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ABSTRACT

The building industry's unmistakable share in climate change ensured that many policies have been implemented
to reduce its impact. However, most policies cover the operational energy and -emissions of buildings, and not
their upfront embodied impacts. Fortunately, wood-based building products proved to be viable alternatives to
more conventional materials such as concrete and steel since they have been attributed a lower environmental
impact. Thus, they are often regarded as sustainable. However, the sustainability of wood is not absolute. This
paper explores just how much more sustainable wood-based structures are compared to their conventional
counterparts in terms of their embodied impact. It turns out that a sustainable building starts with compact city
design which has a lower energy use per capita. This sustainable urbanism paradigm, in combination with timber
building design, yields the lowest environmental impact. Moreover, technical innovation in timber engineering
ensured that it is now able to compete with concrete and steel, and the added benefit of timbers versatility vouches
for its use. In this paper, Life-cycle-assessment (LCA) is applied to a built case in Rotterdam which illustrates the
environmental benefit of multi-storey timber building structures, even in the most unfavorable scenario for the
timber variants.
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I. INTRODUCTION

The building sector is responsible for 36% of global energy use and nearly 40% of energy-related CO»
emissions (UNEP, 2018). Clearly, the built environment has a critical share in anthropogenic climate
change. Fortunately, many policies are in place to mitigate the environmental impact. However, most
policies focus on capping the operational energy of buildings rather than the embodied energy of
building materials. Energy-efficient buildings will reduce energy use and carbon emissions in the long
run. But, without a simultaneous focus on embodied energy and carbon, the savings that could be made
now are lost. Reductions are needed now and not only in 30 years' time (Pomponi et al., 2018). The
most effective strategy for mitigating embodied emissions is to intervene at the material level. Either
by using less of the same material or by substituting with alternative materials (Pomponi et al., 2020).
Biobased materials such as wood store carbon and proved to be viable alternatives for concrete and
steel in terms of their structural application. It is often argued that wood deserves the grade of
'sustainable’ more than others. But, as is argued by Hudert & Pfeiffer (2019), the sustainability of wood
is not absolute. All-natural wood is hardly ever used in construction. Instead, engineered timber is used
which usually relies on plastic adhesives and requires elaborate processing. And although wood is
renewable, its availability is not absolute. The aggressive adoption of wood as a construction material
raises practical questions about the capacity of forests (Pomponi et al., 2020). Therefore, we should use
wood more considerately and efficiently as well. Moreover, global urbanization and demographic
growth require 230 billion m* of new buildings to be built by 2060 (UNEP, 2018). Continuing to build
with energy- and carbon-intensive materials could cause irreversible damage to our environment. How
to make the right choice in the midst of many contradicting considerations?

This research aims to find out what it means to build materially efficient, in order to find out what
sustainability actually entails. Repeatedly misusing the term will not ensure our continued existence
(Zwerger, 2019). In order to do so, this research aims to answer the following question;
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How can the structure of multistorey timber buildings be designed when taking material efficiency as a
guiding principle?

This question will be answered through the following sub-questions;
o What constitutes a multistorey timber building and why is it significant?
o  Which parameters govern the structural design of multistorey timber buildings?
o How can material efficiency be quantified and by which criteria is it defined?

o Which structural design is more efficient in terms of material use?

II. METHOD
2.1. General Method

The study comprises a two-phase research design where two strategies are combined in sequence. First,
a qualitative literature study is conducted to highlight the significance of timber high rises and the
considerations that occur during their design. The literature study aims to answer the first three sub-
questions in order to set the framework for the case study. The case study, which comprises the second
part of this research, is done through representation and simulation as described by Groat and Wang
(2013). It starts with a digital, 3-dimensional representation of the Karel Doorman in Rotterdam. By
applying different scenario inputs and generating various alternative representations we can start to
speak of simulation (Groat and Wang, 2013). The case study comprises a single building but the method
can be called a 'multiple case study'. Several variants of the same building are drafted and compared.
The aim is to derive generalizations from the comparative differences. The case study method is
described in more detail below.

2.2. Case study method

The aim of the case study is to find out how we can build materially efficient. By replacing the steel-
timber hybrid structure of the Karel Doorman with several different materials, and by assessing the
variants on the environmental impact, the final sub-question is answered. The boundary conditions of
the study are the following: all variants are assessed through life-cycle modules A1-4, or cradle-to-site
(See figure 2). In these modules, the largest impact can be made since cradle-to-site accounts for the
largest share of environmental impact. This study deals with the vertical loading of the main structure
and not the lateral stability. Thus, the concrete cores and steel bracing below the floors are excluded but
taken into account qualitatively. The same goes for the transfer structure between the Karel Doorman
and the Ter Meulen building. Fire-safety design is mentioned in the literature study but excluded from
the case study.

The case study follows a linear structure and goes as follows: 1) All relevant drawings are collected.
This includes structural drawings from Royal HaskoningDHV (2010) and architectural drawings from
Ibelings van Tilburg Architecten (2010). 2) The drawings are studied and a 3D representation of the
building is drafted using Building Information Modelling (BIM), Rhinoceros 7 specifically. 3) A
representative fragment is chosen, being the column on grid intersection C1-3a plus two times half a
grid size wide and one grid size deep. The fragment accounts for 3,51% of all floors and 2,42% of all
beams and columns in the building. 4) The fragment is used to configure the structural calculation, for
which the 'Handleiding Ontwerpen Draagconstructies' by Arends (2020) is used. 5) The base fragment
is used as a benchmark and the Unity Check values are used to dimension the variants so that every
fragment is loaded to the same capacity. The calculation yields the dimensions of the structural members
of the variants. 6) These dimensions are then used to model all variants in Rhinoceros 7. The volume
of used material is extracted and put into Excel. 7) Using the 3,51% and 2,42% as stated above, it is
possible to calculate how much material would have been used in the entire building for each variant
through extrapolation. 8) Using the Environmental Product Declarations (EPDs) it is possible to
calculate the impact per building variant. 9) All materials need to be transported from the factory to the
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site. EcoTransIT, which is EN 16258 compliant, is used to calculate the corresponding impact. A
scenario is chosen where concrete and steel are produced locally (Rotterdam and IJmuiden), deciduous
wood products are produced in Germany, and coniferous wood products in Finland. 10) The final results
are normalized whereby the functional unit is set to 'impact per m2 gross floor area (GFA)'.

Karel Doorman

Figure 1. The Karel Doorman and its representative fragment (See also appendix B)

II1. RESULTS

3.1. Significance of multi-storey timber buildings

According to Churkina et al., (2020), the following decades will be characterized by economic and
demographic growth. The United Nations (2018) project 2.3 billion new urban dwellers by 2050.
Consequently, we are facing huge housing and infrastructural challenges in addition to climate change.
Moreover, growth and sustainability did not always correspond historically. But in order to solve this
seeming paradox, urban planners propose sustainable schemes for development. The preferred
paradigm is compact city planning which supposedly secures environmentally sound, economically
viable, and socially beneficial development through dense, diverse, and mixed-use urbanism (Bibri,
2020). Compact cities have been attributed a lower energy use per capita (Resch et al., 2016).

In order to define 'multi-storey' in the context of sustainable urbanism it is important to find a link
between the number of stories and environmental impact, if such a link exists. Because in theory, every
building with more than one storey fits the definition of multi-storey. Resch et al., (2016) investigated
how energy use relates to urban density and found that the optimal number of stories is somewhere
between 7-27 stories. Reduction of heat exchange between a building and its environment would
encourage building taller and wider, increasing overall density. Bohne et al., (2017) researched the link
between building height and embodied greenhouse gas emissions and found that the optimal building
height ranges between 10-20 stories. Moreover, it was found that using timber significantly reduces
embodied emissions.

Wood is one of the few materials that actually sequester and store carbon during its lifetime. And
although this process also happens in cementitious materials like concrete, the amount of carbon stored
is but a fraction of the carbon emitted during manufacturing (Pomponi et al., 2020). Thus, using bio-
based products such as timber is often regarded as the most sustainable solution in construction.
However, as mentioned before, environmental impacts can only be mitigated if timber is used
considerately as well because the production of engineered timber products requires energy and incurs
emissions. Furthermore, the storage of carbon is one of woods' inherent qualities but it should not be
misunderstood. The carbon stored in wood will ultimately be returned to the environment when the
wood is disposed of either by incineration or natural degradation. If trees are felled and not replaced,
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timber construction is just an inefficient way to displace carbon in trees into carbon in timber structures
(Pomponi et al., 2020).

3.2. Parameters governing design

The design of timber structures in Europe is governed by the European design standard Eurocode 5
(EN 1995-1-1: 2004). The Eurocode program was initiated to establish a set of harmonized technical
rules for construction, and would ultimately replace all national rules (CEN, 2004). Structures are
designed using Ultimate Limit State (ULS) and Serviceability Limit State (SLS) to maintain structural
integrity and user comfort. Both are governed by the strength, stability, and stiffness of the structure.
The strength of a beam or column is determined by the to be transferred forces and stresses compared
to its material and cross-sectional properties. Stability is relevant for both ULS and SLS and usually
manifests itself in deflection. Horizontal loads such as wind cause structures to deflect. Besides
deflection, wind loads also cause structures to oscillate with a certain acceleration. This decreases user
comfort and can be mitigated through structural stiffness. Furthermore, structures are designed by
taking acoustic- and fire performance into account.

This brief description does not do the complexity of structural engineering justice, but it illustrates the
key principles that govern design. However, the aforementioned parameters govern all structures and
not just the timber ones. This is where the inherent properties of timber come into play.

The resurgence of wood-based products in construction stems from the need to make the sector more
sustainable. Consequently, technical developments in timber engineering made sure timber can now
compete with steel and concrete in its performance. For example, Cross Laminated Timber (CLT) and
Laminated Veneer Lumber (LVL) are products that minimized the inhomogeneity and directional
dependency (anisotropy) of the natural product. This allows for the accurate and predictable use of
timber in construction (Kaufmann et al., 2018). Timber is also one of the lightest structural materials in
terms of density. Combined with its strength, it can compete with steel which is incredibly strong but
heavy. Its light weight reduces the size of the foundation and therefore material use in general. However,
its relatively light weight can cause vibration which is why it is often combined with concrete. Steel-
timber hybrids are also common to increase the stability and stiffness of timber structures. Quite
recently, innovations in hardwoods are opening new dimensions in timber construction. Beech for
example is much stronger than spruce. When processed, hardwoods do not only compete with steel in
terms of strength but now also in slenderness. But what sets timber truly apart from any other material
is its versatility (Kaufmann et al., 2018). Timber can also insulate, regulate humidity, and its aesthetic
qualities can have measurable positive effects because of biophilia. And contrary to popular belief,
timbers' combustible nature actually does not negatively affect fire safety when applied correctly. When
wood burns, the charcoal produces a natural layer of insulation that prevents temperature rise in the
material within which prevents a loss of strength (Herzog et al., 2004). This can be achieved by slightly
over-dimensioning a structural member. Thus, the versatility of timber greatly enhances material
efficiency in general because it can fulfill multiple roles at the same time.

3.3. Material efficiency

Material efficiency entails the pursuit of strategies that lead to a substantial reduction in the
production of energy-intensive materials whilst delivering human well-being. Achieving material
efficiency is motivated by the need to reduce our energy demand, reduce our emissions and
environmental impact, and secure resources (Allwood et al., 2013). Allwood et al. (2013) suggests,
unless there exists a less CO»-intensive substitute material, reducing emissions can be met by
reducing the requirement for materials. This would mean the following: material efficiency can be
attained by substituting conventional materials like steel and concrete with biobased materials and by
using less of the same material either way, given the limited availability of any material. The
environmental impact of any product or service can be quantified by using Life Cycle Assessment
(LCA). In the building industry, EN 15804 and EN 15978 are the established standards to assess the
environmental impact of building products and buildings (Gulck et al., 2022). Their international
counterparts are [SO 14040 and ISO 14044. LCA's are phased into goal and scope definition,
inventory analysis, life cycle impact assessment (LCIA), and interpretation. The inventory analysis



lists all the relevant material inputs and their corresponding emissions. Converting the input and
emissions into environmental impacts is done in the LCIA. LCIA comprises another four steps: 1)
Classification, where all materials are sorted. 2) Characterization, where all materials are multiplied
by a factor that represents their environmental impact. 3) Normalisation, where the quantified impact
is compared to a certain reference value. 4) Weighting, where the impact categories are assigned a
certain degree of importance. The results can generate a single score.

The life cycle of a building can be split into stages and modules as defined by EN 15804. The stages
include production, construction, use, end of life, and sometimes benefits beyond the system
boundary. According to LETI (2020), low operational energy, medium-scale residential buildings
have a distribution of their whole-life carbon (embodied + operational carbon) as follows: 50% of
their whole-life carbon is in the embodied carbon of modules A1-3. Another 4% can be attributed to
the transport from factory to site. According to LETI (2020), 48% of the embodied carbon from
modules A1-3 is in the superstructure of the building. Arguably, the most gain in terms of material
efficiency can thus be achieved from Cradle (A1) to Site (A4) and in the superstructure of buildings.
This, therefore, corresponds to the boundary conditions of the case study.

The embodied CO; equivalent emissions or Global Warming Potential (GWP) is often used as the main
impact category in the LCA. The same goes for embodied energy (EE). Although significant, these two
are not the only impact categories, however. LCA's also quantify other impacts on the environment
such as Ozone Depletion Potential (ODP), Photochemical Ozone Creation Potential (POCP),
Acidification Potential (AP), Eutrophication Potential (EP), and Water Use (WU) among others. The
environmental performance of materials is reported in Environmental Product Declarations (EPDs).
These are third-party verified, credible, and EN 15804 compliant.
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Figure 2. Life-Cycle modules, case-study scope marked in grey, adapted from LETI (2020) and IstructE (2020)

3.4. Case study

The case study deals with the embodied impact of structural variants of the Karel Doorman. This
building was chosen because of its structural logic, because it was designed to be as light as possible,
and because of the availability of technical drawings. The variants comprise several structural systems
that vary from concrete, steel, timber, and hybrids. The matrix in Appendix A shows which
combination of vertical and horizontal members forms a variant. Every structural variant is
dimensioned to meet the same load criteria as the base fragment which corresponds with the actual
building. LCA is applied to compare the environmental impact of each building variant. The first step
is to calculate the impact of all variants through life cycle modules A1-3 by using the EPDs. The
results are listed in Figure 3.
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Figure 3. Environmental impact per building variant through module A1-3 (See also appendix C)

The second step is to calculate the environmental impact of the transportation of building materials,
module A4. A scenario is chosen that is unfavorable for the timber variants. Softwoods have to be
transported from Finland and hardwoods from Germany. This is to see if the timber variants are still
the most favourable even if they have to be transported further. This scenario, although unfavorable,
is not unusual given the geographical occurrence of these species. Input parameters for the calculation
are: 1) Weight to be transported. 2) Starting location. 3) Destination. The calculation is done through
EcoTransIT and the results are listed in figure 4. The environmental impact is expressed in different
impact categories compared to modules A1-3 which makes it slightly more difficult to add up. Energy
use, global warming potential, and sulfur-dioxide emissions do correspond between modules A1-4.
Because the impact is related only to the weight and distance, the distribution of impact is the same
across all impact categories. The graph below illustrates the ratio between the variants for every
impact category, the timber variants are highlighted.

Environmental Impact of Transport
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Figure 4. Environmental impact per variant due to transport (module A4)

The corresponding impact categories between A1-3 and A4 are summated to show a total
environmental impact per building variant through modules A1-4. The results are normalized by



dividing the cumulative impact by the functional unit, the Gross Floor Area (GFA) of the building.
The results are listed in Figure 5.
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Figure 5. Total impact per variant from cradle-to-gate (module A1-4)

IV. CONCLUSION

4.1. Environmental impact

Compact city planning could provide a sustainable way forward for the challenges of demographic
growth and increasing urbanization. Compact cities are attributed to lower energy use and multistorey
timber buildings have lower embodied greenhouse gas emissions. The versatility of timber makes it
an ideal building material and its structural capabilities can equal concrete and steel. Timbers'
relatively low impact and greater efficiency have the potential to mitigate the large share the
construction sector has in climate change. But how much more efficient is timber compared to more
conventional structures?

As per usual, it is difficult to give an unequivocal and straightforward answer to the question. Material
efficiency is not just about using the least amount of material volumetrically but entails the pursuit of
a lower environmental impact. However, the environmental impact is expressed through multiple
impact categories. So in order to give an absolute answer, the categories should be weighted. But,
weighting depends on a value judgement that is made based on policy- scientific or monetary targets.
The risk is that weighting factors are chosen to reflect what one wants to see. ISO 14040 and 14044
also specify that weighting should be excluded from comparisons disclosed to the public because the
average consumer does not understand the implications of a single score (Meijer, 2014). Nevertheless,
several significant statements can be made:

o The timber variants (A1.1 — A4.2) are more efficient in every impact category except for EE
and ODP.
e Transportation causes the EE for the timber variants to further rise by approximately 8-11%.

Transportation of the timber variants however does not undo their advantage in terms of GWP,
they are still much more efficient than the other variants, even in the most unfavorable scenario.

e GWP and EE of transport for base-variant ES are 10% and 4% respectively, which is
comparable to the results that LETI (2020) found.

e Steel, whilst having the lowest volume, has the highest environmental impact across nearly
every impact category.



e Generally, SO, emissions from life cycle modules Al-3 are marginal compared to similar
emissions in module A4.

e The Karel Doorman (E5) was designed to be as light as possible. The timber variants however
are almost as light, with variants Al.1 and A1.2 even being lighter. They also have a lower
impact in general.

e Manufacturing of engineered timber is more energy intensive than the production of concrete
but this can be mitigated by using renewable energy. Production of concrete incurs emissions
regardless of the use of renewable energy because of chemical processes.

e Arguably, the most materially efficient way to build is by using hardwoods in the
superstructure. Less material is needed but it still stores relatively high amounts of carbon.
Sourcing them locally would reduce the impact of transportation and its energy-intensive
production could be done using renewables. Sustainable forestry is paramount, however.

4.2. Generalizability

Although the case study dealt with the Karel Doorman specifically, the findings can be generalized.
Assessing the embodied impact of the structure of a building through life cycle modules A1-4 probably
yields the largest mitigation of embodied impact for any building. This is because the largest share by
far corresponds with these modules. The environmental benefits of applying timber compared to steel
or concrete are significant, even if the timber has to be transported from further away. And the
versatility, which is more difficult to quantify, also vouches for the use of timber. Assessing the
comparative differences between variants can be, and already is, applied globally. Comparative LCA is
progressively being applied in the design phase.

4.3. Reflection and further research

Generally speaking, LCAs are much more complex than the study carried out here. The applied
boundary conditions allowed for this LCA to be executed in a short timeframe. Usually, boundary
conditions are much broader than modules A1-4 and encompass the whole building. Furthermore, the
probabilistic nature of LCA is not included in this research and the outcomes are single-point
estimates. In reality, estimations of embodied impact vary and this case study did not account for the
likelihood and variability of any given value. In other words, uncertainty is not included in the study.
The author is aware of this and therefore chose not to point out a single variant as the 'absolute best' or
most efficient solution because a deterministic assessment has many associated uncertainties
(Mendoza Beltran et al., 2018).

LCAs are becoming more standard practice and the body of knowledge on LCA is growing rapidly
(Pomponi et al., 2018). But for LCAs to function properly, the EPDs for construction materials are
indispensable. Drafting the EPDs takes time, and so does the third-party verification. Thus, the
credibility of LCAs depends on the availability of EPDs. To assess innovative products, such as beech
LVL, their EPDs are needed. Unfortunately, this was unavailable at the time of the research. The EPD
of beech LVL used in the study was approximated by using so-called extrapolation between species, as
described by Golsteijn (2014). Thus, the author stresses the importance of elaborate EPD databases so
that innovative products can be assessed as soon as they are relevant.

Finally, it should be noted that a structural design is not only dependent on vertical loading but also on
fire-safety and lateral stability among others. And environmental impacts depend largely on the
building's lifetime for example. Neither was included in the case study. Nevertheless, the study gives
insight into the environmental impact of building structures and illustrates how these can be mitigated.
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APPENDIX C

Total Embodied Energy [M]] Total GlobalWarming Potential [kg CO; eq.]

Total Volume [M3] Total Weight [t]
E5 All Al2 A4l A42 F9.1 F9.2 ALl Al2 A41 A42 F9.1 F9.2 All Al2 A4l A42 F9.1 F9.2 ES All Al2 A41 A42 E8 F9.1 F9.2

Total Acidification Potential [g SO; eq.]

Total Eutrophication Poten

Total Ozone Depletion Potential [ug R11 eq.]

Total Water Use [m?]

ES All Al2 A4l A42 F8.1 F9.2 ALl Al2 A4l A42 F8.2 ES ALl Al2 A4l A42 F9.1 FS.2 All Al2 A41 A42 F9.1. F92
./ ——— e
— —
e
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Variant ES (base) Variant A1.1 iant A1.2 Variant A4.1 Variant Ak.2 Variant E8 Variant F9.1 Variant F9.2
Floo: Floors: Floors: Floors: Floors: Floors: Floors: Floors:
Spruce joists and Spruce joists and Spruce joists and 120mm-3s spruce CLT 120mm-3s spruce CLT Steel-concrete Hallow-core slabs and Hollow-core slabs and
beams, spruce plate beams, spruce plate beams, spruce plate and cancrete topping and concrete topping composite slaband cancrete topping concrete topping
and concrete topping and concrete topping and concrete topping concrete tapping
Beams: Beams: Beams: Beams:
Beams: Beams: Beams: BeechLVL, Spruce LVL, Beams: Concrete, Concrete,
Steel HE220A, BeechLVL, Spruce LVL, GLTS GLzg Steel HE240A, €90/105 C45/85
5355 GLT5 GL28 5355
Columns: Columns: Columns: Columns:
Columns: Columns: Columns: BeechlLVL, Spruce LVL, Columns: Concrete, Concrete,
Steel HE2208, BeechLVL, Spruce LVL, GLTS GL28 Steel HE240B, C€90/105 C45/55
5355 GLT5 GL28 5355
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Variant E8

Floors:
Steel-concrete
composite slab and
concrete topping

Beams:
Steel HE240A,
S355

Columns:
Steel HE240B,
S355
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Variant F9.1

Floors:
Hollow-core slabs and
concrete topping

Beams:
Concrete,
C90/105

Columns:
Concrete,
C90/105
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Variant F9.2

Floors:
Hollow-core slabs and
concrete topping

Beams:
Concrete,
C45/55

A

Columns:
Concrete,
C45/55

A
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