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A B S T R A C T

Graph Neural Networks (GNNs) have been applied to network data such as traffic flow and water distribution 
systems, yet their use in predicting the state of urban stormwater drainage systems remains rare. This study 
investigates the application of Graph-WaveNet (GWN), a type of GNN, in forecasting the states of stormwater 
systems in Kowloon, Hong Kong. Data was sourced from the Storm Water Management Model (SWMM) spanning 
43 rainfall events from 2020 to 2023. Based on the preceding 30 to 60 min of network states and rainfall data, 
GWN predicted junction inflows, pipe flow rates, and relative water depths (fraction of full area filled by flow) 
for lead times up to 20, 20, and 30 min, with an R2 greater than 0.6, respectively. Prediction accuracy declines 
with longer forecast horizons. GWN predicts more time steps ahead for pipes’ flow rates and junctions’ inflows, 
but fewer for relative water depths during peak versus non-peak periods. It is also more effective at predicting 
states of large pipes and connected junctions downstream, compared to smaller upstream components. GWN’s 
accuracy improves significantly with precise rainfall nowcasting inputs. This study establishes a significant 
baseline for GWN’s performance in predicting urban stormwater systems during rainfall events.

1. Introduction

Given the increasing need for climate risk management, accurately 
predicting the state of urban stormwater drainage has become increas-
ingly important to enable efficient operation, maintain the network’s 
capacity and prevent damage to the infrastructure (Bakhshipour et al., 
2019; Kwon et al., 2021; X. Li et al., 2022; J. Wang et al., 2021). Ac-
curate flows and depths prediction provides valuable information for 
mitigating flood risks and enhancing urban resilience to better cope with 
the challenges posed by climate change (Garzón et al., 2022; Seye-
dashraf et al., 2021; Yang & Chui, 2021).

Urban stormwater drainage flow modelling is currently dominated 
by two primary types of models: (1) physics-based methods making use 
of hydrological and hydraulic models, such as the Storm Water Man-
agement Model (SWMM) and MIKE Urban (Hernes et al., 2020; Pachaly 
et al., 2021; Tan et al., 2019; H. Wang et al., 2022), and (2) data-driven 
models that make use of Artificial Neural Networks (ANNs), Long-Short 
Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent 
Neural Networks (RNNs) (She & You, 2019; Sufi Karimi et al., 2019; 
Yen-Ming Chiang et al., 2010; D. Zhang et al., 2018). Although 
physics-based models can provide an integrated simulation of urban 

sub-catchments, including the state of the drainage network, they 
require a large amount of hydrological, hydraulic, and climatological 
information as input. The accuracy of the predictions depends on the 
quality of the weather forecast and the physical model. Data assimilation 
methods have been shown to improve the accuracy of physical models 
by updating observations and reducing errors. For example, rainfall 
estimates can be modified by observations from rain gauges or flow 
sensors continuously to improve model performance and reduce the 
errors introduced by initial rainfall estimates (Fava et al., 2020; Oh & 
Bartos, 2023). However, hydrological models require not only extensive 
calibration and validation in advance, but also reliable real-time 
weather forecasts or observations to ensure predictive performance, 
which is a challenge for cities that lack sufficient topological data and 
modelling experience (Bisht et al., 2016; Tansar et al., 2022).

Data-driven models, on the other hand, do not aim to replicate the 
details of the system. This reduces the need for data that is required by 
the hydrological and hydraulic models. Machine learning and deep 
learning methods have shown promise in predicting various variables at 
specific points in drainage systems, such as Combined Sewer Overflow 
(CSO) and outfall flow predictions (Balla et al., 2020; Rosin et al., 2021; 
Zhao et al., 2019). Data-driven approach was also used to formulate a 
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surrogate model to simulate water levels, flows, and surcharges in all 
junctions and pipes of urban drainage systems (Palmitessa et al., 2022). 
This surrogate model can reduce the computation time so that it pro-
vides a more efficient method to evaluate the drainage network design.

So far, physics-based, and data-driven models were designed to 
maximize the value of the limited monitoring data to predict the state of 
urban drainage system with focus on specific locations of interest rather 
than the entire network (Yin et al., 2022). With cities increasingly 
investing in smart drainage systems, comprehensive sensor networks are 
expected to monitor water flow and depth in every drainage pipeline in 
the context of smart cities. The added value of sensor data from 
comprehensive sensor networks must be explored to maximize the in-
vestment of smart drainage system (Fu et al., 2022). To address this, in 
this study, we created a dataset of time-dependent inflows at all junc-
tions and water flows and levels in all pipes of a drainage network in an 
urban catchment of Hong Kong during multiple rainfall events using a 
validated Storm Water Management Model (SWMM). With this dataset 
approximating the sensor data from comprehensive sensor network, we 
investigated data-driven solutions for predicting the system-wide states 
of urban stormwater drainage network to support predictive control of 
the system in face of heavy rainfall.

Graphic Neural Networks (GNNs) are specifically designed to oper-
ate directly on graph-structured data. By exploiting the structural in-
formation contained in the graphs, GNNs reach state-of-the-art 
performances in many applications such as in social network analysis, 
recommendation systems, molecular chemistry and traffic forecasting 
(Wu et al., 2021; Yu et al., 2022). In the field of hydrology, GNN has 
become an effective tool for state estimation and anomaly detection in 
water distribution systems, groundwater and river flow prediction in 
watersheds, and flood modeling (Bai & Tahmasebi, 2023; Bentivoglio 
et al., 2023; Sun et al., 2021; Xing & Sela, 2022; Zanfei et al., 2022b). In 
our study, we selected Graph-WaveNet (GWN), a GNN type method that 
has been successfully applied to solve problems in traffic and river 
networks, suggesting that it has the potential to be applied to predict the 
state of urban stormwater drainage networks (Sun et al., 2022; Wu et al., 
2019). However, these pioneering studies only used GWN for one time 
step ahead prediction, which is also common in other studies of evalu-
ating deep learning models in urban water infrastructure performance 
predictions (Xie et al., 2024). The performance of GWN of predicting 
two or more-time steps head for the states of the urban stormwater 
drainage network was not assessed to determine the forecast lead time.

In our study, we evaluated the accuracy of GWN in predicting the 
state of the drainage network in an urban catchment of Hong Kong, 
including inflows of all junctions and water flow and levels in all pipes. 
We addressed the following research questions: (1) how accurately can 
the GWN predict the drainage network state, including all junctions’ 
inflows, flow rates and relative water depths (i.e., fraction of full area 
filled by flow for conduits) in all pipes, and how far in advance can these 
predictions be made? (2) can GWN predict accurately the states during 
rainfall peak periods? and (3) How does the prediction accuracy of the 
GWN model vary spatially across junctions and pipes of the stormwater 
drainage network? Overall, our study offers insight into the potential of 
GWN as a data-driven method for predicting the state of urban storm-
water drainage networks.

2. Literature review

2.1. GNNs show advantages in smart sustainable city applications

The GNN is a class of artificial neural networks designed to process 
data represented as graphs. GNNs encompass several architectures, 
including Message Passing Neural Networks (MPNN), Graph Convolu-
tional Networks (GCN), and Graph Attention Networks (GAT). The 
fundamental principle of GNNs involves aggregating information from 
neighboring nodes to learn spatial dependencies and updating the status 
of the target nodes or links. By integrating GNNs with temporal learning 

methods such as Recurrent Neural Networks (RNNs) and Gated Recur-
rent Units (GRU), it is possible to develop spatial-temporal GNNs that 
process time-series data by capturing both spatial and temporal de-
pendencies. Although the application of GNNs in smart sustainable cities 
is growing, it remains in its nascent stages. Table 1 presents a summary 
of representative studies and showcases the range of urban environ-
ments and infrastructures where GNNs have been applied, including the 
urban wind environment, air quality, water management, and energy 
systems. These studies primarily demonstrate the superiority of GNNs 
over traditional physics-based models for simulation and over non- 
graph-based data-driven models, such as the Autoregressive Model 
and Long Short-Term Memory (LSTM), for prediction purposes.

2.2. The application of GNNs in urban drainage network remains limited

GNNs have been explored in water distribution networks, but their 
application in urban drainage networks remains sparse. Zhang et al. 
applied GATs to predict a set of hydraulic variables, such as flows and 
water levels, in urban drainage networks (Z. Zhang et al., 2024). The 
innovative aspect of this research involved the adjustment of node 
inflow and outflow in the GAT model by summing the flow from up-
stream and downstream links, respectively, during both the training and 
testing phases to enhance accuracy. However, this study relied on inputs 
like future rainfall information and surface runoff, which are chal-
lenging to acquire with high temporal resolution (e.g., every minute). 
Consequently, a comprehensive evaluation of GNNs’ ability to predict 
the states of urban drainage networks without relying on such data is 
crucial for their effective integration into smart urban drainage man-
agement systems. The limited current understanding in this area un-
derscores the importance of our research.

Table 1 
Recent representative applications of GNNs in managing smart, sustainable 
urban environments and infrastructure.

Graph 
Networks

Purpose Novelty Reference

MPNN Develop a GNN-based 
surrogate model for 
urban wind simulation.

Introduce subgraph 
partitioning and multi- 
scale GNNs to reduce 
computational resource 
demands.

(Liu et al., 
2023)

MPNN Develop a surrogate 
model using network 
topology and node 
demand to estimate 
pipe flow and pressure 
states within the water 
distribution network.

Illustrate the effectiveness 
of GNNs in modeling the 
state of water distribution 
networks.

(Xing & 
Sela, 2022)

GCN Develop a model to 
detect bursts in the 
water distribution 
network.

Highlight the benefits of 
using GCNs for anomaly 
detection.

(Zanfei 
et al., 
2022b)

GCN Predict air pollution 
across multiple 
temporal horizons.

Demonstrate the 
advantages of employing 
GCNs in predicting air 
pollution.

(Tariq 
et al., 
2023)

Gated 
MPNN

Forecast water quality 
in the water 
distribution network 
for the next time step.

Show how gated GNNs 
can predict the states of 
all nodes using 
measurements from only 
part of the nodes.

(Z. Li et al., 
2024)

GAT+GRU Predict indoor thermal 
load across various 
zones for the next time 
step.

Compare the prediction 
performance of GCNs and 
GATs.

(Jia et al., 
2023)

GCN+RNN Forecast water demand 
across multiple regions 
for the next time step.

Demonstrate the benefits 
of leveraging a graph 
structure to produce 
reliable predictions.

(Zanfei 
et al., 
2022a)
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3. Methodology

3.1. Overview

In this study, the GWN model uses network topology, rainfall data, 
and historical network state to predict drainage network state in terms of 
flow rates in pipes, junctions’ inflows, and relative water depths of 
pipes. The GWN model is built and evaluated in three principal steps: (1) 
generation of training data, (2) training and testing of the GWN model 
and (3) evaluation of the GWN accuracy.

To prepare data for the GWN training and testing, a validated SWMM 
model of the urban stormwater drainage system is run for 43 rainfall 
events in (a) of Fig. 1 during 2020–2023. Rainfall events were extracted 
from the Hong Kong Observatory’s every-minute precipitation records 
using the Inter Event Time Definition method. This method employed a 
three-hour inter-event time and a 0.5 mm threshold for slight rainfall. 
Events shorter than two hours were excluded as they did not provide 
enough data when one hour of information was required as input to 
predict the states for the next 30 min. We selected one-third of the 
remaining events to ensure a manageable dataset within our computa-
tional limits for model training. The rainfall events are selected to 

represent a wide range of rainfall characteristics in terms of duration and 
intensity. These events have a 2-year return period, except one with a 
20-year return period (see the triangle within the red circle in Fig. 1a on 
the duration and intensity plot), which is reasonable as these events are 
extracted from 3-year rainfall records. The implication of the accuracy of 
the GWN in predicting rain events with a large return period is presented 
in the discussion. To describe the stormwater drainage states, three time 
series of network states are extracted from the SWMM simulation results 
for each rainfall event. These include inflows of junctions, flow rates in 
pipes, and pipe relative water depth. The dataset is organized based on 
the designated input and output sequence length, supplemented with 
precipitation features to compose training samples and testing samples.

In the second step, the GWN, initially implemented with an input 
sequence length of twelve to make twelve step-ahead predictions by Wu 
et al. (2019), is revised to accommodate different designed input and 
output sequence lengths. Candidate GWN models are trained and tested 
to determine the optimal input sequence length for the desired output 
sequence. In the third step, the optimal GWN model is selected and used 
to evaluate its accuracy across observation ranges, pipe diameter ranges, 
and individual elements.

Fig. 1. Materials for initializing network GWN and preparing training testing data: (a) study location, rainfall duration and intensity of 43 events in 2020–2023; (b) 
adjacency matrices of pipes and junctions; (c) SWMM simulation results for preparing training testing data.
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3.2. Graph-wave net (GWN) model

As a type of GNN, the GWN learns by propagating information 
through the graph structure, capturing relationships between nodes and 
their neighbors, and using this information for predictions based on 
learned patterns (Gori et al., 2005; Scarselli et al., 2009). Urban 
stormwater drainage networks can be viewed as (directed) graphs, 
where either network nodes or pipes can respectively serve as nodes (Cui 
et al., 2011; Yu et al., 2022). The urban stormwater drainage network 
node connections can be represented by an adjacency matrix A ∈ RN×N, 
containing 1 s and 0 s to indicate the presence or absence of pipes 
connected to the analyzed node. Given these characteristics, GNNs are 
well-suited for learning and predicting the state of urban stormwater 
drainage networks.

More specifically, the GWN used in this work is comprised of a Gated 
Temporal Convolution Layer (i.e., Gated-TCN) module and a Graph 
Convolution Layer (i.e., GCN) module for spatial-temporal learning as 
shown in Fig. 2 (Wu et al., 2019). The initial input is first fed into the 
Gated-TCN, designed to learn complex time dependencies (Eq. 1). 

H = g(Θ1X+b1) ⊙ σ(Θ2X+b2) (1) 

where Θ1 and b1 represent the model parameter of a 2D-CNN 

(Convolution Neural Network), Θ2 and b2 correspond to the parame-
ters of a 1D-CNN, the function g (⋅) is an activation function of the 2D- 
CNN outputs, σ (⋅) denotes the sigmoid function of the 1D-CNN out-
puts, ⊙ signifies element-wise product.

Given X ∈ RN×D×S as an input to the Gated-TCN, where S is the input 
sequence length, the output H has a sequence length of S-1. The model 
then learns spatial dependencies using the subsequent GCN layer (Eqs. 
2–3). 

Z =
∑K

k=0
PkXWk1 + Ã

k
aptXWk2 (2) 

Ã
k
apt = SoftMax

(
ReLU

(
E1ET

2
))

(3) 

where P = A/rowsum(A) captures existing spatial dependencies with 
the adjacency matrix A ∈ RN×N, X ∈ RN×D serves as the input of GCN 
layer, k denotes a parameter of diffusion convolution introduced to 
represent the number of diffusion steps during the convolution opera-

tion (Y. Li et al., 2018), Ã
k
apt is a self-adaptive adjacency matrix with two 

learnable parameters E1,E2 ∈ RN× 10 for capturing the hidden spatial 
dependencies, Wk1 and Wk2 are model parameter matrices.

Fig. 2. Flows of Sample preparation and GWN setup: (1) SWMM simulation results;(b) Convert SWMM simulation results into training testing samples; and (c) GWN 
model structure.
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3.3. GWN model performance assessment

Performance evaluation metrics for node state prediction comprise 
Symmetric Mean Absolute Percentage Error (SMAPE), Coefficient of 
Determination (R2), and Normalized Root Mean Squared Error (NRMSE) 
(Eqs. 4–6). The magnitude of junction inflows and pipe flow rates varies 
significantly throughout the urban stormwater drainage network. For 
example, during a rainfall event, the flow rates in large downstream 
pipes are typically much higher on average than those in smaller up-
stream pipes. Additionally, the overall flow rates within the urban 
drainage network are higher during peak periods as opposed to non- 
peak periods. The criteria we selected are dimensionless, allowing us 
to fairly assess accuracy across various pipes and junctions at various 
stages of rainfall events (Akbarian et al., 2023; Huang et al., 2021; 
Pullanagari et al., 2021). 

SMAPE =
1

N × T
∑N

i=1

∑T

t=0

|Xit − X̂it |

|Xit| + |X̂it |
(4) 

R2 = 1 −

∑N
i=1

∑T
t=0(X̂it − Xit)

2

∑N
i=1

∑T
t=0(X̂it − X)2 (5) 

NRMSE =
1
X

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
∑T

t=0(Xit − X̂it)
2

N × T

√

(6) 

where N is the total number of predicted nodes, T is the total time steps 
ahead, Xit is the predicted value of the ithnode at time step t, and X̂it is the 
actual value of the ithnode at time step t.

Prediction accuracy for individual junction or pipe i is measured 
using Coefficient of Determination (R2

i ) (Eq. 7). 

Ri
2 = 1 −

∑T
t=0(X̂t − Xt)

2

∑T
t=0(X̂t − X)2 (7) 

where T is the total time steps ahead, Xt is the predicted value in the time 
step t, X̂t is the real value in the time step t, X is the mean of real value of 
all time steps.

4. Case study

4.1. Area description

The study area is a densely constructed urban subcatchment in 
Kowloon, Hong Kong, covering 1.2 km2 with over 90 % impervious 
surface. Effective stormwater management in this region is highly 
dependent on the performance of the drainage network (Khadka et al., 
2020; Radinja et al., 2019). The area’s drainage system includes 664 
junctions, 619 rain pipes, and 48 culverts to collect and transport rain-
water. Notably, two outfalls are equipped with flow monitoring sensors 
(Fig. 1a). A well-calibrated and validated SWMM model for this area was 
used in this study (Zhuang et al., 2023).

4.2. Training data generation

4.2.1. Rainfall extraction
The training and testing datasets for the GWN model are derived 

from SWMM simulation results of 43 rainfall events between July 2020 
and June 2023 with rainfall durations ranging from 2.7 h to 60.3 h and 
rainfall intensities ranging from 1.3 mm/h to 20.1 mm/h, as shown in 
Fig. 1. All of these events have a return period of less than two years, 
except for one 20-year rainfall event (the one lasting >60 h, see the 
triangle within the red circle in Fig. 1a on the duration and intensity 
plot). The rainfall events are either single-peaked or multi-peaked, with 
the peaks at the beginning, middle, and end of the rainfall duration, and 
the temporal distributions of 43 events can be found in supplementary 

information Fig. A1.

4.2.2. Preparation of training and testing data samples
Three network properties, flow rates (L/s) and relative water depths 

in pipes (i.e., 0–1, 0 indicating pipe without any flow and 1 full pipe), 
and total inflows at junctions including lateral and upstream inflows (L/ 
s), are extracted from the SWMM simulation results which were reported 
every 5 min for predicting drainage network state, respectively.

The summary of GWN models built in terms of inputs/outputs and 
the corresponding sample sizes used for training and testing are shown 
in Table 2. Given the 5-minute time interval, the output sequence length 
of 6 and input sequence lengths of 6–12 in Table 2 means that we 
conduct experiments for 30 min ahead predictions (6 × 5-minute in-
tervals), with the length of previous time ranging from 30 min to 60 min 
(6 to 12 × 5-minute intervals). Shorter preceding time, such as an input 
sequence length of 6, can generate more samples from simulated time 
series than longer preceding time, such as an input sequence length of 
12. The tradeoff between the number of training samples and the input 
sequence length per sample were evaluated to find optimal input 
sequence length. Extending the output sequence length necessitates 
comparably longer input sequences, which consequently reduces the 
available number of training samples. Our findings indicate a decline in 
prediction accuracy when forecasting further into the future. Conse-
quently, we opted for an output sequence length of six-time steps, as this 
length adequately captures the observed trend in accuracy. Addition-
ally, we ensured consistency in our evaluation by using an identical 
number of testing datasets across various input sequence configurations.

Two adjacency matrices were created to describe the graphical 
structure of the stormwater drainage system. One matrix represents the 
adjacency of network junctions, Ajunction ∈ R664 × 664, for predicting 
junctions’ inflows. The other matrix denotes the adjacency of pipes 
(including culverts), Apipe ∈ R667 × 667, for predicting flow rates and 
relative water depths in pipes. These two matrices are used in Eq. 7 and 
presented in Fig. 1.

4.2.3. GWN model hyperparameters
The GWN model’s hyperparameters, including learning rate, dropout 

rate, weight decay rate, and epochs, have been set to 0.001, 0.3, 0.0001, 
and 60, respectively. The number of TCN layers equals the input 
sequence length plus two, with a TCN kernel size of 2. The parameter k, 
representing the number of diffusion steps in GCN, has been set equal to 
2. These hyperparameter values were the default settings for the GWN 
developed by Wu et al., 2019., except for the epochs. The number of 
epochs was chosen based on when the training and validation loss sta-
bilized to avoid overfitting. Experiments were performed on the super-
computing cluster with two GPU devices of 8 x Nvidia GeForce RTX 
2080 Ti and 100 GB memory storage.

5. Results

5.1. Experiments on preceding time

The experiments for predicting stormwater drainage network states 
involved training the GWN with different input lengths (Table 2) and 
evaluating them using R2, NRMSE, and SMAPE. The input sequence 
lengths ranged from 6 to 12, while the output sequence lengths were 
fixed at 6. This resulted in a corresponding preceding time of 30 to 60 
min when predicting the stormwater drainage states up to 30 min ahead, 
as shown in Fig. 3. The GWN model performed well for predicting flow 
rates in pipes and junctions’ inflows up to 20 min, while it could predict 
relative water depths up to 30 min, if models with an R2 greater than 0.6 
were considered good predictions. The preceding time can influence the 
prediction performance, but the improvement is not consistent with a 
longer preceding time. In general, the models with 55-minutes preced-
ing time (the green in Fig. 3) had higher accuracies than those with 

M. Li et al.                                                                                                                                                                                                                                       Sustainable Cities and Society 115 (2024) 105877 

5 



shorter or longer preceding times regarding R2 in this study. Exploring 
>60-minutes preceding time requires a longer input sequence but re-
duces the number of training samples. The tradeoff between the number 
of training samples and the input sequence can be resolved by collecting 
more rainfall events with longer durations.

The accuracy of the GWN model decreased as the prediction horizons 
increased, regardless of the type of dataset or the length of the preceding 
time. The consistent pattern observed with the GWN across relative 
water depths and flow rates in pipes, as well as junctions’ inflows. As the 
prediction horizon increased, the variance between the R2 and NRMSE 
of models with different preceding times gradually increased, indicating 
that the GWN model is more sensitive to the preceding time for longer 
prediction tasks. However, the changes in SMAPE with prediction ho-
rizon for flow rates and junctions’ inflows were relatively small. As 
discussed in section 2.3, SMAPE is more tolerant to outliers than R2 and 
NRMSE. Therefore, the rapid decrease in the performance of the GWN 
model, as shown by R2 and NRMSE, can be attributed to the increasing 
number of outliers generated with longer prediction horizons. In the 
subsequent sections, we will investigate the underlying causes of the 

decrease in GWN model accuracy when making predictions further into 
the future.

5.2. Accuracy under different outfall flows

We assessed the accuracy of the GWN model to predict the drainage 
network state under various levels of outflow from the stormwater 
drainage network. We defined the flow rates in pipes to outfall 1226 
(Fig. 1), the outflow at outfall 1226, and the relative water depths of 
pipes before outfall 1226 as low, mid-to-low, mid-to-high, or high 
outflow conditions. These conditions are indicated as ranges in 
Tables 2–4 and are described in detail below. High outflow conditions 
can be interpreted as the period around peak rainfall (Fig. A2 in sup-
plementary information).

We used the model with a 55-minute preceding time for flow rate 
analysis (the green line in Fig. 3), with R2 ranging from 0.97 to 0.67 for 5 
to 20 min predictions, which is marked in Table 3, indicating that the 
model performs well up to 20 min overall. We grouped the testing data 
by the flow rates in the pipe to outfall 1226 and selected 36 L/s (1st 

Table 2 
Summary of datasets, sequence lengths and sample size for experiments.

Drainage Network State Number of Pipes or 
Junctions

Input Sequence 
Length

Output Sequence 
Length

Number of Training 
Samples

Number of Validation 
Samples

Number of Testing 
Samples

Flow Rates in Pipes 667 6 - 12 6 2855 - 3030 612 - 649 599
Relative Water Depths in 

Pipes
667 6 - 12 6 2855 - 3030 612 - 649 599

Junctions’ Inflows 664 6–12 6 2855 - 3030 612 - 649 599

Fig. 3. Prediction accuracy for models with preceding time ranging from 30 to 60 min. The corresponding input sequences range from 6 to 12 while the output 
sequence is targeted to 6. The accuracy of predictions deteriorates as we move from 5-min ahead prediction towards 30 min.
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quartile), 139 L/s (median), and 499 L/s (3rd quartile) to define the low, 
mid-to-low, low-to-high, and high conditions of outflow rate. Table 3
also shows whether the model performs well with an R2 greater than 0.6 
under these conditions. As it can be seen from this table, overall, the 
model performs well for 20-minute predictions but struggles with low, 
low-to-mid, and mid-to-high conditions for >5 min ahead prediction. In 
contrast, the model is superior for high outflow conditions until 25 min, 
while the overall performance is already unsatisfactory after 20 min.

For predicting network junctions’ inflows under different outflow 
rates at outfall 1226, we used the model with a 55-minute preceding 
time (the green line in Fig. 3) and an R2 of 0.97–0.64 when predicting 
5–20 min ahead. We selected the 1st quartile, median, and 3rd quartile 
of outflows at outfall 1226 as breakpoints to formulate four conditions, 
as shown in Table 4. The GWN’s good performance (R2 > 0.6) up to 20 
min prediction under different outflow rates is indicated in Table 4. 
What is noticeable is that for high outflow conditions, i.e., when out-
flows are larger than 748 L/s at outfall 1226, the model can predict up to 
20 min, while it only reaches 5 min of accuracy for the other lower flow 
conditions. This pattern in the GWN model’s performance when pre-
dicting junctions’ inflows under different outflow conditions mirrors its 
predictive capabilities for pipe flow rates under varying flow conditions.

For relative water depth prediction in the stormwater drainage 
network, we selected the model with a 55-minute preceding time for 

analysis (the green line in Fig. 3). We formulated four conditions based 
on the relative water depth in the pipe to outfall 1226. Table 5 shows 
that when the relative water depths in the pipe to the outfall are under 
0.0347, the GWN model can make accurate predictions up to 30 min if 
an R2 larger than 0.6 is good enough, while under the highest water 
depth conditions, the model is limited to 15 min accuracy, which is in 
contrast with the performance of predicting flow rates and junctions’ 
inflows during rainfall peak periods.

In summary, our results suggest that the GWN can predict the pipes’ 
flow rates and junctions’ inflows for a longer timeframe when the 
downstream flow rate is high. But GWN can predict the pipe’s water 
depth for fewer time steps ahead when the downstream water depth is 
high. This differential predictive capability is explored by comparing 
changes in flow rate and water depth between upstream and down-
stream pipes outfall during a synthetic 2-year return rainfall event in 
Hong Kong (Fig. A2a).

From Fig. A2b–d, it is evident that both the flow rate and water depth 
in the downstream pipe peak around the time of highest rainfall. When 
the downstream flow rate is high, its future changes depend more 
significantly on incoming flows from upstream, especially in post-peak 
rainfall period (Fig. A2b). Conversely, the upstream pipe’s flow rate is 
mainly influenced by rainfall changes. Effective predictions occur when 
the flow rate is high because it relies more on water transport within the 
network, a dynamic well captured by the GWN. Conversely, when flow 
rates are low, they depend more on rainfall, which is not predicted, 
potentially leading to lower R2 values if upstream flow rate changes 
abruptly due to rainfall, as discussed in Tables 2 and 3.

Regarding relative water depth, when the downstream depth is high, 
the upstream pipe is nearly at capacity. The water level in the upstream 
rises rapidly, surpassing that downstream before quickly falling below it. 
This swift fluctuation in water depth when downstream depth is high is 
driven by rainfall changes. Although rainfall impacts the flow rate, the 
consistent pattern observed is that the downstream flow rate remains 
higher than upstream (Fig. A2d). However, this pattern quickly reverses 
for water depth, where the upstream initially exceeds and then falls 
below the downstream level (Fig. A2c). This reversal is challenging to 
predict without knowledge of future rainfall changes, resulting in a 
lower R2.

When the downstream water depth is low, indicating milder rainfall, 
the upstream water depth remains consistently high, making the pattern 
more predictable and leading to reasonably good R2 values, as shown in 
Table 4. Overall, since the peak rainfall duration is typically brief, water 
depth predictions can be made further in advance compared to pre-
dictions for pipe flow rate and junction inflows, as demonstrated in 
Fig. 3. These observations underscore the challenges in accurately pre-
dicting upstream conditions, a conclusion that we further validate in the 
subsequent section of our study.

5.3. Accuracy by individual pipe and junction

5.3.1. Accuracy by pipe diameter
We selected a model that utilizes data from the preceding 55 min to 

predict pipes’ flow rates, junctions’ inflows, and pipes’ relative water 
depths up to 30 min into the future. The accuracy of these predictions 

Table 3 
Flow rate conditions in the pipe to outfall 1226 with good performance of pre-
dicting the flow rates in stormwater drainage network.

Predictions Overall Whether the network flow rates are well predicted (R2 

greater than 0.6) under below flow rate in the pipe to 
outfall 1226 “✓” yes, and “-” no

0–36(L/ 
s) Low

36–139(L/s) 
Mid-to-low

139–499(L/s) 
Mid-to-high

>499(L/ 
s) High

5min √ √ √ √ √
10min √ – √ – √
15min √ – – – √
20min √ – – – √
25min – – – – √
30min – – – – –

Table 4 
Outflow rates at outfall 1226 with good performances of predicting stormwater 
drainage network junctions’ inflows.

Predictions Overall Whether the network junctions’ inflows are well predicted 
(R2 greater than 0.6) under below outflow conditions at 
outfall 1226 “✓” yes, and “-” no

0–107 
(L/s) 
Low

107–246(L/s) 
Mid-to-low

246–748(L/s) 
Mid-to-high

>748(L/ 
s) High

5min √ √ √ √ √
10min √ – – – √
15min √ – – – √
20min √ – – – √
25min – – – – –
30min – – – – –

Table 5 
The relative water depth in the pipe leading to outfall 1226 with good performances of predicting the stormwater drainage network’s relative water depths.

Predictions Overall Whether the network relative water depths are well predicted (R2 greater than 0.6) under below water depth in the pipe to outfall 1226 “✓” yes, and “-” no

0–0.0098 Low 0.0098–0.0182 Mid-to-low 0.0182–0.0347 Mid-to-high >0.0347 High

5min √ √ √ √ √
10min √ √ √ √ √
15min √ √ √ √ √
20min √ √ √ √ –
25min √ √ √ √ –
30min √ √ √ √ –
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was assessed for each individual pipe or junction using Equation (7). 
Information about pipe diameters is detailed in Fig. A3 of the supple-
mentary materials. We categorized the diameters of the pipes into 
several groups ranging from small to large: 0.1–0.5 m, 0.5–1 m, 1–2 m, 
and 2–3 m. Typically, larger pipes, which are a smaller fraction of the 
network’s hierarchy, are located downstream. In our study network, 
which consists of 667 pipes, 40 pipes fall into the largest category of 2–3 
m, while over 300 pipes are in the smallest category of 0.1–0.5 m, as 
illustrated in Fig. 4a.

Fig. 4b shows the percentage of junctions achieving an R2 greater 
than 0.6 in predicting inflows, categorized by the diameter of the pipe 
that receives flows from these junctions. Fig. 4c presents the percentage 
of pipes with an R2 value greater than 0.6 in predicting pipes’ flow rates, 
segmented by pipe diameter. Fig. 4d depicts the percentage of pipes with 
an R2 greater than 0.6 in predicting water depths, also segmented by 
pipe diameter. For predictions made 20 min ahead, the data reveal that 
larger pipes (diameters of 1–2 m and 2–3 m) consistently demonstrate a 
higher proportion of effective predictions compared to the smaller pipes 
(diameters of 0.1–0.5 m and 0.5–1 m).

5.3.2. Spatial accuracy
We evaluated the spatial accuracy of predicting the states of indi-

vidual junctions or pipes. In Fig. 5, the purple color highlights the pipes 
or junctions accurately predicted with an R2 greater than 0.6. The spatial 
maps shown in this figure provide additional information on the location 
of accurate predictions. For predictions of pipe flow rate, junction 
inflow, and pipe relative water depth, those located at the downstream 

of the stormwater drainage network can be predicted more time step 
ahead, whereas those located at the very upstream of the stormwater 
drainage network are hard to predict for >5 min ahead. This spatial 
analysis confirms that the upstream pipe and junction is hard to predict 
more time step ahead. These future states of upstream pipes and junc-
tions depends on the coming rainfall, which we should explore to 
include in the future study.

6. Discussion

6.1. Usefulness of current GWN model

Our study serves as a benchmark of the GWN and its capability for 
predicting the state of urban stormwater drainage network. Our current 
GWN model uses past information of rainfall and stormwater drainage 
network states (e.g., every 5 min over the preceding 55 min) to predict 
the states of the stormwater drainage network up to 30 min ahead. Our 
results suggest a reasonably good prediction (R2>0.6) of pipes’ flow 
rates, junctions’ inflows, and pipes’ relative water depths of the storm-
water drainage network up to 20 min, 20 min, and 30 min, respectively. 
GWN is more effective in flow rates in pipes and inflow at junctions 
during peak rainfall periods, a time when runoff and upstream flows are 
elevated. This can imply the usefulness of GWN in predicting the 
stormwater drainage states in events with higher return periods, where 
accurate predictions are crucial for effective water management and 
flood mitigation. The prediction of downstream pipe or junction can be 
more time step ahead than that of upstream pipes. The future state of 

Fig. 4. Percentage of pipes or junctions with an R2 value greater than 0.6 in the testing data, categorized by the diameter of the pipe.
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upstream pipe and junction depends on the rainfall change and without 
including rainfall projections, the prediction accuracy of upstream pipe 
and junction is low. In the following section, we will discuss the direc-
tion of improving the GWN in predicting the state of urban stormwater 
drainage network.

6.2. Future improvement of the GWN model

The first improvement of the GWN model is to explore solutions of 
rainfall projections. In the Results section, we posit that access to future 
rainfall data is crucial for improving GWN’s performance in predicting 
the state of the urban water drainage network. To corroborate this 
finding, we incorporated future rainfall data corresponding to six output 
time steps as supplementary input, in addition to past network states and 
rainfall data. This assumes that accurate rainfall nowcasting could be 
available to provide this new input. The results demonstrated that the 
accuracy of the GWN significantly improves when it is integrated with 

precise rainfall nowcasting (Fig. 6). The improvement was more pro-
nounced in predicting pipes’ flow rates and junctions’ inflow than in 
estimating relative water depths. These findings underscore the impor-
tance of including future rainfall information for enhancing the accuracy 
of GWN predictions in urban stormwater drainage systems.

Future research should investigate methods for obtaining future 
rainfall data to use as an input feature for the GWN. Existing deep 
learning models use radar observations for the short-term rainfall fore-
casting (Espeholt et al., 2022; Y. Zhang et al., 2023). It remains unknown 
regarding the feasibility of integrating these radar observation as well as 
the stormwater drainage network monitoring data to train this inte-
grated framework. The scale of radar observation is much larger than 
that of an urban subcatchment, which makes the integration not 
compatible. A simple rainfall forecasting should be investigated and 
integrated so that the GWN can predict more time-step ahead. Future 
study needs to determine the optimal solution of incorporating rainfall 
forecasting into GWN.

Fig. 5. Spatial distribution of prediction accuracy on testing dataset for pipes’ flow rates, junctions’ inflows, and pipes’ water depths predictions.
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The second improvement of the GWN model is to develop more 
rainfall events. It is necessary to include rainfall events with longer 
durations, multiple peaks, and higher intensities. This expansion will 
enable the testing of longer preceding times and predictions farther into 
the future. In this study, we tested the 30 min ahead prediction using up 
to 60 min preceding time. If we want to test >30 min ahead (e.g., 2 h), 
much longer duration rainfall events are needed. However, identifying 
such extensive rainfall events can be challenging. Meanwhile, while we 
should include more rainfall events, using GWN model to predict the 
state of urban stormwater drainage network should not be expected to 
be many time steps ahead because most rainfall events do not last very 
long. Instead, the GWN should be considered as a solution of real-time 
prediction of urban stormwater drainage network during the rainfall 
events for near-real-time drainage control to avoid flooding and protect 
cities.

The third improvement of the GWN model is to reduce the number of 
sensors for model training. In this study, we used the simulation data 
from a validated SWMM to approximate the data collected from sensors. 
The simulation data covers the entire pipes and junctions, but this is not 
feasible to install sensors to collect this information. It is critical to 
determine the coverage of sensors in the stormwater drainage network 
so that the GWN can be trained to predict the state of the entire 
stormwater drainage network. The sensor locations should also be 
optimized to improve the prediction. By solving this sensor deployment 
issue, the GWN can be a useful solution for cities to predict the state of 
urban stormwater drainage network in a high spatial and temporal 
resolution.

7. Conclusion

This study assessed the GWN model’s accuracy in predicting the state 

of an urban stormwater drainage network in a Kowloon, Hong Kong sub- 
catchment. Using SWMM and data from 43 rainfall events between 2020 
and 2023, we evaluated the GWN’s ability to predict pipes’ flow rates, 
relative water depths, and junctions’ inflow. With the preceding 30–60 
min of network states and rainfall data, the results show that GWN can 
predict these state parameters for up to 20, 20, and 30 min respectively, 
with a robust R2 value above 0.6. An optimal 55-minute lead time was 
established for the analysis, beyond which no accuracy gains were 
observed. The accuracy generally decreases as the prediction horizon 
extends. Notably, the GWN performs better during peak rainfall, pre-
dicting flow rates and inflow more effectively, but struggles with relative 
water depths in upstream pipes which are more sensitive to rainfall 
changes. The model excels in predicting the state of large pipes and their 
nearby junctions downstream but is less effective at upstream locations. 
Including future rainfall information can substantially enhance GWN’s 
accuracy. Future research directions include integrating rainfall fore-
casts, collecting more comprehensive rainfall data, and enhancing 
sensor deployment to improve GWN’s prediction accuracy and appli-
cability. This study sets a foundational benchmark for GWN’s use in 
managing urban stormwater systems during rainfall events.
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Fig. 6. The accuracy of the GWN can be significantly enhanced by including future rainfall information associated with the corresponding output time steps as an 
additional input.
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