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ABSTRACT 

 
 

Wire rope slings are commonly used lifting tools in all sorts of engineering applications. Usually, slings are 
either loaded axially or they are bent around a load bearing element such as a shackle or pipe. In the latter 

case, the combination of bending and axial loading introduces additional stresses within the wire rope that 

cause a reduction in capacity. In the offshore industry, this reduction is currently taken into account using a 
safety factor recommended by standardization societies such as DNVGL and IMCA. However, the expression 

to derive this factor solely depends on the rope’s curvature around the bend. Given that steel wire ropes can 
come in many different geometric configurations and their behavior is nonlinear, it is questionable to assume 

that this reduction is only based on a single parameter. Consequently, the main research question of this 

thesis is: 
 

How does the wire rope capacity reduction due to forced bending recommended by DNVGL and IMCA 
standards compare to analytical and experimental results obtained for wire ropes of different sizes and 
configurations? 
 

The approach to answering this question starts with a literature study, creating a predictive analytical model 

and then performing experiments for validation. Findings from the literature study uncover the main 
parameters affecting wire rope behavior such as lay angles, wire diameters and stress-strain relations. With 

these insights, an analytical model is created to predict the reduction in capacity of steel wire ropes subjected 
to forced bending. The model analyzes individual wire behavior and then applies a failure criterion to 

determine when the entire rope cross-section would fail. Finally, small and full-scale experiments are 

conducted that test different rope configurations (6x25F-IWRC & 6x36WS-IWRC) with different rope sizes 
(∅20 𝑚𝑚 & ∅77 𝑚𝑚). 

 

Knowledge gained from the literature study, the analytical model and the experiments was combined to 
come up with conclusions pertaining to the main research question. It was found that rope configurations, 

specifically wire to rope diameter ratios, played a vital role in the capacity reduction of steel wire rope slings. 
Additionally, results indicate that the capacity of slings increases with higher lay angles. The results also 

indicated that expressions recommended by the standards are not conservative enough for certain curvature 

ranges and ropes. Building on the research question, several observations pertaining to rope ovalization and 
consistency of failure location raised ideas for further investigation.  
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1.0 INTRODUCTION 

 
Lifting tools play a pivotal part in a vast amount of engineering applications. Perhaps one of the most popular 

lifting tools is the rope. This invention has found its roots in early civilizations and has been continually 

evolving even to this day. The reason a rope is considered so useful is mainly due to a combination of its 
load carrying capacity and bending flexibility. This allows it to be used in applications such as cranes, slings, 

bridges, overhead conductor lines and more.  
 

In the offshore industry, steel wire rope slings are often used to carry out lifting operations. A sling is a steel 

wire rope with a relatively short length and specific end terminations on each side. An example of a sling 
with Flemish eye end terminations is shown in Figure 1.1.  

 

 

Figure 1.1 - Typical sling made using a Flemish eye termination (FERPS). 

 
Slings are commonly used as supplementary tools in lifting operations. For instance, Figure 1.2a shows how 

several slings can be combined to keep a container level as it is being lifted. Alternatively, Figure 1.2b displays 

a sling body being bent around a shackle. Each scenario imposes loads on the steel wire rope differently and 
consequently causes it to react differently.  

 

 

Figure 1.2 - Lifting examples of slings in (a) tension and (b) combined tension and bending. 

 

Without going into too much detail, this chapter focuses on introducing the basics of steel wire ropes. First, 
a brief history streamlines their evolution and introduces their present-day form. Then, the details of how 

steel wire ropes are made, and their specific configuration or geometry is explained while highlighting some 
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key characteristics. Next, the main research question of this thesis is explained followed by a definition of 

the research goals and the approach that was taken. Finally, an outline of each chapter contained in this 
thesis is provided. 

 
 

1.1 STEEL WIRE ROPE 

Once dissected, it becomes evident that steel wire ropes are complex tools. To begin understanding how 

they work, a brief history is presented showcasing the progression of how steel wire ropes developed to their 
modern-day forms. Then, the components that make up the rope are explained along with the different ways 

that they can be combined. Finally, a quick overview of the manufacturing process of steel wire ropes is 
provided.  

 

 
1.1.1 History 

 
Ropes of all shapes and forms have been used for practical applications from the beginning of human 

civilization. Sometime during the era of the Ancient Egyptians, the evolution of ropes in its early stages starts 
with the use of hairs bonded together. By the time the Middle Ages came around, the development of ropes 

had slowed down and was practically unaltered up until the 1600s [1]. Around this time and up until the 

1900s is when most of the major technical breakthroughs occurred and gave birth to the wire rope designs 
and configurations that are still in use today [2].  

 
The first instance of the modern wire rope came in the form of Albert Ropes, which were used as hoisting 

cables in the silver mines of Harz Mountain in Germany. These ropes were handmade by first twisting three 

wires around each other to form a strand, and then twisting three or four of those strands around each other 
to form a rope. This construction was later improved by Englishmen Andrew Smith and Robert Newall, who 

developed the six-strand configuration twisted around a fiber core. The popularity of wire ropes had grown 
immensely thanks to the boom of the railroad industry. In the United States, signs of the commonly known 

Warrington configuration had begun to take root. John Roebling came up with the idea of using alternating 
wire diameters to better fill the void space in between the layers. With this insight, several other inventors 

branched off and made their own alterations of what they thought was the ideal configuration. Over time, 

rope types developed in such a way where each had its own advantages and disadvantages and was used 
based on a specific application. Today, this has become evident as there are many different configurations 

built for applications in numerous industries.  
 

 

1.1.2 Configuration 
 

The configuration of a wire rope is perhaps what best exemplifies its main advantage as a lifting tool. First, 
consider a typical chain-link rope. Here, almost no redundancy exists because the failure of one chain link 

causes the entire system to fail. On the other hand, observing the cross-section of a steel wire rope shows 

that its makeup consists of multiple load bearing components. Consequently, if one wire in a cross-section 
fails, the load is quickly redistributed to the remaining wires. Although this phenomenon seems intuitive, it 

is important to note that a wire rope exhibits a much more interesting redundancy measure. For instance, a 
wire rope can have each one if its wires broken yet still be considered in good working condition. This is 

possible because a wire restores its full bearing capacity just millimeters away from the element breaking 
point [3]. Therefore, in the case where the wire breaks in a cross-section are sufficiently spread out over the 

entire length, the rope can continue to carry its original capacity. This phenomenon can be best described 

by Figure 1.3. 
 

 

Figure 1.3 - Simplified view along length of steel wire rope showing staggered element breaks (a) and concentrated 
element breaks (b). 

(a) (b)
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In part (a), the rope is considered to be in good condition because each element break is staggered 
throughout the length of the rope, which only causes a local reduction in capacity of about 1% [3]. The 

remaining wires of the cross-section can easily redistribute the load. In part (b), however, the element breaks 
occur at a concentrated area along the rope length. In this case, the close proximity of the breaks causes 

the cross-sectional capacity to be significantly reduced and can lead to sudden failure.  

 
The type of geometric configuration of a rope also has a direct link to its behavior. Understanding the 

geometry of a steel wire rope begins with its core component, the wire. To achieve higher strength, wires 
are bundled together to form a strand. A simple strand consists of a layer of wires that are wrapped around 

a core in such a way that they form a single helix. To form a conventional wire rope, strands are then 

wrapped helically around a core as shown in Figure 1.4.  
 

 

Figure 1.4 - Breakdown of main components that make up a steel wire rope [4]. 

 

Taking this into account, it can be deduced that the amount of different ways these elements can be 
combined is high. Regardless, the configurations found in Figure 1.5 are the most common ones seen today. 

This figure shows the build-up of different types of strands which are ultimately used to classify the 

configuration of the entire rope. These strands, which carry the majority of axial loading, are helically 
wrapped around a steel or fiber core to form what is considered the steel wire rope. The difference in each 

strand configuration is the way in which the layers and size of wires are arranged so as to best fill up the 
void space inside the cross-section.  

 

 

Figure 1.5 - Common strand configurations used in steel wire ropes. 

 

Going into more detail, the terminology can be defined using a 6x36WS-IWRC rope as an example. The 
naming refers to a rope with 6 outer strands that have 36 individual wires each. WS means the wires in each 

strand are arranged in a Warrington-Seale configuration and the IWRC refers to the rope having an 
independent wire rope core. Figure 1.6 illustrates the cross-section of this rope configuration as well as a 

6x25F-IWRC and labels some of the main geometric terminology. As can be seen, both of these ropes have 
an identical IWRC, however, the outer strands are different. Since the 6x36WS has more wires, it can match 

the diameter of the 6x25F by using smaller diameter wires. Alternatively, the 6x25F has less wires and less 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjM4Ojr3uzcAhUAwAIHHQ0lBt8QjRx6BAgBEAU&url=https://www.mazzellacompanies.com/Resources/Blog/what-is-wire-rope-specifications-classifications-construction&psig=AOvVaw0L4tN4CRfk88aTD2GVdrOb&ust=1534342813399072
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layers so it needs larger individual wire diameter size. In the end, both configurations can have the same 

strength, but one might be better than the other depending on the specific application.  
 

 

Figure 1.6 - Terminology of geometric properties of steel wire rope configurations. 

 
Another significant geometric property of wire rope is the lay length. Considering a simple strand, this is 

defined as the length along the axis of the strand in which a wire completes one full rotation. Figure 1.7 
illustrates this parameter (ℎ𝑤) as well as how it can be derived. Alternatively, it is also common to use the 

lay angle (𝛼) instead since conversion between the two variables is straightforward. 

 

 

Figure 1.7 - Illustration of the lay length of a wire rope [5]. 

In addition to the lay length/angle, the lay direction is also of importance. In stranded ropes, there are 

several orientations in which the wires and strands can be arranged as shown in Figure 1.8. The symbols “z” 
and “s” refer to right and left lay direction of the wires in an outer strand, respectively. Similarly, the symbols 

“Z” and “S” refer to either right or left lay direction of the outer strands in a rope. In langs lay ropes, the lay 
direction of both the wires and strands is the same (zZ or sS). Alternatively, in ordinary lay ropes, the wires 

and strands are laid in opposite directions (sZ or zS). Another common naming convention is through 
abbreviation such as RHOL for right hand ordinary lay or LHOL for left hand ordinary lay.  
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Figure 1.8 - Illustration of the four configurations of lay direction for stranded wire ropes [5]. 

 

Each configuration causes the rope to exhibit different behavior and therefore has its own advantages and 
disadvantages. For instance, ordinary lay ropes are more commonly used because wire breaks usually first 

occur on the outer layer. This allows inspectors to more easily check the rope’s condition and apply the 
appropriate discard criteria. Alternatively, langs lay ropes are more advantageous in applications where a 

high constant tension is maintained or in multi-layer spooling.  

 
 

1.1.3 Manufacturing 
 

Figure 1.9 below provides an overview of the main stages of the manufacturing process starting with the 

raw steel material and ending with the complete wire rope.  
  

 

Figure 1.9 - Overview of manufacturing process of steel wire ropes [6]. 

The manufacturing process of steel wires begins with first cold-rolling or drawing steel rods. Most commonly, 

these rods are made of high-strength non-alloy carbon steel with a high carbon content (0.35-0.95%). A 
surface treatment may be applied to thoroughly clean and remove any unwanted dirt and debris before the 

next stage. Then, the rods are subjected to a patenting process in preparation for the drawing stage. In the 

zZ sS sZ zS 

Langs Lay Ordinary Lay 
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patenting process, the rods are first heated to a temperature of about 900°C, then placed in a lead bath to 

abruptly reduce to a temperature of 500°C [5]. Finally, they are taken out and cooled to room temperature 
as shown in Figure 1.10.  

 

 

Figure 1.10 - Temperature variation of typical patenting process for steel rods [5]. 

The result from patenting modifies the structure of the steel rod in such a way that it becomes more favorable 

for the drawing process. During drawing, the cross section of the rod is reduced by pulling it through what 

is known as a drawing die (Figure 1.11). Additionally, this reduction in diameter also adjusts the mechanical 
properties by increasing yield and tensile strength. The rod will go through several stages of patenting and 

drawing until the final cross section is obtained. 

 

Figure 1.11 - Simple illustration of the drawing process where a rod goes through a drawing die. 

Afterwards, the individual wires go through another machine so that they can be twisted around each other 

to form a strand. This stranding process varies greatly based on the type of wire rope as there can be many 

different combinations of wire diameters, lay lengths, and lay directions. Finally, the separate strands are 
wrapped around a core (steel or fiber) to form a conventional wire rope.  

 
 

1.2 PROBLEM DEFINITION 

Being that steel wire ropes play such a significant role, it is important to understand their behavior. When 
choosing a rope, perhaps the most critical factor is the capacity or how much force it can sustain before 

failure. In the industry, a commonly referred to parameter is the minimum breaking load (MBL).  

 
Engineers in the offshore industry use these ropes in many different ways. Take, for instance, two simple 

scenarios as shown in Figure 1.12. The first illustrates the most common situation where a rope is subjected 
to axial tension due to an applied loading. Here, the loading can directly be related to the capacity of the 

rope. In the second scenario, the rope is bent around a load bearing element such as a shackle. Considering 

the free-body diagram, each leg of the rope would carry half of the loading imposed by the shackle.  
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Figure 1.12 - Free body diagrams of two simple loading cases of ropes. 

 

However, when bending the wire rope around a shackle, additional stresses are introduced. Consequently, 
this reduces the available capacity that the rope can use to resist the applied loading. For many situations 

encountered in the offshore industry, this reduction becomes quite significant and therefore requires proper 
accounting.  

 

Currently, this reduction is applied through a safety factor, which is derived from a standard written by 
DNVGL. In the standard DNVGL-ST-N001 [7], the reduction factor due to bending is calculated according to 

Equation (1).  

 
𝛾𝑏,𝐷𝑁𝑉𝐺𝐿 =

1

1 −
0.5

√𝐷/𝑑

 
(1) 

 

A recent update of a similar standard (IMCA LR 008-2016 [8]) uses the expression given by Equation (2). 

The D/d ratio refers to the diameter of the bend over the diameter of the wire rope as illustrated in Figure 
1.13. 

  

 𝛾𝑏,𝐼𝑀𝐶𝐴 =
1

1.07
 𝛾𝑏,𝐷𝑁𝑉𝐺𝐿 (2) 

 

Figure 1.13 - Illustration of D/d ratio. 
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Figure 1.14 displays the relationship of the reduction factor based on the D/d ratio. According to both 

standards, the reduction factor used in lift calculations should be the governing reduction due to either end 
terminations or bending. Hence, there is a range of D/d ratios where the end termination of a certain sling 

could govern this reduction rather than the bending. Additionally, the D/d ratios most commonly used in 
offshore operations for slings vary between 1.33 to 1.55. Consequently, the D/d ratios of interest have a 

narrow range associated with very sharp curvatures.  

 

Figure 1.14 - Reduction factor due to bending suggested by current industry standards. 

 
Generally, this reduction factor decreases as the D/d ratio increases. Moreover, the only variable is the D/d 

ratio, which means that this expression can be applied to wire ropes of all sizes and configurations. Being 
that wire ropes are complex tools, it is questionable to assume that this simplified expression accurately 

describes reality. The behavior of steel wire ropes is notoriously nonlinear, therefore, the extrapolation of 

the expression by DNVGL and IMCA to be applicable to all types and sizes of wire ropes requires further 
investigation.  

 
 

1.3 RESEARCH GOALS & APPROACH 

The offshore industry is constantly evolving and pushing boundaries resulting in larger diameter wire ropes 
required to handle heavier lifts. However, as size increases so does cost. Consequently, knowing the actual 

capacity of lifting tools becomes of great importance so as to help avoid unnecessary expenses due to 

oversizing or, alternatively, evade unsafe situations due to under-sizing.   
 

As described earlier, there are questionable points that merit the investigation of the current reduction factor 
expression’s applicability to all steel wire ropes. The main focus of this thesis is to answer the following 

research question: 

 
How does the wire rope capacity reduction due to bending recommended by DNVGL and IMCA standards 
compare to analytical and experimental results obtained for wire ropes of different sizes and configurations? 
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To answer this question, the approach of this thesis will be split into three main parts consisting of a literature 

study, analytical modelling and experiments.  
 

Literature Study 
A review of past research and literature will be conducted. The goal of the literature study is to understand 

the behavior of steel wire ropes when subjected to different loadcases. This will yield possible 

parameters/characteristics of the steel wire rope that should be considered when calculating the reduction 
in capacity due to bending. 

 
Analytical Modelling 

Building an analytical model that can produce reasonably accurate results is a main goal of this thesis. Careful 

considerations when modelling the wire rope will be taken as the many nonlinearities present are difficult to 
predict. Hence, appropriate assumptions will need to be applied.  

 
Experiments 

The best way to determine the reduction in capacity is to test it in reality. To do so, experiments were 
performed at the Delft University of Technology on steel wire rope slings of different sizes and types in similar 

load scenarios as illustrated by Figure 1.12. The first test will subject the rope to pure tension and load it 

until break to measure its nominal capacity. The second test will apply combined tension and bending. Then, 
the results from each test can be compared and the reduction in capacity calculated.  

 
 

1.4 REPORT OUTLINE 

A brief summary of each chapter can be found below.  

 

 Chapter 1 – A brief introduction into steel wire ropes and the problem definition followed by the 

research goals and approach. 

 Chapter 2 – Literature study of steel wire ropes by summarizing previous research, defining 

important characteristics and investigating the specific behavior of wire ropes during bending. 

 Chapter 3 – The analytical model created is described and then applied using several case 

studies. 

 Chapter 4 – A full overview of the experiments conducted including setup, results and 

observations for both small and full-scale versions.  

 Chapter 5 – Discussion and comparison of results between previous literature, the proposed 

analytical model and the experiments conducted.  

 Chapter 6 – Overall summary of the main conclusions found in this thesis. 

 Chapter 7 – Recommendations concerning further improvements of current model, alternative 

studies and suggestions for additional experiments.  
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2.0 BEHAVIOR OF STEEL WIRE ROPE 

 
Steel wire ropes are heavily relied upon in many applications. Consequently, understanding their behavior is 

of upmost importance to the engineers who use them. This chapter will focus on shedding light onto the 

considerations that must be taken when using steel wire ropes. First, a brief overview of previous research 
in cable modelling is presented. Then, the key characteristics which govern the behavior and capacity of 

steel wire rope are discussed. Finally, specific theories derived from previous research are examined with the 
goal of describing the behavior of steel wire rope under the bending scenario being considered in this thesis. 

 

 

2.1 PREVIOUS RESEARCH 

With the growing popularity of steel wire ropes in the 20th century also came the interest in their behavior. 

The stresses and strains experienced by ropes became important for engineers as the reliance of these tools 
became critical in many applications. The 1950s gave birth to some of the first models, which considered 

ropes as strings loaded in tension. This was a great simplification as many of the rope’s inherent properties 
such as bending and torsional stiffness were ignored. With time, researchers improved on these assumptions 

and new modelling methods were proposed that offered a much more realistic representation. Spak et al [9] 

provides an extensive review of the past research conducted on steel wire rope modelling. Overall, the 
different models can be categorized into the following distinct categories, 

 
1. String/beam models, 

2. Thin-rod models, 

3. Semi-continuous models and 
4. Finite element models.  

 
Figure 2.1 provides a representative timeline of how each model has evolved with highlights of some key 

literature works. These works will be briefly elaborated, but it is important to note that there has been 
extensive research conducted beyond what is discussed here.  

 

 

Figure 2.1 - Timeline showing development of various steel wire rope models. 

 
2.1.1 String/beam models 

 
The string models were the first attempts at trying to analytically capture the behavior of wire ropes. As 

mentioned, most of these basically considered the rope as a bundle of individual wires modelled as strings 

loaded in tension. This approach ignored the bending and torsion rigidity of the wires and is commonly 
referred to as a fiber response. Some of the main contributors to these types of models included Hruska [10] 

and Lanteigne [11]. This model incorporated numerous simplifications, but perhaps the most significant was 
the omission of bending and torsional stiffness. The general equation of motion used for this method is  
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 𝑚�̈� − 𝑇𝑤′′ = 0. (3) 

 
where 𝑚 is rope mass, 𝑤 is displacement and 𝑇 is axial tensile force. To improve on some of these 

simplifications, beam models were introduced. This approach considered the wires to act as a bundle of 

individual beams rather than strings. Consequently, bending and torsional stiffness properties could now be 
incorporated into the beam elements. Lutchansky [12] was one noteworthy author who helped develop this 

approach. General equations of motion for the beam models are 

 

 𝜌𝐴�̈� + 𝐸𝐼𝑤′′′′ − 𝑇𝑤′′ = 0 (4) 

and 

 𝜌𝐴�̈� − 𝐾𝐺𝐴(𝑤′′ − 𝑣′) = 𝑓(𝑥, 𝑡),   𝐸𝐼𝑣′′ + 𝐾𝐺𝐴(𝑤′ − 𝑣) = 0 (5) 

 
where 𝜌 is cable material density, 𝐴 is cross-sectional area, 𝑤 is displacement, 𝐸𝐼 is bending stiffness, 𝑇 is 

axial tensile force, 𝑣 is rotation of beam centerline due to shear and bending, 𝐾 is shear coefficient and 𝐺 is 

bending moment in bi-normal direction. These equations incorporate the Euler-Bernoulli or Timoshenko beam 
assumption, respectively.  

 
Overall, these methods were a simplistic first approach to modelling steel wire rope behavior. All of these 

studies were focused on simple strands loaded axially by tension. Jolicoeur and Cardou [13] performed 

experiments on simple, straight strands to validate the accuracy of these models and discovered that the 
fiber response assumption of the wires yielded a good correlation with the results. However, the complex 

geometry of ropes requires considerations of inherent properties neglected here. 
  

 

2.1.2 Thin-rod models 
 

The development of thin-rod models was a direct result of the need for incorporating more of a wire rope’s 
inherent properties. This began with the work of Costello and Philips [14] who developed a model based on 

the nonlinear equations of equilibrium of thin helical rods first derived by Love [15]. Figure 2.2 shows the 
internal loads produced by the twist and curvature of a rod. Summing these internal forces translates to 

force and moment equations which can then be used in conjunction with stiffness matrices to calculate the 

axial and torsional response. Some key assumptions were that the bending stiffness was composed of each 
individual wire bending around its own neutral axis, thus assuming a frictionless rope.  

 

 

Figure 2.2 - Internal forces produced by a helical rod loaded in tension [16]. 

 

Velinsky [17] and Velinsky et al [18] extended this model by incorporating multi-strand rope construction. 
The methodology was to first calculate the response of a simple straight strand loaded axially. Then, the 

response of a wound strand was approximated by considering it as a single outside wire wrapped around a 
core (like in a simple strand). This basically assumed the mechanical relations computed for a straight strand 

can be applied to the wound strand. 
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These pioneering thin-rod models presented a breakthrough in wire rope research. Bending and torsion 

stiffness was better incorporated and the varying behavior due to different cable geometries was captured. 
When considering ropes loaded axially, the correlation with experimental results was quite good. However, 

in certain applications like transmission conductor lines, the simplification of a frictionless rope was not 
accurate enough. To overcome this, Papailiou [19] added friction into the thin-rod model by introducing a 

nonlinear stick-slip regime based on the bending curvature of a rope. This was later improved by Hong et al. 

[20] who concluded that the theoretical minimum bending stiffness is never reached and is actually governed 
by the coefficient of friction between wires.  

 
The complexity of modern thin-rod model equations allows them to incorporate a significant amount of detail. 

This can include friction, interwire/intrawire contact, change in lay angle, etc. However, it has been shown 

that some of these considerations have a relatively small effect on the global behavior of the rope. 
Regardless, it is important to know when and which assumptions can be applied depending on the specific 

application and use of a steel wire rope.  
 

 
2.1.3 Semi-continuous models 

 

The semi-continuous model was another approach to cable modelling that attempted to simplify the idea of 
the thin-rod model. Created by Raoof and Hobbs [21], this model transformed each layer of wires in a strand 

into an orthotropic, hollow cylinder. This cylinder has properties that try to match the corresponding wire 
layer, ultimately mimicking that layer’s behavior within the rope. The idea behind this model is illustrated in 

Figure 2.3. 

 

Figure 2.3 - Illustrative summary of semi-continuous modelling approach of strands. 

 

This simplification presents an interesting way to model wire ropes. Using contact mechanics combined with 
material elastic properties, equations were derived that aimed to predict the behavior of these orthotropic 

cylinders under different loadings. Unlike thin-rod models, which use a specific method to calculate cable 
response, the semi-continuous model allows the analysis of constitutive equations using several methods 

[9]. Ultimately, it helped to greatly simplify the calculations necessary to predict the cable’s behavior 

analytically.  
 

Jolicoeur and Cardou [22] also contributed to the semi-continuous model through some modifications. 
Instead of considering the layers as thin orthotropic sheets, they assumed a higher thickness so the sheets 

can be modelled as cylinders. However, this assumption was proven to be significant only for seven wire 

strands while being negligible for strands containing large numbers of wires such as in ACSR conductors 
[22]. The authors differentiate their work based on new theoretical expressions they have introduced that 

allow for a better analysis of the bending behavior of strands by considering the range of possible bending 
stiffness values. 

 
The semi-continuous models developed showed an alternative way of predicting rope behavior. Results of 

this model compared to other analytical models and experiments of strands showed good correlation when 

considering tension and torsional loading [22]. Furthermore, a study was done which concluded that thin 
rod models were more reliable for helical cable analysis that involved small diameter cables with fewer 

strands while semi-continuous models showed much better correlation with large diameter strands having 
nineteen or more wires [23]. Nevertheless, semi-continuous theories focused on spiral cables which consisted 

of single helixes whereas the ropes of interest in this thesis are stranded and contain more complex 

geometry. 
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2.1.4 Finite element models 

 
Naturally, finite element analysis (FEA) was eventually applied to predicting the behavior of steel wire ropes. 

FEA offers a very different approach to the models previously discussed because its computations are 
numerical rather than analytical. Consequently, this yields huge advantages for FE wire rope models since 

they require much less simplifications and can therefore incorporate many effects neglected by analytical 

models. This can include core-wire contact, wire-wire contact within each layer, friction, exact geometry, 
local contact deformation and more. However, this comes at a great cost as the more complex the FE model 

is, the more computational time and power necessary to find a solution.  
 

Starting with the 1990s, there have been several studies that have utilized FEA with varying model 

complexities in the past two decades. Most studies were aimed at reconstructing the behavior of simple 
strands subjected to axial loading. A model created by Jiang et al. [24] focused on analyzing the complex 

wire-wire and wire-core contact and concluded both were influential for the specific configuration tested. 
Imrak and Erdonmez [25] were the first to create a FE model that takes into account the double helical 

configuration of stranded ropes. Their model correlated well to the elastic region of analytical models and 
the overall behavior found from experimental results. Naturally, to model such a complex geometry a sacrifice 

was made in terms of rope length. This poses some questions such as whether the helical contraction is 

properly accounted and to what extent boundary conditions influence the results.  
 

FE models that try to predict bending behavior are even more computationally expensive. The balance 
between complexity, model length and incorporating contact interaction effects are vital to producing realistic 

results. A fairly recent study by Zhang & Ostoja-Starzewski [26] investigated the bending stiffness of a simple 

strand using a FE model. They applied different levels of contact interaction and compared the results with 
past analytical research. An interesting conclusion was that incorporating certain contact interactions yielded 

more accurate results only for certain lay angles. For instance, as the lay angle increases, wire-wire contact 
starts to have more of a significant influence and should not be neglected.  

 
Overall, FE models have the greatest potential in accurately predicting wire rope behavior. As has been seen 

in the past, computational power has greatly increased over time allowing for more and more complex FE 

models to be created. If this trend continues, FE models have the potential to become robust enough to 
incorporate all nonlinearities and very accurately predict wire rope behavior.  

 
 

2.2 GLOBAL CHARACTERISTICS  

Past research has provided many great insights into the behavior of steel wire ropes. It is important to also 

reflect on some of the key characteristics that govern this behavior. Perhaps the most significant parameter 
to digest is the effect of the helical structure, which gifts a rope its unique properties. Furthermore, the 

material behavior of wires and ropes is observed through their distinctive stress-strain relationships. Since 
capacity is a major point of interest in this thesis, the most common failure mechanisms are also highlighted.  

 

 
2.2.1 Helical structure 

 
The helical structure of a wire rope is where the ingenuity of this extremely useful tool originates. This 

characteristic has two major effects that will be discussed, which are the 
 

 Decrease in bending stiffness and 

 Decrease in axial strength/stiffness.  

 

Perhaps the most important characteristic of a wire rope is flexibility. Although rods can also carry axial loads, 
ropes are much more widely used because they can be easily bent into a desired shape and are more 

lightweight making them a more practical choice in most applications. A rope’s flexibility can be explained by 
considering a simple scenario. First, imagine a thick beam subjected to bending, which results in the 

exaggerated, deflected shape shown in Figure 2.4a. In Figure 2.4b, the beam is cut into smaller segments 

and the same loading is applied. Assuming no friction, the smaller segments exhibit much smaller strains 
because they bend around their own neutral axis rather than the central axis.  
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Figure 2.4 - Regular beam in bending (a) and bundle of wires in bending (b). 

 

However, because the boundary conditions at both rope ends are usually fixed in most practical applications, 
the smaller segments will not be allowed to rotate freely and will therefore act as a beam. To overcome this 

problem, the helix is introduced. By forming a helix, each individual wire will be equally in both the tension 
and compression zone during bending causing the induced strains to cancel each other as illustrated in Figure 

2.5. Essentially, the wire shifts its relative position without experiencing any elongation. This eliminates the 

effect of the fixed boundary conditions discussed before. Although neglected here, friction also plays an 
important role and will be discussed in a later section.  

 

  

Figure 2.5 - Original (dashed) and deformed shape of helical wires subjected to bending. Colors highlight tension and 
compression zone. 

 

Another effect that is important to note is the decrease in axial strength and stiffness. This is obviously a 

negative characteristic of the helical structure as it reduces the capacity of the wire rope. The reason behind 
this reduction is the lay angle influence on the distribution of stresses throughout the layers in a rope. This 

phenomenon will also be further elaborated later.  
 

 

2.2.2 Material behavior 
 

The material behavior of steel wire rope is an important parameter to analyze. Its core component, the wire, 
exhibits a stress-strain relationship that typically follows the curve shown in Figure 2.6. This behavior is 

somewhat different when compared to structural steel because of the manufacturing process of the wire in 
combination with its chemical composition. Nevertheless, the typical characteristics of an elastic-plastic 

material can be clearly defined. First, the wire experiences elastic elongation following Hooke’s Law up to its 

yield point. Past this point, nonlinear plastic deformation takes place until the ultimate stress of the wire is 
reached indicating failure.  
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Figure 2.6 - Typical stress-strain relationship of individual steel wire. 

 

However, when examining the stress-strain relationship of an entire steel wire rope as shown in Figure 2.7, 

notable differences can clearly be defined. Here, the curve can be separated by three distinct regions of 
 

1. Initial extension, 
2. Elastic extension, 

3. Plastic extension. 
 

 

Figure 2.7 - Typical stress-strain relationship of steel wire rope. 

 

Initial extension is a nonlinear phenomenon that is most commonly observed when loading a new rope. 
During construction of a rope, gaps are created between the individual wires and strands due to imperfect 

alignment. Consequently, when the rope is loaded for the first time, the helical structure of the wires 
contracts. During this process, the rope’s diameter decreases as the gaps are eliminated while also causing 

an extension in the longitudinal direction as the helical lay is lengthened. This elongation continues until 

adjacent wires create a sufficiently large bearing area with respect to each other to resist the radial force 
imposed by the helical structure. To help reduce this initial extension, wire ropes are pre-stretched by the 

manufacturer by loading them up to a certain percentage of their MBL. This allows wires to settle into their 
final position so that the initial extension is minimized during actual loading.  
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Once the wires have made sufficient contact with each other, the elastic extension commences. At this stage, 

the entire rope elongates in approximate compliance with Hooke’s Law up until the yield limit is reached. It 
is important to notice that the slope of this curve is less steep than that of an individual wire indicating that 

the rope exhibits a more ductile behavior. This can be explained by the behavior of a helical structure, which 
causes the individual wires to elongate differently relative to each other. Moreover, this is also the reason 

why the elastic range is not characterized by a typical linear relationship of the stress and strain. A tangent 

Young’s modulus can be calculated between two load points chosen within reasonable distance. It is also 
important to note that since the slope of this line is affected by the interaction of the helically wrapped wires, 

each rope configuration and diameter will exhibit a unique behavior.  
 

Finally, past the yield point, the wire rope experiences permanent, plastic deformation. In this phase, the 

relationship between stress and strain becomes evidently nonlinear and accelerates the overall extension of 
the rope as loading is applied. As the ultimate strength is approached, individual wires break once they reach 

their elongation at rupture forcing the load to redistribute. This process of wire breaking continues until the 
cross-sectional area cannot handle any further redistribution of the load at which point the rope fails 

suddenly.  
 

 

2.2.3 Types of failure 
 

As described by Timoshenko, the failure of a material is governed by its resistance to sliding and resistance 
to separation [27]. These two mechanisms can be illustrated by Figure 2.8. Separation failure occurs when 

a crack propagates along the material perpendicular to the direction of applied loading. In the case of sliding 

failure, the cross-sectional area of a material reduces in proportion to the applied loading until fracture. For 
ductile materials, the resistance to separation must be greater than the resistance to sliding. This ensures 

that the material will elongate up until the reduced cross-sectional area causes the resistance to separation 
to become lower than the resistance to sliding. At this point, fracture will occur causing the material to 

separate. It is important to also note that the resistance to sliding is a property that can be affected by rate 
of loading and temperature [27]. Hence, if a material is loaded suddenly and at a low temperature, the 

resistance to sliding may increase so that it surpasses the resistance to separation. This causes the material 

to lose its ductility and fail suddenly without much plastic deformation. However, in the context of this thesis, 
these effects are considered negligible.  

 

Figure 2.8 – Separation failure (a) and sliding failure (b). 

 

In the case of wires, failure is achieved by following the appropriate stress-strain diagram corresponding to 

the specific material grade. Once the wire is loaded past its yield point, plastic extension occurs up until the 
ultimate yield point where fractures transpire, and the material separates. Depending on the material grade, 

the total elongation of the wire can vary between 1.5-4% and the ultimate strength can be 105-133% higher 
than the specified grade strength [5]. It is interesting to note that although wires are made of steel, they 

exhibit a much more brittle behavior. As mentioned previously, this is related to the manufacturing process 
the wires go through which causes them to change their mechanical properties. The result is that the wires 

have a much higher yield stress, but at the cost of a high reduction in ductility.  

 
Based on previous experience, the main failure modes of individual wires are split into two categories. The 

first is called cup-and-cone failure, which is illustrated by Figure 2.9. This type of failure is associated with 
overload or necking of wires caused by an axial tensile loading. Necking, which refers to the reduction in 

diameter of the cross-section as it elongates, is then followed by small microvoids that appear in the center 

of this area. These eventually combine to form a bigger void at which point sudden fracture occurs in the 
form of a shear plane angled at 45 degrees. This failure causes the ends of both pieces to resemble a cup 

and cone.  
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Figure 2.9 - Different stages of axially tensioned material that results in cup-and-cone failure. 

 

The second main failure mode of wires is shear (Figure 2.10). In this case, the fracture plane is not normal 
to the cross-section but rather at an angle near 45 degrees. This failure more would occur when an opposing 

force like friction acts on a portion of the outer surface of the wire. 

 

Figure 2.10 - Typical shear failure of material under combined loading. 

 
Depending on the specific use and application of wire ropes, additional failure mechanisms can occur. For 

instance, ropes subjected to the harsh offshore environment can be greatly affected by corrosion. This causes 
the outside surface of the wires to deteriorate, thus reducing its load-bearing capacity. Through galvanization 

and other similar techniques, the damage due to corrosion can be minimalized. However, there are situations 

where the severity of the environment can be extreme enough to significantly reduce the lifetime of a rope 
if not properly maintained.  

 
Fatigue is normally a governing failure mode for many engineering applications using steel wire ropes. 

However, when considering steel wire rope slings, this is not the case. The reason behind this is that current 

industry practice considers slings as consumables that are usually used for single operations. Hence, the 
number of cycles and fluctuating stresses associated with fatigue are not applicable and the governing failure 

mode then becomes the ultimate strength capacity.  
 

 

2.3 BEHAVIOR UNDER BENDING 

Although wire ropes can be used in various applications, the selection of a specific rope is governed by the 

loading/stresses it will experience. It is therefore important to understand the stresses a rope will incur based 

on the loading applied. In the context of this thesis, the scenario of interest is a sling body bent around a 
circular pin.  

 
The helical configuration of the individual wires adds a degree of complexity when identifying the different 

stresses in this scenario. To start, consider a simple strand loaded in tension. If examining the response of 

the outer wire to the applied loading, the resulting force components are as shown in Figure 2.11. Here, in 
addition to the normal force, a radial component is also observed.  
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Figure 2.11 - Simplified free-body diagram of outer wire due to loading of strand by force (Si) [5]. 

 

This radial component arises from the contraction induced by the helical structure of the outer wires. In turn, 
this causes a coupling where the axial loading applied to the strand also induces shear, torque and moment. 

Expanding on this simple example and taking into consideration the bending scenario of interest, the main 
stresses experienced by a steel wire rope can be categorized into: 

 

 Axial loading stress; 

 Bending stress; 

 Stress due to friction; 

 Ovalization stress; 

 Stress due to torsion, moment and shear. 

 
 

2.3.1 Axial loading stress 
 

If considering a single, straight wire loaded in tension, the resulting stress can simply be found by applying:  

 

 𝜎 =  
𝐹

𝐴
. (6) 

 
Additionally, this equation will hold if several straight wires are bundled together. However, once that bundle 

of wires becomes wrapped around a core and forms a helix, a difference in stress can be observed. This can 
be explained by cutting a cross-section of the two different scenarios as depicted by Figure 2.12. In Figure 

2.12a, the stresses throughout the wires are the same because each individual wire cross-section is identical. 

However, in a strand, the representative cross-sections of the outer wires exhibit a different shape than the 
core as shown in Figure 2.12b.  

 

 

Figure 2.12 – Strand with parallel bundle of wires (a). Simple strand with helical structure (b). 

 

To translate this effect of the helical structure into resulting normal stresses in each individual wire, Equation 
(7) below is used when considering stranded wire ropes. The force in each wire 𝑘 in strand 𝑙 is 
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 𝐹𝑘𝑙 =

cos2 𝛽𝑙

1 + 𝑣𝑙 sin2 𝛽𝑙
 

cos2 𝛼𝑘𝑙

1 + 𝑣𝑘𝑙 sin2 𝛼𝑘𝑙
𝐸𝑘𝑙𝐴𝑘𝑙

∑ (𝑧𝑗

cos3 𝛽𝑗

1 + 𝑣𝑗 sin2 𝛽𝑗
∑ 𝑧𝑖𝑗

cos3 𝛼𝑖𝑗

1 + 𝑣𝑖𝑗 sin2 𝛼𝑖𝑗
𝐸𝑘𝑙𝐴𝑘𝑙

𝑛𝑤𝑗

𝑖=0
)

𝑛𝑠
𝑗=0

𝑆 (7) 

 
where 𝛽𝑙 is lay angle of strand in relation to rope, 𝛼𝑘𝑙 is lay angle of wire in relation to strand, 𝐸 is modulus 

of elasticity of wire, 𝐴 is cross-sectional area of wire, 𝑧 is number of strands/wires, 𝑣 is Poisson’s ratio and 𝑆 

is force applied to entire rope.  

 
As can be seen from Equation 7, the lay angle plays an important role in determining the force in each 

individual wire. Figure 2.13 shows how the lay angle influences the stresses of a simple strand loaded in 
tension. The distribution of stresses between the core wire and the outer wires exhibits a nonlinear 

relationship. As the lay angle increases, the effective area of the simple strand decreases due to the change 
in area of the outer wires. Consequently, the outer wires can resist less of the applied loading and will 

elongate causing an increase in stress in the core wire.  

   

Figure 2.13 - Effect of Poisson’s ratio on stresses in a simple strand due to lay angle of outer wires. 

 
It is important to note that often the effect of Poisson’s ratio of both wires and strands is neglected. This 

assumption has been investigated by several authors and proven to have minimal error in relation to the 

actual stresses. This simplification is also convenient because the Poisson’s ratio for strands differs from the 
nominal value for steel, which can be used for the individual wires. Depending on the rope type and 

configuration, strands can have a much higher ratio. However, especially for ropes with steel cores, the 
influence this has on the resulting stresses is low enough to be considered negligible [5]. Figure 2.13 also 

illustrates the deviations in stresses when the Poisson’s ratio is ignored or not. Indeed, the differences in 

stresses are small, but do become more pronounced as the lay angle increases. Additionally, it is interesting 
to note that neglecting the Poisson’s ratio increases the stresses in the outer wires while decreasing the 

stress in the core.  
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2.3.2 Bending stress 

 
Calculating the bending stresses of wires in a rope is not a trivial task. Numerous approaches have been 

taken, but the most famous equation is the one proposed by Reuleaux [28], which provides a rough 
approximation due to its simplicity. The expression calculates the bending stress of an individual wire as 

 

 𝜎𝑏 =
𝛿

𝐷
𝐸 (8) 

 
where 𝛿 is wire diameter, 𝐷 is diameter of rope axis bent around sheave and 𝐸 is modulus of elasticity. The 

major criticism of this equation is that it assumes the wire does not have a helical shape. After investigation, 
several authors have concluded that the bending stress is both smaller and larger than the Reuleaux stress 

depending on the cross-sectional location of the wire. Figure 2.14 shows that although each author’s results 
show deviations, the differences are small enough in most cases to conclude that the Reuleaux stress 

provides a good overall representation of the bending stress. 
 

 

Figure 2.14 - Comparison of bending stress calculations by different authors [29]. 

 
Although the results presented are promising and show good correlation, they may not be applicable to all 

scenarios. When considering a sling body being bent, rope curvatures reach values that are very high in 
comparison to other applications. For instance, if a wire of 1 mm inside a 20 mm rope is bent around a pin 

with a D/d ratio of 1, the resulting Reuleaux stress is unrealistically high. A resulting 2.5% strain confirms it 

is already within the plastic region. Regardless, this would mean the wire would be on the brink of failure 
and cannot carry any more load. Realistically, this is not the case, therefore, the Reuleaux stress assumption 

has limitations and may not be precise enough for all applications.  
 

More in-depth attempts at analytically calculating the bending stress have proven to yield more realistic 
results. The key to this calculation is related to the curvature of a wire before and after bending. Initially, a 

wire inside a straight rope has a prescribed curvature that is dependent on its helical lay angle. During 

bending of the rope, this wire curvature changes as wires and strands start displacing relative to each other 
(Figure 2.15). To determine the bending stress, the change in curvature of a wire from initial to final position 

must be found. Part of the reason this is a complicated calculation is because the initial and final rope 
curvature vectors are not parallel. Additionally, most wires have a double helical arrangement when 

considering a stranded rope, which is commonly used.  

 
 

 

Figure 2.15 - Displacement of helical wires during bending [19]. 
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As mentioned, the initial curvature of the wires in a stranded rope must first be determined so that a baseline 

for comparison can be established for calculating the bending stresses. For a single helix strand wrapped 
around a straight core, the classical expression used by most researchers is 

 

 
1

𝜌0

=
sin2 𝛽

𝑟𝑠

 (9) 

 
where 𝜌0 is initial radius of curvature, 𝛽 is lay angle of strand and 𝑟𝑠 is winding radius of strand in rope. 

Equation (9) provides a simple formula for calculating the initial curvature that is solely based on the lay 

angle in combination with winding radius. To better understand this relationship, Figure 2.16 describes how 
the initial curvature of the outer wires of a spiral rope are affected by these two parameters. As expected, 

the initial curvature increases as the lay angle increases. Additionally, the winding radius is also plotted for 
three different distances as a function of the diameter of the core wire. In this spiral rope example, the 

diameters of wires in all layers is assumed to be the same (1 mm). Here, a more interesting observation can 
be made which shows that the lay angle has less of an influence on the initial curvature as the distance to 

the center of the strand is increased.  

 

  

Figure 2.16 - Initial curvature of outer wires in a spiral rope based on lay angle and winding radius. 

 

Once a wire rope is bent around a sheave or pin, the wires assume a new curvature, which generates bending 
stresses in the wires. To come up with this new curvature, another classical derivation is made which 

considers the space curve of a single helix bent around a circular curve. This derivation was worked out by 
Wiek [30] and later redefined by Hobbs and Nabijou [31] and results in the final curvature as 

 

 
1

𝜌
=

√𝐺 − 𝐻

𝑄
, (10) 

 
where 

 

 𝐺 = 1 + 𝑐 cot2 𝛽 {4𝑐 + 2 cos 𝜑 − 2𝑐 cos2 𝜑 + 𝑐  cot2 𝛽 (1 + 𝑐 cos 𝜑)2} (11) 

 

 𝐻 =
𝑐2 cot4 𝛽 sin2 𝜑 (1 + 𝑐 cos 𝜑)2

1 + cot2 𝛽 (1 + 𝑐 cos 𝜑)2
 (12) 

 

 𝑄 =  𝑟{1 + cot2 𝛽 (1 + 𝑐 cos 𝜑)2} (13) 
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with 

 𝜑 =  
𝜋𝑅

2𝑙
𝜃 + 𝜑0,       𝑐 =  

𝑟

𝑅
 (14) 

 
where 𝛽 is lay angle, 𝑅 is rope radius of curvature, 𝜃 is wrap angle of the rope around the sheave, 𝑙 is lay 

length, 𝜑0 is polar angle coordinate of wire inside the rope cross section and 𝑟 is winding radius of wire. To 

illustrate the effects the lay angle, bending radius and winding radius have on the final curvature, the same 

spiral rope used to calculate the initial curvature is considered in Figure 2.17. The first observation from the 

plots is that as the winding radius increases, the influence of the lay angle on the final curvature decreases. 
This relationship was also seen when calculating the initial curvature and makes sense that it stays true here. 

Secondly, the influence of the D/d ratio appears to decrease as the lay angle increases regardless of winding 
radius. Additionally, as the lay angle increases, the difference between D/d ratios remains approximately 

constant for each winding radius.  
 

 

Figure 2.17 - Final curvature of wires in each layer of a spiral rope bent with varying D/d ratios. 

 
Now that both the final and initial curvature has been defined, the bending stresses of the wires can be 
determined. The bending stress of a wire in layer 𝑙 can be calculated as 

 

 𝜎𝑏,𝑙 = (
1

𝜌𝑓

−
1

𝜌0

)
1

2
𝑑𝑙𝐸𝑙 (15) 
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where 
1

𝜌𝑓
−

1

𝜌0
 is the difference in curvature, 𝑑𝑙 is the wire diameter and 𝐸𝑙 is the modulus of elasticity.  

 
Continuing with the spiral rope example already established, Equation (15) is implemented and the results 

are plotted in Figure 2.18 as bending strains instead of stresses. Looking at the plots, it is evident that as 

the lay angle increases, the strain due to bending decreases significantly. This phenomenon further helps to 
explain why the helical structure of wires plays such a vital role when talking about a rope’s flexibility. This 

decrease becomes less pronounced as the winding radius increases, but it is still significant nonetheless. 
Another intuitive observation is that the higher the D/d ratio, the smaller the strain due to bending. 

Depending on the rope configuration, wire rope manufacturers often recommend a minimum D/d ratio to 
ensure proper lifetime of the rope. In this spiral rope example, it can actually be seen that the given D/d 

ratios are too low and that most wires will become overstrained and fail. The reason for this is because the 

diameter of each individual wire is too large in relation to the rope diameter. If the wire diameter was 
decreased and the rope diameter was kept the same by adding another wire layer, the resulting bending 

strains would be much lower. This is because the distance to the extreme fiber of the wire would be 
decreased due to the smaller diameter. Although the logic behind this is quite intuitive, it helps exemplify 

why wire rope configuration plays such an important role. It is also important to note that the bending stress 

calculations discussed here are based on the assumption of a frictionless rope. The influence of friction will 
be discussed in the following section.  

 

  

Figure 2.18 - Bending strain of wires in each layer of a spiral rope bent with varying D/d ratios. 
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2.3.3 Secondary stress (stress due to friction) 

 
Yet another highly debated topic is the influence of friction in a steel wire rope. This stress is commonly 

referred to as secondary tensile stress in literature. Different authors have come up with different conclusions 
about the influence of friction in their models. Generally, Costello’s theory that friction plays a minimal role 

has been proven to be quite accurate when considering steel wire ropes loaded in pure tension. However, 

this assumption has raised questions when considering ropes in bending. To date, one of the most widely 
recognized models that incorporates friction during bending is the one found in Papailiou [19].  

 
Papailiou made several significant assumptions in his model. First, he considered that wires are only in 

contact with adjacent layers and that wires within the same layer do not interact. This assumption is 

questionable and its validity is highly dependent on the specific rope geometry. Another simplification made 
is that there is continuous contact between wires in adjacent layers. Papailiou studied this effect and 

concluded that it holds true especially for parallel lay ropes.  
 

The theory behind the friction model starts with deriving the radial force contribution due to the helical 
structure during axial loading. This derivation has been based on the work done by Leider [32] and is 

simplified to a simple strand consisting of one center wire with six outside wires in a helix. Using the tensile 

forces in the individual wires resulting from a rope axial loading, a radially oriented distributed load can be 
derived as  

 

 𝑝𝐿 =
𝑍𝐿

𝜌𝐿

 (16) 

 
where 𝑍𝐿 are wire tensile forces in a layer and 𝜌𝐿 is radius of curvature of a wire helix. All associated 

parameters are illustrated by Figure 2.19.  

 

Figure 2.19 - Resulting radial pressure of wires due to helix [19]. 

 
The distributed load acting on a wrap angle 𝑑𝛼 can then be simplified into a normal force as 

 

 𝑑𝑁𝐿 = 𝑝𝐿𝜌𝐿𝑑𝛼. (17) 

 
Taking into considerations the geometric relations shown by Figure 2.19, 

 

 
𝑟𝐿𝑑𝜑

𝜌𝐿𝑑𝛼
= sin 𝛽𝐿  and  𝜌𝐿 =

𝑟𝐿

sin2 𝛽𝐿

 (18) 

 
where 𝑟𝐿 is the winding radius, 𝜑 is the incremental helix angle and 𝛽𝐿 is the lay angle [33]. Combining these 

relations, the normal force is redefined as 
 

 𝑑𝑁𝐿 = 𝑍𝐿 sin 𝛽𝐿 𝑑𝜑. (19) 
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Using the normal force, a resulting friction force can be derived through a coefficient of friction 𝜇𝐿 that best 

describes the surface interaction between the steel wires. Considering statics, the free body diagram of a 

wire element can be described by Figure 2.20.  
 

 

Figure 2.20 - Free body diagram of outer wire element in a simple strand [19]. 

 
Finding the balance of forces from the free body diagram results in 

 

 𝑍𝐿 + 𝑑𝑍𝐿 − 𝑍𝐿 = 𝑑𝑍𝐿 = 𝜇𝐿𝑍𝐿 sin 𝛽𝐿 𝑑𝜑 (20) 

 
Applying the proper boundary conditions (𝜑 = 0, 𝑍𝐿 = 𝑍𝑑,𝐿) after integrating (20) over 𝜑 results in the 

maximum total tension that can be resisted by friction at every point 𝜑 

 

 𝑍𝐿(𝜑) = 𝑍𝑑,𝐿𝑒𝜇𝐿 sin 𝛽𝐿𝜑  (21) 

 
where 𝑍𝑑,𝐿 is the individual wire tensile force as calculated in 2.3.1. However, to isolate the fluctuating 

variable tension force generated by friction of a single wire (𝑍𝑧𝑢𝑠,𝐿(𝜑)) leads to 

 

 𝑍𝑧𝑢𝑠,𝐿(𝜑) = 𝑍𝐿(𝜑) − 𝑍𝑑,𝐿 = 𝑍𝑑,𝐿(𝑒𝜇𝐿 sin 𝛽𝐿𝜑 − 1) (22) 

 

and the corresponding wire stress can simply be found by 

 

 𝜎𝑧𝑢𝑠,𝐿(𝜑) =
𝑍𝑑,𝐿

𝐴𝑑,𝐿

(𝑒𝜇𝐿 sin 𝛽𝐿𝜑 − 1). (23) 

 
It is assumed that this stress remains uniform over the entire wire cross section as a pure tension stress but 

varies with the different positions of the wire along its helix.  
 

It is important to discuss several key characteristics of this model in order to understand its limitations. 

Firstly, this so called secondary stress can only exist when a rope experiences bending. As a rope bends, the 
wires in each layer are stretched differently, thus forcing them to displace relative to each other. To achieve 

relevant displacement between wires, this secondary stress must be overcome. In Papailiou, the curvature 
at which this stress is overcome is of great importance. His model was specifically developed for overhead 

transmission lines where the goal was to accurately predict the bending stiffness as the rope curvature 

changes. The conclusion was that the bending stiffness had three distinct regions that were governed mainly 
by the friction coefficient between wires and the applied pre-tension. This phenomenon was also confirmed 

by Hong et al. [20] and is nicely illustrated by Figure 2.21. The first region represents a high, constant 
stiffness where friction prevents wires from displacing relative to each other. The second region is defined 

as a transition region where only some of the wires overcome friction while others are still sticking together. 
The final region represents the curvature at which all wires have overcome friction and can displace relative 

to each other, which leads to a much smaller bending stiffness as the wires each bend around their own 

neutral axis.  
 



 2.0 Behavior of steel wire rope 

 

 
27 

 

Figure 2.21 - Bending stiffness as a function of curvature with variable pre-tension and friction coefficient [20]. 

 

In that application, the wire ropes have a constant pre-tension and experience relatively small curvature 
changes in comparison to the topic of this thesis. The scenario in this thesis considers a curvature range 

where friction has been overcome and all wires are slipping. Consequentially, the important theory to extract 
from [19] is the actual stress that must be overcome because this remains in the wires throughout the 

bending process. Additionally, the friction coefficients for steel wire rope slings are lower due to the 

lubrication applied between wires throughout the rope. For steel-on-steel contact a value of 0.3 is normal. 
However, with lubrication, a friction coefficient between 0.15-0.2 provides a more reasonable estimate of 

the actual value and has been used by previous researchers [34] [35]. 
 

 

2.3.4 Ovalization stress 
 

Although the relative movement of wires in a rope has mostly been discussed as an advantage, there are 
situations where inherent consequences arise. When a rope is bent over a pin or sheave and an axial tension 

is applied, its nominally round shape can become oval in a process called ovalization. As wires are forced 
onto a sheave, the rope gradually begins to take on the shape of the groove. In this process, bending and 

torsion stresses arise due to the change in shape from circular to oval and can be calculated by finding the 

change in curvature of the wires [29]. A simple expression to determine the ovalization stress at the bottom 
of the groove for the center wire of a strand is 

 

 𝜎𝑏,𝑜𝑣 = (
sin2 𝛽𝑜𝑣

𝑟𝑠,𝑜𝑣

−
sin2 𝛽

𝑟𝑠

)
𝛿

2
𝐸 (24) 

with 

 𝑟𝑠,𝑜𝑣 = 𝑟 −
𝑑𝑠

2
 and 𝑟𝑠 =

𝑑

2
−

𝑑𝑠

2
  (25) 

 
where 𝛿 is wire diameter, 𝛽 is strand lay angle, 𝑑 is rope diameter, 𝑑𝑠 is strand diameter, 𝑟𝑠 is strand winding 

radius and 𝐸 is modulus of elasticity [5]. Figure 2.22 illustrates the ovalization phenomenon.  
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Figure 2.22 - Ovalization of a steel wire rope in a groove [5]. 

 
Assuming that the change in lay angle due to ovalization is negligible, the stress is governed by the radius 

of the groove. To study this effect, Figure 2.23 was created for a 20 mm rope. Here, the ovalization stress 

of the 1 mm center wire of an outside strand at the bottom of the groove is shown as a function of the 
groove radius over rope diameter ratio.  

 

 

Figure 2.23 - Ovalization stress in center wire of outside strand. 

 

Looking at the figure, the resulting ovalization stress in the wire is very sensitive to the r/d ratio. As the 
groove radius starts becoming slightly larger than the rope, the stress increases sharply and in a nonlinear 

fashion. This is because as the fit between the groove and rope gets looser, wires will experience larger 

changes in curvature as they try to conform to the groove. Additionally, it is observed that as the lay angle 
increases, the stresses become larger and more sensitive to the r/d ratio. This indeed makes sense because 

the curvature change will be larger for a wire with a smaller angle with respect to the compressive force 
applied by the sheave. 

 

Several authors have also performed experiments to examine what the effect of ropes running over sheaves 
with varying r/d ratios has on bending fatigue (Figure 2.24). This plot reconfirms that deviation from the 

perfect snug fit (r/d=0.5) results in a sharp reduction in capacity. Also, the behavior of the nonlinear 
relationship of the fatigue capacity evolves in a similar manner to the bending stress increase observed in 

Figure 2.23.  



 2.0 Behavior of steel wire rope 

 

 
29 

 

 

Figure 2.24 - Influence of groove radius on bending fatigue capacity [5]. 

 
In practice, it is commonly accepted to have an r/d ratio of 0.53. This is done to accommodate the difference 

between the actual diameter and nominal diameter of a rope while keeping the fit as snug as possible to 
minimize the stresses. Additionally, it is important to note that ovalization is a very nonlinear phenomenon 

that is difficult to predict accurately and will most likely vary between the different wire rope configurations. 

For instance, it has been observed that ovalization is of greater importance for ropes with a fiber core than 
those with an IWRC [5]. In the context of this thesis, the rope is bent around a pin, which results in an r/d 

ratio that goes towards infinity. Theoretically, this yields unreasonably high stresses in the wires. Hence, an 
analytical approach to determining the actual stresses for this scenario is very difficult due to the 

nonlinearities involved. 

 
 

2.3.5 Torsion, moment and shear 
 

As discussed earlier, the introduction of the helix structure imposes secondary stresses when a rope is 
subjected to a tensile loading. Referring back to Figure 2.11, Czitary [36] derives the forces resulting from 

the helix and concludes that the corresponding torsion, moment and shear stresses can be considered 

negligible. The reason for this is because the stresses result from the change in lay angle that is caused by 
rope elongation during axial loading, which is relatively small. To check this effect, the torsional stress for a 

wire in a rope similar to the one used in 2.3.4 is calculated as 
 

 𝜏 = (
sin 𝛽 cos 𝛽

𝑟
−

sin 𝛽0 cos 𝛽0

𝑟0

)
𝛿

2
𝐺 (26) 

 
where 𝛽 is lay angle, 𝑟 is winding radius, 𝛿 is wire diameter, 𝐺 is shear modulus and index 0 indicates the 

initial state before loading [36]. Using the equation, Figure 2.25 illustrates the torsional stress experienced 

by the center wire of an outer strand due to axial elongation of the rope. From the plot, it can be seen that 
the stress due to torsion increases linearly with the axial elongation. Assuming a linear modulus of elasticity, 

this relationship is as expected since the change in lay angle will increase with rope elongation. Furthermore, 

it is also observed that the torsional stresses are higher for larger wire helical lay angles. Intuitively, this is 
expected since a larger helical lay results in a higher radial component. Nevertheless, the contribution of 

torsion to the overall stress is indeed small enough to be considered negligible in most cases.   
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Figure 2.25 - Torsional stress of center wire in outer strand due to strain caused by axial loading of wire. 

 

 
  



 

 

31 

3.0 ANALYTICAL MODELLING  

 
As previously discussed, many authors have contributed their own approaches to modelling the behavior of 

wire rope. However, even to this day, there is no clear answer as to which approach best predicts this elusive 

tool. Moreover, much of the research conducted has been focused on trying to predict specific characteristics 
of the rope rather than global behavior.  

 
In the context of this thesis, an analytical model is presented that aims to predict the capacity of a steel wire 

rope sling. The scenario in question involves trying to determine the reduction in capacity when the body of 

a sling is bent around a pin. Hence, the analytical model first predicts the capacity under axial loading and 
then compares it to the capacity of the rope in bending. In this chapter, an overview of the analytical model 

is given by outlining the theory and assumptions. Then, the results of the following rope configurations are 
presented and discussed: 

 

 20 mm 6x25F-IWRC, 

 20 mm 6x36WS-IWRC, 

 77 mm 6x36WS-IWRC. 
 

 

3.1 MODEL DESCRIPTION 

The analytical model presented here attempts to combine several insights from previous research into one 
complete model that can predict the reduction in capacity of a steel wire rope when bent. To come up with 

the reduction factor, the model needs to calculate the capacity for two different processes. 
 

Before going into depth, it is important to define the main assumptions that are incorporated in this model. 

As discussed in 2.3, there are many different stresses involved when a steel wire rope is subjected to loading. 
However, the main stresses considered in this model are: 

 

 Axial stresses; 

 Bending stresses; 

 Frictional stresses.  
 

As previously mentioned, the secondary stresses resulting from the helical structure of the rope are usually 
minimal. Therefore, stresses due to torsion, moment and shear have not been included in the analytical 

model. The ovalization stress was a phenomenon that was defined for ropes bending over sheaves. However, 

it was shown that these analytical expressions were not valid for a rope bending over a pin where the groove 
radius approached infinity. Excluding this stress from the model yielded reasonable results so it was also 

considered negligible, but this effect requires further investigation.     
 

Figure 3.1 is a flowchart that describes the logic behind calculation of the rope capacity during pure axial 

loading. The process starts with the user input of relevant parameters associated with the specific rope 
construction, wire material properties and applied loading. See Appendix A for an elaboration of the required 

parameters. Using these inputs, the program then determines several geometric properties of the rope. At 
this stage, all the constant parameters have been defined and are fed into an iterative loop where the loading 

is applied incrementally. The first step involves determining how the applied loading of the current time step 
is redistributed among each individual wire. Then, this applied wire loading is added to the overall wire force 

based on the previous time step. Using this overall force, the current apparent modulus of elasticity of each 

wire is calculated at each time step. Knowing the force and Young’s modulus, the resulting elongation of 
each wire is determined. Finally, the elongation state of each wire is checked to see if it has reached a certain 

failure criterion. If a wire has reached failure, its effect is then captured at the next iteration step when the 
applied rope loading is redistributed to the individual wires. At the end of the loop, a function is used to 

determine the load at which the entire rope is considered to fail.  
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Figure 3.1 - Flowchart of pure axial loading capacity calculation. 

 
To predict the capacity of a steel wire rope sling in the bending scenario, it is important to first describe the 

way this process is interpreted. The process is simplified by splitting it into two separate phases as shown 
by Figure 3.2. In Phase 1, the rope is taken from a straight position and bent around the pin. Note that this 

will require the application of some tensile loading to help overcome the bending stiffness of the rope. Once 

the rope has fully conformed to the curvature of the pin, Phase 1 ends and Phase 2 commences. Here, the 
elongation of the rope is mainly governed by the axial loading applied.  

 

 

Figure 3.2 - Illustrative interpretation of the bending scenario of a steel wire rope. 

 

With the two different phases defined, the flowchart of the bending scenario is constructed in a similar 
manner as before. Here, friction effects and bending strains must be incorporated in addition to the axial 

tensile loading. As shown in Figure 3.3, this is done inside the iterative loop. It is also important to note that 

these two additional forces occur only during Phase 1. The reasoning behind this will be explained in the 
next few sections.  
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Figure 3.3 – Flowchart of bending capacity calculation. 

 
3.1.1 Individual wire tensile load 

 

This calculation represents the axial force in a wire due to the overall loading applied to the rope. The 
equations and theory behind this calculation discussed in 2.3.1 have been directly implemented into this 

analytical model. Poisson’s ratio has also been included, however, an important assumption has been made. 
As previously discussed, the Poisson’s ratio of wires can be compared to that of steel, but the ratio in the 

strand level can be significantly different. Nevertheless, it is assumed that the Poisson’s ratio for strands and 

wires is the same since the rope configurations considered here all have a steel core. Additionally, the 
influence of this ratio can also be considered small depending on the lay angle (Figure 2.13).  

 
 

3.1.2 Bending strains 
 

The bending stress experienced by the steel wire rope is of particular interest in this scenario. Slings are 

commonly bent with D/d ratios that are extremely low, which results in very sharp bends and significant 
stresses. As discussed in the previous chapter, accurately predicting these stresses is difficult due to the 

nonlinearities involved. Regardless, an attempt is made to approximate the stresses most likely to be 
experienced by the wires using several assumptions, which shall be discussed throughout this section.  

 

First, the change in curvature must be derived for a stranded rope. This type of rope configuration involves 
wires in a double helix, while the expression derived in the previous chapter was applicable to wires in a 

single helix. To overcome this, [30] proposed to cleverly use his single helix formula in an iterative manner 
in order to come up with the curvatures for wires in a stranded rope. The iteration can be summarized like 

so, 
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𝜅𝑟𝑜𝑝𝑒 

 
 

 

 

 𝜅𝑆 =
√1 + 𝑐𝑆 cot2 𝛼𝑆 (2(𝑐𝑆 + 1) + 𝑐𝑆 cot2 𝛼𝑆 (𝑐𝑆 + 1)2)

𝑟𝑆(1 + cot2 𝛼𝑆 (1 + 𝑐𝑆)2)
     with    𝑐𝑆 = 𝑟𝑆𝜅𝑟𝑜𝑝𝑒 (27) 

 

 

 
 

 𝜅𝑊 =
√1 + 𝑐𝑊 cot2 𝛼𝑊 (2(𝑐𝑊 + 1) + 𝑐𝑊 cot2 𝛼𝑊 (𝑐𝑊 + 1)2)

𝑟𝑊(1 + cot2 𝛼𝑊 (1 + 𝑐𝑊)2)
   with   𝑐𝑊 = 𝑟𝑊𝜅𝑆 (28) 

 

 
 

 

𝑒 =  ∆𝜅𝑊𝑦 

 
where 𝜅 is centerline curvature, 𝑟 is winding radius, 𝛼 is lay angle, 𝑦 is distance to extreme fiber, 𝑒 is wire 

bending strain and the subscripts 𝑆 and 𝑊 refer to strand and wire, respectively. First, the curvature of the 

rope due to bending around a pin can be determined based on the pin diameter. Then, by considering the 

outer strand forming a single helix around the rope core axis, the strand radius of curvature is determined. 
Next, the same equation is applied by considering the individual wire forming a single helix with the core of 
the strand. The key to capturing the double helix effect is through the use of the constants, 𝑐𝑆 and 𝑐𝑊, which 

relate the winding radius to the curvature of the core being considered. This results in the final curvature of 

the wires when the rope is bent, however the initial curvature of the wires before bending must also be 
determined in order to find the strain experienced by the wires. To do so, the same iterative process is used 

except this time the rope curvature is taken to approach zero. This way, the curvature of the individual wires 
is calculated when the rope is in a straight position.  

 
To complete the bending strain calculation, the distance to the extreme fiber needs to be considered. To 

reduce conservatism and simplify strain calculations, this analytical model considers an average bending 

strain that is constant on each side of the tension and compression zone of a wire bending around its own 
neutral axis as shown in Figure 3.4. When considering all the strains acting on a wire cross section, the 

compression zone caused by bending will be countered by the axial tensile loading. Hence, the only 
consequential loss of information occurs in a small section on the tensile zone of the wire. Moreover, this 

section makes up less than 20% of the total area.  

 

Figure 3.4 - Approximation of bending strains (dashed) in a wire cross section. 
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Knowing the rope curvature is an important aspect to the calculation of the bending strain. This model uses 

the diameter of the pin to determine the final curvature of the rope. However, applying these strains directly 
does not reflect what is actually happening. As previously described, the rope is bent during Phase 1. To 

better understand the process, the terms forced and free bending must be defined. Free bending occurs 
when the rope is initially bent from its straight position. Here, the stresses induced in the wires are caused 

by the bending stiffness of the rope as it changes its curvature. Forced bending occurs once the rope wraps 

around the pin and is forced to conform to its curvature. Trying to model the process precisely is a 
complicated task, so another simplification is applied instead. First, the total bending strains due to forced 

bending around the pin are calculated. Second, the total bending strains are equally divided by the number 
of load steps in a predetermined threshold loading and then applied incrementally in a linear fashion. The 

threshold loading is the applied axial force needed to fully wrap the rope around the pin. This is basically the 

end of Phase 1 and the beginning of Phase 2. The value of the threshold loading is approximated to be 
roughly 25% of the MBL. This was empirically determined through the observation of the forced bending 

phenomenon during experimental testing (Chapter 0).  
 

 
3.1.3 Secondary stress due to friction 

 

In 2.3.3, the secondary stress was defined based on the model by Papailiou [19]. Its limitations were also 
discussed in relation to the scenario being observed in this thesis. In the context of this current model, the 

stick phase is considered negligible and all wires are assumed to be displacing relative to each other. In order 
for this displacement to occur, wires need to overcome the friction force.  

 

The first challenge in implementing the friction model by [19] involves the rope configuration. His model was 
developed for overhead conductor lines, which are predominantly spiral ropes as opposed to the stranded 

rope configurations being considered here. To overcome this, a similar iterative approach previously taken 
with the bending strain calculation is applied.  

 

 

Figure 3.5 - Strand level simplification of rope for calculation of friction forces. 

 
The method described here was based on previous research done by Bart de Jong [37]. First, the stranded 

rope is simplified to a spiral rope as shown by Figure 3.5. This is done by considering the outsides strands 
as whole elements that are wrapped around one core element. Now, the friction forces between outer strand 

layers can be determined as if it was a spiral rope. Next, to get to the wire level, each individual strand must 
be isolated and the analysis repeated. The key step is to take into account the friction force that was 

calculated at the strand level. In other words, the input axial tensile wire force is based on the strand axial 

force plus the calculated friction force. Depending on the strand location within the helix, this total strand 
force will be larger or smaller than the nominal axial strand loading imposed by the rope force. The strand 

with the highest tensile forces will be chosen to complete the calculation for the input wire force as it will 
likely be the first to fail.  

 

Another important aspect of this secondary stress is that it occurs only while the rope is bending. Hence, if 
the rope experiences no change in curvature, the secondary stress is negligible. Therefore, proper accounting 

of this force is achieved in a similar way as the bending strains by phased application. Since bending only 
occurs in Phase 1, the secondary stress is applied along with the bending strain exclusively during this stage. 

During Phase 2, the secondary stress is omitted since there is no change in rope curvature.  
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3.1.4 Modulus of elasticity 

 
The stress-strain relationship of wires is an integral part of the model. With it, the necessary conversion 

between the two parameters can be established via the modulus of elasticity. However, there are a few 
challenges that must be overcome.  

 

As previously discussed, the drawing process changes the mechanical properties of wires drastically. This is 
what allows them to achieve high tensile grades, but it also drastically decreases their ductility in comparison 

to normal steel behavior. Moreover, this results in nonlinear stress-strain curves where a typical elastic 
analysis will not accurately capture the wire behavior or its actual capacity. Additionally, wire rope 

manufacturers tend to use wires of different tensile strengths throughout the strand layers.  

 
To overcome these obstacles, the model considers each wire on an individual basis. This can be achieved if 

the user can provide all the different stress-strain curves of wires used throughout the rope. In most cases, 
this data is available for each layer of the outer strand. As an example, Figure 3.6, which was taken from a 

separate study, shows the stress-strain diagrams of each wire in an outer strand of a 6x36WS-FC rope. This 
is a good illustration of the extent of deviations between wires in different layers and further exemplifies why 

this is important to capture.  

 

Figure 3.6 - Stress-strain diagram of wires in an outer strand of a 6x36WS-FC rope [35]. 

 

The conversion between stresses and strains is done linearly through the modulus of elasticity. Given that 
most wires exhibit a nonlinear slope, it is difficult to conclude a single representative value. However, by 

using a sufficiently small time step, this nonlinearity can be linearized by finding a tangent modulus of 

elasticity at each iteration. At each time step, the tangent modulus of elasticity is calculated for each individual 
wire based on its current stress state from the applied loading. This value is then used throughout the rest 

of the iteration to convert between stresses and strains.  
 

 
3.1.5 Failure criterion  

 

Once the resulting elongation for each wire is obtained, it must pass through a failure criterion before the 
next load step. This is an integral part of how the rope is predicted to behave so it is important to understand 

the assumptions being made in this model.  
 

The first point of discussion is global rope elongation behavior versus individual wire elongation. As explained 

in the previous chapter, wires are stressed differently based on their geometric properties when an axial 
loading is applied to the rope. When translating these stresses directly into strains, this results in wires having 

different elongations. Hence, even though a sling with two end terminations will have a uniform extension 
throughout the rope cross section along the rope axis, the individual wires will elongate differently along 

their own local axis based on their lay angle. This insight exemplifies the key role in using wire grades with 
different stress-strain relationships throughout the strand layers in order to achieve a balance. Regardless, 

fluctuations in stresses between the wires cannot be avoided and some wires will fail before others.  
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The next important topic is taking into consideration how the failure of a wire effects the global behavior of 

the rope. As explained in 1.1.2, wire ropes have a unique redundancy property that allows them to 
redistribute the loading in the case of a wire failure. An attempt is made to replicate this property by taking 

advantage of the incremental load step loop found in this model’s structure.  
 

The failure criterion used in this model is based on the state of the wire in relation to its stress-strain 

relationship. At this point of the iterative loop, the apparent modulus of elasticity of each wire is determined 
for the current load step. If a wire has reached a certain threshold modulus value, it is considered to have 

failed. This threshold value is empirically determined and is based on the average axial stress increase of the 
wires over 0.2% strain from one load step. If the corresponding slope is below this value, the wire has 

reached the plastic region where it is not able to carry any more of its loading and only elongates. The idea 

is that although the wire has technically not completely failed since it has not reached its strain at rupture, 
it has a minimal contribution to the axial stiffness of the rope. 

 
With the failure point of a wire defined, the resulting consequence to the overall rope behavior is applied. 

Basically, the indication of failure triggers the program to set the area of the corresponding wire to zero. This 
is reflected in the next iteration of the loop when the overall rope loading is transferred to each individual 

wire. Now, the failure of the wire causes a stress increase in other wires as the overall rope loading has to 

be redistributed to a smaller number of wires.   
 

 

3.2 RESULTS FROM CASE STUDIES  

Using the analytical model, three different steel wire ropes were analyzed. The data required for the user 

input was obtained from certificates provided by the wire rope manufacturer and summarized. First, the 

nominal capacity of the rope is calculated by the analytical model and a snapshot of the resulting force 
distribution of individual wires within the rope cross-section was created. Finally, the reduction in capacity 

due to bending is determined for all three ropes and the differences are discussed.       
 

 
3.2.1 Rope configurations & properties 

 

The analytical model is made in such a way that it can work for almost all common steel wire rope 
configurations used today. The rope configurations under investigation are listed in Table 3.1 along with 

some of their main characteristics. Figures found in section 3.2.2 provide a visual representation of the strand 
constructions described here. Using these ropes, two general relationship can be observed. The first is the 

difference in geometries between the 6x25F and 6x36WS ropes, which are the same diameter. The second 

is the relationship between the small and large diameter 6x36WS ropes. It is important to take into account 
that not all parameters remain consistent between rope geometries when observing these relationships.  

 

Table 3.1 - Wire rope configurations and properties used in the analytical model. 

 20 mm 6x25F-IWRC 
20 mm 6x36WS-

IWRC [37] 

77 mm 6x36WS-

IWRC 

Lay type RHOL RHOL RHOL 

Strand lay angle 18° 27.5° 17° 

Strand construction 1-6-6F-12 1-7-7+7-14 1-7-7+7-14 

Grade 1960 N/mm2 1960 N/mm2 SUPER TITAN (mix) 

Coating Galvanized Unknown Galvanized 

Lubrication A2 Unknown D / Bitumin Lube 

 

 
The specific geometric properties of the rope are critical to how it will behave. With ropes being comprised 

of so many individual wire elements, the combinations are overwhelming. This is why ropes of the same 

configuration could sometimes behave differently depending on their manufacturer. Table 3.2 and Table 3.3 
provide the wire diameters and ultimate tensile strengths of two of the above rope configurations. Specific 
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data such as wire diameters and ultimate tensile strengths for the 20mm 6x36WS-IWRC rope was not 

available so an educated assumption was made where necessary.  
 

Table 3.2 – 20 mm 6x25F-IWRC individual wire properties of outer strand. 

Wire Diameter 
(mm) 

Ult. Tensile Strength 
(N/mm2) 

1.26 2061 

0.56 1991 

1.36 2202 

1.42 2168 

  

 

Table 3.3 – 77 mm 6x36WS-IWRC individual wire properties of outer strand. 

Wire Diameter 
(mm) 

Ult. Tensile Strength 
(N/mm2) 

4.39 2131 

2.73 2114 

3.53 2113 

3.62 2082 

4.81 2064 

 
 

As explained in section 3.1.4, the actual stress-strain relationship is what is needed to differentiate the 

behavior between wires of different layers. Without conducting actual tests on the individual wires, this data 
cannot be obtained. To overcome this, the stress-strain relationship described by Figure 3.6 is combined with 

the data in the tables above and used as input for the analytical model.  
 

 

3.2.2 Force distribution in individual wires 
 

The wire stresses arising from axial loading to the rope are an important aspect of its failure mechanism. 
Observing how the wires are stressed within each layer can provide better insight into how the loading is 

distributed throughout the cross-section. The following figures illustrate exactly this phenomenon for each 

of the wire rope configurations and sizes in question. The parameter S/d2 refers to the axial loading on the 
rope divided by the square of the nominal rope diameter.  
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Figure 3.7 – Wire axial stress distribution of 20 mm 6x25F-IWRC rope. 

 

Figure 3.7 and Figure 3.8 represent the wire stress distribution for the two different 20 mm rope 

configurations. The first point to note is that the core strands experience higher stresses than the outer 
strands for both configurations. However, the range of stresses is higher for the 6x36WS sling than the 6x25F 

sling. Both of these observations fall in line with the predicted relationship discussed in Section 2.3.1. As 
show in Figure 2.13, the stress in the core wire increases while the stress in the outer wires/strands decreases 

as the helix angle is introduced. Additionally, this difference in stress becomes more pronounced the higher 
the lay angle. Since the strand lay angle in the 6x36 sling is higher, the core accumulates more stress since 

the outer wires/strands contribute less to the axial stiffness.  

  

Figure 3.8 - Wire axial stress distribution of 20 mm 6x36WS-IWRC rope. 

𝑆

𝑑2
= 50 𝑁/𝑚𝑚2 

𝑆
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Figure 3.9 - Wire axial stress distribution of 77 mm 6x36WS-IWRC rope. 

 

It is interesting to also compare the results of the small and large diameter 6x36WS-IWRC ropes. Although 
the configurations are the same, there is a notable difference in how the axial stresses are redistributed 

throughout the cross section. Again, this is heavily influenced by the lay angle of the strands and wires. The 
77 mm rope has a smaller strand lay angle than the 20 mm rope. This influence is reflected in Figure 3.9 

where the range of stresses is smaller since the outer strands contribute to more of the axial stiffness due 
to the smaller lay angle.   

 

 
3.2.3 Bending reduction factor 

 
The reduction in capacity (𝑅) is calculated as 

 

 𝑅 = 1 −
𝐹𝑏

2𝐹𝑚

 (29) 

 
where 𝐹𝑏 is the measured break load of the bent test and 𝐹𝑚 is the measured break load of the proof load 

tests. Both 𝐹𝑏 and 𝐹𝑚 are calculated in the model analytically through the use of the failure criteria described 

in the previous section. Figure 3.10 represents this reduction in capacity calculation for the three different 

ropes of interest. As a reference, the corresponding formulas imposed in the DNVGL and IMCA standards 
are also plotted.  

 

𝑆

𝑑2
= 50 𝑁/𝑚𝑚2 
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Figure 3.10 - Analytical prediction of reduction in capacity due to bending of different rope configurations. 

 

From the figure, it can be seen that the reduction in capacity is different for each rope configuration. Since 

bending strain plays a major role in the model, it is the governing parameter that causes this difference. A 
reason the 20 mm 6x25F rope has such a high reduction in capacity compared to the others is because it 

has both a smaller lay angle and relatively larger wire-to-rope diameter ratios. These two factors are 
theorized to reduce the capacity of the individual wires and consequently the rope. The main difference 

between the two 6x36WS configurations is that the 77 mm diameter rope has a smaller lay angle, which 
ultimately causes it to have higher bending strains due to the larger change in curvature of wires during 

bending.  

 
To see the effects of these selected parameters, a sensitivity study was done based on the 77 mm 6x36WS-

IWRC configuration. First, the influence of the lay angle on the reduction in capacity is plotted by Figure 3.11 
for three different D/d ratios. The results shown here exhibit behavior previously discussed in 2.3. The most 

evident observation is the increase in capacity as the lay angle increases. This is mainly due to the fact that 

the bending strains decrease as the helical lay angle increases. Additionally, the influence of the D/d ratio 
on the capacity reduces as the curvature of the rope increases.  
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Figure 3.11 - Reduction in capacity based on outer strand lay angle of 77 mm 6x36WS-IWRC rope. 

 
Another important parameter that was identified was the ratio between outer strand wire diameters relative 

to the nominal rope diameter. Based on solid mechanics, the bending strain of a cross section increases 
linearly with the distance from the neutral axis. Hence, the larger the wire diameter, the greater the distance 

to the extreme fiber. Consequently, the bending strains become higher resulting in a higher reduction in 

capacity. One way to observe this phenomenon is by isolating its effect on the bending strains. To do this, 
the three different rope geometries were set to have the same lay angle (20°) and the reduction in capacity 

was calculated by the analytical model. As seen in Table 3.4, both 6x36WS-IWRC ropes exhibit very similar 
reductions while the 6x25F-IWRC rope is still significantly higher. The reason for this is because the 6x25F-

IWRC rope has one less layer in its outer strands which means it needs larger wire diameters in order to 
achieve the same rope size as a 6x36WS-IWRC rope.  

 

Table 3.4 - Capacity reduction when identical outer strand lay angle is used for all rope types. 

Rope Type Lay angle 
Reduction in 

capacity (D/d=1) 

20 mm 6x25F-IWRC 20° 69% 

20 mm 6x36WS-IWRC 20° 48% 

77 mm 6x36WS-IWRC 20° 47% 

 
 

Through isolation of the selected parameters discussed above, several insights have been discovered about 
the differences in capacity reductions between ropes of different geometries. The main difference that 

separates the reductions of the 6x36WS-IWRC ropes is the lay angle. The outer strand wire diameters scale 
relatively linearly with the rope size so any difference due to wire diameter ratios is almost negligible. For 

the 6x25F-IWRC rope, both the lay angle and larger wire diameter ratio are the main contributors to the 

much higher reduction in capacity.  
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An additional sensitivity study was done on a different type of user input. The parameters previously 

investigated are usually known because they are part of the rope’s geometric configuration. However, this is 
not always the case. For instance, the coefficient of friction is also a user input, but the value of this property 

is not so easily identified. As discussed previously, ropes are heavily lubricated during manufacturing in order 
to reduce friction between wires so they can more easily shift relative to each other. Although this concept 

has been proven effective, it is hard to justify that the lubrication uniformly affects the wire interactions 

throughout the entire rope. Hence, there will be some variation of this friction value. To explore how this 
effects the reduction in capacity, Figure 3.12 was created for the 77 mm 6x36WS-IWRC rope.  

 

 

Figure 3.12 - Sensitivity study of reduction in capacity due to change in friction of a 77 mm 6x36WS-IWRC rope with 
D/d=1.5. 

 

The plot above shows that as the coefficient of friction increases, the reduction in capacity also increases in 

a relatively linear fashion. Since this analytical model assumes Coulomb friction, a higher coefficient of friction 
means that a higher friction force will be generated from the same normal force. Consequently, the wires 

need to overcome this higher friction force in order to shift thus increasing stresses and ultimately reducing 
the rope performance. Since a coefficient of 0.25 is close to that of steel-on-steel contact, the more realistic 

values range between 0.15-0.2 for lubricated ropes. In this range, the difference between capacities is not 

insignificant, but it still relatively small nonetheless.  
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4.0 EXPERIMENTS 

 
In addition to the analytical model, experiments were conducted on steel wire rope slings. The goal of the 

experiments is to test the actual capacity of slings in large curvature bending and to validate the proposed 

analytical model. Two different types of experiments were conducted. First, small-scale tests were carried 
out on 20 mm steel wire rope slings. Then, a full-scale experiment was carried out on 77 mm steel wire rope 

slings. The results of each experiment were then processed and several observations were highlighted.  
 

 

4.1 SMALL-SCALE EXPERIMENT 

The small-scale experiment is done on 20 mm 6x25F-IWRC steel wire rope slings. The goal of these tests is 
to determine the reduction in capacity due to bending for small-scale (20 mm) slings. The different setups 

of the whole experiment are explained first followed by the major results and observations. More detailed 
drawings of the test setups can be found in Appendix B. A short additional study on the ovalization 

phenomenon was also incorporated into these experiments. The setup and custom test bench pieces were 
based on designs by de Jong [37]. All tests were performed using a 60-ton universal tensile testing machine 

inside Stevin Lab II located in the Delft University of Technology (Figure 4.1). The loading was controlled by 

displacement for all tests.  
 

  

Figure 4.1 - 60-ton tensile testing machine used during small-scale experiment. 

 
4.1.1 Setup #1 – Proof load test 

 

The slings had to first be proof tested to determine their actual breaking capacity. Depending on the rope 
configuration and manufacturer, this can be up to 15% higher than the MBL [5]. Hence, it is important to 

know the actual capacity so that the reduction can be accurately calculated later. Figure 4.2 illustrates the 
loading scenario of the slings and Table 4.1 describes the specimens that were tested.  
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Figure 4.2 – Proof load test setup for small-scale experiment. 

Besides obtaining the breaking load, capturing the load-deformation behavior was also of interest. The test 
bench automatically records and outputs this behavior. However, this recording includes possible 

displacements from components other than the actual rope, which can introduce error. To see if this is 
significant, another measuring technique was applied that directly measured the rope elongation. This system 

consisted of two linear variable differential transformer (LVDT) devices attached as shown in Figure 4.2. One 

difficulty with this setup is that as the rope elongates, there is a significant twist. To overcome this, a circular 
disk was attached to the bottom clamp, which provides a level reference plane for the LVDTs even when the 

rope is twisting. Afterwards, the data from the sensors is averaged in order to come up with the actual 
elongation of the rope. In the end, the load-deformation behavior was recorded by both machine and sensors 

and then compared. 

Table 4.1 - Description of small-scale proof load test slings. 

Sample # Rope Type 
MBL 

(kN) 

Rope Length 

(mm) 

LVDT Measurement 

Length (mm) 

P1 20 mm 6x25F-IWRC 279 600 525 

P2 20 mm 6x25F-IWRC 279 600 530 

P3 20 mm 6x25F-IWRC 279 600 538 

 
 

4.1.2 Results of proof load test 

 
The proof load tests of the 20 mm 6x25F-IWRC samples were successfully completed. To eliminate the initial 

settlement of wires, all samples were subjected to a loading cycle up to 10% MBL (30 kN) and back down 
to zero before the final loading cycle until failure. Table 4.2 provides a summary of the main parameters of 

interest. Several obscurities were observed such as the difference in strain between the machine and sensors 

as well as a premature failure of sample P3.  
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Table 4.2 - Summary of proof load test for 20 mm 6x25F-IWRC slings. 

Sample 
Break force 

(kN) 
Machine 

elongation 
Sensor 

elongation 
Comments 

P1 326 0.0548 0.0374 Clean break (x = 200 mm) 

P2 324 0.054 0.0357 Clean break (x = 200 mm) 

P3 313 0.0512 0.0276 Outer strand slipped out of socket 

 
First, it is important to discuss what is defined as a clean break. According to ISO 10425:2003(E), a clean 

break means that the estimated origin of rupture is a certain distance away from the end termination defined 

as 
 

 𝑥 ≥ 6𝑑𝑟 (30) 

 
where 𝑑𝑟 is the rope diameter. Both Samples P1 & P2 broke approximately 200 mm away from the nearest 

end termination, which constitutes a clean break. However, Sample P3 experienced premature failure as one 

of the outer strands failed at the socket end termination. Even though Sample P3 failed at a load higher than 
the MBL, it was disregarded when performing a statistical analysis.  

 
The actual breaking load was between 13-16% higher than the MBL provided by the manufacturer. As 

explained previously, this is within the expected range predicted by literature.  
 

Figure 4.3 provides the load-elongation curve of Sample P2. Figures for all samples can be found in Appendix 

C. The different curves represent the outputs from the machine and the two LVDT devices. All curves show 
the three distinct regions that were described in 2.2.2. The initial settlement of wires can be seen from the 

first loading cycle up to 10% MBL. Then, the elastic region can be defined by the linear relationship followed 
by a transition into the plastic region where the rope elongates until failure with only a small increase in 

force. Additionally, the small drops in force seen in the plastic region correlate to the wire breaks that occur 

as the rope shows signs of reaching failure.  

 

Figure 4.3 - Load-elongation curves of Sample P2 from test bench and LVDT output. 
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A significant difference between the machine elongation and sensor elongation was observed. The machine 

strain was between 1.7-2.2% higher throughout the tests. This can usually be attributed to the additional 
displacements introduced by the test setup and the internal slippage of the machine components. Possible 

sources of error include rope pullout from the sockets as well as elastic deformation of the components in 
the test assembly.  

 

 
4.1.3 Setup #2 – Bending test 

 
After the proof load capacity of the slings was determined, the slings were then subjected to loading under 

bent conditions. Figure 4.4 provides a general illustration of the loadcase and corresponding setup. The rope 

is doubled up around a circular pin and has both of its end terminations attached to the upper block of the 
testing machine. This setup is meant to mimic the body of a sling being bent around a load bearing element 

such as a shackle.  
 

       

Figure 4.4 - Bending test setup for small-scale experiment. 

 

To make a proper comparison with the DNVGL standard, the relationship between capacity and D/d ratio 
needs to be observed. For slings used in practical applications by Allseas, the most interesting D/d ratios 

ranged from D/d=1.33-1.55. Consequently, three different D/d ratio were chosen in the vicinity of this 

specified range. This was achieved by varying the diameter of the circular pin where the rope is bent. A 
summary of the test samples is given by Table 4.3.  

 

Table 4.3 - Description of test samples for bending test. 

Rope Type 
Diameter 

(mm) 
# of Samples 

Total Length 

(mm) 
D/d  

6x25F-IWRC 20 3 1200 1 

6x25F-IWRC 20 3 1200 1.5 

6x25F-IWRC 20 3 1200 2 
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Additional measurement techniques were applied in an attempt to capture the behavior of individual wires 

during bending. First, random samples were spray-painted white around the area of the bend while the rope 
was in a straight position. This allows for better color contrast during video recording and also marks the 

starting location of the outside wires and strands before bending. Then, a thin black line was painted around 
the circumference of the rope at a location near the bend while the rope is still straight. Measurements and 

images of this area were recorded at several stages of the experiment and later compared. The idea behind 

these techniques is trying to observe the relative shifting between wires during bending. If the wires do have 
some relative displacement, then this will cause the black strip to be misaligned along the diameter of the 

rope. Additionally, if the width of the black stripe changes, this can also give an estimate of the strains 
experienced by the outer fiber of the outside wires.  

 

 
4.1.4 Results of bending test 

 
The loading scheme for the bending tests was similar to the proof load tests. First, a loading cycle up to 10% 

MBL (30kN) was introduced to eliminate the initial settlement of wires. The following load cycle loaded the 
rope until failure starting from zero. Additionally, a pretension of 6 kN was initially applied before the first 

load cycle to install the rope and achieve the setup illustrated by Figure 4.4. With the nominal breaking 

capacity of the rope determined, a comparison was made with the results of the bending test to come up 
with the reduction in capacity due to bending. Table 4.4 summarizes the main results obtained from these 

experiments.  
 

Table 4.4 - Summary of bending test for 20 mm 6x25F-IWRC slings. 

Sample D/d 
Break load 

[kN] 
Machine 

elongation [-] 
Capacity 

Reduction 

B1 1 373.3 0.0383 42.6% 

B2 1 366.2 0.0352 43.7% 

B3 1 365.2 0.0392 43.8% 

B4 1.5 376.8 0.0354 42.0% 

B5 1.5 346.3 0.0283 46.7% 

B6 1.5 339.6 0.0285 47.8% 

B7 2 357.9 0.0298 44.9% 

B8 2 380.5 0.0297 41.5% 

B9 2 386.6 0.0302 40.5% 

 
 

The capacity reduction due to bending is plotted and shown in Figure 4.5. Comparing the results with both 
the DNVGL and IMCA standard, the experimental values generally show that the reduction in capacity is 

higher than predicted.  
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Figure 4.5 - Reduction in capacity due to bending of 20 mm 6x25F-IWRC slings. 

 

Figure 4.6 shows the load-elongation curves of the samples tested with a D/d=2 setup. Graphs for all samples 
can be found in Appendix C. Samples B8 & B9 exhibited almost identical behavior and break load while 

Sample B7 differed slightly due to its lower break load. Interestingly, the relatively gradual slope usually 
characteristic of the initial settlement region can still be seen even after application of the first loading cycle. 

This is because this region correlates to the loading applied as the rope is fully conforming around the pin. 
As this process develops, the elastic region becomes clearer until it becomes the governing relationship 

almost all the way up until failure. It is interesting to note that the plastic region for all samples is significantly 

small compared to what is expected from typical rope failure.  

 

Figure 4.6 - Load-elongation curves of 20 mm 6x25F-IWRC samples tested using a D/d=2. 
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The additional measurement techniques applied during this experiment proved to yield some interesting 

observations. For instance, the relative shifting of wires was confirmed using the thin line painted around 
the circumference of a rope cross section. Illustrated in Figure 4.7a, the initial painting of the line marks the 

position of the strands before the rope is bent. Then, Figure 4.7b shows the position of the line after the 
rope has been installed onto the test bench with a pretension of about 3% of MBL. Here, it can be clearly 

seen that the strands have shifted relative to each other in the bending process.  

 
 

   

Figure 4.7 - Line marker before bending (a). Line marker after bending and pretension (b). 

 

The white spray paint also provided some interesting insights. As the rope was being loaded, some of the 
outer strands begin twisting due to the torque produced from elongation. This became clearly evident since 

the white spray paint was only applied to the outer half of the strand. Therefore, as the strands started 

twisting, the unpainted portion became visible. This phenomenon is best observed with video, but Figure 4.8 
also provides a good example of the difference before and after loading is applied.  

 
 

   

Figure 4.8 – Change in positioning of select strands at start and end of loading. 
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One of the clearest observations was the ovalization phenomenon. As explained in Section 2.3, the rope 

cross section starts to take an oval shape as it tries to conform around the shape of the pin due to the 
applied loading. Figure 4.9 clearly illustates the drastic change in the rope cross section before and after 

loading is applied.  
 

   

Figure 4.9 - Ovalization of rope before and after loading is applied. 

Perhaps one of the most intriguing observations was that the origin of rope failure was more or less the 
same for all specimens, regardless of D/d ratio. The location where rupture occurred was consistently traced 

back to the strands illustrated by the callout in Figure 4.8. These rightmost strands were almost always the 
first to rupture in all samples.  

 
 

4.1.5 Additional study  

 

Given the results found in the bending test, it was decided that a study on the ovalization of the wire rope 
could also yield interesting insights. As the rope conforms around the curvature of the pin, it also wants to 

conform to the shape of the pin in the direction perpendicular to the rope axis. The question posed is how 

would the results be affected if the rope were to be constrained in the perpendicular direction to prevent 
the rope from ovalizing? To test this, Figure 4.10 shows how the bending setup had to be modified by 

inserting two spacer plates near the rope bend in order to prevent ovalization. The distance between the 

two spacer plates was approximately 24 mm.    

 

Figure 4.10 – Bending setup modification for ovalization study. 
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Table 4.5 provides a list of the samples that were used in this study. The 20 mm 6x36WS-IWRC-x rope type 

naming convention is used to differentiate this rope from the one used in [37] since their geometric properties 
are slightly different and they are made by different manufacturers. The first three samples were tested in 

the same bending setup as described in 4.1.3, while the last three samples were tested with the modification 
applied. The reason this rope type was chosen for this study was because it has a lay angle that is almost 

identical to the 6x25F-IWRC rope. Hence, the results could also be used to directly compare the two 

configurations by keeping the lay angle constant.  
 

Table 4.5 – Description of test samples used in the additional study. 

Rope Type 
Diameter 

(mm) 
# of 

Samples 
Total Length 

(mm) 
D/d  

Setup 
Type 

6x36WS-IWRC-x 20 3 1200 2 Original 

6x36WS-IWRC-x 20 3 1200 2 Modified 

 
 

The results of the additional study are summarized by Table 4.6. The reduction in capacity was calculated 

using Equation (29). The measured proof load used in the calculation was assumed to be the same as the 
results obtained from the 6x25F-IWRC tests. The certificates of both ropes provided by the manufacturer 

indicated that the difference between the two certified measured proof loads was negligible. More 
information about the properties of the 6x36WS-IWRC-x rope as well as the load-elongation curves can be 

found in Appendix D.  
 

Table 4.6 - Summary of experimental results from additional study. 

Sample Setup 
Capacity 

reduction 

Avg. capacity 

reduction 

C1 Original 38.2% 

37.4% C2 Original 35.5% 

C3 Original 38.6% 

C4 Modified 34.5% 

36.0% C5 Modified 37.2% 

C6 Modified 36.4% 

 

 
Generally, the results show that, based on the samples tested, the modification slightly improved sling 

capacity by 1.4% on average. Although this difference is small, it is important to note that the setup did not 

technically fully restrain the rope from ovalizing.  
 

Using the observations obtained from the original experiments, special attention was put on the origin of 
failure. Figure 4.11 shows a before and after failure image of one of the samples. The origin was previously 

identified to consistently fail at a certain location indicated by the black mark in the before image. Looking 
at the after image in combination with video, it was quite apparent that the marked strand was indeed the 

first to fail. This technique was applied to a majority of the samples and the relationship consistently stayed 

true.  
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Figure 4.11 - Before (left) and after (right) image of marked failure location technique. 

        
 

4.1.6 Statistical analysis 
 

A brief statistical analysis was conducted on the results of the small-scale experiment. It is important to note 

that the data obtained should be considered as a small sample of a much larger population. The statistical 
values calculated here may deviate from those of the actual population, however, they are accurate enough 

to draw reasonable trends and conclusions.  
 

Table 4.7 provides a summary of the statistical values concerning the proof load test. As mentioned 
previously, Sample P3 was omitted due to the premature failure mode of the rope. Overall, the remaining 

two samples exhibited consistent failure characteristics with very little deviations.  

 

Table 4.7 - Summary of statistical values for 20 mm 6x25F-IWRC proof load test. 

Sample Break load [kN] Machine elongation Sensor elongation 

P1 326 0.0548 0.0374 

P2 324 0.0540 0.0357 

Average 325 0.0544 0.0366 

 
 

Using the three samples per D/d ratio, several statistical parameters were derived from the data obtained 
from the bending test. Table 4.8 provides a summary of each statistical variable calculated for the three 

different D/d ratios. A 95% confidence interval (t-test) was constructed to give a relative idea of the range 

of capacity reductions based on the experimental data.    
 

Table 4.8 - Statistical summary of capacity reduction due to bending for 20 mm 6x25F-IWRC slings. 

 D/d = 1 D/d = 1.5 D/d = 2 

Average 43.3% 45.5% 42.3% 

Sample standard deviation 0.7% 3.1% 2.3% 

95% Confidence interval (+) 45.0% 53.1% 48.1% 

95% Confidence interval (-) 41.7% 37.9% 36.5% 
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Figure 4.12 illustrates these statistical findings in comparison with the DNVGL and IMCA formula. The overall 

behavior as the D/d ratio increases shows a smaller reduction in capacity. However, this behavior was not 
as pronounced as predicted by DNVGL and IMCA standards. Moreover, the average of D/d=1 is lower than 

D/d=1.5. This is a rather obscure observation that may be the result of insufficient data points. Perhaps if 
the number of samples increases, the averages would balance to follow the expected relationship. 

Nevertheless, the most important observation from this plot is the fact that the majority of samples had a 

higher capacity reduction than that predicted by both standardization societies. 

 

Figure 4.12 - 95% confidence intervals for capacity reduction of 20 mm 6x25F-IWRC sling experimental results. 

 

 

4.2 FULL-SCALE EXPERIMENT 

The full-scale experiment is done on 77 mm 6x36WS-IWRC steel wire rope slings. This experiment is of great 

significance because one of the main research questions of this thesis is to determine the actual capacity of 
large diameter slings used in the offshore industry. A total of four tests were conducted. The first tests were 

used to determine the measured breaking load and the rest tested the sling capacity in a bent configuration. 
D/d ratios of approximately 1.5, 2 and 2.5 were observed. A 1000-ton test bench at the Stevin II Laboratory 

located in the Delft University of Technology was used to perform all the tests. Custom components had to 

be designed for the test setups in order to create the desired loadcases.  
 

 
4.2.1 Setup #1 – Proof load test  

 

Again, the purpose of the proof load test is to determine the actual breaking capacity of the steel wire rope 
under investigation. The loading scenario is illustrated by Figure 4.13. A more detailed overview of the setup 

including dimensions can be found in Appendix E. The loading is applied by the hydraulic cylinder which 
pushes up on the topmost block transferring the force through four pull rods. These four pull rods are 

attached to a custom padeye block which acts as the anchor point for one end of the sling. On the other 
end, the sling is restrained via a pin, which transfers the force through custom plates that are rigidly attached 

to the test bench columns to create a fixed connection point.  

 



4.2 Full-scale experiment  

 

56  

          

Figure 4.13 - Setup of proof load test for 77 mm 6x36WS-IWRC sling. 

 

The measured breaking load and load-deformation behavior were again the main priority of this test. The 
machine can provide all this data, however, the actual elongation of the specimen was also checked by 

attaching LVDT sensors similarly as in the small-scale test. Table 4.9 briefly describes the parameters of the 
sling tested.  

 

Table 4.9 - Sample description of full-scale proof load test sling. 

Parameter Value 

Rope type 77 mm 6x36WS-IWRC 

MBL 4751 kN 

Rope length 3000 mm 

LVDT measurement length 3000 mm 

Pre-stretch 10% MBL 

  

 
4.2.2 Results of proof load test 

 

The proof load test was conducted on one sample of a 77mm 6x36WS-IWRC steel wire rope sling. The main 
parameters of interest are given in Table 4.10. 
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Table 4.10 - Summary of proof load test results for 77 mm 6x36WS-IWRC sling. 

Parameter Value 

Measured break force 5138.1 kN 

Measured elongation at break (machine) 0.0492 

Measured elongation at break (sensor) 0.0394 

Loading speed 0.175 mm/s 

 

 
The test followed all requirements set by ISO 10425:2003(E). The break point was estimated to be around 

1900 mm from the nearest socket, which constitutes a clean break as described in section 4.1.2. The 

measured break force was found to be about 8% higher than the MBL, which is within the predicted range 
of possible values. As expected, the rope did not completely sever in half. Two outer strands remained intact 

while the rest had total separation. A vast majority of the wires failed in necking with a few wires failing in 
shear (Figure 4.14a). The core strand also severed completely, which is expected since it usually experiences 

more stress than the outer strands. Interestingly, many of the wires in the core failed in shear (Figure 4.14b). 
This can be attributed to the fact that the helical contraction of the outer strands produces a high normal 

force on the core, which increases the friction and introduces shearing stresses on the wires.  

 
 

    

Figure 4.14 - Typical failure mode of outer strand wires due to necking (a) and core wires due to shear (b). 

       

The load-elongation curve illustrated by Figure 4.15 also showed an expected relationship. A relative 

elongation difference of about 1% was found between the machine and sensor output. Again, this error can 
be attributed to the elastic deformation of all the components of the test bench. The region where initial 

settlement occurs is barely noticeable indicating that the preload applied to the rope beforehand was 
successful. Wire breaks began to occur once the rope entered the plastic region, which can be identified by 

the small dips in force seen in the plot. This made sense since the rope was loaded for the first time whereas 
wire breaks can usually be heard earlier during a break test of an older rope.      
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Figure 4.15 - Load-elongation curve of proof load test for 77 mm 6x36Ws-IWRC sling. 

 

 

4.2.3 Setup #2 – Bending test 
 

The setup for the bending test utilizes the same custom pieces built for the proof load test. The loading 
scenario is illustrated by Figure 4.16. More detailed information and drawings can be found in Appendix E. 

To achieve this, the custom plates had to be reoriented and repositioned on the test bench columns. The 
two sling ends were both attached to the custom padeye block and bent around a custom pin. The shape of 

the pin resulted from the need to resist the large forces while also achieving the desired D/d ratios.  
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Figure 4.16 - Schematic overview of bending test setup for 77 mm 6x36WS-IWRC slings. 

 

Test setups with different D/d ratios were created by utilizing custom-made sleeves. These sleeves are 
illustrated by Figure 4.17 and are made to fit around the custom pin as shown. Using both the custom pin 

and custom sleeves, D/d ratios of 1.5, 2 and 2.5 were achieved. This differed from the small-scale tests 
because ratios below 1.5 were difficult to achieve practically in the full-scale setup due to the high forces 

involved.  

 

Figure 4.17 - Custom sleeve pieces used to achieve desired D/d ratios for full-scale bending test. 

 
In addition to the break load, several other measurement techniques were implemented to gain more insight 

into the behavior of the rope. Using the machine displacement and applied loading, a force-displacement 
relationship was observed for each sample. In Sample S3 & S4, eight strain gauges were attached at various 
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locations throughout the rope as indicated by the red marks in Figure 4.18. Two strain gauges were attached 

to arbitrary wires in the west and east leg roughly 125 cm from each socket end and acted as control 
measurements since wires in that part of the rope experience stresses due to only the axial loading of the 

rope. Three strain gauges were attached to each side of the bend where wires experience stresses due to 
bending, contact and axial forces in the rope. The locations of the wires along the cross-section of the rope 

are illustrated by the figure. 

 

Figure 4.18 - Typical wire strain gauge locations throughout 77 mm 6x36WS-IWRC slings. 

 
In addition to strain gauges, Sample S4 was outfitted with another measurement technique. The six outer 

strands of the rope were spray painted different colors in the vicinity of the bend as seen in Figure 4.19. The 
main purpose of this technique is to easily keep track of strand continuity after failure. Typically, several 

strands completely sever in half near the bend and flail out from their original position making it difficult to 

match the ends together. However, with the painting technique, the strand ends can be intuitively matched 
using the corresponding colors.  

 

  

Figure 4.19 - Spray paint technique applied to outer strands near bend of 77 mm 6x36WS-IWRC sling. 
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A total of three samples were tested in this bent scenario with three different D/d ratios. Table 4.11 provides 

a description of the samples tested as well as any additional measurement techniques applied.  
 

Table 4.11 - Description of full-scale bending test samples. 

Sample Rope Type D/d  
Rope Length 

(mm) 

Additional Measurement 

Technique 

S2 77mm 6x36WS-IWRC 1.5 5720 - 

S3 77mm 6x36WS-IWRC 2 5770 Strain gauges 

S4 77mm 6x36WS-IWRC 2.5 5820 Strain gauges, painting 

 
 

 
4.2.4 Results of bending test 

 

The results of the bending tests conducted are summarized in Table 4.12. All samples were preloaded up to 
10% MBL and bent around a 110 mm radius of curvature by the rope manufacturer before delivery for ease 

of installation in the test bench at the Delft University of Technology. It is important to note that the test 
setup constrained the rope from ovalizing to a certain extent. The influence of this was tested in the additional 

study conducted in the previous chapter (4.1.5). The conclusion was that the influence in performance was 

negligible so there was no adjustments made to the results presented here.  
 

Table 4.12 - Summary of results from the bending tests conducted on 77 mm 6x36WS-IWRC slings. 

Sample D/d 
Break force 

(kN) 

Machine 

elongation (-) 

Reduction in 

capacity 

S2 1.5 5981 0.0427 41.5% 

S3 2 6689 0.0439 34.6% 

S4 2.5 6802 0.0439 33.6% 

 
 

Figure 4.20 shows the load-elongation diagrams of each bent sample tested. The measurement for each 
sample started with a preload of roughly 53 kN. Then, each specimen experienced elongation with a relatively 

small force applied as the rope was forming around the pin. It can be seen that as the D/d ratios increases, 
the duration of this phenomenon decreases. This is because a higher D/d ratio requires less change in rope 

curvature to fully form around the pin than a lower D/d ratio. Additionally, this can also be used to define 

the region where the change in rope curvature takes place. On average, this change ends between 20-25% 
of the MBL at which point the rope has taken on the curvature of the pin and begins to elongate elastically 

as seen in the figure. Observing the jagged lines at the end of the curves, Samples S2 & S4 had a relatively 
defined plastic region where multiple wire breaks were heard before rupture. On the other hand, Sample S3 

had a more brittle behavior with only a few wire breaks before complete failure.  
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Figure 4.20 - Load-elongation plots for bending tests of 77 mm 6x36WS-IWRC slings. 

 
The failure mode of wires in all samples was predominantly shear. Figure 4.21 displays a typical strand failure 

after a bending test. The wires near the breaking point are all unwound from their original position due to 
the large release of force at rupture. It is interesting to note that many wires show signs of shear in 

combination with cup-and-cone type of failure. This can be expected since the primary forces inside the 
wires near the rope bend are a combination of tensile, bending and contact.  

 

 

 

Figure 4.21 - Typical shear failure mode of wires after full-scale bending test. 
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The origin of failure was consistent throughout all samples as observed in the small-scale experiment. 

Although the exact break location is difficult to determine, an educated approximmation yielded reasonable 
accuracy. The origin of rupture was again consistently observed to happen at the outer strands indicated by 

the red callout shown in Figure 4.22. The images represent both side views around the rope-pin interaction. 
Interestingly, these regions also correspond to the rightmost strands of a right hand ordinary lay (RHOL) 

rope.   

 

    

Figure 4.22 – West (left) and east (right) elevation views of the rope bending around the pin. 

 
An insight into contact stresses was discovered while observing the rope after failure. As seen in Figure 4.23, 

there is a pattern of local deformations along wires in an outside strand. This can be directly related to the 
contact stresses between the core and outer strand wires that results from the helix shape and contact 

pressure from the pin-rope interaction. Furthermore, the core and outer strands are helically laid in such a 

way that their wires cross each other causing high local contact stresses. Due to the fact wires in the core 
are generally smaller than those in the outer strands, they create stress concentrations and cause the local 

deformations seen in the image. Additionally, these deformations were most prominent near the break 
location of the wire, indicating that these contact stresses could play a significant role in its failure.  

 

 

  

Figure 4.23 - Local contact deformations on outside strand wires of 77 mm 6x36WS-IWRC sling after bending test. 
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Local contact deformations were also observed on some of the custom pieces made for the test bench. Figure 

4.24a shows the damage experienced by the custom pin after testing Sample S2. Here, high concentrated 
stresses induced by the hardened steel wires have imprinted onto the custom pin. Figure 4.24b displays the 

custom sleeve after testing Sample S3. The deformation phenomenon due to the steel wires is even more 
evident in this case. Here, the imprints can be used to distinguish the exact locations of wires and strands in 

contact with the sleeve. Part of the reason the imprints were so well defined was because the sleeve was 

made from a lower grade steel than the custom pin. Interestingly, these imprints extended past the bend 
and up to the straight portion of the sleeve indicating that a full wrap angle of 180° was achieved although 

the test setup places the rope into a V-shape as seen in Figure 4.16. This can possibly be explained by the 
fact that the contact area increases as the rope tries to conform around the pin due to the high loading 

applied.   

 
 

 
 

(a) 

 

 
 

(b) 

Figure 4.24 - Local contact deformations due to wires on (a) custom pin and (b) custom sleeve. 
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5.0 RESULTS AND DISCUSSION 

 
Using the results obtained both analytically and experimentally, a comparison can be made between the two 

methods. Based on the rope types and sizes of interest as well as the observations found during the 

experiments, the main relationships that can be discussed are: 
 

 Proof load failure for all rope types; 

 Reduction in capacity between all rope types; 

 Experimental insights and observations.  

 
 

5.1 PROOF LOAD FAILURE 

The first step in determining the reduction in capacity of the slings is to obtain the actual breaking load of 
the rope. As discussed previously, these sorts of proof load tests are very common in the industry and are 

used to come up with the MBL of the rope, which is often used as a design parameter in engineering 

applications. However, the MBL is a conservative measure and normally not a good indicator of the actual 
rope capacity. Table 5.1 provides a summary of how the MBL compares to values predicted by the analytical 

model and the capacities obtained from the experiments.  
 

Table 5.1 - Proof load capacity of rope configurations based on analysis method. 

Rope Configuration MBL Analytical Model Experiment Lay Angle 

20 mm 6x25F-IWRC 279 kN 336 kN 325 kN 18° 

20 mm 6x36WS-IWRC 279 kN 330 kN 322 kN [37] 20° 

77 mm 6x36WS-IWRC 4751 kN 5210 kN 5138 kN 17° 

 

 
Overall, results showed good correlation to what was expected. The MBL was indeed lower than capacities 

obtained both analytically and experimentally. Additionally, the analytical model was consistently higher than 

the measured capacity obtained from experiments. This difference can be explained by the omission of 
additional coupling stresses due to torsion, bending and shear caused by the helical structure of the rope. 

The influence of these stresses varies depending on the lay angle as exemplified by Figure 2.25. This 
conclusion coincides with a study by Chen et al. [38] where it was found that as the lay angle increases, the 

tensile stiffness decreases and the torsional stiffness increases. Observing the resulting errors, inclusion of 

these additional stresses should be considered in the analytical model to obtain more accurate predictions. 
 

 

5.2 REDUCTION IN CAPACITY 

Part of the main research question is to investigate how the reduction in capacity due to bending varies with 

rope configurations of different sizes. This was achieved by considering a 6x36WS-IWRC rope configuration 
with two different sizes (20 mm & 77 mm) and then calculating the capacity reduction both analytically and 

experimentally. Figure 5.1 plots the corresponding results and compares them to the expressions 

recommended by both DNVGL and IMCA standards. The 20 mm 6x36WS-IWRC experimental data with a 
95% confidence interval was obtained from previous research [37].    
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Figure 5.1 - Reduction in capacity comparison based on different rope diameters.  

 

Generally, the results show that the 77 mm rope has a higher reduction in capacity than the 20 mm rope. 
Referring to the analytical study conducted in 3.2.3, it was deduced that the difference in capacity reduction 

was mainly due to the outer strand lay angle. The 77 mm rope has a smaller lay angle, which translates to 
higher bending strains that lower its capacity. The experimental results also follow this relationship when 

comparing the corresponding D/d ratios. With more data points, the relationship can be confirmed with 

higher confidence.   
 

The other main part of the research question is to discover how the reduction in capacity varies with different 
rope configurations. In order to investigate this, two different steel wire rope configurations were chosen 

(6x25F-IWRC & 6x36WS-IWRC) and then the reduction was calculated both analytically and experimentally. 

Figure 5.2 displays the different capacity reductions and also plots those predicted by DNVGL and IMCA 
standards. The experimental values displayed in the figure are based on a 95% confidence interval extracted 

from 4.1.6 (6x25F-IWRC) and previous research (6x36WS-IWRC) [37].  
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Figure 5.2 - Reduction in capacity comparison based on different rope configurations. 

 
The most evident observation that can be made from this plot is the consistent difference in capacity 

reduction between the two different rope configurations. Analytically, the 6x25F-IWRC rope has a reduction 
that is significantly higher than the reduction of the 6x36WS-IWRC. Based on the study discussed in 3.2.3, 

it was concluded that the higher capacity reduction of the 6x25F-IWRC was mainly due to increased bending 
strains caused by larger outer strand wire diameters and a smaller outer strand lay angle. This relationship 

was confirmed experimentally, however, the difference was not as pronounced as seen from the analytical 

model.  
 

For both studies, the differences between the analytical model and experimental results could be due to 
several factors. Firstly, the analytical model is heavily influenced by the bending stresses. As discussed in 

Chapter 2, there have been several approaches to calculating these bending stresses, but all of them consider 

scenarios with significantly smaller loading and curvatures. This means the method used in the analytical 
model as described in 3.1.2 may not be accurate enough for the scenario considered in this research.  

 
The results also show that the analytical model predictions were higher by the same proportion for the 

6x36WS-IWRC ropes, but not for the 6x25F-IWRC. This again could be attributed to the sensitivity of bending 
strain calculations. Furthermore, this also shows that the wire diameter ratios play a major role in the bending 

strains.  

 
Another important observation to highlight is that many of the analytical and experimental results shown 

here actually exceed the reductions in capacity suggested by DNVGL and IMCA standards. This is rather 
obscure as it would be expected that the suggested reductions have a level of conservatism built-in. The 

source of error is difficult to assess without knowing the background into how these expressions were 

derived. However, some explanations for these differences could possibly be related to experimental setup. 
Although the experiments in this thesis followed the guidelines specified by ISO 10425:2003(E), there are 

no testing standards established for the bent configuration. Hence, possible sources of error are: 
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 Ovalization restriction at bend (pin verses sheave); 

 Loading speed; 

 Rope configuration; 

 Friction between rope and pin surface. 

 

 

5.3 EXPERIMENTAL INSIGHTS 

In addition to the main parts of the research question, there were several noteworthy insights that were 

gained throughout the experiments.  
 

Mentioned consistently in the experimental observations was the failure location. It was noticed that the 

failure regularly originated within specific strands throughout both the small and full-scale experiments. 
Figure 5.3 illustrates a simplified 3D model of the 20 mm 6x36WS-IWRC rope as it is bent with a D/d=2. 

Here, the two blue colored strands represent the locations where initial rope failure seemed to constantly 
occur.  

 

   

Figure 5.3 - Simplified 3D model of bent 6x36WS-IWRC with a D/d=2. 

 

There are several observations that might help to explain this consistent behavior. First, these locations 
always correspond to be the rightmost strands of a RHOL rope when considering a side view of the bend. 

More importantly, these strands also tend to be furthest from the pin throughout the majority of the bend. 
Another consistent observation made throughout the experiments was that the strands closest to the pin 

were usually the ones that remained intact after failure. These are the strands not shaded in blue as depicted 
by Figure 5.4.  

   

Figure 5.4 - Top view of simplified 3D model of bent 6x36WS-IWRC with a D/d=2. 



 5.0 Results and discussion 
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These strands experienced heavy deformation as they were forced to conform around the shape of the pin 

with increasing load. Resulting from this interaction, high normal forces are created between the wires, which 
also causes an increase in friction. If the friction generated is high enough, this will prevent wires from sliding 

against each other. Consequently, the wires can be considered to bend around the strand or rope neutral 
axis rather than their own. This causes the wires on one half of the strand or rope to go into compression. 

However, this compressive force in the individual wires is constantly being offset by the increasing tensile 

axial loading applied by the test bench. This phenomenon is illustrated by Figure 5.5.  
 

 

Figure 5.5 - Strains experienced by wires in different sections of the rope during loading. 

 

Considering that wires farther away from the pin have more mobility and are less affected by the pin-rope 
interaction, they do not develop this uniform compressive force and thus experience the full onslaught of the 

increasing tensile axial loading. Globally, this causes wires closest to the pin to be less stressed than those 

on the outside, which may be the reason why the strands depicted in Figure 5.3 are the ones to fail first. 
This theory may exagerate this effect and can be considered comparable to the rope having a beamlike 

behavior, but the main idea behind it is that these specific types of nonlinear interactions between wires are 
what will govern how the rope will behave during bending. 

 

The ovalization phenomenon was another important observation made throughout the experiments. In the 
additional study conducted in 4.1.5, it was concluded that restricting the rope from conforming to the pin 

shape (ovalizing) gave a slight increase in capacity of 1.4% on average. However, since the rope was not 
fully restricted, some ovalization was allowed to occur. The analytical relationship described in 2.3.4 showed 

that the ovalization stress increased greatly when the groove radius initially became bigger than the rope, 

but then gradually decreased (Figure 2.23 & Figure 2.24). Consequently, it could be possible that this increase 
in capacity is also bigger if the restraint was closer to the rope diameter.  

 
Another insight was gained from the tests done in the additional study regarding the reduction in capacity. 

Since the specimens used for the tests were a different 20 mm 6x36WS-IWRC rope than the original one, 
the results could be used to make additional observations. Figure 5.6 below plots the average capacity 

reduction with a D/d=2 of all four rope types used throughout these experiments. 

 
 

 
 

 

 
 

 
 

 
 



5.4 Additional observations  
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Figure 5.6 - Average reduction in capacity of all four rope types with a D/d=2. 

 

The rope type yielding new information is the one highlighted in yellow. An important characteristic of this 

rope is that it has the same lay angle as the 20 mm 6x25F-IWRC. Comparing the two configurations directly 
using the plot above reconfirms that the wire diameter ratios play an important role in capacity reduction. 

Furthermore, when compared to the original 20 mm 6x36WS-IWRC, it has a slightly higher capacity 
reduction. This supports the conclusion that a lower lay angle reduces capacity. Although, when compared 

to the 77 mm 6x36WS-IWRC, this relationship does not hold, their lay angles are very close and the single 
data point from the full-scale experiment may not be a good representation of the actual average.  

 

 

5.4 ADDITIONAL OBSERVATIONS 

In addition to the insights mentioned, there were several observations made throughout the research process 

that raised further questions and could be of interest to investigate.  
 

The strain gauges applied to Sample S3 & S4 yielded obscure results. The corresponding force-strain curves 

for both samples can be found in Appendix F. The strain output from the wires used as a control were either 
higher or equal to wires around the bend. Additionally, some strain gauges were damaged throughout the 

process. Further post-processing of this data is necessary and may result in more logical findings.    
 

Several observations relating to contact stresses were made throughout the experiments. As discussed in 
section 4.2.4, there were several instances of local deformations near the failure location of wires in the 

outer strands. These deformations formed a pattern that can be related to the cross lay contact between 

wires in the outer and core strands. The occurrence of these deformations was observed throughout most 
samples in all experiments so it would be useful to investigate the influence of this phenomenon on the rope 

performance.  
 

The boundary condition set by the pin-rope interaction exhibited several effects. One that was consistently 

observed was twisting of some of the outer strands during loading. Depending on the strand location, the 
extent of this twisting varied, but was difficult to quantify. Away from the bend, along the straight portion of 

the sling, the overall helical twisting of the outer strands was noticed to visibly occur only once the rope had 
fully conformed to the curvature of the pin. The influence of these observations on wire stresses was not 

considered, but could be worthwhile to further investigate.   
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6.0 CONCLUSION 

 
The main objective of this study was to investigate the reduction in capacity of steel wire rope slings 

subjected to forced bending. The approach to answering the main research question involved doing a 

literature study, creating a predictive analytical model and then performing experiments for validation. Each 
aspect of the approach was completed successfully, and insights gained from each one led to the conclusions 

drawn to answer the main research question.  
 

The literature study consisted of investigating past research done on steel wire ropes. Here, different 

approaches to modelling wire ropes were observed. Using equations mainly obtained from the thin-rod theory 
modelling approach, the main parameters that governed the behavior of wire ropes were identified. Short 

sensitivity studies were conducted on these constitutive equations and it was shown that properties such as 
lay angles, wire diameters and stress-strain relations played a vital role.  

 
Based on the findings of the literature study, an analytical model was created that aimed to predict the 

reduction in capacity of steel wire ropes due to bending. This model analyzed the behavior of each individual 

wire when subjected to loading and then applied a failure criterion to determine when the entire rope cross-
section would fail. The case studies investigated by the model yielded that the individual wire diameter to 

rope diameter ratio was the governing parameter along with a smaller contribution from the lay angle when 
considering bent ropes.  

 

Conducting experiments was the final step in the project. First, small-scale experiments were done to test 
the reduction in capacity due to bending of 20 mm 6x25F-IWRC slings. The tests were successfully executed 

and results for three different D/d ratios were obtained (D/d=1, 1.5, 2). During testing, several observations 
were noted about rope behavior such as relative strand displacement, strand twist and failure location 

consistency. Additionally, full-scale tests were conducted on 77 mm 6x36WS-IWRC slings used in the offshore 
industry. These tests also yielded observations that were consistently found in the small-scale experiments 

and more. An additional study was performed using the small-scale test setup to examine influence of the 

rope ovalization on capacity.      
 

Using findings from the literature study, analytical model and experiments, conclusions regarding the main 
research question were drawn. First, the results of the analytical model yielded reductions that were 

consistently higher than experimental results for all rope types and sizes under investigation. The errors were 

relatively small and could be used as a conservative estimate given the limited number of experimental data 
points. However, the error for the 20 mm 6x25F-IWRC was significantly high and suggests that more accurate 

calculations of the bending strains are required to improve model accuracy. Overall, the following insights 
were gained when considering the reduction in capacity of slings subjected to bending based on the findings 

in this thesis: 

 

 Rope configurations play a vital role in capacity reduction. The number of wires in an outer strand 
determines the diameters of those wires. A smaller amount of wires means that the diameters will 

be larger causing the bending strains to also be higher. Ultimately, this causes a higher reduction in 
capacity.  

 The lay angle of the outer strand also has an effect on rope capacity. Analytically, it was observed 

that a higher lay angle results in lower bending strains when calculating the change in curvature of 
individual wires sliding against each other. Overall, the analytical model predictions and experimental 

results supported this relationship.  

 The diameter size of the wire rope proved to have little influence on the reduction in capacity due 

to bending. The difference in capacities between the 6x36WS-IWRC configurations was assumed to 
be caused by the difference in lay angles.  

 An additional study was done to examine the effect of rope ovalization. The results showed little 

influence if this was prevented, but there are grounds for further investigation.  

 The expressions recommended by DNVGL and IMCA require further clarification as results in this 
thesis show they are not conservative enough for certain D/d ratios and ropes.   
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7.0 RECOMMENDATIONS 

 
Resulting from the research conducted to investigate the reduction in capacity due to bending of steel wire 

ropes are several recommendations for improvements and future research. The main topics include 

improvements to the analytical model, utilizing numerical modelling approaches, conducting more 
experiments and investigating alternative approaches.  

 
Analytical Model Improvements 

As with most analytical models, the one presented in this thesis does not perfectly represent reality. The 

potential flaws and possible sources of error have already been discussed. Some suggested improvements 
include: 

 

 Incorporation of additional stresses such as torsion, moment and shear resulting from the helical 
structure of the rope should be implemented into the current model. This would help improve the 

prediction of the actual breaking load for both proof load and bending type tests.  

 Calculation of the bending stress should be improved by considering more complex methods which 
accurately incorporate the double helical structure of the stranded rope configurations. 

 The resulting contact stresses from the pin-rope interaction have proven to influence wires near the 

bend and should therefore be incorporated into the model. Consequently, this would also likely mean 

that the friction forces generated will increase due to the higher normal forces between layers.  

 A strain area approach should be implemented to find the stress state of individual wires during each 
load step. This could help improve the failure criteria by more accurately incorporating the wire 

cross-sectional strain resulting from the different loadings. This would also yield a better 
representation of how the bending strains affect the individual wire capacity.  

 The current model simplifies calculations by considering only the governing outer strand. Expanding 

the model to make the calculations for every wire in every strand while also finding a way to 

effectively visualize this data could bring forth interesting insights. 
 

A new approach to the analytical model should also be considered. As discussed in previous research, there 
are many different techniques that have been used by authors to model steel wire ropes. Some have been 

proven more beneficial in modelling certain aspects than others. For instance, the semi-continuous models 
could be used to model the outer strands as spiral ropes while the core can be modelled using thin-rod 

theory. Overall, finding a way to compatibly combine some select theories into an analytical model could 

yield more accurate results.  
 

Numerical Modelling  
Conducting a numerical analysis could prove to be the next best step in discovering more insights into the 

behavior of steel wire rope. Specifically, gaining more knowledge about the effects of the pin-rope interaction 

could help in discovering the governing stresses that ultimately cause failure of the wires. As pointed out 
earlier, numerical modelling of wire ropes involves an enormous amount of computational power. To 

overcome this, a researcher should start with a simple model, verify the resulting behavior and then gradually 
increase complexity. Special attention should be made into exploring the use of different element types and 

friction models. Additionally, custom scripts may need to be implemented into FEA software to model effects 
such as the redistribution of loading after a wire failure.  

 

Experiments 
Performing experiments is one of the best ways to gain insights and validate the behavior of steel wire ropes. 

Even though the experiments conducted throughout this thesis have yielded valuable discoveries, they have 
also sparked interest in additional studies such as:  

 

 The short additional study on the rope ovalization raised questions that require further investigation. 

An experiment can be set up where a bent sling is tested with different levels of restrictions. The 
results can then be compared to the theoretical predictions discussed in 2.3.4 to see how the sling 

capacity is affected, especially when no ovalization is allowed to happen.  

 The stress-strain relationship of wires in all layers is an interesting parameter that is also important 
for the analytical model. Although the manufacturer provides the ultimate strength of the wires, their 

stress-strain relationship is not disclosed. Hence, conducting tests to obtain this data would provide 
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valuable input for the analytical model. Conducting these wire tests for several different rope 

configurations may lead to a general pattern between wire behavior and layer location in the rope. 
If this is achieved, general stress-strain relationships can be defined and used for ropes without 

having to conduct individual wire tests every time. In conjunction with these tests, strain gauges 
should be implemented to determine if they can indeed be used to accurately measure wire 

elongation.  

 An experimental insight showed that the failure consistently originated within two specific strands 

as depicted in Figure 5.3. Since all the ropes tested in this thesis were RHOL, it would be interesting 
to see if the same strands, but on the opposite side of the rope axis would be the ones to fail 

consistently for a LHOL rope.  

 There is a definite need for additional data points. Hence, repeating certain tests in order to gain 
more data would give a better statistical overview that would allow the researcher to draw 

conclusions with more confidence.  

 There is also interest in performing new experiments that test different rope configurations and/or 

lay angles that would help validate if the conclusions drawn here hold true.  
 

Although not specifically related to this research, the reusability of slings is also an interesting topic. 
Currently, bent slings used in engineered lifts are commonly disposed after only a single lift. These lifts 

always adhere to the proper working load limit of the slings so it is plausible to assume that any reduction 
in capacity resulting from one load cycle is minimal. Hence, it would be interesting to investigate the extent 

of this reduction and test if the integrity of the sling remains. The results can either be used to inspire 

confidence in sling reusability or help justify the slings being considered consumable after one load cycle. 
 

Alternate Approaches 
In addition to common approaches such as analytical and numerical models for predicting wire rope capacity, 

a possible alternative option is utilization of neural networks. As discussed, accurate analytical models are 

both difficult and time consuming to create while full numerical models are too computationally intensive to 
run. Alternatively, when it comes to very nonlinear data sets, neural networks are becoming a very popular 

approach and their benefits have been implemented into many different applications. The idea behind this 
machine learning method is to use an existing data set to “train” a computer model, which can then be used 

to estimate a desired output when given new data. More specifically, data from experiments such as the 
ones conducted in this thesis can be used to train the model with the goal of predicting rope capacity. One 

key issue that must be investigated is choosing the proper input variables that are considered critical to 

predicting rope capacity. This could be rope configuration, global rope stress (S/d2), D/d ratio, lay angle, etc. 
These parameters should be carefully chosen using previous research as well as insights discussed in this 

thesis. Obtaining the amount of quality data that can be used to train the model is also a challenge. To do 
so, it may be suggested to form a partnership with a rope manufacturer to obtain data or carry out more 

tests. Once this has been overcome, the next step would be selecting the proper machine learning algorithm 

that is suitable for the data set and desired output. After the model has been trained, new data should be 
presented to verify how close the resulting model estimate is to actual capacity.  
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APPENDIX A: USER INPUT 

 

The behavior of steel wire ropes is heavily dependent on their geometric properties. Hence, the user input 
is an important step in ensuring that the results from the analytical model are valid. A summary of the 

required parameters that must be given by the user in order to reconstruct the rope geometry in the model 
can be found below. A figure is also provided for clarity.  

 

 
 

 

Wire rope build-up

• number of strand layers

• number of strands in a layer

• strand winding radius

• strand lay length

• MBL

• applied force per time step

Individual strand build-up

• number of layers in strand

• wire diameter of each layer

• number of wires in each layer

• lay length of wires in strand

Stress-strain data

• ultimate stress

• ultimate strain

• stress-strain plot/data points

Material properties

• friction coefficient between strands

• friction coefficient between wires

• poisson ratio for strands

• poisson ratio for wires
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APPENDIX B: SMALL-SCALE EXPERIMENT TEST SETUP 

 

The test setup for the small-scale experiment involved designing custom pieces in order to achieve the 
desired loadcases. This setup was originally designed by de Jong [37]. The pieces required for the proof load 

test are presented first followed by the pieces for the bent sling. The slings were all fitted with standard open 
spelter sockets for a 20 mm rope.  

 

 
Proof load test 

 
 

 
 
 

 

 
 

 
 

 

 
 

Fixation plates 
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Bending test 

 

 
 
 

Main plate assembly 

D/d pins 
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Top fixation plate 

Bottom fixation plate 

Main assembly pin 
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APPENDIX C: LOAD-ELONGATION PLOTS (SMALL-SCALE EXPERIMENT) 

 

The load-elongation curves for all samples in the small-scale experiments are presented here. The first three 
figures show the plots for proof load samples P1, P2 and P3, respectively. Both the test bench output and 

average LVDT sensor reading are shown for each sample.  
 

The remaining figures are related to the bent samples tested in the small-scale experiment. Each plot 

compares the resulting test bench output of the bent samples based on the D/d ratio.   
 

 

Figure C.1 – Load-elongation curves of Sample P1 from small-scale experiment. 
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Figure C.2 – Load-elongation curves of Sample P2 from small-scale experiment. 

 

 

Figure C.3 – Load-elongation curves of Sample P3 from small-scale experiment. 
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Figure C.4 - Load-elongation curves of bent samples with D/d=1 from small-scale experiment. 

 

 

 

 Figure C.5 – Load-elongation curves of bent samples with D/d=1.5 from small-scale experiment. 
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Figure C.6 – Load-elongation curves of bent samples with D/d=2 from small-scale experiment. 
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APPENDIX D: ADDITIONAL STUDY SUPPLEMENT 

 

The information presented here provides additional information about the 20 mm 6x36WS-IWRC-x rope used 
in the additional study described by section 4.1.5. Two tables summarize the major rope characteristics and 

geometric properties obtained from the certificate provided by the manufacturer. The subsequent figures 
represent the resulting load-elongation curves from the tests conducted for the additional study.  

 

 

Table D.1 – Rope properties of 20 mm 6x36WS-IWRC-x. 

 20 mm 6x36WS-IWRC-x  

Lay type RHOL 

Strand lay angle 18° 

Strand construction 1-7-7+7-14 

Grade 1960 N/mm2 

Coating Galvanized 

Lubrication A2 

   

 

Table D.2 – Individual wire properties in outer strand of 20 mm 6x36WS-IWRC-x.  

Wire Diameter 

(mm) 

Ult. Tensile Strength 

(N/mm2) 

1.10 2013 

0.91 2157 

0.70 2141 

0.94 2050 

1.26 2046 
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Figure D.1 – Load-elongation curves of samples with D/d=2 from additional study without restraints for ovalization. 

 

 

 

Figure D.2 – Load-elongation curves of samples with D/d=2 from additional study with restraints for ovalization. 
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APPENDIX E: FULL-SCALE EXPERIMENT TEST SETUP 

 

The test bench used for the full-scale experiment is illustrated by the figures below. Additional custom pieces 
had to be designed in order to be able to test the desired loadcases and are labelled by the appropriate 

callouts. Dimensions for the custom pieces can be found in the subsequent figures, which were taken from 
detailed drawings created at Allseas. 

 

 

 

Figure E.1 – Overview of proof load test setup for full-scale experiment. 
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Figure E.2 – Overview of bending test setup for full-scale experiment. 
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Figure E.3 – Custom plate and custom cheek plate #1 & #2 assembly. 

 

  

 
 

Figure E.4 – Custom padeye. 
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Figure E.5 – Custom pin #1 (top) and pin #2 (bottom). 

 

 
 

 

 
 

Figure E.6 – Custom sleeves for D/d=2 (left) and D/d=2.5 (right). 
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APPENDIX F: STRAIN GAUGE DATA 

 

Data from the strain gauges can be found in the figures below. The strain gauge locations are based on 
Figure 4.18 and the nomenclature for the units around each bend are defined by the corresponding compass 

direction. In Sample S3, six out of the eight strain gauges were functional while only five of eight units 
worked for Sample S4. The plots show the test bench force output against the strain gauge output.  

 

Figure F.1 – Force-strain curves of strain gauges in Sample S3. 

 

Figure F.2 - Force-strain curves of strain gauges in Sample S4. 
 


