMIs . The new
sequence of triggering times is obtained from:

t0 = 0, ti+1 = min{t > ti|ηN (t) ≤ 0 ∧ C(x(t), x̂(t)) ≥ 0, t = k∆, k ∈ N} (2-11)

It is clear that the new triggering condition depends not only on the states but also the
dynamic variable that keeps some information about the evolution of the Lyapunov function
from the past. The triggering conditions from the previous subsection do not use this kind of
information and therefore they are called static. However, any static condition C(x(t), x̂(t))
can be transformed to a dynamic one by incorporating the variable η.

To clearly see the difference between static and dynamic ETMs, both of them can be written
in a similar way. For the case of quadratic triggering condition, the triggering conditions are
the following:

Static: ξTQξ > 0, Dynamic: θξTQξ > η. (2-12)

In the case of dynamic triggering the Lyapunov function is allowed to be increasing at some
times, often resulting in a smaller number of events. Moreover, it does not degrade to time-
triggered periodic communication when the state approaches its equilibrium in presence of
disturbances [12]. The sampling period in periodic control should be chosen smaller than
or equal to the minimum inter-event time. Since dynamic triggering does not degrade to
time-triggered communication, effectively average inter-event time in this ETC strategy stays
greater than the minimum inter-event time independently from the system’s state.
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2-2 Relaxed triggering condition 9

2-2 Relaxed triggering condition

Unlike most of the existing triggering conditions, our relaxed triggering condition will not
impose that the derivative of the Lyapunov function is always negative. Instead, like the
STC in [25], an exponentially decaying function will bound the actual Lyapunov function:
conceptually, the triggering condition is xx0(t)TPxx0(t) > xT0 Px0e

−λt, with 0 < λ < λ0 being
the desired decay rate. However, some modifications are made for PETC implementability.
First, an auxiliary discrete-time variable η : R→ Rnx is introduced:

η(0) = P
1
2x(0), (2-13a)

η(tk+1) = Ie−0.5λ∆η(t+k ), (2-13b)

η(t+i ) = P
1
2x(ti), (2-13c)

where {ti}i∈N are the triggering times. Denoting ζ :=
[
xT x̂T ηT

]T
, the sequence of trig-

gering times ti is obtained from the following:

t0 = 0,
ti+1 = inf{t > ti|ζ(t)TQ1ζ(t) > 0 ∨ ζ(t)TQ2ζ(t) > 0 ∨ t = ti +Nmax∆, t = k∆, k ∈ N},

(2-14)
where Nmax∆ is a designed maximum inter-event time and

Q1 :=

P 0 0
0 0 0
0 0 −I

 ,

Q2 :=

 ATPA ATPBK 0
(BK)TPA (BK)TPBK 0

0 0 −Ie−λ∆

 ,
A := eA

p∆, B :=
∫ ∆

0
eA

psBpds.

An intuitive explanation of this triggering condition is that ζ(tk)TQ1ζ(tk) > 0 checks if, at
the current sampling time tk, the Lyapunov function of our interest is above the bound,
while ζ(tk)TQ2ζ(tk) > 0 checks if this will happen at the next sampling time tk+1. If any of
these two conditions is true, the mechanism triggers. It also triggers if neither is true, but
the maximum inter-event time is reached. The one-step-ahead prediction from the second
triggering condition is made without considering disturbances. In the disturbance-free case
it prevents the Lyapunov function from exceeding the bound ηT η, which leads to tighter
performance guarantees.

The proposed triggering condition has three parameters that have to be chosen: the triggering
condition sampling interval ∆, a desired decay rate λ of the Lyapunov function, and the
maximum inter-event number of steps Nmax. Matrix P is taken from the Lypaunov function
of the ‘ideal’ closed loop system. λ has to be chosen smaller than the decay rate of an ‘ideal’
closed-loop λ0. This is needed in order to compute the minimum inter-event time of a CETC
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10 A relaxed triggering condition for PETC

implementation, which, in turn, influences the choice for ∆. For every chosen decay rate
λ < λ0, there exists a guaranteed minimum inter-event time τmin given by [25, Lemma 4.1]

τmin = min{τ ∈ R+ : detM(τ) = 0}, (2-15)

where:

M(τ) := C(eFT τCTPCeFτ − CTPCe−λτ )CT ,

F :=
[
Ap +BpK BpK
−Ap −BpK −BpK

]
, C :=

[
I 0

]
.

Once the minimum inter-event time is computed, the sampling time ∆ has to be chosen
such that ∆ < τmin. These guidelines for choosing λ and ∆ are the necessary conditions
for stability of the system under PETC. A detailed discussion on the influence of all the
parameters on the system performance is given in the next section.

2-2-1 Stability analysis

The two theorems of this section show GES and EISS, respectively, of the PETC system
with the relaxed triggering condition (2-14). Before introducing them, we have to define the
following function:

g(∆, Nmax) := e
ωµ∆
µ−ω

(
eλ∆ + eλNmax∆) µ

µ−ω ·
(
1 + eλNmax∆) −ω

µ−ω (2-16)

where

ω := λM (G), µ := λm(G),

G :=
[
P

1
2ApP−

1
2 + (P

1
2ApP−

1
2 )T P

1
2BpKP−

1
2

(P
1
2BpKP−

1
2 )T 0

]
.

Theorem 2.1. If λ < λ0 and ∆ < τmin, the sequence of control updates times given by (2-14)
renders the closed loop system (1-1) GES with:

σ =
(
λM (P )
λm(P )

) 1
2 (
g(∆, Nmax)

) 1
2 , ρ = 1

2λ. (2-17)

Now, we can give performance guarantees in the presence of additive bounded disturbances
in the following theorem.

Theorem 2.2. If λ < λ0, ∆ < τmin and δ ∈ L∞, the sequence of control update times given
by (2-14) yields the closed loop system (1-1) EISS with

γ(||δ||∞) =λM (P )
λm(P )

∫ ∆

0
|eAprE|dr ·

((g(∆, Nmax))
1
2

1− e−
1
2λ∆

+ 1
)
||δ||∞.

Proofs can be found in Appendices: A-1 and A-2.
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2-2 Relaxed triggering condition 11

2-2-2 Numerical example

To illustrate how the relaxed triggering condition reduces the number of communication
instants we compare our approach with triggering conditions (7) and (14) from [1], where the
monitored Lyapunov function is required to be decreasing from sample to sample, and with
dynamic PETC [2]. As an example we take the plant from [19]:

d

dt
x =

[
0 1
−2 3

]
x+

[
0
1

]
u+

[
1
0

]
δ. (2-18)

We set x0 =
[
10 0

]T
as initial condition and a stabilizing controller of the form (2-1) with

K =
[
1 −4

]
. The associated Lyapunov function and matrix Q satisfying (2-3) were chosen

to be P =
[

1 0.25
0.25 1

]
and Q =

[
0.5 0.25
0.25 1.5

]
, which give λ0 ≈ 0.4836. We chose the desired

decay rate λ = 0.3, thus ρ = 0.15. The corresponding minimum inter-event time according
to Lemma A.1 is τmin = 0.3, and so we set ∆ = 0.05 ≤ τmin. The maximum inter-event time
was taken as 1 second, thus Nmax = 20. Using Theorems 2.1 and 2.2, the EISS parameters
according to Definition 1-2.2 are σ = 2.0864 and γ(d) = gd, g = 19.0437, which can be seen
in Fig. 2-2. We can see that some conservatism is introduced by the parameter σ (Fig. 2-
2(a)), which accounts for the worst case scenario where the Lyapunov function forms spikes
in between the samples. However, this hardly even happens and, if we neglect the effect of
σ, the convergence of the states is nicely approximated by the bound. For the case with
disturbances, the effect of the additional term cannot be neglected but the guaranteed gain is
finite and around 20 times bigger than the L∞-norm resulted by the sinusoidal disturbance
δ(t) = sin(t).
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|x
|

|x|
σ|x0|e1/2ρ

|x0|e1/2ρ

event

(a) Convergence in a disturbance-free case
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|x|
σ|x0|e1/2ρ + γ(||δ||∞)
|x0|e1/2ρ + γ(||δ||∞)
event

(b) Convergence with δ = sin(t)

Figure 2-2: Guaranteed bounds on the system’s convergence under the relaxed triggering condi-
tion with ∆ = 0.05, ρ = 0.15 and Nmax = 20.

For the triggering conditions (7) and (14) from [1] parameters σ, β, respectively, were chosen
to minimise the number of events, while still ensuring the LMIs presented therein to be
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12 A relaxed triggering condition for PETC

feasible, with ρ = 0.3. The values we found are σ = 0.2 and β = 0.985. Similar approach was
applied in finding σ for dynamic PETC, where σ = 0.18 was found. Additionally, the value
of acceptable L2 gain (θ) from disturbance to state had to be chosen. For a fair comparison
we set it to θ = 20, such that it is of comparable order of magnitude to the L∞ gain resulting
from our PETC.

Figure 2-3 shows the evolution of the monitored Lyapunov function for the four triggering
conditions, with δ ≡ 0.

0 2 4 6 8 100

20

40

60

80

100

Time t

V
(x

)

Desired convergence
V (x(t))
event

(a) Triggering condition (7) from [1]
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(b) Triggering condition (14) from [1]
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(c) Dynamic PETC from [2]
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(d) Relaxed triggering condition

Figure 2-3: The evolution of the monitored Lyapunov function for three different triggering
conditions. Common parameters are: ∆ = 0.05 and ρ = 0.15. For (7) from [1] σ = 0.2, for (14)
from [1] β = 0.985, for dynamic PETC from [2] σ = 0.18 and for our relaxed triggering condition
Nmax = 20.

Table 2-1 presents a comparison among the number of events from all four triggering condi-
tions, for other desired convergence rates and ∆ = 0.05. The average number of communica-
tions and their standard deviations were computed based on 10 simulations for each case. One
set of 10 different initial conditions was randomly chosen, such that both states ranged from
-10 to 10. For all triggering conditions, the parameters were chosen such that the number of
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2-2 Relaxed triggering condition 13

Table 2-1: Average (µ) and standard deviation (σ) of number of communications for different
triggering conditions and decay rates

ρ This work (7) from [1] (14) from [1] Dynamic
PETC[2]

0.1 µ = 17.6
σ = 0.699

µ = 52.8
σ = 0.422

µ = 19.8
σ = 0.789

µ = 22.4
σ = 1.647

0.125 µ = 17.3
σ = 0.823

µ = 53.5
σ = 0.527

µ = 23.2
σ = 1.317

µ = 26.3
σ = 2.71

0.15 µ = 17.6
σ = 0.843

µ = 56.6
σ = 0.516

µ = 22.2
σ = 1.751

µ = 28.6
σ = 3.026

0.175 µ = 17.6
σ = 0.843

µ = 58.7
σ = 0.483

µ = 21.3
σ = 1.252

µ = 29.2
σ = 2.3

0.2 µ = 17.6
σ = 0.843

µ = 59.8
σ = 0.422

µ = 23
σ = 2.582

µ = 30.3
σ = 1.636

0.225 µ = 17.7
σ = 0.823

µ = 62.9
σ = 0.316

µ = 33.2
σ = 2.348

µ = 32.4
σ = 0.966

transmissions is as small as possible. For all cases, the relaxed triggering condition yielded
the fewest number of communications. This performance difference is bigger the faster the
desired convergence is. Moreover, our triggering condition results in lower standard deviation
compared to PETCs with second and third best number of communications.

A possible disadvantage of the relaxed triggering condition are the the oscillations of the
monitored Lyapunov function, as can be seen in Figure 2-3(d); in our simulations, they
corresponded to oscillations in the trajectories of the plant states (Figure 2-4), which can be
undesired in many applications. This may be caused by the fact that the original controller is
designed for a faster convergence rate than the one imposed by the triggering condition. If we
choose the decay rate to be almost equal to λ0, namely λ = 0.45 (ρ = 0.225), the oscillations
are reduced to some extent. Studying the balance between relaxing the triggering condition
for less updates, and the resulting oscillations of the trajectories is subject for future work
but some ideas and preliminary results are discussed in the next section.

Figure 2-5(a) illustrates how the relaxed PETC deals with disturbances. Here, ρ was set to
0.225 and disturbance δ(t) = sin(t) was present throughout the whole simulation. The total
number of events in this case was 39, which was mostly because the disturbance started to
dominate the dynamics at the final part of the simulation. Here, the EISS parameters are
σ = 2.1818 and γ(d) = gd, g = 13.3278. Dynamic PETC (Fig. 2-5(b)) seems to be more
robust, sampling-wise, at these regions, having had a total of 32 events. Parameter σ was
obtain from LMIs for which the L2-gain was set to 14.
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14 A relaxed triggering condition for PETC
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Figure 2-4: System’s trajectories under different PETC implementations.
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(a) Relaxed triggering condition with Nmax = 20
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(b) Dynamic PETC from [2] with parameter σ = 0.16

Figure 2-5: Evolution of the Lyapunov function with ∆ = 0.05, ρ = 0.225 and δ = sin(t) for
two different triggering conditions.
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2-3 Approaches to reduce oscillations

The following section discusses the problem of the oscillatory system trajectories under relaxed
PETC and reviews two methods of mitigating this issue.

2-3-1 Higher decay rates

The first approach is based on the observation that the oscillations of the states are often
correlated to the oscillations of the Lyapunov function. This, in turn, happens when the
Lyapunov function is allowed to increase too much. In order to restrict that, we can impose
a higher desired convergence rate. Fig. 2-6(a) was generated for almost an identical case as
in the numerical example from the previous section, but the convergence rate was increased
to λ = 0.48. This value was only slightly smaller than λ0 = 0.4836. When compared to
Fig. 2-3(d) with λ = 0.3, the oscillations were of smaller magnitude.

Going one step further, one can find another Lyapunov function for the same system, that
has a greater decay rate λ0. An example of a steeper Lyapunov function for system (2-18) is

P =
[

1 0.5
0.5 1

]
, Q = P.

In this case, λ0 = λm(P−1Q) = 1. This value allows to impose a higher convergence rate for
the same system. The result for λ = 0.98 can be seen in Fig. 2-6(b).
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(a) Original Lyapunov function - λ = 0.48
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(b) A steeper Lyapunov function - λ = 0.98

Figure 2-6: Evolution of two different Lyapunov functions for the same system under the relaxed
PETC with ∆ = 0.05 and Nmax = 20.

For a greater decay rate the Lyapunov function experiences smaller oscillations. This trans-
lates to a smaller magnitude of system trajectories, as shown in Fig. 2-7. What is important
is that the number of communication instants did not increase for a bigger desired conver-
gence. It actually slightly decreased from 18 to 16. The results suggest that it is particularly
beneficial to choose steeper Lyapunov functions and λ close to λ0. Then one gets not only a
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16 A relaxed triggering condition for PETC

better guaranteed convergence, but also less oscillatory system trajectories while maintaining
a low number of transmissions.
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Figure 2-7: System’s trajectories under the relaxed PETC with different Lyapunov functions and
convergence rates.

2-3-2 Performance check

The difficult part in assessing the level of oscillations is that there are no performance measures
that would take them into consideration. Time domain parameters like the convergence rate,
settling time, overshoot or steady state only describe the sketch of the system trajectories. If
we want to avoid excessive oscillations, we first have to define what do we mean by ‘excessive’.

One way to do that could be to only allow the states to deviate from a reference trajectory
to some extent and formulate it as an additional triggering condition. A reasonable choice
for the reference are state trajectories of the plant with a periodic controller xi,ref . Although
they might not always be free from oscillations, comparing to them is a good measure of
how inferior is PETC from the time-triggered implementation in terms of added oscillations.
The region for allowable oscillations should also shrink with the magnitude of the reference
trajectory. Similarly to the convergence rate, the bounds on the oscillations can decrease
exponentially. If any of the states xi under the relaxed PETC exceeds the upper or lower
bound, the intelligent sensory system should trigger, what can be described with the following
inequality:

|xi(tk)− xi,ref (tk)| > βe−λtk

where β ∈ R+ is an additional parameter that indicates the size of the allowable region at time
instant t = 0. The additional triggering condition also assumes the same convergence rate
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λ for the allowable region as for the Lyapunov function. Similarly to the original triggering
condition from the relaxed PETC, instead of checking if the states are within the allowable
region at the current sampling time, we could check one time step ahead. This way the sensors
would trigger before the states escape the region. Checking the condition for all the states
i ∈ {1, ..., n}, can then be compactly written with:

||Ax(tk) +BKx(ti)− (A+BK)xref (tk)||∞ > βe−λ(tk+∆).

The additional triggering condition means that the reference states xref have to be kept in
memory. Moreover, an internal clock has to be included in order to keep track of the bounds
βe−λtk . When this is done it is possible to transform the additional triggering condition into
a quadratic one by using the fact that:

|v| ≥ ||v||∞

for any vector v ∈ Rn. The additional triggering condition with the Euclidean norm

|Ax(tk) +BKx(ti)− (A+BK)xref (tk)| > βe−λ(tk+∆). (2-19)

represents the quadratic form similarly to (2-4).

Fig. 2-8 shows the Lyapunov function and state trajectories for the system (2-18) under the
relaxed PETC with the additional triggering condition (2-19) with β = 10. It can be seen that
depending on the initial conditions (x0,1 =

[
10 0

]T
, x0,2 =

[
5 −2

]T
) the oscillations are

reduced to a different level. In both cases the number of transmissions remained small (17).
Decreasing parameter β to 6 reduces the oscillations for the case shown in Fig. 2-8(a) without
additional communication instants. However, for the other case (Fig. 2-8(b)) it increases
the number of triggering times to 54. Therefore, there has to be a trade-off made when
choosing β such that for any initial conditions the oscillations are reduced in comparison
to the original relaxed PETC without increasing drastically the number of transmissions.
Table 2-2 summarizes the number of communication instants for different parameters of the
triggering condition tested on 10 different initial conditions. The higher the desired decay
rate is, the bigger standard deviation, what implies that the number of transmissions is highly
dependent on the initial conditions. The result of this experiment suggests that for smaller
values of β (allowing only small oscillations) choosing a milder value of convergence rate will
result in a more consistent number of transmissions regardless of the initial conditions.

Table 2-2: Average (µ) and standard deviation (σ) of number of communications for different
values of performance parameter β and decay rates

λ = 0.2 λ = 0.25 λ = 0.3 λ = 0.35 λ = 0.4 λ = 0.45

β = 3 σ = 12.76
µ = 28.6

σ = 16.82
µ = 35.1

σ = 21.94
µ = 41.4

σ = 28.96
µ = 45.5

σ = 37.43
µ = 73.6

σ = 46.50
µ = 28.6

β = 6 σ = 0.92
µ = 16.8

σ = 8.80
µ = 19.1

σ = 11.93
µ = 22.4

σ = 16.97
µ = 30.6

σ = 22.30
µ = 41.2

σ = 30.26
µ = 28.6

β = 9 σ = 0.82
µ = 16.7

σ = 2.50
µ = 17.3

σ = 6.46
µ = 18.7

σ = 12.37
µ = 23.9

σ = 14.94
µ = 28.0

σ = 17.77
µ = 28.6

β = 12 σ = 0.82
µ = 16.7

σ = 0.79
µ = 16.8

σ = 0.67
µ = 17.0

σ = 8.49
µ = 19.9

σ = 13.19
µ = 24.6

σ = 14.59
µ = 28.6
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Figure 2-8: Evolution of the Lyapunov function and state trajectories of the system (2-18) under
the relaxed PETC with ∆ = 0.05, Nmax = 40, λ = 0.45 and with the additional triggering
condition (2-19) with β = 10.

Bounds on system trajectories that converge exactly to the equilibrium might be dangerous
when disturbances come into play. Not resetting the bounds and keeping them very tight
will result in degrading PETC to almost periodic control. It is then reasonable to allow
convergence of the states to a ball instead one value. The size of the ball should be chosen
such that it applies to both - PETC and periodic control. The radius that satisfies this
requirement is γ||δ||∞, where γ is the L∞ gain from disturbance to the output of the system
with the periodic controller. This value informs how much the input can be attenuated or
magnified by the system and thus how it affects the output. In order to find it, the closed
loop system in continuous time

d

dt
x = (Ap +BpK)︸ ︷︷ ︸

Acl

x+ Eδ (2-20)

has to be discretized with ∆ according to equation (2-6). Moreover, an output y = Cx of the
system has to be chosen. If we care about all the states, we can set C = I ∈ R(nx×nx). If
nx > 1 the system is MIMO and to find its L∞ gain we have to look at the peak value of the
largest singular value of the system across all frequencies. For SISO systems it only requires
finding the peak value of the magnitude Bode plot. Once this value is known we can rewrite
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Figure 2-9: Non-zero singular value of the discretized system (2-18) with y = x.

the additional triggering condition (2-19) as

|Ax(tk) +BKx(ti)− (A+BK)xref (tk)| > βe−λ(tk+∆) + γ||δ||∞. (2-21)

For our 2D system (2-18) after discretization, if we choose C = I we end up with two outputs.
However, there is only one non-zero singular value because the disturbance input is one-
dimensional. Its value across all frequencies is shown in Fig. 2-9. The peak value is equal to
5.34 dB at frequency 0.83 rad/s. After converting from decibels we obtain γ = 10

5.34
20 ≈ 1.85.

Results of experiments comparing the additional triggering condition with and without using
the L∞ gain γ are illustrated in Fig. 2-10. Both sub-figures were generated for the same
initial condition under the same disturbances. Fig. 2-10(a) used the oscillation bounds that
converged to zero, while for Fig. 2-10(b) they converged to a ball of radius γ = 1.85. As a
result the first approach experienced 164 transmissions, because from time t = 2.1 it already
degraded to periodic control. On the other hand, convergence to a ball allowed to keep
the number of transmissions at 73 and the control remained aperiodic thorough the whole
simulation.

The oscillations in both cases are smaller compared to the original relaxed PETC. It is
important to notice that adding a constant to the additional triggering condition enlarges
the region allowable for oscillations. Therefore one may consider reducing the value of the
parameter β in that case, such that the oscillations are kept small.
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(a) Convergence to zero (2-19).
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(b) Convergence to a ball of radius γ = 1.85 (2-21)

Figure 2-10: Evolution of the Lyapunov function and state trajectories of the system (2-18)
under the relaxed PETC with x0 = [10 0]T , ∆ = 0.05, Nmax = 40, λ = 0.45 and with the
additional triggering condition (2-19) with β = 6 in the presence of disturbances δ = sin(t).
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Chapter 3

Predicting future events

The triggering condition introduced in the previous chapter postpones the occurrence of events
compared to other PETC strategies, effectively resulting in a smaller number of triggers. The
question that arises is if there is anything more that can be done to reduce the communication
between the controller and the sensor. One solution would be to ignore some of the events and
trigger only for the remaining ones. However, one has to answer one fundamental question:
is it possible while still maintaining stability of the system?

First and foremost, when we decide to ignore an event we have to make sure that there will
be more of them in the future. This is not trivial for the case of PETC, since it does not
make any predictions like e.g. STC. It decides whether to trigger or not based on the cur-
rent measurement by checking a simple condition without extensive computation. Therefore,
predicting future events in an efficient way is a problem that needs a solution and will be the
subject of this chapter.

A less obvious issue that has to be taken into consideration while answering the same question
is the value of the Lyapunov function at future events. In order to ensure convergence of the
Lyapunov function its value should be decreasing from one triggering instant to the next one
when no disturbances are present. Fortunately, since the relaxed triggering condition detects
crossings of the Lyapunov function with an exponentially decaying bound, we can be sure
that at any event the value is smaller than at the previous one. Therefore, if we can guarantee
that there will be more events in the future, when the control action is not updated at the
current event, the triggering condition ensures that also the value of the Lyapunov function
will be smaller. This is illustrated on Fig. 3-1.

It is important to mention that the above property cannot be guaranteed for all PETC
implementations. If the triggering condition detects e.g. the moment when the Lyapunov
function starts increasing, we have no guarantees that (if the control action is not updated)
its value will be smaller at the next triggering instant. Therefore, this chapter focuses on
predicting future events for the relaxed triggering condition for PETC introduced in the
previous chapter. The main result uses ideas that were originally applied to scheduling of
NCSs and thus a short introduction will be given first.
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Figure 3-1: A sample trajectory of a Lyapunov function for a 3D system.

3-1 State dependent sampling

An important observation that can make predicting the next triggering instant easier is that,
for LTI systems, a state x 6= 0 and λx, λ ∈ R\{0}, have the same triggering time. A quadratic
triggering condition is violated at the same time, since xTQx > 0 ⇐⇒ λ2xTQx > 0. This
means that states lying on the same ray going through the origin have the same sequence
of triggering times. In [3], this observation is used to partition the state space into regions
by grouping together the neighbouring rays and using the spherical coordinates of x ∈ Rn :
(r, θ1, ..., θn−1). In addition, it is only necessary to partition half of the space because x and
−x have the same triggering time. Therefore θ1, θ2, ..., θn−1 ∈ [0, π]. Each region is associated
with some range of the angular coordinates θi: x ∈ Rs ⇔ ∀i ∈ {1, ..., n − 1}, θi ∈ [θ−i,s, θ

+
i,s].

An example of covering a 2-dimensional system into conic regions is shown in Fig. 3-2.

Once the regions are created one can find a lower bound on the triggering time for all the
states inside one region. Associating a triggering time τs with a region Rs, s ∈ {1, 2, ..., q}
can be done online, what reduces the number of computations online. When controlling the
plant, every time the controller gets a new sample, it has to locate it in one of the predefined
regions and the triggering time is known immediately. Assigning the current state to one of
the regions is not expensive since it only requires computing n− 1 angles from the sample.

Apart from partitioning the state space, the process of finding the lower bound on the trigger-
ing time requires also convex embedding according to time. Since the system is deterministic
and if there are no disturbances we can express the value of the triggering condition at some
time σ ∈ [ti, ti+1] in the future with x(ti)TΦ(σ)x(ti), where Φ(σ) depends on the system ma-
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Figure 3-2: Conic partitioning the 2D state space into q regions [3].

trices and the quadratic triggering condition matrix. To make sure that x(ti)TΦ(σ)x(ti) ≤ 0,
∀σ ∈ [ti, ti+1], we would have to check an infinite number of inequalities. Therefore it is
necessary to construct convex polytopes around the matrix Φ(σ) to obtain a finite set of in-
equalities using vertices Φκ,s, κ ∈ Ks (a finite set of indices). One example of how to construct
these matrices using Taylor series expansion is given in [3]. With that, one can find the lower
bound on the triggering time τ s for every region Rs solving a finite number of LMIs. A similar
idea was used in [26], where also a method of finding the upper bound on the triggering time
τ̄s is given.

The described procedure could be used to find more than one time interval in the future for
each region when the consecutive events are expected to occur if the control action is not
updated. However, this approach has one possible drawback - the partition of the state space
does not take into account the behaviour of the system. Usually one imposes an isotropic
conic covering where every angular coordinate θi is divided into m equidistant intervals. Such
partitioning does not necessarily coincide with an ‘optimal’ method of dividing the state space.
For instance, in a theoretical case, for a cone Rs in 2D with θ ∈ [15◦, 20◦], one could find
a time interval of [0.1, 0.3] seconds, while decreasing the size of cone to θ ∈ [15◦, 19◦] would
result in τ4 ∈ [0.1, 0.15] seconds. We can see that a very small change in the partitioning
could significantly reduce the time interval associated to that region. One could divide the
state space into very small cones but then the number of regions grows very fast on top of the
exponential increase with the dimension of the system. Hence, there is a trade-off between
the number of regions and the accuracy of the time interval approximation.

A more natural way of dividing the state space uses the discrete-time model behaviour also
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presented in [3]. In this approach every region is associated with the value of the trigger-
ing condition at a given sampling time tk. Because the triggering condition is quadratic,
x(ti)TQkx(ti) ≤ 0, where Qk is equivalent to Φ(σ) but in discrete time instances (it uses
discretized system matrices), also forms a cone but of an unknown shape. The advantage of
this approach is that the number of regions does not depend on the dimension of the system
and the choice of the sampling time is dependant on the precision of time intervals that one
wants to obtain. For the case of PETC it is natural to choose the same sampling time as
∆. Moreover, it could be used without any modifications to find more consecutive events by
choosing a bigger prediction horizon.
Although this approach allows us to find more accurate time intervals and does not impose a
shape on the cones, it has a drawback of requiring more computations online. In order to find
the next triggering time for a given sample x(ti), one has to perform several x(ti)TQkx(ti)
multiplications until the resulting value is greater than 0. The situation is even worse if one
wants to find more triggering instants because it extends the prediction horizon. The online
computational complexity of this approach is O(qn2) (where q is the number of regions),
while for the previous approach (with spherical coordinates) it is only O(n) ([3]). In the
next section, we introduce an approach that aims at reducing the number of computations
that have to be performed online for the partitioning according to the discrete-time model
behaviour of the system.

3-2 Approaches to reduce computational effort

Let us start by formalizing matrix Qk. To find the value of the triggering condition at some
point rk = ti + k∆, k ∈ N0 based on the current sample x(ti), one has to find the value of the
states at time rk first. Since we are only interested in finding a value in a sequence of times
{rk}, we use discrete-time system matrices as given by (2-6). Then, we can compute:

x(rk) =R(k)x(ti),

R(k) :=Ak +
k−1∑
i=0

AiBK,
(3-1)

as given in e.g. [27]. The scheduler that will be responsible for granting access to the
network has to have an internal clock and therefore we can make our triggering condition
time-dependent. To find out how far the Lyapunov function is from the imposed bound at
time rk, the following multiplication has to be performed:

ψ(x(rk), x(ti)) :=
[
x(rk)T x(ti)T

] [P 0
0 −Pe−λk∆

]
︸ ︷︷ ︸

Q̄(k)

[
x(rk)
x(ti)

]
. (3-2)

Substituting (3-1) into (3-2) we arrive at the expression that depends solely on time instant
rk and available sample x(ti):

x(ti)T
[
R(k)T I

] [P 0
0 −Pe−λk∆

] [
R(k)
I

]
︸ ︷︷ ︸

:=Qk

x(ti). (3-3)
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The important observation is that matricesQk can be computed offline, since they only depend
on the model of the system and the Lyapunov function. The number of these matrices depends
on how far in the future one wants to search for events. A time horizon should be defined as
ti + kmax∆.

Now, to find the last event that will happen in a predefined time horizon, the scheduler has
to perform online computations using available sample x(ti). Since we are looking for the last
event, it is natural to perform multiplications starting from the last available matrix Q(kmax).
An event in our case corresponds to a situation when

x(ti)TQk−1x(ti) ≤ 0 ∧ x(ti)TQkx(ti) > 0. (3-4)

This means that the plant has to get access to the network at time instant rk−1 at latest.
However, it is sufficient to only look for Qk such that the triggering condition is smaller than
or equal to 0. Then we are sure that the Lyapunov function is below the bound and its value
at time ti+1 will be smaller than at time ti. The remaining of this chapter aims at finding a
solution to the following problem:

Problem 3.1. For a given x(ti), find

ktrig = max{k ≤ kmax|x(ti)TQkx(ti) ≤ 0, k ∈ N} (3-5)

with Qk defined as in (3-3), such that the computational complexity is reduced.

3-2-1 Sub-sampling

The primary goal of the scheduler is to predict if there will be more events if the control
action is not updated. The exact times of the upcoming events do not have to be known by
the scheduler. It is sufficient that the scheduler grants access to the network during a larger
time interval, in which the event is estimated to happen. The PETC strategy that monitors
the triggering condition at every sampling instant will trigger at the right time in the given
interval. In other words the scheduler should only know a rough estimation of the triggering
time and the intelligent sensory system is responsible for detecting the exact moment.

Therefore, the first thing that can be done to reduce the number of computations online
is sub-sampling from the whole set of matrices Qk. One can simply check the triggering
condition every p-th sampling time, reducing the number of computations p-fold. With the
new subsequence of matrices Qk, Problem 3.1 still holds, but there has to be the following
modification made to the definition of Qk:

Qk :=
[
R(pk)T I

] [P 0
0 Pe−λpk∆

] [
R(pk)
I

]
, p, k ∈ N. (3-6)

By sub-sampling we introduce a trade-off between the computation time and accuracy of the
event search. The bigger p is, the higher the chance that the scheduler will miss an event.
This can happen especially when the frequency of the oscillations of the Lyapunov function
is higher than p∆. It is then possible that at time instants pk∆ and p(k + 1)∆ the value of
the triggering condition is positive, but between them there exists a time interval where the
value is smaller than zero.
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However, as mentioned before, the scheduler’s task is to roughly estimate the time at which
the event will occur. The fact that it can possibly miss the event does not impede stability of
the system, because the access to the network will be given earlier. Therefore, the disadvan-
tages of sub-sampling are not very significant and in return we get a substantial cut on the
computational complexity. It is therefore advisable to choose p ≥ 2, p ∈ N.

3-2-2 Projections

As discussed in section 3-1, locating the current sample in one of the regions is less expensive in
terms of computations when using spherical coordinates. But since we do not want to impose
a structure on the partition, we have to evaluate the shape of regions xTQkx ≤ 0, that
are created naturally by the discrete-time behaviour of the system. Finding shapes of such
regions is not a trivial task because generally they are not polytopic and very often not even
convex. One thing we can do to overapproximate the shape of a cone is to project it on n− 1
planes, where n is the dimension of the system. As a result, we get a range for every spherical
coordinate of x(ti) that it has to belong to in order for x(ti) to satisfy x(ti)TQkx(ti) ≤ 0.
Since the angular ranges are overapproximations, this condition is necessary but not sufficient.
Nevertheless, it has the potential to reduce the number of computations online.

Figure 3-3: A 2D projection of an n-D cone.

A 2D projection of a cone pointing at the origin in n-D is also a cone and it can be described
with a quadratic form. As shown if Fig. 3-3, it is the region between two straight lines going
through the origin. These rays can be described by equation: x2 = tan θx1. We are interested
in finding the projection only on [0, π] since the projection on [π, 2π] is identical. Because
cosine changes its sign at π/2, we have to consider two regions: [0, π/2] and [π/2, π] in order
to derive inequalities describing the projection cone. Moreover, let us denote x =

[
x1 x2

]T
.
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1. θ ∈ [0, π/2]
If θ belongs to this region it will act as a
lower bound when x2 ≥ tan θx1:

x2 ≥
sin θ
cos θx1

cos θx2 ≥ sin θx1[
− sin θ cos θ

]
︸ ︷︷ ︸

:=a1

x ≥ 0

If θ̄ belongs to this region it will act as
an upper bound when x2 ≤ tan θ̄x1:

x2 ≤
sin θ̄
cos θ̄

x1

cos θ̄x2 ≤ sin θ̄x1[
sin θ̄ − cos θ̄

]
︸ ︷︷ ︸

:=a2

x ≥ 0

2. θ ∈ [π/2, π]
If θ belongs to this region it will act as a
lower bound when x2 ≤ tan θx1:

x2 ≤
sin θ
cos θx1

cos θx2 ≥ sin θx1

a1x ≥ 0

If θ̄ belongs to this region it will act as
an upper bound when x2 ≥ tan θ̄x1:

x2 ≥
sin θ̄
cos θ̄

x1

cos θ̄x2 ≤ sin θ̄x1

a2x ≥ 0

Despite the change in the sign of cosine at π/2, we have the same inequalities for both angular
intervals that describe an intersection between two half-planes that forms a cone:

a1x ≥ 0 ∧ a2x ≥ 0.

To get a quadratic symmetrical form representing the cone, one has to follow a few steps:

xTaT1 ≥ 0 ∧ a2x ≥ 0 =⇒ xTaT1 a2x ≥ 0

xTaT1 a2x = xT a
T
1 a2 + aT2 a1

2 x

xT
(
aT1 a2 + aT2 a1

2

)
x ≥0

xT (aT1 a2 + aT2 a1)︸ ︷︷ ︸
:=Qπ

x ≥0

After multiplying and adding vectors a1 and a2, and using the fact that sin(α + β) =
sinα cosβ + cosα sin β, one obtains the following formula:

Qπ(θ, θ̄) =
[
−2 sin θ sin θ̄ sin(θ + θ̄)

sin(θ + θ̄) −2 cos θ cos θ̄

]
(3-7)

Following [28], for a point x = [x1, x2, ..., xn]T we define a projection on its i− j coordinates
as (x)(i,j) := (xi, xj) = Pix. Pi is a projection matrix of size 2 × n, that contains almost all
0, except for entries (1, i) and (2, j) which are equal to 1. Angular ranges [θi, θ̄i] for every
projection on plane i ∈ {1, 2, ..., n− 1} have to satisfy:

xTQkx ≤ 0 =⇒ (x)T(i,i+1)Qπ(θi, θ̄i)(x)(i,i+1) ≥ 0. (3-8)
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In order to find θ∗i := max θi and θ̄∗i := min θ̄i that satisfy (3-8) we will use the S-procedure
[29]. For every i we initialize the search by setting θi = 0 and θ̄i = π. Implication (3-8)
is then always true. We first fix the upper bound θ̄i and increase the lower bound θi by a
constant step dθ. The feasibility problem that has to be solved offline using a semi-definite
programming (SDP) solver is:

if ∃τ ∈ R+
0 P Ti Qπ((θi, θ̄i)Pi + τQk ≥ 0. (3-9)

We increase the lower bound until problem (3-9) is not feasible any more. The last value of
θi that yields a feasible solution is θ∗i . We then fix the lower bound at θ∗i and repeat the
same process, this time decreasing the value of θ̄i by step dθ. The iterations continue until
the problem is not feasible and the value of θ̄∗i is found.

Remark 3.1. When θi 6= 0 or θ̄i 6= 0, P Ti QπPi from (3-9) has rank 2 and one positive
eigenvalue (it is non-definite). Therefore, for P Ti QπPi ≥ −τQk, −Qk must have at most 1
positive eigenvalue. Thus, Qk can have at most 1 negative eigenvalue. If it has more negative
eigenvalues, problem (3-9) is only feasible in the first iteration and the resulting angular range
will be [0, π].

As a result, for every Qk there is an associated set of angular ranges [θ∗i,k, θ̄∗i,k], i ∈ {1, 2, ..., n−
1}, that can be used for more easy locating the current sample x(ti) in one of the regions
xTQkx ≤ 0. The first thing that has to be computed online after getting a new sample is the
set of current angles θi. This is done with a short formula:

θi =
{

arccos
(xi
r

)
if xi+1 ≥ 0

π − arccos
(xi
r

)
if xi+1 < 0

, r = |(x)(i,i+1)|, i ∈ {1, 2, ..., n− 1}.

The dependency on the sign of xi+1 is due to the fact that (x) is not a one-to-one relation
and there are multiple possible values for one argument x. In the Python implementation of
the above formula function math.atan2 is used instead:

θi =
{

math.atan2(xi+1, xi) if xi+1 ≥ 0
math.atan2(xi+1, xi) + π if xi+1 < 0

, i ∈ {1, 2, ..., n− 1}. (3-10)

Function math.atan2(y,x) computes the angle formed by a vector from the origin to point
(x, y) with the positive axis X. The output is between −π and π and therefore if y < 0
we add π to the result in order to get a value between [0, π]. This implementation reduces
significantly the time that is needed to perform the angular coordinates computation.

Once the scheduler has the current angles computed, it can use them to speed up the search
of the last occurring event in the search horizon. If there is at least one angle θi that does
not belong to earlier computed range [θ∗i,k, θ̄∗i,k], then multiplication x(ti)TQkx(ti) can be
skipped. If all the current angles θi belong to the ranges, then the scheduler has to check if
x(ti)TQkx(ti) ≤ 0.

Overapproximating the regions with projections may not always reduce the number of com-
putations drastically. The reason behind that is the unusual shape of the cones xTQkx ≤ 0.
They can be non-convex, very flat but broad, shaped like a curved disc, etc. If they are big,
then the projection is usually the whole projection plane. Angular ranges [θ∗i,k, θ̄∗i,k] smaller
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than [0, π] can only be found for smaller cones xTQkx ≤ 0, what goes along with Remark
3.1. The cones, in turn, get smaller when the triggering condition is checked for further time
instants in the future. This is easily explained - the longer the time in which the control
action is not updated, the more likely that the Lyapunov function will exceed the bound.
Therefore, projecting is particularly beneficial if the prediction horizon is longer.

3-2-3 Predecessors

Because all the matrices Qk are computed for the same system and they describe its be-
haviour in the future time instances, there exist fundamentals to believe that the matrices are
related to each other. Knowing if x(ti)TQjx(ti) > 0 implies x(ti)TQix(ti) > 0, i < j, would
be particularly useful in our backward search. Once the scheduler performs multiplication
x(ti)TQjx(ti) and gets a positive value, then it knows that also x(ti)TQix(ti) > 0. Therefore,
the scheduler can skip the quadratic multiplication with matrix Qi, because we are only look-
ing for the multiplications where the outcome is negative. This could reduce the number of
quadratic multiplications that the scheduler has to perform. All the matrices Qi that satisfy
the above explained relation we call ‘predecessors’ and the formal definition can be found
below.

Definition 3-2.1 (Predecessors). Matrix Qi is called a predecessor of matrix Qj if and only
if

xTQjx ≥ 0 =⇒ xTQix ≥ 0, i < j, i, j ∈ N (3-11)

for all x ∈ Rn.

Each matrix Qk can have several predecessors, that can be computed offline using the S-
procedure again. For every matrix Qj , j ∈ {1, 2, ..., kmax} and Qi, i < j, i ∈ N, we have to
solve the following feasibility problem:

if ∃τ ∈ R+
0 Qi ≥ τQj . (3-12)

If there exists a feasible solution, then Qi is a predecessor of Qj . Solving this problem offline
using a semi-definite programming (SDP) solver allows us to associate a set of indexes i to
every matrix Qj , j ∈ {1, 2, ..., kmax}, such that Qi is a predecessor of Qj . This knowledge can
be then used to reduce the number of computations online.

From the experimental results it can be noticed that all the predecessors i that appear in the
computed sets, correspond to matrices Qi for which all of the angular ranges of the projections
are empty, which means θ∗i,k = θ̄∗i,k (see Appendix B-1 and B-2). If none of the states satisfy
xTQix ≤ 0 as the projections suggest, then ∀x ∈ Rn xTQix ≥ 0. Then implication (3-12) is
always true. Because predecessors seem to coincide with matrices for which the projections are
empty, they are unlikely to reduce the computations, when used together with projections.
Moreover, it is possible that using predecessors can enlarge the computation time because
some unnecessary operations have to be performed. In other words the scheduler would have
to perform a check of the list of predecessors at every iteration, while the same information
could be obtained from checking the projections only. Therefore, the final algorithm will not
use predecessors.
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3-3 The algorithm

In order to maximize the benefits coming from the optimization methods presented in the
previous section, the final algorithm (Algorithm 1), that solves Problem 3.1, uses 2 out of 3
previously described methods: sub-sampling and projections.

3-3-1 Offline computations

Before the scheduler can perform any computations, the user has to provide the model of
the system (matrices Ap, Bp and K), the Lyapunov function P and its desired decay rate λ.
There are also three additional parameters that have to be chosen: discretization (sampling)
time ∆, prediction horizon kmax and the sub-sampling factor p. With this information the
scheduler can compute offline the following data structures:

• matrices Qk according to (3-6), that are already a sub-sampled sequence,

• n − 1 angular ranges [θ∗i,k, θ̄∗i,k] for every matrix Qk by solving another SDP problem
(3-9),

• list useful of size kmax that has all elements True except at indexes j that correspond
to matrices Qj that have all the projection ranges equal to [0, π]. By checking useful[k]
the scheduler knows that there is no point in checking if all the angles θi belong to
associated ranges [θ∗i,k, θ̄∗i,k], because they do. Instead of performing the check n − 1
times for every θi, it can just check the value of useful[k].

3-3-2 Online computations

The search for the maximum k where x(ti)TQkx(ti) ≤ 0 starts from the last precomputed
matrix Qj , so once the scheduler gets a new measurement x(ti), it sets j = kmax. It first
checks the value of useful[j] to see if computing angles can be useful. If the value is False,
then it can proceed to the quadratic multiplication straight away, because the projection for
matrix Qj is not useful. If it is True, the scheduler computes the angles θi using formula
(3-10). Then, it checks if the angles θi belong to projected regions [θ∗i,j , θ̄∗i,j ] associated with
matrix Qj . If they do not belong there then we are sure that x(ti)TQjx(ti) > 0 and the
quadratic vector-matrix multiplication can be skipped and we can proceed to matrix Qj−1.
However, if all the angles θi belong to their regions (or the value of useful[j] is False), the
scheduler has to perform more computations with matrix Qj . It is because the membership to
projected regions is a necessary but not a sufficient condition. The scheduler has to perform a
quadratic multiplication x(ti)TQjx(ti). If x(ti)TQjx(ti) ≤ 0, the scheduler can stop the search
because ktrig = j. However, if the result is greater than 0, the scheduler has to continue the
algorithm because j is not the value that we are looking for. The whole procedure can be
repeated, this time for matrix Qj−1. This loop continues, decreasing the index of matrix Qj
by one at every iteration, until ktrig is found. The corresponding time, when the access to
the network should be granted is ttrig = ktrigp∆.
The computational complexity of finding ktrig with algorithm 1 is reduced compared to the
original idea of checking every matrix Qk as described in section 3-2. First of all it decreased
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Algorithm 1 Finding ktrig
1: j ← kmax
2: ktrig ← 0
3: x0 ← new sample
4: compute θi according to (3-10)
5: while j ≥ 1 do
6: belongs← True
7: if useful[j] then:
8: i← 1
9: for i ≥ n− 1 do

10: if not θi ∈ [θ∗i,j , θ̄∗i,j ] then
11: belongs← False
12: break
13: if belongs then
14: if xT0 Qjx0 ≤ 0 then
15: ktrig ← j
16: break
17: j ← j − 1
18: return ktrig

from O(qpn2) to O(qn2) due to sub-sampling. Depending on the value of p this can have a
substantial effect on the computations. The use of projections in the algorithm does not reduce
the complexity of the worst case scenario, because it may happen that all the projections will
contain the whole projection plane. However, in reality it happens very rarely and projections
often allow to skip several quadratic multiplications, what is especially beneficial in higher
order systems. The effect of using projections on computation time are presented in the next
section.

3-4 Numerical example

Since the algorithm described in the previous section is used for detecting last event in a
given time horizon, a system that experiences multiple crossings of the Lyapunov function
with its bound is chosen for the numerical example. Such systems are characterized with an
oscillatory behaviour which corresponds to having complex poles. To see how the algorithm
performs for different cases, two distinct systems are chosen for the experiment - a 2D and a
5D system.
The 2D system in the form of (1-1) has the following matrices:

Ap =
[
−11.3283 12.5283
−12.3283 11.4283

]
, Bp =

[
1
1

]
, E =

[
0
1

]
, K =

[
11.0712 −12.4212

]
. (3-13)

The pair of complex poles is 0.05±5i. For the PETC implementation the system is discretized
with ∆ = 0.05. The associated Lyapunov function is

P =
[
70.7388 18.32
18.32 7.1454

]
, Q =

[
82.4416 24.3036
24.3036 10.263

]
, (3-14)
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which results in λ0 = 1. Because we have to choose a smaller decay rate, we set λ = 0.8. The
last parameters to choose are the sub-sampling factor, which in this case will be p = 4, and
kmax that we set to 20. That corresponds to a prediction horizon of p ·∆ · kmax = 4 seconds.
After sub-sampling there are 20 matrices Qk. Since it is a 2D system, the projection is only
made on one plane and for every Qk we get an associated range for θ1 by solving problem
(3-9) with step dθ = π/100.

The result of projections, that can be found in appendix B-1, looks promising. Only for 2
time instants the projection of the safe region is the whole plane ([0, π] - half of the plane;
the other half is equivalent). 5 of the angular ranges are empty, what can suggest that at
these time instants no states are safe to trigger. This gives strong basis to believe that the
online computations will be reduced significantly. There are high chances that multiplications
can be skipped because the current sample x(ti) will not belong to the precomputed angular
ranges if they are small.

Table 3-1 shows the computation times of finding ktrig with and without projections. The
computations were run using Python 3.7 on a SAMSUNG NP550P5C with 2.5GHz Intel Core
i5 and 8GB RAM. The test was performed for 10 different x(ti) chosen randomly, where the
states could vary between -10 and 10. We measured the time it took to perform the same
computation 10000 times in order to obtain some measurable values. In almost all the cases
using projections significantly reduced the computation time. On average this method was
1.34 times faster compared to performing only quadratic multiplications x(ti)TQkx(ti). Using
projections was not beneficial only in one case - when the computed ktrig was equal to kmax.
In such case only one multiplication x(ti)TQkx(ti) was needed and using projections required
also computing angle θ on top of that.

Table 3-1: Computation time of finding ktrig for the 2D system with 20 matrices Qk, p∆ = 0.2
and prediction horizon of 4 seconds for 10 different cases

Case 1 2 3 4 5 6 7 8 9 10
Comp. time using
projections (10−4s) 0.3 1.31 0.22 1.33 0.26 1.01 1.36 0.31 0.32 0.27

Comp. time without
projections (10−4s) 1.06 1.95 0.11 2.07 0.39 1.69 2.09 0.47 0.47 0.44

Found ttrig (s) 2 0 4 0.2 3.4 0.6 0 3.4 3.4 3.4

The 5D system that is used as the second example has the following model:

Ap =


121.804 −154.715 −33.9705 −24.4279 −112.805
51.0953 −64.9082 −14.6315 −10.3426 −47.3816
21.988 −27.812 −6.12563 −3.83315 −20.1271
175.949 −224.511 −50.4842 −35.7558 −164.186
16.8231 −20.7307 −4.0754 −3.34716 −14.7644


E =

[
0 0 0 0 1

]T
Bp =

[
3.36454 1.41382 0.610604 4.88482 0.452947

]T
K =

[
−17.962 50.6232 2.65116 −4.38992 3.94555

]

(3-15)

Aleksandra Szymanek Master of Science Thesis



3-4 Numerical example 33

The system has two pairs of complex poles and one unstable pole: 0.08 ± 4i, 0.02 ± 2i and
0.05. For the PETC implementation the system is discretized with ∆ = 0.02. The associated
Lyapunov function is

P =


1.72883 0.803901 −0.614227 −1.14722 −2.27204
0.803901 0.477912 −0.302323 −0.562933 −1.01183
−0.614227 −0.302323 0.223054 0.41259 0.804799
−1.14722 −0.562933 0.41259 0.769898 1.49511
−2.27204 −1.01183 0.804799 1.49511 3.02528

 ,

Q =


1.88436 0.841942 −0.680171 −1.24789 −2.53023
0.841942 0.497427 −0.315428 −0.588136 −1.06043
−0.680171 −0.315428 0.255586 0.456787 0.926282
−1.24789 −0.588136 0.456787 0.835975 1.66484
−2.53023 −1.06043 0.926282 1.66484 3.49128

 .
(3-16)

The associated maximum decay rate is λ0 = 1.035 and so we can choose λ = 0.83. For
the sub-sampling we choose p = 10 and the maximum matrices to check by the scheduler is
kmax = 40. That gives us a prediction horizon of 8 seconds.

For the 5D system, mainly the second half of projections seems to be useful in computing
ktrig online. The angular ranges found for matrices Q1 − Q13 contain the whole plane for
all the projection planes. Therefore for those time steps the scheduler will have to perform
quadratic multiplications. Beyond that time interval, i.e. k > 13 (t > 2.6s) projections are
more promising, as almost all of them have at least one angular range different than [0, π].
The results of the offline computations for this 5D system suggest that the time required for
computing ktrig can be especially reduced for longer prediction horizons.

A similar speed test, as it was done for the 2D system, was performed also for the 5D case.
This time we evaluated the computation time using 40 matrices Qk (Tab. 3-2) and only 20
(Tab. 3-3). For the case with 40 matrices, using projection was clearly advantageous. In all
the cases this method was much faster, on average 1.7 times. For the case with 20 matrices
both method yielded very similar results. This can be easily explained by the fact that
projections with regions different than the whole plane could be mostly found in the second
half of all the matrices Qk. For the first 20 matrices, projections were not very helpful.
Nevertheless, using projections does not impede the computations and are recommended to
be used in any case.

Table 3-2: Computation time of finding ktrig for the 5D system with 40 matrices Qk, p∆ = 0.2
and prediction horizon of 8 seconds for 10 different cases

Case 1 2 3 4 5 6 7 8 9 10
Comp. time using
projections (10−4s) 2.58 2.37 2.63 2.4 0.99 2.31 2.5 2.41 2.13 2.11

Comp. time without
projections (10−4s) 4.43 3.81 3.62 3.99 2.49 3.84 3.8 4.01 3.79 3.85

Found ttrig (s) 0.2 0.2 0.8 0.2 3.2 0.2 0.2 0.2 0.8 0.6

This example shows the result of offline computations. In the numerical example of the
next chapter the same systems will be used to show how the precomputed data structures
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Table 3-3: Computation time of finding ktrig for the 5D system with 20 matrices Qk, p∆ = 0.2
and prediction horizon of 4 seconds for 10 different cases

Case 1 2 3 4 5 6 7 8 9 10
Comp. time using
projections (10−4s) 2.02 1.88 1.65 1.91 0.49 1.89 1.78 2.02 1.62 1.81

Comp. time without
projections (10−4s) 1.96 2.09 1.65 2.04 0.51 1.92 1.53 1.91 1.66 1.88

Found ttrig (s) 0.2 0.2 0.8 0.2 3.2 0.2 1 0.2 0.8 0.6

can reduce online computations in a loop designed by merging PETC implementation from
chapter 2 and the scheduler algorithm from chapter 3. The results so far suggest that for the
2D system, the number of online computations can be reduced in a greater extent than for
the 5D system. This hypothesis will be verified in the next chapter.
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Chapter 4

Relaxed PETC combined with the
scheduler

The last step of the roadmap is to merge concepts introduced in the two previous chapters.
In this set-up, a communication request triggered by the relaxed PETC can be suppressed
by the scheduler until the time interval when the last event in the time horizon is predicted.
Skipping some events results in a smaller overall number of transmissions in the network. One
loop in a NCS that uses both the relaxed PETC and the scheduler that predicts future events
is shown in Fig. 4-1. Because each loop requires less attention under this control strategy, it
could be possible to connect more loops with the same network, effectively resulting in a less
expensive realization of a NCS.

Figure 4-1: Combined design of the control loop.

As far as the performance of the system is concerned, one has to be aware of the possibly
much higher amplitude of the system trajectories when using the scheduler. This is due to
the fact that the scheduler does not consider the value of the triggering condition before the
found ktrig. When access to the network is closed, system trajectories are unknown. The
scheduler only knows that they will be back in a region safe to trigger at time instant ktrig.
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Because of that, the recommendation for using this control strategy is primarily for NCSs
that are very congested or very scarce in resources. Applying this kind of scheduler can be
especially beneficial in case of a conflict in the network. When two loops request access to
the network, the scheduler can quickly check if any of them will experience another crossing
and can wait until then. Overall, the combined loop presented in this chapter should not
be the first choice in controlling a single loop because of its inferior performance, but can
be very helpful in NCSs where the chance of communication conflicts is high. Apart from
that, when controlling a single loop there are usually no strict requirements on the number
of communications and applying relaxed PETC only is sufficient.

4-1 Stability analysis

In order to find performance gains for the control loop combining the relaxed PETC and the
scheduler, we will follow similar steps as in section 2-2-1.

4-1-1 Guarantees

Before stating GES and EISS, we start by introducing the function

gs(τmax) := e
ωµτmax
µ−ω

((
e
λωτmax
µ−ω + e

λµτmax
µ−ω

) −ω
µ−ω

(
2e

λµτmax
µ−ω

) µ
µ−ω

)
(4-1)

with
τmax = pkmax∆.

Theorem 4.1. If λ < λ0 and ∆ < τmin, the PETC implementation (2-14) combined with a
scheduler running algorithm 1 as shown in Fig. 4-1 renders the closed loop system (1-1) GES
with

σ =
(
λM (P )
λm(P )

) 1
2 (
gs(τmax)

) 1
2 , ρ = 1

2λ. (4-2)

Before showing the performance gain in case when bounded disturbance is present, we first
recall one function defined earlier in this thesis:

γP,T (s) = s
λM (P )

λ
1
2
m(P )

∫ T

0
|eAprE|dr

Theorem 4.2. If λ < λ0, ∆ < τmin and δ ∈ L∞, the PETC implementation (2-14) combined
with a scheduler running algorithm 1 as shown in Fig. 4-1 yields the closed loop system (1-1)
EISS with

γ(||δ||∞) = γs(||δ||∞) := λ
− 1

2
m (P )γP,τmax(||δ||∞)

((gs(τmax))
1
2

1− e−
1
2λ∆

+ 1
)
.

For the proofs the reader is referred to Appendices: A-3 and A-4.
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4-1-2 Disturbances in the prediction

The performance guarantees for the control loop with the relaxed PETC triggering mechanism
combined with the scheduler are not as good as most of the control engineers would like to
have. The performance gains obtained in the previous subsections can grow to large numbers
due to suppressing the communication by the scheduler. The gains are dependent on gs(τmax)
which grows exponentially with the increase of τmax = pkmax∆. Moreover, because of the
STC-like limited access to the network, the relaxed PETC has lost its ability of being robust
toward disturbances, which was one of the most important advantages. Therefore, to recover
that feature, it is possible to include the disturbances in the prediction of the scheduler by
adding some conservatism. This idea is inspired by [14] and [30], where a similar approach
was presented for the output-feedback STC case.

In order to predict the worst-case value of the triggering condition (3-2) under the unknown
disturbances in the consecutive instances of time, one has to perform reachability analysis.
Before we introduce the necessary definitions, we first denote a solution to system (1-1) with
initial state x0, control input û and disturbance δ with:

xx0ûw = eA
ptx0 +

∫ t

0
eA

p(t−s)(Bpû(s) + Eδ(s))ds (4-3)

Let FU and FW be the sets of essentailly bounded piecewise continuous functions from R+

to U and W, respectively. Assuming that u ∈ FU and δ ∈ FW we would like to find a set of
all possible solutions xx0ûδ according to (4-3), that we call a reachable set.

Definition 4-1.1 (Reachability operator [30, Def. 1]). Given an initial time t1, a

final time t2, an initial state set X (t1) and the input sets U and W, the reachability operator
reach(·) is defined as reach(t1, t2, X (t1), U , W) := {xx0uδ(t2) : xx0uδ(t1) ∈ X (t1), ∀û ∈
FU , ∀δ ∈ FW}.

In our case the initial state x(ti) is known, as well as the control input û = Kx(ti). The only
unknown signal is the disturbance δ(t) and due to linearity we can separate its effect on the
solution. The resulting reachable set can be written with modified [30, Eq. (19)]:

X (ti + ∆k) = Φ(k)x(ti) + Γ(k)û+ Xw(k), (4-4)

where
Φ(k) := eA

p∆k and Γ(k) :=
∫ ∆k

0
eA

psBpds

and Xw(k) := reach(0,∆k, 0, 0,W). Reachable sets can be of arbitrary complexity, that
sometimes are difficult to work with. Therefore, there exist methods of outer-approximating
the reachable sets with predefined shapes. One of them are ellipsoids, with the main advantage
over spheres, that can more tightly outer-approximate the reachable set.

Definition 4-1.2 (Ellipsoid [31, Chap. 2]). Let m ∈ Rn and M � 0 ∈ Rn×n. An ellipsoid
can be described in the inequality form

E(m,M) = {x ∈ Rn : (x−m)TM−1(x−m) ≤ 1}.
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If the matrix W , such thatW ⊆ W̃ = E(0,W ) is known, the ellipsoidal toolbox for MATLAB
[32] can outer-approximate the disturbance response Xw(k) with X̃w(k) := E(0,Wk). The
resulting problem of finding the worst-case triggering function value at time instant k is the
following:

max
x,d

ψ(x, x̂, k) =
[
xT x̂T

]
Q̄(k)

[
x
x̂

]
subject to x = R(k)x̂+ d

dTW−1d ≤ 1

(4-5)

with d being the contribution of the unknown disturbances to states at time rk = ti+∆k and
R(k) defined with (3-1). Since Q̄(k) is not a definite matrix, the above written optimization
problem is non-convex. Following [30] we instead compute a conservative upper bound for
ψ(x, x̂, k). Let us define:

Rw(k) = Fw(k)WkF
T
w (k), Fw(k) =

[
RT (k) I

]
Q̄(k)

[
I
0

]
.

Corollary 4.1. Function

ψ̄(x̂, k) := x̂TQkx̂+ 2
√
x̂TRw(k)x̂+ λM

(
WkQ̄(k)

)
(4-6)

provides an upper bound for the solution of (4-5).

Proof. The proof for a more general case is given in [30]. After simplifying the original problem
from output to state feedback, considering a static controller and measurement noise-free case,
one obtains formula (4-6).

MatricesWk can be computed offline using the aforementioned ellipsoidal toolbox [32]. Other
structures that can also be precomputed are Rw(k) and c := λM (WkQ̄(k)).

Figure 4-2 compares the predicted values of the triggering condition in the worst-case scenario
(4-5) and without including disturbances (3-3) at discrete time instants ∆k if the control
action is not updated throughout the simulation. Fig. 4-2(a) was generated for the 2D system
introduced in chapter 3 with initial condition x(0) =

[
−5 −3

]T
, while Fig. 4-2(b) for the 5D

system with initial condition x(0) =
[
3 −7 −3 −1 4

]T
. For both cases, it was assumed

that ||δ||∞ = 0.1 and hence W = 0.12 was set for the ellipsoidal toolbox.

As it can be seen in the plots, for the 2D system the last predicted event in the time horizon of
4 seconds shifts from 3.45 s to 2.15 s, if we decide to use the worst-case value prediction. For
the 5D system including the disturbance in the prediction results in discarding the possibility
to trigger later. Moreover, the further the prediction the bigger the gap between two values of
the triggering condition tends to be. It is something to be expected because at every sampling
time the reachable set get bigger.

Ellipsoids based on matrices Wk are outer-approximations of the reachable set Xw(k) :=
reach(0,∆k, 0, 0,W). It is in our interest to find them as tight as possible to avoid extensive
conservatism in the prediction. The ellipsoidal toolbox that is used to compute Wk offers
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Figure 4-2: Comparison of the predicted value of the triggering condition in a disturbance free
case (3-3) and in the worst-case scenario (4-6) for the 2D (3-13) and 5D systems (3-15).

different options that can be used to initialize the toolbox. Changing parameters, such as tol-
erances or differential equations solver, significantly affects the resulting matrices Wk. Some
settings raise warnings of ellipses resulting from reachability not having their base matrices
positive (semi-)definite. After trying several settings for different systems, it can be reasoned
that on average the best results are obtained for ode solver using Runge-Kutta method with
adaptive step size and second and third order formulae (‘RK23’). It is, however, not guaran-
teed that this solver is the best for a particular system. It is also worth noting that including
disturbances in the prediction does not always yield a smooth trajectory of the triggering
condition. It is dependant on the direction of minimization of the ellipsoid, as well as the
chosen optimization method. Therefore, if there appear jumps in the prediction, it should
not be considered as a bad result, as there are multiple ways one can outer-approximate the
reachable set with an ellipsoid.

For the case with estimating the disturbances the projections method described in section 3-
2-2 cannot be used to speed up online computations. Including disturbances in the prediction
changes the shape of the region from a cone to a hyperboloid. A projection of a hyperboloid
is not a 2D cone as in Fig. 3-3, which is a requirement for this method. As a result, only
sub-sampling can be used to decrease the number of computations online. However, it is
still a powerful method that can reduce computations severalfold. The scheduler’s algorithm
in this case just performs computations x(ti)TQkx(ti) + 2

√
x(ti)TRw(k)x(ti) + c one by one

starting from k = kmax until it finds ktrig, for which the triggering condition is smaller than
0.

4-2 Numerical example

To show how systems perform in a combined loop with the PETC triggering mechanism and
the scheduler, we choose the same examples as in the numerical example of chapter 3. We
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40 Relaxed PETC combined with the scheduler

show it in a comparison to the implementation with the relaxed PETC only.

4-2-1 Disturbance-free case

A simulation in a disturbance-free case of the 2D system (3-13) with the Lyapunov function (3-
14) is presented in Fig. 4-3 and 4-4. The initial condition in this case was x(0) =

[
−5 −3

]T
.

When the scheduler was included in the loop, the number of events in the first 10 seconds
of the simulation was 4, in comparison to 23 when it was not used. Moreover, the number
of online computations performed by the scheduler was small. For the first 3 events it only
had to multiply x(ti)TQkx(ti) once and for the 4th one the number of these multiplications
was 4. The maximum number of multiplications encountered if the simulation was allowed
to continue for longer was 8 out of 20 matrices Qk after sub-sampling. The reason behind
efficient computations online are the data structures precomputed offline presented in the
previous chapter. For the 2D system the angular ranges from the projections were most of
the cases smaller than the whole plane. Together with vector useful, they allowed to skip
most of the quadratic multiplications x(ti)TQkx(ti).

The substantial reduction of communication between the sensor and the controller was at the
expense of a much greater magnitude of the Lyapunov function, what was also reflected in the
behaviour of the states. Although the settling time when using the scheduler was not much
longer than without it, the amplitude of the oscillations of the states was significantly bigger.
One positive aspect of having less events was that the trajectory of the states was smoother.
When using the relaxed PETC only, we can see sharp spikes that in some applications can be
more dangerous than the higher magnitude of the system in a combined loop. What is also
worth noticing is the substantial reduction of the Lyapunov function’s magnitude after the
second trigger in the case with the scheduler. This behaviour shows that the reduced number
of triggering times is still very effective in stabilizing the system.

0 2 4 6 8 10

Time(s)

0

500

1000

1500

2000

2500

V
(x
)

(a) Relaxed PETC

0 2 4 6 8 10

Time(s)

0

500

1000

1500

2000

2500

3000

V
(x
)

(b) Relaxed PETC with a scheduler

Figure 4-3: Evolution of the Lyapunov function (3-14) of the 2D system (3-13).
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Figure 4-4: Evolution of the states of the 2D system (3-13).

Since this 2D system used in this chapter has an oscillatory behaviour, that is substantially
different from the system (2-18) from chapter 2, it is worth checking how other PETC ap-
proaches cope with it. In order to find parameter σ for PETC (7) from [1] and dynamic
PETC from [2], as well as parameter β from [1], LMIs were solved with the same values as
in this numerical example: ∆ = 0.05, λ = 0.8 and ρ = λ/2 = 0.4. Finding β ran without
any problems and the biggest possible value (to minimize the number of transmissions) was
found to be β = 0.99. Solving LMIs in search of both parameters σ, would often result in
’Inaccurate/Solved’ status of the problem. For the dynamic PETC obtained this way value
σ = 0.004 gave reasonable simulation results. However, for PETC (7) from [1] (with state
error as triggering condition), an ’Innacurate/Solved’ value of σ = 0.24 resulted in stable, but
unexpected simulations that are shown in Fig. 4-5. For all the checked initial conditions, the
trajectories of the Lyapunov function were similar, that differed only in the magnitude and
shape of oscillations.

A possible explanation for such behaviour can be that since the states oscillate, the norm
||x − x̂|| also oscillates, but rarely exceeds σ||x||. The system remains stable and with the
right choice of gain σ from GES definition 1-2.1, the convergence rate is ρ = λ/2 = 0.4. The
number of transmissions is small, but the settling time is undesirably long.

Having settling time over 100 seconds does not seem like a fair comparison with other PETC
strategies, that stabilize in time below 6 seconds. Therefore, for the PETC (7) with the
triggering condition based on the state error, the search for parameter σ continued until the
status of the solved problem was accurate. The obtained value was σ = 0.005, which in turn
resulted in transmissions occurring at every sampling instant.

Comparison of the number of transmissions based on 15 different initial conditions for all
the considered PETC strategies are illustrated in Fig. 4-6. For λ = 0.8 the relaxed PETC
with the scheduler had the smallest median of the number of transmissions. However, the
standard deviation for both relaxed PETCs was very big. The number of triggering instants
depended on the initial conditions to a large extent. What was observed is that at times the
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Figure 4-5: Evolution of the Lyapunov function for the 2D oscillatory system (3-13) under the
PETC (7) from [1] with ∆ = 0.05, σ = 0.24, λ = 0.8.
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Figure 4-6: Number of transmissions for system (3-13) with λ = 0.8 under: a) Relaxed PETC,
b) Relaxed PETC with scheduler, c) PETC (7) from [1], d) PETC (14) from [1] and d) dynamic
PETC from [2].

systems was ’trapped’ in a state that required periodic updates of control actions. In this
case, the relaxed PETC would behave similarly to other static PETCs. On the other hand,
the dynamic PETC has a buffer mechanism that prevents from triggering in two consecutive
time instants. Hence, dynamic PETC repetitively achieved the number of transmissions that
was slightly smaller than half of all the sampling instants.
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4-2 Numerical example 43

While solving LMIs, one often encounters numerical problems. Although the dynamic PETC
achieved very good results in the previous experiment, it might not always satisfy the guar-
antees, because the status of the SDP problem was ’Inaccurate/Solved’. Therefore another
comparison is shown in Fig. 4-7, where the result of the LMI solution was accurate. To obtain
such result the convergence rate had to be decreased to λ = 0.4.
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Figure 4-7: Number of transmissions for system (3-13) with λ = 0.4 under: a) Relaxed PETC,
b) Relaxed PETC with scheduler, c) PETC (7) from [1], d) PETC (14) from [1] and d) dynamic
PETC from [2].

Smaller convergence rate did not change much for static PETCs and dynamic PETC, but
significantly reduced the standard deviation of both relaxed PETCs. The bound put on the
Lyapunov function was less strict and the system was not getting stuck in difficult states
often.

Overall, we can conclude that oscillatory systems are more difficult to control with little trans-
missions. Static and dynamic PETCs resulted in practically periodic control, with distinction
in the period. Static PETCs transmitted almost every sampling instant, while dynamic PETC
every second sampling instant. On the other hand, both relaxed PETCs only sometimes re-
quired periodic control with period ∆.

In order to test the relaxed PETCs for systems of higher orders, the second simulation was
done for the 5D system introduced in chapter 3 ((3-15) and (3-16)). The initial condition
was taken as x(0) =

[
3 −7 −3 −1 4

]T
. Fig. 4-8 shows the trajectory of the Lyapunov

function, while Fig. 4-9, of the states for both cases - relaxed PETC only and the combined
control loop with the scheduler. The former case resulted in 39 events, while the latter in
27. Similarly to the 2D system, the simulation with the scheduler experienced much higher
magnitude, but also much smoother trajectories. Here, not only the oscillations are much
sharper when using relaxed PETC only, but they are also much more frequent.
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Out of 40 possible quadratic multiplications after sub-sampling, the scheduler had to perform,
on average, 18.19 per prediction. The maximum number of multiplications encountered in a
long simulation was 19. Overall, the online computations were reduced more than twofold.
However, it had to do with the fact that the prediction horizon was long (8 seconds) and
mostly the second half of matrices Qk had useful angular ranges associated with them (see
Appendix B-2). If the prediction horizon was 4 seconds, only few matrices would be possible
to skip due to the projections. Therefore, it might be beneficial to set longer prediction
horizons, since the number of computations that have to be performed online is comparable
to shorter horizons but the number of events can possibly be reduced even further.
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Figure 4-8: Evolution of the Lyapunov function (3-16) of the 5D system (3-15).
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Figure 4-9: Evolution of the states of the 5D system (3-15).

Concluding, the number of computations performed online can be reduced significantly by
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4-2 Numerical example 45

using precomputed offline data structures. The hypothesis from chapter 3, that it is more
beneficial for systems of smaller dimensions, is confirmed. The 5D system experienced slightly
more than 2 times reduction of quadratic multiplications and it was mostly because the
prediction horizon was sufficiently long. For a shorter horizon the data structures would be
less useful and the reduction would also be smaller. In comparison, for the 2D system only
a quarter of all possible quadratic multiplications were performed on average when searching
for the last event. This would not change much if the prediction horizon was shorter because,
for all the matrices Qk, the precomputed data structures were useful.

4-2-2 Perturbed case

In the presence of disturbances, one can apply the same algorithm for the scheduler and
accept possible high gains from disturbance to states or modify the algorithm according to
section 4-1-2. In this section, the performance of a control loop with a modified scheduler is
presented. Again, we use the same 2D and 5D systems as before and compare the evolution
of their Lyapunov functions under the relaxed PETC and under the relaxed PETC combined
with the scheduler.

Fig. 4-10 shows the Lyapunov function of the 2D system perturbed with δ(t) = 0.1 sin(t).
In the time horizon of 4 seconds, the relaxed PETC triggered 11 times, while adding the
scheduler to the loop reduced this number to 6. The small disturbance that was applied to
the system did not have a big effect on the system trajectories but it changed the scheduler’s
prediction. Instead of predicting 3.4 seconds in the beginning of the simulation, as it was the
case in the disturbance-free case, this time the predicted last event was supposed to occur at
2.2. This was already suggested by Fig. 4-2(a), which used the same initial condition.
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Figure 4-10: Evolution of the Lyapunov function (3-14) of the 2D system (3-13) with including
disturbance in the scheduler’s prediction and δ(t) = 0.1 sin(t).

For the 5D system including disturbance in the prediction resulted in almost identical evo-
lution of the Lyapunov function regardless of the use of the scheduler, as can be seen in
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46 Relaxed PETC combined with the scheduler

Fig. 4-11. One possible cause for that can be the fact that the worst-case value of the trigger-
ing condition seems more conservative in comparison to e.g. the 2D system. In Fig. 4-2(b)
the gap between predictions made in two ways was significant compared to the magnitude of
the reference triggering condition. Moreover, the chosen 5D system does not experience as
big oscillations as e.g. the 2D system. This two aspects combined resulted in the removal of
the future events in the worst-case scenario prediction.
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Figure 4-11: Evolution of the Lyapunov function (3-16) of the 5D system (3-15) with including
disturbance in the scheduler’s prediction and δ(t) = 0.1 sin(t).

Lastly, it is reasonable to see how the control loop with a scheduler performs under dis-
turbances of higher magnitude that significantly changes system trajectories. It should be
investigated how including the disturbances in scheduler’s prediction compares to the algo-
rithm 1 that neglects them.

For the 2D system, we chose a constant disturbance signal δ(t) = −3 for t ≤ 11 and δ(t) = 0
for t > 11. Fig. 4-12 illustrates the trajectory of the Lyapunov function in cases when
disturbances were neglected or included in the scheduler’s prediction for initial condition
x(0) =

[
3 −1

]T
. Worst-case prediction for disturbances of higher magnitude resulted in an

identical trajectory as using relaxed PETC without a scheduler. The conservativeness of the
prediction did not allow the Lyapunov function to exceed the bound and the predicted ttrig
was always associated with the first upcoming event (Fig. 4-12(b)). For this case the overall
number of transmissions was 205. On the other hand, neglecting disturbances resulted in
only 71 events (Fig. 4-12(a)). However, it can be seen that the magnitude of the Lyapunov
function is significantly higher, what directly translates to state trajectories. Moreover, the
exponential bound had to be reset to a much higher value at every triggering instant. This is
related to high performance gains obtained for this implementation in section 4-1 on stability
analysis.

A similar disturbance was applied to the 5D system. Here, δ(t) = −2 for t ≤ 11 and
δ(t) = 0 for t > 11. The initial condition was x(0) =

[
3 −7 −3 −1 4

]T
. The number of

Aleksandra Szymanek Master of Science Thesis



4-2 Numerical example 47

0 5 10 15
Time(s)

0

200

400

600

800

1000

1200

1400

V(
x)

Actual trajectory
Desired convergence

(a) Neglecting disturbances

0 5 10 15
Time(s)

0

100

200

300

400

500

V(
x)

Actual trajectory
Desired convergence

(b) Disturbance included in the prediction

Figure 4-12: Evolution of the Lyapunov function (3-14) of the 2D system (3-13) with different
algorithms for scheduler’s prediction and δ(t) = −3 for t ≤ 11 and δ(t) = 0 for t > 11.

transmissions for the case when the disturbances were neglected was 53 (Fig. 4-13(a)), while
including the disturbances in the prediction (Fig. 4-13(a)) resulted in 532 events out of all 800
sampling times. For the 5D system, the relaxed PETC without the scheduler yielded more
transmissions - 556. The observations for the 5D system are similar to the 2D system, but
here they are even more visible. Neglecting the disturbances caused the exponential bound to
be reset to a higher value every time until the disturbances vanished. Moreover, the trajectory
of the Lyapunov function was very oscillatory, as opposite to fairly smooth trajectory when
the scheduler included the disturbances in the prediction.
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Figure 4-13: Evolution of the Lyapunov function (3-16) of the 5D system (3-15) with different
algorithms for scheduler’s prediction and δ(t) = −2 for t ≤ 11 and δ(t) = 0 for t > 11.
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For both systems, persistent disturbance up to time t = 11 prevented the system to settle
in the origin. Therefore, also the Lyapunov function could not converge to 0 what is clearly
visible on Fig. 4-12(b) and Fig. 4-13(b). In case of including the disturbance in the prediction,
this situation resulted in triggering at every sampling instant until the disturbance vanished.
This is also the main reason of having a significantly greater number of communication in-
stants, when the scheduler includes the disturbances in computing time for granting access
to the network.

The conclusion from the last experiment is that, when choosing the algorithm for the sched-
uler, one has to decide on the main objective of the implementation. Regardless of the
algorithm used inside the scheduler, stability of the system is guaranteed. However, if one’s
goal is to minimize the number of transmissions, a better option might be to neglect the
disturbances. On the other hand, the magnitude of states is then likely to be high and the
performance gains from disturbance to states as well. Therefore, it is important to choose the
prediction horizon wisely, depending on what gains one can agree on. Including the distur-
bances in the prediction keeps the magnitude of system trajectories smaller and the robustness
against disturbances, which is characteristic to ETC implementations, in maintained. Nev-
ertheless, when the magnitude of the disturbances is known to be high, it could make more
sense to use the relaxed PETC without the scheduler instead. The conservativeness of the
prediction often results in almost identical behaviour of the system, but the computational
effort is higher due to the search for ttrig.
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Chapter 5

Conclusions and future work

5-1 Conclusions

This thesis presented a relaxed triggering condition for PETC, that reduces the number
of communication instants compared to existing PETC implementations. The novelty lies in
allowing the Lyapunov function of the continuous-time closed-loop system to increase up to an
exponentially decaying bound. As a result the controlled system stays globally exponentially
stable and exponentially input to state stable. The relaxed PETC is a good solution for NCSs
where the communication resources are scarce. Because the plants require less transmissions,
it allows more loops to be connected by the same network.

For highly congested NCSs, we introduced a ‘last resort’ approach where the number of
communications is reduced further by skipping some of the events. To achieve that, a special
algorithm for a scheduler of NCS was presented that predicts future events if the control
action is not updated. To keep the needed online computations as cheap as possible, some
useful data structures can be computed offline, to speed up scheduler’s tasks in real time.
The algorithm also allows an easier scheduling of event-based PETC because it can estimate
the time when the next event will happen.

One application of this kind of scheduler could be inspired by [33], where the NCS is modelled
as a set of timed game automata (TGAs) and the scheduler can choose if the next update
time should be based on a chosen ETM or occur earlier. Similarly, triggering at the last
detected event could be another possibility of our scheduler. Depending on other control
loops in the network and their expected triggering times, the scheduler could decide that, if
there is a chance for communication conflict, one loop can wait until the next event. This
way, a communication conflict could be avoided and all the loops would maintain stability
without the necessity of triggering earlier.

For both versions of the relaxed PETC, several modifications were presented that aim at
improving the performance of the closed loop system, by introducing trade-offs. Depending
on the desired objective, one can reduce the oscillations of the system trajectories or include
the disturbances in the scheduler’s prediction at the expense of more transmissions. Finally,
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we gave suggestions on when and how to apply the introduced modification and what types
of systems might benefit from this kind of PETC implementations the most.

5-2 Recommendations for future work

As far as recommended future research is concerned, there are several aspects of the relaxed
PETC that are open for improvement. First of all, better bounds could be found for GES
and EISS guarantees of the relaxed PETC. Experimental results suggest that currently used
bounds are conservative. Furthermore, in order to reduce the oscillations in system trajecto-
ries, other classes of Lyapunov functions could be studied.

Although the oscillations of state trajectories tend to be reduced for greater values of the
imposed decay rate λ, the number of transmissions for the relaxed PETC with the scheduler
seems to be larger for bigger λ. This poses another question, how to mitigate the contrary
effects of increasing the decay rate. It might be a good idea to look into dynamic PETC and
incorporate the idea of the buffer to the relaxed PETC. This could potentially prevent from
triggering in consecutive sampling instants and resolve the issue of getting stuck in ’difficult
states’ (as in chapter 4) or in case of disturbances (as in chapter 2).

Scheduler’s algorithm for predicting future events also has room for future work. When
computing projections, the angular ranges could be found using a smarter approach to line
search than fixed step. In addition, currently no way of computing projections of shapes
different than cones has been presented and therefore this is another direction for further
research.

Scheduler’s predictions neglect the behaviour of the system until the last predicted event in a
given time horizon. This poses yet another topic for future work, that focuses on incorporating
the values of the triggering condition throughout the whole time horizon, without increasing
the number of computations online. Lastly, including disturbances in the prediction results
in numerical issues at times, what requires further investigation on the source of the problem
and possible solutions.
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Appendix A

Proofs

A-1 Proof of Theorem 2.1

Proof. Let us start by defining the monitored Lyapunov function V (t) := x(t)TPx(t), the
exponentially decaying continuous-time bound S(ti + τ) := V (ti)e−λτ and sampling times
within one inter-event time rn = ti+n∆, n ∈ N0, rn ∈ [ti, ti+1). At discrete sampling instants
the bound given by our PETC implementation is equal to S(t), namely η(tk)T η(rn) = S(rn).
Therefore, in the absence of disturbances, the monitored Lypaunov function satisfies V (rn) ≤
S(rn). The behavior is thus the same as the STC’s from [25], and so is this proof, except for a
small modification. To bound the evolution of the Lyapunov function in between the samples,
let us start with finding the derivative V̇ for the PETC system ẋ = Apx(t) +BpKx(ti). For
t ∈ [ti, ti+1], we have:

V̇ (t) = v(t)TGv(t), (A-1)

v(t) =
[(
P

1
2x(t)

)T (
P

1
2x(ti)

)T ]T ,
G =

[
P

1
2ApP−

1
2 + (P

1
2ApP−

1
2 )T P

1
2BpKP−

1
2

(P
1
2BpKP−

1
2 )T 0

]
. (A-2)

Matrix G is symmetric and hence orthogonally diagonalizable. Furthermore, it holds that

µ = λm(G) < 0 and ω = λM (G) > 0. To prove it, let us write G =
[
H D
DT 0

]
, with

D 6= 0. According to the Schur complement condition, G � 0 if and only if H � 0 and
G/H = −DTH−1D � 0. If we assume that H � 0, then also H−1 � 0. If so, there exists a
non-singular matrix M such that H−1 = MMT . We can rewrite DTH−1D = DTMMTD =
(MTD)TMTD = NTN , which implies (semi-)positive definiteness for any N = MTD. That
gives us H � 0 and G/H � 0, so G is not (semi-)positive definite. Similarly, we can show
that G is not (semi-)negative definite (by applying the same reasoning for −G). Hence, G
must have at least one positive and at least one negative eigenvalue.
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Since v(t)T v(t) = V (t) + V (ti), (A-1) can be used to lower and upper bound the derivative
of the monitored Lyapunov function.

µ
(
V (t) + V (ti)

)
≤ V̇ (t) ≤ ω

(
V (t) + V (ti)

)
, t ∈ [ti, ti+1). (A-3)

By the example of the right hand side of inequality (A-3), it will be shown how to integrate
it in order to obtain a bound on V (t). Based on the exact solution for LTI systems, for
t+ s ∈ [ti, ti+1):

V (t+ s) ≤ eωsV (t) +
∫ t+s

t
eω(t+s−η)dη ωV (ti)

With the change of variables and limits as follows:

r = t+ s− η,
dr = −dη,
η = t→ r = s,

η = t+ s→ r = 0

the solution is

V (t+ s) ≤ eωsV (t)−
∫ 0

s
eωrdrωV (ti) = eωsV (t) +

∫ s

0
eωrdrωV (ti) =

eωsV (t) + 1
ω

(
eωs − eω0)ωV (ti) = eωsV (t) +

(
eωs − 1

)
V (ti).

Following the same steps for the left hand side of (A-3), we can bound V (t) itself by:

V (t+ s) ≤ eωsV (t) + V (ti)(eωs − 1), (A-4a)
V (t+ s) ≥ eµsV (t) + V (ti)(eµs − 1), (A-4b)

for t+ s ∈ [ti, ti+1). We know the values of the Lypaunov function at sampling instants so we
use them to obtain the bounds on V (rn + s), when s ∈ [0,∆). From the upper bound (A-4a),
we have

V (rn + s) ≤ eωsV (rn) + V (ti)
(
eωs − 1

)
.

The lower bound (A-4b) can be transformed as follows:

V (rn + s) ≥ eµsV (rn) + V (ti)
(
eµs − 1

)
/e−µs

V (rn + s)e−µs ≥ V (rn) + V (ti)
(
1− e−µs

)
V (rn) ≤ e−µsV (rn + s) + V (ti)

(
e−µs − 1

)
V (rn + h) ≤ e−µsV (rn + h+ s) + V (ti)

(
e−µs − 1

)
/s = ∆− h

V (rn + h) ≤ eµ(h−∆)V (rn + ∆) + V (ti)
(
eµ(h−∆) − 1

)
To have the same variable, we substitute back h = s:

V (rn + s) ≤ eµ(s−∆)V (rn+1) + V (ti)
(
eµ(s−∆) − 1

)
Putting the two bounds together, one obtains

V (rn + s) ≤
{
eωsV (rn) + V (ti)

(
eωs − 1

)
, s ∈ [0, s∗],

eµ(s−∆)V (rn+1) + V (ti)
(
eµ(s−∆) − 1

)
, s ∈ [s∗,∆).

(A-5)
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where s∗ is the point where the two branches meet. Since the first bound is increasing and
the second decreasing in s, V (rn + s∗) is the maximum of the Lyapunov function between rn
and rn+1. We can find s∗ by equating the two bounds, which results in:

s∗ = 1
ω − µ

log
(
V (rn+1) + V (ti)
V (rn) + V (ti)

)
+ µ∆
µ− ω

We substitute back the obtained expression for s∗ to one of the bounds on V (rn+s) to obtain

V (rn + s∗) ≤ −V (ti) + e
ωµ∆
µ−ω

((
V (rn) + V (ti)

) µ
µ−ω

(
V (rn+1) + V (ti)

) −ω
µ−ω

)
.

Using the fact that V (rn) ≤ S(rn) for all rn ∈ N0 and dropping the first term, we have

V (rn + s∗) ≤ e
ωµ∆
µ−ω

((
S(rn) + S(ti)

) µ
µ−ω

(
S(rn+1) + S(ti)

) −ω
µ−ω

)
.

Because S(rn) = eλs
∗
S(rn+s∗), S(rn+1) = eλ(s∗−∆)S(rn+s∗) and S(ti) = eλ(n∆+s∗)S(rn+s∗),

and due to the fact that µ
µ−ω + −ω

µ−ω = 1, we can factor out S(rn + s∗) to obtain V (rn + s∗) ≤
g̃(∆, n)S(rn + s∗) with

g̃(∆, n) = e
ωµ∆
µ−ω

(
eλs

∗ + eλ(n∆+s∗)) µ
µ−ω ·

(
eλ(s∗−∆) + eλ(n∆+s∗)) −ω

µ−ω .

To make the above formula independent of time, we bound s∗ ≤ ∆ and n = Nmax − 1, since
the formula is increasing in both parameters:

g̃(∆, Nmax − 1) ≤ e
ωµ∆
µ−ω

(
eλ∆ + eλNmax∆) µ

µ−ω ·
(
1 + eλNmax∆) −ω

µ−ω = g(∆, Nmax). (A-6)

V (rn + s∗) ≤ g(∆, Nmax)S(rn + s∗) holds for all n ∈ [0, Nmax], so we can write

V (ti + τ) ≤ g(∆, Nmax)S(ti + τ),

V (ti + τ) ≤ g(∆, Nmax)V (ti)e−λτ .

Now we can use the fact that our PETC implementation yields V (ti+1) ≤ V (ti)e−λτi to obtain

V (ti + τ) ≤ g(∆,Nmax)V (ti−1)e−λτi−1e−λτ ≤ g(∆, Nmax)V (t0)e−λ(τ0+..+τi−1)+τ =
g(∆, Nmax)V (t0)e−λ(ti+τ)V (t) ≤ g(∆, Nmax)V (t0)e−λt,

where we substituted t = ti + τ . Finally, using bounds

λm(P )x(t)Tx(t) ≤ V (t) ≤ λM (P )x(t)Tx(t) (A-7)

we arrive at

|x(t)| ≤
(
λM (P )
λm(P )

) 1
2 (
g(∆, Nmax)

) 1
2 |x(t0)|e−

1
2λt. (A-8)

Without loss of generality, we choose t0 = 0. Then (A-8) proves GES with

σ =
(
λM (P )
λm(P )

) 1
2 (
g(∆, Nmax)

) 1
2 , ρ = 1

2λ. (A-9)
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A-2 Proof of Theorem 2.2

Before showing the proof of Theorem 2.2, we introduce two lemmas.

Lemma A.1 ( [25, Lemma A.1]). Consider system (1-1) and a positive definite function
Ṽ (x) = (xTPx)

1
2 , P � 0. For any given 0 ≤ T <∞ the following bound holds:

Ṽ (xx0uδ(t)) ≤ Ṽ (xx0u0(t)) + γP,T (||δ||∞), ∀t ∈ [0, T ],

γP,T (s) := s
λM (P )

λ
1
2
m(P )

∫ T

0
|eAprE|dr.

Lemma A.2. The Lyapunov function Ṽ (x) = (xTPx)
1
2 , P � 0 of system (1-1) under the

proposed PETC implementation, with λ < λ0, ∆ < τmin and δ ∈ L∞, satisfies

Ṽ (ti+1) ≤ Ṽ (ti)e−
1
2λτi + γP,∆(||δ||∞).

Proof. From our PETC implementation, if the inter-event time is τi = ti+1 − ti = ni∆, then
for the case if δ = 0 it holds that

V (x(rn)) ≤ V (x(ti))e−λn∆,

Ṽ (x(rn)) ≤ Ṽ (x(ti))e−
1
2λn∆, (A-10)

for all n = 0, ..., ni. When bounded disturbances are present (A-10) holds only for n =
0, ..., ni−1, due to a possible worst-case scenario when ζ(ni∆)TQ1ζ(ni∆) > 0. It corresponds
to the situation when at time rni−1 one-step-ahead prediction of the Lyapunov function would
still be below the bound, but due to disturbances at rni it exceeded the bound. Using Lemma
A.1 we can write it as

Ṽ (xx(rni−1 )uδ(rni)) ≤ Ṽ (xx(rni−1 )u0(rni)) + γP,∆(||δ||∞).

The left-hand side becomes Ṽ (ti+1) and on the right-hand side we can use (A-10) to bound the
prediction made without taking into account the disturbances. That concludes the proof.

With that we can proceed to the proof of Theorem 2.2.

Proof. We start by iterating Lemma A.2.

Ṽ (ti) ≤ e−
1
2λ(ti−t0)Ṽ (t0) + γP,∆(||δ||∞)

i−1∑
k=0

e−
1
2λτmink

≤ e−
1
2λ(ti−t0)Ṽ (t0) + γP,∆(||δ||∞)

∞∑
k=0

e−
1
2λ∆k

≤ e−
1
2λ(ti−t0)Ṽ (t0) + γP,∆(||δ||∞) 1

1− e−
1
2λ∆

,

where we used the fact that τmin > ∆. Without loss of generality, we choose t0 = 0:

Ṽ (ti) ≤ Ṽ (0)e−
1
2λti +

γP,∆(||δ||∞)
1− e−

1
2λ∆

. (A-11)
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From GES of the unperturbed case, we have

Ṽ (xx(rn)u0(rn + s)) ≤ g(∆, Nmax)
1
2 Ṽ (ti)e−

1
2λ(n∆+s). (A-12)

for all s ∈ [0,∆]. In PETC we make only a one-step-ahead prediction and use the true value
of the Lyapunov function at rn to predict rn+1. After the triggering condition is evaluated
the prediction is discarded. Using Lemma A.1 and choosing x(rn) as the initial condition for
predicting the state at rn + s, we can write:

Ṽ (xx(rn)uδ(rn + s)) ≤ Ṽ (xx(rn)u0(rn + s)) + γP,∆(||δ||∞), (A-13)

for all s ∈ [0,∆]. After substituting (A-12) in (A-13) we obtain

Ṽ (xx(rn)uδ(rn + s)) ≤ g(∆, Nmax)
1
2 Ṽ (ti)e−

1
2λ(n∆+s) + γP,∆(||δ||∞), ∀s ∈ [0,∆].

The above holds for all n ∈ [0, ..., Nmax] which, with τ = n∆ + s, leads to

Ṽ (x(ti + τ)) ≤ g(∆, Nmax)
1
2 Ṽ (ti)e−

1
2λτ + γP,∆(||δ||∞), (A-14)

where the extensive subscripts are dropped, since everything involves disturbance. Finally,
we substitute (A-11) to (A-14), arriving at

Ṽ (x(ti + τ)) ≤ g(∆, Nmax)
1
2 Ṽ (t0)e−

1
2λ(ti+τ) + γP,∆(||δ||∞)

(
g(∆, Nmax)

1
2

1− e−
1
2λ∆

e−
1
2λτ + 1

)
.

Replacing ti + τ = t and bounding e−
1
2λτ ≤ 1, we get

Ṽ (x(t)) ≤ g(∆, Nmax)
1
2 Ṽ (t0)e−

1
2λt + γP,∆(||δ||∞)

(
g(∆, Nmax)

1
2

1− e−
1
2λ∆

+ 1
)
.

Using the following bound:

λ
1
2
m(P )|x| ≤ Ṽ (x) ≤ λ

1
2
M (P )|x|,

one can bound the evolution of states as follows:

|x(t)| ≤ σ|x(0)|e−
1
2λt + λ

− 1
2

m (P )γP,∆(||δ||∞)
(
g(∆, Nmax)

1
2

1− e−
1
2λ∆

+ 1
)
,

which proves that the system is EISS.

A-3 Proof of Theorem 4.1

Proof. We want to bound the Lyapunov function V (t) by an exponentially decaying function,
for which we can use derived before bounds (A-4a) and (A-4b). As a result, in the interval
ti + s ∈ [ti, ti+1), we can bound

V (ti + s) ≤
{

(2eωs − 1)V (ti), s ∈ [0, s∗],
eµ(s−τi)V (tn+1) + V (ti)

(
eµ(s−τi) − 1

)
, s ∈ [s∗, τi),

(A-15)
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where s∗ is the point where the two bounds meet. It is also the maximum for the bound of
V (ti + s) for s ∈ [0, τi). Intuitively, we can think of it as having a control loop discretized
with sampling time τi, because the scheduler does not know anything about the evolution of
the Lyapunov function in between update times ti and ti+1. Therefore in (A-5) we substitute
rn ← ti, rn+1 ← ti+1 and ∆← τi to get (A-15). To obtain the worst-case scenario and bounds
that work for any case, we notice that τi ≤ pkmax∆ = τmax. After equating bounds (A-15)
and applying a few logarithm properties, we find that

s∗ = 1
ω − µ

(
log

(
V (ti+1) + V (ti)

2V (ti)

))
+ µτmax
µ− ω

. (A-16)

We can now substitute (A-16) into one of the bounds (A-15):

V (ti + s∗) ≤ e
ωµτmax
µ−ω

((
V (ti+1) + V (ti)

) −ω
µ−ω

(
2V (ti)

) µ
µ−ω

)
− V (ti)

By dropping the last term, we obtain an expression that is monotonically increasing on V (ti+1)
and V (ti). Having in mind that for a properly chosen ∆ ≤ τmin, the PETC implementation
in a disturbance-free case yields V (ti+1) ≤ S(ti + τi) even with the use of the scheduler, we
can write:

V (ti + s∗) ≤ e
ωµτmax
µ−ω

((
S(ti+1) + S(ti)

) −ω
µ−ω

(
2S(ti)

) µ
µ−ω

)
.

Using the fact that S(ti) = eλs
∗
S(ti + s∗) and S(ti+1) = eλ(s∗−τmax)S(ti + s∗), the bound can

be transformed to

V (ti + s∗) ≤ e
ωµτmax
µ−ω

((
eλ(s∗−τmax) + eλs

∗) −ω
µ−ω

(
2eλs∗) µ

µ−ω

)
S(ti + s∗). (A-17)

Because V (ti+1) is always smaller than V (ti) when no disturbance is present, log
(
V (ti+1)+V (ti)

2V (ti)

)
≤ 0

and (A-16) can be ultimately bounded with:

s∗ ≤ µτmax
µ− ω

.

With that, the bound (A-17) can be written in the form V (ti + s∗) ≤ gs(τmax)S(ti + s∗) with

gs(τmax) = e
ωµτmax
µ−ω

((
e
λωτmax
µ−ω + e

λµτmax
µ−ω

) −ω
µ−ω

(
2e

λµτmax
µ−ω

) µ
µ−ω

)
. (A-18)

Since S(ti + s∗) = V (ti)e−λs
∗ , we have

V (ti + s∗) ≤ gs(τmax)V (ti)e−λs
∗
.

Substituting iteratively V (ti+1) ≤ V (ti)e−λτi to the above inequality, the bound becomes

V (t) ≤ gs(τmax)V (0)e−λt

where we substituted t = ti + s∗ and t0 = 0. Finally, using (A-7), we arrive at

|x(t)| ≤
(
λM (P )
λm(P )

) 1
2
(gs(τmax))

1
2 |x(0)|e−

1
2λt,

which concludes the proof.
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A-4 Proof of Theorem 4.2

Proof. Since the end result of implementing a scheduler is suppressing communication between
the plant and the controller similarly to STC, the proof is analogous to the one presented in
[25]. From Lemma A.1, we have

Ṽ (xx0uδ(ti+1)) ≤ Ṽ (xx0u0(ti+1)) + γP,τi(||δ||∞),

and from the PETC implementation with the scheduler:

V (xx0u0(ti+1)) ≤ V (xx0u0(ti))e−λτi ,

Ṽ (xx0u0(ti+1)) ≤ Ṽ (xx0u0(ti))e−
1
2λτi ,

for i ∈ N0, which can be together combined into:

Ṽ (ti+1) ≤ Ṽ (ti)e−
1
2λτi + γP,τi(||δ||∞).

We iterate this inequality, similarly to the beginning of the proof of Theorem 2.2, to arrive at

Ṽ (ti) ≤ Ṽ (0)e−
1
2λti + γP,τmax(||δ||∞)

1− e−
1
2λ∆

(A-19)

where we used the fact that γP,τi ≤ γP,τmax . To find a bound that is valid not only at discrete
time instants ti, we use GES property from Theorem 4.1:

Ṽ (ti + τ) ≤ (gs(τmax))
1
2 Ṽ (ti)e−

1
2λτ , ∀τ ∈ [0, τmax].

This expression can replace the disturbance-free term in Lemma A.1 written for time instant
ti + τ as follows:

Ṽ (xx0uδ(ti + τ)) ≤ (gs(τmax))
1
2 Ṽ (ti)e−

1
2λτ + γP,τmax(||δ||∞)

The final steps to obtain a bound on Ṽ in a perturbed case is to substitute (A-19) into the
previous inequality, set ti + τ = t and use the fact that e−

1
2λτ ≤ 1:

Ṽ (t) ≤ (gs(τmax))
1
2 Ṽ (0)e−

1
2λt + γP,τmax(||δ||∞)

((gs(τmax))
1
2

1− e−
1
2λ∆

+ 1
)
.

Lastly, we use bounds (A-7) to bound the norm of system’s trajectories

|x(t)| ≤
(
λM (P )
λm(P )

) 1
2
(gs(τmax))

1
2 |x0|e−

1
2λt + γs(||δ||∞)

with γs(||δ||∞) as in Theorem 4.2.
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Appendix B

Predecessors and projections

This appendix contains sets of predecessors and angular regions of projections computed for
systems used in chapter 3 and 4.

B-1 2D system

B-1-1 Predecessors

A set of predecessors for every Qk in a form k : set. {} denotes an empty set. The sets were
computed as described in section 3-2-3.

1-6: {},
7: {6},
8: {6},
9: {6},
10: {6},
11: {6},
12: {6},
13: {6, 12},
14: {6, 12, 13},
15: {6, 12, 13},
16: {6, 12, 13},
17: {6, 12, 13},
18: {6, 12, 13},
19: {6, 12, 13, 18},
20: {6, 12, 13, 18, 19}.
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B-1-2 Ranges

Angular regions in radians for θ1 resulting from the projections method described in section
3-2-2 for every matrix Qk. The notation is k : [θ∗1,k, θ̄∗1,k].

1 : [1 .0367255756846323 , 2 .419026343264145 ] ,
2 : [0 .5026548245743668 , 2 .4818581963359403 ] ,
3 : [0 .8796459430051425 , 2 .5761059759436336 ] ,
4 : [ 1 .539380400259 , 3 .141592653589793 ] ,
5 : [ 0 , 3 .141592653589793 ] ,
6 : [ 0 , 4 .385380947269368e−15] ,
7 : [ 1 .38230076757951 , 1 .6650441064025963 ] ,
8 : [0 .12566370614359174 , 2 .6075219024795313 ] ,
9 : [0 .31415926535897926 , 2 .7017696820872246 ] ,
10 : [ 0 , 3 .141592653589793 ] ,
11 : [0 .15707963267948966 , 1 .2880529879718206 ] ,
12 : [ 0 , 4 .385380947269368e−15] ,
13 : [ 0 , 4 .385380947269368e−15] ,
14 : [0 .031415926535897934 , 1 .2252211349000246 ] ,
15 : [2 .70176968208722 , 3 .1101767270538954 ] ,
16 : [2 .733185608623118 , 3 .1101767270538954 ] ,
17 : [0 .06283185307179587 , 0 .8168140899333509 ] ,
18 : [ 0 , 4 .385380947269368e−15] ,
19 : [ 0 , 4 .385380947269368e−15] ,
20 : [1 .0995574287564283 , 1 .4451326206513104 ] .

B-2 5D system

B-2-1 Predecessors

For this 5D system most of the matricesQk do not have any predecessors. The only non-empty
sets resulting from computations described in section 3-2-3 are:

1-33: {},
34: {33},
34: {33, 34},
35: {33, 34},
36: {33, 34},
37: {33, 34},
38: {33, 34},
39: {33, 34}˙

B-2-2 Ranges

Angular regions in radians for θ1 − θ5 resulting from the projections method described in
section 3-2-2. The notation is k : {[θ∗i,k, θ̄∗i,k], i ∈ {1, .., 4}}.
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1−13: { [ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

14 : { [ 0 , 3 .141592653589793 ] ,
[ 0 .2199114857512855 , 1 .8221237390820861 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

15 : { [ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

16 : { [ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .0787608005179976 ]} ,

17 : { [0 .43982297150257094 , 0 .5654866776461671 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .288052987971816 , 1 .6650441064025963 ] ,
[ 0 , 3 .141592653589793 ]} ,

18 : { [0 .47123889803846886 , 0 .691150383789759 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .2566370614359181 , 1 .8535396656179841 ] ,
[ 3 .0473448739820954 , 3 .141592653589793 ]} ,

19 : { [ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

20 : { [0 .2199114857512855 , 0 .5969026041820651 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

21 : { [0 .5026548245743668 , 0 .5969026041820651 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .0053096491487343 , 1 .6964600329384942 ] ,
[ 0 , 3 .141592653589793 ]} ,

22 : { [0 .5026548245743668 , 0 .6283185307179631 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .2566370614359181 , 1 .7592918860102902 ] ,
[ 0 , 3 .141592653589793 ]} ,

23 : { [0 .5026548245743668 , 0 .6283185307179631 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .350884841043612 , 1 .8221237390820861 ] ,
[ 2 .9845130209103 , 3 .141592653589793 ]} ,

24 : { [0 .43982297150257094 , 0 .5654866776461671 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .445132620651306 , 1 .91637151868978 ] ,
[ 2 .953097094374402 , 3 .1101767270538954 ]} ,

25 : { [0 .06283185307179587 , 0 .5026548245743712 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .507964473723102 , 2 .0420352248333717 ] ,
[ 2 .8902652413026066 , 3 .0787608005179976 ]} ,
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26 : { [ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .476548547187204 , 2 .3561944901923493 ] ,
[ 2 .7646015351590156 , 3 .0787608005179976 ]} ,

27 : { [ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

28 : { [0 .3769911184307751 , 0 .691150383789759 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

29 : { [0 .5654866776461628 , 0 .6283185307179631 ] ,
[ 0 .8796459430051425 , 1 .1309733552923307 ] ,
[ 0 .408407044966673 , 0 .9424777960769428 ] ,
[ 0 , 3 .141592653589793 ]} ,

30 : { [0 .5654866776461628 , 0 .659734457253861 ] ,
[ 0 .7539822368615506 , 1 .1938052083641266 ] ,
[ 0 .2199114857512855 , 1 .0681415022205347 ] ,
[ 0 , 0 .31415926535898364 ]} ,

31 : { [0 .5969026041820608 , 0 .8168140899333509 ] ,
[ 0 .7225663103256527 , 1 .2880529879718206 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 0 , 3 .141592653589793 ]} ,

32 : { [0 .3455751918948772 , 0 .4398229715025753 ] ,
[ 2 .1362830044410606 , 2 .9530970943744066 ] ,
[ 1 .6022122533307959 , 1 .8535396656179841 ] ,
[ 0 , 3 .141592653589793 ]} ,

33 : { [ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15]} ,

34 : { [ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15]} ,

35 : { [ 0 , 3 .141592653589793 ] ,
[ 1 .2566370614359181 , 1 .6336281798666983 ] ,
[ 0 , 3 .141592653589793 ] ,
[0 .31415926535897926 , 2 .8588493147667133 ]} ,

36 : { [0 .43982297150257094 , 0 .5026548245743712 ] ,
[0 .47123889803846886 , 0 .8482300164692489 ] ,
[ 1 .1623892818282242 , 1 .4137166941154125 ] ,
[ 0 , 3 .141592653589793 ]} ,

37 : { [0 .47123889803846886 , 0 .5340707511102691 ] ,
[ 0 .0942477796076938 , 0 .47123889803847324 ] ,
[ 1 .413716694115408 , 1 .5393804002590044 ] ,
[ 3 .078760800517993 , 3 .141592653589793 ]} ,

38 : { [0 .5026548245743668 , 0 .5654866776461671 ] ,
[ 0 , 3 .141592653589793 ] ,
[ 1 .507964473723102 , 1 .6336281798666983 ] ,
[ 3 .0473448739820954 , 3 .1101767270538954 ]} ,

39 : { [0 .5026548245743668 , 0 .5654866776461671 ] ,
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[ 2 .6703537555513224 , 2 .890265241302611 ] ,
[ 1 .6336281798666938 , 1 .6964600329384942 ] ,
[ 3 .0159289474461977 , 3 .0473448739821 ]} ,

40 : { [ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15] ,
[ 0 , 4 .385380947269368e−15]} .
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List of Acronyms

CETC continuous event-triggered control

EISS exponential input-to-state stability

ETC event-triggered control

ETM event-triggered mechanism

LMI linear matrix inequality

LTI linear time-invariant

NCS networked control system

PETC periodic event-triggered control

STC self-triggered control

SDP semi-definite programming

TGA timed game automaton

List of Symbols

∆ Sampling interval
δ Disturbance signal
û Control input applied to the plant
x̂ State measurement available to the controller
λ Desired decay rate of the Lyapunov function
λ0 Decay rate of the Lyapunov function for the continuous-time closed-loop system
C Triggering condition
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Rs Conic region
U Set of possible control inputs
W Set of possible disturbances
ρ Convergence rate of the system
τi Inter-event time
τmin Minimum inter-event time
θi Angular coordinate
{ti}i∈N Triggering times
{tk}k∈N Periodic sampling times
p Sub-sampling factor
x Current state

Aleksandra Szymanek Master of Science Thesis



Index

C
complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 31
cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D
decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
dynamic triggering. . . . . . . . . . . . . . . . . . . . . . .7

E
EISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

G
GES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

L
LMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8
Lyapunov function . . . . . . . . . . . . . . . . . . . . . . . 6

N
NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 35

O
oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 15

P
PETC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

S
S-procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 3, 30, 35
state-space partitioing . . . . . . . . . . . . . . . . . . 22

T
triggering condition . . . . . . . . . . . . . . . . . . . 6, 8

Master of Science Thesis Aleksandra Szymanek


	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Notation
	Problem formulation

	A relaxed triggering condition for PETC
	Periodic event-triggered control
	Sampling strategy
	Existing triggering conditions
	Dynamic PETC

	Relaxed triggering condition
	Stability analysis
	Numerical example

	Approaches to reduce oscillations
	Higher decay rates
	Performance check


	Predicting future events
	State dependent sampling
	Approaches to reduce computational effort
	Sub-sampling
	Projections
	Predecessors

	The algorithm
	Offline computations
	Online computations

	Numerical example

	Relaxed PETC combined with the scheduler
	Stability analysis
	Guarantees
	Disturbances in the prediction

	Numerical example
	Disturbance-free case
	Perturbed case


	Conclusions and future work
	Conclusions
	Recommendations for future work


	Appendices
	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Predecessors and projections
	2D system
	Predecessors
	Ranges

	5D system
	Predecessors
	Ranges



	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

	Index


