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Abstract

The nuclear technology is changing at a rapid pace driven by the quest for more powerful
and safer nuclear power plants, as a consequence several structural components in a reactor
are becoming larger and slender while working fluids have higher densities and velocities.
These changes can often alter the dynamics of the interaction between the coolant and the
structural components and cause Flow Induced Vibrations (FIV) to become more prominent.
As analytical methods are often insufficient to predict FIV in complex geometries, numerical
approaches are commonly used to predict such phenomena.

Of all the possible modes of excitation in a nuclear reactor, simulating Turbulence Induced
Vibrations (TIV) is a particularly challenging problem due to the wide range of scales involves,
and is the main focus of this thesis work. Ideally high fidelity fluid solvers using DNS or
LES can be used to resolve all the scales involved, but such methods are computationally
expensive for complex domains with high Reynolds numbers. In this work, an alternative
method to using high fidelity solvers is presented, which involves synthetically modeling the
turbulent fluctuations using the known turbulence parameters from U-RANS simulations.
These fluctuation fields are then superimposed on top of the average fields and act as the
required excitement at the fluid structure interface. The numerical framework in which this
method is implemented is first validated with known benchmark cases and it is found that
the solver produces accurate results which are in good agreement with the reference data.
The capabilities of the synthetic fluctuation modeling in simulating TIV are then assessed
by performing simulations of a configuration adopted from an experimental set-up. It is
observed that this model is able to reproduce the dynamics of the vibrations observed in the
experiments while classical U-RANS model fails to predict physical oscillations.
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Chapter 1

Introduction

Out of all the available means of energy production, nuclear reactors possess the highest
energy density. This means that per unit mass of the fuel used, nuclear reactors produce the
highest amount of usable energy. With the ever increasing demand for energy globally, the
steady rise in global average temperatures and thus the need to reduce humanity's dependence
on fossil fuels, alternate sources of energy are required. As fully sustainable solutions are still
developing and are dependent on geographical locations, nuclear energy can be used as a
viable source for immediate energy requirements. The high energy density which makes
nuclear energy lucrative also leads to the safety being of critical importance as any accident
can lead to radioactive contamination. In a typical nuclear reactor the heat generated in the
nuclear core from the fuel rods is carried away by the coolants to generate high pressure steam
from water which in turn is then used to run turbines to generate electricity. The fluid used to
absorb the heat from the fuel rods and carry it to the turbines is called the coolant fluid. The
flow of this fluid around various flexible components of the reactor (e.g. the heat exchangers
and the fuel rods) can lead to Flow Induced Vibrations (FIV) . These flow induced vibrations
play a critical role in nuclear safety as they can lead to fatigue wear, fretting wear, stress
corrosion cracking and other possible failure modes (Luk, 1993; Paı et al., 2006). Reports of
reactor damage due to flow induced vibrations in heat exchanger tubes started appearing in
1950s (Weaver et al., 2000). The research in the field of nuclear reactors is being driven by the
demand for increasing the power density of the nuclear plants. This often leads to increase in
the coolant flow rate, a change of coolant fluid or modifying the materials and dimensions of
structural components. These changes can often alter the dynamics of the interaction between
the coolant and the structural components and cause flow induced vibrations to become more
prominent (Weaver et al., 2000). Therefore an accurate prediction of flow induced vibrations
to asses the risk early in the design phase of a reactor is an important area of research.
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2 Introduction

Figure 1.1: Schematic: Pressurised water reactor

1.1 Nuclear Reactors

Since this report is focused on the fluid structure interaction problems in a nuclear reactor,
a brief overview of their functioning is provided. A general schematic of a nuclear reactor is
shown in Fig. 1.1. Essentially a nuclear reactor is designed to recover and transport the heat
generated by fission reactions in the nuclear core up to a turbine to generate electricity. The
generated heat is first absorbed used a cooling fluid around the reactor core, which is then
used to generate steam, finally the steam is used to run the turbines. The parts of the reactor
where the fluid structure interaction being studied occurs is the nuclear reactor vessel. This
is a pressure vessel containing the reactor core and the coolant fluid and is explained in more
detail later.

Nuclear reactors are usually classified by their generation. The first generation reactors
were developed in 1950s and 60s. These included the prototypes and some of the first full
scale industrial reactors meant to serve as proof for their economic viability. The second
generation reactors were commissioned from early 1970s and were designed with the goal
of increased competitiveness during the period of oil crisis. The third generation reactors
prioritized safety and security from internal and external hazards. This was a response to
major accidents like Chernobyl and Three Mile Island. Most of the nuclear reactors currently
in use or commissioned for construction are third generation reactors. Fourth generation
nuclear reactors are currently in research phase with the main objectives being increased
power density, improved efficiency and sustainability. Another common way to classify nuclear
reactors is on the basis of the coolant being used e.g. Pressurized Water Reactor (the most
common reactor used at present), Boiling Water Reactors (BWR), Gas Cooled reactor (GCR),
Fast Breeder Reactors (FBR), Pressurized Heavy Water Reactor (PHWR).

Fig. 1.2 below shows the cross section of the reactor pressure vessel of a pressurized water
reactor (PWR). In the PWR, water at high pressure and temperature absorbs heat from the
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Figure 1.2: Cross section of reactor vessel (PWR)

fuel rods and transports it to a steam generator. This is known as the primary loop. The
heat from this loop is then transferred to water at a lower pressure i.e. the secondary loop.
The water in the secondary loop absorbs the heat from the primary loop to obtain saturated
and superheated steam. This steam is then directed to a turbine to generate electricity.
The coolant flowing around the fuel rods is generally in the turbulent regime, especially at
higher mass flow rates. The flow conditions inside the reactor vessel can lead to several Fluid
Structure Interaction (FSI) phenomena such as vortex shedding, fluid elastic instability, etc,
which are discussed in the next section. Such interactions can lead to vibrations that may
ultimately lead to catastrophic failure of the structural components. As is obvious, safety is
of paramount importance in nuclear reactors and hence it is important to be able to predict
the dynamic behavior of such systems using numerical tools.

1.2 Flow Induced Vibrations

Flow Induced Vibrations is a broad term used to describe any phenomenon that is associated
with the response of a structure immersed in any fluid. Different parts of the nuclear reactor
can vibrate due to to entirely different excitation mechanisms, e.g. the flow around fuel rods
is axial whereas the steam generator tubes have both axial and cross flow. The type of flow
along the fuel rods could be either gas, liquid or even a mixture of both. Such flow conditions
decide the nature of interaction between the structure and the fluid. Different vibration
excitation mechanisms which can be present in nuclear reactors are mentioned below:

MSc. Thesis Saurabh Sharma



4 Introduction

Figure 1.3: Vibration excitation mechanisms Luk (1993)

1. Fluid Elastic Instability: The flow field around the fuel rod displaces the rod from
its initial position. This displacement further changes the flow field and hence the fluid
forces on the rod. The damping forces in the structure try to restore the fuel rod to
its initial position resulting in a competition between energy input by fluid forces and
energy dissipation by damping. Vibrations occurs when the fluid dynamic forces are
greater than the energy being dissipated by the structural damping.

2. Periodic vortex shedding: Vortices are periodically shed downstream of structures in
cross flow. This induces periodic pressure variations on the structure surface that may
lead to vibrations in the transverse or the flow direction. If this periodicity coincides
with the natural frequency of the the structure, resonance may occur

3. Acoustic resonance: This excitation occurs when the vortex shedding frequency co-
incides with the natural frequency of the acoustic cavity formed by the structures sur-
rounding the tube bundles. The other necessary condition is that the energy supplied
by the vortex shedding should exceed the energy dissipation of the acoustic mode.

4. Turbulence Induced Vibrations (TIV) : In this case the excitation of the structure
is due to the random pressure fluctuation acting on the fluid-structure interface. These
fluctuations can be generated locally by the fluid (near field excitation) or produced due
to far field turbulence, i.e. the turbulence induced by other structures in front of the
fuel rod. This phenomenon is the principal excitation mechanism in axial flow situations
where flow separation does not occur.

Figure 1.3 above shows the occurrence of the aforementioned excitation mechanisms in differ-
ent parts of the reactors and their relative importance. Another way to classify fluid-structure
interaction excitation mechanisms given by Weaver et al. (2000) is based on how they are pro-
duced. The categories under this classification are listed below.

Saurabh Sharma M.Sc. Thesis
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1. Extraneously Induced Excitation: This is caused by fluctuations in flow velocities
or pressure that are independent of any instability due to structural movement except
the added mass and fluid damping effects. The exciting force is mostly random but may
also be periodic.

2. Instability Induced Excitation: In this mechanism the instability is intrinsic to the
flow system created by the structure being considered. An example of this would be
vortex induced vibrations. There is also a possibility of control mechanisms that can
strengthen the excitation such as resonance and fluid-elastic feedback. An example of
this is lock-in where the vortex shedding frequency matches the natural frequency of
the the structure causing resonance. In case of rotating structures such as ocean drills,
the lock in phenomenon can even occur at frequencies other than the natural frequency
of the structure.

3. Movement Induced Excitation: This occurs due to fluctuating forces that arise due
to the movement of a vibrating body. These type of vibrations are thus aptly named
self excited.

Another way of classification was proposed by Weaver (1976) which is related to the nature
of vibrations, (a) forced vibrations induced by turbulence, (b) self-controlled vibrations, for
these vibrations some periodicity exists in the flow field which is independent of the movement
of the structure and (c) self-excited vibrations. Blevins (1990) uses a phenomenological way
of classification, grouping the vibrations as induced by (a) steady flow and (b) unsteady flow.

1.3 Research Objective

Being able to predict Flow Induced Vibrations plays an important role in (re)designing a
nuclear plant as these can have detrimental effects on the structural components interacting
with the fluids such as heat exchangers, boilers and fuel rods. Of all the possible types of
excitations, simulating Turbulence Induced Vibrations is a particularly challenging problem
for nuclear reactor applications and is the main focus of this thesis. As the source of excita-
tion in such vibrations are the random turbulent fluctuations in the flow field, the fluid solver
used for such simulations must be able to capture such fluctuations. Existing fluid solvers
based on LES and DNS are capable of resolving these fluctuations. However such solvers
are not suitable for industrial problems especially with high Reynolds numbers as they are
computationally very expensive, especially for FSI applications where marching through a
single coupled time step involves executing the fluid solver multiple times. A possible way
to economically tackle this problem would be to synthetically model the turbulent fluctua-
tions. The main goal of the current research is to quantitatively evaluate the efficacy of using
synthetic turbulent fluctuations for simulating Turbulence Induced Vibrations.
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6 Introduction

1.4 Thesis Outline

In Chapter 2, the governing equations for both the fluid and the structural domain have
been summarized. An overview of the Finite Volume Methodology used in OpenFOAM
is also presented. This is followed by the description of the coupling conditions used at
the fluid-structure interface. Finally the coupling algorithm used in this study is described.
Chapter 3 presents the RANS methodology to describe turbulent flows. An approach to
model the turbulent velocity and pressure fluctuations fields using known parameters from
a RANS simulations is also described in detail. The coupled FSI solver is initially validated
with a a numerical and experimental benchmark, as described in Chapter 4. Finally the
efficacy of using the modeled fluctuation field to excite the structure in case of turbulence
induced vibrations is verified in Chapter 5. Chapter 6 summarizes the work and provides
some conclusions and suggestions for future work.
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Chapter 2

Numerical Methodology

Every numerical simulation is based on a mathematical model that tries to describe the
physics of the phenomenon being studied. When considering fluid structure interaction using
a partitioned approach, this involves describing the equations governing the fluid domain, the
structural domain and the ways to couple them both. This chapter provides a brief overview
of the equations governing fluid dynamics and structural dynamics. Finite Volume method
is used to discretize the fluid domain, and various aspects of this methodology are presented.

2.1 Frames of Reference

While observing any physical phenomena, the choice of the point of view by the observer
heavily influences the form of observations being made. Although, the phenomena being
observed is independent of the frame of reference of the observer, a suitable choice can simplify
the analysis, making it easier to interpret. An example of this would be the choice made by
the astronomer Copernicus to analyze the trajectories of the planets keeping the sun as the
center instead of earth. This small change in frame of reference simplified the complicated
motion of the planets to just ellipses. The two points of view typically used in continuum
mechanics are Lagrangian and the Eulerian approach. The point of view particularly suitable
for FSI is the Arbitrary Lagrangian-Eulerian approach. These three are briefly describe below,

Lagrangian Approach

The frame of reference is fixed to the material domain in this approach. The frame of reference
moves according to the movement or deformation of the domain. This approach is often used
in structural mechanics as it allows implicit treatment of moving boundaries and defines a
property history to each material point.
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8 Numerical Methodology

Eulerian Approach

In the Eulerian approach the frame of reference is fixed to a particular spatial location re-
gardless of the movement of the material being observed. Thus to measure the change in any
given property f over time at a given location x , one must add the change of the property at
that location with time and the convective transport of neighboring material to that location
with a material velocity v . This change is often taken care by the material derivative,

df

dt
:=

∂f

∂t
+ (v · ∇)f. (2.1)

The advantage of using this approach is that it can handle any arbitrary deformation, which
is why it is majorly used in fluid dynamics.

Arbitrary Lagrangian-Eulerian Approach

The Arbitrary Lagrangian-Eulerian (ALE) approach allows to move the frame of reference
independent of the material motion. Hence the mesh can be moved independent of the
material motion. The fluid mesh velocity is chosen in such a way that a Lagrangian behavior
is obtained at the fluid structure interface, while the computational mesh in the interior of the
fluid domain is moved using suitable mesh movement or smoothening techniques to balance
out the distortions at the interface.

2.2 Fluid Dynamics

The field of fluid dynamics is categorized by types of flow, which also determines the governing
equations. These categories of flow are compressible or incompressible flow, viscous or inviscid
flow and laminar or turbulent flow. A flow is considered incompressible if the density of the
respective fluid is constant (or nearly constant) or if the speed of sound in the fluid is large
compared to the velocity of the fluid (which is the case for flows with Mach number less than
0.3). Such flows are highly resistant to compressive forces. Viscosity of the fluid determines
its rate of deformation given a certain amount of shear. Inviscid flows are characterized by
low viscosity and nearly negligible shear forces. Turbulent flows are characterized by highly
irregular flow patterns in space and time, that occur when several flow parameters (summa-
rized by Reynolds Number) exceed a certain threshold. The equations of fluid dynamics are
obtained by conservation of mass, momentum and energy (for compressible flows). In the
following section conservation of mass and momentum is discussed, leaving out conservation
of energy as compressible flows is not a focus of this thesis.
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2.2 Fluid Dynamics 9

Conservation of Mass

Conservation of mass states that the total mass of fluid in a closed system is constant over
time and results in the continuity equation,

∂ρ

∂t
+ ρ∇ · (U) + (U · ∇)ρ = 0 (2.2)

where U is the velocity vector and ρ is the density of the fluid. For an incompressible fluid
flow, the partial derivative of ρ w.r.t time and space vanish. Hence, the above can be written
as

∇ ·U = 0 (2.3)

Conservation of Momentum

The conservation of momentum is a consequence of Newton’s second law stating that the
change in momentum of a system is due to an external force F acting on it. This above law
can be written as,

ρ

(
∂U

∂t
+ (U · ∇)U

)
= −∇p+∇ · τ + ρF (2.4)

where p is the pressure field and τ is the viscous stress tensor which in turn can be written
using the following constitutive law for Newtonian fluids

τij = µ

(
∂Ui
∂xj

+
∂Uj
∂xi
− 2

3
δij
∂Uk
∂xk

)
(2.5)

where µ is the viscosity of the fluid. For an incompressible flow, the last term of Eq. (2.5)
vanishes and the conservation of momentum can be written as

ρ
(∂U

∂t
+ (U · ∇)U

)
= −∇p+ µ∆U + ρF (2.6)

The equations of conservation of mass and conservation of momentum for fluids are together
called the Navier-Stokes equations. The above derived equations are in Eulerian frame of ref-
erence. As the Arbitrary Lagrangian-Eulerian approach is used in FSI problems, the Navier-
Stokes equations for ALE formulation have been shown below,

Compressible flow
∂ρ

∂t
+ ρ∇ · (c) + (c · ∇)ρ = 0

Incompressible flow ρ∇ · c = 0
(2.7)

Compressible flow ρ

(
∂U

∂t
+ (c · ∇)U

)
= −∇p+∇ · τ + ρF

Incompressible flow ρ
(∂U

∂t
+ (c · ∇)U

)
= −∇p+ µ∆U + ρF

(2.8)

c is the convective velocity defined as U-Û, where U is the material velocity w.r.t. to the
spatial domain and Û is the mesh velocity which is the velocity of the referential domain w.r.t
to the spatial domain.
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10 Numerical Methodology

2.3 Structural Dynamics

Most structural mechanics applications are limited to comparatively small strains due to the
risk of material failure, e.g. cracks. Therefore we deal with rather small displacements (com-
pared to fluid dynamics), allowing the use of Lagrangian description of the kinematics. The
deformation of an elastic, isotropic, homogeneous and incompressible structure is governed by
Saint-Venant-Kirchhoff material model which is derived using the conservation of momentum
using Lagrangian point of view. The resulting equation in the differential form is given as,
(Wriggers, 2008)

ρ
(∂2u

∂t2

)
= ∇ · S + ρf (2.9)

where u is the displacement field, ρ is the solid density, f consists of body forces and S is
the 2nd Piola-Kirchhoff stress tensor which models surface forces.

2.4 Finite Volume Discretization

The goal of any discretization technique is to transform a partial differential equation into a
set of corresponding algebraic equations. Solving this algebraic system provides the solution
to the partial differential equation at certain discrete locations in space and time. The dis-
cretization procedure is divided into three parts spatial discretization, temporal discretization
and equation discretization (Hirsch, 2007). The spatial discretization involves splitting the
computational domain into smaller cells giving the co-ordinates of the points where the solu-
tion will be approximated and also a description of the computational boundary. Temporal
discretization is used in transient simulation where the time duration of the simulation is bro-
ken down into discrete time intervals. Equation discretization involves generating a system
of algebraic equations from the governing partial differential equations.

2.4.1 Solution Domain Discretization

In the Finite Volume Methodology the space is discretized into smaller control volumes.
These volumes do not overlap with one another and fill up the entire domain. Fig. 2.1 shows
a typical control volume (P) along with a neighboring cell (N). The computational point (P)
for each control volume is located at the centroid of the cell, defined as∫

Vp

(x− xp)dV = 0 (2.10)

The control volume is bounded by flat faces on all sides and each face is shared with one
neighboring control volume. The control volume shape can be any general polyhedron. The
face area vector S is normal to the shared face between the 2 adjacent cells and has a magni-
tude equal to the area of the face. The vector d represents the distance between the center of
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2.4 Finite Volume Discretization 11

Figure 2.1: Computational cell (control volume) in Finite Volume Methodology (Rusche, 2003)

one cell (P) and the center of a neighboring cell center (N). A 'collocated' grid arrangement is
commonly used, where the variables are stored at cell centers. The occurrence of oscillations
in the solution field due to pressure-velocity decoupling in a collocated grid can be corrected
using the Rhie and Chow interpolation (Rhie and Chow, 1983).

2.4.2 Equation Discretization

Instead of showing the discretization for each PDE involved, a general transport equation for
any scalar φ given by,

∂ρφ

∂t︸︷︷︸
temporal derivative

+ ∇ · (ρUφ)︸ ︷︷ ︸
convection term

−∇ · (ρΓ∇φ)︸ ︷︷ ︸
diffusion term

= Sφ(φ)︸ ︷︷ ︸
source term

(2.11)

is used to describe the discretization procedure. In the above equation ρ, U, Γ and Sφ(φ)
represent the density, velocity, diffusivity and the source term respectively. The individual
terms in the above equation represent the change in any given scalar (φ) due to time rate of
change (temporal derivative), the efflux due to convection (convection term), transport rate
due to diffusion (diffusion rate) and the production/destruction of the scalar (source term).
The finite volume discretization of Eq. 2.11 is obtained by integrating this equation over a
control volume Vp and over a time interval (∆t) as shown below,

∫ t+∆t

t

[ ∫
Vp

∂ρφ

∂t
dV +

∫
Vp

∇ · (ρUφ)dV−
∫
Vp

∇ · (ρΓ∇φ)dV
]
dt

=

∫ t+∆t

t

(∫
Vp

Sφ(φ)dV
)
dt

(2.12)

The discretization of the terms in above equation is examined term by term in the next
sections.
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12 Numerical Methodology

2.4.2.1 Convection Term

The discretization of the convection term is obtained using the Gauss’s theorem as,∫
Vp

∇ · (ρUφ)dV =
∑
f

S · (ρUφ)f =
∑
f

S · (ρU)fφf =
∑
f

Fφf (2.13)

where the subscript f means that the quantity is calculated at the middle of the cell face, S is
the outward pointing surface area vector and F represents the mass flux through a given face
f. To calculate the above terms the values of the variables ρ, U and φ need to be evaluated
at the cell faces whereas originally these are stored at the cell centers. Hence an interpolation
technique is required to calculate the aforementioned terms. This can be done using any
convection differencing schemes. Assuming a linear variation of the interpolated quantity (φ)
between the 2 neighboring cells (P and N) to a face (f), the face value can be calculated as,

φf = fxφP + (1− fx)φN . (2.14)

where fx is the interpolation factor defined as ratio of distance between the face and the cell
center N (fN) and the distance between the face and the cell center P (fP ) i.e. fx = fN/fP .
This differencing scheme is second order accurate and is known as the Central Differencing
scheme. It has however been reported to cause unphysical oscillations in the computed so-
lution for convection-dominated flows (Hirsch, 2007) leading to unbounded solutions. Using
an Upward differencing scheme can guarantee a bounded solution as in this approximation
the face value of φ is taken as the value of the cell center in the upstream direction. However
this method distorts the solution by introducing numerical diffusion. Many other schemes
that combine upward and central differencing schemes depending on the variation rate of the
quantity φ for individual faces have been proposed to combine accuracy and boundedness
Jasak (1996).

2.4.2.2 Diffusion Term

The diffusion term is discretized in the same way as the convection term using Gauss’s theo-
rem, ∫

Vp

∇ · (ρΓ∇φ)dV =
∑
f

S · (ρΓ∇φ)f =
∑
f

(ρΓ)fS · (∇φ)f (2.15)

In case of orthogonal meshes the vector d and S are parallel (shown in Fig. 2.1). Hence, the
face normal gradient (S · ∇φ) can be approximated as,

S · (∇φ)f = |S|φN − φP
|d|

(2.16)

However in case of non-orthogonal meshes, a correction term is introduced as shown below,

S · (∇φ)f = |∆| · (∇φ)f︸ ︷︷ ︸
orthogonal contribution

+ k · (∇φ)f︸ ︷︷ ︸
non-orthogonal contribution

(2.17)

where ∆ and k are vectors that are determined by using suitable non-orthogonality treatments
Jasak (1996).
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2.4 Finite Volume Discretization 13

2.4.2.3 Source Term

Any terms of a governing equation that can’t be written as temporal derivative, convective
or diffusive term can be written as the source terms. The source terms are usually linearized
as shown in Patankar (1980):

Sφ = Su+ Spφ (2.18)

Using the above form the volume integral can be written as,∫
Vp

Sφ(φ)dV = SuVp + SpVpφ (2.19)

2.4.2.4 Temporal Discretization

Substituting the volume integrals as previously calculated for the standard transport equation
into Eq. (2.12), we get the semi-discretized form,∫ t+∆t

t

[(∂ρφ
∂t

)
P
VP +

∑
f

Fφf−
∑
f

(ρΓ)fS · (∇φ)f

]
dt =

∫ t+∆t

t
(SuVp + SpVpφ)dt.

(2.20)

The time derivative and the integrals in the above equation can be written as,(∂ρφ
∂t

)
P

=
ρnPφ

n
P − ρ0

Pφ
0
P

∆t

Crank-Nicolson :

∫ t+∆t

t
φ(t)dt =

1

2
(φ0 + φn)∆t

Explicit-Euler :

∫ t+∆t

t
φ(t)dt = (φ0)∆t

Implicit-Euler :

∫ t+∆t

t
φ(t)dt = (φn)∆t

(2.21)

Substituting the above in Eq. (2.20), we get the Crank-Nicolson time integration method, as
shown below

ρnPφ
n
P − ρ0

Pφ
0
P

∆t
VP +

1

2

∑
f

Fφnf −
1

2

∑
f

(ρΓ)fS · (∇φ)nf

1

2

∑
f

Fφ0
f −

1

2

∑
f

(ρΓ)fS · (∇φ)0
f

= SuVP +
1

2
SpVPφ

n
P +

1

2
SpVPφ

0
P .

(2.22)

2.4.3 System of Algebraic Equations

The unknown variable in Eq. (2.22) is the value of φP at the next time step n. The values
of φ and ∇φ at both the current and previous time steps are required to solve this system.
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14 Numerical Methodology

Also the face values of φ and ∇φ depends on the cell values on either side of the face. Hence
Eq. (2.22) can be rewritten as,

aPφ
n
P +

∑
N

aNφ
n
N = Rp (2.23)

The above equation is then created for every control volume in the domain to get an overall
system of equations which can be written as,

[A][φ] = [R] (2.24)

Solving the above system gives the φ field for the domain at the next time step. Such a system
can be either solved directly or using iterative techniques. However iterative procedures are
computationally less expensive and are hence commonly used (Muzaferija, 1994).

2.5 Coupling of Fluid and Structural domains

This section discusses the coupling conditions at the fluid-structure interface. In this section
the subscript F denotes the fluid domain, whereas the subscript S denotes the structural
domain. A schematic of the coupling interface has been shown in Fig. 2.2 where ΩF , ΩS

represent the fluid and the structure domain, while ΓFS is the overlapping interface of both
the domains. Also n is the normal vector to either domain.

• Kinematic Boundary Condition: This condition imposes that the displacement and the
velocity at the interface should be same for both the fluid as well as the structural
domain. The equality of velocity stems from the fact, that under the assumption of
no slip, the fluid molecules at the interface would be bound to the structure and hence
have the same velocity as the structure. The equality of displacement is due to the
fact that the fluid and structure fill up the domains up to the interface and there is no
overlapping. The conditions are give as

xF = uS , vF =
∂uS
∂t

at ΓFS (2.25)

• Dynamic Boundary Condition: This boundary condition imposes the fact that the
traction at the interface of the structure is in equilibrium with that on the fluid side.
This is basically a force balancing operation. The condition is given by,

σF · nF = σS · nS at ΓFS (2.26)

2.5.1 Coupling Algorithm

The Interface Quasi-Newton with Inverse Jacobian from a Least Squares model (IQN-ILS)
is a well validated coupling algorithm for strongly coupled problems and can be used for
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2.5 Coupling of Fluid and Structural domains 15

Figure 2.2: Schematic of the interface of a fluid and structural domain Gatzhammer (2014)

black-box solvers Degroote (2013). IQN-ILS is used as the coupling algorithm for the simula-
tion performed in this thesis. Hence, an overview of this algorithm (amended from Degroote
(2013)) is provided in this section. For further discussion, the fluid and the structural solver
are represented as operators F and S respectively. The input-output variables for these op-
erators are the kinematic values x which comprise of displacement and velocities, and the
dynamic values y comprising of forces and stresses. Using a Dirichlet-Neumann decomposi-
tion, the flow equations are solved for a given displacement of the fluid-structure interface
(Dirichlet boundary condition) and the structural equations are solved for a given traction
distribution on the interface (Neumann boundary condition), the solvers can be written as,

y = F(x) (2.27)

x = S(y) (2.28)

The traction on the interface y can be eliminated from the above set of equations, resulting
in an equation with only kinematic variables (interface displacement in this case)

S ◦ F(x)− x = 0 (2.29)

Introducing a residual operator R defined as

R = S ◦ F(x)− I (2.30)

with I being the identity operator of the required dimensions, yields a smaller equation with
x as the unknown

R(x) = 0 (2.31)

The goal is to minimize this residual or to find the zero of the above equation using Newton-
Raphson iterations. The Jacobian of R with respect to x is further denoted by R′ and in
each Newton iteration a linear system

R′
k
∆xk = −R(xk) (2.32)
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16 Numerical Methodology

is solved with ∆ xk = xk+1 - xk. We need to approximate the Jacobian because the exact
Jacobian of R(x) is unknown as both F and S are taken as black box functions and are
therefore unavailable. In each iteration the residual vector is calculated as the difference
between the output of the structural solver (x̃k) and the input of the flow solver (xkf ) i.e.

rk = R(xk) = S ◦ F(xk)− xk = x̃k − xk (2.33)

The linear system of equations (2.32) has the same dimensions as the number of nodes at the
fluid-structure interface, and this has to be solved in each iteration. Although the number
of nodes at the fluid-structure interface is considerably lower than the individual flow or
structure domain, the Jacobian matrix (R′) is usually dense. Hence the solution of this
system of linear equations is computationally expensive for large simulations. Therefore, it
is more advantageous to approximate the inverse of this Jacobian using the least squares
method.In this way the system of linear equations (2.32) can be rewritten as

xk+1 = xk + ̂(R′k)−1(−rk) (2.34)

It can be seen from the above equation (2.34) that the approximation for the inverse of the
Jacobian does not have to be calculated explicitly. Instead we need to calculate the product
of this inverse Jacobian with the vector −rk. This vector is the difference between the desired
residual i.e. 0 and the current residual rk and is denoted as ∆r = 0 - rk = −rk. The matrix-
vector product is calculated from the information obtained during the previous iterations.
The vectors x̃ and r are available from the previous iterations, giving a set of residual vectors

rk, rk−1, . . . , r1, r0 (2.35)

and also a corresponding set of displacement vectors x̃

x̃k, x̃k−1, . . . , x̃1, x̃0 (2.36)

The difference between the vectors from the current iterations and the previous iteration is
calculated repeatedly for every iteration, thus giving us the following vectors

∆rk−1 = rk − rk−1

∆x̃k−1 = x̃k − x̃k−1
(2.37)

This yield another set of vectors ∆ri

∆rk,∆rk−1, . . . ,∆r1,∆r0 (2.38)

and also a corresponding set of vectors ∆x̃i

∆x̃k,∆x̃k−1, . . . ,∆x̃1,∆x̃0 (2.39)

Each ∆ri corresponds to a ∆x̃i and these vectors are stored as columns of the matrices

Vk = [∆rk−1 ∆rk−2 . . . ∆r1 ∆r0] (2.40)
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2.5 Coupling of Fluid and Structural domains 17

Wk = [∆x̃k−1 ∆x̃k−2 . . . ∆x̃1 ∆x̃0] (2.41)

Due to similarity between consecutive time steps, information from previous time steps can
also be combined with the matrices Vk and Wk, giving (assuming at least q time steps have
been performed)

Vk = [∆Vk ∆Vn . . . ∆Vn−q+2 ∆Vn−q+1] (2.42)

Wk = [∆Wk ∆Wn . . . ∆Wn−q+2 ∆Wn−q+1] (2.43)

The convergence of the problems is generally accelerated by including information from the
previous time steps upto a certain number of time steps and can slow down again if even
greater number of time steps are re-used. The optimal value of time steps reused (q) is
problem dependent but the convergence of coupling iterations does not change significantly
near the optimum value. The number of columns in Vk and Wk is indicated with v and is
usually much smaller than the number of rows u. The vector ∆r = 0 - rk is approximated as
the linear combination of the known ∆ri

∆r ≈ Vkck ∈ R (2.44)

with ck ∈ Rv×1 the coefficients of decomposition. Since v is less than u, this system is
overdetermined for the coefficients of decomposition ck, hence the least squares solution to
this system is calculated. For this the economy-size QR-decomposition of Vk is calculated
using Householder transformations (Golub and Van Loan, 2012)

Vk = QkRk (2.45)

Now the coefficient ck can be determined by solving

Rkck = QkT∆r (2.46)

The ∆x̃ that corresponding to ∆r are calculated in a similar way as a linear combination of
known ∆x̃i

∆x̃ = Wkck (2.47)

Using Eq. (2.33), we can write

∆r = ∆x̃−∆x (2.48)

Using Eq. (2.48) and (2.47), we get

∆x = Wkck −∆r (2.49)

Using the fact ∆r = -rk, we can write

∆x = ̂(R′k)−1(−rk) = Wkck + rk (2.50)
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18 Numerical Methodology

The overall algorithm has been summarized in Algorithm 1.

Algorithm 1: IQN-ILS algorithm Degroote (2013)

1 k=0;
2 x̃0 = S ◦ F(x0) ;
3 r0 = x̃0 − x0 ;

4 while ‖rk‖2 > ε0 do
5 if k = 0 and (q = 0 or n = 0) then
6 xk+1 = xk + ωrk ;
7 else

8 construct Vk and Wk ;

9 calculate Q-R decomposition Vk = QkRk ;

10 solve Rkck = QkT∆r ;

11 xk+1 = xk + Wkck + rk ;

12 end

13 x̃k+1 = S ◦ F(xk) ;

14 rk+1 = x̃k+1 − xk+1 ;
15 k++ ;

16 end

2.6 Summary

This chapter reviewed and summarized the broad numerical concepts used in Fluid Structure
Interaction problems. This includes the frame of reference that is most beneficial for FSI
problems, the differential equations governing the phenomena being studied, the coupling
criteria at the interface of two different domains, and the finite volume methodology. The
IQN-ILS coupling algorithm for the partitioned approach is also discussed, as this is the
coupling algorithm used in the framework of this thesis.
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Chapter 3

Synthetic Modeling of Pressure Fluctuations

Most of the naturally occurring fluid flows are turbulent in nature. Turbulence can be defined
as a state of continuous instability in a fluid flow. At high Reynolds number, flows described
by the Navier-Stokes equations are extremely sensitive to initial conditions and disturbances
and turbulence may be considered the chaotic response to these conditions. Turbulent flows
are characterized by higher diffusivity and greater energy dissipation (Tennekes and Lumley,
1972). The range of scales involved in turbulent flows is very wide, ranging from smallest
eddies (Kolmogorov scales) to eddies comparable to the size of the geometry. The range of
these scales increases with Reynolds number.

Historically the analysis of turbulence has had three parallel movements, statistical, struc-
tural and deterministic (Chapman and Tobak, 1985). Reynolds put forth the statistical view
point implying that limited practical information can be gained from studying the complex
details of the flow and suggested the decomposition of the flow field into mean and fluctuating
components. Experimental results of wall-bounded turbulent flows showing coherent struc-
tures and correlations between various spatial and temporal positions (Bernard and Wallace,
2002), led to the conclusion that turbulence may not be completely random leading to the
structural movement. The deterministic movement analyzes the chaotic and complex flow
patterns of a turbulent flow as a solution to the Navier-Stokes solutions. These solutions can
replicate the sensitivity of the flow behavior to small disturbances and initial conditions.

There are three popular approaches of numerically simulating turbulence viz. Direct Numer-
ical Simulation (DNS) , Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes
(RANS). In Direct Numerical Simulations, all the relevant scales of the fluid flow are resolved.
This puts very high demands on the computational resources due to the required mesh resolu-
tion and the time step sizes involved, making it unsuitable for engineering problems. Despite
these restrictions, DNS is a useful tool in turbulence research as it is often used to calibrate/e-
valuate computationally cheaper approaches. As in DNS every scale is explicitly evaluated,
this method is categorized in the deterministic approach. In Large Eddy Simulations, the
largest scales (super-grid scales) of the turbulent flow are resolved while the smaller scales
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(sub- scales) are approximated using models. The idea behind this approach is that the large
scale structures in a flow are influenced by the flow geometry and the boundary conditions
hence need to be resolved, whereas, the smaller scales tend to be more homogeneous and
isotropic, hence can be modeled. The third approach tackles the problem using a statistical
view point using the RANS methodology. This involves separating the variable values in a
flow field into the mean and the fluctuations around the mean, thus obtaining the governing
equations for the mean quantities. As this approach is heavily used in engineering applica-
tions and forms the basis of the subsequent discussion, RANS has been briefly described in
the next section.

3.1 RANS Methods

Reynolds Averaged Navier-Stokes (RANS) methods involve applying an averaging method to
separate the flow variables into a mean and fluctuating component, and then derive the equa-
tions for mean flow variables using empirical models to replicate the effects of fluctuations on
the mean field. Depending on how the mean of a variable is defined, the averaging procedure
can be approached in three ways (Hinze, 1975):

1. Time averaging: averaging any variable (φ) at a fixed point in space, suitable for sta-
tistically stationary turbulence.

2. Spatial averaging: averaging any variable (φ) at a fixed instance of time, suitable for
homogeneous turbulence.

3. Ensemble averaging: this is the most general form of averaging where any variable (φ)
is averaged over a series of identical experiments

The ensemble averaging procedure is described as:

φ(x, t) = φ(x, t) + φ′(x, t) (3.1)

where φ(x, t) represents the mean value of φ whereas φ′(x, t) shows the fluctuations in φ
about the aforementioned described mean. The mean value is defined as,

φ(x, t) = lim
N→∞

1

N

N∑
i=1

φi(x, t) (3.2)

where N is the number of identical experiments. Fig. 3.1 shows three samples of velocity
measured at a point and their ensemble average.

Rewriting the incompressible Navier-Stokes equations as described earlier in section 2.2, we
get

∇ ·U = 0 (3.3)
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Figure 3.1: Ensemble average of 3 samples of velocity measured at a point in turbulent flow
(Recktenwald, 2009)

∂U

∂t
+∇ · (UU ) = g−∇p+∇ · (ν∇U ) (3.4)

where, U , p, ν and F are the velocity field, pressure , kinematic viscosity and the body force
acting on the fluid. Applying the Reynolds averaging procedure as shown in Eqs. (3.1 and
3.2) to the above equations, the following averaged equations can be obtained.

∇ ·U = 0 (3.5)

∂U

∂t
+∇ · (UU ) = g−∇p+∇ · (ν∇U ) + U ′U ′ (3.6)

It can be observed that the averaged equations for the mean flow are identical to the governing
equations for instantaneous flow except for an additional term U ′U ′. This term acts as an
additional stress term and is called the Reynolds stress tensor. The averaging procedure
creates additional unknown variables and no new governing equations. Hence the above set
of equations are not enough to close to system. This is known as the closure problem in
turbulence. This problem is still unsolved. Reynolds averaged turbulence modeling is used to
express the Reynolds stress tensor in terms of known quantities to close the system. One of
the most common approach used is the Boussinesq approximation (Boussinesq, 1877). This
hypothesis was postulated by Boussinesq and relates the turbulence of the flow field to a higher
fluid viscosity. The logic behind this assumption is the observation that higher turbulence
leads to a more chaotic flow which makes the diffusion of any property such as heat more
easier. Thus increasing the diffusion coefficient (molecular viscosity) of the fluids can help
approximate this phenomenon. This increase in viscosity is the so called eddy or turbulent
viscosity. The Boussinesq approximation is given as

U ′U ′ = νt(∇U + (∇U )T ) +
2

3
kI (3.7)
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where k = 1
2U
′ ·U ′ is the turbulent kinetic energy and νt is the kinematic eddy/turbulent

viscosity. The Boussinesq hypothesis allows one to rewrite the Reynolds stress term in terms
of known quantities but introduces two unknowns k and νt. In the k − ε turbulence model
(Launder and Spalding, 1974), νt is expressed as a function of turbulent kinetic energy (k)
and its dissipation rate (ε), giving the following equation,

νt = Cµ
k2

ε
(3.8)

In RANS (Reynolds Averaged Navier Stokes) models the solution marches in time with a
locally optimized time step for each cell. Although this gives a faster convergence to the
steady state, the solution is not time accurate. However in Unsteady (U)-RANS models a
global time step is used for each cell. Therefore if the time step is small enough, the unsteady
behaviour of the mean quantities can be captured in principle. U-RANS models are widely
used in industries as they are they are relatively cheaper and efficient in computing turbulent
fluid flow properties. As these models compute time averaged quantities of the flow such
as velocity, pressure and temperature, very little information on the fluctuating quantities
is available. The useful turbulent quantities available are turbulent kinetic energy (K), the
energy dissipation rate (ε) and Reynolds shear stress tensor.

De Ridder et al. (2013) numerically simulated the vibrations of a flexible brass cylinder in an
axial water flow. The simulation setup replicates the experiments done by Chen and Wamb-
sganss (1972). Initially the purely structural problem is solved to get the eigenmodes of the
cylinder using a finite element solver while neglecting the damping in the structure. The brass
cylinder is then deformed to a particular eigenmode such that the maximum displacement is
scaled to unity. Then the fluid only steady state simulation is run while treating the interface
as a rigid wall boundary. The final step comprises of running an unsteady FSI simulation to
get the displacement history of the initially deformed structure. The modal characteristics
of the brass cylinder are then studied by calculating parameters such as damping ratio and
oscillation frequencies for various values of water inflow velocities. However, this method
has a major drawback when applied to study turbulence induced vibrations which is usually
the case for axial flows around structures. Any external excitation provided to the structure
would eventually damp out due to lack of excitation from the fluid flow itself. This is due to
the fact that the instantaneous velocity and pressure fluctuations are averaged in U-RANS
models and hence heavily damped out. The next section discusses a procedure to calculate
the velocity and pressure fluctuations using the known turbulence data found using U-RANS
models.

3.2 Modeling the Synthetic Fluctuation Fields

For an incompressible flow field, the pressure fluctuations are related to the velocity fluctua-
tions through the following Poisson’s equations.

∂2p′

∂xi∂xi
= −ρ

[
2
∂ui
∂xj

∂u′j
∂xi

+
∂2

∂xi∂xj

(
u′iu
′
j − u′iu′j

)]
(3.9)
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Kraichnan (1956) observed that the first term on the right hand side of Eq. (3.9) represents
the mean shear turbulence interaction. This term is also called the rapid pressure fluctuation
term as it varies quickly in response to changes in flow conditions and the second term on
the right hand side represents the interaction of turbulence with itself. This term is called
the slow pressure fluctuation term as it responds slowly to variation in flow field. The author
also obtained a theoretical solution for the pressure fluctuation.

Chen (1985) derived a method to calculate root mean square pressure fluctuations and also
worked out a transport equation for root mean square pressure fluctuations. The unknown
terms in the above equation required additional modeling to close the system. The coeffi-
cients used for this modeling were calculated using the available experimental and Large-Eddy
Simulation data.

In the work done by Senthooran (2002) the velocity fluctuations in the 3-D flow field are
represented as a sum of discrete Fourier modes. To explain the concept used by Senthooran
to model the velocity fluctuations, the concept of energy cascade is briefly explained first.

3.2.1 Energy Cascade

The energy cascade is a concept central to the discussion about turbulent flows which describes
the process where the kinetic energy from the larger eddies in the flows is transferred to
increasingly smaller eddies. Although some energy dissipation due to viscosity happens at all
length scales, the larger eddies are majorly inviscid and most of their energy is transferred to
increasingly smaller scales where this energy is eventually dissipated due to viscous forces and
converted into thermal energy. This process of energy transfer to smaller scales is poetically
described by Richardson (2007) as

Big whorls have little whorls
That feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.

Higher Reynolds number lead to a greater range of eddy scales. Usually the energy distribution
across all the scales is visualized with the turbulence kinetic energy spectrum. The energy
spectrum E(κ) is defined using the turbulent kinetic energy (k) as,

k =

∞∫
0

E(κ)dκ (3.10)

where κ is he wavenumber associated with any particular eddy scale and is inversely propor-
tional to the eddy length scale. Hence, smaller wavenumbers correspond to larger eddies and
vice versa. The above equation implies that the total turbulent kinetic energy is equal to the
summation of energy contained at all eddy length scales. A typical energy spectrum plot for
a turbulent flow is shown in Fig. 3.2.
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Figure 3.2: Energy spectrum for a turbulent flow field

Kolmogorov (1941) introduced the concept of scale separation which states the dynamics of
eddies at the smallest scale are statistically independent of that of the larger ones. He also
postulates that in case of equilibrium for turbulent flow, the rate of energy dissipation at the
smallest scales to due to viscosity is equal to the rate of energy supplied from the largest
scales. Kolmogorov also defined an intermediate scale which is independent of the dynamics
of both the aforementioned scales. Each of these three scales are shown in Fig. 3.2 and are
briefly describe below:

1. Large-scale range: These are the largest scales in the flow and are highly influenced by
the flow conditions and geometry. These scales are responsible for turbulence production
as they extract energy from the mean flow and transfer it over to smaller scales.

2. Inertial-subrange: This scale exists if the Reynolds number of the flow field is high
enough. The eddies in this range extract energy from higher scales but the dissipation
due to viscosity is minimal.

3. Dissipation range: In this range the dynamics of the eddies are dominated by viscosity
(ν) and the rate of energy transfer (ε) from larger scales. The turbulent eddies at this
scale are independent of the characteristics of the larger scales in the flow, are unaffected
by boundary conditions and are hence assumed to be isotropic. Using dimensional
analysis the scales associated with this range can be calculated as,

kolmogorov length scale η =
(ν3

ε

)1/4

kolmogorov time scale τ =
(ν
ε

)1/2

kolmogorov velocity scale v = (νε)1/4

(3.11)
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3.2.2 Velocity Fluctuation Modeling as Fourier Series

The velocity fluctuations are modeled by expanding it with a Fourier series. Each term of the
Fourier series models the fluctuation field due to each eddy length scale. The range of eddy
lengths is continuous in a turbulent regime, therefore it is discretized into a select number of
modes or wave numbers as shown below:

u′(x, t) =
N∑
n=1

ũn cos
[
kn · (x− tuc) + ψn + ωnt

]
σn (3.12)

where ũn is the amplitude, ψn is the phase and σn is the unit direction vector of the nthmode
associated with the wave vector kn, ωn is the characteristic angular frequency and uc is the
convection velocity respectively.

The wave vector (kn) is defined as the inverse of the eddy length scale in 1-D. For a 3 dimen-
sional space the wave vector is defined in form of a 3 component vector. The direction vector
(σn) is a unit vector that specifies the direction of each component of the velocity fluctuation
amplitude (ũn) in 3 dimensions. The relationship between the 2 quantities mentioned above
is described below. For an incompressible flow, the continuity equation can be written as:

∇ ·U = 0 (3.13)

Here U is the instantaneous velocity and can be written as the sum of average velocity and
the velocity fluctuations, i.e.

U = U + U ′ (3.14)

Substituting Eq. (3.14) in Eq. (3.13) and averaging it w.r.t. time, we get

∇ ·U = 0 (3.15)

Now using Eq. (3.13), Eq. (3.14) and Eq. (3.15) we can write

∇ ·U ′ = 0 =⇒ ∂u′i
∂xi

= 0 (3.16)

Now substituting the Fourier series of u′i from Eq. (3.12) into Eq. (3.16), we get a relationship
between kn and σn, i.e.

kn · σn = 0, n = 1, . . . , N (3.17)

This implies the unit direction vector (σn) is always perpendicular to wave vector (kn). Fig.
3.3 below shows the wave vector geometry in relation to the unit vector. The unit direction
vector σn lies in (k′1, k

′
2) plane and is at an angle αn with k′1. The plane defined by (k′1, k

′
2)

is perpendicular to kn to satisfy Eq. (3.17). The unit vector σn can be expressed in terms of
the original coordinate system (k1, k2, k3) and then equating its dot product with the wave
vector kn to 0, gives the value of polar angle αn Wave vector and the direction vector can be
written as:

kn = (sin θn cosφn)k1 + (sin θn sinφn)k2 + (cos θn)k3 (3.18)
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Figure 3.3: kn and σn for n-th Fourier Mode Billson (2004)

σn = k′1 cosαn + k′2 sinαn (3.19)

The original coordinate system (k1,k2,k3) can be transformed into the (k1’,k2’,k3’) system
by first rotating it counter-clockwise about k3 by an angle φ and then rotating the resulting
system clockwise about k2 by an angle θ. The resulting transformation can be written in the
matrix form as,k′1k′2

k′3

 =

 cos(φn) sin(φn) 0
− sin(φn) cos(θn) cos(φn) cos(θn) sin(θn)
sin(φn) sin(θn) − cos(φn) sin(θn) cos(θn)

k1

k2

k3

 (3.20)

Using the above transformation the unit vector σn can be rewritten as,

σn = k′1 cosαn + k′2 sinαn

= cos(αn)
[

cos(φn)k1+

sin(phin)k2

]
+ sin(αn)

[
− cos(θn) sin(φn)k1 + cos(θn) cos(φn)k2 + sin(θn)k3

]
=
[

cos(αn) cos(φn)− cos(θn) sin(φn) sin(αn)
]
k1+[

cos(αn) sin(φn) + cos(θn) cos(φn) sin(αn)
]
k2 +

[
sin(αn) sin(θn)

]
k3

(3.21)

The polar angle (αn) can then be calculated by satisfying the condition given in Eq. (3.17)
using Eq. (3.18) and (3.21)

αn = tan−1
(
− 1

cos θn

)
(3.22)

The isotropy and homogeneity of the random velocity fluctuations is ensured by treating
φn, ψn and θn as random variables using probability density functions. A random number
generator is used to generate a set of random values and these random values are used to
calculate φn, ψn and θn along with the use of probability density function as given below,

P (φn) =
1

2π
(3.23)
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P (ψn) =
1

π
(3.24)

P (θn) =
1

2
sin(θn) (3.25)

The characteristic angular frequency of the turbulent eddies associated is given by,

ωn = ε1/3k2/3
n (3.26)

Each of the eddies has a certain amount of kinetic energy associated with it depending on the
intensity of the velocity fluctuations. The distribution of the turbulent kinetic energy across
the eddies is called the energy spectrum. The area under the energy spectrum represents
the total kinetic energy of the velocity fluctuations as described earlier in section 3.2.1. The
amount of energy contained at each wave number for isotropic turbulence is given by the
modified Von Karman spectrum (Hinze, 1975).

E(k, t) = 217/6E(ke)
(k/ke)

4[
1 + (k/ke)2

]17/6
exp[−2ντη] (3.27)

where ke is the wave number at which E(k, t) reaches its maximum. Hence it is the length
scale that contains the maximum energy. τη is the Kolmogorov time scale. The value of the
maximum kinetic energy E(ke) is given by

E(ke) = A
2K

3ke
(3.28)

where A is a constant and K is the total turbulent kinetic energy. The 2 unknowns here are
A and ke and are determined from the following relationships. In the inertial sub-range, the
energy spectrum can be described as

E(kn) = Aε2/3(kn)−5/3 (3.29)

We can equate Eq. (3.27) ignoring the exponential term (due to negligible viscosity effects)
with Eq. (3.29) and using the fact that in inertial sub-range k/ke >> 1, we get the value of
ke,

ke = 2−17/4

(
3

2

)3/2
ε

K3/2
(3.30)

The turbulent kinetic energy is defined as

K =

∞∫
0

E(k)dk (3.31)

Substituting Eq. (3.27) and Eq. (3.28) in Eq. (3.31), we can get the value of A

A = 3

[
217/6

∫ 1

0

η3/2

(1− η)2/3
exp

[
− β η

(1− η)
(t− t0)

]
dη

]−1

(3.32)
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where β = 2νk2
e . Using the obtained values of A and ke, the value of kinetic energy for each

mode can be calculated using Eq. (3.27). The total turbulent kinetic energy can be written
as the summation of energy contained at each eddy scale,

K =

∫ ∞
0

E(k)dk =
1

2
u′iu
′
i (3.33)

Using Eq. (3.12) and Eq. (3.33), the turbulent kinetic energy can be written as,

K =
N∑
n=1

ũ2
n =

∫ ∞
0

E(k)dk (3.34)

The amplitude of the fluctuations (ũn) can be calculated by dividing the area under the E(k)
vs k curve into a number of smaller rectangles to get

ũn =
√
E(kn)exp(∆kn) (3.35)

where the continuous distribution of wave numbers is discretized using a logarithmic distri-
bution of N wave numbers. The logarithmic step (∆kn) is defined as

∆kn =
log(kN )− log(k1)

N − 1
(3.36)

with k1 and kN being the wave numbers corresponding to the largest eddy and the smallest
eddy (Kolmogorov scale) respectively and are given as,

k1 =
2π

L

kN =
( ε
ν3

)1/4
(3.37)

The convective velocity of each fluctuation is calculated using ωn and ke as follows

ūc =
ωn
ke
. (3.38)

Using all the above parameters the velocity fluctuations as described in Eq. (3.12) can be
calculated.

3.2.3 Calculating the pressure fluctuation field and traction at the fluid-
surface interface

The pressure fluctuation field is then computed using the velocity fluctuation field data and
the Poisson’s equation using Eq. (3.9). In a typical fluid structure interaction solver, the fluid
solver takes the displacement from the structural solver as its input and gives the traction
as the output as shown in Eq. (2.27). However in this case the pressure fluctuations (p′) are
added to the mean pressure (p) which is used in addition to the wall shear stress to calculate
the traction at the interface.

Pressure Force =

∫
(p̄+ p′)dA (3.39)

This ensures that the force exerted on the structure also includes the components due to the
pressure fluctuations, which in turn acts as an external excitation condition for the turbulence
induced vibrations.
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3.3 Numerical Code

The code used for this thesis project is a modified version of Openfoam-Extend project (Open-
FOAM). The synthetic fluctuation modeling has been implemented in the FOAM-FSI library
to simulate FSI problems. OpenFOAM has been externally coupled to a FEM (Finite El-
ement Method) package Deal.II (Bangerth et al., 2016) using the coupling library preCICE
Bungartz et al. (2016). Deal.II is a Finite Element library containing all the required tools
to discretize and solve partial differential equations using FEM. Thus it is suited for the
structural equation. preCICE (Precice Code Interaction Coupling Environment) is a highly
flexible open source coupling library for multi-physics simulations.

3.4 Influence of Using Separate Time Marching Schemes for
Fluid and Solid Domain

In a partitioned coupling approach different time marching algorithms can be used in the
fluid and the structural domain. To study the influence of different time marching schemes,
a simplified 1-D piston problem (Piperno et al., 1995) is used as a test case. All the possible
combinations of the time marching schemes available in the individual fluid (OpenFOAM)
and the structural (Deal.II) solver are studied. Based on this study Backward Differencing
Formula-2 for the fluid solver and Crank-Nicolson for the structural solver is chosen as the
time marching scheme combination that is used in all the further simulations. The details of
this analysis have been shown in Appendix A.

3.5 Summary

This chapter gives a brief overview of different approaches to studying turbulence in a flow
field. The procedure of applying averaging methods to separate the mean and fluctuating
components of variables using Reynolds Averaged Navier-Stokes methods is described in a
bit more detail. However using U-RANS models for studying turbulence induced vibrations
has a major drawback that the amplitude of the oscillation cannot be predicted due to the
damping out of instantaneous fluctuations in the flow field. Senthooran (2002) identified a
way to model the turbulent velocity fluctuations in a flow field as a discrete Fourier series
using known parameters such as the turbulent kinetic energy and its dissipation rate from
the U-RANS models. An overview of this model is presented in detail. However, the use of
this model in Turbulence Induced Vibrations is still only verified qualitatively (Kottapalli,
2016). A quantitative verification of this procedure would require comparing the results of this
model with an actual experiment where Turbulence Induced Vibrations are a major source
of excitation. However, initially a numerical and experimental validation study for the FSI
solver obtained using the preCICE coupling library is performed as described in the next
chapter.
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Chapter 4

Validation of preCICE Coupling

In this chapter the developed FSI solver is validated against two reference test cases. The
first reference test case is the numerical benchmark provided by Turek and Hron (2006).
This involves an elastic flap attached to a solid cylinder, both of which are submerged in
a channel flow leading to oscillations of the flap. The second test case is an experiment
performed by Vattenfall Research and Development, where a slender tube (submerged in water
or air) is given an initial displacement at its center and then released to study its damping
characteristics (Lillberg, 2015). Both these cases are chosen to quantitatively confirm the
implementation of the coupling adapter for the solver described in the previous chapter.

4.1 Numerical Benchmark

A numerical benchmark by Turek and Hron (2006) is used for evaluating the performance of
the coupling tool preCICE, which was used to couple OpenFOAM and Deal.II as described in
previous chapter. The test case involves a laminar incompressible channel flow encompassing
an elastic flap attached to a solid cylinder. The benchmark overall comprises on 9 test cases.
The first three test cases viz. CFD1, CFD2 and CFD3 focus only on the fluid dynamics of
the domain. Out of the above cases, the flowfield in CFD3 shows oscillations and is chosen
to be performed as a test case. The structure only test cases of the benchmark are named
CSM1, CSM2 and CSM3. Out of these only CSM3 is time dependent whereas the other two
have steady state solutions. Hence CSM3 is chosen to be performed in this study. The final
three test cases (FSI1-3) in the benchmark deal with fully coupled fluid structure interaction.
FSI1 leads to steady state a steady state deformation whereas FSI2 and FSI3 result in self-
sustaining oscillations of the flap. For this study FSI3 is chosen as the validation test case as
it is a strongly coupled case with density ratio of the fluid and the solid being one.
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Figure 4.1: Computational domain showing the fluid and the structural domain (Gatzhammer,
2014)

4.1.1 Domain Description

The domain comprises of a 2-D flap attached on the rear end of a cylinder immersed in a
channel flow as described in Fig.4.1. The dimensions and coordinates of the domain have
been described below:

• The length and width of the channel are 2.5 and 0.41 respectively

• The cylinder is centered at C (0.2,0.2) with a radius of 0.05

• The length and width of the flap are 0.35 and 0.02 respectively.

• Point A refers to the point at which the displacement of the flap is compared.

4.1.2 Boundary Conditions

• A parabolic velocity profile has been initially prescribed at the left wall of the domain
as described below,

vf (t, y) =


1.5Ū y(H−y)

H
2

2

(
1−cos(π

2
t)

2

)
, if t ≤ 2

1.5Ū y(H−y)
H
2

2 , otherwise

where H is the height of the channel i.e. 0.41 and the mean inflow velocity is Ū and the
maximum inflow velocity is 1.5Ū . The outflow condition for the velocity is prescribed
as a zero gradient at the outlet.

• The inflow condition for pressure is prescribed as zero gradient at the inlet with some
reference value (0 in this case) prescribed at the outlet.
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Table 4.1: Physical parameters for test cases performed

Parameter CFD3 CSM3 FSI3

ρf (kg/m3) 1e3 - 1e3

νf (m2/s) 1e-3 - 1e-3

U (m/s) 2 - 2

ρs (kg/m3) - 1e3 1e3

Es (kg/ms2) - 1.4e6 5.6e6

νs - 0.4 0.4

g (m/s2) 0 2 0
ρs
ρf

- - 1

• A no-slip condition has been prescribed at the bottom and top wall of the domain as
well as at the walls bounding the structural domain.

4.1.3 Physical Properties and Simulation Setup

The physical properties for all the test cases performed have been shown in table 4.1.

The coupled Fluid Structure Interaction case is performed using three increasingly refined
grids both for the fluid and the structure domain named coarse, fine-1 and fine-2. The
number of cells in the fluid domain for each of the above grids is 5981, 23924 and 92984
respectively. The structural grid is refined in accordance with the fluid grid to keep the cells
at the fluid structure interface conformal. All 3 grades of the fluid mesh have been shown
below in Fig. 4.2, 4.3 and 4.4.

Figure 4.2: Mesh-coarse Figure 4.3: Mesh-fine1
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Figure 4.4: Mesh-fine2

4.1.4 Results and Discussions

This section provides the comparison of the simulations for the CSM3, CFD3 and FSI3 cases
with the data provided for these by Turek and Hron (2006). The first section compares the
y-displacement of the point-A on the beam for the transient structure only simulation. The
second section provides the results obtained for the fluid only transient simulation CFD3 and
compares the lift and drag acting on the structure with data provided in the reference case.
Finally the last section compares the y-displacement history for a transient Fluid-Structure
Interaction case FSI3 with the reference data.

4.1.4.1 Hron and Turek CSM3

The CSM3 test case shows the response of point A on the flap oscillating under the influence
of gravitational force of 2 m/s2 without being submerged in fluid. The time integration
method used is Crank-Nicolson. Fig. 4.5 shows the displacement history of point-A for 3
grades of structural mesh consisting of 254, 500 and 1325 elements respectively. A time step
(∆t) of 0.001s was chosen for this simulation. The properties of the solid are mentioned in
the second column of table 4.1. It can be observed that the magnitude of displacement is
in practically indistinguishable at first but is slightly damped after a few oscillation cycles.
The maximum measured deviation in amplitude is 3% from the reference data. Also the
frequency of oscillation is slightly underpredicted in this simulation. The overall results are
in good agreement with the reference data. The slight variation might be due to the use of
linear elasticity model for the structural solver. Another source of uncertainty is how the 2-D
flap is attached to the cylinder. Based on the dimensions described in Section 4.1.1 a gap (δl)
would be created at the intersection of the cylinder and beam as shown in Fig. 4.6. It is not
clear whether this gap is intended or not.
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Figure 4.5: y-displacement of point-A (CSM3)

Figure 4.6: Close-up of the gap between cylindical and beam section of the structure (Sheldon,
2012)

4.1.4.2 Hron and Turek CFD3

This test case is focused on the fluid dynamics part of the problem. The fluid only simulation
is performed by making the structural beam almost rigid using large values for the structural
parameters (ρS and Es are of the order 106 and 1012 respectively). This simulation is per-
formed on the finest fluid grid i.e. fine2 using BDF2 as the time integration method with
∆t= 0.001s. The lift and drag forces on the structure are calculating by adding up the forces
along the cylindrical part and the beam of the structural domain. A snapshot of the velocity
and pressure contours at t = 5s has been shown in Fig. 4.7 and Fig. 4.8 respectively. The
unsteadiness of the flow can be clearly observed from the velocity profile. The quantitative
analysis is performed using the the lift and drag forces acting on the structure. It can be
observed from Fig. 4.9 that the computed lift forces are practically indistinguishable from the
reference data. The drag forces have been shown in Fig. 4.10 and the maximum deviation
from the reference data for these is 0.2%. Hence it can be concluded that the fluid only sim-
ulations are in good agreement with the reference data. Also, a slight variation in frequency
of oscillation for both the lift and drag forces piles up with time and can lead to a phase shift,
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hence to make the comparison between the performed simulation and the reference data from
t = 9s to t = 9.6s, this phase shift has been removed.

Figure 4.7: Velocity contours at t = 5s [m/s] (CFD3)

Figure 4.8: Pressure contours at t = 5s [Pa] (CFD3)
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Figure 4.9: Lift force on the cylinder +
beam (CFD3)
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Figure 4.10: Drag force on the cylin-
der + beam (CFD3)

4.1.4.3 Hron and Turek FSI3

This is the final numerical test case meant to evaluate the capabilities of the fluid structure
interaction solver. This test case comprises of the same geometry as before i.e. a slightly
off-center cylinder with a beam attached to it, both of which are submerged in a channel flow
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domain as shown in Fig. 4.1. The time integration method used for the fluid and the structural
solver is BDF2 and Crank-Nicolson respectively. The coupling algorithm used between the
two domains is IQN-ILS, the mesh motion is computed using Radial Basis functions (Thin
Plate Spline) and the data interpolation method used is Nearest Neighbor Projection as the
mesh used for this case is conformal.

Figure 4.11: Velocity contours at t = 10s (in m/s)
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Figure 4.12: y-displacement of point A (FSI3)

A snapshot of the velocity contour at t= 10s is shown in Fig. 4.11 which highlights the
unsteadiness of the flow. A quantitative comparison with the reference data is done by
plotting the y-displacement of point-A on the beam for all 3 grades of the mesh and the
reference data. It can be observed that the computed displacement gets increasingly closer
to the reference data with finer grids. The computed displacement for the fine-2 grid is in
good agreement with reference data; the maximum error in displacement being 3%. The
comparison of the mean and the amplitude of the y-displacement history is shown in Table
4.2. Similar to the Hron and Turek CFD3 case, the phase shift has been removed for this
case too. The decreased amplitude compared in Fig. 4.12 can be attributed to the artificial
damping introduced by the temporal and spatial discretization. Similar to the phase shift,
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the damping of amplitude also adds up with time.

Table 4.2: Mean and amplitude of the y-displacement of point A for FSI3

Case y-displacement Mean (m) y-displacement Amplitude (m)

Coarse 0.0021 0.0146

Fine 1 0.0020 0.0289

Fine 2 0.0013 0.0330

Turek 0.0016 0.0340

In this section the most relevant test cases from Turek and Hron (2006) were selected viz.
CSM3, CFD3 and FSI3; and were performed using the developed Fluid Structure Interaction
solver and a good agreement with the reference results for all three cases was observed.

4.2 Experimental Benchmark

Vattenfall Research and Development in Sweden performed an experiment (Lillberg, 2015)
tailored to be a validation case for fluid structure interaction codes especially for nuclear
reactor applications. The test case involved a vertical beam completely immersed in water
which is clamped at the fluid inlet side and has a roller boundary condition at the fluid outlet.
The center of this beam is given an initial displacement of 10mm and then released to study
its vibrations and damping characteristics both in air and water.

4.2.1 Experimental Setup

The experimental setup consists of a slender stainless steel beam of length 1.5m contained
inside a plexiglass channel of the same length with a cross section of 0.8m × 0.8m. The
cross section of the beam is 8cm × 20cm. The beam is clamped at the fluid inlet side of the
domain whereas it has 'roller type' support on the other end. This roller type support allows
the beam to move in the axial direction while restricting its motion in the other two normal
directions. Construction drawing of beam is shown in Fig. 4.13.

The flow of the water is maintained using pumps in the beam longitudinal direction. To
impose the displacement on the beam, a fine line is attached to the bar, which is then pulled
back until the beam displaces by 10mm and is finally cut to initiate the experiment. The step
by step schematic of this procedure is shown in Fig. 4.14. The displacement history of the
beam is then measured using a laser.

The measurements were made initially for quiescent air and water and subsequently with
varying axial inlet velocities of water through the channel. The stainless steel beam used has
a density (ρ) = 8000 kg/m3 and a modulus of elasticity (E) equal to 188 GPa. The two tests
used for reference purposes for this study are: with quiescent air at a temperature of 17.7◦ C
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and with water flow of 1m/s at a temperature of 8.4◦ C.

Figure 4.13: Boundary conditions of the steel beam at different locations

Figure 4.14: Schematic of steps involved in displacing the beam

4.2.2 Computational Domain

A schematic and the dimensions of the computational domain is shown in Fig. 4.15, where L
= 1.5m, H = 0.8m, a = 0.75m, h = 8mm, l = 20mm and δ = 10mm.

The difficulty in replicating the 'roller' boundary condition and the effect of number of axial
elements in the solid mesh on predicting the oscillation frequency of the beam was reported by
Ter Hofstede (2015). Hence a solid only simulation is performed initially to assess the efficacy
of the structural solver in Deal.II in being able to capture the dynamics of the experiment.
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Figure 4.15: Dimensions of the Vattenfall computational domain

4.2.3 Structure Only Simulation

Five grades of structural mesh have been used for this study, each with 80, 160, 320, 640 and
1280 axial elements respectively. The cross-section of the beam has 8 × 4 elements for all
these cases. The structural mesh for each of these cases has a small patch of length 0.02m at
the exact center of the beam. This patch is provided an initial displacement of 10mm and then
released to study the damping characteristics of the beam. All these simulations have been
performed using both Backward Euler and Crank-Nicolson time integration schemes with a
time step size of ∆t = 0.001s. The reference data for this study is from the first experiment
performed by Lillberg (2015), where the displacement of the beam is measured in quiescent
air. The experimental frequency of vibration was observed to be 12.3 Hz. The analytical
frequency for a fixed-roller type supported beam can be calculated using Rajasekaran (2009)

ω =
1

2π

15.418

L2

√
EI

ρA
, (4.1)

where L, E, I, ρ, A are the length of the beam, the modulus of elasticity, the moment of inertia,
the density of the beam and the cross-section area respectively. The computed analytical
frequency for the current beam geometry is 12.37 Hz, which is very close to the experimentally
measured frequency. The simulation results for 0.1s of oscillation after being initially displaced
by 10mm are shown in Fig. 4.16. The results for specifically the structural mesh with 640
and 1280 axial elements has been shown separately in Fig. 4.17 to make it more readable
and compare it with the experimental data. A clear trend of better approximation of the
experimental frequency with increasing axial elements is observed from both the figures. It
can also be observed that the Crank-Nicolson time integration scheme better approximates
the amplitude of the oscillations whereas Backward Euler introduces artificial damping, thus
reducing the amplitude of oscillation. A quantitative comparison of the frequency of oscillation
for each of the cases has been provided in table 4.3.

From this section it can be concluded that the structural solver implemented in Deal.II is
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Figure 4.17: Displacement history for sim-
ulations with 640 and 1280 axial elements

Table 4.3: Frequency of oscillation for each of the simulated cases (BE and CN represent
Backward Euler and Crank-Nicolson time integration schemes respectively)

Case Frequency (Hz) Error (%)

Experiment 12.3 -

80-BE 21.739 76

160-BE 15.150 23

320-BE 13.158 6.9

640-BE 12.821 4.2

1280-BE 12.658 2

160-CN 15.385 25

320-CN 13.333 8.3

640-CN 13.158 6.9

1280-CN 12.500 1.62

capable of replicating the dynamics of the experiment especially the 'roller' type boundary
condition. Based on the simulation results it is decided that the number of axial elements for
the Fluid Structure Interaction study will be 640.

4.2.4 Coupled Fluid Structure Interaction

This sections deals with the simulation performed to replicate the second experiment carried
out at Vattenfall Research and Development Lillberg (2015). This experiment involves study-
ing the damping characteristics of the steel beam (initially displaced by 10mm) surrounded
by a water flow of 1m/s through the plexiglass channel. Two different grades of fluid mesh are
chosen for this study to establish that the structural damping characteristics are independent
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of the fluid mesh element size. The coarse and the fine fluid mesh consist of 51200 and 409600
elements respectively and the structural mesh has 20480 cells with 640 axial elements. Differ-
ent cross-sectional views of the fluid and structure mesh have been shown in Fig. 4.18. The
time marching algorithm used in these simulations is Crank-Nicolson for the structure while
BDF-2 is used for the fluid with a time step size (∆t) of 0.001s. Both the fluid and structural
domain are being solved throughout the simulation, but the transfer of traction was stopped
while the structural beam was being initially displaced by 10mm. Once the beam had been
displaced by 10mm, all the constraints on the central patch of the structure (which is used
to displace the beam) were removed and the beam was free to oscillate bound at the 2 ends
with clamped and roller type boundary conditions.

Figure 4.18: Fluid (black) and structure (blue) mesh used for the FSI simulation

The boundary conditions imposed on the fluid domain have been listed in table 4.4. The
flow inlet velocity has been imposed at the inlet with a zero gradient at the outlet. At the
outer walls of the fluid domain a no-slip boundary condition has been imposed, whereas on
the inner walls i.e. the fluid structure interface a no slip boundary condition would imply the
fluid velocity being equated to the velocity of the structure at the interface. For the pressure
field a zero gradient has been imposed at all the boundaries except at the outlet where a
fixed value of 0 has been imposed. The discretization setting for the the gradients, laplacian
and divergence terms for the fluid solver along with the time marching algorithm have been
shown in table 4.5.

Table 4.4: Boundary conditions for the flow variables in OpenFOAM

Variable Inlet Outlet FSI-interface Outer Walls Units

U (0,0,1) zero gradient structural velocity no slip ms−1

p zero gradient 0 zero gradient zero gradient m2s−2
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Table 4.5: Settings for the solver

Scheme

ddtSchemes bdf2

ddtSchemes (Structure) Crank-Nicolson

gradSchemes Gauss linear

divSchemes Gauss linearUpwind

laplacianSchemes Gauss linear corrected

snGradSchemes corrected

Mesh motion Radial Basis Functions (Thine plate spline)

Coupling Algorithm IQN-ILS

Maximum coupling iterations 60

4.2.4.1 Fluid Grid Independence

Fig. 4.19 shows the response of the structure after being displaced by 10mm for both the
grades of the fluid mesh shown in Fig. 4.18 and for structural mesh with 640 axial elements
as was motivated in section 4.2.3. It can be clearly observed that increasing the fluid grid
resolution by 8 fold does not lead to any significant changes in response of the structure,
hence the grid independence can be established for the fluid domain too. For the rest of the
chapter the coarse mesh is thus used to save computational costs.
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Figure 4.19: Displacement history of the center of the beam with varying grades on fluid mesh
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4.2.4.2 Results and Discussion

Fig. 4.20 shows the displacement of the center of the beam for the complete simulation
runtime. For the first 0.5 seconds of the simulation, the center of the beam is displaced by
10mm using the following relation for the displacement,

y = 0.5(yi)
[
1− cos

( t

tramp

)]
(4.2)

where y is the displacement of the beam, yi is the final displacement to be imposed i.e. 10mm
in this case, tramp is the time taken to impose the given displacement and t is the time at which
the displacement is being evaluated. This specific relation is chosen so as make sure that the
beam does not have any velocity at the end of the time taken to impose a displacement. After
the displacement has been imposed on the beam i.e. after 0.5 s, the traction is turned on for
the coupled fluid structure interaction case which is from 0.6s to 0.7s and is shown separately
in Fig. 4.21. The frequency of oscillation of the beam is noted to be 10Hz for the experiment,
whereas the frequency of oscillation for the simulation was calculated to be 9.901 Hz. Hence
the results of this simulation are in good agreement with the experiment with a 0.99% error
in the oscillation frequency.
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Figure 4.20: Displacement history of the center of the beam for simulation with water flow of
1m/s
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Figure 4.21: Displacement history of the center of the beam during coupled fluid and structure
simulation

4.3 Summary

Two different validation studies were performed in this chapter. The first one was a numerical
benchmark for Fluid Structure Interaction solvers by Turek and Hron (2006). Three test
cases each for all 3 aspects of the Fluid Structure Interaction solver i.e. the fluid dynamics,
structural mechanics and the coupled interaction were chosen from this benchmark viz. CFD3,
CSM3 and FSI3. It was observed that the developed solver provides simulation results that
are in good agreement with the reference data. Also the coupled FSI case chosen was a
strongly coupled problem, thus validating the efficacy of this solver in handling strongly
coupled cases which are usually observed in nuclear reactors. The second validation case used
was an experiment conducted at the Vattenfall Research and Development Lillberg (2015)
involving a 3-D steel beam immersed in quiescent air and a water flow channel. In this case
initially the capability of the structural solver to replicate the 'roller' boundary condition was
first validated and then a coupled FSI simulation of steel beam in channel flow of water was
performed. The results obtained were again in good agreement (0.99% error in frequency)
with the experiment.
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Chapter 5

Validation of Synthetic Turbulent
Fluctuations for TIV

This chapter presents two test cases that are used to validate the use of synthetic turbulent
fluctuation modeling in order to simulate turbulence induced vibrations. The first test case
is a variation of the geometry used by Turek and Hron (2006). In this case the cylindrical
portion in front of the Turek geometry is removed in order to remove the excitation of the
flap due to vortex shedding. The second test case in an experiment performed by Liu et al.
in which a steel cylinder fixed at one end and free at the other end is subjected to axial
water flow from the direction of the free end. The oscillation frequency and the amplitude of
vibrations is available from this test case to quantitatively validate the efficacy of synthetic
fluctuation modeling.

5.1 Steel flap fixed on both ends

In this test case, a steel flap is fixed at both ends and submerged in a turbulent water flow.
The fluid and the steel flap mesh along with the domain are shown in Fig. 5.1. The inlet flow
velocity is 10 m/s. The outlet is a fixed pressure boundary condition with both the upper and
the lower boundaries as walls with no slip boundary condition. Both, the left and the right
end of the flap are given a Dirichlet boundary condition with zero displacement. The bulk
Reynolds number of the flow is 4×106 using the inlet height as the reference length. The fluid
mesh has 102 × 43 quadrilateral elements. The solid domain has 200 quadrilateral elements.
The time marching scheme used is BDF-2 for the fluid domain and Crank-Nicolson for the
structural domain with a step size of 0.001s. Since the Reynolds number is of the order 106,
the water flow is reasonably turbulent. Due to this turbulence the pressure fluctuations in
the water are sufficient to externally excite the steel flap. To study the influence of synthetic
fluctuation modeling, two variations of this test case are performed. The first involves using
standard U-RANS model (k-ω with wall functions) and the second involves imposition of
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synthetic fluctuation modeling on top of standard U-RANS model.

Figure 5.1: Mesh and domain of the Steel Flap in Turbulent Water test case. The length of the
fluid domain (in blue) L = 3.15 m, height of the fluid domain H = 400 mm, length of the flap
(in black) l = 2 m and the width of the flap h = 20 mm.

Fig. 5.2 shows the vertical displacement of the center point of the flap. It can be observed from
this figure that the synthetic fluctuation modeling is capable of maintaining the vibrations
whereas in case of standard U-RANS model the vibrations are damped considerably, hence
the amplitude of the vibrations is under predicted as is clear from the r.m.s. values of the
displacement shown in Table 5.1.
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Figure 5.2: Comparison of the structural displacement of the beam center with and without the
synthetic turbulent fluctuations

Despite the fact that the model successfully simulates the expected response of the structure,
it still needs to be validated against an experimental test case to quantitatively verify if
the amplitude response generated by synthetic turbulent fluctuations is physical. The next
section deals with the aforementioned requirement.
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Table 5.1: Comparison of r.m.s values of the displacement of the flap

Case RMS Amplitude [×10−4 m]

Standard k − ω 0.0448

With synthetic fluctuation modeling 2.233

5.2 3-D Cantilever Rod in Axial Water Flow

This test case involves simulating a stainless steel rod submerged in axial water flow. The
following subsections describe the experimental setup, the final configuration chosen to be
performed numerically, the computational setup of the simulations and finally the comparison
of the results with the experimental data.

5.2.1 Experiment Description

Liu et al. experimentally studied a fluid structure interaction system closely related to those
found in nuclear reactors cores. The experimental system consists of a hollow cylindrical
stainless steel (316L) rod which is free at one end and fixed at the other, mounted inside a
coaxial Plexiglas tube. The inner and outer diameter of the cylindrical rod is 8.8 mm and 10
mm respectively and its length is 1.05 m. The Plexiglas tube is 2.05 m long and has an inner
and outer diameter of 21 mm and 25 mm respectively. The schematic of the test facility is
shown in Fig. 5.3. Through the annulus formed in between the Plexiglas and the cylindrical
rod, turbulent water is flow is directed from the bottom end of the test facility towards the
top end. Hence the water flow is directed from the free end of the cantilever rod towards the
fixed end. Two configurations of the rod free end have been used for this experiment, one
with a blunt end and the other with a tapered end as shown in Fig. 5.4. The displacement
history of the rod is measured by putting two axially aligned ink marks at a distance of 25
mm from the rod free end and then using fast imaging cameras to track their movement.
The obtained displacement history is then used to quantify the vibrations, e.g. the vibrating
frequency can be obtained using a Fast Fourier Transform and other parameters such as the
maximum and the RMS amplitude values.

5.2.2 Structure Only Simulation

As was observed in Section 4.2.3, the oscillation frequency of a structure is dependent on the
number of axial elements in the computational mesh. A certain minimum number of axial
elements are required to accurately capture the experimental oscillation frequency. For this
purpose a structure only simulation was initially performed to determine a suitable structural
mesh for the FSI computation. Liu et al. performed a preliminary test to compare the os-
cillation frequency of the hollow cylindrical steel rod (described earlier) with the theoretical
results. The experiment involved striking the steel rod with a hammer to initialize the vi-
bration and then studying the damping characteristics. The surrounding fluid in this case is
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Figure 5.3: Schematic of the test facility (Liu et al.)

Figure 5.4: Variations of the rod free end (Liu et al.)

air. The displacement history of a point 25 mm axially away from the free end of the steel
rod was then recorded. Finally a Fast-Fourier transform was performed on the time history
of the displacement to compute the vibration frequency.

The aforementioned experiment was performed numerically for 4 different grades of structural
mesh with 42, 105, 210 and 420 axial elements respectively. The cross section of each of these
meshes had 40 elements. To replicate the conditions of the experiment the free end of the
steel rod is initially displaced by 2 mm and then released to study its damping characteristics.
The displacement history of a point 25 mm axially away from the free end of the rod was
recorded for each of the geometries. Fig. 5.5 shows the Fast Fourier Transform for each
of the displacement histories. The peak of every FFT curve corresponds to the dominant
frequency of oscillation for different grades of the mesh. The oscillation frequency for each
of the structural mesh used in listed in Table 5.2. The error in the computed frequency is
calculated using the experimental frequency as the reference which is 8.3 Hz. Based on these
results the number of axial elements for the structural mesh is chosen as 210 for the coupled
Fluid Structure Interaction case described in the next section.
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Table 5.2: Oscillation frequency for different grades of structural mesh

Number of axial elements Frequency of oscillation Error (%)

42 9.4374 + 13.7

105 8.5453 + 2.96

210 8.3033 + 0.04

420 8.2937 - 0.07
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Figure 5.5: Fast Fourier Transform of the displacement histories for different grades of structural
mesh (red squares show the dominant frequency)

5.2.3 Coupled FSI Simulation

The experimental case with an inlet flow velocity of 1.49m/s has been chosen as the validation
case for the purpose of this thesis. This corresponds to a Reynolds number of 18,342 based
on the hydraulic diameter of the annulus. The properties of the fluid and the structure are
listed in Table 5.3. Different cross sectional views of the fluid and the structural mesh are
shown in Fig. 5.6. The fluid mesh consists of 108170 cells while the structural mesh consists
of 8080 cells. The structural mesh contains 210 axial elements based on the structure only
simulation study as described in the previous section. The time discretization scheme used
for the structural code in Crank-Nicolson while the BDF-2 is used for the fluid domain with
a time step size (∆t) = 0.0005 s. The coupling algorithm used is IQN-ILS with 6 time steps
being re-used in the algorithm.

The flow inlet velocity of 1.49 m/s has been imposed at the fluid inlet boundary with a
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Table 5.3: Material properties used in 3-D cantilever rod case

Fluid Properties (Water at 25◦)

Density (ρf ) 997.13 kg/m3

Kinematic Viscosity (νf ) 8.9× 10−7 m2/s

Structural Properties (Steel-316L)

Density (ρs) 8000 kg/m3

Elasticity Modulus (E) 193 GPa

Poisson Ratio (ν) 0.3

zero gradient for velocity at the outlet. At the outer walls of the fluid domain a no-slip
boundary condition has been imposed. At the inner boundary of the fluid domain i.e. the
fluid structure interface the fluid velocity is equated to the velocity of the structure to impose
the no-slip condition. For the pressure field a zero gradient condition has been imposed at all
the boundaries except at the fluid outlet where it is given an arbitrary fixed value. The FSI
simulation is carried out both with and without the synthetic turbulent fluctuations using
the standard U-RANS model (k-ε).

Figure 5.6: Different view of the computational mesh uses for the the fluid (black) and structure
domain (blue). (a) Isometric view (b) Fluid Outlet (c) Fluid Inlet
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5.2.3.1 Results and Discussions

Fig. 5.7 shows the time averaged velocity and pressure field along with the turbulent kinetic
energy for a cross-section of the computational domain. As the aspect ratio of this geometry
is quite high, a zoomed in version of the above figures is shown in Fig. 5.8.

Figure 5.7: Velocity, pressure and turbulent kinetic energy field for a cross-section of the com-
putational domain (3-D Cantilever Rod in Axial Water Flow)

Figure 5.8: Zoomed view of the velocity, pressure and turbulent kinetic energy field for a cross-
section of the computational domain (3-D Cantilever Rod in Axial Water Flow)
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Fig. 5.9 and Fig. 5.10 shows the x and y component of the displacement history of a point
on the rod 25 mm away from the free end of the cantilever rod both without and with the
synthetic fluctuation modeling. In case of the simulation without fluctuation modeling the
beam is initially displaced due to the development of the flow, but this oscillation damps
out rather quickly. The order of displacement amplitudes for this case is 10−4 mm. In the
second case the synthetic turbulent fluctuations are turned on after 0.2 second of runtime
and the increase in the amplitude of oscillation can be clearly observed after that time. The
displacement amplitudes for this case is 3 degrees of order higher than the one without the
fluctuation modeling.
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Figure 5.9: Displacement history of rod free end for U-RANS simulation without synthetic fluc-
tuation modeling

Table 5.4: Comparison of the maximum displacement observed in the simulations with the
experimental data

Maximum displacement x- axis y- axis Experimental

Without Synthetic Fluctuations 6.75× 10−4 6.31× 10−4

1.80× 10−1

With Synthetic Fluctuations 1.45× 10−1 2.06× 10−1

Table 5.4 compares the maximum amplitude of the cantilever rod for the FSI simulation
both with and without the synthetic turbulent fluctuation modeling. Although the error
in predicting the maximum amplitude of the vibrations is around 10% when compared to
the experimental data, it is a significant improvement over the standard U-RANS models.
A Fast Fourier Transform was also performed for the displacement signal with synthetic
fluctuation modeling and the observed frequency was 5.77Hz compared to 5.68 Hz observed
in the experiment.
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Figure 5.10: Displacement history of rod free end for U-RANS simulation with synthetic fluctu-
ation modeling

5.3 Summary

Two test cases were performed in this chapter to verify if the synthetic turbulent fluctuation
modeling can be used as an external excitation to simulate turbulence induced vibrations.
The first test case consists of a 2-D steel flap hinged on both ends submerged in a turbulent
water flow. It was observed that the synthetic fluctuation modeling is able to excite the steel
flap indefinitely, whereas the same case with U-RANS modeling provides an initial excitement
which quickly damps out. Also the magnitude of the oscillations is 2 orders of magnitude
higher with the use of synthetic fluctuation modeling. To quantitatively validate this approach
an experimental test case is then simulated both with and without the fluctuation modeling.
The frequency of oscillation of the beam is in close agreement with the experimental data,
whereas the magnitude of the oscillation shows a 10% error compared to the experiment.
However the use of synthetic fluctuation modeling shows a significant improvement (3 orders
of magnitude) over U-RANS simulations in the prediction of the magnitude of the vibrations.
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Chapter 6

Conclusions

Within the framework of this thesis, a numerical study of the fluid structure interaction
phenomenon in nuclear reactors was performed. Nuclear reactors consists of densely packed
fuel rods, which are subjected to external forces due to the coolant flow around them. These
forces play a critical role in the safety analysis of the structural parts of a nuclear reactor.
As the densities of the coolant fluid are of the same order of magnitude as the density of
the structure, the coupling between these two domains is strong. Hence, in such cases even
pressure fluctuations in the flow field due to turbulence, can act as an external excitation
mechanism for the fuel rods and lead to vibrations. These pressure fluctuations could be
either generated locally (near-field) or due to presence of other structures upstream (far-
field). This study was focused on being able to predict such Turbulence Induced Vibrations
in a computationally efficient manner. One way of approaching this problem is to superimpose
a synthetic turbulent fluctuation field as described earlier in Chapter 3 on top of U-RANS
simulations. Hence the main research objective being,

Quantitatively verify if synthetic turbulent fluctuations modeled on top of U-RANS in a FSI
solver are capable of providing a source of excitation to the structure in order to simulate
Turbulence Induced Vibrations?

For this purpose an FSI solver based on coupling OpenFOAM and Deal.II using the preCICE
coupling library was developed and then validated for some standard FSI benchmark test
cases. The first test case used was the numerical benchmark provided by Turek and Hron
(2006). This benchmark had 3 subsequent sub-cases to validate all 3 aspects of a FSI solver
i.e. fluid dynamics, structural mechanics and the coupled interaction of the aforementioned.
It was concluded that the simulation results were in good agreement with the reference data
especially for strongly coupled problems. The second validation case was an experimental
benchmark developed by Vattenfall Research and Development. In this test case initially a
structure only simulation was performed to verify the replicability of the 'roller' boundary
condition in structural solver. It was observed that the prediction of the oscillation frequency
of the beam is dependent on the number of axial elements in the structural mesh. Also Crank-
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Nicolson time marching algorithm was able to predict the amplitude of the vibrations to a
greater accuracy. Using this information, a coupled FSI simulation involving the damping of
an initially perturbed stainless steel beam submerged in water was performed. The damping
characteristics of this beam were then studied and compared to the available experimental
data. The obtained results were in good agreement with the experimental data with 0.99%
error in predicting the oscillation frequency.

Finally two test cases were performed to validate the use of synthetic turbulent fluctuations
as an external excitation mechanism for Turbulence Induced Vibrations. From the first test
case, involving a 2-D steel flap hinged on both ends submerged in turbulent water flow, it
was concluded that these pressure fluctuations are capable of providing external excitation to
the structure indefinitely as long as the flow is turbulent. Another test case involving a 3-D
cantilever steel beam in axial flow was then performed to quantitatively verify the aforemen-
tioned objective. It was observed from this simulation that the turbulent pressure fluctuations
perform far better than the standard U-RANS approach in predicting the amplitude of the
vibrations due to turbulence. Using this approach the prediction of the vibration amplitude
is 3 orders of magnitude higher than standard U-RANS and shows a 10% error compared
to the experimental value. The frequency of oscillation predicted with this method is nearly
identical to that observed in the experiment.

Hence, it can be concluded that modeling synthetic turbulent fluctuation fields on top of the
averaged velocity and pressure fields from U-RANS simulations, can be used as an external
excitation mechanism for structures specifically for turbulence induced vibrations. However,
even though the prediction of the vibration amplitude is considerably improved, it is still
not entirely accurate. A reason for this could be certain uncertainties in the experiment.
Furthermore, the synthetic fluctuation model could be further improved (e.g. introducing
anisotropic turbulence) and validated against even more experimental test cases.
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Appendix A

Influence of Time Marching

To study the influence of various time integration methods available in the version of the
FSI solver coupled using preCICE library, a simple 1-D problem has been described in this
chapter. This model problem is then further simplified to form a test case for the aforemen-
tioned analysis. Monolithic and partitioned approach (Gauss-Seidal) is used to investigate
the problem. The time integration techniques investigated are backward difference 1, 2 and
3 for the fluid solver and backward difference 1, Crank-Nicolson and Newmark-beta method
for the solid solver.

A.1 Model Problem

The test case is the 1-D piston problem (Piperno et al., 1995) . The geometry consists of a
tube filled with gas, the left wall is fixed and the right wall is a piston of mass m. This piston
is attached to a massless spring of stiffness k, with the other side of the spring being fixed to
wall. The configuration has been shown in Fig.A.1.

Figure A.1: 1-D piston problem
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At the equilibrium position the fluid domain has length L, density ρ0 and speed of sound c0.
The structural displacement q is defined as the displacement about this equilibrium position.
Although shear stress can contribute to the energy exchange at the fluid-structure interface,
it is dwarfed by the energy exchange contribution due to pressure. For this reason viscous
effects are ignored and hence the Euler equations are used as the governing equations. Also
gravity effects are ignored and the fluid is assumed to be an ideal gas.

A.1.1 Equations governing the fluid and structure domain

The Euler equations governing the fluid flow and the equations governing the linear structural
dynamics are

∂ρ
∂t + ∂ρu

∂x = 0

∂ρu
∂t + ∂ρu2

∂x + ∂p
∂x = 0

p = p0
ργ0
ργ

Equations governing fluid domain (A.1)

md2q
dt2

+ kq = (p− p0)A
}

Equation governing structure domain (A.2)

The above equations can be linearized by considering small perturbations around the equi-
librium state i.e. ρ = ρ0, ρu = 0 and q = 0 and then scaling the resultant equations to the
equilibrium position by substituting the equations shown below into Eqs.(A.1) and (A.2),

ρ = ρ0 + ρ′, u = u′, p = p0 + c2
0ρ
′ and q = q′

we get the following set of non-dimensional equations (eliminating all 2nd and higher order
terms) governing the model problem.

∂ρ′

∂t
+
∂ρu

∂x
= 0 (A.3)

∂ρu

∂t
+
∂ρ′

∂x
= 0 (A.4)
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dq̇
′

dt
+ ω2q′ =

ρ′

m
(A.5)

where t = c0t
L , x = x

L , ρ′ = ρ′

ρ0
, ρu′ = ρ0u′

ρ0c0
, q′ = q′

L , ω2 = L2k
c20m

and m = m
ρ0L

.

The fluid domain is simplified further by assuming that it doesn’t deform and discretized
using a cell centered Finite Volume approach. The interaction between the fluid and the solid
domain is imposed by using a boundary condition that forces the velocity perturbation at the
interface be equal to the piston velocity. This along with the no slip boundary condition on
the left boundary of the piston are shown in Eq. (A.6).

u(x = 0) = 0 and u(x = 1) = q̇ (A.6)

Two ghost cells can be defined at the left and the right boundary of the piston. The state
vector for these cells can be obtained by using the boundary conditions and the governing
fluid equations (Eq. A.6, A.3 and A.4) and are shown below, where index 0 refers to the left
and N+1 refers to the right ghost cell respectively. All the state vectors used further comprise
of perturbations and hence the bar over the variables has been dropped for convenience.

(
ρ′N+1

ρu′N+1

)
=

(
ρ′N
−ρu′N

)
+

(
−∆xq̈′

2q̇′

)
(A.7)

(
ρ′0
ρu′0

)
=

(
ρ′1
−ρu′1

)
(A.8)

The pressure perturbation at the interface (p′I) can be written as the average of that on either
side of the piston, hence the density perturbation can be written as

ρ′I =
ρ′N + ρ′N+1

2
(A.9)

Using Eqs. ( A.9 ), ( A.7 ) and ( A.5 ) ρ′N+1 can be written as

ρ′N+1 =
m− ∆x

2

m̃
ρ′N +

∆x

m̃
kq (A.10)
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where m̃ = m+ ∆x
2

Using Eqs. (A.9) and (A.10) the structural equation can be rewritten as

q̈ + w̃2q =
ρ′N
m̃

(A.11)

Using the aforementioned equations the governing equation for each fluid cells and the piston
can we written as

ẇ +

(
Af Afs
Asf As

)
w = 0 (A.12)

with w = (wf ws)
T with ~wfi =

(
ρ′i
ρu′i

)
, ~ws =

(
q̇
q

)
Afi depends on whether the fluid cell is

on the left or right boundary of the system i.e. i=1 or i=N, or it is in the interior of the fluid
domain. Depending on its position Afi can be written as

Af1 =

(
0 1 0 1
−1 0 1 0

)
, Afi =

(
0 −1 0 0 0 1
−1 0 0 0 1 0

)
AfN =

(
0 −1 0 −1

−1 0 m−0.5·∆x
m̃ 0

)

and As is defined as

As =

(
0 1
−w̃2 0

)

The coupling matrices Afs and Asf are shown below:

Asf =

(
0 . . . 0 − 1

m̃ 0
0 . . . 0 0 0

)

Afs =

(
0 . . . 0 2 0
0 . . . 0 0 ∆xω̃2

)T
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A.2 Time Integration

In the previous section, the semi-discrete form of the governing equation for the 1-D piston
problem was derived and is shown below

ẇ +

(
Af Afs
Asf As

)
w = 0 (A.13)

This system can either be solved simultaneously for both the fluid and the structure domain
or in partitioned way. By using suitable time integration techniques this semi discrete system
is first converted into a fully-discrete form. The effect of various time integration schemes is
then studied by solving the fully-discrete system in a partitioned way.

A.2.1 Monolithic Approach

The above semi discrete system is solved using Backward Difference Formula-2 time integra-
tion scheme in this section. This has been shown below

(1.5wn+1 − 2wn + 0.5wn−1

∆t

)
+Awn+1 = 0 (A.14)

where A =
( Af Afs
Asf As

)
. The above equation can be rearranged to get the iteration matrix for

time marching as shown below

wn+1
(1.5I

∆t
+A

)
= 2

wn

∆t
− 0.5

wn−1

∆t
(A.15)

A.2.2 Partitioned Approach

In the partitioned approach the fluid and structure are considered as the sub-domains of
the global problem. These sub domains are then solved separately and their interaction is
imposed via boundary conditions of their interface. These sub-domains are usually iteratively
solved a few times to satisfy the interface conditions.

Gauss-Seidal (S→F)

In this approach first structural equations are solved using the known fluid state from the
previous iteration to get the new estimate for structural state (q̇ and q). This new structural
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Table A.1: Time integration methods analyzed for the fluid and structure sub-domains

Fluid-Domain Structure-Domain

Backward Differentiation Formula - 1 Backward Differentiation Formula - 1

Backward Differentiation Formula - 2 Crank-Nicolson (CN) Method

Backward Differentiation Formula - 3 Newmark-Beta Method (γ = 1/2 and β = 1/4)

state is then transferred onto the fluid domain to get a new estimate for the fluid state
variables. This process is repeated until the interface conditions are sufficiently converged.
The system of equations to be solved (in order) are shown below

ẇs +Asfw
i−1
f +Asw

i
s = 0 (A.16)

ẇf +Afw
i
f +Asfw

i
s = 0 (A.17)

It is clear from the above equations that in structural system the term involving the interaction
(Asf ) is solved explicitly by using the fluid state of the previous iteration, whereas in the fluid
sub-domain all the terms are implicit. The error caused due to the explicit treatment of the
interaction term in this case is called the partitioning error. The time integration schemes
used for the fluid and the structure domain are shown in Table A.1 below

A.3 Numerical Results

The numerical analysis of the 1-D piston problem is carried out using the monolithic approach
(BDF2) and all the 9 possible permutations of the time marching methods available for
the fluid and structure integration (except for BDF3 for fluid sub-domain, the reason for
this is explained later). The simulation parameters are m = 2 and k = 1.429. In this
configuration the flow has a significant influence on the structural domain without completely
dominating it. The piston is prescribed zero velocity (q̇ = 0) and displacement (q) equal to
1 as initial conditions. The initial density perturbation field has been prescribed using the
analytical solution, with zero velocity as the initial condition. Fig. A.2 shows the velocity
and displacement of the piston for five time periods of the piston oscillation.

In the following section the effect of time integration methods is studied by calculating the
fluid density error and the structural velocity error after a time of 2 oscillations of the piston
(i.e. t = 12.4). The errors are computed using the temporally exact solution as the reference.
The mathematical modeling error is neglected in this case, hence obtaining the exact solution
of the mathematical model of the proposed problem becomes the objective and is considered
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Figure A.2: Structural displacement and velocity for the 1-D piston problem

as ’exact solution’. The discretization error is the difference between the discrete solution and
the exact solution as shown below

εdisc(∆x,∆t) = uexact − u(∆x,∆t) (A.18)

The discretization error itself comprises of the temporal and the spatial discretisation error,

εdisc(∆x,∆t) = [uexact − lim
∆x→0

u(∆x,∆t)] + [uexact − lim
∆t→0

u(∆x,∆t)] (A.19)

Since this study is focused on time integration methods, the temporal discretization error is
more relevant. However this would require infinite spatial resolution. Hence the reference
solution is chosen as the temporally exact solution i.e. a solution with a very small time step
(1e-4) and a fixed spatial resolution (128 fluid elements).

uref = u(∆x0, δt), ∆x0 corresponding to 128 fluid cells (A.20)

Fig. A.3, Fig. A.4 and Fig. A.5 shows the root mean square of the piston velocity error, the
L-2 norm of the error in density perturbation field and the root mean square of the piston
displacement error respectively for different time steps varying from 0.5 to 1e-3.

It can be observed from the 3 figures above that Backward Difference Formula (BDF) 2 for
fluid sub-domain with Crank-Nicolson for the structure domain has the least error. The
combination of BDF1/CN for the fluid and the structural domain performs the second best,
followed by BDF2/Newmark-Beta, BDF2/BE and BDF1/BE. The combination of BDF1 for
the fluid domain and Newmark-Beta method for the structural domain is the least accurate.
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Figure A.3: Structural velocity error
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Figure A.4: Fluid density perturbation field error
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Figure A.5: Structural displacement error

It is also observed that the combination of BDF2 and CN for fluid and structure domain
respectively, results in a second order accuracy, whereas all the other combinations are first
order accurate.
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Partitioning error can be calculated using the difference between the monolithic solution and
the partitioned solution. In this case, the monolithic solution with Backward Euler approach
is used as a reference (to calculate the error) for the partitioned Gauss-Seidal method using
Backward Euler for both the fluid and the structure domain. Therefore the partitioning error
of the time integration can be written as

εpartitioning = umono(∆x,∆t)− upartitioned(∆x,∆t) (A.21)

Fig. A.6 below shows the variation of the partitioning error (in terms of the the fluid density
perturbation field error and structural velocity error ) with decreasing time step sizes. It can
be observed from this figure that the Gauss-Seidal partitioning approach is first order accurate.
This implies that the slopes of Fig. A.3, Fig. A.4 and Fig. A.5 are not representative of
the order of accuracy of the used time integration configuration alone, i.e. a drop in order
of accuracy may be introduced due to the partitioning error. Hence those figures are more
representative of the accuracy of the used time integration methods.
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Figure A.6: Partitioning error

The results for all the possible combinations while using BDF3 have not been shown as it
was observed that BDF3 was unstable upto ∆t = 0.001. The reason for this has been shown
for the monolithic BDF1 case. Considering Eq. (A.13), the eigenvalues of the system matrix
A can be calculated and compared with the stability region for BDF3. The eigenvalues of
the system matrix are almost aligned to the imaginary axis as Re(λ) ≈ 0 . Fig.A.7 shows the
eigenvalues for the system matrix for ∆t = 0.01 and the unstable regions for BDF1, BDF2
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and BDF3. Some of the eigenvalues are within the unstable region of BDF3 scheme (as can
be seen in Fig. A.8 and hence the amplification factors of the corresponding errors modes are
greater than 1, making the scheme unstable.
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Figure A.7: Eigenvalues of matrix A corre-
sponding to Eq. (A.13) with reference to
the stability regions of BDF1, 2 and 3
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