

Delft University of Technology

Exception handling bug hazards in Android
Results from a mining study and an exploratory survey
Coelho, Roberta; Almeida, Lucas; Gousios, Georgios; van Deursen, Arie; Treude, Christoph

DOI
10.1007/s10664-016-9443-7
Publication date
2017
Document Version
Submitted manuscript
Published in
Empirical Software Engineering

Citation (APA)
Coelho, R., Almeida, L., Gousios, G., van Deursen, A., & Treude, C. (2017). Exception handling bug
hazards in Android: Results from a mining study and an exploratory survey. Empirical Software Engineering,
22(3), 1264–1304. https://doi.org/10.1007/s10664-016-9443-7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-016-9443-7
https://doi.org/10.1007/s10664-016-9443-7

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Exception Handling Bug Hazards in
Android: Results from a Mining Study

and an Exploratory Survey

Roberta Coelho, Lucas Almeida, Georgios Gousios,
Arie van Deursen and Christoph Treude

Report TUD-SERG-2016-018

SERG

TUD-SERG-2016-018

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: This paper has been accepted for publication in Empirical Software Engineering, 2016, where it will
have DOI http://dx.doi.org/10.1007/s10664-016-9443-7.

This paper is a substantially revised and extended version of Roberta Coelho, Lucas Almeida, Georgios
Gousios, Arie van Deursen: Unveiling Exception Handling Bug Hazards in Android Based on GitHub and
Google Code Issues. Working Conference on Mining Software Repositories (MSR) 2015: 134-145.

c© copyright 2016, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

http://dx.doi.org/10.1007/s10664-016-9443-7

Noname manuscript No.
(will be inserted by the editor)

Exception Handling Bug Hazards in Android

Results from a Mining Study and an Exploratory Survey

Roberta Coelho · Lucas Almeida ·
Georgios Gousios · Arie van Deursen ·
Christoph Treude

Received: date / Accepted: date

Abstract Adequate handling of exceptions has proven difficult for many soft-
ware engineers. Mobile app developers in particular, have to cope with com-
patibility, middleware, memory constraints, and battery restrictions. The goal
of this paper is to obtain a thorough understanding of common exception
handling bug hazards that app developers face. To that end, we first provide a
detailed empirical study of over 6,000 Java exception stack traces we extracted
from over 600 open source Android projects. Key insights from this study in-
clude common causes for system crashes, and common chains of wrappings
between checked and unchecked exceptions. Furthermore, we provide a survey
with 71 developers involved in at least one of the projects analyzed. The results
corroborate the stack trace findings, and indicate that developers are unaware
of frequently occurring undocumented exception handling behavior. Overall,
the findings of our study call for tool support to help developers understand
their own and third party exception handling and wrapping logic.

Roberta Coelho
Federal University of Rio Grande do Norte, CIVT/UFRN. Av. Senador Salgado Filho, 3000.
Lagoa Nova, CEP: 59.078-970. Natal/RN. Brazil
Tel.: +55-84-3342-2216
E-mail: roberta@dimap.ufrn.br

Lucas Almeida
E-mail: lucas.almeida@ppgsc.ufrn.br

Georgios Gousios
E-mail: g.gousios@cs.ru.nl

Arie van Deursen
E-mail: arie.vandeursen@tudelft.nl

Christoph Treude
E-mail: christoph.treude@adelaide.edu.au

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 1

2 Roberta Coelho et al.

Keywords Exception handling · Android development · Repository mining ·
Exploratory survey

1 Introduction

The number of mobile apps is increasing at a daily rate. If on the one hand they
extend phones’ capabilities far beyond the basic calls, on the other hand they
have to cope with an increasing number of exceptional conditions (e.g., faults
in underlying middleware or hardware; compatibility issues [39]; memory and
battery restrictions; noisy external resources [58]).

Therefore, mechanisms for exception detection and handling are not an
optional add-on but a fundamental part of such apps. The exception handling
mechanism [23], embedded in many mainstream programming languages, such
as Java, C++ and C#, is one of the most used techniques for detecting and
recovering from such exceptional conditions. In this paper we will be concerned
with exception handling in Android apps, which reuses Java’s exception han-
dling model.

However, such mechanisms are more often than not the least understood
and tested parts of the system [41, 45, 49, 21, 22, 13, 16, 57]. As a consequence
they may inadvertently negatively affect the system: exception-related code
may introduce failures such as uncaught exceptions [28, 58] – which can lead
to system crashes, making the system even less robust [16].

In Java, when an application fails due to an uncaught exception, it au-
tomatically terminates, while the system prints a stack trace to the console,
or to a log file [24]. A typical Java stack trace consists of the fully qualified
name of the thrown exception and the ordered list of methods that were active
on the call stack before the exception occurred [24, 11]. When available, the
exception stack traces provide a useful source of information about system
crashes [8] which can enable different kinds of post-mortem analysis and sup-
port: debugging [48], bug classification and clustering [54, 31, 18], automated
bug fixing [51] and fault-proneness prediction models [32].

This work is conducted in two phases. First, a mining study performs a
post mortem analysis of the exception stack traces included in issues reported
on Android projects hosted on GitHub and Google Code. The goal of this
study is to investigate whether the reported exception stack traces can reveal
common bug hazards in the exception-related code. A bug hazard [10] is a cir-
cumstance that increases the chance of a bug being present in the software. An
example of a bug hazard can be a characteristic of the exception-related code
which can increase the likelihood of introducing the aforementioned uncaught
exceptions. Second, we conducted an exploratory survey with the Android de-
velopers involved in the mined projects to assess their perspective about the
exception handling bug hazards found.

To guide this investigation we compiled general guidelines on how to use
Java exceptions proposed by Gosling [24], Wirfs-Brock [56] and Bloch [11].
Then, using a custom tool called ExceptionMiner, which we developed specif-

Exception Handling Bug Hazards in Android SERG

2 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 3

ically for this study, we mine stack traces from the issues reported in 482
Android projects hosted on GitHub and 157 projects hosted on Google Code.
Overall 159,048 issues were analyzed and 6,005 stack traces were extracted
from them. The exception stack trace analysis was augmented by means of
bytecode and source code analysis for the exception-related code of the An-
droid platform and Android applications. Some bug hazards consistently de-
tected during this mining study include:

– Cross-type exception wrappings, such as an OutOfMemoryError wrapped
in a checked exception. Trying to handle an instance of OutOfMemory-
Error “hidden” in a checked exception may bring the program to an un-
predictable state. Such wrappings suggest that, when (mis)applied, the
exception wrapping can make the exception-related code more complex
and negatively impact the application robustness.

– Undocumented runtime exceptions raised by the Android platform (35
methods) and third-party libraries (44 methods) – which correspond to
4.4% of the reported exception stack traces. In the absence of the “excep-
tion specification” of third-party code, it is difficult or even infeasible for
the developer to protect the code against “unforeseen” exceptions. Since
in such cases the client usually does not have access to the source code,
such undocumented exceptions may remain uncaught and lead to system
crashes.

– Undocumented checked exceptions signaled by native C code. Some flows
contained a checked exception signaled by native C code invoked by the
Android Platform, yet this exception was not declared in the Java Native
Interface invoking it. This can lead to uncaught exceptions that are difficult
to debug.

– A multitude of programming mistakes – approximately 52% of the reported
stack traces can be attributed to programming mistakes. In particular,
27.71% of all stack traces contained a java.lang.NullPointerException as
their root cause.

The exploratory survey was conducted with 71 Android developers involved
in one or more of the GitHub Android projects whose issues were mined.
This survey reveals that only few developers (3% of respondents) knew about
the undocumented checked exceptions signaled by native C code of the An-
droid platform. Moreover, most of the developers recognized that cross-type
exception wrappings may negatively impact the application robustness. The
uncaught exceptions due to errors in programming logic, e.g. the NullPoint-
erException, were identified by most developers (68%) as the first or second
main cause of application crashes.

The high prevalence of NullPointerExceptions found in the mining study
and confirmed in the exploratory survey is in line with findings of earlier
research [32, 20, 17], as are the undocumented runtime exceptions signaled by
the Android Platform [30].

Some of the findings of our mining study emphasize the impact of these
bug hazards on the application robustness by mining a different source of in-

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 3

4 Roberta Coelho et al.

formation as the ones used in previous works. The present work mined issues
created by developers on GitHub and Google Code, while previous research
analyzed crash reports and automated test reports. Furthermore, our work
points to bug hazards that were not detected by previous research (i.e., cross-
type wrappings, undocumented checked exceptions and undocumented run-
time exceptions thrown by third-party libraries) which represent new threats
to application robustness. Moreover, we perform the first exploratory survey
study whose goal was to assess developers’ perspective regarding a set of ex-
ception handling bug hazards as well as how developers deal with exceptions
and prevent crashes while developing.

Our findings point to threats not only to the development of robust An-
droid apps, but also to the development of any robust Java-based system.
Hence, the study results are relevant to Android and Java developers who
may underestimate the effect of such bug hazards on the application robust-
ness, and who have to face the difficulty of preventing them. Moreover, such
bug hazards call for improvements of languages (e.g. to prevent null pointer
dereferences) and tools to better support exception handling in Android and
Java environments.

The remainder of this paper is organized as follows. Section 2 provides
the necessary background on the Android platform and the Java exception
model. Section 3 presents the mining study design, describes the Exception-
Miner tool we developed to conduct our study, and reports the study results.
Section 4 details the exploratory survey. Section 5 provides a discussion of the
wider implications of our results, presents the threats to validity associated
with the mining study and discusses the limitations of the survey-based study,
and points to the replication. Finally Section 6 describes related work, and
Section 7 concludes the paper and outlines directions for future work.

2 Background

2.1 The Android Platform

Android is an open source platform for mobile devices based on the Linux
kernel. Android also comprises (i) a set of native libraries written in C/C++
(e.g., WebKit, OpenGL, FreeType, SQLite, Media, C runtime library) to fulfill
a wide range of functions including graphics drawing, SSL communication,
SQLite database management, audio and video playback etc; (ii) a set of Java
Core Libraries including a subset of the Java standard libraries and various
wrappers to access the set of C/C++ native libraries using the Java Native
Interface (JNI); (iii) the Dalvik runtime environment, which was specifically
designed to deal with the resource constraints of a mobile device; and (iv) the
Application Framework which provides higher-level APIs to the applications
running on the platform.

Exception Handling Bug Hazards in Android SERG

4 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 5

2.2 Exception Model in Java

Exception Types. In Java, exceptions are represented according to a class
hierarchy, in which every exception is an instance of the Throwable class, and
can be of three kinds: the checked exceptions (extends Exception), the run-
time exceptions (extends RuntimeException) and errors (extends Error) [24].
Checked exceptions received their name because they must be declared in the
method’s exception interface (i.e., the list of exceptions that a method might
raise during its execution) and the compiler statically checks if appropriate
handlers are provided within the system. Both runtime exceptions and errors
are also known as “unchecked exceptions”, as they do not need to be spec-
ified in the method exception interface and do not trigger any compile time
checking.

By convention, instances of Error represent unrecoverable conditions which
usually result from failures detected by the Java Virtual Machine due to re-
source limitations, such as OutOfMemoryError. Normally these cannot be
handled inside the application. Instances of RuntimeException are implicitly
thrown by the Java runtime environment when a program violates the seman-
tic constraints of the Java programming language (e.g., out-of-bounds array
index, divide-by-zero error, null pointer references). Some programming lan-
guages react to such errors by immediately terminating the program, while
other languages, such as C++, let the program continue its execution in some
situations such as the out-of-bounds array index. According to the Java Spec-
ification [24] programs are not expected to handle such runtime exceptions
signaled by the runtime environment.

User-defined exceptions can be either checked or unchecked, by extending
either Exception or RuntimeException. There is a long-lasting debate about
the pros and cons of both approaches [3, 2, 1]. Section 2.3 presents a set of
best practices related to each of them.

Exception Propagation. In Java, once an exception is thrown, the run-
time environment looks for the nearest enclosing exception handler (Java’s
try-catch block), and unwinds the execution stack if necessary. This search
for the handler on the invocation stack aims at increasing software reusabil-
ity, since the invoker of an operation can handle the exception in a wider
context [41].

A common way of propagating exceptions in Java programs is through ex-
ception wrapping (also called chaining): One exception is caught and wrapped
in another one which is then thrown instead. Figure 1 shows an exception
stack trace which illustrates such exception wrapping. For simplicity, in this
paper we will refer to “exception stack trace” as just stack trace. The bottom
part of the stack trace is the root exception (Figure 1-A), which indicates the
first reason (root cause) for the exception thrown (in this case, the computer
ran out of memory). The top part of the stack trace indicates the location of
the exception manifestation, which we will refer to as the exception wrapper
in this paper (Figure 1-C). The execution flow between the root exception and
the wrapper may include other intermediate exception wrappers (Figure 1-D).

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 5

6 Roberta Coelho et al.

Fig. 1 Example of an exception stack trace in Java.

At all levels, the exception signaler is the method that threw the exception,
represented in the stack trace as the first method call below the exception
declaration (Figure 1-B).

2.3 Best Practices

Several general guidelines have been proposed on how to use Java excep-
tions [38, 24, 56, 11]. Such guidelines do not advocate any specific exception
type, but rather propose ways to effectively use each of them. Based on these,
for the purpose of our analysis we compiled the following list of Java exception
handling best practices.

I-Checked exceptions should be used to represent recoverable conditions
([38, 24, 56, 11]). The developer should use checked exceptions for conditions
from which the caller is expected to recover. By confronting the API user with
a checked exception, the API designer is forcing the client to handle the excep-
tional condition. The client can explicitly ignore the exception (swallowing, or
converting it to another type) at the expense of the program’s robustness [24].

II-Error represents an unrecoverable condition which should not be handled
([24]). Errors should result from failures detected by the runtime environment
which indicate resource deficiencies, invariant failures or other conditions, from
which the program cannot possibly recover.

III-A method should throw exceptions that precisely define the exceptional
condition ([24, 11]). To do so, developers should either try to reuse the ex-
ception types already defined in the Java API or they should create a specific
exception. Thus, throwing general types such as a pure java.lang.Exception or
a java.lang.RuntimeException is considered bad practice.

IV- All exceptions explicitly thrown by reusable code should be documented.
([38, 24, 56, 11]). For checked exceptions, this is automatically the case. Bloch [11]
furthermore recommends to document explicitly thrown run time exceptions,
either using a throws declaration in the signature, or using the @throws tag in
the Javadoc. Doing so, in particular for public APIs of libraries or frameworks,
makes clients aware of all exceptions possibly thrown, enabling them to design
the code to deal with them and use the API effectively [45, 56].

Exception Handling Bug Hazards in Android SERG

6 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 7

Fig. 2 Study overview.

3 The Repository Mining Study

Our mining study was guided by a general research question: RQ 1: Can the
information available in exception stack traces reveal exception handling bug
hazards in both the Android applications and framework? As mentioned before,
in this context bug hazards are the characteristics of exception-related code
that favor the introduction of failures such as uncaught exceptions.

Our study focused on the exception stack traces contained in issues of
Android projects (hosted on GitHub and Google Code). To support our in-
vestigation, we developed a tool called ExceptionMiner (Section 3.3) which
extracts the exception stack traces embedded in issues and combines stack
trace information with source code and bytecode analysis. Moreover, we use
manual inspection to augment the understanding of stack traces and support
further discussions and insights (Section 3.4). In this study we explore the
domain quantitatively and highlight interesting cases by exploring cases qual-
itatively.

Figure 2 gives an overview of our study. First, the issues reported in An-
droid projects hosted on GitHub (1) and Google Code (2) are recovered. Then
the stack traces embedded in each issue are extracted and distilled (3). The
stack trace information is then combined with source code and bytecode anal-
ysis in order to discover the type of the exceptions (5) reported in the stack
traces (e.g., error, runtime, checked), and the origin (6) of such exceptions (e.g.,
the application, a library, the Android platform). Manual inspection steps (4,
7, 9) are used to support the mining process and the search for bug hazards
(8). The next sections detail each step of this mining process.

Our study focuses on open-source apps, since the information needed to
perform our study cannot be retrieved from commercial apps, whose issue re-
port systems and source code are generally not publicly available. Open source
Android apps have also been the target of other research [35, 46] addressing
reuse and API stability.

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 7

8 Roberta Coelho et al.

GitHub Google Code
Lable % Occurrences Lable % Occurrences
empty 54.24% Defect 91.96%
Defect 39.56% Enhancement 3.16%
Enhancement 0.57% Task 1.37%
Support 0.52% empty 1.12%
Problem 0.36% StackTrace 0.70%
Others 4.74% Others 1.68%

Table 1 Labels on issues including exception stack traces.

3.1 Android Apps on GitHub

This study uses the dataset provided by the GHTorrent project [25], an off-
line mirror of the data offered through the GitHub API. To identify Android
projects, we performed a case insensitive search for the term “android” in the
repositories’ names and short descriptions. Up to 23 February 2014, when we
queried GHTorrent, this resulted in 2,542 repositories. Running the Excep-
tionMiner tool on this set we observed that 589 projects had at least one issue
containing a stack trace.

Then we performed a further clean up, inspecting the site of every Android
project reporting at least one stack trace, to make sure that they represented
real mobile apps. During this clean up 107 apps were removed because they
were either example projects (i.e., toy projects) or tools to support Android
development (e.g. Selendroid, Roboeletric – tools to support the testing of
Android apps). The filtered set consisted of 482 apps. This set of 482 projects
contained a total of 31,592 issues from which 4,042 exception stack traces were
extracted.

Issues on GitHub are different from issues in dedicated bug tracking tools
such as Bugzilla and Jira. The most important difference is that there are
no predefined fields (e.g. severity and priority). Instead, GitHub uses a more
open ended tagging system, where repositories are offered a pre-defined set of
labels, but repository owners can modify them at will. Therefore, an issue may
have none or an arbitrary set of labels depending on its repository. Table 1
illustrates the occurrences of different labels on the issues including exception
stack traces. Regardless of the issue labels, every exception stack trace may
contain relevant information concerning the exception structure of the projects
analyzed, and therefore can reveal bug hazards in the exception-related code.
Because of this, we opted for not restricting the analysis to just defect issues.

3.2 Android Apps in Google Code

Google Code contains widely used open-source Android apps (e.g. K9Mail1).
However, differently from GitHub, Google Code does not provide an API to

1 K9Mail moved to GitHub but as a way of not loosing the project history it advises their
users to report bugs in the Google Code issue tracker: https://github.com/k9mail/k-9/
wiki/LoggingErrors.

Exception Handling Bug Hazards in Android SERG

8 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 9

access the information related to hosted projects.2 To overcome this limita-
tion we needed to implement a Web Crawler (incorporated in the Exception-
Miner tool described next) that navigates the web interface of Google Code
projects extracting all issues and issue comments and storing them in a re-
lational database for later analysis. To identify Android projects on Google
Code, we performed a similar heuristic: we performed a case insensitive search
(on the Google Code search interface) for the term “android”. In January 2014,
when we queried Google Code, this resulted in a list of 788 projects. This list
comprised the seeds sent to our Crawler.

The Crawler retrieved all issues and comments for these projects. From this
set, 724 projects defined at least 1 issue. Running the ExceptionMiner tool on
this set we observed that 183 projects had at least one issue containing an
exception stack trace. Then we performed further clean up (similar to the
one described previously) inspecting the site of each project. As a result we
could identify 157 Android projects. This set contained 127,456 issues in total,
from which 1,963 exception stack traces were extracted. Table 1 illustrates the
occurrences of different labels on the issues including exception stack traces.
Differently from GitHub, on Google Code most of the issues were labeled as
“Defect”. However, based on the same assumption described for the GitHub
repository we considered all issues reporting stack traces (regardless of their
labels).

3.3 The ExceptionMiner Tool

The ExceptionMiner is a tool which can connect to different issue repositories,
extract issues, mine exception stack traces from them, distill exception stack
trace information, and enable the execution of different analyses by combining
exception stack trace information with byte code and source code analysis.
The main components of ExceptionMiner are the following:

Repository Connectors. This component enables the connection with
issue repositories. In this study two main connectors were created: one which
connects to the GHTorrent database, and a Google Code connector which is
comprised of a Web Crawler that can traverse the Google Code web interface
and extract a project’s issues. Project meta-data and the issues associated
with each project are stored in a relational database.

Exception Stack Trace Distiller. This component combines a parser
(based on regular expressions) and heuristics able to identify and filter ex-
ception names and stack traces inline with text. This component distills the
information that composes a stack trace. Some of the attributes extracted from
the stack trace are the root exception and its signaler, as well as the excep-
tion wrappers and their corresponding signalers. This component also distills
fine grained information of each attribute such as the classes and packages

2 Google Code used to provide a Web service to its repositories, but this was deactivated
in June 2013 in what Google called a “clean-up action”.

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 9

10 Roberta Coelho et al.

associated with them. In contrast to existing issue parsing solutions such as
Infozilla, our parser can discover stack traces mixed with log file information3.

Exception Type Analysis. To support a deeper investigation of the stack
traces every exception defined in a stack trace needs to be classified according
to its type (e.g. Error, checked Exception or RuntimeException). The module
responsible for this analysis uses the Design Wizard framework [12] to inspect
the bytecode of the exceptions reported in stack traces. It walks up the type
hierarchy of a Java exception until it reaches a base exception type. Hence
in this study the bytecode analysis was used to discover the type of each
mined exception when the jar file of such an exception was available in the
project or in a reused Java library. A specific implementation (based on source
code analysis) was needed to discover the exception type when the bytecode
was not available. With this module we analyzed all exceptions defined in
the Android platform (Version 4.4, API level 19), which includes all basic
Java exceptions that can be thrown during the app execution, and exceptions
thrown by Android core libraries. Moreover, we also analyzed the exceptions
reported in stack traces that were defined by applications and third-party
libraries (the tool only analyzed the last version available).

Exception Signaler Analysis. This module is responsible for classifying
each signaler according to its origin (i.e., Android Application Framework, An-
droid Libcore, Application, Library). Table 2 presents the heuristics adopted
in this classification. To conduct this classification, we provide this module
with the information comprising all Java packages that compose: the Android
Platform; the Android Libcore; and each analyzed Application. To discover
the packages for the first two origins we can use the Android specification.
To discover the packages for the third origin, the application itself, this mod-
ule extracts the manifest files of each Android app, which defines the main
packages that the applications consist of. If this file is not available, the tool
recursively analyzes the structure of source code directories composing the
application, and filters out the cases in which the application also includes
the source code of reused libraries. Then, based on this information and using
pattern matching between the signaler name and the packages, this module
identifies the origin of the exception signalers.

The exceptions are considered to come from libraries if their packages are
neither defined within the Android platform, nor in core libraries, nor in the
applications. Table 2 summarizes this signaler classification.

3.4 Manual Inspections

In our experiments, the output of the ExceptionMiner tool was manually ex-
tended in order to (i) support the identification of packages composing the

3 In several exception stack traces, the exception frames were pre-
ceded by logging information e.g., 03-01 15:55:01.609 (7924): at

android.app.ActivityThread.access$600(ActivityThread.java:127) which could not be
detected by existing tools.

Exception Handling Bug Hazards in Android SERG

10 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 11

Signaler Description
android If the exception is thrown in a method defined in the Android

platform.
app If the exception is thrown in a method defined in an Android app.

libcore If the exception is thrown in one of the core libraries reused
by Android (e.g., org.apache.harmony, org.w3c.dom, sun.misc,
org.apache.http, org.json, org.xml).

lib If the exception is thrown in a method that was not defined by any
of the elements above.

Table 2 Sources of exceptions in Android

Android platform, libs and apps analyzed in this study (as described previ-
ously); and (ii) identify the type of some exceptions reported in issues that
were not automatically identified by the ExceptionMiner tool (because they
were defined in previous versions of libraries, apps and Android Platform).
When the exception could not be found automatically or manually (because
they were defined in a previous version of the app or lib), we classified the
exception as “Undefined”. Only 31 exceptions remained undefined, which oc-
curred in 60 different exception stack traces (see Table 5).

3.5 The Mining Study Results

This section presents the results of our study that was guided by the general
research question: RQ 1: Can the information available in exception stack
traces reveal exception handling bug hazards in both the Android applications
and framework? To make the analysis easier, we further refine this question
into sub-questions, each one focusing on pieces of information distilled from
stack traces, more specifically: (i) the root exceptions (i.e., the exceptions that
caused the stack traces); (ii) the exception types (i.e, Checked, Runtime, Error,
Throwable) and (iii) the exception wrappings. Hence, this section is centered
around the following sub-questions: RQ 1.1: Can the root exceptions reveal bug
hazards? ; RQ 1.2 Can the exception types reveal bug hazards? ; and RQ 1.3
Can the exception wrappings reveal bug hazards?.

In this section each piece of information is analyzed in detail to check
whether it can reveal bug hazards in the exception handling code – related to
(i) specific violations of the best practices presented in Section 2.3, or (ii) the
general use of exception handling to support robust development.

RQ 1.1 Can the root exceptions reveal bug harzards?

After distilling the information available in the exception stack traces, we
could find the exceptions commonly reported as the root causes of stack traces.
Table 3 presents a list of the top 10 root exceptions found in the study – ranked
by the number of distinct projects in which they were reported. This table
also shows how many times the signaler of such an exception was a method
defined by the Android platform, the Android Libcore, the application itself
or a third-party library – following the classification presented in Table 2.

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 11

12 Roberta Coelho et al.

Root Exception Projects Occurrences Android Libcore App Lib
% # %

java.lang.NullPointerException 332 51.96% 1664 27.71% 525 20 836 280
java.lang.IllegalStateException 120 18.78% 278 4.63% 185 31 41 39
java.lang.IllegalArgumentException 142 22.22% 353 5.88% 195 12 95 44
java.lang.RuntimeException 122 19.09% 319 5.31% 203 2 64 51
java.lang.OutOfMemoryError 78 12.21% 237 3.95% 141 16 35 34
java.lang.NoClassDefFoundError 67 10.49% 94 1.57% 10 0 46 37
java.lang.ClassCastException 64 10.02% 130 2.16% 55 0 55 20
java.lang.IndexOutOfBoundsException 62 9.70% 166 2.76% 53 0 93 18
java.lang.NoSuchMethodError 54 8.45% 80 1.33% 10 0 56 14
java.util.ConcurrentModificationException 43 6.73% 65 1.08% 5 0 46 13

Table 3 Root Exceptions occurrences and popularity in analyzed repositories.

We can observe that most of the exceptions in this list are implicitly thrown
by the runtime environment due to programming mistakes (e.g., out-of-bounds
array index, division-by-zero, access to a null reference) or resource limitations
(e.g., OutOfMemoryError). From this set the java.lang.NullPointerException
was the most reported root cause (27.71%). If we consider the frequency
of NullPointerException across projects, we can observe that 51.96% of all
projects reported at least one exception stack trace in which the NullPoint-
erException was the root cause.

The NullPointerException was mainly signaled inside the application code
(50%) and the Android platform (31.5%), although we could also find the Null-
PointerException being signaled by third-party libraries (16.3%). Regarding
reusable code (e.g., libraries and frameworks), there is no consensus whether it
is a good or a bad practice to explicitly throw a NullPointerException. Some
prefer to encapsulate such an exception in an instance of IllegalArgumentEx-
ception, while others [11] argue that the NullPointerException makes the cause
of the problem explicit and hence can be signaled by an API expecting a non-
null argument.

The high prevalence of NullPointerException is aligned with the findings
of other research [32, 20, 17, 30]. For instance, Kechagia and Spinellis showed
that the NullPointerException was the most reported exception in the crash
reports sent to BugSense 4 (a bug report management service for Android
applications) [30]. Other research on robustness testing [37, 17] shows that
most of the automatically detected bugs were due to NullPointerException and
exceptions implicitly signaled by the Java environment due to programming
mistakes or resource limitations (as the ones found in our study).

Identifying the Concerns Related to Root Exceptions. To get a
broader view of the root exceptions of stack traces, we performed a manual
inspection in order to identify the underlying concerns related to the most
frequently reported root exceptions. Besides the exceptions related to pro-
gramming mistakes mentioned before, we also looked for exceptions related
to concerns that are known as sources of faults in mobile development: con-
currency [5] backward compatibility [39], security [19, 55] and resource man-
agement (IO, Memory, Battery) [58]. Since it is infeasible to inspect the code
responsible for throwing every exception reported in this study, the concern
identification for each exception was based on intended meaning of the par-

4 https://www.bugsense.com/

Exception Handling Bug Hazards in Android SERG

12 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 13

Concern % Occurrences on stacks
Programming logic (java.lang and util) 52.0%
Resources (IO, Memory, Battery) 23.9%
Security 4.1%
Concurrency 2.9%
Backward compatibility 5.5%
Specific Exceptions 4.9%
General (Error, Exception, Runtime) 6.7%

Table 4 Identifying the concerns related to root exceptions

ticular exception type, as defined in its Javadoc documentation and in the
Java specification. For example: (i) an instance of ArrayOutOfBoundExcep-
tion refers to a programming mistake according to its Javadoc; and (ii) the
Java specification lists all exceptions related to backward compatibility 5,
such as InstantiationError, VerifyError, and IllegalAccessError.

To perform this concern analysis, we selected a subset of all reported root
exceptions, consisting of 100 exceptions reported in 95% of all stack traces an-
alyzed in this study. Hence, based on the inspection of the Javadoc related to
each exception and the Java specification, we identified the underlying concern
related to each root exception. Table 4 contains the results of this analysis.
This table also illustrates the exceptions that could not be directly mapped to
one of the aforementioned concerns, either because they were too general (i.e.,
java.lang.Exception, java.lang.RuntimeException, java.lang.Error) or because
they were related to other concerns (e.g., specific to an application or a given
library). To ensure the quality of the process, three independent coders clas-
sified a randomly selected sample of 25 exception types (from the total 100)
using the same list of concerns; the inter-rater agreement was 96%.

This analysis revealed that approximately 75% of the exceptions that
caused the stack traces are implicitly thrown by the runtime environment
due to mistakes in the programming logic (e.g., out-of-bounds array index,
null pointer references) and resource limitations. Although such exceptions do
not directly point to violations of the best practices described before (which
are related to the explicitly thrown exceptions) they impose a major threat
to app robustness, and therefore represent a critical bug hazard to the excep-
tion handling code of Android applications. Security and concurrency, which
are known to be critical issues for Android apps, raised few of the reported
exceptions (less than 5% of the analyzed stack traces).

Exceptions related to programming logic and resource limitations represent
a major bug hazard to Android apps – since they represent approximately
75% of the exceptions that caused the stack traces. From this set the Null-
PointerException is the most prevalent exception.

RQ 1.2 Can the exception types reveal bug hazards?

5 http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 13

14 Roberta Coelho et al.

Root Type Android Libcore App Lib All %
Runtime 1335 73 1843 690 3894 64.85%
Error 188 46 302 167 691 11.51%
Checked 276 314 313 567 1358 22.61%
Throwable 0 0 2 0 2 0.03%
Undefined 4 0 18 38 60 1.00%
All 1 803 433 2478 1462 6005

Table 5 Types and origins of root exceptions.

As mentioned before, using the ExceptionMiner tool in combination with
manual inspections we could identify the root exception type (i.e., RuntimeEx-
ception, Error, checked Exception) as well as its origin – which we identified
based on the package names of the signalers in the stack traces (Section 3.3).
Table 5 presents the types and origins of root exceptions of all analyzed stack
traces.

We can observe that most of the reported exceptions are of type runtime
(64.85%); and that the most common origins are methods defined either in
the Application (47.3%) or in the Android platform (34.3%). We could also
find runtime exceptions thrown by library code (17.7%). We can also see, from
Table 5, that in contrast to the other origins, most of the exceptions signaled
by Android Libcore (i.e., the set of libraries reused by Android) are checked
exceptions. This set comprises: org.apache.harmony, org.w3c.dom, sun.misc,
org.apache.http, org.json, org.xml, and javax. Signaling checked exceptions is
considered a good practice (see best practice IV in Section 2.3) because by
using checked exceptions a library can define a precise exception interface [41]
to its clients. Since such libraries are widely used in several projects, this
finding can be attributed to the libraries’ maturity.

Almost 65% of all crashes come from runtime exceptions. Approximately
47% of these originate from the application layer.

Inspecting Exception Interfaces. According to the best practices men-
tioned before, explicitly thrown runtime exceptions should be documented as
part of the exception interface of the reusable methods of libraries/frameworks.
To investigate the conformance to this practice, we first filtered out all the ex-
ceptions implicitly signaled by the runtime environment (due to programming
mistakes) – since these exceptions should not be documented in the method
signature6. Then we inspected the code for each method (defined either in the
Android Application Framework or in third-party libraries) explicitly signal-
ing a runtime exception. Table 6 presents the results of this inspection. We
found 79 methods (both from libraries and the Android platform) that ex-
plicitly threw a runtime exception without listing it in the exception interface

6 The filtering was performed in two steps: firstly, we analyzed the byte-
code of the JVM and identified all runtime exceptions defined by it (e.g.,
java.lang.NullPointerExceptoin,java.lang.ArrayIndexOutOfBounds), then if the li-
braries/framework method was signaling one of such exceptions it was filtered out
from the analysis

Exception Handling Bug Hazards in Android SERG

14 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 15

Origin stacks signaler methods throws clause @throws
Libraries 205 44 0 1
Android 62 35 0 0
All 267 79 0 1

Table 6 Absence of exception interfaces in methods.

(i.e., using a throws clause in the method signature). From this set only one
method (defined in a library) included an @throws tag in its Javadoc – re-
porting that the given runtime exception could be thrown in some conditions.
These methods were responsible for 267 exception stack traces mined in this
study.

This result is in line with the results of two other studies [47, 30]. Sacra-
mento et al. [47] observed that the runtime exceptions in .NET programs are
most often not documented. Kechagia and Spinellis [30] identified a set of
methods in the Android API which do not document their runtime excep-
tions. One limitation of the latter work is that it did not filter out exceptions
that, although runtime, should not be documented because they were implic-
itly signaled by the JVM due to resource restrictions or violations of semantic
Java constraints. When explicitly signaling a runtime exception and not doc-
umenting it, the developer imposes a threat to system robustness, especially
when such exceptions are thrown by third party code (e.g., libraries or frame-
work utility code) invoked inside the application. In such cases the developer
usually does not have access to the source code. Hence in the absence of the
exception documentation it is very difficult or even impossible for the client
to design the application to deal with “unforeseen” runtime exceptions. As a
consequence, the undocumented runtime exception may remain uncaught and
lead to system crashes.

Only a small fraction (4%, 267 stack traces) of runtime exceptions are pro-
grammatically thrown. Almost none (0.4%, just one) of these were docu-
mented. Such undocumented runtime exceptions violate best practices III
and IV and reveal a bug hazard to Java/Android apps.

Missing Checked Exceptions in Exception Interfaces. Our excep-
tion stack trace analysis revealed an unexpected bug hazard: a checked excep-
tion thrown by a native method and not declared in the exception interface of
the methods signaling them. The native method in question was defined in the
Android platform, which uses Java Native Invocation (JNI) to access native
C/C++ code. This exception was thrown by the method getDeclaredMethods
defined in java.lang.Class. The Java-side declaration of this method does not
have any throws clause, leading programmers and the compiler to think that
no checked exceptions can be thrown. However, the C-code implementation
did throw a “checked exception” called NoSuchMethodException, violating
the declaration. The Java compiler could not detect this violation, because it
does not perform static exception checking on native methods. This type of
bug is hard to diagnose because the developer usually does not have access

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 15

16 Roberta Coelho et al.

id Runtime Exception wrapping an Error
1 java.lang.RuntimeException - java.lang.OutOfMemoryError
2 java.lang.RuntimeException - java.lang.StackOverflowError

Checked Exception wrapping an Error
3 java.lang.reflect.InvocationTargetException - java.lang.OutOfMemoryError
4 java.lang.Exception - java.lang.OutOfMemoryError

Error wrapping a Checked Exception
5 java.lang.NoClassDefFoundError - java.lang.ClassNotFoundException
6 java.lang.AssertionError - javax.crypto.ShortBufferException

Error wrapping a Runtime Exception
7 java.lang.ExceptionInInitializerError - java.lang.NullPointerException
8 java.lang.ExceptionInInitializerError - java.lang.IllegalArgumentException

Table 7 Examples of Cross-type wrappings

Wrapper Root Cause Projects Occurrences Android Java/Libcore Lib App
Runtime Checked 88 148 75 0 38 35
Runtime Error 46 67 58 0 8 1
Checked Runtime 17 31 4 0 16 11
Checked Error 8 9 5 0 1 3
Error Checked 14 27 6 7 6 8
Error Runtime 8 17 1 1 1 14

Table 8 Wrappings comprising different exception types.

to the native implementations. Consequently, since it is not expected by the
programmer, when such a method throws this exception, the undocumented
exception may remain uncaught and cause the app to crash, or may be mis-
takenly handled by subsumption. The exception stack traces reporting this
scenario actually correspond to a real bug of the Android Gingerbread version
(which still accounts for 13.6% of devices running Android).

For native methods, even checked exceptions can be thrown without being
documented in the exception interface. This violates best practices III and
IV and represents a bug hazard hard to diagnose.

RQ 1.3 Can the exception wrappings reveal bug hazards?

Java is the only language that provides a hybrid exception model which of-
fers three kinds of exceptions each one holding an intended exception behavior
(i.e., error, runtime and checked). Table 8 presents some wrappings found in
this study that include different exception types (i.e., Error, checked Excep-
tion and Runtime). Below, we discuss the most important of such “cross-type
wrappings” in more detail.

Runtime Exception wrapping a Checked Exception. This wrapping
was responsible for 49.5% of the cross-type wrappings. From this set 50% were
performed by methods defined by the Android platform. We observe that this
is a common implementation practice in the methods of the Android platform.
According to Java best practices checked exceptions represent conditions from
which the caller is expected to recover. By converting a checked exception
in a general Runtime class, besides loosing contextual information about the
exception, the client can simply ignore such exception - which can negatively

Exception Handling Bug Hazards in Android SERG

16 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 17

impact the app robustness. Although it is considered a bad practice, when such
wrapping is accompanied by a well defined exception handling policy (which
assures that proper handling will be provided within the app) the impact on
app robustness can be mitigated.

General catch clauses masking any exception into a general RuntimeExcep-
tion is a common practice in the Android Platform; it violates best practice
III and is considered a bug hazard as it loses contextual information about
the exception.

Runtime Exception wrapping an Error. From Table 8, we see that
most of these wrappings are performed by the Android platform (50.7%). The
code snippet below was extracted from Android and shows a general catch
clause that converts any instance of Throwable (signaled during the execution
of an asynchronous task) into an instance of RuntimeException and re-throws
it.

try {

...

} catch (InterruptedException e) {

android.util.Log.w(..., e);

} catch (ExecutionException e) {

throw new RuntimeException("...",e.getCause());

} catch (CancellationException e) {

...

} catch (Throwable t) {

throw new RuntimeException("...", t);

}

Table 7 presents examples of exceptions that were actually wrapped in this
code snippet: java.lang.RuntimeException wrapped an java.lang.OutOfMemoryError
and a java.lang.StackOverflowError. Such Errors result from failures detected
by the runtime environment which indicate resource deficiencies from which
the program cannot possibly recover. Hence, “hiding” an unrecoverable con-
dition into a runtime exception can lead to a scenario where the developer
tries to handle such an exception, leading the program to an unpredictable
state. This kind of wrapping should be avoided, since it represents a serious
bug hazard.

Checked Exception wrapping an Error. Most of these wrappings were
also caused by the reflection library used by applications’ methods. The meth-
ods responsible for the wrappings were also native methods written in C.
Table 7 illustrates some of these wrappings — some of them are masking an
OutOfMemoryError into a checked exception. On the one hand, by confronting
the API user with a checked exception, the API designer is forcing the client
to handle the exceptional condition. On the other hand, according to the Java
specification Errors are not supposed to be caught. In this case, even if the
exception is caught by a handler, the problem that trigged the Error remains:

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 17

18 Roberta Coelho et al.

there is not enough memory to execute the app. This kind of wrapping is
even more dangerous than the previous one and may lead to the “exception
confusion” described next.

Error wrapping Runtime and Checked Exceptions. Table 7 illus-
trates examples of instances of Error wrapping instances of RuntimeExcep-
tion. Although such a wrapping mixes different exception types, since there is
no obligation associated with handling runtime exceptions, it does not violate
the aforementioned best practices.

On the other hand, the inspection also revealed instances of Error wrapping
checked exceptions. Such wrappings were mostly performed by Java static
initializers. If any exception is thrown in the context of a static initializer
(i.e., static block) it is converted into an ExceptionInitializerError at the point
where the class is first used. Table 7 also illustrates examples of such wrappings.
Although such a wrapping may represent a design decision, it violates the best
practices related to checked exceptions and errors as it mixes the intended
handling behavior associated with both types.

We can also observe that some stack traces include successive cross-type
wrappings, such as: Runtime - Checked - Runtime - Checked - Runtime -
Checked - Runtime. Hence, although some of these wrappings may be a result
of design decisions, the mis-use of exception wrappings may make the excep-
tion handling code more complex (e.g., the multiple wrappings) and error-
prone, and lead to “exception confusion”. To illustrate this problem we can
use one of the wrappings discussed above. When the developer is confronted
with a checked exception, the designer of the API is telling him/her to han-
dle the exceptional condition (according to the Java Specification and best
practices). However, such an exception may be wrapping an Error such as an
OutOfMemoryError, which indicates a resource deficiency that the program
cannot possibly recover from. Hence, trying to handle such an exception may
lead the program to an unpredictable state.

Cross-type exception wrappings are common. They represent a bug hazard
once they violate the semantics of Java’s original exception design, detailed
in best practices I and II (e.g., when mapping unrecoverable Errors to other
types of exceptions).

4 The Developers’ Perspective

As previously mentioned, the goal of this work is to obtain a thorough under-
standing of common exception handling bug hazards that app developers face.
In the first phase of this work, we conducted a mining study which identified
common exception handling bug hazards in app development. In the second
phase of this work, we set up an exploratory qualitative investigation and sur-
veyed Android developers on how they perceive the bug hazards detected in
the mining study. The scope of our study is GitHub—using our GHTorrent

Exception Handling Bug Hazards in Android SERG

18 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 19

database [25], we aimed our survey at developers from Android projects avail-
able in GitHub for which issues were mined during the first phase of this study.
Next sections detail this exploratory qualitative investigation.

4.1 Research Questions

The overall research question guiding our exploratory survey is the following:
RQ 2: How do developers deal with the exception handling code in Android apps
and what are the developers’ perspectives about the main bug hazards found
during the mining study? This general research question has been broken into
a set of research questions that are answered by the exploratory survey.

When developing Java-based applications it is inevitable to deal with ex-
ceptions. Hence, our first question explores how developers deal with the ex-
ception handling code in Android development:

RQ 2.1: How do developers deal with exception handling code while devel-
oping Android apps?

To make the analysis easier, we further refine this question into sub-
questions, as follows. To investigate whether the development of exception
handling code is a daily concern for developers or it is something that devel-
opers rarely face and for that reason do not care much, the following subques-
tions are added: How often do developers handle exceptions? How often do
developers throw exceptions? And, to evaluate developers knowledge concern-
ing EH best practices, we also investigated: Do developers know about Java
EH best practices and/or Android specific EH best practices?

The subsequent research questions focus on the developers’ perspectives
about the main bug hazards found during the mining study. We address these
questions by presenting a set of code snippets in which the bug hazards are
present, asking developers what they would do when faced with such scenarios.
The questions related to bug hazards are as follows:

RQ 2.2: How do NullPointerExceptions impact the development of robust
Android apps?

RQ 2.3: How do cross-type wrappings impact the development of robust
Android apps?

RQ 2.4: Are developers aware of the robustness threats caused by JNI
undocumented checked exceptions?

Our last research question addresses whether the exception handling code
helps with the development of robust Android applications, and what develop-
ers usually do to prevent apps from crashing. The motivation behind this ques-
tion was to discover common practices for dealing with uncaught exceptions
and to assess developers perspective about the role of the exception handling
mechanism in the development of robust apps. Hence, the last question is as
follows:

RQ 2.5: How does the exception handling code affect the development of
robust apps and how do developers prevent apps from crashing?

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 19

20 Roberta Coelho et al.

4.2 Protocol

Given the exploratory nature of our research, we used methods from Grounded
Theory [14] to answer some of our research questions. Since our aim is to learn
from a large number of developers, we use surveys which are known to scale
well. The survey is split into two logical sections; the motivations behind each
logical section are: (i) questions aiming at learning from developers about the
usage of the exception handling code in app development; and (ii) questions
focusing on getting developers’ perceptions about the bug hazards detected in
the first phase of this study.

The survey comprises multiple choice or Likert-scale questions and open-
ended questions. The multiple choice questions are intermixed with open-ended
questions to further elicit the developer’s opinions. Moreover, the survey also
contains Likert-scale questions to force participants to make a choice. Overall,
the survey includes 13 open-ended questions, 5 Likert-scale questions and 10
multiple choice questions. The respondents could complete the survey in about
15 minutes.

We used grounded theory coding to iterate through the open-ended survey
responses. The grounded theory coding used in this study consists of two
phases: (1) initial coding entails a close reading of the data and (2) later we
used focused coding [14] to pinpoint and develop the most salient themes [14]
in the analyzed data. Answers to different questions in the survey were coded
separately. For all open-ended questions in the survey, coding was done by
two researchers until saturation was reached. Disagreements were discussed
and resolved as part of the coding, thus, we are unable to report level of
agreement. In all cases, the first author was one of the two coders, and one of
the other authors coded the data as well in close collaboration with the first
author until saturation was reached. The first author then went through the
remaining responses to assign codes to responses.

4.3 Participants

In the first phase of this study, described previously, we mined exception
stack traces available in issues reported for several Android projects hosted
on GitHub and Google Code. To ensure that our sample consists of reposi-
tories that were real Android apps, we had to inspect every project site and
discard toy-programs and non-Android repositories. For each repository, we
extract the developers whose emails are registered. We emailed the 1,824 de-
velopers and received 71 valid answers. The response rate was 3.9% – although
the response rate achieved in our study is low, it is in line with similar surveys
reported in the literature (e.g., [34, 29, 7, 33, 27]) whose response rates mostly
vary between 2% and 4%. The majority of our respondents have more than
2 years of Java development experience (87.3%) and of Android development
(85.9%) – see Figure 3.

Exception Handling Bug Hazards in Android SERG

20 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 21

Fig. 3 Developers expertise in Java and Android development.

Fig. 4 How often developers throw and handle exceptions during app development.

4.4 Findings

In this section, we present our findings per research question. To illustrate the
different aspects of each finding, we provide a selection of quotes from the ex-
ploratory survey. To enable traceability, each respondent has an identification
which can be traced in our database using the following convention: D#. For
instance, D1 corresponds to an answer provided by developer 1.

RQ 2.1: How do developers deal with the exception handling in Android devel-
opment?

This first research question explores the ways in which developers deal
with the exception handling code, either throwing or handling exceptions,
while developing an Android app. Developers were asked about the frequency
at which they develop exception handling code and whether or not they adopt
best practices while developing.

Developers were first asked how often they dealt with the exception han-
dling code – see Figure 4. Many of our survey respondents recognized they
have to handle exceptions most of the time during Android app development
(64.8%). However, the frequency at which they throw exceptions inside apps is
smaller; most of the survey respondents said they throw exceptions only some
of the time or seldom (80.3%). It shows that although we can try to avoid
throwing exceptions, it is almost always inevitable to handle the exceptions
thrown by the Android platform and reused libraries.

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 21

22 Roberta Coelho et al.

Fig. 5 Summary of the survey questions related to EH best practices.

As mentioned before several general guidelines have been proposed on how
to use Java exceptions. Section 2.3 compiled a list of some exception handling
(EH) best practices that guided our mining study. In this survey the devel-
opers were also asked if they knew about and used Java EH best practices –
see Figure 5. Most of them said that they knew and adopted Java EH prac-
tices (68%). From this set the most mentioned best practices are presented in
Table 9 – considering that one developer mentioned more than one practice.
Most of the best practices mentioned were the ones cited in Section 2.3. For
instance:“Don’t throw [pure] RuntimeException (in most cases), don’t catch
OutOfMemoryError, etc.” [D42]. Some of the practices mentioned, however,
are not well known Java EH best practices but seem to be used by some An-
droid developers to better deal with exceptions in the Android app context,
such as the use of a crash fast approach7 – “Crash is good for hinting developer.
Fast crash fast solve.” [D51]. According to this approach, developers should
let the application crash as soon as an unexpected situation happens. The
motivation behind this approach is that the developer will receive the crash
information and fix the potential bug that caused it. On the other hand, if the
developer lets the app continue to run after an exception had happened, the
application may enter an inconsistent state. In such scenario, the time between
the fault being exercised and the failure (the fault manifestation) increases,
which may impair finding and fixing the potential bug that caused the failure.
Moreover, some respondents favor checked exceptions instead of runtime to
represent the exceptional conditions in Android apps – “RuntimeExceptions
are not particularly well suited for Android’s robustness, as any uncaught one
would cause a crash.” [D26] ; “Checked exception help, unchecked exceptions
don’t.” [D25] ; “avoid unchecked exceptions except if the case is really abnormal
and should not happen [...]”[D45].

The developers who informed us about their EH best practices were also
asked whether they knew about any EH best practices specific to Android –
see Figure 5. Most of them (43%) mentioned that they applied the same best
practices that they used in Java programs. Only some of them mentioned that
they adopted specific best practices such as: (i) the use of crash report tools
(21%) – to notify the developer about the uncaught exceptions that happen

7 http://www.slideshare.net/pyricau/crash-fast

Exception Handling Bug Hazards in Android SERG

22 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 23

Top Java EH Best Practices # %
Use specific handlers / don’t catch generic exceptions 9 23%
Don’t swallow Exceptions 7 18%
Don’t throw Runtime / Favor Checked exceptions 4 10%
Do not use exception for normal flow control 4 10%
Free Resources in finally-blocks 4 10%
crash fast 3 8%
crash report tools 2 5%
Don’t catch Errors 2 5%

Table 9 Top mentioned Java EH best practices – 40 non-empty responses.

Top Android EH Best Practices # %
Same as Java 6 43%
Crash report tools 3 21%
Add a global exception handler (UncaughtExceptionHandler) 2 14%
Use checked exceptions 1 7%
Use appropriate exception messages 1 7%

Table 10 Top mentioned Android-specific EH best practices – 14 non-empty responses.

Fig. 6 Summary of the survey questions relates to the null pointer problem (RQ 2.2) and
the effect of EH on app robustness (RQ 2.5).

in the application code; and (ii) the use of a global exception handler (14%) –
the UncaughtExceptionHandler advised in the Android documentation8.

Most of the respondents (64.8%) recognize that they handle exceptions most
of the time during the app development. Most of them (62%) mentioned that
they adopt EH best practices.

RQ 2.2: How do the NullPointerExceptions impact the development of robust
Android apps?

Developers were asked if their apps ever crashed because of a NullPoint-
erException – see Figure 6. The vast majority of respondents (96%) said that
their apps crashed at least once due to a NullPointerException. Their answers
are aligned with the high prevalence of NullPointerExceptions found in the
mining study – in Table 3 in Section 3.5 we can see that NullPointerExcep-
tions were the main cause of the mined exception stack traces.

Developers reported some reasons for the high prevalence of crashes caused
by NullPointerExceptions. The activity and fragment lifecycle was one of them
– “Android destroys and recreates itself all of the time (especially during screen
rotation) and if you do not handle that it will crash on you every time. with

8 http://developer.android.com/reference/java/lang/Thread.

UncaughtExceptionHandler.html

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 23

24 Roberta Coelho et al.

Top Reasons # %
activity/fragment life cycle 9 47%
framework complexity 6 32%
API / Backward compatibility 2 11%
memory issues 1 5%
no layers to catch runtimeexceptions 1 5%

Table 11 Top reasons why NullPointerExceptions are more frequent in Android apps ac-
cording to 19 respondents.

the complexity of an activity with a fragment that has fragments and each
of those fragments has custom objects and variables that need to be either
retained (so saved and put back) or recreated such as views it can get complex
if you don’t have an understanding of how the android life cycle works.” [D43].
Another developer also mentioned that: “They [NullPointerExceptions] can
happen pretty much anywhere. The Android Fragment system comes to mind
in this case. Often, it is possible to find yourself in a state where getActivity()
is null within the Fragment during certain points in the life cycle, and that is
something I have to plan for. This might have been avoidable under a different
structure.”[D56].

The framework complexity was also mentioned as a major cause of null
pointer crashes – since several methods of the Android framework return null,
and there is not enough documentation to inform the developer when using
such methods. Some respondents mentioned: “The Android framework is what
adds the complexity in figuring out what caused an exception because more often
than not, the error is triggered from the framework as a result of something
else you did.” [D58] ; “Java is simple language, and the problem arises when
you are using third party frameworks build on Java (or using Android which
provide lots of new classes). And the problem is you don’t always know if
specific method can return null object or only valid values.”[D7]. Moreover, a
few respondents also answered that such NullPointerException crashes can be
caused by backward compatibility as well as memory issues as illustrated in
Table 11.

Almost half of the developers mentioned, however, that NullPointerExcep-
tions are common in Android development since they are common in Java stan-
dard development as well. One responded even mentioned: “Honestly, there are
a lot of very unskilled Java programmers out there writing Android apps. When
they encounter NPE, they tend to null-check that variable, which just puts a
bandage on the problem and causes other failures (usually also NPE’s) later
on in the application’s lifecycle. This is nothing specific to Android, it’s just
how Java works.”[D42]

Developers were also asked about what they usually do to prevent Null-
PointerExceptions from happening when their app is in production. Table 12
presents the ways for preventing NullPointerException in Android apps most
cited by developers. Most of the developers mentioned including null-checks
in the application code (59%), mostly when checking the return of a method
and as method guard conditions. Many respondents (39%) also answered that
instead of just sprinkling the code with null-checks when a NullPointerExcep-

Exception Handling Bug Hazards in Android SERG

24 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 25

Top Ways of Preventing NullPointerExceptions # %
null-checks 36 59%
investigate/fix the cause 24 39%
@Nullable @NotNull 8 13%
catch null-pointer (mistake) 3 5%
initialize/use default variable 3 5%
new control-flow for null 3 5%
avoid using nulls / avoid to use methods can throw null 2 3%
static analysis 2 3%
automated testing 1 2%

Table 12 Top ways for preventing NullPointerException in Android apps – 61 non-empty
responses.

tion happens they investigate the cause of the null reference and work to fix it,
instead of just adding a null check. Determine why the object was null and at-
tempt to fix this situation. In the case of external API calls which return null,
then check for null (the quick-and-dirty way). For internal calls, use @NotNull
and @Nullable annotations to provided more guidance on when an object “may
be” and “should never be” null.” [D42]

Some respondents also mentioned using annotations such as @Nullable
and @NotNull, provided by Android Studio 0.5.5; such annotations guide the
developer about what can and cannot be null during the application lifecy-
cle. Although catching the NullPointerExceptions is considered a bad practice
some respondents said that they do it to prevent crashes caused by Null-
PointerExceptions. Such behavior was mentioned by one of the respondents as
the behavior adopted by non-experienced developers to prevent such crashes
– which is undoubtedly a mistake. Some respondents also suggested to re-
place the NullPointerException by IllegalArgumentException when a method
should not receive a null as parameter. “Probably the most common exception,
as such the reasons and fixes are super varying. But in general, null checks
should be utilized and illegal state or argument exceptions should be used with
an appropriate message. Which will communicate useful information without
the confusion an NPE would normally cause.”[D48]. This is a good exception
handling practice mentioned by Bloch [11]. Only a few developers mentioned
coding standards and static code analyzers to prevent it (2%).

Almost 96% of the developers recognized that their apps have already crashed
due to a NullPointerException. They mentioned that the Android applica-
tion life-cycle (47%) and the framework complexity (32%) may favor such
uncaught NullPointerExceptions to happen in the Android context.

RQ 2.3: How do Cross-Type Wrappings impact the development of robust An-
droid apps?

Some of the best practices are related to the different ways an exception
should be handled according to whether it is a checked or an unchecked excep-
tion. When the designer of an API specifies that a method throws a checked

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 25

26 Roberta Coelho et al.

exception, it is telling the caller of the API that such an exception should be
handled.

To assess the developers’ perspective on whether checked and unchecked
exceptions should be handled differently inside the app, the developers were
presented with two pieces of code: one in which a RuntimeException was
caught and another one where an IOException was caught; both in the context
of Activity life-cycle methods. Then the developers were asked whether the way
to handle a runtime exception should be different from the way to handle a
checked exception.

This question was motivated by the fact that during the mining study we
could identify that many checked exceptions were just wrapped in a runtime
exception and re-thrown, as a way to bypass any kind of handling. When asked
about how to deal with a checked exception signaled by a method (invoked in
the context of the onPause() activity method), most respondents (63%) said
that they should add a try-catch block surrounding the method invocation -
see Table 13. One of the respondents mentioned that “If a method signature
declares that it throws an exception, it means that the caller should handle
the exception.”[D29] ; “because it is checked exception, you should expect it to
happen rather than just crash”[D70]. However, most of the respondents also
said that to deal with a method that is signaling a runtime exception we should
surround such a method with a try-catch block (59%) - see Table 14.

However, what developers mentioned as handling actions (what is per-
formed inside the catch clause to deal with the exception) differs in both cases.
For runtime exceptions most of the handling actions were dedicated to present
more specific error messages and prevent the app from abruptly crashing. “[...]
They signal exceptional behavior that may not be recoverable, so they offer a
useful way to log and gracefully crash” [D19]. “Giving the user meaningful feed
back is important, so the more specific you can be about what went wrong, the
better.”[D66]. Some developers also mentioned to use a toast to support this
task9. Few developers also mentioned that the runtime exception should flow
upstream to the framework so it could crash the app.

On the other hand, some handling actions mentioned for checked excep-
tions were: (i) retrying the same operation; (ii) involving the user in finding
a solution to the exception condition such as opening a pop-up and asking
the user to define a new place to save the file (the example presented to them
involved a IOException being signaled); and also (iii) presenting an error mes-
sage to the user.

We can observe that the handling actions associated with checked excep-
tions focused more on crash prevention than the ones related to runtime excep-
tions. “Its very important in android that we gracefully handle an exception.
Try not to crash an application.”[41]. It was also interesting to observe that
the developers suggested involving the user and solving the exceptional con-
dition represented by a checked exception – “We should try alternative saving

9 A toast is an Android component that provides simple feedback about an operation in a
small popup – http://developer.android.com/guide/topics/ui/notifiers/toasts.html

Exception Handling Bug Hazards in Android SERG

26 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 27

Top Ways of Handling Checked Exceptions # %
Add a try-catch block 25 63%
Present error message 7 18%
Involve the user in solving 5 13%
Retry 5 13%
Investigate the cause 3 8%
Same way as runtime 3 8%
Add a throws declaration / pass upstream 2 5%

Table 13 Top ways of dealing with a checked exception signaled in the context of an
Activity method – 40 non-empty responses.

Top Ways of Handling Runtime Exceptions # %
Add a try-catch block 37 59%
Present error message 14 22%
Log the exception 12 19%
Throw a checked exception 12 19%
Let it crash / crash fast 6 10%
Swallow the exception 5 8%
Add a throws declaration 5 8%
Report crash 3 5%
Use Toast 3 5%

Table 14 Top ways of handling runtime exceptions – 63 non-empty responses.

ways and if it fails we should prompt the user for a new location and always
keep the user informed”[D11]. “You still need to catch an IOException to pre-
vent a crash. However, because it is related to saving a file, you may need to
reset any data within that catch statement and either alert the user that it has
failed or perform a limited retry (in the case of an HTTP upload or something
prone to server-side failure).”[D5].

Although there is a long lasting debate about the pros and cons of checked
and unchecked exceptions, the survey revealed that many Android developers
considered checked exceptions as a way of using exceptions that can prevent
uncaught exception crashes – since in order for a checked exception to flow
upstream and crash the app the developers need to explicitly do so.

After presenting two different code snippets in which a checked and a run-
time exception were thrown, developers were presented with a code snippet
in which a cross-type wrapping was performed10 – as illustrated below. Then
developers were asked whether such cross-type wrapping could affect the ap-
plication robustness in some way.

@Override

public void onPause() {

try {

...

} catch (Exception e) {

throw new RuntimeException("...", e);

}

}

Table 15 illustrates the most mentioned reasons of why cross-type wrapping
may affect app robustness; 18% of the respondents mentioned that the app

10 This cross-type wrapping was found in several applications during the mining study as
well as in some classes of the Android framework.

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 27

28 Roberta Coelho et al.

Top Reasons Why Cross-Type Wrapping Affect Robustness # %
impairs proper handling (loses exception information) 12 24%
uncaught will crash the app 12 24%
app will crash anyway 9 18%
should catch / handle properly (do local recovery) 5 10%
treat all exceptions as critical 5 10%
useless rethrow 2 4%
activity methods cannot throw exceptions 1 2%

Table 15 Top reasons why cross-type wrapping may affect app robustness – 49 non-empty
responses.

would crash anyway, regardless of whether the exception was wrapped or not.
Most of the respondents, however, mentioned disadvantages of such wrapping,
such as: (i) it impairs proper handling since wrapping in a general exception
loses information about the exception situation to be handled (24%); such
wrapping treats all exceptions as critical – in other words, every exception
will remain uncaught and will lead to an app crash – and it does not allow
the developer to perform a proper handling (e.g. retry) for exception types
that are not critical. A respondent emphasized that: “this treats all exceptions
as critical failure, even though they might not all be unrecoverable”[D70]. An-
other developer alerted that: “Rethrowing a checked exception as an unchecked
exception is the worst choice; it throws away any value of checked exceptions,
elevates the exception out of almost all handling, and does absolutely nothing
helpful in the process. Further, catching ‘Exception‘ suggests that the author
doesn’t know what exceptions might occur and wrongfully assumed that this
solution is somehow safer than doing nothing.”[D19]

Wrapping a checked exception in a runtime exception was considered a
bad practice by many respondents; since it loses exception information it
impairs proper handling (24%), and since the runtime exception may remain
uncaught it may crash the app (24%).

RQ 2.4: Are developers aware of the robustness threats caused by JNI undoc-
umented checked exceptions?

The respondents were presented with a piece of code in which a non-
declared checked exception has appeared, and they were asked if they knew any
reason for this to happen. Only 3 respondents out of 71 (4% of respondents)
were aware of the fact that there are ways a method can throw a non-declared
checked exception, such as JNI/native code, reflection, and directly changing
the bytecode/dalvik code, which bypass the compile-time checking. One of
them said: “I am guessing this is because the exception is thrown from native
code (i.e., C++ code in the JVM) where Java correct-ness semantics rules do
not always apply.” [D42].

Most of the respondents, however, were not aware that a method could
throw a checked exception without declaring it in the method’s signature. Most
respondents mentioned that if a method throws a non-declared exception it

Exception Handling Bug Hazards in Android SERG

28 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 29

Top Reasons # %
For Positively Affecting Robustness
Improves error diagnosis 10 15%
Anticipated erroneous situation help writing more robust code 9 13%
Exceptions only for unrecoverable behavior 7 10%
Checked exceptions force handling 6 9%
Useful to gracefully crash 4 6%
For Negatively Affecting Robustness
Crashes the app if not handled 7 10%
Makes debugging harder 2 3%
Unchecked/runtime exceptions may crash the app 2 3%
NullPointerExceptions can happen anywhere/are tricky to avoid 2 3%
VM inefficiency 1 1%

Table 16 Top 5 reasons why exception handling helps or impairs the development of robust
apps

must be a RuntimeException. We could observe that this exception handling
bug hazard detected during the mining study, although representing a threat
to app robustness, is hardly known by the Android developers involved in this
survey.

Only 4% of the developers were aware of the robustness threats caused by
JNI undocumented checked exceptions.

RQ 2.5: How does the exception handling code affect the development of robust
apps and how do developers prevent apps from crashing?

Developers were also asked whether the exception handling code helped
with the development of robust Android applications – see Figure 6. Although
most of the developers answered positively (78.9%), when asked to provide
one or more reasons for their answers, most of the respondents also provided
reasons why the exception handling code can sometimes impair the robustness.

Since positive and negative reasons were provided intermixed we analyzed
both sets of answers and ranked the top reasons why exception handling can
negatively or positively affect robustness according to developers’ perceptions.
Table 16 presents the top reasons why the exception handling code may or
may not help the development of robust apps.

Although most of the respondents answered that exception handling code
helped with the development of robust Android applications, almost every re-
spondent pointed out a drawback associated with the exception handling code,
saying that if it is not used with care the exception handling code may lead to
app crashes. “Any uncatched exception will crash the app. There are many un-
known exception thrown by the system, that are only happen once in a lifetime
like IllegalStateException: eglMakeCurrent failed EGL BAD CONTEXT”[D32].
“The lifecycle of activitiesfragments etc make it harder to work out what order
things are called in and so exceptions can occur because you didn’t realise that
another method isn’t called.”[D70]

Developers were also asked to rank the main causes of crashes. Approxi-
mately 68% of the respondents ranked the exceptions signaled by programming

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 29

30 Roberta Coelho et al.

Fig. 7 Developers’ perspectives on the main causes of crashes.

logic mistakes, e.g. NullPointerExceptions, as the Top 1 and Top 2 cause of
crashes, as illustrated in Figure 7. In our mining study the exceptions signaled
due to programming logic mistakes (java.lang and util) were the causes of
52% of the exception stack traces found. Hence, the developers’ perspective is
aligned with what was revealed in the mining study.

Finally developers were asked how they prevent their apps from crash-
ing. Most of the respondents answered that they prevent apps from crashing
by handling exceptions/errors (27%). They mentioned strategies such as: han-
dling exceptions in all entry points/all over; using catch-all clauses; and adding
try-catch blocks around risky methods. Different from conventional Java pro-
grams, an Android app is composed of several entry points, each window (i.e.
Activity) is a potential entry point in which exceptions can arise leading to
an app crash. This explains the importance of handling exceptions in all en-
try points, and using general catch clauses which sometimes cannot prevent
crashes but allow the developer to present a detailed error message to the
user before crashing. “You can wrap the main function in java in try/catch in
android you can’t...”[D12]. “Though not particular to Android, most Android
apps have several different entry points: Activities, Services, etc, can be started
by different services; same thing with events. It may be hard to ensure that all
this cases are properly handled.” [D46]

Many respondents also said that they used testing approaches to prevent
crashes – few of them mentioned crowd testing (3%), an emerging approach
in testing apps. Moreover, null checks were also mentioned by 15% of the
developers as a way to prevent crashes. The adoption of coding styles was
also pointed out by 14% of respondents as a way to prevent crashes. Finally,
crash report tools (e.g. ACRA 11) were reported as a way to prevent crashes.
Once such tools notify developers about current crashes, the application can be

11 code.google.com/p/acra/

Exception Handling Bug Hazards in Android SERG

30 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 31

Top Ways of Crash Prevention # %
handling exception/error 19 27%
testing 14 20%
null check(s) 11 15%
- null check annotations (@Null and @NotNull) 3 4%
coding style(s) 10 14%
crash report / crash report tools 8 11%

Table 17 Top ways of preventing crashes – 71 non-empty responses.

fixed and hence future crashes (caused by what was fixed) could be prevented.
Table 17 presents the themes for the strategies for crash prevention mentioned
by developers.

Developers recognized that exception handling affects the application robust-
ness in two different ways. On the one hand, anticipated erroneous situations
help writing more robust code. On the other hand, any uncaught exception
will lead to an app crash.

5 Discussion

“Everybody hates thinking about exceptions, because they are not sup-
posed to happen” (Brian Foote)12

This section discusses the lessons learned from the mining and the survey
studies. The mining study revealed a set of bug hazards – such as (i) the
cross-type wrappings; (ii) the abundance of null pointer problems; and (iii) the
undocumented runtime exceptions signaled by third-party code, which were
confirmed by developers during the survey. Here, we discuss the identified bug
hazards, we present how the developers perceived them and point out at what
developers can do in order to deal with them.

5.1 The exception handling confusion problem

When (mis)applied, exception wrapping can make the exception-related code
more complex and lead to what we call the exception handling confusion prob-
lem. This problem can lead a program to an unpredictable state in the presence
of exceptions, as illustrated by the scenario in which a checked exception wraps
an OutOfMemoryError. Currently there is no way of enforcing Java exception
type conventions during program development. Hence, further investigation is
needed on finding ways to help developers in dealing with this problem, either
preventing odd wrappings or enabling the developer to better deal with them.

12 Brian Foote shared his opinion in a conversation with James Noble – quoted in the
paper: hillside.net/plop/2008/papers/ACMVersions/coelho.pdf

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 31

32 Roberta Coelho et al.

Furthermore, only some of the Android developers surveyed in this study were
aware of the robustness threats caused by cross-type wrappings as the one
cited above. This calls for empirical studies on the actual usefulness of Java’s
hybrid exception model.

5.2 On the null pointer problem.

The null reference was first introduced by Tony Hoare in ALGOL W, which
after some years he called his “one-billion-dollar mistake” [4]. In this study, the
null references were, in fact, responsible for several reported issues – providing
further evidence to Hoare’s statement. Moreover many of the survey respon-
dents recognized that NullPointerExceptions were one of the main causes of
application crashes since they can happen almost anywhere in the applica-
tion code, and to make things worse the life-cycle of Android apps in which
objects are constantly recreated (i.e., Activity and Fragment classes) favors
this kind of exception to happen added to the fact that many Android frame-
work methods return null without making this return type explicit in the
documentation. Such observations emphasizes the need for solutions to avoid
NullPointerExceptions, such as: (i) lightweight intra-method null pointer anal-
ysis as supported by Java 8 @Nullable annotations13; (ii) inter-method null
pointer analysis tools such as the one proposed by Nanda and Sinha [42];
or (iii) language designs which avoid null pointers, such as Monads [53] (as
used in functional languages for values that may not be available or computa-
tions that may fail), to improve the robustness of Java programs. Some of the
Android developers mentioned that @Nullable annotations could be helpful to
deal with NullPointerExceptions and consequently prevent app crashes caused
by them.

5.3 Preventing uncaught exceptions

In this study we could observe undocumented runtime exceptions thrown by
third party code, and even undocumented checked exceptions thrown by a JNI
interface. Such undocumented exceptions make it difficult, and most of the
times infeasible, for the client code to protect against “unforeseen” situations
that may happen while calling library code. In the survey-based study An-
droid developers were asked about ways to prevent application crashes which
are mainly caused by uncaught exceptions. Many of them emphasized the im-
portance of handling exceptions to prevent crashes but also mentioned how
difficult it is to handle every specific exception that can happen. Several devel-
opers follow a more reactive behavior against crashes: they advocate the use of
crash report tools, and once the crash happens for the first time, it is reported

13 Already supported by tools such as Eclipse, IntelliJ, Android Studio 0.5.5 (release Apr.
2014) to detect potential null pointer dereferences at compile time.

Exception Handling Bug Hazards in Android SERG

32 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 33

and the application can be changed to better cope with the exceptions that
caused the crashes, consequently preventing future similar crashes.

One may think that the solution for the uncaught exceptions may be to
define a general handler, which is responsible for handling any exception that
is not adequately handled inside the applications. Although this solution may
prevent the system from abruptly crashing, as mentioned by some of the sur-
veyed developers such a general handler will not have enough contextual infor-
mation to adequately handle the exceptions, beyond storing a message in a log
file and restarting the application. Such a handler cannot replace a carefully
designed exception handling policy [45], which requires third-party documen-
tation on the exceptions that may the thrown by APIs used. Since document-
ing runtime exceptions is a tedious and error prone task, this calls for tool
support to automate the extraction of runtime exceptions from library code.
Initial steps in this direction have been proposed by van Doorn and Steegmans
[52].

5.4 Mining Study – Threats to Validity

Internal Validity. We used a heuristics-based parser to mine exceptions from
issues. Our parsing strategy was conservative by default; for example, we only
considered exception names using a fully qualified class name as valid exception
identifiers, while, in many cases, developers use the exception name in the issue
description. Conservative parsing may minimize false positives, which was our
initial target, but also tends to increase false negatives, which means that
some cases may have not been identified as exceptions or stack traces. Our
limited manual inspection did not reveal such cases. Moreover, in this study
we manually mapped the concerns related to exceptions. To ensure the quality
of the analysis, we calculated the interrater agreement after three independent
raters classified a randomly selected sample (of 25 exception types from the
total of 100); the interrater agreement was high (96%).

The process for identifying the type of exceptions reported in stack traces
may not be completely accurate. Specifically, we performed the selection of
the version of the exception source code or bytecode to analyze, as follows: (i)
for all exceptions signaled by the Android Platform and the Java Environment
the analysis was based on Version 4.4 of Android platform (API level 19); (ii)
for the exceptions signaled by applications, the analysis considered the last
version of the application source-code available on Github/Google code; and
(iii) for all exceptions signaled by third-party libraries the type analysis con-
sidered the latest bytecode version available on the app repository. When the
exception could not be found automatically or manually (based on the chosen
version), we classified the exception as “Undefined”. Only 31 exceptions re-
mained undefined, which occurred in 60 different exception stack traces out of
6,005 mined stack traces. Hence, the exception type could not be accurately
identified in 1% of the mined exception flows. There should be situations where
the exception type (i.e., checked or runtime) changes from one version to an-

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 33

34 Roberta Coelho et al.

other. Although we believe that it will not happen very often, we did not
investigate this issue.

External Validity. Our work uses the GHTorrent dataset, which although
comprehensive and extensive is not an exact replica of GitHub. However, the
result of this study does not depend on the analysis of a complete GitHub
dataset. Instead, the goal of our study was to pinpoint bug hazards in the
exception-related code based on exception stack trace mining of a subset of
projects. We limited our analysis to a subset of existing open-source Android
projects. We are aware that the exception stack traces reported for commercial
apps can be different from the ones found in this study, and that this subset
is a small percentage of existing apps. Such threats are similar to the ones of
other empirical studies which also use free or open-source Android apps [35,
39, 46]. Moreover, several exception stack traces that support the findings of
this study referred to exceptions coming from methods defined in the Android
Application Framework and third-party libraries. Additionally, the bug hazards
observed in this study are due to characteristics of the Java exception model,
which can impose challenges to the robustness of not only Android apps but
also to other systems based on the same exception model.

Another threat relates to the fact that parts of our analysis are based on
the availability of stack traces in issues reported on GitHub and Google Code
projects. In using these datasets, we make an underlying assumption: the stack
traces reported in issues are representative of valid crash information of the
applications. One way to mitigate this threat would be to access the full set
of crash data per application. Although some services exist to collect crash
data from mobile applications (e.g., ACRA 14, Google analytics 15, Bugsense,
Bugsnag 16), they do not provide open access to the crash reports of their client
applications. In our study, we mitigated this threat by manually inspecting the
source code associated with a subset of the reported exception stack traces.
This subset comprises the stack traces related to the main findings of the
study (e.g., “undocumented runtime and checked exceptions”, and “cross-type
wrappings”).

5.5 Limitations of the Survey-based Study

Results Generalization. Due to the exploratory nature of the second phase of
this work whose goal was to identify the developers’ perspectives concerning
the exception handling bug hazards found during the repository mining phase,
we chose Grounded Theory techniques. The results of our survey-based study
may not apply to every Android developer, since other populations might
add new insights. The population we collected data from was comprised of
Android developers of the GitHub Android projects whose issues were mined
in the first phase of this work, and who had time and motivation to answer

14 code.google.com/p/acra/
15 https://www.google.com/analytics/
16 https://bugsnag.com/

Exception Handling Bug Hazards in Android SERG

34 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 35

the survey questions. Although the themes and findings that emerged in our
study cannot be generalized, they give a first view of developers’ perspectives
about EH bug hazards found. Hence, we believe that the survey-based study
has contributed with valuable insights about how Android developers used
the exception handling code and what their perspectives regarding exception
handling bug hazards are.

Survey Customization. Although the survey was applied to developers who
had contributed to at least one of the GitHub apps, analyzed in the mining
study, the survey was not customized to each developer. In other words, it
did not contain questions focusing on specific bug hazards identified in their
apps. That customization of the survey (for each specific developer/app) could
give more insights about the exception handling usage and bug hazards, and
could even have improved the response rate for the survey. However, we did
not followed this approach because the high number of projects analyzed (482
Android apps) and their contributors (1,824 developers) would increase the
complexity and time needed (i) to prepare the survey and specially (ii) to an-
alyze the survey responses - since themes could emerge from specific contexts.
This approach can be very useful in a guided interview involving some of the
respondents to refine the findings of this exploratory survey in a future work.

5.6 Replication Package

All the data used in the mining study and in the survey-based study is publicly
available at the ExceptionMiner tool website hosted on GitHub17. Specifically
we provide: (i) all issues related to Android projects found on GitHub and
Google Code used in this study; (ii) all stack traces extracted from issues; (iii)
the results of manual inspection steps; (iv) the ExceptionMiner tool we devel-
oped to support stack trace extraction and distilling; (v) the survey questions;
and (iv) the survey responses and summary.

6 Related Work

In this section, we present work that is related to the present paper, divided
into four categories as detailed next.

Analysis and Use of Stack Trace Information. Several papers have investi-
gated the use of stack trace information to support: bug classification and clus-
tering [54, 31, 18], fault prediction models [32], automated bug fixing tools [51]
and also the analysis of Android APIs [30]. Kim et al. [31] use an aggregated
form of multiple stack traces available in crash reports to detect duplicate
crash reports and to predict if a given crash will be fixed. Dhaliwal et al. [18]
proposed a crash grouping approach that can reduce bug fixing time by ap-
proximately 5%. Wang et al. [54] propose an approach to identify correlated
crash types and describe a fault localization method to locate and rank files

17 https://github.com/souzacoelho/exceptionminer

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 35

36 Roberta Coelho et al.

related to the bug described in a stack trace. Schröter et al. [48] conducted
an empirical study on the usefulness of stack traces for bug fixing and showed
that developers fixed the bugs faster when failing stack traces were included in
bug issues. In a similar study, Bettenburg et al. [8] identify stack traces as the
second most relevant feature of good bug reports. Sinha et al. [51] proposed an
approach that uses stack traces to guide a dataflow analysis for locating and
repairing faults that are caused by the implicitly signaled exceptions. Kim at
al. [32] proposed an approach to predict the crash-proneness of methods based
information extracted from stack traces and methods’ bytecode operations.
They observed that most of the stack traces were related to NullPointerEx-
ception and other implicitly thrown exceptions had the higher prevalence in
the analyzed set of stacks. Kechagia and Spinellis [30] examined the stack
traces embedded in crash reports sent by 1,800 Android apps to a crash re-
port management service (i.e., BugSense). They found that 19% of such stack
traces were caused by unchecked and undocumented exceptions thrown by
methods defined in the Android API (level 15). Our work differs from Kecha-
gia and Spinellis since it is based on stack traces mined from issues reported
by open source developers on GitHub and Google Code. Moreover, our study
mapped the origin of each exception (i.e., libraries, the Android platform or
the application itself) and investigated the adoption of best practices based
on the analysis of stack trace information. Our work also identified the type
of each exception mined from issues (classifying them as Error, Runtime or
Checked) based on the source code analysis of the exception hierarchy and
analyzed the exception wrappings that can happen during the exception prop-
agation. Such analysis revealed intriguing bug hazards such as the cross-type
exception wrappings not discussed in previous works.

Extracting Stack Traces from natural language artifacts. Apart from issues
and bug reports, stack traces can be embedded in other forms of communi-
cation between developers, such as discussion logs and emails. Few tools have
been proposed to mine stack traces embedded on such resources. Infozilla [9]
is based on a set of regular expressions that extract a set of frames related
to a stack trace. The main limitation of this solution is that it is not able to
extract stack traces embedded in verbose log files (i.e., in which we can find
log text mixed with exception frames). Bacchelli et al. [6] propose a solution to
recognize stack trace frames from development emails and relate them to code
artifacts (i.e. classes) mentioned in the stack trace. In addition to those tools,
ExceptionMiner is able to both extract stack traces from natural language
artifacts and to classify them into a set of predefined categories.

Empirical Studies on Exception Handling Defects. Cabral and Marques [13]
analyzed the source code of 32 open-source systems, both for Java and .NET.
They observed that the actions inside handlers were very simple (e.g., logging
and presenting a message to the user). Coelho et al. [15] performed an empir-
ical study considering the fault-proneness of aspect-oriented implementations
for handling exceptions. Two releases of both Java and AspectJ implementa-
tions were assessed as part of that study. Based on the use of an exception
flow analysis tool, the study revealed that the AOP refactoring increased the

Exception Handling Bug Hazards in Android SERG

36 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 37

number of uncaught exceptions, degrading the robustness of the AO version
of every analyzed system. The main limitation of approaches based on static
analysis approaches are the number of false positives they can generate, and
the problems faced when dealing with reflection libraries and dynamic class
loading. Pingyu and Elbaum [58] were the first to perform an empirical in-
vestigation of issues, related to exception-related bugs, in Android projects.
They perform a small scale study in which they manually inspected the issues
of 5 Android applications. They observed that 29% had to do with poor ex-
ceptional handling code, and this empirical study was used to motivate the
development of a tool aiming at amplifying existing tests to validate excep-
tion handling code associated with external resources. This work inspired ours,
which automatically mined the exception stack traces embedded in issues re-
ported in 639 open source Android projects. The goal of our study was to
identify common bug hazards in the exception related code that can lead to
failures such as uncaught exceptions.

Empirical studies using Android apps. Ruiz et al. [46] investigated the de-
gree of reuse across applications in the Android Market; the study showed that
almost 23% of the classes inherited from a base class in the Android API, and
that 217 mobile apps were reused completely by another mobile app. Pathak et
al. [43] analyzed bug reports and developers’ discussions of the Android plat-
form and found that approximately 20% of energy-related bugs in Android
occurred after an OS update. McDonnell et al. [39] conducted a case study of
the co-evolution behavior of the Android API and 10 dependent applications
using the version history data found in GitHub. The study found that approx-
imately 25% of all methods in the client code used the Android API, and that
the methods reusing fast-evolving APIs were more defect prone than others.
Vasquez et al. [35] analyzed approximately 7K free Android apps and observed
that the least successful apps used Android APIs that were on average 300%
more change-prone than the APIs used by the most successful apps. Our work
differs from the others as it aims at distilling stack trace information from
bug reports and combining such information with bytecode analysis, source
code analysis and manual inspections to identify bug hazards in the exception
handling code of Android apps.

Exploratory Survey Studies. Exploratory surveys have been used in the soft-
ware engineering context to discover the user perspective regarding a broad
range of topics such as: assessing the developers’ perceptions on productiv-
ity [40]; how GitHub developers use pull-requests [26]; how the testing culture
of open-source projects can be characterized [44]; and even how developers use
Twitter [50]. This kind of study is important as a way of better understanding
the developers’ behavior and hence providing recommendations and tools to
help with specific development tasks.

Exploratory surveys have also targeted Android developers [34, 29, 7, 36].
Kochhar et al. [34] conducted a survey-based study to discover the commonly
used tools for mobile app testing as well as the problems faced by develop-
ers while testing the apps. The survey was sent to 3,905 emails of Android
developers and received 83 responses (response rate of 2.13%). Joorabchi et

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 37

38 Roberta Coelho et al.

al. [29] performed a survey-based study whose goal was to better under-
stand the main challenges developers face when building apps for different
mobile devices. They interviewed 12 senior mobile developers and performed
a semi-structured survey, with 188 respondents from the mobile development
community, since the survey was shared via e-mail groups and social media
websites response rate of the survey could not be calculated. Linares-Vásquez
et al. [36] surveyed 485 open source Android app and library developers (for
projects hosted on GitHub) to understand developers’ practices for detecting
and fixing performance bottlenecks in mobile apps. This work emailed the
survey to 24,340 developers and received 628 responses - the response rate
was 2.6%. Bavota et al. [7] investigated the impact of API change-proness
and fault-proneness on the user ratings of Android apps. They surveyed de-
velopers to assess their perspective on whether such problems could be the
cause for unfavorable user ratings. The response rate was 4%. A common
characteristic among such works and our work is the low response rate of the
surveys (between 4% and 2%). None of these surveys, however, assessed how
developers deal with exceptions in Android nor the developers’ perspective
regarding a set of exception handling bug hazards. In our study, we conduced
the first exploratory survey focusing on exception handling issues in Android
development.

7 Conclusion

The goal of this paper is two-fold: (i) to investigate to what extent stack trace
information can reveal bug hazards related to exception handling code that
may lead to a decrease in application robustness; and (ii) to assess the devel-
opers’ perspective concerning the detected exception handling bug hazards.

To realize this goal, we mined the stack traces embedded in all issues de-
fined in 482 Android projects hosted on GitHub and 157 projects hosted on
Google Code – overall considering 6,005 exception stack traces. We subse-
quently surveyed developers associated with a selection of the mined GitHub
projects.

Our first key contribution is a novel approach and toolset (ExceptionMiner)
for analyzing Java exception stack traces as occurring in GitHub and Google
Code issues.

Our second contribution is an empirical study of over 6000 actual stack
traces, demonstrating that:

1. Half of the system crashes are due to errors in programming logic, with
null pointer exceptions being most prominent;

2. Documentation for explicitly thrown RuntimeExceptions is almost never
provided;

3. Extensive use of wrapping leads to hard-to-understand chains violating
Java’s exception handling principles.

Our third contribution is a qualitative study to assess the developers’ per-
spective concerning the exception handling bug hazards in Android develop-

Exception Handling Bug Hazards in Android SERG

38 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 39

ment. This study corroborates the findings of our stack trace analysis, most
notably the prevalence of null pointer exceptions and the reliability impli-
cations of (in particular cross-type) wrappings. Furthermore, we found that
few developers are aware of the undocumented checked exceptions signaled by
native C code of the Android platform.

In conclusion, our findings shed light on common problems and bug hazards
in Java exception handling code, and call for tool support to help developers
understand their own and third party exception handling and wrapping logic.

Acknowledgements This work is partially supported by the National Institute of Science
and Technology for Software Engineering (INES), CNPq and FACEPE, grants 573964/2008-
4, 552645/2011-7, and APQ-1037-1.03/08, CNPq Universal grant 484209/2013-2, and CAPES/PROAP.

References

1. (2013) Checked or unchecked exceptions? http://tutorials.jenkov.

com/java-exception-handling/checked-or-unchecked-exceptions.

html, online
2. (2014) Java: checked vs unchecked exception explana-

tion. http://stackoverflow.com/questions/6115896/

java-checked-vs-unchecked-exception-explanation, online
3. (2014) The Java tutorial. Unchecked exceptions: The controversy.

http://docs.oracle.com/javase/tutorial/essential/exceptions/

runtime.html, online
4. (2014) Null references:the billion dollar mistake, abstract of talk

at qcon london. qconlondon.com/london-2009/presentation/Null+

References:+The+Billion+Dollar+Mistake, online
5. Amalfitano D, Fasolino AR, Tramontana P, De Carmine S, Memon AM

(2012) Using gui ripping for automated testing of android applications.
In: Proceedings of the 27th IEEE/ACM International Conference on Au-
tomated Software Engineering, ACM, pp 258–261

6. Bacchelli A, Dal Sasso T, D’Ambros M, Lanza M (2012) Content classifi-
cation of development emails. In: Proceedings of ICSE 2012, pp 375–385

7. Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Di Penta M, Oliveto
R, Poshyvanyk D (2015) The impact of api change-and fault-proneness on
the user ratings of android apps. Software Engineering, IEEE Transactions
on 41(4):384–407

8. Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T
(2008) What makes a good bug report? In: Proceedings of FSE 2008, pp
308–318

9. Bettenburg N, Premraj R, Zimmermann T, Kim S (2008) Extracting struc-
tural information from bug reports. In: Proceedings of MSR 2008, ACM,
pp 27–30

10. Binder R (2000) Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Professional

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 39

40 Roberta Coelho et al.

11. Bloch J (2008) Effective java. Pearson Education India
12. Brunet J, Guerrero D, Figueiredo J (2009) Design tests: An approach to

programmatically check your code against design rules. In: Proceedings
of New Ideas and Emerging Research (NIER) track at the International
Conference on Software Engineering (ICSE), IEEE, pp 255–258

13. Cabral B, Marques P (2007) Exception handling: A field study in Java
and .Net. In: Proceedings of ECOOP 2007, Springer, pp 151–175

14. Charmaz K (2006) Constructing grounded theory: A practical guide
through qualitative research. SagePublications Ltd, London

15. Coelho R, Rashid A, Garcia A, Ferrari F, Cacho N, Kulesza U, von Staa
A, Lucena C (2008) Assessing the impact of aspects on exception flows:
An exploratory study. In: Proceedings of European Conference on Object-
Oriented Programming (ECOOP), Springer-Verlag, pp 207–234

16. Coelho R, von Staa A, Kulesza U, Rashid A, Lucena C (2011) Unveiling
and taming liabilities of aspects in the presence of exceptions: a static
analysis based approach. Information Sciences 181(13):2700–2720

17. Csallner C, Smaragdakis Y (2004) Jcrasher: an automatic robustness tester
for Java. Software: Practice and Experience 34(11):1025–1050

18. Dhaliwal T, Khomh F, Zou Y (2011) Classifying field crash reports for
fixing bugs: A case study of mozilla firefox. In: Proceedings of International
Conference on Software Maintenance (ICSM 2011), pp 333–342

19. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android
application security. In: USENIX security symposium, vol 2, p 2

20. Fraser G, Arcuri A (2013) 1600 faults in 100 projects: automatically find-
ing faults while achieving high coverage with evosuite. Empirical Software
Engineering pp 1–29

21. Garcia A, Rubira C, et al (2007) Extracting error handling to aspects: A
cookbook. In: Proceedings International Conference on Software Mainte-
nance (ICSM), IEEE, pp 134–143

22. Garcia AF, Rubira CM, Romanovsky A, Xu J (2001) A comparative study
of exception handling mechanisms for building dependable object-oriented
software. Journal of systems and software 59(2):197–222

23. Goodenough JB (1975) Exception handling: issues and a proposed nota-
tion. CACM 18(12):683–696

24. Gosling J (2000) The Java language specification. Addison-Wesley Profes-
sional

25. Gousios G (2013) The GHTorrent dataset and tool suite. In: Proceedings
of the International Working Conference on Mining Software Repositories
(MSR), IEEE, pp 233–236

26. Gousios G, Zaidman A, Storey MA, Van Deursen A (2015) Work practices
and challenges in pull-based development: the integrator’s perspective.
Tech. rep.

27. Hindle A, Bird C, Zimmermann T, Nagappan N (2015) Do topics
make sense to managers and developers? Empirical Software Engineering
20(2):479–515

Exception Handling Bug Hazards in Android SERG

40 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 41

28. Jo JW, Chang BM, Yi K, Choe KM (2004) An uncaught exception analysis
for java. Journal of systems and software 72(1):59–69

29. Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in mobile
app development. In: Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on, IEEE, pp 15–24

30. Kechagia M, Spinellis D (2014) Undocumented and unchecked: exceptions
that spell trouble. In: Proceedings of the 11th Working Conference on
Mining Software Repositories, ACM, pp 312–315

31. Kim S, Zimmermann T, Nagappan N (2011) Crash graphs: An aggre-
gated view of multiple crashes to improve crash triage. In: Proceedings
of the IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), IEEE, pp 486–493

32. Kim S, Zimmermann T, Premraj R, Bettenburg N, Shivaji S (2013) Pre-
dicting method crashes with bytecode operations. In: Proceedings of the
6th India Software Engineering Conference, pp 3–12

33. Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated soft-
ware development teams. In: Proceedings of the 29th international confer-
ence on Software Engineering, IEEE Computer Society, pp 344–353

34. Kochhar PS, Thung F, Nagappan N, Zimmermann T, Lo D (2015) Un-
derstanding the test automation culture of app developers. In: Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International
Conference on, IEEE, pp 1–10

35. Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto
R, Poshyvanyk D (2013) API change and fault proneness: A threat to
the success of Android apps. In: Proceedings of FSE 2013, ACM, pp
477–487, DOI 10.1145/2491411.2491428, URL http://doi.acm.org/10.

1145/2491411.2491428

36. Linares-Vásquez M, Vendome C, Luo Q, Poshyvanyk D (2015) How devel-
opers detect and fix performance bottlenecks in android apps. In: Software
Maintenance and Evolution (ICSME), 2015 IEEE International Confer-
ence on, IEEE, pp 352–361

37. Maji AK, Arshad FA, Bagchi S, Rellermeyer JS (2012) An empirical study
of the robustness of inter-component communication in Android. In: Pro-
ceedings of the IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), IEEE, pp 1–12

38. Mandrioli D, Meyer B (1992) Advances in object-oriented software engi-
neering. Prentice-Hall, Inc.

39. McDonnell T, Ray B, Kim M (2013) An empirical study of api stabil-
ity and adoption in the android ecosystem. In: Proceedings International
Conference on Software Maintenance (ICSM), pp 70–79

40. Meyer AN, Fritz T, Murphy GC, Zimmermann T (2014) Software devel-
opers’ perceptions of productivity. In: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
ACM, pp 19–29

41. Miller R, Tripathi A (1997) Issues with exception handling in object-
oriented systems. In: Proceedings of ECOOP’97, Springer, pp 85–103

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 41

42 Roberta Coelho et al.

42. Nanda MG, Sinha S (2009) Accurate interprocedural null-dereference anal-
ysis for java. In: Software Engineering, 2009. ICSE 2009. IEEE 31st Inter-
national Conference on, IEEE, pp 133–143

43. Pathak A, Hu YC, Zhang M (2011) Bootstrapping energy debugging on
smartphones: A first look at energy bugs in mobile devices. In: Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, ACM, New York,
NY, USA, HotNets-X, pp 5:1–5:6, DOI 10.1145/2070562.2070567, URL
http://doi.acm.org/10.1145/2070562.2070567

44. Pham R, Singer L, Liskin O, Figueira Filho F, Schneider K (2013) Cre-
ating a shared understanding of testing culture on a social coding site.
In: Software Engineering (ICSE), 2013 35th International Conference on,
IEEE, pp 112–121

45. Robillard MP, Murphy GC (2000) Designing robust Java programs with
exceptions. In: Proceedings International Conference on the Foundations
of Software Engineering (FSE), pp 2–10

46. Ruiz I, Nagappan M, Adams B, Hassan A (2012) Understanding reuse in
the Android market. In: Proceedings of the International Conference on
Program Comprehension (ICPC), pp 113–122, DOI 10.1109/ICPC.2012.
6240477

47. Sacramento P, Cabral B, Marques P (2006) Unchecked exceptions: can the
programmer be trusted to document exceptions. In: International Confer-
ence on Innovative Views of .NET Technologies

48. Schröter A, Bettenburg N, Premraj R (2010) Do stack traces help devel-
opers fix bugs? In: Proceedings Working Conference on Mining Software
Repositories (MSR), IEEE, pp 118–121

49. Shah HB, Gorg C, Harrold MJ (2010) Understanding exception handling:
Viewpoints of novices and experts. IEEE Trans Soft Eng 36(2):150–161

50. Singer L, Figueira Filho F, Storey MA (2014) Software engineering at the
speed of light: how developers stay current using twitter. In: Proceedings
of the 36th International Conference on Software Engineering, ACM, pp
211–221

51. Sinha S, Shah H, Görg C, Jiang S, Kim M, Harrold MJ (2009) Fault
localization and repair for Java runtime exceptions. In: Proceedings Inter-
national Symposium on Software Testing and Analysis (ISSTA), ACM, pp
153–164

52. Van Dooren M, Steegmans E (2005) Combining the robustness of checked
exceptions with the flexibility of unchecked exceptions using anchored ex-
ception declarations. ACM SIGPLAN Notices 40(10):455–471

53. Wadler P (1995) Monads for functional programming. In: Advanced Func-
tional Programming, Springer, pp 24–52

54. Wang S, Khomh F, Zou Y (2013) Improving bug localization using corre-
lations in crash reports. In: Proceedings Working Conference on Mining
Software Repositories (MSR 2013), ACM/IEEE, pp 247–256

55. Wasserman AI (2010) Software engineering issues for mobile application
development. In: Proceedings of the FSE/SDP workshop on Future of
software engineering research, ACM, pp 397–400

Exception Handling Bug Hazards in Android SERG

42 TUD-SERG-2016-018

Exception Handling Bug Hazards in Android 43

56. Wirfs-Brock RJ (2006) Toward exception-handling best practices and pat-
terns. Software, IEEE 23(5):11–13

57. Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain P,
Stumm M (2014) Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems. In:
11th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pp 249–265

58. Zhang P, Elbaum S (2012) Amplifying tests to validate exception handling
code. In: Proceedings International Conference on Software Engineering
(ICSE), IEEE Press, Piscataway, NJ, USA, pp 595–605, URL http://dl.

acm.org/citation.cfm?id=2337223.2337293

SERG Exception Handling Bug Hazards in Android

TUD-SERG-2016-018 43

Exception Handling Bug Hazards in Android SERG

44 TUD-SERG-2016-018

TUD-SERG-2016-018
ISSN 1872-5392 SERG

