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Mekelweg 4, 2628 CD Delft, The Netherlands
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Abstract—In this paper, we introduce NDNFlow: an open-
source software implementation of a Named Data Networking
based forwarding scheme in OpenFlow-controlled Software-
Defined Networks (SDNs). By setting up an application-specific
communication channel and controller layer parallel to the
application agnostic OpenFlow protocol, we obtain a mechanism
to deploy specific optimizations into a network without requiring
a full network upgrade or OpenFlow protocol change.

Our open-source software implementation consists of both
an NDN-specific controller module and an NDN client plug-in.
NDNFlow allows OpenFlow networks with NDN capabilities to
exploit the benefits of NDN, by enabling the use of intermediate
caches, identifying flows of content and eventually performing
traffic engineering based on these principles.

I. INTRODUCTION

Recently, Software-Defined Networking (SDN) has gained
the interest of both research and industry. For research, SDN
opens up the possibility to implement optimizations that
previously were theoretical in nature due to implementation
complexity. For industry, SDN delivers a way to dynami-
cally monitor and control the network beyond the capabilities
of self-organized distributed traffic engineering and failover
mechanisms.

OpenFlow [1] is often considered to be the de facto standard
to implement SDN. Other emerging future internet architec-
tures, such as Information Centric Networking (ICN), intro-
duce application-specific forwarding schemes. In particular,
we believe that SDN and ICN can benefit from each other.
SDNs can benefit from the power of caching from ICNs and
in general need to be able to quickly adapt to new application-
specific forwarding schemes, such as ICNs. ICNs, on the other
hand, greatly benefit if they can be adopted with little effort by
already existing SDNs. Furthermore, the benefits of SDN to
IP, being greater management control and monitoring over the
network, also apply to ICNs. Finally, ICNs benefit from SDNs
as they can efficiently distribute content in partially upgraded
networks, removing the necessity to upgrade the full network
and thus easing the deployment and transition phase.

In this paper, we discuss our experiences in setting up an
SDN for the application-specific forwarding mechanism of
Named Data Networking (NDN) [2], a popular ICN imple-
mentation. Although this paper is dedicated to setting up an
SDN-supported ICN, our experiences and decisions also apply
to other forwarding mechanisms that may emerge.

In section II, we first discuss the initial principles of SDN
and OpenFlow. In section III, we explain the functionality
of the ICN implementation NDN. Section IV presents our
two initial proposals toward application-specific SDNs and
reasons why we think these approaches are infeasible for
standardization. Section V proposes our mechanism in which
we have divided the SDN in two layers: the regular OpenFlow
layer based on traditional forwarding mechanisms, supple-
mented with an application-specific layer. Section VI presents
the exact details of our implementation. Section VII presents
experimental measurements performed on NDNFlow. Finally,
section VIII concludes this paper.

II. SOFTWARE-DEFINED NETWORKING

In its initial form, Software-Defined Networking (SDN)
concerns separating the control plane (decision functions) from
the data plane (forwarding functions) in networks. This enables
a more flexible form of networking in which abstract business
rules in terms of robustness, security and QoS can be translated
into a network configuration policy. In turn, the configuration
policy can be configured in the networking devices using either
an abstract configuration interface (such as OpenFlow [1],
OpenFlow Config [3], OVSDB [?], ForCES [?] or NetConf
[?]) or vendor-specific configuration parameters.

SDN allows applications to request QoS parameters on-the-
fly from a network control agent. This enables scenarios in
which applications can offer guaranteed quality by negotiating
the service they need from the network and ultimately pay for
that service for the time they need it.

Software-Defined Networking is often associated with the
network configuration protocol OpenFlow [1]. OpenFlow is
a vendor-independent protocol which can configure network
nodes both in advance, and in a reactive fashion. OpenFlow-
enabled switches connect to a single controller entity, which
configures the switches based on their topological properties
and predefined rules concerning routing, firewalling and QoS.
Additionally, when a switch receives a packet for which it has
no installed flows yet (i.e., it is a new connection not matching
any predefined rules), it sends this packet to the OpenFlow
controller. The OpenFlow controller performs access control
and computes the appropriate path for the new data flow and
configures all switches accordingly.



III. NAMED DATA NETWORKING

In this section, we summarize Named Data Networking
(NDN) [2] and its implementation CCNx [4]. CCNx im-
plements an Information Centric Network (ICN) by using a
route-by-name principle. In contrast to identifying by source
and destination IP addresses, NDN identifies Interest and
ContentObject packets by one or more name components (for
example, Bob could publish his holiday photos under the
name /bob.eu/holidayPhotos). A user-client requests content
by sending out an Interest containing a name describing the
desired information. Intermediate nodes on the path from
client to server forward the expressed Interest hop-by-hop to
the generator responsible for the requested name. When the
Interest reaches a node that has a cached copy satisfying the
description of the Interest, the Interest is dropped and the data
is delivered from cache. If not, the Interest travels the path
to the content generator, which creates a ContentObject and
delivers it to the client accordingly.

The resulting content is encapsulated in a ContentObject
and forwarded along the exact reverse path back to the client.
Functionally, each intermediate node administers the following
three tables in its memory:

1) The ContentStore (CS), which contains cached copies
of previously delivered content.

2) The Pending Interest Table (PIT), which stores recently
forwarded Interests and their originating interfaces.

3) The Forwarding Information Base (FIB), containing
forwarding rules based on the NDN names.

Each incoming Interest is compared to the content of the CS
to determine if it can be fulfilled from cache immediately.
If not, the packet name is compared to the PIT content to
prevent forwarding of duplicate requests. Finally, the FIB is
consulted to determine the forwarding actions. The Interest
and its originating interface are added to the PIT, enabling the
resulting ContentObject to travel to the requester by source-
based routing. Where IP prefix matches on a fixed number
of bits, NDN prefix matches on a variable number of sub-
sequent name components. With each subsequent component,
the Interest name adds a restrictive element to the possible
set of valid ContentObjects. For example, an Interest named
/bob.eu/holidayPhotos prefix matches a ContentObject for
/bob.eu/holidayPhotos/2013, as the requester did not specify
the exact holiday period or location.

IV. RELATED WORK

In order to use SDN and OpenFlow to set up ICN networks,
we have evaluated multiple techniques before coming to our
final proposal in section V. In this section, we discuss previous
initiatives and parts of our early work and argue why we think
these are not feasible for standardization.

A straightforward way to implement ICN using SDNs
is to implement ICN functionality into the Open vSwitch
specification and enhance the OpenFlow protocol to support
ICN names, as suggested in [5]. We, however, think the joint
maturing of both ICN protocols and the OpenFlow protocol

will increase the complexity of realizing a stable standard-
ization of OpenFlow that supports both regular IP/Ethernet
forwarding and ICN. As [6] shows, the concept of naming in
NDN is, among others, still subject to further optimization to
decrease routing table size and thereby increase the forwarding
efficiency. Given that the standardization of OpenFlow for
regular packet forwarding is already a complex task, chances
that standardization will include application-specific forward-
ing schemes are small.

Even if standardization would include an ICN protocol, we
foresee a rise in application-specific forwarding schemes in
general to optimize the Internet for the most frequently used
applications. One application-specific adaptation of OpenFlow,
or any SDN paradigm for that matter, would exclude other
application-specific forwarding schemes facing identical prob-
lems.

Both [7] and [8] propose to reuse IP’s address and port fields
to contain hashes of content names in order to allow OpenFlow
switches to forward Interests to an OpenFlow controller that
performs path calculation. Where [7] uses additional IP-
options to indicate ICN packets, [8] remains agnostic to how
ICN packets are distinguished from regular IP packets. We
argue that this approach leads to an excessive increase in IP
routing table complexity.

Similarly, we at first intended to wrap or encapsulate ICN
streams in IP packets containing a reserved IP anycast address
to allow fine-grained control beyond the scope of ICN-capable
switches. We found this method to be less trivial than it
appears. Where CCNx is already capable of performing UDP
over IP encapsulation, it uses static ports for each connection,
disabling a switch to differentiate between different flows.
As the CCNx application is OpenFlow unaware by nature,
changing it by generating different tuples of source IP address
and the 4 bytes of the UDP source and destination ports
implied a drastic change to the internal functions of the CCNx
daemon. More generically, forcing developers to create port
tuples in such a specific way in order to benefit from SDN
functionality is in contrast with the open philosophy of SDN.
Furthermore, OpenFlow switches may not send the complete
incoming CCNx packet to the controller, they may apply
buffering to recreate the original message when necessary, but
instead might only forward the first part of the message. This
implies possibly losing parts of the ICN name, information
necessary for the ICN controller to perform path computation.

Finally, P4 [9] and POF [10] respectively implement a
packet processor description language and forwarding archi-
tecture design to allow protocol-oblivious forwarding, work
resulting in the ONF OF-PI proposal [11]. However, P4 im-
plements static field sizes, rendering it unsuitable for use with
the CCNx implementation, which carries a variable amount
of variable-sized name components. Furthermore, while using
{offset, length} search keys as proposed in POF may work,
we consider the complexity of rewriting all abstract compar-
isons and functions to bit-wise operators too tedious.
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(a) Step 1, local NDN daemon receives an unasso-
ciated Interest and forwards this Interest to the ICN
module of the OpenFlow Controller.
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(b) Step 2, with the knowledge on topology and ICN
capabilities, the ICN module computes a feasible
path and configures the appropriate ICN-enabled
switches accordingly.
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(c) Step 3, the ICN module instructs the legacy
OpenFlow controller to configure the necessary
IP/Ethernet rules on all intermediate OpenFlow en-
abled switches.

Fig. 1: An overview of the steps necessary to configure an ICN flow over an OpenFlow-enabled network. All switches are
OpenFlow capable, doubly-circled nodes additionally have ICN capabilities.

V. NDNFLOW

Given that neither extending the OpenFlow protocol for
application-specific forwarding schemes nor using application-
specific IP broadcast addresses to distinguish ICN traffic from
regular IP traffic is feasible, NDNFlow introduces a second
application-specific layer to OpenFlow. NDNFlow implements
a separate communication channel and controller module par-
allel to the already existing OpenFlow communication channel
and process.

In this application-specific layer, all communication and
path computation regarding the ICN are handled separately
from the regular IP and Ethernet plane. By separating the ICN
layer from the regular OpenFlow layer, we introduce SDN
functionality independent of changes and restrictions in the
standardization of the OpenFlow protocol. This prevents inter-
dependencies on versions of protocols, easing the deployment
and future maintenance. As shown in figure 1, switches that are
ICN enabled set up a communication channel, parallel to their
regular OpenFlow communication channel, to the ICN module
of the OpenFlow controller. This ICN channel is then used
to announce ICN capabilities, information availability and
requests for unreserved flows. The controller’s ICN module
computes paths for ICN flows, and configures both the ICN
capable and legacy IP and Ethernet switching fabric to allow
ICN flows to pass through the network. Hence, we introduce a
separate SDN control mechanism for the application-specific
OSI Layers 5 to 7 (ICN), independent from OSI Layers 2 to
4, reusing the separation of layer responsibilities to maintain
overall network manageability.

Where ICN-enabled switches receive ICN-specific flows
directly, flows between ICN-enabled switches that are ini-
tially unreachable due to intermediate legacy IP and Ethernet
switches are realized by setting up IP-encapsulated tunnels.
The legacy switches are configured by the legacy OpenFlow
controller to forward those tunnels accordingly. Hence, the
configuration procedure consists of 4 steps shown in figure 1,
where a doubly-circled node represents a switch capable of
both ICN and OpenFlow.

Due to the fact that both the ICN-enabled switches and the
ICN controller module are aware of the specifics of the ICN
forwarding mechanism, they have equal understanding of an
ICN flow and its details. Furthermore, their communication

protocol can be extended to contain flow-specific parameters,
such as the needed bandwidth and the expected duration of a
flow, without changing the OpenFlow protocol.

VI. IMPLEMENTATION

Our software currently runs on general purpose x64 archi-
tecture servers running Ubuntu Server. On these servers, we
have installed stock Open vSwitch 2.0.2 [12] to enable config-
uration of operation by the OpenFlow protocol. In addition, we
enable switches with ICN capabilities by installing the CCNx
daemon [4], the open-source implementation of NDN.

A. OpenFlow controller implementation

In order to implement our proposal, we have extended the
POX (branch betta) controller [13] by designing an additional
custom ICN module. We use the native POX Discovery
module to perform topology discovery and learn a switch
adjacency matrix. We reuse the OpenNetMon [14] forwarding
module to perform legacy path computation and enable end-
to-end IP forwarding. Additionally OpenNetMon may be used
to perform fine-grained monitoring of flows. Finally, we im-
plement a CCNx specific plug-in that is added to communicate
with ICN-enabled switches and perform ICN-specific path
computations. The implementation of NDNFlow is published
open source and can be found at our GitHub web page [15].

B. CCNx daemon implementation

The CCNx daemon is extended by implementing an addi-
tional SDN plug-in, which sets up a connection to the POX
ICN module, parallel to Open vSwitch’s regular OpenFlow
connection, and announces its ICN capabilities, capacity and
information availability. The extension is realized similarly to
our plug-in solving global NDN routing table complexity [6].
Whenever a CCNx daemon receives an Interest for which no
flow or previously defined forwarding rule exists, it forwards
this Interest to the POX ICN module. In turn, the POX ICN
module looks up the appropriate location or exit-point of
that Interest, calculates the appropriate path based on the
topology information learned from the discovery module and
announcements from CCNx-enabled switches and configures
the intermediate NDN nodes accordingly. Finally, the Open
vSwitch is configured by the controller as shown in figure 1.



C. Protocol Implementation

We chose to use the JavaScript Object Notation (JSON)
to facilitate communication between the CCNx and SDN
module due to its generic implementation and high support
in different programming languages. Currently, we imple-
ment the following abstract messages to support our actions.

Announce{
DPID : <DataPathID > ,
IP : <I n e t A d d r e s s>

}

The Announce message is used by nodes to prop-
agate their ICN abilities. More precisely they state
where they are connected in the OpenFlow network us-
ing the unique Datapath ID (DPID) of the switch,
and how the ICN functions can be accessed by IP.

A v a i l a b l e C o n t e n t {
C o n t e n t : [

<(ContentName ) Name> : {
Cost : <I n t e g e r > ,
P r i o r i t y :< I n t e g e r >

}
]

}

After authentication, the ICN-enabled switch propagates
the information it has access to using the AvailableContent
message. Each item can be stored locally or accessed else-
where, for example via a network outside of the scope of
the SDN, and additional costs can be added which are taken
into account by routing discovery. Absolute backup replicas,
which are only to be accessed when the primary replicas are
unavailable, can be announced by increasing the value of the
Priority field. Hence, robustness can easily be implemented by
placing redundant copies of information across the network.

I n c o m i n g I n t e r e s t {
Name : <ContentName>

}

The IncomingInterest message is used by the CCNx
module to request the controller what action to per-
form with unmatched incoming and following Interests.

I n s t a l l F l o w {
name : <ContentName > ,
a c t i o n : <FaceType > ,
a c t i o n P a r a m s : [<params >]

}

After computing the appropriate actions, the controller is-
sues an InstallFlow message to all the switches along the path
to install the correct forwarding rules, reducing the original
interest name to match the name prefix of a complete flow
or segmented piece of information. The FaceType and action
parameters can be used to configure flow-specific parameters.
Among others, we use them to set up IP-encapsulated tunnels

between ICN nodes that are separated by one or more ICN-
incapable switches to enable flow exchange between them.

VII. EXPERIMENTAL EVALUATION

In this section, we will first discuss our experimental setup
and the used measurement techniques, followed by the con-
ducted experiments and results.

A. Testbed environment

We have conducted our experiments on a testbed of phys-
ical, general-purpose, servers all having a 64-bit Quad-Core
Intel Xeon CPU running at 3.00 GHz with 4.00 GB of main
memory and 1 Gbps networking interfaces. OpenFlow switch
functionality is realized using the Open vSwitch 2.0.2 software
switch implementation, Named Data Networking functionality
by installing CCNx 0.8.2, both running in parallel on Ubuntu
Server 14.04.1 LTS with GNU/Linux kernel version 3.13.0-29-
generic. The CCNx is connected to Open vSwitch via a socket
to the internal bridge interface to realize connectivity, hence
data is forwarded to and from CCNx through the OpenFlow
LOCAL port.

Throughout, we use a 2-switch topology on which the
discussed switching fabric and additional plug-ins from section
VI are configured. A third server is configured as controller
using the POX controller and modules discussed in section VI.

In order to measure the delay time between requesting and
receiving content we use ccnping [16], an NDN alternative
to the popular application ping that can be used to confirm
connectivity and measure round-trip times in classical IP net-
works. Similar to ping, ccnping sends an Interest per interval
to a given destination prefix concatenated with a random
value. When sending, ccnping stores the timestamp of creation
and computes the round-trip time (RTT) upon arrival of the
appropriate ContentObject. The ccnping server and client are
installed on the 2 switches and connect to the CCNx switch
fabric using the application interface.

B. Experiments and results

Using the described testbed and tools, we have performed
4 types of experiments to evaluate the suitability and stability
of NDNFlow. In our experiments, we differentiate between
the proactive and reactive SDN approaches in which flows
are respectively configured in advance, or on-the-fly. As the
decision between proactive and reactive configuration can
be made independent for both the CCNx and OVS specific
forwarding fabric, we perform the following 4 experiments:
(1) We determine a baseline by measuring RTTs using a
statically configured CCNx over classic IP. (2) We determine
the overhead of Open vSwitch and the NDNFlow CCNx-plug-
in by measuring RTTs in a proactively configured CCNx and
Open vSwitch network. Since the biggest difference between
proactive and reactive configuration lies within the delay of
setting up the flow (measurable by the delay of the first
packet), we continue measuring the delay of the first packet
of every new flow with a reactive configuration of CCNx in
both a (3) proactive and (4) reactive configured OVS network.
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Fig. 4: Delay averages and 95% confi-
dence interval.

While experiment (3) shows the delay invoked by comput-
ing and configuring the path of the content flow, (4) shows the
delay invoked by additionally configuring the legacy IP part
of the OpenFlow network. We measured 10, 000 samples for
each configuration.

Figure 2 shows the results for (1) and (2), while figure 3
shows the results for (3) and (4). Figure 4 shows the relative
averages and 95% confidence interval, giving: (1) a baseline of
1.534±0.101 ms for CCNx over IP networks, (2) 1.834±0.115
ms for a fully proactive configuration of CCNx and OVS,
and (3, 4) 64.006 ± 5.028 and 304.630 ± 34.191 ms for a
reactive NDNFlow configuration in a proactive and reactive
OVS configuration, respectively, to determine the additional
costs of configuring the content flows in CCNx and OVS.

The measured values show that, on average, OVS adds an
additional delay of 0.300 ms, while configuring a new content
flow using NDNFlow costs an additional 62.172 ms at the
CCNx daemon and another 240.624 ms at the OVS daemon.
Although setting up new flows can be considered costly, the
additional delay only applies to the first packet of a new
flow. Once a flow has been installed, the delays of experiment
(2) apply. Using a completely proactive configuration would
remove the additional delay of methods (3) and (4) altogether,
though at the cost of losing the flexibility of computing flow-
specific paths.

VIII. CONCLUSION

In this paper, we have presented and designed a mechanism
and implemented a prototype to realize application-specific
forwarding schemes in OpenFlow-controlled Software-
Defined Networks (SDNs). Specifically, we have implemented
a popular Information Centric Networking proposal, Named
Data Networking and its implementation CCNx. Compared
to other application-specific SDN implementations, we argue
that our implementation is architecturally less complex to
implement, easier to extend and furthermore applicable
to multiple application-specific forwarding schemes due
to the stricter separation of functionalities. With this
implementation, we provide the tools to control and manage
application-specific flows in SDNs.
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