
Mining Attack Strategy

Using Process Mining to ex-
tract attacker strategy from
IDS alerts

Geert Habben Jansen

Mining Attack
Strategy

Using Process Mining to extract attacker
strategy from IDS alerts

by

Geert Habben Jansen
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 1, 2021 at 10:00.

Thesis committee: Dr. ir. S. E. Verwer, TU Delft, supervisor
Prof. dr. ir. M. J. T. Reinders, TU Delft
Ir. A. Nadeem, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Ever since the invention of the Internet, more and more computers are connected throughout the world.
Though this has brought numerous new inventions used every day, like social media, e-commerce, and video
conferencing, it also opens up new opportunities for cyber criminals. As the intrusion detection systems
used to identify malicious behavior in a computer network can generate large amounts of alerts, methods
have been developed to aid security analysts in gaining insights into what is happening on the network.

Of course, there is always room to improve these methods, which is the topic of this thesis. Currently,
one of the state-of-the-art methods uses state machines to model the alert sequences. State machines are a
good fit as they can extract the context of different alerts, but they cannot extract information like parallelism
between different alerts. That is where field process mining comes in, with process mining algorithms being
able to extract parallelism from sequential data. In this thesis, state-of-the-art algorithms from process min-
ing are evaluated for modeling alert datasets from intrusion detection systems with the aim of improving the
current methods. As a comparison, different methods for learning state machines also tested for the same
data.

The results of the evaluation and comparison show that the state machines perform better in modeling
the alert datasets with respect to explaining the data. On the other hand, thee process mining algorithms were
not able to construct sound models for the datasets, and a fourth mining algorithm gave false implications
about the data.

Furthermore, the possibility of combining state machines with process mining was also tested, with the
idea that the combination can use the state machines to extract context and the process miner to extract
parallelism. This method did not yield any improvements for the alert datasets tested, but that does not
mean it is not viable in other cases.

iii

Preface

Long story short, writing a thesis is hard. Ever since I started working on my thesis back in September, I was
already dreading the days I would undoubtedly be spending writing this thesis. Well, I was wrong: apparently,
it takes weeks, if not months, to write a complete thesis. However, I am willing to bet that once I got some
time to rest, I will be looking back at the entire process with good memories.

First of all, I want to thank my supervisor, Sicco Verwer, for the ideas and feedback he gave me during my
thesis. Second, I also want to thank Azqa Nadeem for introducing me to the topic of this thesis and for all the
feedback you gave on my work throughout the process. I wouldn’t have been able to achieve this without the
help and guidance of you two.

Finally, I also want to thank my friends and family. I am sure that at some point, some of you got tired of
me complaining every time an experiment crashed. Thank you for your support at those times and helping
me get through this all. It wouldn’t have been the same without you.

Geert Habben Jansen
Delft, June 2021

v

Contents

1 Introduction 1
1.1 Research questions . 2
1.2 Contributions . 2
1.3 Outline . 2

2 Background 3
2.1 State Machines . 3

2.1.1 Definition . 3
2.1.2 State Machine Inference . 4
2.1.3 Flexfringe . 5

2.2 Process Models . 6
2.2.1 Petri nets. 6
2.2.2 Business Process Modeling Notation. 7

2.3 Measuring process model quality . 8
2.3.1 Soundness . 8
2.3.2 Fitness . 8
2.3.3 Precision . 9
2.3.4 F-score. 12
2.3.5 Generalization . 12
2.3.6 Complexity. 13

2.4 Process Mining . 16
2.4.1 Alpha . 16
2.4.2 Inductive Miner . 19
2.4.3 Heuristics Miner . 22
2.4.4 Structured Heuristic Miner. 23
2.4.5 Split Miner . 24
2.4.6 Overview. 25

2.5 Learning Attack Graphs . 25
2.5.1 Combining Alerts with Prior Knowledge . 25
2.5.2 Solely Alert-based . 28

3 Evaluation Setup 31
3.1 Datasets. 31
3.2 Constructing Models . 32

3.2.1 Process Miners . 32
3.2.2 State Machines. 32

3.3 Evaluating Models . 33
3.3.1 Metrics for Process Models. 34
3.3.2 Evaluating State Machines . 35

4 Performance of Process Mining 37
4.1 Model Performance . 37
4.2 Model Complexity . 41
4.3 Inductive Miner Models. 43

4.3.1 Model Validity . 45
4.3.2 Model Robustness . 47

4.4 Split Miner Models . 51
4.4.1 Model Validity . 53
4.4.2 Model Robustness . 54

4.5 Conclusions. 55

vii

viii Contents

5 Performance of State Machines 57
5.1 State Machine Performance. 57
5.2 State Machine Complexity . 59
5.3 State Machine Models. 61
5.4 Conclusions. 62

6 Combining Process Mining and State Machines 63
6.1 Replaying Traces . 63
6.2 Performance . 64
6.3 Conclusions. 65

7 Conclusion 67
7.1 Limitations . 67
7.2 Conclusions. 68
7.3 Future work . 69

A Configuration files for flexfringe 71

B State Machine Models 75

Bibliography 83

1
Introduction

Ever since the invention of the Internet, more and more computers are connected throughout the world.
This connectivity has brought numerous new inventions used every day, like social media, e-commerce, and
video conferencing. However, as the Internet opens up new opportunities for people, businesses, and gov-
ernments, it also provides new possibilities for criminals. One does not have to search the news for long to
find a story about denial-of-service attacks, ransomware, and data theft.

To combat cybercrime and detect malicious behavior, new cyber defense methods have been developed. One
of these methods for detecting malicious behavior is the intrusion detection system, or IDS for short. When
operating on a computer network, the IDS scans the traffic for anomalous or otherwise suspicious traffic and
raises alerts when something suspicious is identified.

However, there is one big issue related to these alerts generated by an IDS: there can easily be too many
of them. One example is the IDS placed between the Internet and the network of the University of Mary-
land, a network consisting of around 40,000 computers. On November 6th 2012, this IDS produced a total of
26.873.302 alerts [10]. Even after applying filtering on the dataset, the researchers were still left with a set of
329.264 events for that one day.

As such volumes of alerts are too large for security analysts, several methods have been developed to ex-
tract attacker strategy from the data in the form of attack graphs. These attack graphs help security analysts
by visualizing the paths taken by the attackers in order to reach certain objectives like performing a denial-
of-service attack on the webserver. One of the most recent works towards constructing attack graphs comes
from Nadeem et al.[31]. This new method differs from the existing works by only requiring the IDS alerts to
construct the attack graphs. In contrast, previous methods require external information like network topol-
ogy or the known vulnerabilities of the software running on the hosts in the network. Working with such
additional information provides new challenges like the rapid changes in network topology or software, not
to mention the issue of undiscovered or unpublished vulnerabilities. Therefore, a method relying solely on
the IDS alerts provides a more flexible solution that requires less maintenance.

The new method uses a three-step process: alert aggregation, model construction, and attack graph gen-
eration. This thesis builds upon this method, more specifically on the model construction step. Currently,
a suffix-based automaton is used to model the alert sequences. In this thesis, the option to use methods
from process mining to replace or enhance the current models is explored. The reasoning behind this is that
the methods from process mining can model concurrency in the underlying dataset more comprehensively
compared to the state machines currently used.

1

2 1. Introduction

1.1. Research questions
The objective of this thesis is to evaluate the performance of methods from process mining for modeling IDS
alerts. Following this goal, the main question to be answered is as follows:

To which extend can process mining be used to improve the models for IDS alert datasets?

As this question is too large to be answered directly, it is broken down into three sub-questions.

RQ1: How well can state-of-the-art process mining techniques model the IDS alert datasets?

The first step is to determine how well the current process mining algorithms can model the datasets used. To
quantify this, an evaluation setup is needed to measure the quality of the produced models for the datasets.
With this evaluation setup, the most effective known process mining algorithms can be evaluated.

RQ2: How well can state-of-the-art state machine learning techniques model the IDS alert datasets?

Following the main question, we want to know whether the process mining techniques offer an improve-
ment over the techniques currently used. In order to determine this, we have to know how well the current
techniques perform.

RQ3: How much improvement can be gained by combining process mining with state machine
learning?

Replacing the current modeling techniques is not the only option for improving the current models as the
process mining techniques can also be applied to enhance the state machines currently used. The strength
of process mining is that it is able to extract parallelism from a dataset, but one of the drawbacks is that the
process mining algorithms are not effective in determining the context of different events. This is where state
machines come in as these two factors are flipped with state machine inference: the models aren’t effective in
modeling parallelism but are able to extract the context from the dataset. By combining the two methods, it
could be possible to end up with a modeling approach that takes both context and parallelism into account.

1.2. Contributions
1. First and foremost, this thesis gives an extensive evaluation of state-of-the-art process mining algo-

rithms regarding their performance in modeling IDS alert sequences. These results can help with fur-
ther evaluation of process mining algorithms for constructing attack graphs.

2. Second, this work outlines the differences between state machines and process models from the per-
spective of process mining. Such a comparison can help with future research, which has to choose
between using either of the two methods.

3. Finally, this work provides a setup for using state machines to identify duplicate events in an event
log, an issue with which most process mining algorithms cannot deal. Even though this thesis only
evaluates this method on one dataset, the method can be used as a setup for more extensive research
towards feasibility and effectiveness.

4. Finally, this work provides a setup to combine state machines with process mining. By combining
the two methods, the resulting method might be able to combine the context modeling from state
machines with the parallelism extraction from process mining. Even though this thesis only evaluates
this method on one dataset, the method can be used as a setup for more extensive research towards
feasibility and effectiveness.

1.3. Outline
This thesis starts with an overview of the background knowledge and concepts used throughout this thesis in
Chapter 2. After that, Chapter 3 gives an outline of the evaluation experiments, which form the basis of this
thesis. Building on the experiment setup, Chapters 4 and 5 contain the experimental results of the methods
from process mining and state machine inference, respectively. Then, Chapter 6 briefly goes into the effec-
tiveness of combining state machines with process mining. Finally, Chapter 7 finishes with the limitations,
conclusions and future work.

2
Background

2.1. State Machines
This section starts with a formal definition of state machines. Following this is a short description of the most
important state machine inference algorithms. Finally, the flexfringe tool for constructing state machines is
introduced.

2.1.1. Definition
The most basic version of a state machine is a deterministic finite automata, or DFA. Following the notation
of [40], a DFA M is represented by the five-tuple (Q,Σ,δ, q0,F) where:

• Q is a finite set of states

• Σ is the set of symbols, or alphabet

• δ : Q ×Σ→Q is the transition function

• q0 is the start state

• F ⊆Q is the set of accepting states, also referred to as final states

The transition functionδ is often represented as a subset of Q×Σ×Q, where the triple (q, s, q ′) is equivalent
to the function-based notation δ(q, s) → s′.

For a string S = s1, s2, . . . , sn , si ∈ Σ we can compute the corresponding state sequence q0, q1, . . . , qn as
qi = δ(qi−1, si),1 ≤ i ≤ n and qn ∈ F . The sequence starts with q0, the initial state of the DFA, and records
all states encountered through applying the transition function for each symbol. If qn ∈ F , the DFA accepts
the string S, else the DFA rejects S. The language of M is defined as the set of all strings accepted by M and
is denoted as L(M) = {w ∈ Σ∗|M accepts w}. One special case occurs when n = 0 and the string is empty,
denoted as ε. For the empty string, the state sequence is q0.

Figure 2.1 shows the graphical representation of a DFA accepting all strings which contain the substring aab.
The set of states is represented by the nodes, and the alphabet is shown as labels on the edges. For this DFA,
the initial state is q0, as denoted by the incoming arrow, and the only accepting state is q3, as denoted by the
double edge. An entry for the transition function δ(q, s) : q ′ is denoted with a directed edge from state q to
state q ′, labelled with symbol s.

q0 q1 q2 q3

b
a

a

b

a

b

a,b

Figure 2.1: Example of a deterministic finite automaton, accepting all strings with the substring aab

3

4 2. Background

It is not uncommon that a state q has no outgoing transition for some symbol s ∈ Σ. In these cases, the
DFA will always reject the input when such a transition would be taken. This can be modeled through some
rejecting state with self-loops for all symbols in Σ. For the sake of readability, this rejecting state and all its
incoming transitions are usually not shown.

PDFA
An evolution of the DFA is the probabilistic deterministic finite automata, or PDFA for short. Compared to
the regular DFA, the PDFA also defines some probability function P : δ → [0,1]. This probability function
assigns a probability to each transition to indicate which paths in the automaton are more likely compared
to others. In addition, the probability function also gives a probability that the execution will end in a given
state. Furthermore, this probability function is defined such that for each state, the sum of the probabilities
for all outgoing edges and the probability of the trace terminating in that state equals one.

With this probability function, we can assign some probability to all strings accepted by the PDFA. The
probability of a string is the product of the probabilities of all traversed transitions and the probability of the
PDFA terminating in the final reached state.

Suffix-based models
Regular state machines are used to define behavior given some prefix, but we wish to reverse this logic in
some cases. For this, suffix-based automata can be used. These automata operate just like their regular
prefix-based counterparts, but instead of a state describing some prefix, the states represent some suffix. A
suffix-based model can be obtained by using the regular DFA learning algorithms but reversing the strings
used for training.

The suffix-based variants of a DFA or PDFA are referred to as S-DFA or S-PDFA, respectively.

2.1.2. State Machine Inference
The goal of state machine inference is to construct a minimal state machine which is consistent with a set
of training samples. A training set S consists of a set of strings accepted by the underlying state machine. In
some cases, a set of strings which are rejected by the underlying state machine is also available, in which case
the training data is referred to as S+ and S− for the strings accepted and rejected respectively.

Blue-fringe and Evidence-driven State Merging
One of the basic methods for constructing a DFA is through Evidence-Driven State Merging (EDSM)[17]. This
method also introduced the blue-fringe algorithm, which is used as the basis for multiple other methods of
constructing state machines.

As the first step, an augmented prefix tree acceptor (APTA) is constructed from the input strings. The APTA
is a tree-shaped state machine that exactly fits the training data. Furthermore, a state q is an accepting state if
some positive string from the training set ends in q . In the case negative samples are also available, the states
in which a negative string ends are marked as rejecting. The APTA perfectly fits the logs but does not provide
any generalization and hence won’t accept any string not in the training set. In order to transform the APTA
to a more general DFA, states are merged through an iterative process.

The blue-fringe algorithm limits the number of possible merges evaluated at each step, which in turn re-
duces the amount of time needed for the merging process to finish. With this method, states are colored red,
blue, or are not colored at all. Red states indicate states in the DFA which have successfully been identified.
Blue states are the states not colored red but reachable from a red state through a single transition. These
blue states are the states which will be evaluated for merging. States not colored red or blue remain uncol-
ored. Using this construction, the red states can be seen as a partially defined DFA, separated from the rest of
the training data by a fringe of blue states. These blue states are the roots of trees of uncolored states.

Initially, the root state is colored red, and the states directly reachable from the root are colored blue. Then,
the merging process tires all possible merges between a red and a blue state, computing a merge score for
each possible merge. If there are blue states which cannot be merged, the state closest to the root is colored
red. Else, the merge with the highest score is performed, and the resulting merged state is colored red. Then,
the coloring of the states is updated, and the merging process starts over again until all states are red.

2.1. State Machines 5

Merging a blue state qb into a red state qr is a straight-forward procedure: all incoming transitions for qb are
re-directed to qr and the outgoing transitions from qb are added to qr . If an accepting state is merged with
a rejecting state, the merge is invalid and cannot be performed. Otherwise, the resulting state is accepting or
rejecting if either qr or qb was accepting or rejecting, respectively. If both qr and qb were neutral, the result-
ing state is also neutral. However, the merge can also introduce a non-deterministic automaton if in the DFA
before the merge, there exists some symbol a ∈ Σ such that δ(qr , a) = q ′

r , δ(qb , a) = q ′
b and q ′

r 6= q ′
b . For all

these cases, the states q ′
r and q ′

b are also merged until the automaton is deterministic again. This process is
called determinization. As each blue node is the root of an uncolored sub-tree in the APTA, the merging and
determinization process can be implemented relatively efficiently.

Determining the best merge is done through a scoring metric. The most basic metric is the evidence-based
metric, which just counts the number of state merges between two accepting or two rejecting states during
the merge[17], but alternatives can easily be defined. This scoring metric also makes the blue-fringe algo-
rithm highly flexible as custom metrics can easily be defined.

Alergia
The Alergia algorithm[9] provides an alternative merging function for the blue-fringe algorithm based on
statistics. Whereas the evidence-driven state merging considers a merge between two states valid when there
are no conflicts in the outgoing transitions, the merging function used by Alergia also requires that the relative
frequencies of the outgoing transitions are similar.

In order to deal with the fluctuations in the frequencies, the equivalence of frequencies is defined by the
Hoeffding bound[14]. Let ni be the frequency of state qi and f a

i be the frequency of the transition labelled
a leaving state qi . The value α denotes the confidence interval. The frequency of the outgoing transition
labelled a for states qi and q j is considered equivalent based on the following condition:

∣∣∣∣∣ f a
i

ni
−

f a
j

n j

∣∣∣∣∣<
√

1

2
log

2

α

(
1p
ni

+ 1p
n j

)

When the condition holds, we know that the frequencies are equivalent with some probability larger than
(1−α). Alergia considers two states equivalent if the condition holds for all possible symbols a ∈Σ, as well as
for the probability of a string terminating in the states (denoted with fi instead of f a

i). When two equivalent
states are merged, the determinization process uses the same conditions to perform the consecutive merges.

2.1.3. Flexfringe
The flexfringe[43] tool provides an open-source implementation1 for the blue-fringe algorithm and many
different equivalence checking methods. In addition, the tool provides additional configuration options to
fine-tune the state merging process. In the context of this thesis, two features of flexfringe are important: the
Markovian setting and sink states.

First is the Markovian setting. When enabled, this setting ensures that for the resulting model, each
incoming transition for a state has the same label. Through this constraint, the resulting model will always
be a Markovian graph. One thing to note is that the incoming label for a state is not unique to the state: given
some label a, multiple states may exist which only feature incoming transitions labeled with a. Furthermore,
the Markovian property also enables models to be constructed based on n-grams over the data. For example,
given some input event sequence 〈a b c d〉, a 2-gram (also called bigram) uses the sequences of two events
over the original data: 〈(a b) (b c) (c d)〉.

The second feature of flexfringe is the sink states. Sinks are states which occur infrequently in the dataset.
In order for a state to be marked as a sink, its frequency from the training data must be below some set
threshold (set by the sinkcount setting). The idea of marking a state as a sink is that due to the infrequent
nature of the state (and by extension also all its outgoing transitions), the statistical tests used for merging
might not yield reliable results. Therefore, by marking states as sinks, a different merging strategy can be
applied.

1https://bitbucket.org/chrshmmmr/dfasat

https://bitbucket.org/chrshmmmr/dfasat

6 2. Background

2.2. Process Models
The state machines introduced in the previous section aren’t able to concisely model concurrency. For this,
two other model types are used: Petri nets and Business Process Modeling Notation.

2.2.1. Petri nets
First introduced in [34], Petri nets are the most commonly used models for representing processes. The rea-
son for this is that a Petri net (or PN for short) is able to model the concept of concurrency, which is a key
factor in constructing process models.

Following the notations used by [1], a Petri is denoted by the triple (P,T,F) where:

• P is a set of places

• T is a set of transitions, such that P ∩T =;
• F ⊆ (P ×T)∪ (T ×P) is a set of arcs, or directed edges from a place to a transition or a transition to a

place

The notation •t is used for the set of places with an arc to t , and t• is used for the set of places with an arc
from t . Similarly, •p and p• represent the set of transitions with an arc to or from p respectively.

Each place in the PN can hold any number of tokens, which are used to determine the state of the net.
Such a state is referred to as a marking. Given a marking M , the notation M(p) denotes the number of tokens
in place p. When all places in •t hold a token, transition t becomes enabled. An enabled transition can
fire, consuming one token from all places in •t , and producing one token for all places in t•. This firing of t

given a marking M is denoted as M
t−→ M ′. Similarly, M

∗−→ M ′ indicates there is some sequence of transitions

t1, . . . tn such that M
t1−→ M1, . . . , Mn−1

tn−→ M ′, i.e. starting at marking M , there is some firing sequence which
eventually yields marking M ′.

Figure 2.2 shows an example of a Petri net. Here, places are shown as circles, transitions as squares, and
tokens as black dots. Given the marking shown, only transition a is enabled, and firing a will give the marking
(c1+ c2). At this point, transitions b and c are enabled as c1 holds a token. As b and c cannot both fire, the
construct shows a block of exclusive choice. At the same time, transition d is also enabled as there is a token
in c2. Executing d is independent of transitions b and c, so the two branches can be executed in parallel.
Merging the two parallel branches is done by transition e, which requires both d and either b or c to have
fired. A transition marked with τ (alternatively shown as a black square) is a silent transition, i.e. it can be
fired without showing up in the resulting trace. With this functionality, transition f can be skipped when c5
holds a token. By keeping track of the sequence in which transitions fire, a trace can be constructed. For the
net shown, there are eight possible traces: abde, abdef, acde, acdef, adbe, adbef, adce, adcef.
This set of traces is said to fit the Petri net.

st ar t

a
c1

c2

b

c

d

c3

c4

e

c5

τ

f
end

Figure 2.2: Example of a Petri net. Places are shown as circles, transitions as squares, and the token as a black dot.

A special type of Petri net is the flower model, as shown in Figure 2.3. This model accepts all traces con-
taining the events a,b,c and d .

Workflow nets
A workflow net, often abbreviated as WF-net, is a special variant of Petri nets. For a Petri net P N to be consid-
ered a WF-net, P N must contain a special source place pi and sink place po such that both •pi and po• are
empty. Using these special places, the initial marking (denoted as i) only has one token in pi , and the final
marking (denoted as o) has a token in po . Besides, by adding a transition t∗ to P N where •t = po and t• = pi ,
P N becomes fully connected: there exists a path from any place or transition in the net to any other place or

2.2. Process Models 7

st ar t

st ar t

a b

c d

end

end

Figure 2.3: Example of a flower Petri net for transitions a,b,c and d

transition. The Petri nets in Figure 2.2 and Figure 2.3 are also WF-nets where pi is the place labelled st ar t ,
and po is the place labelled end .

Workflow nets are often used in the area of modeling processes as both the initial marking and final mark-
ing are clearly identifiable. Besides, the requirement that each place lies on a path between pi and po makes
it easier to reason about the correctness of the model.

2.2.2. Business Process Modeling Notation
A more high-level representation of a process model is achieved using the Business Process Modeling Notation[32],
or BPMN for short. Compared to Petri nets, BPMN gives a more graphical representation for a process model
while still retaining the same descriptive power.

The core functionality of BPMN is represented by the gateways. A parallel split gateway (represented with
+) continues execution in all branches, and similarly, a parallel join gateway requires all incoming branches
to have finished execution before continuing. For the exclusive-choice split gateways (represented with ×),
only one branch is executed, and only one branch needs to finish before continuing at an exclusive-choice
join gateway. Finally, the OR split gateway (represented with ©), one or more branches are executed, and the
OR join gateway requires all incoming branches which have started execution to finish before continuing.
More gateways are defined in the BPMN specification2, but these are not relevant in the context of this thesis.

Figure 2.4 shows the BPMN model for the same process as modelled in Figure 2.2. With BPMN, squares
represent events, and diamonds represent split and join gateways. The process starts at the start node, repre-
sented by the thin circle, and event a is executed. Then, the process reaches a parallel split gateway, splitting
the process into two parallel branches. The first branch goes through an exclusive-choice split to choose be-
tween either b or c (but not both) and joins again at the second exclusive-choice gateway. The second branch
of the parallel split executes only event d . After joining at the second parallel gateway, event e is executed, and
a second exclusive-choice split/join block facilitates the optional execution of f . Finally, the process reaches
the terminal node, represented by the thick circle.

a +
×

b

c
×

d

+ e ×
f

×

Figure 2.4: Example of a BPMN model

2https://www.omg.org/spec/BPMN/2.0/

https://www.omg.org/spec/BPMN/2.0/

8 2. Background

2.3. Measuring process model quality
In the field of Process Mining, model quality is measured in four dimensions: fitness, precision, generaliza-
tion and complexity [39]. Furthermore, a fifth constraint is also often required: model soundness. This sec-
tion discusses the different measures proposed to evaluate these dimensions of process models and process
discovery algorithms.

2.3.1. Soundness
The most important requirement for a discovered process model is for the model to be valid, or in formal
terms: the model should be sound. In [1], Van der Aalst shows that a WF-net can be proven to be sound based
on three conditions, and that these conditions can be checked in polynomial time.

Let M ≥ M ′ be true if each place in marking M holds at least as many tokens as in marking M ′, or formally
∀p ∈ P, M(p) ≥ M ′(p). Using this notation, a WF-net is sound if and only if:

1. ∀M (i
∗−→ M) ⇒ (M

∗−→ o): for each marking reachable from the initial marking, the final marking can be
reached.

2. ∀M (i
∗−→ M ∧M ≥ o) ⇒ (M = o): starting at the initial marking, the only time the output place holds a

token is when it is the only place holding a token

3. ∀t∈T ∃M ,M ′ s.t. i
∗−→ M

t−→ M ′: starting at the initial marking, some firing sequence exists such that any
transition t can be fired.

The first rule indicates that the WF-net cannot get stuck at any point during the execution. For the cor-
responding process, no valid execution can result in the process getting deadlocked or reaching a livelock.
The second rule indicates that when the sink place is marked, and therefore the process terminated, the only
token left in the net is in the sink. In terms of a real-world process, the tokens represent different concurrent
branches of the process execution. Following this, the second rule states that the process can only end when
all concurrent branches are completed. The third rule indicates that each transition in the WF-net is part of
at least one valid execution trace. When comparing the transitions in the WF-net to events in a process, this
rule indicates that all events must actually be part of the process.

As these properties are required for a usable process, soundness is a hard requirement for a model.

2.3.2. Fitness
Fitness describes the ability of a process model to explain an event log, similar to recall in other areas of
machine learning. For all metrics proposed, the fitness score lies between zero and one, where a higher score
means the model is better at explaining the data.

Completeness
The most basic computation for fitness is completeness [12]. With this measure, all traces in the evaluation
set are replayed over the discovered model to evaluate if the trace fits the model. Then, completeness is the
fraction of traces in the evaluation set perfectly fitting in the model. The main drawback of this method is that
it uses a binary classification for each trace, penalizing both minor and significant deviations equally. Hence,
this measure can not be relied upon when factors like noise in the training data are expected.

Fitness
A more refined measure for fitness is introduces in [38], also referred to as just fitness. This method com-
putes a score based on the number of tokens missing and remaining compared to the total number of tokens
produced and consumed when replaying a trace in the Petri net.

For trace i , let pi and ci denote the number of tokens produced and consumed during replay, mi and ri

denote the number of tokens missing and remaining, and ni denote the number of occurrences of trace i in
the event log. When replaying a trace on a WF-net, the firing of transition t consumes one token for each
place in •t and produces one token for each place in t•. If the trace requires transition t to be fired, mi is
incremented by one for each place p ∈ •t which does not hold any tokens. In addition, one token is produced
in the source place before the replay starts, and one token is consumed from the sink place after the replay
finishes. Finally, ri is the number of tokens in the net. Note that each token counted as missing or remaining
is also counted as produced or consumed respectively.

2.3. Measuring process model quality 9

Using these values, the fitness over an event log with k traces is computed as:

f = 1

2
(1−

∑k
i=1 ni mi∑k
i=1 ni ci

)+ 1

2
(1−

∑k
i=1 ni ri∑k
i=1 ni pi

)

As mi ≤ ci (each missing token was also created), ri ≤ pi (each remaining token has been produced), pi > 0
(the initial token was produced) and ci > 0 (the final token is consumed), the fitness score f is both defined
and 0 ≤ f ≤ 1.

A drawback of this method is that all types of errors are penalized the same amount. Violating an arguably
less critical synchronization transition is penalized the same amount as skipping a transition corresponding
to an event occurring in the trace.

Alignment-based Fitness
Building further, the method used for measuring fitness is the alignment-based fitness proposed in [4]. This
method allows for assigning a unique cost for skipping a transition that should happen according to the
model but not the trace or inserting (firing) a transition that should happen according to the trace but cannot
happen in the model.

By using the A* algorithm, the optimal transition sequence for a Petri net given a trace is computed. At
each point in replaying the trace, three options are considered: moving only in the model (inserting a tran-
sition), moving only in the log (skipping a transition), or moving both the log and the model. Skipping or
inserting a transition in the net is always an option, whereas moving both in the model and the net is only vi-
able when the transition corresponding to the next event in the trace is enabled. When a transition is skipped
or inserted, the cost associated with the execution path is increased. This cost for inserting or skipping a
transition a is denoted by k i (a) and k s (a) respectively, where different transitions can be assigned any non-
negative cost. By using the cost assigned to each execution path, the algorithm can find the alignment with
the lowest cost between the log and the model.

Let As be the multiset of skipped activities for the optimal alignment and As (a) be the number of times
a occurs in As . Furthermore, T is the set of events in a trace and Ei ⊆ T is the set of events inserted in the
optimal path. α(e) denotes the transition corresponding to event e. Using these values, the alignment-based
fitness for trace T is computed as:

f = 1−
∑

a∈As As (a) ·k s (a)+∑
e∈Ei

k i (α(e))∑
e∈T k i (α(e))

With this computation, the fitness is 1 if the trace aligns perfectly with the net and decreases as the trace and
the net differ more. The bound in the denominator is based solely on the maximum number of insertions
which could occur as the theoretical maximum number of skipped activities is infinite if the model contains
a loop.

Through the possibility to define custom costs for skipping or inserting transitions, the alignment-based fit-
ness is the most flexible fitness metric discussed. Similar to the fitness measure, alignment-based fitness can
also deal with non-fitting traces during fitness evaluation. Furthermore, it enables the usage of alignment-
based precision, as discussed later in this section. This metric is used to evaluate fitness in [7, 8, 19].

2.3.3. Precision
The complement to fitness is precision. Where fitness indicates how well the model can explain the traces,
precision measures how close the fit between the two is. The precision score lies between zero and one, where
a higher score indicates that the model allows less behavior unrelated to the evaluation set.

Behavioral Appropriateness
The simplest measure for precision is behavioral appropriateness as described in [38]. This measure uses the
mean number of enabled transitions to measure how often a choice can be made in the model, and therefore
the amount of variance allowed by the model. Let |TV | denote the number of visible transitions in the Petri
net, xi be the mean number of enabled transitions when replaying trace i (not counting invisible tasks), and

10 2. Background

ni denote the number of occurrences of trace i . Then, the behavioral appropriateness aB is computed as:

aB =
∑k

i=1 ni (|TV |−xi)

(|TV |−1) ·∑k
i=1 ni

As long as there are multiple visible transitions (i.e., |TV | > 1), the metric value ranges from 0 (all transitions
are always enabled) to 1 (only one transition is enabled at a time). An issue does arise when a trace does not
fit the model. In such cases, the precision is either not defined or is incorrectly skewed towards 1 as the lack
of enabled transitions reduces the value xi .

Advanced Behavioral Appropriateness
In the same paper, the authors also define advanced behavioral appropriateness[38], which uses a ’precedes’
and ’follows’ relation to compare the behavior of the model and the log. This relation is defined for all combi-
nations of two events (including an implicit start and for the end of a trace) and can have one of three values:
always, never, or sometimes. Given the events a and b, the ’follows’ relation is ’always’ if all traces follow the
pattern 〈. . . a . . .b . . .〉, ’never’ if this pattern is not present in any of the traces, or ’sometimes’ if it is present in
some (but not all) of the traces. The ’precedes’ relation describes similar behavior but looks in the opposite
direction.

When a relation is defined as ’always’ or ’never,’ there is a strong indication that there is no choice to be
made between different execution paths, and there is no room for variation. Hence, the advanced behavioral
appropriateness only looks at the relations with value ’sometimes.’

Let Sl
P and Sl

F denote the ’precedes’ and ’follows’ relation for the log, and Sm
P and Sm

F denote the relations
for the model. Then, the advanced behavioral appropriateness a′

B is defined as:

a′
B = |Sl

F ∩Sm
F |

2 · |Sm
F | + |Sl

P ∩Sm
P |

2 · |Sm
P |

As long as the sets Sm
P and Sm

F are not empty, the value for a′
B is defined and between 0 and 1. In the case

either of those sets is not empty, the model does not have any construct for choice and is therefore completely
deterministic. As a result, computing the precision is not logical in these cases.

As computing the relations does not require replaying the log on the model, the metric can be computed
for non-fitting traces. However, this method requires an exhaustive search of the state space of the model
to construct the corresponding SF and SP relations. As this search is time-consuming for large models, the
metric does not scale well.

ETC Precision
An alternative metric which does not require an exhaustive search of the state space of a Petri net is ETC
precision, first defined in [30] and later refined in [29]. The main idea of this method is to simulate the log
traces on a model and use the number of escaping edges as a metric for precision.

Computation starts with constructing the prefix automaton for the log evaluated, which is a tree-shaped
state machine similar to the APTA described in Section 2.1.2. In this automaton, each state s represents a
prefix of some trace in the log, and s# denotes how often the prefix corresponding to s occurs in the log. This
automaton is defined as the four-tuple (S,T,δ, si n).

Then, for each state in the automaton, the corresponding marking for the Petri net is computed by re-
playing the traces over the net. For traces not fitting the model, the largest prefix still conforming to the net is
used.

With the markings for each state computed, the automaton is enhanced with extended states and ex-
tended transitions. Given some state s with corresponding marking M , if there is some transition t such that

t is enabled given marking M and M
t−→ M ′, an extended state s′ and extended transition (s, t , s′) are added.

Here, state s′ has the corresponding marking M ′ and an occurrence count of zero. The set of extended states
is denoted as S′ and the set of extended transitions as δ′. The enhanced automaton is therefore represented
as (S ∪S′,T,δ∪δ′, si n).

The basic form of ETC precision is based on the number of times an extended transition could be performed
instead of the transition according to the log. Let the event log be some set {

∑
1, . . . ,

∑
n}, and si

j denote the

state in the automaton corresponding to the prefix of the first j symbols in trace
∑

i . Furthermore, AT (si
j)

2.3. Measuring process model quality 11

is the set of all transitions leaving si
j and EE (si

j) is the set of enabled transitions from si
j (all non-extended

transitions leaving the state). Then, the basic ETC precision etcp is computed as:

etcp = 1−
∑n

i=1

∑|∑i |+1
j=1 |EE (si

j)|∑n
i=1

∑|∑i |+1
j=1 |AT (si

j)|

As there are never fewer transitions leaving some state as there are enabled transitions leaving the state, this
metric returns a value between 0 and 1.

The basic ETC precision is, however, sensitive to longer traces. This problem is tackled with the updated
metric. In order to do this, sets of escaping states Eγ

S and outer states Eγ

S are defined based on some noise
threshold γ ∈ [0,1]. Using the enhanced automaton (S∗,T,δ∗, si n), state s′ is an escaping state if it occurs less
than γ times as often as its predecessor s, i.e. there is some transition (s, t , s′) and γ · s# ≥ s′#. When state s′ is
marked as an escaping state, all states in the subtree rooted as s′ are automatically marked as an outer state
(and therefore, these states cannot also be escaping states).

Let AT (s) once again the be the set of all transition leaving state s and I be the set of all included states:
I = s ∈ S∗|s ∉ Eγ

S ∧ s ∉Oγ

S . Then, the updated ETC precision etc ′P is defined as:

etc ′P = 1−
∑

s∈I |Eγ

S | · s#∑
s∈I |AT (s)| · s#

As there cannot be more escaping states reachable from any state s as there are transitions leaving s, the
computed value lies between 0 and 1.

Due to the usage of the noise threshold γ, the enhanced version does not consider infrequent subtrees for
computing precision. As a result, the precision is not lowered for missed branches encountered with infre-
quent behavior.

The main benefit of ETC precision is that it is relatively cheap to compute time-wise. However, it has short-
comings when the traces used for computing precision do not fit the model.

Alignment-based Precision
Building on ETC precision, the Alignment-based precision metric[5] tries to tackle the issue of non-fitting
traces not working with the computation.

Computing the alignment-based precision begins with computing the optimal alignments using the same
method used for alignment-based fitness (see Section 2.3.2). Using the model part of the optimal alignments,
the alignment automaton is constructed in a way similar to the alignment automaton for ETC precision. By
using the optimal alignments for the traces instead of the traces themselves, the non-fitting traces are still
fully included in the automaton.

With each state in the automaton once again mapped to the corresponding marking in the Petri net, the
automaton is extended with extended states and extended transitions, based on transitions that are at some
point enabled in the Petri net but are never fired according to the logs. Once again, this yields an automaton
similar to the one constructed for ETC precision.

Let S be the set of states originally in the alignment automaton (similar to the set I for etc ′p), and ω(s) be
the count of how often the prefix corresponding to state s occurs in the log. Furthermore, av (s) is the set of
all transitions leaving state s in the automaton and ex (s) is the set of transitions to some state s′ ∈ S leaving
state s. Then, the alignment-based precision ap is computed as:

a1
p =

∑
s∈S ω(s) · |ex (s)|∑
s∈S ω(s) · |av (s)|

As ex (s) is a subset of av (s), the computed metric yields a value between 0 and 1.
For an even further enhancement, the alignment-based precision metric ap is also defined. This metric

differs from a1
p in the construction of the alignment automaton by incorporating all optimal alignments for

the traces instead of just an optimal alignment. By using all optimal alignments, any bias introduced by
selecting some optimal alignment is eliminated.

Computing the precision score is done in a similar way, with the only difference being the computation
of ω(s) taking into account the fact that one trace can have multiple optimal alignments. If some trace s has

12 2. Background

n optimal alignments, the value of ω(s) is incremented with 1
n for any state s corresponding to any prefix of

any alignment for s. Hence, if all traces have only one optimal alignment, n = 1 and ap and a1
p are exactly the

same. Experimentation from the original paper showed that a1
p gives a good approximation of ap , and that

the computation of ap is significantly slower than computing a1
p .

Compared to the other measures for precision, the alignment-based variant is by far the most expensive to
compute time-wise. However, when alignment-based fitness is also used to evaluate the model, the align-
ments can be re-used to mitigate the poor computational complexity. Due to the similarities with alignment-
based fitness, alignment-based precision can also deal with non-fitting traces making the method more ro-
bust. Alignment-based precision is used to evaluate precision in [7, 8, 19].

2.3.4. F-score
One of the key challenges for creating a good process model is finding the right balance between fitness and
precision. In order to quantify such a balance, we can look at other fields of machine learning. Here, the
F-score is widely used to balance the precision and recall of a classification algorithm.

Process Mining can be seen as a form of binary classification, where the goal is to classify data points a
being part of some ’positive’ class or the ’negative’ class. The positive and negative classes are defined by
a training set containing data points for which the class is known. If an unknown data point is correctly
classified as part of the positive or negative class, it is said to be a true positive (T P) or true negative (T N).
When a negative data point is classified as positive, or a positive data point is classified as negative, it is said
to be a false positive (F P) or false negative (F N).

Precision P is the fraction of data points classified as positive actually being positive. Recall R is the frac-
tion of positive data points actually being classified as positive.

P = T P

T P +F P
R = T P

T P +F N

Both precision and recall produce a result between 0 and 1. Using these values, the f-score is computed as
the harmonic mean of precision and recall:

2 · pr eci si on · r ecal l

pr eci si on + r ecal l

For process mining, the training set contains only positive samples in the form of the event log, and the
positive class are all traces produced by the underlying process. Classification in done in the form of con-
structing a process model where a trace is classified as positive if the model explains the trace. Fitness is
similar to recall as it measures how many known positive data points (traces in the log) are actually valid in
the model. Precision is similar in both cases as it measures how many data points classified as positive are
actually (known) positive.

By using the F-measure, we can quantify how well a model balances fitness and precision. Hence, the F-
measure is used for evaluating process models. Furthermore, several other evaluations for process models
[7, 11] also use the F-score for balancing fitness and precision.

2.3.5. Generalization
Whereas precision measures how closely a model fits a log, a perfect fit is not always desired. In many applica-
tions, the true behavior of a process is far more extensive than the behavior captured in a log. Generalization
captures how well a model can explain behavior similar to that found in the log.

Generalization
One of the methods to compute generalization is proposed in [3] and is referred to as generalization. This
method works similar to the ETC precision. The difference is that it compares the number of observed tran-
sitions in different states of the model.

The main idea behind this method is that you can reason about the expected behavior of a model based
on the number of times some state is reached and how many different paths have been observed. Let s be
some state (marking) in the model, n is the number of times state s occurs when replaying the log, and w is
the number of different paths observed leaving s. If n and w are about equal, it can be reasoned that a new

2.3. Measuring process model quality 13

path is taken every time state s is reached, and the model can be expected to allow for more unobserved paths
leaving s. On the other hand, if n is significantly higher than w , the log shows the same behavior every time
state s is reached, and no unobserved paths leaving s are expected.

Let E the set of all events in the event log, with the corresponding state s of the model just before e occurs.
The function si m(e) gives the number of times state s is reached during replay and the function di f f (e)
gives the number of unique activities observed when in state s. Hence, n = si m(e) and w = |di f f (e)|. The
probability pnew(w,n) of a new state occurring is based on Bayesian analysis and is defined as:

pnew(w,n) =
{

1 n ≤ w +1
w(w+1)
n(n−1) n ≥ w +2

Using these definitions, the metric g ener al i zati on is defined as:

g ener al i zati on = 1− 1

|E |
∑
e∈E

pnew(|di f f (e)|, |si m(e)|)

As a state is reached more often than there are unique paths leaving the state, w ≤ n and pnew(w,n) gives
a value between 0 and 1. This means that the average value for pnew over all symbols is also between 0 and 1.

This method for computing generalization does have some drawbacks. First, it is assumed that all traces fit
the log in order to reliably compute the state reached before some event is executed. As perfect fitness is hard
to achieve, the number of traces suitable to compute generalization is likely limited. Second, if the dataset
used features both a high amount of unique traces and unique events, it is to be expected that n ≤ w+1 holds
most of the time, which in turn means the generalization score will almost certainly be close to 1 for most
events. This will over-approximate the actual score for generalization.

Cross-validation
An alternative approach is the usage of cross-validation[3, 39], as is often done in other fields of machine
learning. By constructing the process model on a subset of the event log, we can test whether the model also
accepts the traces not used for its construction. This way, we can measure how well the discovery algorithm
can generalize with the model it produces.

The most common type of cross-validation is k-fold cross-validation. Here, the full event log E is split into
k disjoint sub-logs of equal size, E1, . . . ,Ek , such that the sub-logs together form the full event log. Using the
k sub-logs, there are k evaluation iterations. Iteration i begins with constructing a model using all sub-logs
except Ei . Then, the constructed model is evaluated using Ei .

As [39] indicates, there are two methods for partitioning the event log in order to deal with repeated traces.
First is simple random partitioning, as is usually done in machine learning. However, if the log contains many
duplicate traces, the different partitions will contain all unique traces from the log with a similar distribution.
As a result, the constructed models will likely be similar, if not equal, to the model learned over the full log,
and the benefit of cross-validation is lost.

The alternative is constructing the partitions based on unique traces. By splitting on unique traces, the
partition used for testing is guaranteed to have traces not seen before. Here, the drawback is that the relative
frequencies of the different traces are likely distorted, which can significantly alter the constructed models
compared to the model constructed using the complete log.

2.3.6. Complexity
The final quality metric for a process model is complexity. With complexity, the aim is to quantify how diffi-
cult a model is to interpret. Even though the perception of difficulty is subjective, several metrics have been
constructed.

In [26], Mendling gives an extensive overview of complexity metrics for process models. The process model
used in this work is an Event-driven Process Chain or EPC for short. This is a modeling language for processes
containing events and connectors for and-, or-, and xor-splits. However, for the sake of simplicity, we will use
BPMN as the modeling language as it is both highly similar to EPC and it has good support in the area of
process mining.

14 2. Background

To easily reason about the network structure of a model, some notation is used. First, the set of events is
denoted as T for transitions. The sets of split and join nodes are denoted as S and J respectively, and C = S∪ J
is the set of all connectors. Together, the set of nodes is the combination of these three: N = T ∪S∪ J . The set
A ⊆ N ×N contains all arcs in the model. Furthermore, the model can be considered a directed graph with
vertices N and edges A.

Size
The most basic metric for model size is the number of nodes, or S = |N |. As a model with fewer nodes is easier
to understand, a model with a smaller size is preferred.

Size is influenced by the underlying process as well as the model discovery method used. Hence, compar-
ing the size of two models is only possible if at least one of these factors is shared between the two models. In
[36], multiple other metrics relating to size for BPMN models are defined, but these are not considered due
to how specific they are.

An alternative metric for model size is the diameter, or the length of the longest path between the start and
end node. The main idea behind this is that it takes fewer steps to traverse a simpler model. One main short-
coming of diameter is that it is not well defined in case the model has constructs like parallelism or loops.

Overall, the size metrics can give a good quick impression of the scale of the model but cannot explain com-
plexity on their own. For example, take a long sequential model without any connectors and a small, highly
interconnected model. The sequential model will score worse on both size and diameter, even though it is
easier to understand.

A second issue with size metrics is that nodes used for tasks like synchronization within the process neg-
atively contribute to the score. However, these constructs are desired as they help enforce the quality of the
model, and therefore it is beneficial to incorporate them.

Density
Where the size metric mostly looks at the number of nodes in the model, density metrics also consider the
number of arcs.

The first density metric is arc density ∆, or the fraction of actual arcs over all possible arcs:

∆= |A|
|N | · (|N |−1)

A high density indicates there are many dependencies within the model, so a lower density is preferred. The
main drawback of using density is that the number of possible arcs grows with the square of the number of
nodes. As a result, the metric quickly becomes unreliable for large models, which is an issue as models with
100+ nodes are not uncommon[7].

A better scaling alternative to density is the coefficient of connectivity, or C NC :

C NC = |A|
|N |

This metric computes the ratio between nodes and arcs in the model with the idea that a higher C NC indi-
cates relatively more arcs hence a more complex model. An alternative is using the inverse of C NC , which
was used by De Alvarenga et al. in the context of measuring the complexity of attack graphs [10]. The benefit
of using C NC over density is that it scales better for models with more nodes. Furthermore, as each edge is
used to connect two different nodes, doubling the C NC gives an indication of the number of edges per node.

Finally, the distribution of node degree can be used as an indicator of how many connections are present
in the model. The distribution of degree is computed over the set of connectors C as events always have one
incoming arc and one outgoing arc and therefore do not add any complexity. Following this metric, connec-
tors with a high degree are considered more complex, so a lower degree is desired.

The average degree on itself does not tell a lot about the model, given it is heavily influenced by the num-
ber of connectors in the model. However, by considering the minimal, maximal, and average degree, we can

2.3. Measuring process model quality 15

get some insights into how common complex connectors are in the model. Besides, it can give insights into
whether the model tends towards simple or complex connectors.

Partitionability
Visually, it is easier to understand a model if it can be broken up into smaller parts. The degree to which a
model can be split is measured as partition ability.

The most basic metric for partition ability is separability, which measures which fraction of the nodes can
be removed to disconnect the model. The reasoning behind separability is that if a node can be removed to
split the model into two parts, an analyst can evaluate the two parts separate from each other. SeparabilityΠ
is computed as:

Π= |{n ∈ N |n is a cut-vertex}|
|N |−2

Here, a cut-vertex (also referred to as an articulation point is a node in a graph where if the node and its
corresponding edges are removed, the graph is split into multiple disconnected components. The factor −2
in the denominator represents the start and end node, as removing these nodes can never disconnect the
model.

A drawback of separability is that it does not produce a reliable score when there is a lot of parallelism in
the model. If a model contains long parallel paths which are sequential themselves, the model is not hard to
understand. However, as no node in the path is a cut-vertex, the separability metric considers the nodes as
complex to understand.

A related metric is sequentiality, which measures which fraction of arcs is between two transitions. As sequen-
tial arcs are easy to understand, a high fraction of sequential arcs indicates a simple model. The sequentiality
Ξ is computed as:

Ξ= |A∩ (T ×T)|
|A|

Opposed to separability, the sequentiality metric does not penalize for parallel sequential sub-models. On
the other hand, it also does not consider the complexity of the connectors, which might make the model hard
to understand.

Structuredness is a partition ability metric taking another approach. Instead of reasoning about the com-
plexity of singular nodes or arcs, the structuredness metric looks at how well the model can be split up into
single-input single-output building blocks. In order to measure this, the original graph G is reduced to the
graph G ′ following the rules described in Section 3.3 in [26]. These rules look for common constructs like
sequentiality, connector merges, or sequential paths between similar connectors and replaces the known
constructs with a single arc, reducing the number of nodes in G ′ compared to G . With the node-based size
metric S, structuredness φ is computed as:

φ= 1− S(G ′)
S(G)

By incorporating the relations between nodes and arcs, structuredness is able to capture larger structures
that are still easy to understand. This feature is lacking in both separability and sequentiality. The drawbacks
of structuredness are that it does not incorporate model size (large models are still complex) and that it is
relatively expensive to compute.

One thing to note is that process trees have a structuredness of 1, as all building blocks for the tree are
reducible following the reduction rules.

Connector Interplay
A final aspect of complexity is the relations between the different connectors. Whereas the structuredness
metric described above does capture this to some extent, it is not a good metric to describe how hard the
connectors are to understand.

16 2. Background

The most basic method for checking how well the connectors relate to each other is the mismatch. For a
perfect model, each split node has a corresponding join node such that the part between the split and join
can be seen as an isolated sub-model. If this is the case, the degree of all split-nodes is equal to the degree of
all join-nodes. Mismatch is the difference between these degrees. Let d(n) be the degree of some node, then
mismatch M M is computed as:

M M = |sumc∈Sand d(c)− ∑
c∈Jand

d(c)|+ |sumc∈Sxor d(c)− ∑
c∈Jxor

d(c)|+ |sumc∈Sor d(c)− ∑
c∈Jor

d(c)|

The main drawback of mismatch is that it cannot capture asymmetric splits and joins. Take an example
with a split-node partitioning the process into three separate paths, join-node a joining two of the split paths,
and join-node b joining the third path and the (eventual) output of node a. This case is more complex than a
case where the split-node is matched with a single join-node joining all three paths, but the mismatch score
in both cases is zero.

Borrowing from the cyclomatic complexity in software analysis[25], the control flow complexity (CFC) mea-
sures how many execution paths are possible. For this, the number of different paths which can occur at a
split is measured. At a parallel split sand , only one combination is possible regardless of the out-degree of the
connector as all outgoing paths are executed. With an exclusive-choice split sxor , there are |sxor • | possible
combinations as exactly one of each outgoing path is executed. For an OR-split sor , a total of 2sor •−1 com-
binations are possible as any non-empty combination of the outgoing paths is possible. Using these values,
the control flow complexity is computed as:

C FC = ∑
c∈Sand

1+ ∑
c∈Sxor

|cxor • |+
∑

c∈Sor

2|cor •|−1

The drawback with CFC is that the type of connector heavily influences the final score. If two models have
the same structure, but one model uses only AND-connectors and the other model uses OR-connectors, the
CFC is significantly higher in the second case even though the models are virtually similar visually.

2.4. Process Mining
The field of process mining knows three main tasks: discovering, monitoring and improving processes by
extracting knowledge from event logs[41]. In the context of this thesis, the main focus lies on the discovery
aspect. This section discusses the state-of-the-art algorithms for process discovery.

2.4.1. Alpha
One of the first algorithms developed to model concurrency from event logs is the Alpha algorithm, referred
to as α[2]. The algorithm uses a set of rules to construct a sound WF-net given an event log following specific
requirements. As the set of rules is easily extensible, a series of evolutions over the base α algorithm have
been developed.

Base algorithm: α
For the original α algorithm, mining begins with constructing the footprint matrix for the event log W . This
matrix contains the directly-follows-relation, or ordering relations, for all pairs of events in W , defined as
follows:

• a >W b if and only if there is some trace σ= t1t2 . . . tn−1 and i ∈ {1, . . . ,n −2} such that σ ∈ W and ti = 1
and ti+1 = b

• a →W b if and only if a >W b and b≯W a

• a||W b if and only if a >W b and b >W a

• a#W b if and only if a≯W b and b≯W a

The subscript W is often omitted if the event log is clear given the context.
Constructing the WF-net begins with creating a transition for each activity in A. Then, subsets X ,Y ⊂ A

are created such that ∀x1, x2 ∈ X , x1#x2, ∀y1, y2 ∈ Y , y1#y2 and ∀x ∈ X , y ∈ Y , x → y . Besides, both X and Y
should be maximal: no sets X ′ and Y ′ exist such that the three conditions hold and either X (X ′∨Y (Y ′.

2.4. Process Mining 17

For all these pairs of maximal sets X and Y , a place PX ,Y is added, together with an arc form each transition
x ∈ X to PX ,Y and an arc from PX ,Y to each transition y ∈ Y . Finally, a source and sink place are added. The
source place has an arc to all transitions corresponding to any activity at the beginning of any trace in W .
Similarly, the sink place has an incoming arc from all transitions for which the corresponding activity is the
final activity for any trace in the log.

Using these rules, α is capable of discovering certain process models of sound WF-nets containing concur-
rency. For the algorithm to work, some factors do have to hold. To begin, the underlying model has to be
a sound WF-net with no duplicate transition labels and no invisible tasks. In addition, the footprint matrix
of the event log must be complete and correct with respect to this underlying model: the footprint matrix of
both the model and the event log has to be the same.

Not all process models for sound WF-nets can be discovered using the α miner. More precisely, loops of
one or two transitions cannot be identified by the miner, and the miner will produce an invalid model if these
loops are part of the event log. This issue is addressed in the first evolution: the α+ miner.

Short loops: α+
Building on the base α miner, the α+ algorithm[44] is able to discover loops of one or two transitions. To
achieve this, a new definition for log completeness is given, and a pre-processing step is added.

Whereas the baseαminer requires the training log to be complete with respect to the ordering relation of un-
derlying WF-net, the α+ miner takes this a step further and requires the log to be loop complete. This means
that the training log should be complete, and when the model can produce the sub-trace . . . aba . . . , a 6= b,
some trace in the training log must also include that sub-trace. In addition, the ordering relation is also
changed with respect to the base α miner:

• a MW b if and only if there is some traceσ= t1t2 . . . tn and i ∈ {1, . . . ,n−2} such thatσ ∈W and ti = ti+2 =
a and ti+1 = b

• a ¦W b if and only if a MW b and b MW a

• a >W b if and only if there is some trace σ= t1t2 . . . tn−1 and i ∈ {1, . . . ,n −2} such that σ ∈W and ti = a
and ti+1 = b

• a →W b if a >W b and (b≯W a or a ¦W b)

• a||W b if a >W b and b >W a and a 6 ¦W b

• a#W b if a≯W b and b≯W a

With a loop-complete event log, the mining starts with a pre-processing step identifying and filtering loops of
length one. A transition t is identified as a length-one-loop (L1L) if there is some trace σ= t1t2 . . . tn such that
for some i ∈ {1, . . . ,n} : t = ti−1 ∧ t = ti . Then, the training traces are filtered of all transitions in a L1L, yielding
a new set of training traces which is used as input for the base α algorithm. Finally, the resulting Petri net is
enhanced with all transitions representing a L1L, which yields the final Petri net.

Following the proofs in[44], the base α algorithm is able to correctly identify the loops of length two if the
training log is loop-complete and free of loops of length one. The second part is enforced by the pre-processing
step removing all traces in a L1L.

The main shortcoming of this miner, similar to the base α miner, is the requirement for the event log to
be complete (loop-complete in the case ofα+). As long as this cannot be guaranteed, the output of the miner
can not be proven to be sound.

Non-free choice: α++
The basic α algorithm can construct process models which are able to explain the behavior in the log, but
it cannot identify implicit dependencies between different events. Implicit dependencies are used to match
a choice in a Petri net to an earlier choice in the net. In order to deal with implicit dependencies, the α++
miner[47] was developed as an extension over the α+ miner.

18 2. Background

An implicit dependency between tasks a and b is present if three conditions hold: a •∩•b 6= ;, no mark-
ing s is reachable from the initial marking such that marking s′ = s −•a +a• enables transition b, and some
marking s′′ is reachable from marking s′ which does enable transition b. In other words, when a and b are
connected through a place, firing a can never directly enable b, but b becomes enabled somewhere after a
was fired. Figure 2.5 shows an example of a WF-net with both implicit and explicit dependencies. In this net,
P1 is the initial place, and P6 is the output place. Place P3 is an implicit dependency between T1 and T4 as
T4 will always fire after T1, but no firing sequence exists such that T4 fires directly after T1. Using the base α
miner, the places P3 and P4 and their corresponding arcs will not be discovered.

P1 P2 T3

P3

P4

P5

T1

T2

P6

T4

T5

Figure 2.5: Example WF-net with implicit and explicit dependencies

In order to identify implicit dependencies, two new ordering relations are defined to enhance the represen-
tation of ordering in the log.

• a ÀW b if and only if there is some trace σ= t1t2 . . . tn and 1 ≤ i < j ≤ n such that ti = a and t j = b and
∃k ∈ [i +1, . . . j −1] : tk 6= a ∧ tk 6= b

• a ÂW b if and only if a →W b or a ÀW b

Mining implicit dependencies is done through a pre-processing and post-processing step, similar to how the
α+ miner adds the loops of length one. The pre-processing for α++ identifies all events which might have
an implicit relation between them. This is done over the event log with the enhanced traces with the loops
of length one removed. Using the identified relations, the post-processing is done directly after mining using
the base α. This step first adds the implicit places for the implicit relations identified in pre-processing and
then cleans up any redundant implicit places added. Finally, the post-processing steps from the α+ miner
are executed to yield the final Petri net.

As all actions for mining implicit tasks are executed on the event log with all length-one-loops removed, the
α++ algorithm cannot correctly detect any implicit relations for any transition in a L1L. Furthermore, the
miner still requires a complete event log in order to produce a valid result.

Invisible tasks: α#
One of the other lIMftations of theαminer is its inability to deal with constructs like optional tasks or repeat-
ing sequences. Building on the α+ miner, the α# miner [48] provides an extension to extract invisible tasks
from the event log to solve these issues.

An invisible task is a transition in a Petri net that has no label assigned to it and therefore does not show
up in the event log. By using invisible tasks, concepts like skipping transitions, looping back to a previous
part in the process, or switching execution paths are possible. An invisible task between events a and b is
identified based on the event log W using the advanced ordering relation a W b. Given the set of all ob-
served transitions TV and the causal relations defined by the α+ miner, the advanced ordering relation is
defined as:

a →W b ∧∃x, y ∈ TV : a →W x ∧ y →W b ∧ y ≯W x ∧x ∦W b ∧a ∦W y

Figure 2.6 visualizes this relation for the invisible transition t . If a visible elementary path (a path crossing
only places and visible transitions) exists between a and b, t allows for skipping a part of the model. When
there is a visible elementary path from b to a, t enables a redo-construct, and when no visible elementary
path exists between a and b, t allows for switching execution paths.

2.4. Process Mining 19

a

x

t

y

b

Figure 2.6: Example of the W relation

In order for an invisible task to be included in the mined model, it has to be prime. For this, the proper-
ties for surround, succession, and necessity must hold. Surround requires that an invisible task has a direct
preceding and successive visible tasks. Succession indicates that if tasks a and b are connected via an invis-
ible elementary path (a path crossing only places and invisible tasks), b can directly follow a in some traces.
Finally, necessity indicates that removing an invisible task by merging its input and output places must add
new causal dependencies in the model.

Mining implicit tasks is done by adding additional steps in the α+ miner to identify and add the invisible
tasks. For this, the event log is still required to be loop-complete. The steps for identifying and incorporating
the invisible tasks in the mined model are not pre- or post-processing steps, as was the case for the α++
miner.

The drawbacks of the α# miner are that it cannot detect constructs like non-free choice, even though these
constructs are to be expected with skipping events. Besides, there are still some cases where an invisible task
has a functional part in a sound WF-net which the α# miner is not able to identify, like when an invisible task
is involved in one whole branch of a parallel execution.

Combining all: α$
By combining the functionality of mining non-free choice constructs in the α++ miner and mining invisible
tasks with α#, the α$ miner is able to mine invisible tasks in non-free choice constructs. In addition, α$ im-
proves on the method of identifying invisible tasks such that an invisible task involved with a whole branch
in a parallel construct can be identified.

The mining process with α$ can be split into five general steps. First is the detection of invisible tasks based
on improved mendacious dependency. This dependency updates the a >W b and a →W b ordering relations
to account for all events observed between occurrences of a and b in the event log W . Second, the reachable
dependencies are complemented as the ordering relations from α++ cannot account for invisible tasks. In
order to achieve this, the a ÂW b-relation from α++ is updated to also incorporate the relation between the
event before a and the event after b. Third, non-free choice constructs are detected. By slightly changing the
detection method as used inα++, non-free choice constructs with transitions in a loop of length one are also
identified. Fourth, the invisible tasks are adjusted as some of the invisible tasks identified in the first step may
produce an unsound model. Adjusting an invisible task can be done by merging it with another invisible task
if both tasks are part of a different parallel construct. Alternatively, an invisible task can be split if it is part of
both an implicit dependency and mendacious dependency. Finally, the WF-net is constructed by combining
the outputs of the previous steps.

As the final evolution of the α family of algorithms, the α$ miner still suffers from the core issue of log com-
pleteness. As long as the training log is not fully representative of the event log produced by the underlying
model, the miner cannot give a guarantee to produce a sound WF-net, severely lIMfting the miner’s viability
on sparse datasets. Furthermore, the extensive ruleset introduced over the different iterations of the miner
also increased the time required for mining. As identified by [7], the α$ miner often required over one and a
half hours to find a model if it was able to terminate within the four-hour time lIMft set. On the other hand,
miners like the Split Miner or Inductive Miner rarely required more than ten seconds to construct a sound
result.

2.4.2. Inductive Miner
Taking another approach to process mining is the Inductive Miner[23], or IM for short. SIMflar to theα-family
of miners, the Inductive Miners use a rule-based approach to construct a process model from an event log.

20 2. Background

The difference with the α miners is that IM uses a divide-and-conquer approach to build a model using the
event log as the complete truth. In contrast, the α miners use a constructive approach with strong require-
ments for the completeness of the event log.

The output of the Inductive Miner is a process tree, which is a special kind of process model used to rep-
resent block-structured processes. A process tree is defined by activity nodes (which serve as leaves for the
tree) and a set of four recursive operational nodes.

• Sequential nodes: → (n1, . . . ,n j). Execution of a sequential node is done by first executing the child
nodes in order.

• Exclusive-choice nodes: ×(n1, . . . ,n j). Execution of an exclusive-choice node is done through executing
exactly one child node.

• Parallel-cut nodes: ∧(n1, . . . ,n j). Execution of a parallel-cut node is done by executing all child nodes
in any order and with the option to interleave the execution of different children.

• Structured-loop nodes: 	 (n1,n2, . . . ,n j). Execution of a structured-loop starts with executing n1. After
this, block sequence ni ,n1 can be executed any number of times, for any value : 2 ≤ i ≤ j . Structured-
loop nodes are the only nodes with the requirement of j ≥ 2.

A process tree model can be translated into BPMN as shown in Figure 2.7, or an equivalent Petri net. Due
to the way the blocks are defined, the model corresponding to each block is sound, and therefore the entire
model representing the process tree is sound. Furthermore, one can argue that the tree construction allows
for easy interpretation of the model as it can be split into sub-models. This factor is discussed in Section 2.3.6.

(a) → (n1 , . . . ,n j) (b) ×(n1 , . . . ,n j) (c) ∧(n1 , . . . ,n j) (d) 	 (n1 ,n2 , . . . ,n j)

Figure 2.7: The four different process tree nodes translated to BPMN

Base Miner
The base IM starts with constructing the directly-follows graph G for the event log L, where each activity is
represented by a node. An edge between nodes a and b is added when the subsequence . . . ab . . . occurs in any
trace in the event log. Start nodes are any nodes for which the corresponding activity occurs at the beginning
of any trace. Similarly, end nodes have their corresponding activity occur at the end of any trace in the log.
These kinds of nodes are denoted with St ar t (G) and End(G), respectively.

At this point, the choice of modeling a process tree becomes apparent: by defining cutting rules for the
directly-follows graph, different nodes for the process tree can be detected. After making a cut in the directly-
follows graph, the logs are split in a similar way, and the algorithm is applied recursively on the newly formed
sublogs.

Let a b ∈G indicate that there exists a path in the directly-follows graph G from node a to node b. Using
this notation, the rules for the four different types of node cuts defined by [23] are defined as follows:

• Sequential cut: find Σ1, . . . ,Σn such that a clear sequential ordering exists between the different pars
(Figure 2.8a:

1. ∀1 ≤ i < j ≤ n ∧ai ∈Σi ∧a j ∈Σ j , a j ai ∉G

2. ∀1 ≤ i < j ≤ n ∧ai ∈Σi ∧a j ∈Σ j , ai a j ∈G

• Exclusive-choice cut: find Σ1, . . . ,Σn such that no dependencies exist between the different parts (Fig-
ure 2.8b:

1. ∀i 6= j ∧ai ∈Σi ∧a j ∈Σ j : (ai , a j) ∉G

2.4. Process Mining 21

• Parallel cut: find Σ1, . . . ,Σn such that the different parts are fully connected (Figure 2.8c:

1. ∀i :Σi ∩St ar t (G) 6= ;∧Σi ∩End(G) 6= ;
2. ∀i 6= j ∧ai ∈Σi ∧a j ∈Σ j : (ai , a j) ∈G

• Structured-loop cut: find Σ1, . . . ,Σn such that some initial part is connected to the start and the end,
and all other parts are only connected to the initial part (Figure 2.8d):

1. St ar t (G)∪End(G) ⊆Σ1

2. ∀i 6= 1∧ai ∈Σi ∧a1 ∈Σ1 : (a1, ai) ∈G ⇒ a1 ∈ End(G)

3. ∀i 6= 1∧ai ∈Σi ∧a1 ∈Σ1 : (ai , a1) ∈G ⇒ a1 ∈ St ar t (G)

4. ∀1 6= i 6= j 6= 1∧ai ∈Σi ∧a j ∈Σ j : (ai , a j) ∉G

5. ∀i 6= 1∧ai ∈Σi ∧a1 ∈ St ar t (G) : (∃a′
i ∈Σ1 : (ai , a′

1) ∈G) ⇔ (ai , a1) ∈G

6. ∀i 6= 1∧ai ∈Σi ∧a1 ∈ End(G) : (∃a′
i ∈Σ1 : (a′

1, ai) ∈G) ⇔ (a1, ai) ∈G

For a cut to be valid, it must be non-trivial and maximal. A cut is non-trivial if j > 1, and a cut using oper-
ator op is maximal if ∀1 ≤ i ≤ j , op cannot be used to split ni further. Figure 2.8 shows a visual representation
of the different cuts.

(a) Sequential cut (b) Exclusive-choice cut (c) Parallel cut (d) Structured-loop cut

Figure 2.8: Visual representation for the four different cuts. Grey areas show the different parts of the cut. Dashed arrows indicate edges
which cannot exist in the directly-follows graph.

The Inductive Miner evaluates the cuts in the order of exclusive-choice, sequence, parallel and finally
structured-loop. If no cut can be made, the sublog is modelled as a loop with an empty block	 (τ, a1, . . . , a j),
where a1, . . . , a j are all activities in the sublog, and τ is the silent activity. This construct is equivalent to a
flower model.

Looking at the performance of the Inductive Miner, the base algorithm is guaranteed to produce a model
capable of explaining all traces in the training log. This guarantee, however, becomes a drawback when the
event log contains noise. In such cases, the produced model will either be too tight if the splits can still be
made, or too general if no split could be made and the generic flower model is produced for the sublog. In
more general terms: the Inductive Miner will always produce a structured model, but it might sacrifice preci-
sion or generalization in the process. Furthermore, the miner cannot extract context from duplicate activity
labels as all splits are made from the directly-follows graph. As a result, a log with duplicate activity labels will
likely result in a model which is too generic.

Inductive Miner Infrequent
Building on the base Inductive Miner, the Inductive Miner Infrequent[19] (IMf for short) updates the mining
process such that infrequently observed events have less of an impact on the overall model.

Mining with IMf is the same as with the base IM up until a split cannot be made. At this point, the base IM
will add a generic flower model to the result, which can cause the model to allow a lot of unobserved behavior.
Instead, the infrequent filter of IMf is applied.

First, a filter is applied to the operator and cut selection by removing infrequent edges from the directly-
follows graph. An edge (a,b) is filtered if it occurs less than k times (0 ≤ k ≤ 1) than the most frequent edge
leaving a. If this still does not yield a valid cut, the directly-follows graph is replaced by the eventually-follows
graph (where the edge (a,b) indicates that event b occurred somewhere after event a in some trace), which is
also filtered on infrequent edges.

22 2. Background

As this filtering on the operator and cut selection may introduce empty traces (traces of zero events) to
the sublogs, the sublogs are also filtered on base cases. Whereas the only base case for IM is a log containing
a single event, IMf can also have a base case where the log can contain the empty trace. In order to deal with
this and the possible extra noise introduced, the empty trace is only included in the sublogs if it is frequent
enough compared to the number of traces in the sublog, based on k.

The third and final filter applied is the filter on log splitting. As the previous filtering rules might have
selected a cut that does not fit the infrequent behavior, the cutting rules have to be changed slightly. In order
to enable splitting the log, traces are filtered based on observed event instances not fitting with the identified
cuts.

Overall, the IMf variant trades a bit of fitness to achieve a higher precision compared to the base IM. There-
fore, IMf provides a better alternative if the goal of mining a log is to gain a high-level understanding of the
underlying process. The mining process depends on identifying the different splits, which can be done effi-
ciently using several graph techniques, resulting in low mining times.

Other Inductive Miners
In addition to the infrequent variant of the Inductive Miners, other variants have been developed. The IM-
incomplete[20] deals with incomplete logs by using a probabilistic approach to identify the cuts for the
directly-follows graph. The IM-directly-follows based[21] gives an approach to use the IM by using split
directly-follows in recursive calls instead of splits in the logs, improving performance on large datasets. In
this work, an adaptation is also given to use the directly-follows based technique together with the infrequent
or the incomplete variant of the IM. For dealing with event logs where timing information is present for the
different events in a trace, the IM-life-cycle is proposed in [22].

2.4.3. Heuristics Miner
The Heuristics Miner[46] (HM) and Flexible Heuristics Miner[45] (FHM) are developed as an alternative to
the base α miner. This type of miners leverages the frequency of traces and patterns in the traces to create a
model more robust against noise in the event log compared to the base α miner.

Mining in the family of heuristics miners is a four-step process. In the first step, the frequency of each event
in the event log is computed together with the frequency matrix. This matrix is similar to the footprint matrix
from the α-family of miners, but instead of only recording if the directly-follows relation was observed, the
frequency matrix keeps track of how often this relation was observed for each pair of events. In addition to
direct succession frequencies (|a > b|), the repetition count (|a À b, the count of the subsequence . . . aba . . .)
and indirect succession count (|a≫ b|, or the total number of times a is eventually followed by b, without
any a or b in between) are also computed.

Then, the dependency matrix is constructed using the dependency measure, where a directed edge is
added if the measure exceeds a user-defined threshold. Following the original Heuristics Miner, the depen-
dency measure is computed as follows:

dependenc y(a >L b) =
{ |a>L b|−|b>L a|

|a>L b|+|b>L a|+1 a 6= b
|a>L a|

|a>L a|+1 a = b

In the third step, the parallel and exclusive-choice relations are mined based on the dependency matrix.
For this step, the Flexible HM and the base HM use slightly different measures.

The fourth final step adds long-distance dependencies to the model. For this, a new dependency matrix
is constructed based on the |a≫ b| frequencies. As this relation produces a lot of false positives in the model
(for example, the relation holds between the start event and each event, and between each event and the
final event), a filtering check is done. This check verifies if it is possible to reach the final event in the trace
from a without executing b in the process before adding a long-distance dependency from a to b. This step
is optional in the heuristics miners.

As discussed in [42], both HM and FHM have some shortcomings. First, the algorithms add connections
based solely on frequency, meaning the miners may produce disconnected models. Second, the miners
cannot deal with duplicate task labels, which can yield an overly complex model if duplicate task labels are
present. Furthermore, the published implementation for the |a≫B | relation only considers one occurrence
per trace at most, whereas this relation can occur multiple times within the same trace.

2.4. Process Mining 23

Fodina
The Fodina miner[42] is developed as an evolution over the HM and FHM to mitigate the shortcomings in
these miners. The miner changes some aspects of the base heuristics miners to better deal with noise, infre-
quent events, and duplicate activities.

Mining begins with constructing a mapping between the events in the event log and tasks in the final model.
For the base miner, this is a simple one-to-one mapping, but when mining duplicates, the process is a bit
more involved. By keeping track of the direct context of an event a (the event directly before and after a), a
user-defined threshold is used to distinguish between previously observed occurrences of a, or if the current
context is different enough to create a new task in the log. Using the event log, the frequencies for all relations
are gathered in the same way as the other heuristics miners, and the basic dependency graph is constructed.
For constructing the dependency graph, Fodina uses a different threshold for dependency, length-one-loops,
and length-two-loops, whereas the HM uses one shared threshold for all three occasions. Then, the start and
end tasks are added to the dependency graph. Following this, Fodina verifies whether all tasks in the depen-
dency graph are reachable and enhance the dependency graph with long-distance dependencies. These two
steps are, however, optional, and their inclusion depends on the settings defined by the user. Finally, the de-
pendency graph is converted to the desired output model, which is a Causal net. This Causal net can also be
converted to a Petri net if that is the desired output format.

With the proposed extensions, Fodina can construct more precise models compared to the base HM and
FHM. However, to achieve this, a range of settings is available, making Fodina harder to use as choosing
appropriate values for these settings requires expert knowledge. On the other hand, given this knowledge,
Fodina is more powerful than HM and HMF. Furthermore, the steps taken to improve the soundness of the
resulting model are not enough as Fodina can still produce unsound models.

2.4.4. Structured Heuristic Miner
Also building on the Heuristics Miner is the Structured miner[6], which adds post-processing to the out-
put of the HM to construct more structured models following the structuredness metric as defined in Sec-
tion 2.3.6. The goal of the structuring process is to reduce the complexity of the discovered model. In order to
achieve this, the structured miner uses a four-step process: model discovery, structuring, soundness repair,
and clones removal.

In the model discovery step, a pre-existing miner is used to construct a model used as the basis for the
other steps. For this, any miner producing a model with parallel and exclusive-choice gateways and a single
start and end node can be used. In the original paper, the authors used the implementation of the Heuristics
Miner in ProM 6 as it is able to provide accurate models. This combination is referred to as sHM.

Using the base model, the structuring process removes injections and ejections in order to make the
model less complex. An injection is a structure where multiple paths are merged through a join gateway,
followed by one unique path. This structure is changed by pushing down the join gateway into each of the
paths leading into it. Figure 2.9 shows the general structure before and after applying the push-down opera-
tion on an injection. In order for an injection to be valid, g 3 must have at least two unique input paths, so the
path g 2′,C is optional. Similarly, an ejection is a structure where one path reaches a split gateway, followed

(a) Injection (b) Restructured injection

Figure 2.9: Example of push-down to restructure injections

by multiple unique paths. This structure is changed by pulling up the split gateway into the paths leaving it.
Figure 2.10 shows the general structure before and after applying the pull-up operation on an ejection. For a
valid ejection, g 2 must have at least two output paths, so the path D, g 4′ is optional.

24 2. Background

(a) Ejection (b) Restructured ejection

Figure 2.10: Example of pull-up to restructure injections

After restructuring, the soundness repair step makes an attempt to fix blocks where gateways are mismatched.
These blocks are identified by parsing the model as a Refined Process Structure Tree as discussed in [35]. Fi-
nally, the clone refactoring step tries to merge duplicate parts introduced by the restructuring step such that
the structuredness metric is not negatively impacted.

Using these four steps, SHM is able to improve a model found by another miner, even being able to make
some unsound models sound. Even though SHM includes as a step to repair parts violating soundness, the
fixes are not complete, and the resulting model can still be unsound. Furthermore, the theoretical runtime of

the algorithm is bad with a worst-case runtime of O
((n

4

)(n
4

))
, with n being the number of nodes in the model.

This poor performance is reached if all gateways in the model are part of an injector or ejection.

2.4.5. Split Miner
The Split Miner[8] is one of the latest high-profile process discovery algorithms. By filtering and transforming
the directly-follows relations observed in the event log, the Split Miner constructs a BPMN model focusing
on a low control-flow complexity. Furthermore, it is the only miner besides the process tree miners with
a soundness guarantee for acyclic process models. Opposed to a process tree, the Split Miner constructs a
BPMN model and is therefore not limited to block-structured models.

Mining begins with constructing the directly-follows graph from the traces in the event log. Using this graph,
|a → b| denotes the frequency of the edge from event a to event b based on the event log. Furthermore,
|a ↔ b| denotes the frequency of the pattern . . . aba . . . in the event log. With these relations, edges in a self-
loop or short-loop are filtered from the DFG, as these edges break the distinction between parallelism and
causality. An edge for self-loop starts and ends at the same node, so detection is trivial. For a short-loop, the
condition |a → a| = 0∧|b → b| = 0∧|a ↔ b|+ |b ↔ a| 6= 0 has to hold.

With these loops removed, the edges between concurrent events are removed. For events a and b to be
concurrent, three conditions must hold:

|a → b| > 0 ∧ |b → a| > 0 (2.1)

|a ↔ b|+ |b ↔ a| = 0 (2.2)

||a → b|− |b → a||
|a → b|+ |b → a| < ε, 0 ≤ ε≤ 1 (2.3)

Condition 2.1 requires that b is observed after a and vice versa. Condition 2.2 enforces that no loop-relation
exists between a and b. For condition 2.3, assuming a and b are independent, the frequency |a → b| should
be about equal to the frequency of |b → a|. Here, a smaller value of ε requires a smaller difference between
the frequencies.

After removing the concurrency-related edges, the DFG is filtered based on path frequency based on some
user-defined percentile η. This is done to reduce the complexity of the final model by removing low-frequency
edges. By using a cost computation based on Dijkstra’s algorithm, it is ensured that each node lies on some
path between the start and end node.

Constructing the final BPMN model begins with adding an event for each node in the DFG. Events can be
connected if the corresponding edge (a,b) in the DFG is the only outgoing edge of a and the only incoming
edge of b. If a node a has multiple outgoing edges in the DFG, an AND-split or XOR-split is added, depending

2.5. Learning Attack Graphs 25

on the relation between the events observed after a. Identifying the join gateways is done based on evaluat-
ing single-entry single-exit nodes in the Refined Process Structure Tree [35]. Finally, the self-loops are added
to the BPMN model, and a post-processing step reduces the CFC by replacing as OR-joins with an XOR-, or
AND-join where possible.

As the Split Miner operates mostly over the filtered directly-follows graph, the time required to construct a
model is low. Like the process tree miners, the Split Miner has a soundness guarantee for acyclic processes.
Compared to the Inductive Miner, the Split Miner is able to achieve a balance between fitness and precision
through filtering, whereas process trees usually achieve a high fitness at the cost of lower precision. Based on
experimental results, the Split Miner can consistently outperform the IM-family of miners on real datasets
while also requiring less time to construct a model.

2.4.6. Overview
Table 2.1 gives a short overview of the capabilities of the different miners. Even though the different miners
construct different types of models, all model types can be converted to a Petri net, making comparison
easier.

Miner Model Type
Detects duplicate

events Strengths Weaknesses
α$ Petri net No Has strong guarantees iff the

event log is complete
Slow, cannot guaran-
tee soundness for non-
complete logs

Fodina Causal net Configurable Good runtime, highly con-
figurable

Configurations require ex-
pert knowledge, cannot
guarantee soundness

IM Process tree No Fast, always produces sound
models, flexible

Limited to block-structured
processes

sHM6 BPMN No Soundness repair step im-
proves performance over
other heuristics miners

Poor theoretical upper
bound on runtime, cannot
guarantee soundness

SM BPMN Configurable Fast, guarantees soundness
in most cases

Can result in complex OR-
join gateways

Table 2.1: Comparison of different process discovery algorithms

2.5. Learning Attack Graphs
Through the usage of an intrusion detection system, or IDS for short, security experts are alerted of possible
attacks in a computer network. One drawback of these systems with the modern internet is the volume of
alerts generated by these systems. For decently sized networks, it is not uncommon when hundreds of thou-
sands or millions of alerts are generated in a single day by the IDS active in the network[10]. In addition, some
attacks consist of multiple steps or stages, meaning they are not captured by a single alert.

By filtering, aggregating, and combining the alerts generated, attack graphs mapping out attacker strate-
gies can be constructed. Using these attack graphs, security experts can get better insights into the vulnera-
bilities of the network and take measures to prevent future attacks.

Most methods used for constructing attack graphs use some form of prior knowledge of the network ar-
chitecture to predict vulnerabilities. In addition, there exists a method that is capable of constructing attack
graphs based solely on the alerts generated by the IDS. This work is used as the basis of this thesis and is the
only method of its kind to the best of our knowledge.

2.5.1. Combining Alerts with Prior Knowledge
Almost all work into constructing attack graphs for multistage attacks uses some prior knowledge like known
vulnerabilities and network topology. As a basis, the MulVAL framework takes this prior knowledge to find
paths an attacker could take to perform certain attacks in the network. Using this framework, several other
methods have been developed to correlate the results from MulVAL with alerts generated by an IDS.

26 2. Background

MulVAL
The Multihost, multistage Vulnerability Analysis framework, or MulVAL[33] is used as a basis for most meth-
ods in attack graph generation. This framework uses six different types of information as input: security
advisories on known vulnerabilities, host configuration, network configuration, principals (information on
the users of the network), interaction between different components of the network, and the access policy.
All types of information are represented as predicates, which in turn are used by DATALOG. Using these pred-
icates, clauses can be defined as shown in Figure 2.11.

1 execCode (Attacker , Host , Priv) : −
2 v u l E x i s t s (Host , VulID , Program) ,
3 vulProperty (VulID , remoteExploit , privEscalation) ,
4 networkService (Host , Program , Protocol , Port , Priv) ,
5 netAccess (Attacker , Host , Protocol , Port) ,
6 malicious (Attacker)

Figure 2.11: Definition for remote code execution using MulVAL. Capitalized terms are variables (Attacker, Host) whereas non-capitalized
terms are constants (remoteExploit).

Line 1 defines the clause execCode(Attacker, Host, Priv), based on the variables Attacker, Host
and Priv (all capitalized identifiers are variable). For execCode to evaluate to true, five other clauses have
to hold. First, a vulnerability referred to as VulID must exist on Host in program Program. Second, the
vulnerability VulID must have certain properties: it must be a remoteExploit with the consequence for the
option of privEscalation (both are constant as indicated by the identifier starting with a lowercase letter).
Third, looking at the services on the network, the Host must be running the vulnerable Program, accept
connections using the Protocol on the given Port, and running with the given Privilege. Fourth, the
network user Attacker must have access to Host using the given Protocol and Port. Finally, the network
user Attacker must be malicious. When some configuration exists for the variables such that all clauses on
lines 2 through 6 hold, then the original execCode clause on line 1 also evaluates to true, indicating some
network user Attacker can execute code on the given Host with the privileges Priv.

Using similar reasoning, other types of attacks or vulnerabilities can be modeled for the network, like file
access by unauthorized users or an attacker moving laterally through the network. Furthermore, by adding
hypothetical vulnerabilities, a network administrator can gain insights into the network’s resiliency in the
case some exploit becomes available.

Roschke et al.
In the work of Roschke et al.[37], an extension of the MulVAL framework is proposed. Through the proposed
five-step pipeline, the vulnerability analysis of MulVAL is combined with a set of alerts in order to create attack
paths to use during forensic analysis after an incident.

The steps of the pipeline are preparation, alert mapping, aggregation of alerts, building an alert depen-
dency graph, and searching for related subsets of alerts. In this pipeline, an alert a is defined at the tuple
(t , s,d ,c) where t denotes the timestamp, s and d respectively denote the source IP and destination IP of the
packet triggering the alert, and c is the classification of the alert.

First is the preparation step, where a basic attack graph AG = (V ,E) is constructed. The vertices of the
graph are the set of impacts as defined by MulVAL, where a vertex v is added for each triple of impact, host,
and vulnerability reference. At this point, no edges are yet present in the graph.

The second step maps the set of alerts to the vertices in the graph. This mapping is done based on source
IP (attacks by the same attacker), destination IP (attacks targeted on the same host), or the classification of
the alerts (attacks of the same type). Combinations of the three features are also possible to create attack
graphs for more general or specific kinds of attacks.

The third step is the aggregation of alerts with the goal of reducing the number of alerts needed for the
further steps. This is achieved by grouping similar alerts. Two alerts are considered similar when they are
assigned to the same vertex, the source IP, destination IP, and classification are equal, and the difference in
the time difference between the two alerts is below a given threshold.

The fourth step is finding the dependencies between alerts and representing this in a dependency graph
DG . The vertices for the graph are the set of aggregated alerts from step three. For the vertices of aggregated

2.5. Learning Attack Graphs 27

alerts x and y , the dependency graph contains an edge (x, y) if x occurred before y and the chosen matching
rule holds. Three matching rules are defined as follows:

• There is an edge from x to y in the attack graph

• There is a path from x to y in the attack graph of a maximum length n

• There is a path from x to y in the attack graph of any length

The fifth step is searching for related subsets of alerts. The DG created by the previous steps contains
subsets of alerts that could be part of the attack scenario. Through finding paths through DG and ordering all
alerts mapped to the vertices in the path by timestamp, an overview of paths an attacker could have taken is
created.

Hu et al.
As attack strategies can continuously evolve and unknown vulnerabilities can be exploited, an IDS could miss
certain attacks. With some alerts possibly missing, the attack graphs constructed might miss some key steps
from the attackers. The method by Hu et al.[15] tries to tackle this problem by mapping alerts generated by
an IDS to the vulnerabilities identified by MulVAL. In addition, the method aims to also detect attack paths
from unsuccessful attacks, which still provide insights into the strategies used by attackers.

First, the attack graph is created using MulVAL. The alerts from the IDS are mapped to the nodes of this
attack graph based on the source IP, destination IP, and the type of the alert.

Using the mapped alerts, the second step generates attack sequences by correlating attributes from the
alerts. A sequence consists of alerts a1, a2, . . . , an where the mapped node for ai is connected to the mapped
node for alert ai+1 in the attack graph, and alert ai was logged before ai+1. New sequences are added when
the previous sequences cannot be extended further.

The third step merges similar attack chains to remove duplicates, resulting in initial (possibly broken)
scenarios. Merging is done by clustering the alert sequences based on the edit distance between different
sequences. Each of these clusters is referred to as an attack scenario.

In the fourth and final step, the causality of multi-step and multi-stage attacks is used to fill gaps in the
scenarios. Here, two attack scenarios ASi and AS j are merged based on the minimal possible distance be-
tween some ai ∈ ASi and a j ∈ AS j , based on the same methods as used in step two. After merging, ASi

and AS j are removed from the scenarios, and the new scenario is added. Merging continues until no two
scenarios can be merged, meaning it is possible for one of the final scenarios to consists of three or more
sub-scenarios as returned by the third step.

De Alvarenga et al.
In [10], De Alvarenga et al. introduce a method of constructing attack graphs using process mining. This is
done through a three-step process: alert aggregation, model constructing, and model clustering.

To begin, the alerts from the IDS are aggregated based on a one-to-many or many-to-one scheme. With
the one-to-many scheme, aggregation is done based on the source IP to group alerts based on the same
attacker. For the many-to-one scheme, the alerts are aggregated based on destination IP to extract all attacks
on the same target. After filtering duplicate alerts from the aggregated sets, an event log is constructed where
the event labels are the alert signature, and different cases are distinguished based on the time frame of the
alerts.

Then, a process model is constructed over this event log. In the paper, the process discovery algorithm
is called the ’Model Discovery Algorithm’, but following the description of this algorithm, it just constructs a
Markov chain over the event log. These models can quickly become visually complex due to the high number
of nodes and edges. When a model is labeled as complex, it is split up by clustering the traces underlying the
model.

This clustering technique starts with encoding all traces based on which events are in the trace. If the
complete log contains n unique events, each trace is represented by an n-bit vector. Then, the distance
between all bit vectors of the traces is computed using the Jaccard distance. With this distance matrix, a
hierarchical clustering technique is applied to group similar traces together. Based on a simplicity score (the
inverse of the CNC as discussed in Section 2.3), the cluster hierarchy is traversed to separate clusters for
which the model is not complex. If some cluster cannot be split into non-complex submodels, the traces are
separated based on the timestamp of the events, and the process is repeated.

28 2. Background

2.5.2. Solely Alert-based
To the bets of our knowledge, the method by Nadeem et al.[31] currently is the only method capable of con-
structing attack graphs which does not require prior knowledge and works solely on the generated alerts. This
method takes a set of IDS alerts and converts these to attack graphs through a three-step process.

Aggregating alerts
The first step is aggregating the raw IDS alerts into attack sequences. For this, the information from the
raw alerts is first mapped following the attack-intent framework from Moskal et al.[27]. Then, the alerts are
grouped based on source and destination IP and aggregated into sequences based on the timestamps. After
splitting the alert sequences based on temporal density, they are encoded based on the related attack stage
and targeted service.

Learning the model
Using the encoded alert sequences, a suffix-based PDFA (S-PDFA) is constructed. A suffix-based model is
chosen as different attacks can take different paths to lead to the same end goal. Furthermore, it gives insights
into the past of a severe event, i.e., which low-severity alerts occur before a high-severity alert.

To construct the model, the implementation of Alergia in the flexfringe tool is used. In order to create
the best model for the data, some of the default settings were changed. First are the state_count and
symbol_count parameters, which were both set to five, lowering the bar of ’sufficient evidence’ for the merg-
ing process. Second is the Markovian setting, ensuring that all incoming transitions for a state have the same
label. This setting makes the model easier to interpret, especially for states with high-severity incoming tran-
sitions. Third and finally, sink states were enabled with the threshold of five occurrences. Figure 2.12
shows the S-PDFA resulting from these settings for the CPTC’18 dataset. Following the paper, states and tran-
sitions occurring less than five times are not rendered to make the model more interpretable.

Constructing the attack graph
By replaying the traces over the constructed S-PDFA, the state sequences corresponding to each alert se-
quence can be retrieved. Then, using these state sequences, the final attack graphs are constructed. For these
graphs, the objectives are first defined based on the attack stage, targeted service and the resulting state from
the replay over the S-PDFA. Then, the objectives are combined with the victim hosts and all traces relating to
these combinations are replayed over the S-PDFA. Using the replayed traces for each combination of objec-
tive and victim, the attack graph is constructed based on the state sequences from the replay and the timing
information from the underlying alert sequences.

2.5. Learning Attack Graphs 29

0
 536 0

1
 11 0

CnC|http(s)
11

3
 359 9

vulnD|storage
180

4
 44 0

netDOS|http(s)
36

6
 53 31

hostD|http(s)
29

7
 30 0

hostD|remoteAccess
20

10
 11 0

bfCred|unassigned
11

12
 35 0

delivery|http(s)
35

13
 21 0

exfil|http(s)
21

14
 9 0

resHJ|http(s)
9

15
 19 0

ACE|http(s)
12

21
 26 0

exfil|unassigned
26

26
 6 0

uPrivEsc|hostingServer
6

28
 6 0

bfCred|email
6

29
 18 0

netDOS|broadcast
18

30
 32 0

acctManip|broadcast
32

52
 65 15

serD|remoteAccess
13

95
 22 0

infoD|unassigned
5

165
 45 0

dManip|http(s)
5

196
 33 0

infoD|remoteAccess
5

213
 166 141

serD|unassigned
8

46
 6 0

infoD|http(s)
6

49
 115 14

vulnD|storage
52

50
 332 54

serD|unassigned
257

serD|remoteAccess
21

53
 4 1

serD|surveillance
5

54
 10 1

serD|ATCcomm
11

138
 50 6

vulnD|remoteAccess
9

57
 34 2

infoD|http(s)
36

vulnD|storage
35

426
 17 0

vulnD|http(s)
5

68
 27 0

infoD|remoteAccess
27

423
 40 0

vulnD|storage
6

76
 33 0

exfil|http(s)
33

ACE|http(s)
7

dManip|http(s)
8

netDOS|http(s)
8

84
 6 0

CnC|http(s)
6

85
 9 2

rPrivEsc|http(s)
11

infoD|unassigned
17

vulnD|storage
5

105
 18 0

acctManip|broadcast
18

vulnD|storage
18

vulnD|remoteAccess
7

124
 0 6

infoD|http(s)
6

vulnD|storage
55

vulnD|remoteAccess
14

serD|unassigned
39

hostD|http(s)
32

hostD|remoteAccess
10

131
 324 3

vulnD|storage
207

vulnD|remoteAccess
16

140
 15 1

serD|remoteAccess
16

141
 0 6

acctManip|broadcast
6

235
 21 7

serD|unassigned
8

vulnD|storage
34

hostD|http(s)
8

serD|remoteAccess
16

vulnD|storage
9

151
 24 14

surf|http(s)
27

161
 10 0

vulnD|storage
10

infoD|remoteAccess
11

dManip|http(s)
32

172
 6 0

rPrivEsc|http(s)
6

vulnD|storage
7

184
 5 0

hostD|surveillance
5

infoD|remoteAccess
17

vulnD|storage
44

serD|remoteAccess
7

serD|unassigned
260

vulnD|storage
33

serD|unassigned
10

vulnD|storage
10

vulnD|storage
15

serD|unassigned
10

238
 34 0

resHJ|http(s)
34

263
 14 0

vulnD|storage
14

265
 17 0

hostD|remoteAccess
17

hostD|http(s)
15

serD|remoteAccess
9

vulnD|storage
120

vulnD|remoteAccess
10

vulnD|storage
19

294
 30 0

ACE|http(s)
30

318
 9 0

serD|remoteAccess
9

319
 13 3

vulnD|storage
16

336
 26 0

CnC|http(s)
26

358
 0 9

hostD|remoteAccess
9

359
 0 13

serD|unassigned
13

369
 26 0

remoteexp|http(s)
26

388
 35 0

acctManip|http(s)
26

403
 35 0

rPrivEsc|http(s)
35

415
 33 0

infoD|http(s)
33

vulnD|storage
15

vulnD|http(s)
12

434
 36 1

serD|unassigned
37

surf|http(s)
11

443
 16 0

vulnD|storage
16

445
 11 5

hostD|http(s)
16

serD|remoteAccess
9

450
 5 0

serD|ATCcomm
5

451
 0 10

surf|http(s)
10

serD|remoteAccess
5

Figure 2.12: S-PDFA constructed for the CPTC’18 dataset.

30 2. Background

Figure 2.13: Example attack graph for Resource hijacking over http for the victim host 10.0.1.40.

3
Evaluation Setup

This chapter gives an outline of the evaluation setup used in this thesis. First, the IDS alert datasets are
discussed. This is followed by the methods for constructing the process models and state machines. Finally,
the metrics for measuring the quality of the models are discussed.

3.1. Datasets
The datasets used for the evaluation stem from the 2017 and 2018 editions of the Collegiate Penetration Test-
ing Competition1[28], or CPTC for short. In this competition, student teams compete against each other
to test their penetration testing skills in a simulated enterprise network. The competition scenario changes
each year, with the 2017 version featuring an online election service company and the 2018 version revolving
around a ride-sharing organization. In both years, the simulated networks were monitored by the Suricata
IDS2 which provided the alert datasets.

For the experiments in this thesis, the Suricata alerts are aggregated using the method from Nadeem et al.[31].
The event sequences resulting from the aggregation process are then used as the input for the process miners
and the state machine learning. Table 3.1 shows the size of datasets before and after the alert aggregation.
Even though the CPTC’17 dataset featured fewer raw alerts than CPTC’18 (43.602 vs. 101.571), the composi-
tion resulted in more aggregated alert sequences.

Dataset
Traces Events Trace length

Total Unique Total Unique Min Mean Max
CPTC’17 965 777 (80.5%) 5.012 92 3 5 19
CPTC’18 536 327 (61.0%) 3.943 112 3 7 29
BPIC12 13,087 4,371 (33.4%) 262.200 36 3 20 175

BPIC13cp 1,487 183 (12.3%) 6.660 7 1 4 35
BPIC13inc 7,554 1,512 (20.0%) 65.533 13 1 9 123
BPIC14f 41,353 14,928 (36.1%) 369.485 9 3 9 167
BPIC151f 902 295 (32.7%) 21.656 70 5 24 50
BPIC152f 681 420 (61.7%) 24.678 82 4 36 63
BPIC153f 1,369 826 (60.3%) 43.786 62 4 32 54
BPIC154f 860 451 (52.4%) 29.403 65 5 34 54
BPIC155f 975 446 (45.7%) 30.030 74 4 31 61
BPIC17f 21,861 8,766 (40.1%) 714.198 41 11 33 113
RTFMP 150,370 301 (0.2%) 561.470 11 2 4 20
SEPSIS 1,050 846 (80.6%) 15.214 16 3 14 185

Table 3.1: Size of the CPTC datasets, compared to the BPIC datasets as shown by [7].

1https://globalcptc.org/
2https://suricata.io/

31

https://globalcptc.org/
https://suricata.io/

32 3. Evaluation Setup

As a comparison, the table also shows the size of the datasets used in the 2018 survey on process mining
algorithms[7]. These are the Business Process Intelligence Challenge (BPIC) datasets, Road Traffic Fines Man-
agement Process (RTFMP) dataset, and the SEPSIS cases dataset. We can see here is that the CPTC datasets
feature a relatively high amount of unique events compared to the number of unique traces. Furthermore,
the CPTC datasets have both the lowest number of total events and the highest number of unique events.
Only the BPIC15 datasets are comparable to the CPTC data regarding unique events and traces. However, the
CPTC traces are a lot shorter than the BPIC15 traces in minimum, mean, and maximum length. In addition,
we see that the mean trace length and the number of unique events differ with a factor of at most 2 com-
pared to the other datasets, whereas this factor lies above 15 for the CPTC datasets. This all indicates that the
distribution of the events throughout the traces is a lot sparser for the CPTC datasets compared to reference
datasets used in process mining. In turn, this sparseness can be a good indication that the CPTC datasets do
not contain enough information to construct process models.

3.2. Constructing Models
In order to evaluate models, we first need to construct the models. This section goes into detail which meth-
ods from process mining and state machine learning are used to create the models.

3.2.1. Process Miners
The state-of-the-art algorithms in process mining are selected based on the 2018 benchmark by Augusto et
al.[7]. In this research, seven miners were evaluated: Alpha$ (α$), Inductive Miner-infrequent (IMf), the Evo-
lutionary Tree Miner (ETM), Fodina (FO), the Structured miner using Heuristics Miner in ProM 6 (sHM6), the
Hybrid ILP miner (HILP) and the Split Miner (SM). Complementing these seven miners, the base Inductive
Miner (IM) is also considered in this thesis as this miner guarantees perfect fitness.

From these eight miners, the Evolutionary Tree Miner and Hybrid ILP miner are not included for evalua-
tion. Compared to IMf, the other mining algorithm constructing process trees, ETM trades fitness to achieve
a higher precision, which in turn yields an improved balanced F-score. However, this comes at a considerable
trade-off in mining time compared to IMf: where IMf constructs a model only a couple of seconds, ETM used
the full four-hour time limit set for mining to construct the models. This significantly increased mining time
combined with the lower F-score makes the ETM an overall worse fit in our case compared to IMf, hence ETM
is not considered for evaluation.

Evaluating the Hybrid ILP miner had its own issues with the implementation of the miner. Furthermore,
HILP was often unable to construct a sound model during the benchmark evaluation. Given that the CPTC
datasets are likely harder compared to the other reference datasets, as discussed in Section 3.1, it can be
expected that the models generated over the IDS alert datasets are also unsound and therefore not usable
anyways. As a result of these factors, it was decided to drop the HILP miner from the evaluation.

The α$, FO, sHM6, and SM miners are evaluated using the default settings. For the Inductive Miner in-
frequent, a range of noise thresholds is tested. This range starts at 0, making the miner equivalent to the
base Inductive Miner, and ends with 0.20 (the default value for IMf), using increments of 0.05. This way, we
can also get an insight into the effect of filtering regarding the F-score, and how the fitness/precision trade-
off changes with different settings. All miners are allowed four hours to construct a model for each of the
datasets. For evaluation, the resulting models are converted to a Petri net for performance measures and a
BPMN diagram to measure complexity.

As a baseline for the evaluations, the flower model (FLOWER) and prefix tree model (PTM) are also in-
cluded. The flower model accepts all traces over the tasks in the training data, hence gives perfect fitness and
good generalization at the cost of precision. The prefix tree model is the opposite, only accepting the trace
prefixes observed in the training data, giving perfect fitness and precision at the cost of generalization. By
considering these trivial models in the evaluation, we can get insights into how well the other miners balance
precision and generalization compared to the baseline.
Section 2.4 contains more background information on how the different process mining algorithms work.

3.2.2. State Machines
The flexfringe tool[43] is used for constructing state machines. This tool offers a large variety of methods for
constructing state machines. In total, six different configurations are tested, all based on the Alergia state
merging method: bigram, convert sinks, Markov, no sink merging, original and search. These different con-

3.3. Evaluating Models 33

figurations mainly differ in two settings implemented in flexfringe: the Markovian property and sinks. The
Markovian setting is enabled in all configurations. It ensures that all incoming transitions for a state have the
same label, generally reducing the complexity of the models. The sinks are states which occur less frequent
than a set threshold (set to five in all configurations using sinks). Due to the low frequency of these states,
the statistical tests used for merging become unreliable. In order to deal with this issue, different merging
strategies can be applied to sink states.
Appendix A contains the exact configuration files used for evaluation, and a description of flexfringe and the
Alergia algorithm can be found in Section 2.1.

Common settings
The custom configurations share a set of core settings. To begin, the state_count and symbol_count set-
tings require a minimal number of occurrences of a state or transition respectively to be considered in the
statistical checks. Both values are set to five for the evaluation. Next, the extrapar = 0.01 setting initial-
izes the α value for Alergia, meaning that a confidence level of 1−0.01 = 0.99 is needed for the equivalence
checking. The largestblue = 1 setting only allows for the largest blue state to be considered for merging.
Finally, the extend = 0 setting ensures that a blue state which cannot be merged is only converted to a red
state if there are no other possible merges.

Bigram and Markovian
The bigram model and the Markovian model don’t use sinks during the construction of the model, relying
solely on the Markovian property. The difference between the two is that the bigram model uses bigrams
(sequences of two events) over the training data, whereas the Markovian model does not combine any se-
quential events. For example, given the trace 〈a b c d〉, the bigram configuration uses the event sequence
〈(a b) (b c) (c d)〉 whereas the Markov configuration uses the event sequence 〈(a) (b) (c) (d)〉.

Convert Sinks and No Sink Merging
Dealing with the sink states can be done in multiple ways. Generally, once a state is marked as a sink in the
prefix tree, all states reachable from the sink are removed as these states cannot be dealt with due to a lack
of sufficient statistical certainty. As a result, the traces reaching such a sink state do not perfectly fit the final
model. The convert sinks configuration solves this issue by adding self-loops for all events observed in the
subtree rooted at the sink. This way, all training traces will fit perfectly in the resulting model at the cost of
added complexity in the shape of infrequent self-loops.

The ’No sink merge’ configuration disallows the merging of sinks when constructing the model. When
sink merges are allowed, the frequency of the resulting state can cross the infrequency threshold and can
therefore be considered a normal state. As a result, the merged state is regarded as a ’normal’ state for the
remainder of the state merging process, even though the original sinks were considered too infrequent.

Original
The original configuration is the configuration used in the current method from Nadeem et al.[31]. This con-
figuration both uses the Markovian property and has sinks enabled, but it differs from the other configura-
tions for other properties. The first difference is that the threshold for the statistical tests is lowered from 0.99
to 0.95 by increasing the extrapar setting. Second, the lower bound for the heuristics function is increased
from 0 to 3 through the lowerbound setting. By increasing this bound, the merging process only performs
better merges at the cost of not being able to merge as many states.

Search
Finally, the search configuration uses a searching strategy to find the optimal merging of states instead of the
Alergia state merging used in the other configurations. In this searching process, sinks are also considered for
merging. Furthermore, the search allows for sink states to be merged into already identified sink states.

3.3. Evaluating Models
With the model construction covered, we still need some method to quantify how good the models are. This
section discusses the metrics used to measure the performance and complexity of the models for both the
process models as well as the state machines.

34 3. Evaluation Setup

3.3.1. Metrics for Process Models
The metrics used for evaluating the performance of the miners and the models are chosen based on their
identified strengths, weaknesses, and the suspected limitations of datasets. Section 2.3 contains more back-
ground information on the metrics chosen, as well as their alternatives. The code used for evaluation is based
on the implementation from the 2018 process mining benchmark [10], which is available on Github3.

Performance
The base requirement for the constructed process models is that they must be sound. An unsound model
could contain disconnected parts or lead to deadlocks in proper execution and are therefore not desired for
evaluation by an expert. Furthermore, the metrics used for fitness and precision require model soundness
to operate properly, thus allowing unsound models would require falling back to less advanced metrics for
those aspects.

Fitness and precision are computed using the alignment-based variants due to their ability to deal with non-
fitting traces. Costs for skipping or inserting transitions are set to one for visible transitions and zero for
invisible transitions. All visible transitions have an equal cost of misalignment. Due to the high number of
possible events resulting from the combinations of attack stage and targeted service, constructing a custom
cost function would be too complicated. Invisible transitions have a misalignment cost of zero to prevent
penalizing models with stricter synchronization or dependencies. The alignment automaton to compute
precision is constructed using only one alignment per trace instead of all optimal alignments due to the high
time requirement to find all optimal alignments. Using the single-alignment-based variant still provides an
accurate estimate of the complete variant[5]. With the fitness and precision, the F-score is also computed.

Completeness is also computed as this kind of fitness is desired for the use-case of modeling attacker
strategy. With this use-case, the focus lies more on constructing a model which fits all data as opposed to the
’80% model’, which is usually desired for gaining insights into business processes. In addition, completeness
also gives insight into how the process models perform related to the state machine constructed in the orig-
inal method. This state machine offers perfect fitness due to the learning algorithm used, and comparison
based solely on alignment-based measures would therefore provide an unfair bias towards the process mod-
els.

Generalization is computed using 5-fold cross-validation with random splits. Five folds are used as this
strikes a balance between maximizing the number of traces available for constructing the models and the
time needed to evaluate all folds. Random splits are used as the CPTC datasets contain a high number of
unique traces, meaning that each of the five folds will include some unique traces. This ability to generalize
is quantified as the mean of the fitness, precision, and F-score.

Complexity
Complexity is measured using the size metrics of the number of (different types of) nodes, the number of
edges, and the coefficient of connectivity (CNC), control flow complexity (CFC), and structuredness. First,
the number of nodes, number of edges, and the CNC gives a high-level overview of the overall size of the
constructed model. Combining the size with the CNC value gives an insight into the ’connectedness’ of the
nodes and allows for simple reasoning about the general structure of the model.

CFC captures the complexity of the model in terms of branching factor, and the amount of different gate-
ways helps explain where the branching mainly occurs. In addition, the number of parallel split and join
gateways in the model also gives an insight into the degree of parallelism captured.

Finally, the structuredness metric captures if different parts of the model are interconnected or if they
tend to be more self-dependent. Here, the main reasoning is that when the model has more self-dependent
parts, the task of understanding the full model can be split into smaller tasks of understanding parts of the
model more easily.

All complexity metrics are computed over the BPMN model equivalent to that produced by the original
mining algorithm. BPMN is used as it is simpler compared to Petri nets, and most common process model
types (Petri nets and Process Trees) can easily be converted to BPMN. The full set of traces is used to com-
pute the complexity as the model constructed using all traces holds the most information of the underlying
dataset, which is most valuable for an analyst.

3https://github.com/tudelft-cda-lab/Process-Mining-Evaluation

https://github.com/tudelft-cda-lab/Process-Mining-Evaluation

3.3. Evaluating Models 35

3.3.2. Evaluating State Machines
Since state machines aren’t Petri nets, the evaluation of the process models cannot be used directly for the
state machines. Fortunately, we can still use the same evaluation process by first converting the state ma-
chines to an equivalent Petri net or BPMN model. Through these conversions, it is possible to evaluate the
state machines with the same metrics as the process models.

Conversion to a Petri net
Converting a State Machine to a Petri Net is a trivial process. The conversion starts with creating a unique
start and end place. Then, the loop in line 3 creates a place for each state and connects all accepting states
to the end place through a silent transition. Once a place exists for each state, the start place is connected
to the place for q0 through a silent transition, which is done to ensure the start place does not have any
incoming arcs. Finally, the transitions in the state machine are converted in the loop at line 8 by creating a
labeled transition and connecting it to the places of the corresponding states. Figure 3.1b shows a graphical
representation of this conversion.

Algorithm 1: Conversion of a state machhine to a Petri net

Data: State machine (Q,Σ,δ, q0,F)
Result: Petri net

1 create place pst ar t

2 create place pend

3 for each state q ∈Q do
4 add a place pq to P
5 if q ∈ F then
6 connect pq to pend through a silent transition
7 connect pst ar t with pq0 through a silent transition
8 for each transition (q, s, q ′) ∈ δ do
9 add transition t with label s

10 add an arc from pq to t
11 add an arc from p to pq ′

Through this conversion, all valid state machines can be converted to a Petri net. In this net resulting
from the conversion, all transitions have a single incoming arc and a single outgoing arc. Therefore, only one
token can exist at any time during execution. As all states in the state machine are reachable from the initial
state, the token can reach any state, and all transitions can become enabled. Therefore, as long as all states in
the state machine that do not have an outgoing transition are accepting states (and thus, the corresponding
place in the PN is connected to the final place through a silent transition), the Petri net is sound. In addition,
it is a workflow net as there is a singular initial place and a single final place.

Conversion to BPMN
The conversion from a state machine to a BPMN model is similar to the conversion to a Petri net. Algorithm 2
shows the steps of this conversion process. Here, the main idea is that each state is replaced by an exclusive-
choice join node merging all incoming edges and an exclusive-choice split node to handle all outgoing edges,
which is achieved by the loop at line 3. Then, the loop at line 9 creates an activity for each transition in the
state machine connecting it to the exclusive-choice gateways of the corresponding source and target states.
Finally, the loop at line 16 simplifies the model by removing all trivial gateways.

When a state has multiple incoming transitions with the same label (which always occurs due to the
Markovian property in the configurations), the corresponding activities can be merged to reduce the over-
all number of nodes in the resulting model. The if-statement at line 10 deals with merging such activities.
Figure 3.1 shows a graphical representation of the conversion with and without activity merging.

State Machine-specific complexity
The conversion from a state machine to a BPMN model introduces some overhead which negatively impacts
the complexity of the state machines. To deal with this introduced negative bias, complexity metrics are also
computed for the state machines themselves. Besides, the argumentation from [13] indicates that the state

36 3. Evaluation Setup

Algorithm 2: Conversion of a state machine to a BPMN diagram

Data: State machine (Q,Σ,δ, q0,F)
Result: BPMN diagram

1 create nodes st ar t and end
2 create exclusive-choice gateway j oi nend with an outgoing arc to end
3 for each state q ∈Q do
4 add exclusive-choice gateways i nq and outq

5 add an arc from i nq to outq

6 if q ∈ F then
7 add an arc from outq to j oi nend

8 add an arc from st ar t to i nq0

9 for each transition (q, s, q ′) ∈ δ do
10 if activity aq ′,s does not exist then
11 add activity aq ′,s labelled with s
12 add exclusive-choice gateway xorq ′,s
13 add an arc from xorq ′,s to aq ′,s
14 add an arc from aq ′,s to i nq ′

15 add an arc from outq to xorq ′,s
16 for each exclusive-choice gateway g where | • g | = |g • | = 1 do
17 remove g together with the incoming and outgoing arc
18 add an arc from •g to g•;

q0

q1

q2

q3

a

a

a

(a) Base state machine fragment

a

a

a

(b) Petri net

+

+

+

a

a

a

+ +

(c) BPMN model without activity merging

+

+

+

+ a +

(d) BPMN model with activity merging

Figure 3.1: Visual representation of the conversion from a state machine to a BPMN model.

machines are also interpretable by themselves, so it does not make sense to measure complexity solely based
on the converted BPMN model.

Looking at the metrics used for process models, the number of nodes, number of edges, CFC, and CNC
can also be computed for the state machines. First, the number of nodes is equal to the number of states,
and the number of edges is equal to the number of transitions. Then, the CNC can be computed as the ratio
between these two values. Control flow complexity is defined as the sum of the out-degree of all states with
two or more outgoing edges. States with zero or one outgoing transition are not considered as those states do
not introduce any choice in the model.

4
Performance of Process Mining

Using the experimental setup as described in Chapter 3, the different mining algorithms have been evalu-
ated on the traces generated from the CPTC’17 and CPTC’18 datasets. This chapter begins with an overview
and discussion on the quality of the produced models based on the performance and complexity metrics.
Following this is a deeper dive into the more promising models based on the metric scores.

4.1. Model Performance
The first topic of the analysis of the models is the evaluation regarding performance. Table 4.1 shows the
scores from the performance metrics for the different miners.

α$, Fodina and Split Heuristics Miner
The most notable result is that the α$, Fodina, and to a significant extent sHM6 cannot generate a sound
model from the given data. For α$, this could be explained by the traces not conforming to the notation of
completeness. With the high number of unique events and relatively low number of traces in the datasets,
combined with the possible unstructured nature of the underlying attack process, the lack of completeness
was expected.

The Fodina and sHM6 miners are both based on the Heuristics Miner, which could explain why both the
miners fail. Once again, the high number of events combined with the relatively low number of traces is
likely to have distorted the dependency measure used as the basis in Heuristics mining. However, sHM6 can
generate sound models in some cases, which can be explained by the soundness repair step in the mining
process.

Inductive Miner
Due to the usage of process trees, all variants of the Inductive Miner were able to produce sound process
models in all cases. However, issues arose during the evaluation of the models with implementation errors
occurring during the computation of the alignments. This issue is interesting for the models produced by IM
as all training traces are guaranteed to fit the modes perfectly, meaning that finding a perfect alignment in
those cases does not require an extensive search for an optimal value. Even stronger, a custom replay tool for
BPMN models (discussed later in this section) was able to find alignments for all perfectly fitting traces in a
matter of seconds per trace for these models.

Regarding the performance of the miner with different noise thresholds, the general trends are as expected:
increasing the noise threshold increases precision at the cost of lowering fitness and completeness. In all
cases, this trade-off is well balances as shown by the pretty consistent F-score, especially for the reversed
traces. Following the trend for precision through the different noise thresholds, it can be assumed that the
precision of the model for the base IM lies around 0.42−0.45 for the full dataset, resulting in an estimated
F-score between 0.59 and 0.62 for the Inductive Miner without any noise filtering.

What is interesting is the drop in completeness compared to the fitness. Whereas raising the noise thresh-
old introduces a slight drop in fitness, the completeness decreases a lot faster. This indicates that some form
of infrequent behavior is present in the majority of the traces.

37

38
4.Perfo

rm
an

ce
o

fP
ro

cess
M

in
in

g

Dataset Miner
Full data Averages from 5-fold cross-validation

Soundness Fitness Completeness Precision F-score # Sound Fitness Completeness Precision F-score

CPTC’17
(chronological)

α$ unsound - - - - 0 - - - -
FO unsound - - - - 0 - - - -
IM1 sound (1.00) (1.00) ERR ERR 5 ERR ERR ERR ERR

IMf-0.05 sound ERR - ERR - 5 0.94 0.77 0.34 0.49
IMf-0.10 sound ERR - ERR - 5 0.90 0.65 0.30 0.45

IMf-0.152 sound t/o - t/o - 5 0.80 0.43 0.30 0.43
IMf-0.20 sound 0.80 0.46 0.25 0.38 5 0.76 0.36 0.25 0.37

sHM6 unsound - - - - 0 - - - -
SM unsound - - - - 1 0.91 0.64 0.44 0.59

FLOWER sound 1.00 1.00 0.13 0.22 5 1.00 0.99 0.08 0.14
PTM sound 1.00 1.00 1.00 1.00 5 0.81 0.27 0.53 0.64

CPTC’17
(reversed)

α$ unsound - - - - 0 - - - -
FO unsound - - - - 0 - - - -
IM1 sound (1.00) (1.00) ERR ERR 5 ERR ERR ERR ERR

IMf-0.05 sound 0.97 0.89 0.46 0.63 5 0.95 0.81 0.35 0.51
IMf-0.10 sound 0.89 0.61 0.50 0.64 5 0.89 0.59 0.38 0.53
IMf-0.15 sound 0.81 0.41 0.52 0.63 5 0.79 0.39 0.42 0.55
IMf-0.20 sound 0.72 0.20 0.59 0.65 5 0.71 0.19 0.43 0.54

sHM6 unsound - - - - 2 t/o t/o t/o -
SM sound 0.93 0.68 0.73 0.82 3 0.89 0.60 0.53 0.67

FLOWER sound 1.00 1.00 0.14 0.25 5 1.00 0.99 0.09 0.17
PTM3 sound 1.00 0.99 1.00 1.00 5 0.81 0.26 0.53 0.64

CPTC’18
(chronological)

α$ unsound - - - - 0 - - - -
FO unsound - - - - 0 - - - -
IM1 sound (1.00) (1.00) ERR ERR 5 ERR ERR ERR ERR

IMf-0.05 sound 0.96 0.82 0.30 0.46 5 0.94 0.76 0.31 0.47
IMf-0.10 sound 0.90 0.60 0.45 0.60 5 0.89 0.57 0.34 0.49
IMf-0.15 sound 0.87 0.46 0.25 0.39 5 0.86 0.46 0.22 0.35
IMf-0.20 sound 0.80 0.25 0.31 0.45 5 0.80 0.27 0.25 0.39

sHM6 -4 - - - - 0 - - - -
SM sound 0.94 0.74 0.52 0.67 5 0.91 0.67 0.41 0.56

FLOWER sound 1.00 1.00 0.07 0.12 5 0.99 0.97 0.04 0.08
PTM sound 1.00 1.00 1.00 1.00 5 0.84 0.42 0.55 0.66

Results for CPTC’18 reversed are on the next page

4.1.M
o

d
elPerfo

rm
an

ce
39

Table 4.1 – continued from previous page

Dataset Miner
Full data Averages from 5-fold cross-validation

Soundness Fitness Completeness Precision F-score # Sound Fitness Completeness Precision F-score

CPTC’18
(reversed)

α$ unsound - - - - 0 - - - -
FO unsound - - - - 0 - - - -
IM1 sound (1.00) (1.00) ERR ERR 5 ERR ERR ERR ERR

IMf-0.05 sound 0.96 0.77 0.47 0.63 5 0.94 0.74 0.38 0.54
IMf-0.10 sound 0.95 0.69 0.50 0.65 5 0.93 0.69 0.37 0.53
IMf-0.15 sound 0.94 0.67 0.50 0.66 5 0.88 0.53 0.37 0.52
IMf-0.20 sound 0.75 0.22 0.57 0.65 5 0.73 0.15 0.43 0.54

sHM6 sound 0.70 0.03 t/o - 3 0.68 0.02 0.24 0.35
SM sound 0.94 0.74 0.63 0.76 5 0.91 0.64 0.48 0.63

FLOWER sound 1.00 1.00 0.07 0.14 5 0.99 0.98 0.04 0.08
PTM3 sound 0.99 0.95 1.00 1.00 5 0.84 0.44 0.50 0.63

Table 4.1: Performance metrics for different mining algorithms generated on the traces of CPTC’18.
1 Computing the alignments for the models from IM produced large numbers of implementation errors from external code sources, so none of the obtained results are reliable. The only measures we know
for sure are the perfect fitness guarantees.
2 Evaluation did not produce reliable results for one of the five folds for IMf-0.15, hence values are computed over four evaluations.
3 The prefix-tree model is ensured to have perfect fitness and completeness, so non-perfect scores indicate a minor issue in either the model construction or the evaluation method. Given that for both
cases, only one trace did not fit, the issue was not investigated further.
4 sHM6 could not produce a model within the four hours allowed for mining.

40 4. Performance of Process Mining

Split Miner
From all the mining algorithms evaluated, the Split Miner provided the best balanced results based on F-
score across the board. The fitness of the models is generally comparable to the Inductive Miner with a noise
threshold between 0.05 and 0.10 , but the Split Miner achieves a higher precision. However, the completeness
of the model does tend to be slightly lower than the completeness of the Inductive Miners with comparable
fitness.

One deviating result from the evaluation is the fact that the Split Miner was not able to construct a sound
model for the chronological traces of CPTC’17 and two of the folds for the reversed traces of CPTC’17. The
miner guarantees soundness for acyclic processes, but such cyclic behavior is likely not present in this dataset
as the only loops identified by the Inductive Miner consist of only one task. Hence, this lack of soundness may
indicate an issue with the implementation of the miner.

Flower Model and Prefix Tree
The flower model gives as expected high fitness, both when the model is constructed using the full dataset
as well as with the cross-validation experiments. We see some slight drop in fitness and completeness with
the cross-validation experiments, which occurs when a task from the evaluation dataset is not present in the
training data. The precision of the model is by far the lowest, which was to be expected as any move is possi-
ble for any prefix. This low precision also causes the flower miner to score the lowest in F-score.

The prefix tree model gave the highest precision, which was expected given the complete lack of general-
ization in the model. However, based on the cross-validation experiments, the model’s fitness, precision, and
F-score are still among the best compared to all the other miners. It is only in completeness where the prefix
tree model shows significantly worse results than the other models.

Validity of precision
The high F-score is mainly a result of the high precision scores, indicating that there are some issues with how
this metric is computed. Following the workings of the alignment-based precision, the high precision scores
can be explained by skips in the trace for the computed alignments. These skips do reduce the fitness score of
the trace, but they have no impact on the precision as skips in the trace do not yield a new state in the model.
Furthermore, given the nature of the prefix tree, non-fitting traces are likely to result in skips in the trace for
non-fitting traces.

For example, a model only allowing the sequential trace 〈a b c〉 has a precision score of 1.00 when evalu-
ated with the trace 〈a b c d e f〉 as all possible paths have been taken for all possible prefixes. In this case,
the fitness is 0.647, resulting in an F-score of 0.80, which is pretty high given the model cannot explain half of
the evaluation trace.

Generalization and the impact of cross-validation
Comparing the results of the full dataset and the cross-validation, we see that the scores for fitness and com-
pleteness hardly changed, indicating that the models actually do generalize pretty well. We see a slight drop
in precision, but this can be explained by the evaluation set being only one-fifth in size of the full dataset,
which causes fewer transitions to be covered during the evaluation.

Difference in Datasets and the effects of reversing traces
Looking at the differences between the scores for the two datasets, it is clear that the traces generated from
CPTC’17 are generally harder to model than the traces stemming from CPTC’18. Especially the chronolog-
ical traces of CPTC’17 proved to be a challenge for all mining algorithms as sound models were rarely con-
structed. Reversing the CPTC’17 traces did seem to make the traces easier to model as indicated by more
miners constructing a sound model. The Split Miner even achieved the highest observed F-score across all
miner/dataset combinations on this dataset. For CPTC’18, and to some extent CPTC’17, reversing the traces
mostly improved the precision of the constructed models while having a limited impact on the fitness and
completeness. Hence, for the datasets used, there is less variation in previous events given the outcome com-
pared to more variation in possible future events given currently observed events. The reasoning behind this
could be that the low-severity attack steps are shared commonly between different high-severity steps.

4.2. Model Complexity 41

A note on completeness
In the context of constructing attack graphs, the models need to be able to explain the traces they are based
on. Table 4.2 shows a more in-depth analysis of the completeness metric as discussed in Section 4.1. Op-
posed to the results shown in Table 4.1 which are computed with an external benchmark tool, the results in
Table 4.2 are obtained using a custom-built replay tool that only checks completeness. This tool is avail able
on Github1.

In the table we see that the actual completeness of all models is slightly higher compared to the results found
with the external tool. Also, the completeness is higher when computed over overall traces compared to just
the unique traces. This was to be expected given that during the modeling process, a trace occurring twenty
times should have a higher weight compared to a trace that occurs just once. Following this logic, the differ-
ence in performance on all traces compared to just the unique traces shows that the infrequent traces fit the
models less.

This lack of fitness is an issue for the case of constructing attack graphs due to the focus on infrequent
traces, given those traces contain unique attacker behavior. By modeling this unique behavior, an analyst
might be able to identify the more unknown vulnerabilities that are exploited. Following the completeness
requirement, only the models produced by Inductive Miner with low noise thresholds and the Split Miner can
be considered viable.

Dataset
CPTC’17 CPTC’18

Chronological Reversed Chronological Reversed

Size
Total 965 965 536 536
Unique 777 777 327 327

IM
Total 1.00 1.00 1.00 1.00
Unique 1.00 1.00 1.00 1.00

IMf-05
Total 0.83 0.89 0.82 0.561

Unique 0.79 0.88 0.76 0.531

IMf-10
Total 0.72 0.61 0.60 0.69
Unique 0.68 0.55 0.48 0.57

IMf-15
Total 0.52 0.41 0.46 0.67
Unique 0.47 0.35 0.31 0.52

IMf-20
Total 0.44 0.20 0.21 0.23
Unique 0.39 0.16 0.20 0.25

SM
Total -2 0.68 0.74 0.74
Unique -2 0.62 0.60 0.25

Table 4.2: Amount of traces perfectly fitting each model. The ’total’ score takes trace frequency into account, whereas the ’unique’ score
assigns the same weight to each unique trace.
1 The recursive replay method reached a limit for 28 unique traces, automatically labeling them as non-fitting. Because the maximum
recursion depth was reached, it is safe to assume the traces did indeed not fit and that the results shown are correct.
2 The constructed model was unsound, so no data could be computed

4.2. Model Complexity
Having a model which can explain the data is of no use if it cannot be interpreted. Table 4.3 shows the com-
plexity metrics for the BPMN models constructed for the datasets using the miners capable of constructing
sound models. Obtaining BPMN models for the process trees from the Inductive Miners is a trivial process
as shown in Figure 2.8. With this conversion from Process Trees to BPMN models, the results have been
simplified where possible by merging directly connected split or gateways of the same type. The Split Miner
constructs a BPMN model by default, so no conversion is needed.

General Observations
All models constructed feature quite a significant number of nodes and edges. Following the computed values
for CNC, the relation between the number nodes and the number of edges is a function of the miner with the

1https://github.com/tudelft-cda-lab/Process-Mining-Evaluation

https://github.com/tudelft-cda-lab/Process-Mining-Evaluation

42 4. Performance of Process Mining

Dataset Miner
Total

Nodes
Total
Edges Tasks

Parallel Exclusive
CFC CNC Struct.

Split Join Split Join

CPTC’17
(chronological)

IM 305 450 92 9 18 91 93 218 1.48 1.00
IMf-05 265 386 91 11 15 72 74 181 1.46 1.00
IMf-10 248 361 92 10 14 62 68 166 1.46 1.00
IMf-15 234 344 92 8 13 59 60 156 1.47 1.00
IMf-20 227 335 92 7 13 56 57 150 1.48 1.00

SM1 - - - - - - - - - -

CPTC’17
(reversed)

IM 305 450 92 18 9 93 91 229 1.48 1.00
IMf-05 204 312 91 8 8 48 47 151 1.53 1.00
IMf-10 245 358 91 13 13 64 62 171 1.46 1.00
IMf-15 244 354 91 15 16 60 60 163 1.45 1.00
IMf-20 217 317 91 12 12 49 51 146 1.46 1.00

SM 242 447 92 0 0 60 88 266 1.84 0.58

CPTC’18
(chronological)

IM 347 507 112 14 12 102 105 242 1.46 1.00
IMf-05 268 387 106 6 9 73 72 183 1.44 1.00
IMf-10 233 333 104 4 5 59 59 157 1.43 1.00
IMf-15 266 385 111 5 10 69 69 175 1.45 1.00
IMf-20 277 397 112 9 14 69 71 177 1.43 1.00

SM 245 395 112 0 0 53 78 204 1.62 0.62

CPTC’18
(reversed)

IM 349 510 112 13 15 105 102 244 1.46 1.00
IMf-05 255 367 107 10 11 64 61 171 1.44 1.00
IMf-10 246 355 107 9 9 60 59 165 1.44 1.00
IMf-15 238 344 107 8 8 57 56 161 1.45 1.00
IMf-20 266 380 109 12 11 65 67 175 1.43 1.00

SM 236 382 112 0 0 46 76 193 1.62 0.61

Table 4.3: Size and Complexity metrics for the models constructed by the Inductive Miner with different noise thresholds and the Split
Miner. The mismatch between the split and join gateways for the inductive models is caused by merging consecutive gateways of the
same type.
1 No sound model was constructed, so results have not been computed

Inductive Miner producing models with a CNC around 1.45 and the Split Miner creating models with a CNC
around 1.60 and higher.

Doubling the CNC value shows that for the models from the Inductive Miner, each node has on average
about 2.9 edges connected to it whereas nodes in the model from the Split Miner are connected by around 3.2
edges on average. This indicates that the models from the Inductive Miner tend more towards longer linear
models, whereas the models constructed by the Split Miner feature more dependencies between different
parts of the model.

Noise threshold for the Inductive Miner
Looking at the differences introduced by the noise threshold for the Inductive Miner, we see the expected
trend that increasing the threshold leads to smaller models. This is reflected in both the total number of
nodes and edges, as well as the CFC.

However, the number of tasks filtered out does not follow the general trend. With thresholds of 0.05 and
0.10, more tasks were filtered out compared to the thresholds of 0.15 and 0.20. Furthermore, more tasks were
filtered for the reversed traces compared to the chronological traces, indicating that the structure within the
dataset changes as the order of the event sequences is reversed.

Gateway Interplay
Comparing the number of split and join gateways of similar types, there is also often quite some discrepancy.
For the models constructed by the Inductive Miner, this discrepancy is quite small and can be explained
by the simplification applied to the models. This simplification merges consecutive gateways of the same
type. Due to the nested nature of the underlying process tree, consecutive gateways of the same type are not
uncommon. Structuredness is not impacted by this simplification as it is computed before the simplification
step.

4.3. Inductive Miner Models 43

The models constructed by the Split Miner are a different case. This miner constructs a BPMN model by
default, and no post-processing is done on the results, so the discrepancies are caused solely by the mining
process. Given the mining process of the Split Miner, such a discrepancy can be expected to a certain extent
as the splits and joins are identified separately from each other. This discrepancy does negatively impact
how difficult it is to interpret the model as a split gateway cannot always be matched to a corresponding join
gateway. As a result, it is harder to break the model down into smaller parts, as shown by the structuredness
scores of about 0.60.

Parallelism?
For none of the datasets, the Split Miner deduced a parallel relationship between different nodes. On the
other hand, the Inductive Miner identified multiple parallel relationships for each dataset, but these parallel
relations might not be valid as discussed in Section 4.3.1. Hence, no definite conclusion can be made whether
the attacking process features actions that are executed in parallel.

However, it might also be the case that the directly-follows relations from the datasets are not complete
with respect to the underlying process. If this is the case, the models don’t feature any meaningful parallelism
simply due to the lack of evidence.

4.3. Inductive Miner Models
The full BPMN models produced by IM and IMf-20 for the reversed traces of CPTC’18 are shown in Figure 4.1.
In these models, tasks are denoted as circular nodes colored red for high-severity attack stages, blue for
medium-severity attack stages, and white for low-severity attack stages. Exclusive split and join gateways
are shown with yellow diamonds, and parallel split and join gateways as green diamonds. As the main fo-
cus of the models is completeness, this section mainly focuses on the model constructed without any noise
filtering.

General Structure
Looking at the overall structure of the models, we can see hints of the underlying tree shape of the pro-
cess trees. The tasks are clearly surrounded by single-entry single-exit blocks, making up larger single-entry
single-exit structures. Comparing the two models, the model constructed using the 0.20 noise threshold
is more compact, containing fewer edges skipping large parts of the model than the base Inductive Miner
model. This visual difference confirms the conclusions from the complexity scores for the two models.

Partitioned model
One of the notable features of both models is the convergence to a single edge at around one-third of the way
down. Above this partition, almost all tasks for high-severity alerts and around half of the tasks for medium-
severity alerts are placed. Given the traces are constructed such that the high-severity alerts are placed at
the beginning of the trace, it was expected that most of these events to be modeled towards the top of the
model. However, following the convergence in the models after this initial section, the models imply that
these higher-severity events cannot explain which lower-severity events occurred earlier in the trace.

Such behavior is not unexpected from the Inductive Miner, given it does not use any rules to detect im-
plicit relations between different tasks. In addition, the process trees constructed by the miner also model
the process in isolated blocks where each block has a single entry and exit point, preventing the addition of
arcs enforcing implicit dependencies. Furthermore, the additional absence of methods for detecting dupli-
cate tasks prevents the Inductive Miner from modeling these implicit relations through different branches.
Therefore, the partition indicates that any occurrence of a task before the partition is always observed before
any occurrence of a task after the partition.

44 4. Performance of Process Mining

start

×

end

resHJ
wireless

×

remoteexp
hostingServer

×

acctManip
wireless

×

ACE
http(s)

×

ACE
wireless

×

dManip
http(s)

×

exfil
http(s)

×

delivery
hostingServer

×

netDOS
http(s)

×

delivery
http(s)

×

resHJ
http(s)

×

exfil
hostingServer

×

dManip
hostingServer

resHJ
hostingServer

×

ACE
hostingServer

×

acctManip
hostingServer

×

CnC
hostingServer

privEsc
http(s)

×

delivery
wireless

×

exfil
wireless

dManip
wireless

remoteexp
wireless

rPrivEsc
wireless

×

delivery
surveillance

×

resHJ
surveillance

×

exfil
surveillance

×

dManip
surveillance

×

ACE
surveillance

×

remoteexp
surveillance

×

acctManip
surveillance

×

rPrivEsc
surveillance

×

infoD
surveillance

×

uPrivEsc
surveillance

vulnD
surveillance

×

surf
surveillance

×

delivery
unassigned

×

exfil
unassigned

×

dManip
unassigned

resHJ
unassigned

ACE
unassigned

remoteexp
unassigned

acctManip
unassigned

rPrivEsc
unassigned

netDOS
broadcast

CnC
storage

rPrivEsc
email

infoD
email

delivery
remoteAccess

exfil
broadcast

×

delivery
broadcast

×

dManip
broadcast

resHJ
broadcast

ACE
broadcast

remoteexp
broadcast

dDestruct
remoteAccess

×

infoD
wireless

×

ACE
remoteAccess

×
CnC

unassigned

×

bfCred
unassigned

×

bfCred
email

×

serD
unassigned

×

TOexp
http(s)

×

acctManip
http(s)

×

rPrivEsc
http(s)

×
CnC

http(s)

×

remoteexp
http(s)

×

PAexp
http(s)

×

rPrivEsc
hostingServer

×

infoD
hostingServer

×

uPrivEsc
hostingServer

×

uPrivEsc
http(s)

uPrivEsc
wireless

surf
broadcast

×

vulnD
unassigned

×

rPrivEsc
remoteAccess

×
vulnD

storage

×

acctManip
broadcast

×

exfil
remoteAccess

×

dManip
remoteAccess

×

resHJ
remoteAccess

×

remoteexp
remoteAccess

×

acctManip
remoteAccess

×

hostD
wireless

×

infoD
unassigned

×

surf
unassigned

×

vulnD
remoteAccess

×

serD
remoteAccess

×

serD
surveillance

×
serD

ATCcomm

×

infoD
http(s)

×

vulnD
wireless

×

vulnD
hostingServer

vulnD
voip

×

hostD
remoteAccess

×

serD
voip

×

infoD
remoteAccess

×

surf
http(s)

×
hostD

unassigned

×

hostD
hostingServer

×

hostD
http(s)

×

surf
hostingServer

×

vulnD
http(s)

×

surf
remoteAccess

×

serD
storage

×

hostD
surveillance

×

infoD
nameserver

×

serD
broadcast

×

surf
wireless

×

rPrivEsc
broadcast

×

infoD
broadcast

×

vulnD
broadcast

×

CnC
surveillance

× +

× × × × × × ×

+

× ×

+

× ×

+

×

×

×

×

×

×

× ×

× × ×

×

×

× ×

×

×

×

×

× ×

×

× ×

×

×

×

× × × ×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(a) IM

start

×

end

resHJ
wireless

×

remoteexp
hostingServer

×

dManip
http(s)

×

ACE
http(s)

×

delivery
http(s)

×

exfil
http(s)

×

resHJ
http(s)

×

netDOS
http(s)

×

privEsc
http(s)

delivery
hostingServer

×

exfil
hostingServer

×

dManip
hostingServer

resHJ
hostingServer

×

ACE
hostingServer

×

acctManip
hostingServer

delivery
wireless

×

exfil
wireless

dManip
wireless

ACE
wireless

remoteexp
wireless

acctManip
wireless

rPrivEsc
wireless

delivery
surveillance

×

exfil
surveillance

+

dManip
surveillance

+

resHJ
surveillance

×

ACE
surveillance

×

remoteexp
surveillance

×

acctManip
surveillance

×

rPrivEsc
surveillance

×

infoD
surveillance

×

uPrivEsc
surveillance

vulnD
surveillance

×

surf
surveillance

×

delivery
unassigned

×

exfil
unassigned

×

dManip
unassigned

resHJ
unassigned

ACE
unassigned

remoteexp
unassigned

acctManip
unassigned

rPrivEsc
unassigned

netDOS
broadcast

CnC
storage

rPrivEsc
email

infoD
email

delivery
remoteAccess

exfil
broadcast

×

delivery
broadcast

×

dManip
broadcast

resHJ
broadcast

ACE
broadcast

remoteexp
broadcast

dDestruct
remoteAccess

×

CnC
unassigned

×

CnC
http(s)

×

remoteexp
http(s)

×

PAexp
http(s)

×

TOexp
http(s)

×

acctManip
http(s)

×

rPrivEsc
http(s)

×

rPrivEsc
hostingServer

×

infoD
hostingServer

×

uPrivEsc
hostingServer

uPrivEsc
http(s)

uPrivEsc
wireless

×

infoD
wireless

acctManip
broadcast

×

bfCred
unassigned

×

bfCred
email

infoD
nameserver

exfil
remoteAccess

×

dManip
remoteAccess

×

resHJ
remoteAccess

ACE
remoteAccess

×

remoteexp
remoteAccess

×

acctManip
remoteAccess

×

rPrivEsc
remoteAccess

serD
ATCcomm

×

surf
unassigned

×

serD
remoteAccess

×

vulnD
unassigned

×

infoD
http(s)

×

vulnD
wireless

×

vulnD
hostingServer

infoD
remoteAccess

×

serD
surveillance

×

hostD
remoteAccess

×

hostD
http(s)

×

surf
http(s)

×

surf
hostingServer

vulnD
http(s)

×

hostD
hostingServer

×

hostD
unassigned

serD
voip

×

vulnD
voip

×

surf
remoteAccess

×

infoD
unassigned

×

hostD
surveillance

×

vulnD
remoteAccess

×

surf
wireless

×

hostD
wireless

×

rPrivEsc
broadcast

×

surf
broadcast

+

infoD
broadcast

×

vulnD
broadcast

×

serD
storage

×

vulnD
storage

×

serD
unassigned

+

×

×

+

×× × × ×

×

×

+

×

× ×

× ××

× ×

× ×

×

×

××

+ +

×

×× ××

×

×

+

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

+

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

+

+

+

+

+

+

+

+

+

+

+ +

+

(b) IMf-0.20

Figure 4.1: Full models constructed by the inductive miners on the reversed traces of CPTC’18. Tasks are shown as circular nodes colored
red for high-severity attack stages, blue for medium-severity attack stages, and white for low-severity attack stages. Exclusive-choice
split and join gateways are shown with yellow diamonds, and parallel split and join gateways as green diamonds. The full-scale version
is available on https://github.com/tudelft-cda-lab/Process-Mining-Evaluation

https://github.com/tudelft-cda-lab/Process-Mining-Evaluation

4.3. Inductive Miner Models 45

Optional Tasks
Looking closer at the models, we see a specific pattern occurring somewhat frequently. Figure 4.2 shows a
close-up of the parallel split gateway in the top-right of the model from the Inductive Miner without noise
filtering. The first thing to notice here is that the six tasks are surrounded by an exclusive-choice construct,
making them entirely optional. Of the 112 tasks in the model produced by IM, 54 tasks are surrounded by
such a take-or-skip structure, and 23 tasks are placed in a loop structure where they can occur zero or more
times. As a result of this abundance of optional paths in the model, the empty trace is considered valid, and
the trace with a single event is valid for 90 out of the 112 events.

For the model with the highest noise threshold (IMf-20), 60 out of the 109 tasks are in a take-or-skip
structure, and no tasks are in a zero-or-more loop. This model also allows for the empty trace, but ’only’ 68
single-event traces are valid.

resHJ|wireless
task_0

2

xor_join_106
471

2

remoteexp|hostingServer
task_1

4

xor_join_107
471

4

acctManip|wireless
task_2

2

xor_join_108
471

2

ACE|http(s)
task_3

64

xor_join_109
471

64

ACE|wireless
task_4

2

xor_join_110
471

2

dManip|http(s)
task_5

49

xor_join_111
471

49

xor_split_1
471

2

469

xor_split_2
471

4

467

xor_split_3
471

2

469

xor_split_4
471

64

407

xor_split_5
471

2

469

xor_split_6
471

49

422

xor_split_7
471

and_split_0
471

471 471 471 471 471 471 471

Figure 4.2: Snapshot of the model created by IM on the reversed traces for CPTC’18. Parallel gateways are shown in green, exclusive
gateways in yellow, high-severity tasks in red and medium-severity tasks in blue. The numbers for each node or edge represent how
often the node/edge was traversed when replaying all 536 traces.

4.3.1. Model Validity
The parallel split node from Figure 4.2 has seven child nodes: six optional tasks, which are all directly linked
to the parallel join gateway, and the node xor_split_7 which is the root of a larger sub-model containing 17
tasks. Through this parallel split gateway, the model implies that the six tasks can occur in any order, com-
pletely independent of both each other and any tasks in the branch rooted at xor_split_7. Furthermore, it
gives no requirement for tasks occurring together in the same trace, nor does it provide any requirements re-
garding any ordering between the tasks. However, when looking at the traces, this independence is not valid.

Take the tasks resHJ, ACE, and acctManip for wireless, which all occurred twice in the entire dataset. These
three events are all actually part of the same trace, which also occurred twice. From this, we know that the
data implies a strong sequential ordering between these three tasks. Inspecting this trace even further shows
that the implications made by the model are even less valid. The full trace features the sub-sequence:

. . .exfil|wireless dManip|wireless resHJ|wireless ACE|wireless
remoteexp|wireless acctManip|wireless rPrivEsc|wireless . . .

All seven tasks in this sub-sequence occur exclusively in this trace, so it is expected that the miner would
have been able to identify this strong sequential relation. Figure 4.3 shows the model for the other four tasks
in the sub-sequence. This sub-model is part of the model rooted in xor_split_7, meaning it is executed in
parallel to the other tasks from the sequence. In this sub-model, the miner did correctly find a causal ordering
between the four tasks, raising the obvious question as to why the miner did not identify the sequence as a
whole.

exfil|wireless
task_19

2

dManip|wireless
task_20

2

2
remoteexp|wireless

task_21
2

2
rPrivEsc|wireless

task_22
2

2

Figure 4.3: Sub-sequence observed in the model constructed by IM

46 4. Performance of Process Mining

More strange modeling choices are made for the other tasks in the parallel split. To begin, the task
remoteexp|hostingServer has a strong relation to the task acctManip|hostingServer. All three occur-
rences of the acctManip task are directly preceded by remoteexp|hostingServer, again showing a clear
sequential ordering. Following the traces, it is expected that the acctManip task would be placed in a take-
or-skip structure directly after the remoteexp task, but once again, it is placed somewhere in the sub-model
rooted at xor_split_7.

Furthermore, an ordered relation also exists between the task dManip|http(s) and ACE|http(s). The
two tasks occur 44 times together in the same trace, and in all of these occurrences, dManip occurs before ACE.
Therefore, it would be logical to enforce such an ordering between the two tasks in the model. However, in
this case, the independence between the two tasks can be somewhat accepted given that the ACE task occurs
20 times without dManip, and dManip occurs five times without ACE.

All these patterns are not unique to the model from the Inductive Miner on the reversed traces of CPTC’18.
Similar patterns are also present in the models constructed using the other noise thresholds, the chronologi-
cal traces of CPTC’18, and both versions of CPTC’17.

The sequence in which the Inductive Miner identifies the cuts doesn’t explain these patterns in the model.
First, the exclusive-choice cut is checked, requiring that the different tasks are not connected in the directly-
follows graph. Such a cut cannot be made such that these seven tasks are connected into one long sequence.
Second, the miner checks for a sequential cut, requiring the different partitions to have a uni-directional rela-
tion in the directly-follows graph. Such a relationship is clearly present in the first two cases, and to a slightly
lesser extent also in the third case. However, this cut cannot be chosen due to additional edges in the directly-
follows graph. The parallel cut (which is chosen to split the tasks and identify and_split_0) requires the
different partitions to be fully connected. Given that the seven tasks do not occur outside the sub-sequence,
this is also clearly not the case.

After contacting one of the authors of the Inductive Miner, it became clear that the miner uses a different
strategy when none of the cuts is possible. Following the original paper [23], the miner adds a flower model in
such cases, but an improved version introduced in [18] introduces alternative strategies for when no cuts are
valid. One of these ’fallthrough’ strategies is the ActivityConcurrent fallthrough, where a random activity
is removed from the log. This activity is then placed parallel to the rest of the block, and the miner continues
on the sub-log with the selected activity removed. Following Figure 4.2, the tasks shown directly under the
parallel split node were removed from the sub-model rooted at the xor_split_7 and placed in parallel to
the sub-model. Table 4.4 shows how many tasks are placed as optional directly between a parallel split and
join node, indicating the fallthrough method has been applied for these tasks. In most cases, the number of
tasks modeled this way lies between 15% and 35%, which is too high for the model to be considered valid. Of
course, it is possible that some of these occurrences are a result of actual parallelism, but these cases cannot
be distinguished from the model itself.

Miner
CPTC’17 chronological CPTC’17 reversed CPTC’18 chronological CPTC’18 reversed
Tasks Concurrent Tasks Concurrent Tasks Concurrent Tasks Concurrent

IM 92 32 (0.35) 92 32 (0.35) 112 36 (0.32) 112 37 (0.33)
IMf-05 91 32 (0.35) 91 15 (0.16) 106 19 (0.18) 107 15 (0.14)
IMf-10 92 24 (0.26) 91 23 (0.25) 104 8 (0.08) 107 14 (0.13)
IMf-15 92 23 (0.25) 91 26 (0.29) 111 18 (0.16) 107 12 (0.11)
IMf-20 92 22 (0.24) 91 19 (0.21) 112 22 (0.20) 109 17 (0.16)

Table 4.4: Number of tasks likely modelled through the ActivityConcurrent fallthrough for the Inductive Miner with different noise
thresholds.

When using the ActivityConcurrent fallthrough instead of inserting a flower sub-model, the resulting
model scores better based on precision without sacrificing anything on fitness. However, the implication
made by a model using this approach is that there exists proof that the isolated task actually occurs in parallel
to the rest of the block, giving off false signals for people unaware of this feature. Besides, this method yields
inconsistent results, as be discussed in the following section.

4.3. Inductive Miner Models 47

4.3.2. Model Robustness
In order to determine the effects of theActivityConcurrent fallthrough, we can validate whether the choices
made by the miner are at least consistent. For this, two validation methods are used: splitting the traces based
on the partition in the full model and injecting dependencies based on the defined cuts for the Inductive
Miner.

Splitting Traces
The first validation method uses the partition in the model. Through this partition, the model implies no
dependency exists between the tasks on either side. Therefore, when we split the traces based on the events
occurring before and after the partition in the model. By constructing a model on the two new datasets, we
expect two new models that are both equivalent to their counterpart in the base model.

Figure 4.4 shows a snapshot from the top part of the base and its counterpart in the model generated over
the split traces. Here, we see that the clear, ordered relation between exfil and dManip is lost in the new
model. Furthermore, the new model enforces that every time the resHJ task is in a trace, dManip must also
occur, whereas the original model does not enforce such a constraint.

resHJ
surveillance

×

exfil
surveillance

×

dManip
surveillance

×

× ×

×

+

+

(a) Base model

exfil
surveillance

×

dManip
surveillance

+

resHJ
surveillance

×

× ×

×

+

×

+

+

(b) Split Model

Figure 4.4: Difference in structure in the upper part of the model introduced by splitting the traces. The left sub-model shows a structure
in the base model. The right sub-model same structure in the split model

Similarly, Figure 4.5 shows a snapshot from the bottom part of the base model and its counterpart in the split
model. Here, the relations of TOexp and remoteexp relative to the other four tasks are unchanged. How-
ever, the ordering relation for the other four tasks has been altered quite significantly. Whereas PAexp was
placed before acctManip, CnC and rPrivEsc in the original model, the model constructed over the split
traces places that this task after those three other tasks. Furthermore, an ordering relation is suddenly de-
fined between CnC and acctManip, whereas their order was independent in the base model.

These two examples are not the only discrepancies between the produced models, indicating that the im-
plementation of the Inductive Miner cannot reliably reproduce results. This also questions the meaning of
the defined relations: both models accept all the traces, yet both models show deviating relations between
different tasks.

48 4. Performance of Process Mining

TOexp
http(s)

×

acctManip
http(s)

×

rPrivEsc
http(s)

×
CnC

http(s)

×

remoteexp
http(s)

×

PAexp
http(s)

×

× ×

×

× ×

×

×

×

+

+

+

(a) Base Model

TOexp
http(s)

×

remoteexp
http(s)

×

PAexp
http(s)

×

acctManip
http(s)

×
CnC

http(s)

×

rPrivEsc
http(s)

×

× × ×

× ×

×

×

×

+

+

+

(b) Split Model

Figure 4.5: Difference in structure in the lower part of the model introduced by splitting the traces. The left sub-model shows a structure
in the base model. The right sub-model same structure in the split model

Injecting dependencies
An alternative method of checking the validity of the Inductive Miner and the ActivityConcurrent fallthrough
is by injecting artificial dependencies in the training data based on the four different cuts defined by the In-
ductive Miner. By altering the training data, we can insert structures in the traces that satisfy the different
cuts and verify whether the miner correctly models the structures. When these structures are inserted for
only one task, the Inductive Miner should only alter the structure around that task and leave the other parts
of the model unchanged.

Given the base trace 〈a b c〉, the traces can be altered to introduce the cut-dependencies for task b as
follows:

1. Exclusive-choice: add the additional trace 〈a b_1 c〉

2. Parallel: replace the original trace with the traces 〈a b_1 b_2 c〉 and 〈a b_2 b_1 c〉

3. Sequential: replace the original trace with the trace 〈a b_1 b_2 c〉

4. Loop: add the trace 〈a b b c〉

More information about the different cuts and their corresponding dependency relations is given in Sec-
tion 2.4.2.

To strengthen the case for the different cuts, more artificial tasks can be injected which satisfy the de-
pendency. Furthermore, the alterations can be made for multiple tasks in the dataset. This experiment uses
the reversed traces from CPTC’18 with the six tasks from Figure 4.2. The four different dependencies are
introduced for each of the six tasks by inserting one through five artificial tasks into the traces.

Loops
The injected loops were all identified as expected, where the original task was surrounded with an optional

4.3. Inductive Miner Models 49

loop-back edge. Some side-effects still occurred in the form of deviations in other parts of the model were
present, similar to those observed when splitting the traces.

Exclusive-choice and parallelism
Exclusive-choice and parallel structures were also modeled as expected in the sense that all inserted tasks
were encapsulated between a split and a join gateway of the corresponding type. However, the task’s lo-
cation in the model was changed in all cases, moving the new dependency to a more logical place in the
model. The new structures for wireless-tasks were placed in the sequence from Figure 4.3. Altering the
remoteexp|hostingServer task resulted in the new block being placed directly before the acctManip task
on the same service. Changes for the ACE|http(s) and dManip|http(s) tasks resulted in the tasks be-
ing moved to the sub-model rooted at xor_split_7. Once again, other unrelated parts of the model also
changed despite not being affected by the changes in the traces.

For the wireless tasks, the affected task was always inserted in the logical place in the full sequence if two
or fewer artificial events were inserted. When four or five artificial events were inserted, resHJ|wirelesswas
moved to the parallel structure. With three artificial tasks inserted, such a move did sometimes also occur,
but not always. These effects are shown in Figure 4.6. The models show the relation between the different
wireless tasks where two artificial events are inserted for the left model and three for the right model. On
the left, the exclusive-choice block between the different ACE|wireless tasks is placed in the correct place
in the sequence, but on the right, resHJ|wireless is moved to the higher-level parallel split.

resHJ
wireless

×

acctManip
wireless

×

delivery
wireless

×

exfil
wireless

dManip
wireless

×

ACE
wireless

×

ACE
wireless_0

ACE
wireless_1

remoteexp
wireless

rPrivEsc
wireless

×

× × ×

+

+

(a) Two artificial tasks

resHJ
wireless

×

exfil
wireless

×

acctManip
wireless

×

delivery
wireless

×

dManip
wireless

×

ACE
wireless

×

ACE
wireless_0

ACE
wireless_1

ACE
wireless_2

remoteexp
wireless

rPrivEsc
wireless

×

× × × ×

+

+

(b) Three artificial tasks

Figure 4.6: Sub-models for wireless tasks after inserting artificial events for ACE|wireless. Two artificial tasks are inserted for the let
model, and three artificial tasks are inserted for the right model.

The ActivityConcurrent fallthrough why the unaffected tasks were moved in the model as those tasks
might have been randomly chosen by the fallthrough method. However, if this method picks a task at random
to place parallel to the rest of the model, we would expect that some of the artificial tasks will be picked at

50 4. Performance of Process Mining

some point. However, with the experiments with artificial parallel or exclusive-choice tasks, this did not
happen, indicating that there is yet more undocumented behavior around the method. At the moment of
writing this thesis, the author of the Inductive Miner has not commented on this hypothesis.

Sequential dependencies
The Inductive Miner was not able to correctly identify the injected sequential dependencies, which is likely
also caused by the ActivityConcurrent fallthrough. For all combinations of the base task and the number
of artificial tasks, some tasks from the sequence were placed elsewhere in the model. Besides, in almost all
cases, changes were made in unrelated parts of the model similar to those observed with splitting the traces.

For the three wireless tasks, the common pattern was that the base task remains in the same place at the
high-level parallel split, but the artificial tasks are placed in the sequence as expected. With acctManip, this
is the case for one through five artificial tasks, but for resHJ and ACE, adding three or more artificial tasks
results in some of the artificial tasks also being placed under the parallel split node instead of the sequence.
Figure 4.7 shows the resulting sub-model for the wireless tasks after inserting three sequential events for
ACE|wireless. The original task and one of the duplicates are placed in the higher-level parallel split, and
the two other artificial tasks are placed in the sequence.

ACE
wireless

×

ACE
wireless_2

×

resHJ
wireless

×

acctManip
wireless

×

delivery
wireless

×

exfil
wireless

dManip
wireless

ACE
wireless_0

ACE
wireless_1

remoteexp
wireless

rPrivEsc
wireless

×

× × × × ×

+

+

Figure 4.7: Sub-models for wireless tasks after inserting three artificial sequential tasks for ACE|wireless.

For the task remoteexp|hostingServer, inserting artificial sequential tasks resulted in the dependency with
acctManip|hostingServer being identified, as shown in Figure 4.8a. For the sake of simplicity, a part of

4.4. Split Miner Models 51

the model has been removed from the visualization. The dependency is only identified for the two arti-
ficial tasks, and the base task is still placed directly under the parallel split node. Furthermore, the unre-
lated tasks remoteexp|wireless and delivery|hostingServer have also been moved in the model even
though these events have not been affected by the artificial events.

With dManip and ACE on http(s), no sequential dependency was identified. After inserting an artificial
dependency for ACE, the artificial tasks were almost exclusively placed under the parallel split node. One ex-
ception here was that one task was placed elsewhere in the model if four or five artificial tasks were inserted.
Inserting tasks for dManip resulted in the new tasks being placed either under the same parallel spit node
as the original task or under a new parallel split node, as shown in Figure 4.8b. This model also shows that
the ordered relation between three other tasks (not shown for the sake of simplicity) is only defined for the
original task and not for the artificial tasks. In both cases, dependencies around unrelated tasks were also
changed in the model despite no alterations being made around those tasks.

remoteexp
hostingServer

×

remoteexp
wireless

×

delivery
hostingServer

×

delivery
wireless

×

remoteexp
hostingServer_0

remoteexp
hostingServer_1

×

acctManip
hostingServer

×

...

×

+

× × × ×

+

(a) remoteexp|hostingServer

dManip
http(s)_2

×

acctManip
wireless

×

dManip
http(s)_0

×

delivery
hostingServer

×

× × × ×

+

+

+

dManip
http(s)_1

×

delivery
http(s)

×

...

+

× ×

(b) delivery|http(s)

Figure 4.8: Sub-models after inserting artificial sequential tasks for remoteexp|hostingServer (left) and dManip|http(s) (right).
Some parts have been removed for the sake of simplicity.

4.4. Split Miner Models

Figure 4.9 shows the full model produced by the Split Miner on the reversed traces of CPTC’18. This model
is able to perfectly replay 399 out of the 536 traces in the dataset. Opposed to the models from the inductive
miners, this model does not feature any parallelism.

52 4. Performance of Process Mining

start

×

end

delivery
hostingServer

×

resHJ
unassigned

ACE
unassigned

acctManip
wireless

rPrivEsc
wireless

dManip
unassigned

delivery
broadcast

×

exfil
unassigned

×

serD
remoteAccess

×

ACE
hostingServer

remoteexp
hostingServer

ACE
surveillance

remoteexp
surveillance

hostD
wireless

×

rPrivEsc
http(s)

×

infoD
unassigned

×

surf
remoteAccess

×

remoteexp
http(s)

×

delivery
unassigned

×

exfil
broadcast

×

exfil
surveillance

dManip
surveillance

netDOS
http(s)

×

PAexp
http(s)

×

acctManip
unassigned

rPrivEsc
unassigned

uPrivEsc
http(s)

×

serD
storage

×

resHJ
http(s)

×

infoD
wireless

vulnD
wireless

acctManip
broadcast

×

uPrivEsc
hostingServer

×

remoteexp
unassigned

delivery
http(s)

×

bfCred
email

×

rPrivEsc
broadcast

infoD
broadcast

ACE
wireless

remoteexp
wireless

×

uPrivEsc
surveillance

×

ACE
broadcast

remoteexp
broadcast

rPrivEsc
surveillance

×

CnC
http(s)

×

dManip
hostingServer

resHJ
hostingServer

infoD
hostingServer

vulnD
hostingServer

surf
wireless

infoD
nameserver

CnC
surveillance

×

delivery
surveillance

×

resHJ
broadcast

remoteexp
remoteAccess

×

×

hostD
surveillance

×

acctManip
hostingServer

rPrivEsc
hostingServer

exfil
hostingServer

hostD
hostingServer

vulnD
voip

×

delivery
wireless

exfil
wireless

uPrivEsc
wireless

×

serD
ATCcomm

×

dManip
wireless

surf
http(s)

×

infoD
surveillance

acctManip
http(s)

×

rPrivEsc
remoteAccess

×

dManip
broadcast

exfil
http(s)

×

hostD
http(s)

×

infoD
email

×

vulnD
surveillance

surf
surveillance

serD
surveillance

acctManip
surveillance

vulnD
storage

×

hostD
unassigned

TOexp
http(s)

×

×

serD
broadcast

vulnD
unassigned

surf
unassigned

CnC
storage

privEsc
http(s)

×

CnC
unassigned

×

rPrivEsc
email

resHJ
wireless

ACE
remoteAccess

×

netDOS
broadcast

×

ACE
http(s)

×

×

resHJ
remoteAccess

CnC
hostingServer

×

serD
voip

×

hostD
remoteAccess

×

vulnD
broadcast

×

infoD
http(s)

×

infoD
remoteAccess

×

dManip
remoteAccess

surf
hostingServer

×

resHJ
surveillance

vulnD
remoteAccess

×

serD
unassigned

×

acctManip
remoteAccess

delivery
remoteAccess

vulnD
http(s)

×

dDestruct
remoteAccess

×

dManip
http(s)

×

surf
broadcast

×

bfCred
unassigned

×

exfil
remoteAccess

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 4.9: Full models constructed by the Split Miner on the reversed traces of CPTC’18. Tasks are shown as circular nodes colored red
for high-severity attack stages, blue for medium-severity attack stages, and white for low-severity attack stages. Exclusive-choice split
and join gateways are shown with yellow diamonds. The full-scale version is available on https://github.com/ghabbenjansen/
bpmn_replay

https://github.com/ghabbenjansen/bpmn_replay
https://github.com/ghabbenjansen/bpmn_replay

4.4. Split Miner Models 53

Structure
The model from the Split Miner starts with a sizeable exclusive-choice split gateway, sending the process
into one of 35 different starting paths. These paths mostly begin with isolated sequences of tasks that are
mostly disconnected from each other. Through this low level of connectivity between the different paths
here, the model implies that the high-severity and medium-severity steps of the attack traces are primarily
independent of each other.

Lower in the model, the different tasks become more interconnected, and the clear distinction between
different paths disappears. This connectivity is mostly modeled through high-degree split and join gateways.
Over the entire model, the exclusive split gateways branch out the incoming path into an average of 4.20
outgoing paths, and each join gateway merges on average 2.93 paths back into one. Such high averages were
expected given the model features significantly less exclusive-split and join gateways (46 and 76 respectively)
compared to the models from the Inductive Miner (105 and 103 respectively). Yet, the CFC of the two models
is still comparable, with the Split Miner having a CFC of 193 and the Inductive Miner resulting in a model with
a CFC of 244. Combining this insight with the statistics from Table 4.3, we can conclude that the models from
the Split Miner have high connectivity between tasks.

One thing to note is that despite the high connectivity lower in the model, it is not the only reason for the
visual noise in that part of the model. The rendering method used placed certain nodes lower in the model
even though they are closely connected to the root. As a result, the model gives an inflated representation of
the actual connectivity lower in the model. One example comes from the red high-severity tasks towards the
bottom of the model, which seemingly imply that these tasks usually occur later in the traces. However, these
tasks are actually closely connected to the exclusive split gateway at the root of the model.

Opposed to the models from the Inductive Miner, tasks in the model from the Split Miner are rarely optional.
In total, only 14 tasks are in a take-or-skip structure, and two tasks are in a loop structure which allows them
to be executed zero or more times. As a result of this low frequency of optional tasks, the model does not
permit the empty trace, and only eight single-event traces are possible. These values are a lot lower than seen
with the Inductive Miner model, which has 56 optional tasks, 23 tasks in a zero-or-more loop and allows for
90 single-event traces.

Overall, the structure of the model shows similarities with the state machine models which are currently
used. Looking at the workings of the Split Miner, the mining method essentially produces a filtered Markov
chain, with pre-processing and post-processing steps to detect and model parallelism and self-loops. As no
parallelism was identified during the mining process, the resulting model is highly similar to a state machine
at a conceptual level.

4.4.1. Model Validity
Opposed to the Inductive Miner, the model produced by the Split Miner does not offer perfect fitness, so
one might argue that the model is not completely valid given the data. However, this does not automatically
mean that all implications made by the model can be assumed to be false. Therefore, it is still possible to
argue about the validity to some extend.

Figure 4.10 shows the dependencies between tasks as discussed in Section 4.3.1. To begin, the Split miner cor-
rectly identified the sequence of wireless tasks (4.10a). Looking at the relation between dManip|http(s)
and ACE|http(s), the model shows a clear sequential dependency between the two tasks where ACE can
never occur before dManip (4.10b). Through a series of exclusive-split gateways, which are not all shown in
the sub-model, the possibility exists to execute both the dManip and ACE tasks independently of each other,
conforming with the observations in the traces.

For remoteexp|hostingServer and acctManip|hostingServer, the model also shows the sequential
relation between the tasks (4.10c), but the lack of completeness is showing. No option exists to execute the
remoteexp task without also executing the acctManip task, which does not conform to the data.

Following the fact that 137 out of the 536 traces are not valid according to the model, we know more
structures exist which incorrectly disallow specific observed behavior. Looking at this from the perspective
of the mining algorithm, this was to be expected due to the filtering step in the mining process. This step
removes dependencies from the directly-follows graph to reduce noise in the resulting model. However, there
is no way we can distinguish noise from infrequent behavior in this data, so any filtering has may limit valid
behavior in the model.

54 4. Performance of Process Mining

acctManip
wireless

rPrivEsc
wireless

ACE
wireless

remoteexp
wireless

delivery
wireless

exfil
wireless

dManip
wireless

resHJ
wireless

(a) wireless tasks

privEsc
http(s)

×
ACE

http(s)

dManip
http(s)

×

××

(b) http(s) tasks

remoteexp
hostingServer

acctManip
hostingServer

(c) hostingServer tasks

Figure 4.10: Sub-models from the Split Miner model for the reversed traces of CPTC’18 for all tasks identified in Section 4.3.1.

Removing the filtering step from the mining process results in a model which creates just a Markov chain.
The short-loop removal from the directly-follows graph is mainly present because the split and join identifi-
cation cannot handle these constructs. A closer inspection of the mining process showed that no parallelism
is detected when constructing the model for CPTC’18. Therefore, the filtering step is necessary to distinguish
the Split Miner from a Markov chain, and it has to be accepted that the model will not fit certain traces.

4.4.2. Model Robustness
By applying the same methodology from Section 4.3.2, we can verify whether the Split Miner is also produces
consistent models. Even though the Split Miner does not use the cutting rules from the Inductive Miner, we
can still use the same method of injecting artificial dependencies. Furthermore, we can verify whether the
Split Miner is able to identify simple forms of parallelism when we know for sure this is present in the dataset.

acctManip
wireless

rPrivEsc
wireless

ACE
wireless

remoteexp
wireless

(a) Base model

acctManip
wireless

×

remoteexp
wireless

×

ACE
wireless

rPrivEsc
wireless

(b) Loop dependency

remoteexp
wireless

+

ACE
wireless

rPrivEsc
wireless

acctManip
wireless_1

+

acctManip
wireless_0

acctManip
wireless_2

(c) Parallel dependency

acctManip
wireless_0

acctManip
wireless_1

acctManip
wireless

rPrivEsc
wireless

remoteexp
wireless

ACE
wireless

(d) Sequential de-
pendency

Figure 4.11: Example of new models after injecting different dependencies for acctmanip|wireless. The model for the injected
exclusive-choice dependency is not shown as this is highly similar to the model for the parallel dependency.

Figure 4.11 shows the resulting sub-models after injecting artificial dependencies for the taskacctManip|wireless.
In all cases, the resulting model is as expected for the altercation made. Here, the model for the exclusive-
choice dependency is not shown as it is equivalent to the model for the parallel dependency in Figure 4.11c,
but with the parallel gateways replaced by exclusive-choice gateways. Furthermore, the fact that the miner

4.5. Conclusions 55

can identify the injected parallel relation shows that the lack of parallelism in the full model is a result of the
data and not the mining algorithm.

One notable occurrence for these experiments is that the miner did not produce a sound model in all
cases where a parallel dependency was introduced. For the tasks dManip|http(s) and ACE|http(s), an
unsound model was produced when one or two artificial tasks were inserted. Adding artificial parallelism to
all six tasks resulted in an unsound model for all tested numbers of artificial tasks. This lack of soundness
indicates that the rules used to detect parallelism are not completely valid or that some mistake is present in
the implementation of the miner.

4.5. Conclusions
The main takeaway from this evaluation is that the effectiveness of process mining techniques for model-
ing the traces generated for CPTC’17 and CPTC’18 is limited at best. Three process mining algorithms, α$,
Fodina, and the Structured Miner using Heuristics Miner, could not (reliably) produce sound process mod-
els on the datasets. The Slit Miner can produce a sound model in most cases but still has issues with both
the CPTC’17 dataset and some of the artificially enhanced datasets. Only the Inductive Miner can always
generate a sound model as the miner constructs process trees.

Looking at only the performance metrics, the Inductive Miner with low noise thresholds achieves the best
fitness and completeness, and the Split Miner scores best based on precision and F-score. Furthermore, the
models from the Split Miner are less complex than the models from the Inductive Miner scoring similar on
performance.

The validity of the models produced by the Inductive Miner can be argued due to the ActivityConcurrent
fallthrough method. Instead of using a flower model when the miner cannot identify a cut on a sublog, the
fallthrough removes one random activity, places it in parallel to the model for the sublog, and continues
mining on the sublog with the activity removed. As a result, the models give false implications of paral-
lelism and are sensitive to slight changes in the training data. Besides, the parallel activities added with the
ActivityConcurrent fallthrough cannot be distinguished from actual parallel behavior in the dataset.

The models produced by the Split Miner are visually similar to the state machines currently used. As the
miner does not find sufficient evidence for parallelism in the datasets, the resulting model closely resembles
a Markov model where infrequent edges are filtered out. However, as the method for filtering infrequent
edges is more sophisticated than just removing edges below a certain threshold, the models can provide more
insights than a Markov model.

5
Performance of State Machines

With the second research question we want to know how well state machines perform on the IDS alert
datasets. This chapter answers that question by showing the results from the evaluation outlined in Chapter 3.
The chapter starts with the results of the performance metrics for the different state machine configurations,
followed by the results for the complexity metrics. After this, the different types of models are discussed as
well as the validity of the resulting models.

5.1. State Machine Performance
The results of the performance metrics for the state machines are shown in Table 5.1. As a reference, the table
also contains the performance of the prefix tree to show how well the different configurations generalized
over the base model.

Fitness
As expected, almost all models achieve high, if not perfect, scores for fitness when evaluated over the full
datasets. For the bigram and Markov configurations, the perfect fitness is a result of the lack of sinks in
the model. When sinks are not used, no states are removed during the merging process, and all behavior
of the original prefix tree is retained in the models. With the convert sinks configuration, the behavior in
infrequent sink sub-trees is also retained by merging all child nodes into their respective sink root, retaining
all transitions in the final model.

The only models that do not feature this perfect fitness over the full data are the models which feature
sinks without any sink conversion method: no sink merge and search. Due to this lack of sink conversion,
some transitions and states are removed during the state merging process, removing some parts of the train-
ing data. The significant difference between fitness and completeness for these two configurations reflects
this: the high fitness indicates that the majority of each trace is valid according to the model and the low
completeness indicates that for a lot of traces, some smalls part of the traces (likely the infrequent suffixes)
are left out.

The only configuration which does not follow this pattern is the original configuration, which uses sinks
without any explicit mitigation method. Here, the lower threshold for the statistical test and higher minimum
requirement for the merge heuristic score ensured the merging did not destroy these transitions.

Looking at the fitness results from cross-validation, we again see a similar pattern where the no sink merge
and the search configurations score lower than the others. Despite these lower scores, the configurations still
generalize better with respect to fitness compared to the prefix tree model.

The convert sinks and Markov configurations consistently score the highest concerning generalized fit-
ness and completeness, consistently scoring around 0.95 and 0.75, respectively. However, the bigram and
original configurations do not trail far behind, achieving fitness scores just over 0.90. In the area of complete-
ness, these two configurations do provide significantly worse models, as indicated by the scores around 0.54
for CPTC’17 and 0.64 for CPTC’18.

Reversing the traces does not seem to affect the fitness and conformance of the produced models.

57

58
5.Perfo

rm
an

ce
o

fState
M

ach
in

es

Dataset Configuration
Full data Averages from 5-fold cross-validation

Soundness Fitness Completeness Precision F-score # Sound Fitness Completeness Precision F-score

CPTC’17
(chronological)

Bigram sound 1.00 0.99 0.68 0.81 5 0.90 0.54 0.40 0.55
Convert Sinks sound 1.00 1.00 0.44 0.61 5 0.95 0.73 0.26 0.40

Markov sound 1.00 1.00 0.46 0.63 5 0.95 0.79 0.28 0.43
No sink merge sound 0.90 0.64 0.44 0.59 5 0.86 0.52 0.27 0.42

Original sound 1.00 0.99 0.57 0.72 5 0.90 0.59 0.31 0.47
Search sound 0.90 0.64 0.44 0.59 5 0.87 0.52 0.28 0.42

Prefix tree sound 1.00 1.00 1.00 1.00 5 0.81 0.27 0.53 0.64

CPTC’17
(reversed)

Bigram sound 1.00 1.00 0.76 0.86 5 0.90 0.54 0.44 0.59
Convert Sinks sound 1.00 1.00 0.58 0.74 5 0.95 0.76 0.35 0.51

Markov sound 1.00 1.00 0.56 0.72 5 0.95 0.78 0.34 0.50
No sink merge sound 0.90 0.59 0.45 0.60 5 0.87 0.50 0.32 0.47

Original sound 1.00 1.00 0.70 0.82 5 0.90 0.58 0.40 0.56
Search sound 0.90 0.60 0.46 0.61 5 0.87 0.51 0.33 0.48

Prefix tree1 sound 1.00 0.99 1.00 1.00 5 0.81 0.26 0.53 0.64

CPTC’18
(chronological)

Bigram sound 1.00 0.99 0.61 0.76 5 0.92 0.64 0.32 0.47
Convert Sinks sound 1.00 1.00 0.40 0.57 5 0.95 0.73 0.19 0.31

Markov sound 1.00 1.00 0.50 0.67 5 0.94 0.74 0.25 0.39
No sink merge sound 0.88 0.58 0.53 0.66 5 0.85 0.47 0.26 0.40

Original sound 1.00 1.00 0.62 0.76 5 0.90 0.60 0.35 0.50
Search sound 0.88 0.57 0.50 0.64 5 0.85 0.48 0.26 0.40

Prefix tree sound 1.00 1.00 1.00 1.00 5 0.84 0.42 0.55 0.66

CPTC’18
(reversed)

Bigram sound 1.00 1.00 0.68 0.81 5 0.92 0.65 0.37 0.53
Convert Sinks sound 1.00 1.00 0.41 0.58 5 0.96 0.76 0.23 0.37

Markov sound 1.00 1.00 0.55 0.71 5 0.94 0.76 0.31 0.46
No sink merge sound 0.88 0.56 0.48 0.62 5 0.85 0.49 0.32 0.47

Original sound 1.00 1.00 0.65 0.78 5 0.91 0.64 0.36 0.51
Search sound 0.88 0.57 0.45 0.60 5 0.86 0.50 0.31 0.45

Prefix tree1 sound 0.99 0.95 1.00 1.00 5 0.84 0.44 0.50 0.63

Table 5.1: Performance metrics for state machines constructed using different configurations for the traces of CPTC’17 and CPTC’18.
1 The prefix tree is ensured to have perfect fitness and conformance, hence non-perfect scores indicate a minor issue in either the model construction or the evaluation method. Given that for both cases
only one trace did not fit, the issue was not investigated further.

5.2. State Machine Complexity 59

Precision
With the precision computed over the full dataset, we see more variations between the different configura-
tions. The bigram and original configurations are consistently the best performing configurations, scoring
between 0.10 and 0.20 higher than the others. For this, the high number of states in the models (see Table 5.2
is a strong indication. With more states in the model, the prefix to reach each state becomes less common,
decreasing the number of possible suffixes of the state, which in turn is beneficial for precision.

Looking at the impact of cross-validation, we see that precision drops quite significantly. This drop is ex-
plained by combining the idea of state merging and the relatively small evaluation dataset. With state merg-
ing, all (or most when sinks are used) transitions from the training data remain in the model, including all
infrequent transitions which occur only once or twice in the full dataset. The evaluation data does, in turn,
not feature this infrequent behavior as it is unique to the training data, meaning a relatively high number of
transitions in the model are not accounted for during evaluation.

Following this reasoning, it would make sense for the prefix tree to also score low on generalized preci-
sion, but what we see is the opposite. The reason for this is the way precision is calculated based on the model
alignment prefixes. When any model prefix does not cover a state during the evaluation, the outgoing transi-
tions of that state, and by extension, the entire sub-tree, are ignored in the final precision score. As merging
states increases the number of different prefixes to reach a state, it becomes less likely that certain states are
not covered during evaluation, and fewer parts of the model are ignored when computing precision. Follow-
ing this reasoning, a state merging method that only performs merges of states with identical futures should
yield higher precision scores.

Reversing the traces does have a slight positive effect on the precision, with an 10% increase in precision
for reversed models compared to their chronological counterparts.

5.2. State Machine Complexity
Once again, having a model which can describe the data well is limited in usage if it cannot be interpreted.
Table 5.2 shows the complexity metrics as computed over the state machines directly. In order to compare
the metrics somewhat better to the process models, Table 5.3 shows the complexity metrics of the machines
converted to BPMN.

State Machine Complexity
Looking at the complexity of the state machines directly, we see that there is a large variance in the number
of states and transitions between the different configurations.

On the low end are the models from convert sinks and Markov. For the Markov model, the low number
of states is expected as the resulting model is close to a Markov chain. In this chain, one state exists for each
event in the dataset, so it is no surprise that the number of states in the resulting model closely represents
this. The convert sinks model even features fewer states than there are events in the datasets. This is caused
by the presence of sinks and the way they are dealt with: all infrequent events are identified as a sink, and all
sub-trees rooted at a sink are merged into the root node. As a result, many states corresponding to infrequent
events are squashed into their preceding sinks and thereby removed from the model.

With the configurations with more states, bigram and original, we see a relation between the number of tran-
sitions and CFC. For the convert sinks, Markov, no sink merge, and search configurations, these two values
are basically equal, whereas a more substantial difference exists for the bigram and original configurations.
Given the CFC is the sum of out-degrees for states with more than one outgoing transition, the difference be-
tween the number of transitions and CFC is the number of states with only one outgoing transition. Hence,
the machines from the bigram and original configurations feature more states with a known direct future.

This is partially explained by the high amount of states for the bigram and original configurations. Given
the base prefix tree has a fixed number of states where most only have one outgoing transition, it is expected
that models with more resulting states have more of these single-transition states remaining.

Looking at the CNC of the different models, we see more uniformity. Here, the only real outliers are the
convert sinks models, and to some extent, the Markov models. For the convert sinks models, the high CNC
is a product of the sink conversion method, which basically results in a model where most of the transitions

60 5. Performance of State Machines

of the original prefix tree are retained. Pairing this with the low number of states makes the high CNC score
inevitable.

The Markov configuration also results in models with a high CNC. Here, similar reasoning applies: all
transitions from the base prefix tree are retained in the model, but the number of states is closely related to
the number of events in the training data. This again results in a high imbalance between the two which
increases the CNC score.

Dataset Configuration States Transitions CFC CNC

CPTC’17
(chronological)

Bigram 541 1213 966 2.24
Convert Sinks 80 825 817 10.31

Markov 100 574 551 5.74
No sink merge 324 394 388 1.22

Original 706 926 611 1.31
Search 315 394 389 1.25

CPTC’17
(reversed)

Bigram 564 1254 1002 2.22
Convert Sinks 100 766 762 7.66

Markov 100 603 588 6.03
No sink merge 323 396 390 1.23

Original 724 996 669 1.38
Search 308 393 391 1.28

CPTC’18
(chronological)

Bigram 412 752 524 1.83
Convert Sinks 74 656 647 8.86

Markov 125 474 431 3.79
No sink merge 219 258 239 1.18

Original 530 692 383 1.31
Search 208 256 248 1.23

CPTC’18
(reversed)

Bigram 431 775 517 1.80
Convert Sinks 75 557 552 7.43

Markov 123 467 428 3.80
No sink merge 207 250 243 1.21

Original 454 657 397 1.45
Search 199 251 247 1.26

Table 5.2: Size and complexity metrics computed for the different DFA

BPMN Complexity
Looking at the complexity metrics as computed over the state machines converted to BPMN, we see the same
general trends for the different configurations. As a result of the Markovian setting used in all configurations,
the activity merging caused all incoming transitions to each state to be merged into a single task in the re-
sulting model. The converted machines have the same number of tasks as the original state machine has
states, where the initial state causes the discrepancy of one as this state has no incoming transitions. The
only exception to this rule is the convert sinks configuration. Because of the sink conversion, the incoming
transitions for a sink state are not all equal, and therefore they cannot be merged. As a result, the converted
models have a lot more tasks balancing the number of nodes and the number of edges in the model, as shown
by the CNC.

For the other configurations (except Markov), the conversion process also balanced the number of nodes
with the number of edges, resulting in highly similar CNC values between the configurations. With the
Markov configuration, the CNC value remains higher as the model does not really change compared to the
state machine.

The overall structuredness of the models is quite low, indicating a high degree of interdependence between
different parts of the models. Especially the bigram and Markov configurations stand out with their excep-
tionally low structuredness scores. However, these low scores were expected given the highly connected na-
ture of these kinds of models. Only the no sink merge and search configurations score high on this metric due
to the tree-shaped nature of the resulting models.

5.3. State Machine Models 61

Dataset Configuration
Total

Nodes
Total
Edges Tasks

Exclusive
CFC CNC Struct.

Splits Joins

CPTC’17
(chronological)

Bigram 1021 1927 540 242 237 1149 1.89 0.17
Convert Sinks 889 1704 630 77 180 893 1.92 0.68

Markov 259 803 99 77 81 622 3.10 0.34
No sink merge 390 770 323 43 22 424 1.97 0.91

Original 1237 2136 705 434 96 1334 1.73 0.67
Search 386 770 314 41 29 426 1.99 0.87

CPTC’17
(reversed)

Bigram 1057 1960 563 282 210 1186 1.85 0.13
Convert Sinks 850 1588 560 96 192 835 1.87 0.63

Markov 260 809 99 85 74 635 3.11 0.35
No sink merge 404 764 322 57 23 418 1.89 0.86

Original 1283 2235 723 474 84 1427 1.74 0.65
Search 389 754 307 50 30 416 1.94 0.83

CPTC’18
(chronological)

Bigram 704 1165 411 144 147 606 1.65 0.19
Convert Sinks 721 1357 525 64 130 701 1.88 0.71

Markov 292 698 124 83 83 490 2.39 0.28
No sink merge 273 499 218 36 17 263 1.83 0.85

Original 987 1645 529 379 77 1038 1.67 0.64
Search 263 499 207 35 19 272 1.90 0.85

CPTC’18
(reversed)

Bigram 725 1163 430 165 128 604 1.60 0.14
Convert Sinks 632 1162 417 70 143 601 1.84 0.61

Markov 287 665 122 85 78 464 2.32 0.26
No sink merge 265 483 206 39 18 258 1.82 0.77

Original 872 1489 453 349 68 967 1.71 0.46
Search 259 483 198 37 22 262 1.86 0.75

Table 5.3: Size and complexity metrics for the BPMN models equivalent to the state machine.

5.3. State Machine Models
The produced state machines for the reversed CPTC’18 traces are shown in Appendix B. In these models,
states and transitions corresponding to high-severity attack stages are shown in red, medium severity in blue
and low severity in white/black, and sink states are shown in yellow. For the sake of simplicity, the convert
sinks model is simplified by rendering only one self-loop for each sink state.

Models
When comparing the different models, we can distinguish three different types. First are the bigram and
Markov models, which both feature a model with many highly connected states. Towards the top of both
models, we see the states for the high and medium severity events, connected through a relatively small
number of transitions. Moving lower in the model, we see the states for the low severity events with a higher
transition density between them compared to the medium and high severity states.

Second are the models from no sink merge, search and convert sinks. Given that both the performance
and complexity metrics for no sink merge and search are highly similar, it was expected that these two models
look alike. The models feature what is effectively a state machine for the frequent part of the training data with
the sinks at the roots of the infrequent paths. The convert sinks configuration features the same core state
machine for the frequent parts of the training data but allows for sinks to have incoming transitions with
different labels. As a result, sinks with the same preceding state can be merged, resulting in an overall simpler
model. The drawback of removing the infrequent parts of the models is that all information from these parts
is lost. Perhaps there are similarities between different infrequent sub-trees from the original prefix tree.

Third is the model from the original configuration, which at first does not show many similarities to the
other five models. This configuration does not filter out infrequent parts of the prefix tree but instead contin-
ues the merging process despite the lack of statistical certainty due to the low frequency of these parts. Fol-
lowing the configurations used, it is expected that when the infrequent sub-parts of the model are removed,
the remaining machine is also similar to the model from convert sinks.

62 5. Performance of State Machines

Model Validity
Due to the approach used when constructing the state machines, we can have high confidence that the pro-
duced models are valid with respect to the training data. The process of constructing the models starts with
creating the prefix tree of the training data, capturing all observed behavior. Then, the state merging process
generalizes the tree by allowing multiple paths to and from the same state. It is in this merging process where
new behavior is introduced as the sub-trees rooted at the merged states do not have to be equivalent, but
only equivalent enough.

With the bigram and Markov configurations, certain enough is defined through the Markovian principle
that conditioned on the present, the future is independent of the past. Due to this principle, the validity of
the models depends entirely on whether the assumption that the Markovian principle holds is valid.

With the other four configurations, the addition of sinks plays a role in the validity of the models. At the
core, the meaning of the sink states can be summarized as "there is not enough evidence for these parts, so
we are not making any assumptions here". Following such a statement, omitting parts of the model is valid as
no incorrect implications can be made about the data as no implications are made about the data. Yet, there
needs to be a balance as not all infrequent behavior can automatically be labeled as noise.

5.4. Conclusions
Following just the performance metrics, the state machines generally achieve a high fitness at the cost of
precision. In terms of fitness and precision, the convert sinks and Markov configurations produce the best
models. For precision, the bigram and original configurations are the best-performing.

However, the validity of the metrics can be questioned given the performance of the prefix tree compared
to the state machines. All state machines are a generalization over this model, yet based on balanced perfor-
mance measured by the F-score, the prefix tree is the best model available.

With respect to the metrics, two factors are in play. First is the fact that the fitness metric cannot deal with
the concept of sink states. When computing the alignment of a trace extending past a sink state, skips for the
trace are inserted, leading to a worse fitness score. However, following the concept of sink states where the
model basically says that any behavior is allowed, the penalty is unjustified.

The second issue is the way precision is computed and how it deals with non-fitting traces. If some trace is
too ’long’ for the model, the computed alignment does not advance the model, and no new states are consid-
ered for the precision, introducing a positive bias in the scores. This can be seen with the prefix tree scoring
remarkably high on precision compared to the other state machines. Besides, the precision metric requires
that for any model prefix to reach some state, as many outgoing transitions as possible should be taken. For
the state machines, this means that perfect precision can only be achieved when states are only merged if
the sets of outgoing transitions are completely equal. Finally, the precision is also negatively impacted by the
cross-validation experiments. By evaluating the model on only one-fifth of all traces, it is not unexpected that
a sizable portion of the paths is not covered.

Compared to the process mining algorithms, the fitness and completeness of the state machines are slightly
higher, but the precision is significantly lower. In terms of complexity, the no sink merge and search config-
urations are about equivalent to the process models, with the other four configurations scoring significantly
higher on the number of nodes, number of edges, or both.

6
Combining Process Mining and State

Machines

The third topic of this thesis is evaluating whether the process mining algorithms can be used in combination
with the state machines. The main difference between state machine inference and process mining is that
state machine inference models the context of events, whereas process mining deals with parallelism in the
data. By combining the two methods, we can possibly try to get the best of both worlds with a method that is
aware of both the context of events and possible parallelism in the data.

This chapter starts with a description of how the combination works. Then, the results from the hybrid
state machine-process mining algorithms are discussed.

6.1. Replaying Traces
The first step of the combination process is replaying the input traces over the constructed state machine.
This replay procedure is shown in Algorithm 3. The general idea is that the event sequence is replayed over
the given state machine. The replay starts at the initial state. Then, for each next event, line 4 checks if an
outgoing transition exists for the current state. The new state is recorded when this is the case, and the replay
continues with the next event. When no outgoing transition exists, the check at line 7 checks if the replay
currently is in a sink state and stops the replay if this is the case. This termination is in accordance with the
concept that any trace ending in a sink state is valid. Finally, if no transition exists for the current state and
the replay is not in a sink, an error label is recorded in the trace, and the replay continues without updating
the current state.

Algorithm 3: Replay algorithm to extract the state sequence of a trace for a given state machine.

Data: State machine (Q,Σ,δ, q0,F)
Data: Trace e1,e2 . . .en

Result: New event sequence
1 new_sequence ← []
2 cur r ent_st ate ← q0

3 for 1 ≤ i ≤ n do
4 if transition (cur r ent_st ate,ei) → qnext) exists in δ then
5 append qnext to new_sequence
6 cur r ent_st ate ← qnext

7 else if cur r ent_st ate is a sink then
8 stop replaying the trace
9 else

10 append an error label to new_sequence

With this replay procedure, a new dataset is constructed by first constructing a state machine over the
training data and then replaying the evaluation traces over that machine. For the full dataset, the training

63

64 6. Combining Process Mining and State Machines

and evaluation traces are both equal to the full dataset. With the cross-validation experiments, the original
dataset is randomly split into five partitions. Then, for each of the five folds, the state machine is constructed
using four of the partitions. The evaluation data is the product of replaying the fifth partition on this machine.

The new models are created by using the process mining algorithms with the datasets resulting from the
replay procedure.

6.2. Performance
Using the replayed traces, the performance evaluation can again be performed for the different process min-
ing algorithms. Due to time limitations and the large number of datasets, the evaluation is only performed
over the reversed traces of CPTC’18.

Inductive Miner
On the base datasets, the Inductive Miner was often not able to identify cuts during the mining process,
resulting in a high number of applications of the ActivityConcurrent fallthrough and, by extension, unre-
liable models. Hence, the main improvement to be gained for this miner is a reduction in the number of tasks
placed in concurrent blocks.

Table 6.1 shows the number of tasks modeled as optional directly between a parallel split and a parallel
join node. Overall, between 20% and 50% of all tasks has been modeled in such a manner, with the exception
of the combination of no sink merge and a 20% noise threshold where only 6% of tasks is affected by the
fallthrough. For all these tasks, it is possible that sufficient evidence exists to justify the model, but given the
large volume of tasks modeled in this manner, it is highly unlikely that this holds for all tasks. Hence, it is safe
to conclude that using state sequences does not help the Inductive Miner with identifying splits. Therefore,
no benefits can be gained from this combination.

Miner
Bigram Convert Sink Markov

Tasks Concurrent Tasks Concurrent Tasks Concurrent
IM 430 212 (0.49) 74 36 (0.49) 122 42 (0.34)

IMf-05 407 195 (0.48) 73 34 (0.47) 117 21 (0.18)
IMf-10 384 179 (0.47) 72 26 (0.36) 117 19 (0.16)
IMf-15 387 181 (0.47) 72 19 (0.26) 115 21 (0.18)
IMf-20 386 187 (0.48) 72 14 (0.19) 117 22 (0.19)

Miner
No sink merge Original Search

Tasks Concurrent Tasks Concurrent Tasks Concurrent
IM 206 38 (0.18) 453 197 (0.43) 198 31 (0.16)

IMf-05 136 31 (0.23) 417 170 (0.41) 125 31 (0.25)
IMf-10 106 27 (0.25) 388 147 (0.38) 99 29 (0.29)
IMf-15 101 26 (0.26) 374 138 (0.37) 95 26 (0.27)
IMf-20 98 6 (0.06) 372 138 (0.37) 86 21 (0.24)

Table 6.1: Number of tasks likely modelled through the ActivityConcurrent fallthrough for the Inductive Miner with different noise
thresholds.

Split Miner
With the base datasets, the Split Miner performed best based on the precision metric and the F-score, so
it is expected that the miner also performs well on the hybrid approach. Table 6.2 shows the performance
of the Split Miner using the hybrid approach. On the full dataset, we see a flat-out improvement in both
fitness and precision compared to the performance on the base dataset. For the cross-validation, only the
convert sink configuration provides an overall improvement over the performance for the base data. The
convert sink, no sink merge, and search configurations show an improvement in fitness, which could mean
that the Split Miner benefits from the traces being truncated in sink states, given that replay on these three
configurations does just that. With the bigram, Markov, and original configurations, we see a slight drop in
performance which could be explained by these configurations either not using sinks (bigram and Markov)
or not removing nested sink states (original).

6.3. Conclusions 65

However, none of the produced models feature any parallel gateways meaning the models are again effec-
tively filtered Markov chains. As a result, the Split Miner does not add anything new over the state machines
used for replaying the traces but only removes transitions deemed infrequent. Therefore, using the Split
Miner in combination with state machines does not provide any benefits for this dataset.

Configuration
Full data

Soundness Fitness Completeness Precision F-score
SM-Bigram sound 0.95 0.81 0.76 0.85

SM-Convert sink sound 0.96 0.82 0.84 0.90
SM-Markov sound 0.93 0.70 0.73 0.81

SM-No sink merge sound 1.00 0.99 0.78 0.88
SM-Original sound 0.97 0.88 0.70 0.81
SM-Search sound 1.00 0.99 0.78 0.87

Configuration
Averages from 5-fold cross-validation

Sound Fitness Completeness Precision F-score
SM-Bigram 5 0.83 0.58 0.44 0.57

SM-Convert sink 5 0.91 0.70 0.72 0.81
SM-Markov1 4 0.88 0.65 0.51 0.64

SM-No sink merge 5 0.93 0.81 0.46 0.62
SM-Original 5 0.83 0.61 0.42 0.56
SM-Search 5 0.94 0.82 0.46 0.61

Table 6.2: Performance of the hybrid approach using the Split Miner on the reversed traces of CPTC’18.
1 Only four folds were sound, hence the averages are computed over the four sound folds instead of all five folds.

Other Miners
One final possibility is that the state sequences transform the dataset enough to make the other miners, α$,
Fodina, and sHM6, viable. In order to test this, the three miners have been evaluated on the full dataset using
the state sequences to determine whether they are able to model the data.

The Fodina miner was able to construct a sound model for the bigram, convert sink, and original con-
figurations. Running the cross-validation experiments using the bigram configuration also resulted in sound
models for all five folds, however, the convert sinks and original configurations yielded only one and three
sound models, respectively.

The Structured Heuristics Miner and α$ both were not able to generate a sound model for any of the six
configurations. Even stronger, α$ did not finish constructing a model within the four-hour mining period for
four of the configurations. The sHM6 miner did construct a model for all six configurations within the time
limits, but it was somewhat unexpected that all the models for the replayed traces were unsound since the
model for the base reversed traces for CPTC’18 was sound.

6.3. Conclusions
This chapter introduced a method of combining state machines with process mining. Initial experiments
on this combination showed that combining state machines with process mining is not guaranteed to yield
improved results.

Three of the five mining algorithms could not construct a sound model using this method, but these
miners also couldn’t produce a sound model on the base data directly. With the Inductive Miner, we saw that
the clustering performed by the state machines could not transform the data such that the miner can identify
more cuts. Finally, the Split Miner again could not identify parallelism in the data, meaning that the resulting
model is a filtered Markov chain constructed over a state machine.

However, the evaluation has only been performed over one dataset. Therefore, we cannot rule out that
this method of combining state machines with process mining might better results than the two methods can
achieve on their own.

7
Conclusion

This chapter starts with discussing the limitations encountered in the evaluation process of this thesis. Fol-
lowing this is the conclusion which answers the research questions. Finally, an indication for future work is
given.

7.1. Limitations
Throughout this thesis, several issues have been encountered. This section discusses the three main issues
and how they impacted the results.

Datasets
Within this thesis, evaluation is only done over the CPTC’17 and CPTC’18 datasets, both a product of a colle-
giate penetration testing competition. As a result, these datasets might not fully reflect real-world behavior
and issues like background noise or approaches used by professional hackers. The lack of representative
intrusion datasets is a broader obstacle in this area of research[16].

Furthermore, the evaluation results for the process mining algorithms can be attributed to the possibility
that the datasets are not complete as required by several process mining algorithms.

Effects of the metrics
One of the recurrent themes in this thesis is the effectiveness of the precision metric, or the lack thereof. To
begin, the metric combines poorly with the cross-validation experiments as a smaller evaluation set automat-
ically leads to a smaller fraction of the paths in the model being taken. Second, the metric cannot deal with
traces that are ’too large’ for the models as it only uses the states seen in the model part of the alignments.
This means that non-fitting traces where the alignment skips parts of the trace don’t negatively contribute
to the precision score. As a result, the metric has a bias towards models which explain less of the data and
indirectly penalizes models which take the effort to model outliers in the data.

Differences in models
The issue with comparing process models with state machines is the conceptual difference between the types
of models used. An example of this is how parallelism is modeled in a Petri net as opposed to a state machine.
For this thesis, the comparison has been made by converting automata to an equivalent Petri net in order to
run the same evaluation metrics on the different types of models. A negative bias in the shape of additional
complexity might be introduced within such a conversion by translating the conceptual differences between
the different models. Alternatively, a model might loose some of its expressiveness in the conversion: the sink
states from the state machines cannot be directly translated into a BPMN model.

67

68 7. Conclusion

7.2. Conclusions
The goal of this thesis is to evaluate whether methods from process mining can be used to improve the mod-
els for the IDS alert datasets. In order to answer this question, different process mining algorithms have been
evaluated. To verify if these algorithms provide improvements over the state machines currently used, differ-
ent methods of constructing state machines have also been evaluated. In addition, a method for combining
state machines and process mining was also tested.

This section briefly summarizes these results from all these evaluations in order to answer the research
questions set out at the beginning of this thesis.

RQ1: How well can state-of-the-art process mining techniques model the IDS alert datasets?

In Chapter 4, an evaluation is done using six of the most prominent process mining algorithms: α$, Fod-
ina, the Inductive Miner, Structured Heuristics Miner - ProM 6 and the Split Miner. Of these miners, only
the Inductive Miners and the Split Miner were able to generate sound models for the CPTC’17 and CPTC’18
datasets. The mining process of the Inductive Miners ended up often using a fallthrough method as the al-
gorithm could not identify patterns in the datasets. As a result, the generated process models contain tasks
placed in parallel with other parts of the model and thereby falsely implying certain relations in the data and
resulting in inconsistent choices in the resulting model.

Based on the performance metrics, the Split Miner produced the best models. However, no parallelism
was identified during the mining process. As a result, the mining algorithm produced a filtered Markov chain.
Besides, the miner was not always able to generate sound models on the CPTC’17 dataset showing the relia-
bility of the miner can not be taken for granted.

Overall, the process mining techniques cannot provide new insights through modelling the CPTC datasets
.

RQ2: How well can state-of-the-art state machine learning techniques model the IDS alert datasets?

In Chapter 5, the state machines for six different configurations for the Flexfringe tool have been evaluated.
For evaluation, the state machines were converted to Petri nets and BPMN models such that the metrics
for process models could also be applied to state machines. The metric scores showed that the fitness and
completeness of the state machines are on par with the models from process mining, but through the low
precision scores, the metrics indicate that the state machines allow more behavior compared to the process
models.

The low precision for the state machines can largely be attributed to the alignment-based precision met-
ric used. With most of the configurations used for constructing state machines, the infrequent transitions of
the training data were retained in the final model. As all transitions are retained, it is to be expected that the
evaluation data cannot cover the full model.

Therefore, if we blindly follow the metrics, the state machines can only provide a fitting but imprecise model
for the CPTC datasets. However, it can be argued that the precision metric is not suitable for evaluating the
state machines.

RQ3: How much improvement can be gained by combining process mining with state machine learning?

Chapter 6 introduced a method of combining state machines with process mining. This method was evalu-
ated using the reversed traces of CPTC’18 in combination with the six state machine configurations and five
process mining algorithms from the previous chapters. Three of the five miners could not produce sound
models, and the Inductive Miner and Split Miner suffered from the same issues also encountered on the base
data. However, this does not indicate that the method is ineffective just yet as it only has been evaluated on
one dataset, which is shown to be hard for the process mining algorithms.

Therefore, we can conclude that the method does not offer improvements over the base state machines and
process miners for the reversed traces from CPTC’18. However, we cannot rule out that the negative results
are a factor of the dataset used, meaning the method might be effective for other datasets.

7.3. Future work 69

Main question: To which extend can process mining be used to improve the models for
IDS alert datasets?
In this thesis, multiple process mining algorithms have been evaluated for the CPTC’17 and CPTC’18 datasets.
This evaluation showed that the performance is not sufficient: three miners could not produce sound models,
the fourth miner gives inconsistent models with false implications, and the final miner produces a simplified
Markov chain while also being unable to reliably construct sound models. Therefore, the process mining
algorithms are either invalid, unreliable, or only give limited new insights over the state machines currently
used. Furthermore, the evaluation also showed that combining state machines and process mining is inef-
fective for the reversed traces of CPTC’18.

Therefore, we can conclude that the evaluated methods from process mining cannot improve the models
used for the IDS alert datasets.

7.3. Future work
Following the findings in this thesis, new directions for future research have been identified.

Combining state machines and process mining
Following the results from Chapter 6 we know that combining state machines with process mining is not ef-
fective for the reversed traces of CPTC’18. However, these experiments are not sufficient to show that combin-
ing the two is not effective at all. In future work, the method can be evaluated over other datasets, including
synthetic datasets where it is known that parallelism and the context of events play a role.

Datasets
In the base work of Nadeem et al., the method for constructing attack graphs was also evaluated with the
CCDC’18 dataset1. This dataset can also be used for the evaluations performed in this thesis. By perform-
ing the evaluation over more datasets, we can verify whether the patterns observed exist or if they are a by-
product of the two datasets used. Of course, other IDS alert datasets can also be suitable for the evaluation.

Modeling algorithms
In this thesis, only a limited number of process mining algorithms have been evaluated. As new algorithms
are continuously being developed and existing algorithms are being improved upon, it is possible that a better
algorithm exists but has not been evaluated.

Two possible miners for further evaluation are the Induplet Miner and the Evolutionary Tree Miner. The
Induplet Miner[24] uses the Inductive Miner as a base but tries a bottom-up approach before resorting to
the fallthrough methods. This miner has come to the author’s attention late during the evaluation process,

and due to the horrible worst-case runtime (O(22|Σ|), where |Σ| is the number of unique events in the log),
the miner was not included. Alternatively, the Evolutionary Tree Miner is a genetic algorithm constructing
process trees. By playing around with the scoring function for the resulting process trees, it might be possible
to construct process trees suitable for our applications.

Another topic for future research lies with the Inductive Miner. The original paper uses a flower sub-model
when no cut can be identified, but the implementation evaluated uses the ActivityConcurrent fallthrough.
By using the flower method instead, we can get insight into how the difference affects the precision of the re-
sulting model as well as get a better idea of when the miner encountered a sub-model which it could not
identify.

Finally, other state machine inference methods can also be evaluated. In particular, it would be interest-
ing to see how a merging algorithm works, which only allows merges of states with an equal set of outgoing
transition labels. Theoretically, such a merging algorithm should produce a model which scores perfectly on
the current precision score. This raises questions about the impact on performance and how different the
resulting model would be from the original prefix tree.

1http://www.nationalccdc.org/

http://www.nationalccdc.org/

A
Configuration files for flexfringe

The following configuration files have been used to construct state machines using Flexfringe1. These con-
figurations can be supplied to the program by linking an ini file through the -i flag.

Bigram

[default]
heuristic-name = alergia
data-name = alergia_data
symbol_count = 5
satdfabound = 2000
state_count = 5
sinkcount = 5
extrapar = 0.01
largestblue = 1
finalred = 0
extend = 0
lowerbound = 0
finalprob = 1
mcollector = -1
mergelocal = -1
printwhite = 0
printblue = 0
markovian = 2
sinkson = 0

Figure A.1: Configuration for the bigram model

1Available on Bitbucket: https://bitbucket.org/chrshmmmr/dfasat/src/master/

71

https://bitbucket.org/chrshmmmr/dfasat/src/master/

72 A. Configuration files for flexfringe

Convert Sink

[default]
heuristic-name = alergia
data-name = alergia_data
symbol_count = 5
satdfabound = 2000
state_count = 5
sinkcount = 5
extrapar = 0.01
largestblue = 1
finalred = 0
extend = 0
lowerbound = 0
finalprob = 1
mcollector = -1
mergelocal = -1
printwhite = 0
printblue = 0
sinkson = 1
convertsinks = 1
markovian = 1

Figure A.2: Configuration for converting sinks

Markov

[default]
heuristic-name = alergia
data-name = alergia_data
symbol_count = 5
satdfabound = 2000
state_count = 5
sinkcount = 5
extrapar = 0.01
largestblue = 1
finalred = 0
extend = 0
lowerbound = 0
finalprob = 1
mcollector = -1
mergelocal = -1
printwhite = 0
printblue = 0
markovian = 1
sinkson = 0

Figure A.3: Configuration for the base Markovian model

73

No sink merging

[default]
heuristic-name = alergia
data-name = alergia_data
symbol_count = 5
satdfabound = 2000
state_count = 5
sinkcount = 5
extrapar = 0.01
largestblue = 1
finalred = 0
extend = 0
lowerbound = 0
finalprob = 1
mcollector = -1
mergelocal = -1
printwhite = 0
printblue = 0
mergesinks = 0
sinkson = 1
markovian = 1

Figure A.4: Configuration for not merging sinks

Original

[default]
heuristic-name = alergia
data-name = alergia_data
symbol_count = 5
satdfabound = 2000
sinkson = 1
state_count = 5
sinkcount = 5
extrapar = 0.05
largestblue = 1
finalred = 0
extend = 0
lowerbound = 3
finalprob = 1
markovian = 1
mcollector= -1
mergelocal = -1
printwhite= 0
printblue= 0

Figure A.5: The original configuration as used by [31]

74 A. Configuration files for flexfringe

Search

[default]
heuristic-name = alergia
data-name = alergia_data
symbol_count = 5
satdfabound = 2000
state_count = 5
sinkcount = 5
extrapar = 0.01
largestblue = 1
finalred = 0
extend = 0
lowerbound = 0
finalprob = 1
mcollector = -1
mergelocal = -1
printwhite = 0
printblue = 0
mode = search
sinkson = 1
mergesinks = 1
mergesinkscore = 1
searchsinks = 1
markovian = 1

Figure A.6: Configuration for the search mode

B
State Machine Models

75

76
B

.State
M

ach
in

e
M

o
d

els

Figure B.1: State machine generated using the ’bigram’ configuration.

77

Figure B.2: State machine generated using the ’convert sink’ configuration. For the sake of simplicity, one one self-loop per converted sink state is rendered. In the full model, all sinks (show in yellow) feature
multiple self-loops with different labels.

78
B

.State
M

ach
in

e
M

o
d

els

Figure B.3: State machine generated using the ’Markov’ configuration.

79

Figure B.4: State machine generated using ’the no sink merge’ configuration.

80
B

.State
M

ach
in

e
M

o
d

els

Figure B.5: State machine generated using the ’original’ configuration.

81

Figure B.6: State machine generated using the ’search’ configuration.

Bibliography

[1] Wil Aalst. Verification of Workflow nets. pages 407–426, January 1997. ISBN 978-3-540-63139-2.

[2] Wil Aalst, A. Weijters, and Laura Măruşter. Workflow Mining: Discovering Process Models from Event
Logs. Knowledge and Data Engineering, IEEE Transactions on, 16:1128–1142, October 2004. doi: 10.
1109/TKDE.2004.47.

[3] Wil Aalst, Arya Adriansyah, and Boudewijn Dongen. Replaying History on Process Models for Confor-
mance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery, 2:182–192,
March 2012. doi: 10.1002/widm.1045.

[4] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Conformance Checking Using Cost-Based
Fitness Analysis. In 2011 IEEE 15th International Enterprise Distributed Object Computing Conference,
pages 55–64, August 2011. doi: 10.1109/EDOC.2011.12. ISSN: 1541-7719.

[5] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn Dongen, and Wil Aalst. Alignment
Based Precision Checking. volume 132, September 2012. doi: 10.1007/978-3-642-36285-9_15.

[6] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Giorgio Bruno. Automated
discovery of structured process models from event logs: The discover-and-structure approach. Data &
Knowledge Engineering, 117, April 2018. doi: 10.1016/j.datak.2018.04.007.

[7] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, Andrea
Marrella, Massimo Mecella, and Allar Soo. Automated Discovery of Process Models from Event Logs: Re-
view and Benchmark. arXiv:1705.02288 [cs], January 2018. URL http://arxiv.org/abs/1705.02288.
arXiv: 1705.02288.

[8] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Artem Polyvyanyy. Split
miner: automated discovery of accurate and simple business process models from event logs. Knowl-
edge and Information Systems, 59, May 2019. doi: 10.1007/s10115-018-1214-x.

[9] Rafael Carrasco and Jose Oncina. Learning Stochastic Regular Grammars by Means of a State Merging
Method. November 2002. ISBN 978-3-540-58473-5. doi: 10.1007/3-540-58473-0_144.

[10] Sean Carlisto de Alvarenga, Sylvio Barbon, Rodrigo Sanches Miani, Michel Cukier, and Bruno Bogaz
Zarpelão. Process mining and hierarchical clustering to help intrusion alert visualization. Computers &
Security, 73:474–491, March 2018. ISSN 0167-4048. doi: 10.1016/j.cose.2017.11.021. URL http://www.
sciencedirect.com/science/article/pii/S0167404817302584.

[11] Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. A multi-dimensional qual-
ity assessment of state-of-the-art process discovery algorithms using real-life event logs. Informa-
tion Systems, 37(7):654–676, November 2012. ISSN 0306-4379. doi: 10.1016/j.is.2012.02.004. URL
https://www.sciencedirect.com/science/article/pii/S0306437912000464.

[12] Giuseppe Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà. Discovering Expressive Process
Models by Clustering Log Traces. 18:1010–1027, September 2006. doi: 10.1109/TKDE.2006.123.

[13] Christian Albert Hammerschmidt, Sicco Verwer, Qin Lin, and Radu State. Interpreting Finite Automata
for Sequential Data. arXiv:1611.07100 [cs, stat], November 2016. URL http://arxiv.org/abs/1611.
07100. arXiv: 1611.07100.

[14] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Jour-
nal of the American Statistical Association, 58(301):13–30, March 1963. ISSN 0162-
1459. doi: 10.1080/01621459.1963.10500830. URL https://www.tandfonline.com/
doi/abs/10.1080/01621459.1963.10500830. Publisher: Taylor & Francis _eprint:
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1963.10500830.

83

http://arxiv.org/abs/1705.02288
http://www.sciencedirect.com/science/article/pii/S0167404817302584
http://www.sciencedirect.com/science/article/pii/S0167404817302584
https://www.sciencedirect.com/science/article/pii/S0306437912000464
http://arxiv.org/abs/1611.07100
http://arxiv.org/abs/1611.07100
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830

84 Bibliography

[15] Hao Hu, Jing Liu, Yuchen Zhang, Yuling Liu, Xiaoyu Xu, and Jinglei Tan. Attack scenario reconstruction
approach using attack graph and alert data mining. Journal of Information Security and Applications,
54, October 2020. ISSN 2214-2126. doi: 10.1016/j.jisa.2020.102522. URL http://www.sciencedirect.
com/science/article/pii/S2214212619310002.

[16] A. Kenyon, L. Deka, and D. Elizondo. Are public intrusion datasets fit for purpose characterising the state
of the art in intrusion event datasets. Computers & Security, 99:102022, December 2020. ISSN 0167-
4048. doi: 10.1016/j.cose.2020.102022. URL https://www.sciencedirect.com/science/article/
pii/S0167404820302959.

[17] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Abbadingo one DFA learning
competition and a new evidence-driven state merging algorithm. In Vasant Honavar and Giora Slutzki,
editors, Grammatical Inference, Lecture Notes in Computer Science, pages 1–12, Berlin, Heidelberg,
1998. Springer. ISBN 978-3-540-68707-8. doi: 10.1007/BFb0054059.

[18] S. Leemans. Robust process mining with guarantees. In BPM, 2018.

[19] Sander Leemans, Dirk Fahland, and Wil Aalst. Discovering Block-Structured Process Models from
Event Logs Containing Infrequent Behaviour. volume 171, pages 66–78, May 2014. doi: 10.1007/
978-3-319-06257-0_6.

[20] Sander Leemans, Dirk Fahland, and Wil Aalst. Discovering Block-Structured Process Models from In-
complete Event Logs. June 2014. ISBN 978-3-319-07733-8. doi: 10.1007/978-3-319-07734-5_6.

[21] Sander Leemans, Dirk Fahland, and Wil Aalst. Scalable Process Discovery with Guarantees. volume 214,
pages 85–101, June 2015. doi: 10.1007/978-3-319-19237-6_6.

[22] Sander Leemans, Dirk Fahland, and Wil Aalst. Using Life Cycle Information in Process Discovery. volume
256, pages 204–217, July 2016. ISBN 978-3-319-42886-4. doi: 10.1007/978-3-319-42887-1_17.

[23] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering Block-Structured Process
Models from Event Logs - A Constructive Approach. In José-Manuel Colom and Jörg Desel, editors,
Application and Theory of Petri Nets and Concurrency, Lecture Notes in Computer Science, pages 311–
329, Berlin, Heidelberg, 2013. Springer. ISBN 978-3-642-38697-8. doi: 10.1007/978-3-642-38697-8_17.

[24] Sander J. J. Leemans, Niek Tax, and Arthur H. M. ter Hofstede. Indulpet Miner: Combining Discovery
Algorithms. In Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna, Du-
mitru Roman, and Robert Meersman, editors, On the Move to Meaningful Internet Systems. OTM 2018
Conferences, Lecture Notes in Computer Science, pages 97–115, Cham, 2018. Springer International
Publishing. ISBN 978-3-030-02610-3. doi: 10.1007/978-3-030-02610-3_6.

[25] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, SE-2(4):308–320,
December 1976. ISSN 1939-3520. doi: 10.1109/TSE.1976.233837. Conference Name: IEEE Transactions
on Software Engineering.

[26] Jan Mendling. Metrics for Process Models: Empirical Foundations of Verification, Error Prediction,
and Guidelines for Correctness., volume 6. January 2008. ISBN 978-3-540-89223-6. doi: 10.1007/
978-3-540-89224-3. Journal Abbreviation: Lecture Notes in Business Information Processing Publica-
tion Title: Lecture Notes in Business Information Processing.

[27] Stephen Moskal and Shanchieh Jay Yang. Cyberattack Action-Intent-Framework for Mapping Intrusion
Observables. arXiv:2002.07838 [cs], February 2020. URL http://arxiv.org/abs/2002.07838. arXiv:
2002.07838.

[28] Nuthan Munaiah, Justin Pelletier, Shau-Hsuan Su, S Yang, and Andrew Meneely. A Cybersecurity Dataset
Derived from the National Collegiate Penetration Testing Competition. January 2019.

[29] J. Munoz-Gama and J. Carmona. Enhancing precision in Process Conformance: Stability, confidence
and severity. In 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pages
184–191, April 2011. doi: 10.1109/CIDM.2011.5949451.

http://www.sciencedirect.com/science/article/pii/S2214212619310002
http://www.sciencedirect.com/science/article/pii/S2214212619310002
https://www.sciencedirect.com/science/article/pii/S0167404820302959
https://www.sciencedirect.com/science/article/pii/S0167404820302959
http://arxiv.org/abs/2002.07838

Bibliography 85

[30] Jorge Munoz-Gama and Josep Carmona. A Fresh Look at Precision in Process Conformance. volume
6336, pages 211–226, September 2010. ISBN 978-3-642-15617-5. doi: 10.1007/978-3-642-15618-2_16.

[31] Azqa Nadeem, Sicco Verwer, Stephen Moskal, and Shanchieh Jay Yang. Sage: Intrusion alert-driven
attack graph extractor. KDD Workshop on Artificial Intelligence-enabled Cybersecurity Analytics
(AI4Cyber).

[32] Object Management Group (OMG). Business process model and notation, version 2.0.2, 2013. URL
https://www.omg.org/spec/BPMN/.

[33] Xinming Ou, Sudhakar Govindavajhala, and Andrew Appel. MulVAL: A logic-based network security
analyzer. pages 8–8, July 2005.

[34] Carl Adam Petri. Kommunikation mit Automaten. http://edoc.sub.uni-
hamburg.de/informatik/volltexte/2011/160/pdf/diss_petri.pdf, 1962. URL https://edoc.sub.
uni-hamburg.de/informatik/volltexte/2011/160/.

[35] Artem Polyvyanyy. Structuring process models. PhD thesis, March 2012.

[36] Elvira Rolón, Francisco Ruiz, Felix Garcia, and Mario Piattini. Applying Software Metrics to evaluate
Business Process Models. CLEI Electron. J., 9, June 2006. doi: 10.19153/cleiej.9.1.5.

[37] Sebastian Roschke, Feng Cheng, and Christoph Meinel. A New Alert Correlation Algorithm Based on
Attack Graph. In Álvaro Herrero and Emilio Corchado, editors, Computational Intelligence in Security
for Information Systems, Lecture Notes in Computer Science, pages 58–67, Berlin, Heidelberg, 2011.
Springer. ISBN 978-3-642-21323-6. doi: 10.1007/978-3-642-21323-6_8.

[38] Anne Rozinat and Wil Aalst. Conformance checking of processes based on monitoring real behavior.
Information Systems, 33:64–95, March 2008. doi: 10.1016/j.is.2007.07.001.

[39] Anne Rozinat, C Günther, A. Weijters, and Wil Aalst. Towards an evaluation framework for process min-
ing algorithms. Reactivity of Solids, January 2007.

[40] Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third
edition, 2013. ISBN 113318779X.

[41] W. Van Der Aalst, A. Adriansyah, A.K.A. De Medeiros, F. Arcieri, T. Baier, T. Blickle, J.C. Bose, P. Van
Den Brand, R. Brandtjen, J. Buijs, A. Burattin, J. Carmona, M. Castellanos, J. Claes, J. Cook, N. Costantini,
F. Curbera, E. Damiani, M. De Leoni, P. Delias, B.F. Van Dongen, M. Dumas, S. Dustdar, D. Fahland,
D.R. Ferreira, W. Gaaloul, F. Van Geffen, S. Goel, C. Günther, A. Guzzo, P. Harmon, A. Ter Hofstede,
J. Hoogland, J.E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. La Rosa, F. Maggi, D. Malerba, R.S. Mans,
A. Manuel, M. McCreesh, P. Mello, J. Mendling, M. Montali, H.R. Motahari-Nezhad, M. Zur Muehlen,
J. Munoz-Gama, L. Pontieri, J. Ribeiro, A. Rozinat, H. Seguel Pérez, R. Seguel Pérez, M. Sepúlveda,
J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo, C. Stoel, K. Swenson, M. Talamo, W. Tan, C. Turner,
J. Vanthienen, G. Varvaressos, E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Weidlich, T. Wei-
jters, L. Wen, M. Westergaard, and M. Wynn. Process mining manifesto. 99 LNBIP:169–194, 2012. doi:
10.1007/978-3-642-28108-2_19.

[42] Seppe K. L. M. vanden Broucke and Jochen De Weerdt. Fodina: A robust and flexible heuristic pro-
cess discovery technique. Decision Support Systems, 100:109–118, August 2017. ISSN 0167-9236.
doi: 10.1016/j.dss.2017.04.005. URL https://www.sciencedirect.com/science/article/pii/
S0167923617300647.

[43] Sicco Verwer and Christian A. Hammerschmidt. flexfringe: A Passive Automaton Learning Package.
In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 638–
642, Shanghai, September 2017. IEEE. ISBN 978-1-5386-0992-7. doi: 10.1109/ICSME.2017.58. URL
http://ieeexplore.ieee.org/document/8094471/.

[44] A. Weijters. Process Mining: Extending the alpha-algorithm to Mine Short Loops. June 2004.

https://www.omg.org/spec/BPMN/
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://www.sciencedirect.com/science/article/pii/S0167923617300647
https://www.sciencedirect.com/science/article/pii/S0167923617300647
http://ieeexplore.ieee.org/document/8094471/

86 Bibliography

[45] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible Heuristics Miner (FHM). In 2011 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pages 310–317, April 2011. doi: 10.1109/CIDM.
2011.5949453.

[46] AJMM Weijters, Wil MP van Der Aalst, and AK Alves De Medeiros. Process mining with the heuristics
miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, 166:1–34, 2006.

[47] Lijie Wen, Wil Aalst, Jianmin Wang, and Jiaguang Sun. Mining process models with non-free-choice
Constructs. Data Min. Knowl. Discov., 15:145–180, October 2007. doi: 10.1007/s10618-007-0065-y.

[48] Lijie Wen, Jianmin Wang, Wil Aalst, Biqing Huang, and Jiaguang Sun. Mining Process Models with Prime
Invisible Tasks. Data & Knowledge Engineering, 69:999–1021, June 2010. doi: 10.1016/j.datak.2010.06.
001.

	Introduction
	Research questions
	Contributions
	Outline

	Background
	State Machines
	Definition
	State Machine Inference
	Flexfringe

	Process Models
	Petri nets
	Business Process Modeling Notation

	Measuring process model quality
	Soundness
	Fitness
	Precision
	F-score
	Generalization
	Complexity

	Process Mining
	Alpha
	Inductive Miner
	Heuristics Miner
	Structured Heuristic Miner
	Split Miner
	Overview

	Learning Attack Graphs
	Combining Alerts with Prior Knowledge
	Solely Alert-based

	Evaluation Setup
	Datasets
	Constructing Models
	Process Miners
	State Machines

	Evaluating Models
	Metrics for Process Models
	Evaluating State Machines

	Performance of Process Mining
	Model Performance
	Model Complexity
	Inductive Miner Models
	Model Validity
	Model Robustness

	Split Miner Models
	Model Validity
	Model Robustness

	Conclusions

	Performance of State Machines
	State Machine Performance
	State Machine Complexity
	State Machine Models
	Conclusions

	Combining Process Mining and State Machines
	Replaying Traces
	Performance
	Conclusions

	Conclusion
	Limitations
	Conclusions
	Future work

	Configuration files for flexfringe
	State Machine Models
	Bibliography

