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Abstract

In sequential decision-making, Multi-armed Ban-
dit (MAB) models the dilemma of exploration ver-
sus exploitation. The problem is commonly situ-
ated in an unknown environment where a player it-
eratively selects one action from a set of predeter-
mined choices. The player’s choices can be evalu-
ated by comparing observed rewards after each de-
cision to the highest one obtainable from the set
of possible actions. The goal is to minimize the
measure of regret of not choosing the optimal ac-
tion every time. Intuitively, one might think of ex-
ploring all possible options first and then select-
ing the one for which the highest rewards were
observed. However, it is difficult to model this
behaviour when the specifications of the environ-
ment setting are not known or when it changes in
time. Some classifications of environments exist
and can be used to decide which approach can be
used to model the MAB problem. The literature
provides various algorithms used to model differ-
ent MAB problems but lacks comparisons between
proposed algorithms across the domains they aim to
solve. To fill this gap, we want to focus on several
Multi-armed Bandit algorithms (policies) and com-
pare their effectiveness and optimality in different
environments. This research focuses on a class of
environments with a sparse reward function, where
the reward depends on the action-specific contex-
tual information and some sparse vector that dic-
tates which features are considered. Four MAB
algorithms were selected, each developed to solve
the problem in a different environment. The com-
parison was made in a series of experiments to ex-
plore how sparsity affects their performance. The
experiments conclude that the advantage of using
sparsity-adopted algorithms depends on both spar-
sity and the environment setting, but increasing the
sparsity helps achieve better results than traditional
methods.

1 Introduction
Multi-armed bandit problems were first studied by H. Rob-
bins in 1952. The fundamentals were introduced in Some
aspects of the sequential design of experiments. In such ex-
periments, the size and composition of the samples are not
determined beforehand but measured as a function of the ob-
servations performed during the experiment [1]. Since then,
multiple approaches have been proposed to model the explo-
ration versus exploitation dilemma.

Customarily, MAB problems can be described as a sequen-
tial game set in an environment unknown to the player who
has to iteratively choose an action (arm) at a given time At

based on some observed features of a finite number of arms.
In each iteration as a result of choosing At, some reward Xt is
observed. The algorithm intends to maximize the cumulative
reward over n iterations =

∑n
t=1 Xt.[2]

In exploring Multi-armed Bandit (MAB) problems, under-
standing the reward generation framework is crucial, as it in-
fluences the selection strategies employed by the algorithms.
In the case of Stochastic Bandits, the reward is drawn from
an unknown, fixed, arm-specific distribution. This setting can
be used to model a real-life scenario of repetitive gambling
on a slot machine. Adversaral Bandits describe a dynamic
environment where rewards, possibly influenced by external
factors such as player’s actions, are determined by an arm-
specific function of time (fa : N → [0, 1]). This setting
can be used to simulate environments where players’ actions
affect the rewards observed in the future. The extension to
the standard MAB is the class of problems known as Linear
Contextual Bandits, which incorporate additional contextual
information about each arm in the form of feature vectors. In
this environment, the reward is a function of the inner product
of the observed context. This setting is applicable in systems
like personalized recommendations where decision-making is
enhanced by contextual information observed. [3].

This work focuses on one specific environment extending
Contextual MAB, where the reward is described as a fixed
sparse reward function with noisy observations and where the
context is i.i.d. In this environment, each arm A has a context
vector associated with it CA ∈ Rd drawn from an unknown
distribution. The expected reward is expressed as a function
µ of the inner product C⊤

Aβ∗ for a fixed and unknown vector
β∗ ∈ Rd. The unknown β∗ is sparse, meaning that the num-
ber of non-zero coefficients is much less than the dimension
of the vector. Moreover, in such an environment, each re-
ward observation has some zero-mean noise with a constant
variance associated with it.

The sparse environment describes many real-world prob-
lems, such as reinforcement learning or recommender sys-
tems. In these environments, contextual information can con-
tain, for instance, the history of previous user interaction with
the system, user preferences, or representation of cookies
gathered. These feature representations can be multidimen-
sional, but only a small subset of the features is relevant to the
reward obtained. Non-sparse environments can evolve into
sparse ones over time when more data is gathered and used as
contextual information, but it does not affect the reward deter-
mination. A solution that was determined to perform well in
a non-sparse environment with low-dimensional feature rep-
resentation can perform worse in an environment with higher
sparsity as it cannot assess which features are taken into ac-
count when determining the reward as well as the sparsity-
adopted solution.

This encourages the exploration of sparsity-adapted MAB
algorithms, which are created to leverage the nature of the re-
ward function to increase effectiveness. This work aims to
answer the question: Does increasing the level of sparsity en-
hance the advantage of sparsity-adapted Multi-Armed Ban-
dit algorithms? By investigating this question, we can refine
our understanding of MAB algorithms in a sparse environ-
ment, enabling us to choose the most adequate algorithm in
the environment we want to explore. We will focus on four
algorithms designed to operate in different experiment set-
tings and compare them with each other in the environment
with fixed sparse reward function and i.i.d context. The exact
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algorithms are as follows:

1. Stochastic bandits: Upper Confidence Bound Algorithm
(UCB): section 7.1, Algorithm 3 in [2],

2. Adversarial bandits: Exponential-weight algorithm for
Exploration and Exploitation (EXP3): [4],

3. Linear contextual bandits: Algorithm 1 in [5],

4. Sparse bandits: namely Sparsity-Agnostic Lasso Algo-
rithm [6],

The later sections briefly introduce the algorithms and their
theoretical behaviour. This is followed by exploring each al-
gorithm in a series of experiments described in the method-
ology section. Then, the results of the experiments are dis-
cussed, followed by a thorough analysis of the findings. Fi-
nally, concluding the paper, we summarize our contributions,
discuss implications, and suggest directions for future re-
search.

2 Methodology, Background, Problem
Description

This section describes each algorithm in detail and introduces
our experiment setting, explaining how the research question
will be answered.

2.1 Formal Problem Description
Multi-armed contextual bandits are characterized by the num-
ber of arms - K - where each arm is denoted as i with
1 ≤ i ≤ K. The number of iterations is called a horizon;
denoted as T. At any given time t, the player observes the d
dimensional contextual information on each of the arms Ct,i,
selects an arm At and observes some reward XAt

(t).
The comparison of the UCB, EXP3, linUCB, and Sparsity

Agnostic Lasso Bandit algorithms highlights their different
approaches to multi-armed bandit problems. Each algorithm
has unique advantages, such as balancing exploration and ex-
ploitation, handling adversarial settings, using contextual in-
formation, or managing sparse rewards. To assess their per-
formance fairly, we use uniform metrics that are transferable
across environments.

The performance of the algorithms is evaluated using a
measure called regret. It describes the performance of the al-
gorithm in comparison to the reward observed on the optimal
arm at time t - A∗

t . Intuitively, maximizing the cumulative re-
ward is equivalent to minimizing the regret value. Formally,
this measure at time T is defined as:

Rπ(T ) :=

T∑
t=1

E[µ(C⊤
t,A∗

t
β∗)− µ(C⊤

t,At
β∗)]

[6]
To assess the complexity, we also aim to compare the run-

ning times of each algorithm and the memory accessed during
each experiment.

Four algorithms have been selected for the experiment.
They differ in complexity and the nature of the problem they
aim to solve. They will be formally introduced with the exact
pseudocode available in the referenced works.

UCB at a time t selects arm At that maximises the upper
confidence bound measure:

UCBi(t−1, δ) =

{
∞ if Ti(t− 1) = 0

µ̂i(t− 1) +
√

2 log(1/δ)
Ti(t−1) otherwise

dependent on Ti(t − 1) historical observations of reward
with empirical mean µ̂(t − 1) on a given arm and an input
parameter δ describing the error probability. After the selec-
tion, it observes the reward associated with At and updates
the upper confidence bound. The algorithm aims to ensure
optimism that the arm with the highest empirical mean is in-
deed the optimal one and, therefore, not to explore suboptimal
arms unreasonably often. [2]

EXP3 selects arm At randomly, based on weighted proba-
bilities obtained by leveraging the estimator. The intuition is
that by exponentially increasing the weight of the arm based
on the reward received, relative to the likelihood of selecting
it, the algorithm ensures that arms that are infrequently se-
lected can rapidly become more likely to be chosen if they
return high rewards. In contrast to UCB, the algorithm can
be used to model Adversarial Bandit problems that do not as-
sume that rewards come from a stationary distribution.[4]

linUCB is adapted to solve Linear Contextual Bandits.
Unlike UCB, it considers additional contextual information
available at each round for each arm in the decision-making
process. The assumption is that the expected reward for
choosing an arm is a linear function of its observed fea-
tures combined with some unknown coefficients. The algo-
rithm models the problem using the confidence bound around
the estimated reward calculated using the least squares es-
timate of the unknown coefficients. In [5], it was proven
that the regret obtained by the algorithm is bounded by

O(
√
Td ln3(KT ln(T )/δ).

Sparsity Agnostic Lasso bandit is a sparsity-adapted
MAB algorithm that, unlike other similar algorithms, does
not require the knowledge of the sparsity of the reward func-
tion. The algorithm utilizes L1 regularization, commonly
known as Lasso (Least Absolute Shrinkage and Selection Op-
erator), to introduce an estimator of β∗ - denoted as β̂ - that
aims to estimate the unknown coefficient and selects the arm
that maximizes the inner product of the context and the β∗.

Lasso regression applies a regularization process where it
puts a constraint on the sum of all values of the features
taken into account, penalizing the coefficients of the regres-
sion variables and effectively shrinking some of them to 0. By
increasing the λ parameter of L1 regularization over time, we
ensure that multiple coefficients are shrunk to exactly zero,
obtaining a sparse vector that can be used to reduce the di-
mensionality and to estimate β∗ [7].

Oh et al. in [6] showed that the regret bound of the algo-
rithm for the two-armed case is O(s0

√
T log(dT ) and it out-

performs other sparsity-adapted algorithms that require prior
knowledge of s0 in numerical experiments.

2.2 Methodology
The study adopts a structured approach to evaluating and
comparing the performance of various Multi-armed Bandit
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algorithms. This section outlines the general methodology
employed to ensure a comprehensive analysis.

Each algorithm was assessed based on its ability to effi-
ciently and accurately identify optimal actions by measuring
its regret within environments characterized by varying de-
grees of sparsity. The methodology can be divided into data
generation and algorithm evaluation.

Firstly, synthetic datasets were generated. The datasets
mathematically modelled environments with sparse reward
derived from the contextual information. The dataset also
contained some noise associated with each observation. This
ensured that the algorithms were tested in environments re-
sembling real-world situations where data can be sparse and
noisy.

Each experiment was run using the synthetic dataset in a
separate environment characterized by:

• Horizon T : The number of rounds over which the bandit
game was played.

• Number of Arms K: The total number of arms available
for selection.

• Context Dimensions d: The dimensionality of the con-
textual information available at each round.

• Sparsity s0: The amount of non-zero coefficients in the
β∗ vector used to generate the reward,

• Context Distribution: The probabilistic distribution that
modelled the context generation.

In the evaluation phase, the data obtained from the experi-
ment was compiled and analyzed to find patterns and insights
in algorithm performance. Key indicators included the con-
vergence speed to optimal actions, the total cumulative regret,
and the computational efficiency (memory usage and running
time).

3 Experimental Setup
This section describes the experimental setup used to eval-
uate the performance of the multi-armed bandit algorithms.
We outline the parameters, conditions, and metrics that fairly
compare various simulated environments to answer the im-
posed research question.

The environments used in the algorithms consisted of K
sparse arms, each associated with i.i.d context. Each run of an
experiment was repeated ten times, and the results were aver-
aged. The initially selected experiment variables were chosen
based on work mentioned in [6], but additional experiments
were run with data not provided in the above-mentioned re-
search to analyze the behaviour of the algorithms.

To observe the relation between varying sparsity and the
performance of the algorithms, the sparsity measure s0 was
fixed, and other variables were changed to observe the be-
haviour changes. In the experiments we used s0 = 5, K ∈
{20, 100} and d ∈ {5, 10, 20, 50, 100}. To align with theo-
retical analysis in [6] that was performed on symmetrically
distributed contexts, the contexts were drawn using a multi-
variate normal distribution with the covariance matrix being
0.5Id and the mean of each coefficient set to 0. To extend
the scope of the research, the algorithms were also compared

in environments with context drawn from non-symmetrical
distributions, namely X ∼ Exp(3) and skew-normal distri-
bution with skewness equal to 3 and the same mean and co-
variance matrix as with normally distributed context. The β∗

parameter was drawn where each non-zero entry followed the
uniform distribution X ∼ U(0, 1) and was then normalized
to ensure that the inner product of β∗ and Ct falls in range
[0, 1]. To generate the reward the identity function was used
where Y = ⟨X,β∗⟩ with 0 ≤ Y ≤ 1. The algorithms were
supplied with observed Y + ϵ where ϵ ∼ N(0, 0.0001) and
represents the noise (some experiments were conducted with
ϵ ∼ N(0, 0.01) but it was deemed that the noise only influ-
ences the variance of the algorithms, not the average cumula-
tive regret bound).

After initial comparison, some more additional analysis
was performed between SALasso and LinUCB in an envi-
ronment with fixed context dimension d = 50, number of
arms K = 20 and varying s0 ∈ {5, 10, . . . , 45, 50} with the
context being drawn using a multivariate normal distribution
with mean 0 and 1 and covariance matrix equal to 0.5Id

Before performing any evaluation, the hyperparameters of
all algorithms were fine-tuned to the best-performing ones in
the current environment by running the algorithms with var-
ious values of the hyperparameters against each other in the
experimental environment and selecting the hyperparameter
that yielded the minimal regret averaged over ten repetitions.
The comparison described in the results section was made
using the selection of algorithms with the optimal hyperpa-
rameters for each algorithm under a given environment.

The hyperparameters used to generate all the figures except
for Figure 6 are as follows: Exp3 γ ∈ {0.1, 0.4, 0.6, 0.9},
LinUCB α ∈ {0.001, 0.01, 0.1, 0.2, 0.4, 0.8}, SALasso λ0 ∈
{0.0001, 0.01, 0.1, 0.3}. To generate Figure 6, the range
of used hyperparameters was extended to ensure more pre-
cise numerical results and is as follows: LinUCB α ∈
{0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9}, SALasso λ0 ∈
{0.00001, 0.0001, 0.001, 0.01, 0.1}.
SMPyBandits was used as a framework to ensure con-

sistency between other works in the field and to provide us
with benefits such as parallel execution of the experiments
[8]. However, the current framework version did not support
contextual bandits, so the code must be adjusted for our pur-
poses, the codebase used to generate the graphs can be found
in [9]. All environments were modelled using functionalities
provided by numpy [10]

4 Results and Discussion
The experiment’s results can be seen in Figure 1 and Figure
2. The figures contain graphs comparing averaged cumula-
tive regrets obtained in ten repetitions of the experiment with
s0 and varying context dimensions. To represent variability
across runs, the graph contains errors with a magnitude equal
to 2σ to ensure statistical significance.
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Figure 1: The comparisons of average cumulative regret between UCB, EXP3, LinUCB and Sparsity Agnostic Lasso algorithms in the
environment with 20 arms, and s0 = 5 and context with various dimensions

Figure 2: The comparisons of average cumulative regret between UCB, EXP3, LinUCB and Sparsity Agnostic Lasso algorithms in the
environment with 100 arms, and s0 = 5 and context with various dimention
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The results obtained with symmetrically distributed con-
text show that increasing the proportion of sparsity measures
to the context dimension affects the performance of all al-
gorithms. The most notable observation is that the standard
deviation of contextual algorithms increases with increasing
context dimensions. Both algorithms leveraging contextual
information perform similarly in this environment setting, ob-
taining mean cumulative regrets within the 2 standard devia-
tions of each other. However, SALasso reliably can achieve
lower regret bounds in more sparse settings (with d > 10).
It is important to note that the variability of both algorithms
is similar in the environment with K = 100, but SALasso
achieves smaller variability with K = 20. This aligns with
the expected upper bounds of regret of LinUCB and SALasso
bandit given that the regret obtained by LinUCB is propor-
tional to the number of arms and the dimension while regret
bound for SALasso is independent to K.

Conversely, results obtained in environments with non-
symmetrical context (showcased in Appendix B and Ap-
pendix C) suggest that with d ≥ 50 SALasso statistically out-
performs LinUCB, for 5 < d < 50 they perform statistically
identically and with d = 5 LinUCB achives the lowest regret.
Notably, the variance in these environments is smaller than in
an environment with a symmetrically distributed context. The
explanation is that the zero-mean multivariate normal distri-
bution allows negative context coefficients to be drawn as op-
posite to the asymmetrical distributions with the parameters
used in other experiments. This leads to variability in esti-
mating the β∗ as similar results can be obtained by estimat-
ing negative coefficients on negative context values and pos-
itive coefficients on positive context values. Both LinUCB
and SALasso showcase this issue. By shifting the mean of
Normal distribution used to generate the context to make it
positive one can achieve results similar to ones obtained in
environments with asymmetrical contexts, where cumulative
regrets of LinUCB and SALasso do not lay within 2σ of each
other. However, increasing the noise variance to 0.01 enables
this situation to persist in these environments too.

It is noticeable that both contextual algorithms converge to
logarithmic regret bounds while UCB and EXP3 failed to do
so under the horizon constraints and maintained regret lin-
early proportionate to time. This is explainable because non-
context-adapted algorithms aim to determine the optimal arm
by searching for the one that returns the highest observable
mean - the decision to pull an arm is made purely on past per-
formance metrics. In the used environment, the algorithms
struggle to find the optimal arm because of the lack of insight
into contextual information, which creates an environment
similar to an adversarial environment in which the optimal
arm can change over time.

The intuition would then suggest that EXP3 should out-
perform UCB as it is better adapted to the adversarial reward
model. However, this is not the case as both algorithms act
seemingly randomly. The K parameter, especially, influences
this randomness by minimizing the exponential weight in-
crease benefit of the EXP3 algorithm.

The results showcased in Figure 1 and Figure 2 represent
the data obtained with optimal hyperparameters, fine-tuned
for specific environments. It is important to note how sensi-

tive all algorithms are to their input hyperparameters. Such
variability can greatly influence the real-life usability and ef-
ficiency of the algorithms, as in the online setting, it is hard to
tune the parameters. In Figure 3, we visualise an example of
an experiment run with different input parameters of EXP3,
LinUCB and SA Lasso algorithms

Figure 3: Experiment results for various hyperparameter values

As shown the performance of the SALasso algorithm in
this particular environment is highly dependent on the initial
parameter λ0 compared to the other algorithms and their re-
spective hyperparameters. While SA Lasso with λ0 = 0.001
performs the best, changing the value to λ0 > 0.01 changes
the outcome to the worst performing. This is caused by the
penalty imposed by the L1 regularization. The λ parameter
used at each iteration in Lasso regression depends on time
and the initial λ0. If the hyperparameter is too high, the algo-
rithm under-fits by shrinking too many coefficients to 0 and
possibly discarding important features. Smaller values of λ0

enable the initial exploration phase to gather enough data that
can be used over time, when the regularization parameter in-
creases, to more accurately estimate the beta∗.

This is not visible in the case of LinUCB, where all ver-
sions of the algorithm managed to converge with T = 1000.
However, the standard deviation of the measurements is in-
fluenced by varying the α parameter of LinUCB. This can
be explained by the effect of the hyperparameter on the be-
haviour of LinUCB - the smaller value of α results in more
exploitation, whereas a larger one in more exploration. By
increasing the exploration we promote more uncertainty, the
algorithm tries a larger range of actions looking for the opti-
mal one but is not certain that such action will be found. Di-
verse choices lead to higher variance in the regret obtained.
In one repetition, the algorithm may be able to find an action
that minimizes the regret in the long run, but in another, it
might fail to do so. This reasoning is not limited to LinUCB,
in the case of all bandit algorithms, low cumulative regret in
the long run may be associated with a high variance if the ex-
ploration is high. On the other hand, too high exploitation can
lead to higher cumulative regret bound but lower variability.

Another metric we considered is the algorithms’ running
time. Figure 4 shows the results of executing T = 1000 it-
erations by all the algorithms. The actual running times can
be machine-dependent, but the algorithms’ ranking should be
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reproducible.

Figure 4: Running times of bandit algorithms

The graph demonstrates the inherent complexity of the
algorithms. LinUCB, which involves more complex com-
putations, including matrix inversions and handling higher-
dimensional data, naturally shows longer running times.
Specifically, the update formula for LinUCB includes invert-
ing the matrix A. Matrix inversion is computationally expen-
sive, especially as the dimensionality d of the context vectors
and the number of arms K increase. In contrast, simpler al-
gorithms like UCB and EXP3, which involve straightforward
calculations, mostly on scalars, showcase much faster execu-
tion times.

UCB and EXP3 not only perform faster but also show lit-
tle variation across runs, indicating that they are less sensitive
to the nuances of different experimental runs or data varia-
tions, this is caused by the fact that they usually fail to select
the optimal arm, therefore obtaining regret close to the max-
imum. LinUCB’s variability suggests it may be more sen-
sitive to specific data characteristics or experimental setups.
On the other hand, SA Lasso bandit combines both of the ad-
vantages, showcasing both smaller variance and short running
time in comparison to LinUCB

Finally, we tracked the algorithms’ memory consumption.
Figure 5 showcases the boxplot of averaged memory used in
one experiment run in KiB.

Figure 5: Memory consumption of bandit algorithms

The memory usage was calculated based on approximat-
ing the memory used by the algorithm by serializing the ob-
jects to a string using pickle.dumps() method, which can
lead to overestimating the memory used for objects with ref-
erences to other objects, but in our case, the serialization
was performed on policies that only store matrices, vectors
or scalars. The memory usage represents the memory used to
store the state information for each of the algorithms, not the
one accessed when evaluating the choices made at the time t.
The memory consumption for all algorithms is relatively low,
with none exceeding 1 MB. The obvious outlier is SA Lasso
Bandit, which also creates sklearn.linear model.Lasso
model to compute the choices.

Since LinUCB and SALasso perform similarly, an addi-
tional comparison was made between those two algorithms.
Graphs in Figure 6 and Figure 7 obtained cumulative regret
of LinUCB compared to SALasso in the environments men-
tioned in 3.

Figure 6: Correlation between ratio of cumulative reward and spar-
sity to dimension ratio in an environment with multivariate normal
context with mean 0

The graph showcases the ratio of cumulative regret ob-
tained by LinUCB to SALasso at T = 1000. It is notice-
able that, on average, both algorithms perform similarly, with
the ratio having high variability. However, while statistically
LinUCB can achieve 60% smaller regret than SALasso where
s0
d ≥ 0.9, SALasso can outperform LinUCB by 80%. As

previously discussed, this visualizes how similar both of the
algorithms perform in terms of regret and variability in this
environment.
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Figure 7: Correlation between ratio of cumulative reward and spar-
sity to dimension ratio in environment with multivariate normal con-
text with mean 1

The graph depicts the same scenario as Figure 6 but in an
environment with less variability, with a multivariate normal
context and a mean of 1. It is clearly visible that the lower
the s0

d , the higher the advantage of using SALasso, with the
algorithm obtaining 200% less regret on average than Lin-
UCB when the ratio is sparsity to context dimension ratio is
equal to 0.1. As the sparsity ratio increases, the regret ra-
tio decreases steadily, indicating that LinUCB’s performance
relative to SALasso improves with lower sparsity, finally out-
performing the latter with s0

d ≥ 0.8

5 Responsible Research
This section evaluates the ethical considerations and the re-
producibility of our experimental methods employed in the
analysis of bandit algorithms. We ensured each algorithm was
assessed under consistent and fair conditions, using syntheti-
cally generated data to avoid privacy concerns while carefully
documenting all experimental procedures. This allows us to
discuss not only the effectiveness of each algorithm but also
the broader implications of their application and the integrity
of the research practices.

The algorithms were fairly compared in the exact same en-
vironment in each run of the experiment. The context and
rewards were pre-computed and cached for each repetition
using the same initialization vectors and probabilistic distri-
butions. The vectors were normalized, and the results were
averaged over multiple repetitions to evaluate the variability
of the results and mitigate the randomness and bias, enhanc-
ing the reliability and fairness of our comparisons.

In the experiments, we used synthetic data, which avoided
the privacy issues of real-world datasets. However, artifi-
cial data does not reflect the complexity of the algorithms’
usual applications. Such experiment settings can oversim-
plify and overlook crucial aspects of datasets obtained from
user-interactive systems.

To ensure reproducibility, the hyperparameters, the pseu-
docode, and the repository used are fully disclosed and ref-

erenced. Additionally, the methodology section mentions a
detailed explanation of all other variable parameters in the ex-
periment setting, such as d,K, and s0. With this information,
other researchers should be able to replicate our experiments
and verify our findings.

By fixing the s0 measure and only varying the dimension
of the context, we were able to test the algorithms’ behaviour
in environments with no or very high sparsity. This helps
us understand each algorithm’s limitations under different as-
sumptions and evaluate them in extreme conditions as well as
more lenient ones.

The consideration of multiple metrics to evaluate the in-
fluence of increasing sparsity helped us understand various
aspects of the algorithms along with their performance.

Lastly, by selecting cumulative regret as the primary mea-
sure for our analysis, we ensure that our results align with
and are comparable to other studies within the field. Cumu-
lative regret is a standardized metric widely used to evaluate
the performance of bandit algorithms, which facilitates the
benchmarking ability of the results obtained in this research.

6 Future Work
This section discusses the future potential and research op-
portunities linked to the research question. This section out-
lines the key areas where our research can be improved and
expanded to yield new or more robust results.

While the study highlights the influence of sparsity in con-
trolled artificial environments with simulated noisy observa-
tions, the performance of the algorithms in real-life scenarios
was not explored in the scope of this research. We could not
find a dataset that enables us to compare on-policy algorithms
under the time constraints we faced. The main difficulty was
the lack of representation of the reward for the actions not
chosen by the algorithm that generated the dataset (e.g. ad
campaign results). Extending the experiment setup with data
obtained from real-life datasets can be beneficial to under-
stand further the benefits of using sparsity-adapted algorithms
in real-life scenarios.

In the study, we focused on the SALasso bandit algorithm
as a representative of the class of sparsity-adapted bandit al-
gorithms. It was selected because it was shown that it ob-
tains the lowest regret bound out of all algorithms in this
class [6]. However, the research would also benefit from
other sparsity-adapted bandit algorithms to explore whether
any algorithm of that class achieves more optimal regret than
the traditional approaches. This can further explain the bene-
fits of using sparsity-adapted algorithms or prove that not all
sparsity-adopted algorithms perform better than their tradi-
tional counterparts in certain environments. Similarly, the re-
search would benefit from testing other traditional algorithms
against the SALasso bandit. This can improve the under-
standing of which traditional algorithms behave best in con-
textual sparse environments and can be used when, for some
reason, sparsity-adapted algorithms are impossible to deploy.

Another variant we would like to propose is to explore the
influence of dimensionality reduction approaches, mainly in
the case of LinUCB or other contextual bandit algorithms that
are non-sparsity-adopted for their performance in the sparse
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setting. The main drawback of using LinUCB is the amount
of matrix operations, such as inversion, needed to choose an
action at a given timestamp. The complexity of these opera-
tions increases proportionally to the dimension of the context.
By utilizing techniques such as PCA (Principal Component
Analysis) or Random Forrest to reduce the dimension of the
context vectors without losing significant information, we can
improve the performance and create new algorithms that are
more suitable for handling sparse environments.

This research limited the experimental s0 = 5. This en-
abled test environments with high-dimensional contexts and
large and low-dimensional contexts with low sparsity. We
noticed that the algorithm’s performance changed by altering
the number of arms. We believe similar behaviour can be
observed when using high-dimensional context and large s0
value. By fixing s0 = 50 and testing the algorithms using
dimensions d ∈ {50, 100, 200, 500, 1000}, we should be able
to observe results that can give us more insights into the re-
search question. Similarly, one can fix the context dimension
and gradually increase s0 to measure the influence of sparsity
with the constant context dimension.

The research focused on comparing the algorithms, assum-
ing that the context is i.i.d distributed and drawn using the
Gaussian distribution. However, multiple other approaches
exist to draw the context of each arm. As a possible ex-
tension to this research, we want to propose an experiment
in which the context is drawn from a multivariate Gaussian
distribution, with varying correlations between arms and uni-
form and non-Gaussian elliptical distributions, similar to the
experiment mentioned in [6]. This experiment setup was used
to determine the superiority of SALasso bandit over other
sparsity-adopted algorithms so it can also be leveraged for
further comparison of traditional algorithms in the sparse en-
vironment. Furthermore, we can also extend the experiment
setup with other reward functions except for the identity func-
tion.

7 Conclusions
In this research, we aimed to contribute by addressing the re-
search gap in which multi-armed bandit algorithms are not
compared to each other in environments that they were not
specifically designed to perform. We wanted to quantitatively
demonstrate the effectiveness of sparsity-adapted algorithms
across different levels of sparsity in comparison to other tra-
ditional solutions that do not take sparsity into account.

The primary research question addressed in this study is:
”Does increasing the level of sparsity enhance the advan-
tage of sparsity-adapted Multi-Armed Bandit algorithms?”
This question explores whether algorithms specifically de-
signed to handle sparse data environments perform better as
the sparsity of the data increases. Sparsity here refers to sit-
uations where only a small number of features or factors are
relevant in decision-making, which is common in many high-
dimensional data scenarios.

After performing multiple experiments in an environment
with a fixed reward function, i.i.d context and increasing spar-
sity measure in comparison to the dimension of the context
vector d − s0 we can conclude that increasing this measure

indeed enhances the performance of sparsity-adapted multi-
armed bandit algorithms, namely Sparsity Agnostic Lasso
bandit algorithm, in comparison to traditional multi-armed
bandit algorithms that do not account for sparsity. Statisti-
cally, LinUCB can obtain regrets similar to SALasso’s under
certain conditions, mostly in environments with high vari-
ance.

In environments with low variance and with high spar-
sity (s0 = 5, d ∈ {50, 100} and 20 arms SALasso demon-
strated a lower cumulative regret bound compared to Lin-
UCB, which performs better in lower-sparsity settings (s0 =
5, d ∈ {5, 10}).

It was shown that all algorithms were sensitive to their
input parameters, with the SALasso bandit showcasing the
highest sensitivity to its hyperparameter λ0 that can greatly
affect the bound to which cumulative regret converges.

The computational complexity analysis revealed that Lin-
UCB operates the slowest in both sparse and non-sparse en-
vironments, whereas SALasso makes decisions as fast as less
complex algorithms. Conversely, the sparsity-adapted algo-
rithm requires the most memory to facilitate its operation.

Our study shows that sparsity-adapted algorithms like
SALasso outperform traditional algorithms in high-sparsity
environments. While LinUCB performs well in low-sparsity
settings, SALasso consistently shows lower regret in environ-
ments with sparse rewards. We showcased that the choice of
hyperparameters, especially for SALasso, is critical for opti-
mizing performance, and there exist environments in which
both sparsity-adapted and non-sparsity-adopted algorithms
perform statistically identically.
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A Use of AI in the work
The AI was mainly used to aid the writing of the re-
port.ChatGPT was used to make some complicated sentences
more readable and understandable, and Grammarly was used
to fix the punctuation and spelling. The prompts used in-
cluded ”Make this sentence clear and split it into smaller sen-
tences without changing the wording or meaning”. However,
the results were unsatisfactory and often edited to match the
context of the rest of the text. No AI was used to generate
ideas and retrieve information in this research. In the initial
part of the research, when the topic was not clear enough,
ChatGPT was used to translate the notation of one paper to
another (as often research papers used different notations for
reward, context, beta/theta, and it was difficult to understand
the algorithms and pseudocodes fully with having the nota-
tion mixed). The prompt used consisted of a notation defini-
tion and part of the paper that needed to be translated.

B Results Obtained in Sparse Environment
with Asymmetric Context Distribution
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Figure 8: The comparisons of average cumulative regret between UCB, EXP3, LinUCB and Sparsity Agnostic Lasso algorithms in the
environment with 20 arms, and s0 = 5 and context distributed using Skewed Normal distribution with various dimensions

Figure 9: The comparisons of average cumulative regret between UCB, EXP3, LinUCB and Sparsity Agnostic Lasso algorithms in the
environment with 100 arms, and s0 = 5 and context distributed using Skewed Normal distribution with various dimentions
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Figure 10: The comparisons of average cumulative regret between UCB, EXP3, LinUCB and Sparsity Agnostic Lasso algorithms in the
environment with 20 arms, and s0 = 5 and context distributed using Exponential distribution with various dimensions

Figure 11: The comparisons of average cumulative regret between UCB, EXP3, LinUCB and Sparsity Agnostic Lasso algorithms in the
environment with 100 arms, and s0 = 5 and context distributed using Exponential distribution with various dimentions
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