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Introduction

This thesis covers three topics that are highly relevant in the current aviation industry: data-driven remaining
useful life (RUL) prognostics, prognostic algorithm performance evaluation and the use of RUL prognostics
in maintenance scheduling. The main goal of this thesis is to further contribute to the available body of
knowledge on those subjects by developing novel theories and methods.

This thesis aims to solve the following problems that are identified from literature: first, the accuracy of
prognostic algorithms in terms of RUL prediction error has gone up over the past years. However, using novel
computational techniques it is believed to be possible to further improve the prediction results compared
to recent literature. Furthermore, current literature usually does not provide an extensive analysis on the
obtained prediction results. Lastly, very limited research has been done into how probabilistic data-driven
RUL predictions can be used to schedule maintenance.

These observations lead to the following condensed research questions: How can sensor recordings be
used to predict a remaining useful life distribution of an aircraft engine at any moment in time? How can the
performance of a prognostic algorithm be optimally assessed such all aspects are taken into consideration?
How can probabilistic data-driven RUL predictions be integrated in the maintenance scheduling routine of
airlines? These questions will be answered in this thesis alongside smaller sub-questions.

This research is relevant to any airline that wants to innovate its maintenance scheduling process by mak-
ing use of data-driven techniques. Shifting towards a data-driven organization holds the potential benefits
of increased scheduling efficiency and profits, while decreasing the time required to schedule maintenance
on a daily basis. Optimizing the airline maintenance process will lead to lower aircraft downtime and less
wasted life of aircraft components. This will result in a higher passenger satisfactory, a more sustainable way
of operation and a higher profit for the airline. All of these aspects stress the importance of optimizing the
airline maintenance scheduling process, both from a economic and societal point of view.

This thesis report is organized as follows : In Part I, the scientific paper is presented. Part I contains the
relevant Literature Study that supports the research. Finally, in Part III, a chapter on how verification and
validation are performed in this research is included.
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Aircraft Maintenance Scheduling Using Engine Sensor Data

Arthur Pieter Reijns*

Delft University of Technology, Delft, The Netherlands

Abstract

Over the past years, prognostic algorithms that aim to predict the remaining useful life (RUL) of aircraft
engines have seen an increase in prediction accuracy. However, novel computational methods indicate that
there is still room for improvement in the accuracy of those prognostic algorithms, especially when these
algorithms are desired to be used to schedule maintenance in practice. Furthermore, only limited research
has been done on how probabilistic data-driven RUL predictions can be used to schedule maintenance for
aircraft engines. This paper proposes a convolutional neural network (CNN) for predicting aircraft engine’s
remaining useful life. This CNN takes recordings from sensors placed inside the engine as input and returns
a probabilistic prediction of the engine’s RUL. This paper also introduces a large framework of prognostic
algorithm performance assessment in order to obtain a full picture of the strengths and weaknesses of the
proposed prognostic model. It was shown that by using optimal feature selection, data normalization,
Monte Carlo dropout and a tuned CNN model, RUL prediction performance was improved significantly in
comparison to recent literature when testing the model on the popular C-MAPSS dataset. This paper then
shows how probabilistic data-driven RUL predictions can be used in a maintenance scheduling simulation
model. In this model, the RUL predictions are used to determine a maintenance window using several
maintenance policies. These data-driven maintenance policies are optimized using a genetic algorithm (GA).
An inspection based policy is included to be able to compare the data-driven maintenance policies to current
practices. The optimal maintenance opportunity in the maintenance window for the engine is then selected
using an integer linear programming (ILP) model. The interaction of all maintenance polices with two types
of flight schedules is investigated in order to find the optimal maintenance strategy for an airline such that
profit is maximized. The performance of all maintenance strategies is evaluated using both operational and
monetary performance indicators. It was found that the data-driven maintenance strategies outperform
inspection based strategies in terms of airline profit. A sensitivity analysis on the optimal maintenance
strategy revealed that it is very sensitive, indicating that appropriate safety margins should be applied
when adopting the data-driven strategies in practice. Nonetheless, the developed data-driven maintenance
scheduling strategies hold great potential when it comes to adopting data-driven RUL prognostics in the
daily scheduling routine of an airline.

1 Introduction

Repair and maintenance costs are among the top expenses of big aviation companies. According to the annual
reports of the Royal Dutch Airlines KLM, the aircraft maintenance costs were around €882 million in 2019,
equivalent to ~ 14.5% of their total yearly expenses [1]. Furthermore, not being able to fly an aircraft is
also very costly. DHL has estimated that if an aircraft has to remain on ground due to technical issues, this
can cost an airline up to €925.000 per day [2]. This shows the importance of being able to monitor the
health of the aircraft and its components, as well as predicting when specific parts will fail. Over the last few
decades, Prognostics and Health Management (PHM) has received increasing attention both from a practical
and scientific perspective. PHM combines real-time and historical information of the system to improve the
decision-making in terms of maintenance operations. It is considered to be an engineering disciple that has as
a goal to minimize maintenance costs while ensuring adequate levels of safety and operationally. Is does so by
assessing the health state of a system using available information from for example sensors, and tries to make
predictions on the remaining useful life (RUL) accordingly. Over the past years, RUL prediction has received
increasing attention in scientific literature, partially due to the availability of an open source turbofan engine
degradation dataset provided by NASA [3]. A high variety of prognostic algorithms is developed using this
dataset with the goal of making the most accurate RUL prediction model. The problem is that even though
current prognostic algorithms achieve acceptable prediction accuracy, there is still room for improvement in
order to make the prognostic algorithm more suited for use in practice. Furthermore, there is a clear gap
in literature regarding how of RUL predictions can be incorporated into airline daily maintenance scheduling

*Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
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operations. This limits the usefulness of the prognostic models, as even though accurate RUL predictions can
be made, the predictions can not be used in a profitable manner for an airline.

This work will focus on 3 main aspects: (i) developing a prognostic model that is able to predict engine
RUL using engine sensor data more accurately than is done in current literature, (ii) introducing an exten-
sive performance evaluation framework for probabilistic RUL estimations and (iii) developing a maintenance
scheduling simulation model that is able to simulate maintenance scheduling for an airline using data-driven
RUL predictions obtained using the prognostic model. The prognostic model that is designed is a convolutional
neural network (CNN). Li et al. and Babu et al. have shown that CNN is a promising method for RUL es-
timation, and therefore this method is further explored in this work [4, 5]. It is believed that by optimizing
the input sensor selection, the inclusion of more input parameters and the application of Monte Carlo dropout
sampling, the prediction results achieved by Li et al. can be significantly improved. Furthermore, most current
literature that performs RUL prediction only includes a limited model performance evaluation. In this work,
both developed and novel metrics are used to present a holistic overview of the prognostic model’s performance.
Lastly, a variety of maintenance scheduling strategies will be developed in order to investigate how RUL prog-
nostics can be adopted into maintenance scheduling. This will be done by developing scheduling policies that
take a time series of probabilistic RUL predictions as input and return the desired moment of maintenance. In
addition, the interaction of those policies with the flight schedule is investigated. Inspection based maintenance
policies are also introduced in order to compare the data-driven maintenance strategies to strategies that are
similar to how maintenance scheduling is performed nowadays. A genetic algorithm is used to optimize the
data-driven maintenance scheduling policies. The results of all scheduling strategies are then compared using
both operational and monetary performance indicators to see which strategy performs best and is most suitable
for adoption in practice.

This paper is structured as follows: first, section 2 presents a literature study on current prognostic algorithms
and maintenance scheduling models. After that, section 3 covers the first part of this work, which is data-
driven RUL prediction using a CNN. Section 3.1 describes all the methods used to predict RUL using a CNN,
subsection 3.2 elaborates on the experimental set-up of the test case and subsection 3.3 introduces all the
performance evaluation metrics used on the prognostic model outcome. Lastly, subsection 3.4 presents the
prediction results obtained using the CNN and compares the results to relevant literature. How the obtained
data-driven RUL predictions can be used for maintenance scheduling is explained in the second part of this
work in section 4. First, subsection 4.1 introduces the methodology used, which includes explanations on
the scheduling policies, the interaction with the flight schedule, the Integer Linear Programming (ILP) model
that picks the optimal maintenance slots and the genetic algorithm (GA) used for policy optimization. After
this, subsection 4.2 states the experimental set-up for the maintenance scheduling test case and subsection 4.3
describes how the performance of a maintenance scheduling strategy can be evaluated. Section 4.4 then discusses
the results of the optimized policies and the maintenance strategies. Lastly, sensitivity analysis on the optimal
policies and the cost input values is presented in subsection 4.5. Conclusions and recommendations for further
work are stated in section 5.

2 Literature Review

This section will discuss the most prominent current literature on RUL prediction using machine learning
algorithms and on maintenance scheduling. This literature provides insight into relevant methods and ideas
that can be adopted and adjusted in this work. First, literature on data-driven RUL prognostics is discussed,
with a focus on papers that use a CNN for RUL prediction. After that, literature on prognostic algorithm
performance evaluation is introduced. Lastly, literature on maintenance scheduling is highlighted.

2.1 Data-driven RUL prognostics

Over the past years, RUL prediction using sensor data has received increasing attention. This is partially
due to the availability of the open source turbofan engine degradation dataset called C-MAPSS provided by
NASA [3, 6]. Many recent works develop prognostic algorithms to predict RUL and test their models on the
C-MAPSS dataset afterwards. Heimes is the first author to attempt to predict RUL using machine learning
methods as part of the PHM008-Challenge [7]. He first introduces a Multi-Layer Perceptron (MLP) and is able
to successfully differentiate between engines in a healthy and unhealthy state. He furthermore introduces a
Recurrent Neural Network (RNN) for RUL prediction, which achieves satisfactory prediction performance. In
[8], Zheng et al. use a Long Short-Term Memory (LSTM) network for RUL prediction. The objective is to
minimize the mean squared error between the true RUL and the predicted RUL. Compared to a MLP and a
CNN, this LSTM model obtained lower error values. Ellefsen et al. also use a LSTM model with unsupervised
pre-training and supervised learning to improve RUL prediction quality [9]. Furthermore, a Genetic Algorithm
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(GA) is used to tune the hyperparameters of the deep architecture. Aremu et al. use a machine learning data
dimension reduction framework after which low-dimension representations of each cluster are learned using
Laplacian eigenmaps embedding [10]. Yu et al. use a RNN autoencoder scheme and obtain the lowest RMSE
values on the C-MAPSS dataset found in literature [11]. More recently, TV. et al. use a variety of LSTM
extensions to perform RUL prediction [12]. Still, they fail to beat the lowest RMSE values obtained by Ellefsen
et al. and Aremu et al. on the C-MAPSS dataset.

The first attempt at RUL prediction using a CNN is done by Babu et al. in 2016 [4]. At the time, the
lowest RMSE values in literature were obtained by passing a 2D-input array into a CNN with 1D-filters. The
filters slide along the temporal dimensions and extract features that are eventually used by a fully connected
layer and a regression node to predict the RUL value. More recently, Li et al. have shown that by tuning the
CNN hyperparameters a CNN network with regression node is well able to predict engine RUL [5]. At the time,
the tuned deep CNN architecture trained using dropout was able to obtain significantly lower error values than
previous attempts. The work of Li et al. will form the basis of the CNN developed in this paper as this CNN
method holds great potential even though limited research into the use of a CNN for RUL prediction has been
performed. For an extensive literature review on data-driven RUL prediction the reader is referred to part 2 of
this thesis.

2.2 Prognostic algorithm performance evaluation

Only limited literature on prognostic algorithm performance evaluation can be found. In 2008, Saxena et
al. developed a framework of prognostic metrics to evaluate the performance of prognostic algorithms [13].
Saxena et al. continued by writing a paper in 2010 describing a large variety of metrics that can be used for
the offline evaluation of prognostic algorithms [14]. Both of these works are still considered to be the most
relevant literature available nowadays, as is also stated by Baur et al in 2020: ”..., the development of improved
standardized metrics, suitable even for on-line applications, still represents a stimulating topic for the research
community” [15]. This work will make use of the evaluation framework developed by Saxena et al. and will
furthermore develop novel metrics suitable to evaluate the performance of prognostic models. Lastly, a metric
that is interesting to include is the Continuous Ranked Probability Score (CRPS) introduced by Gneiting and
Raftering [16]. This metric is able to compare a probabilistic prediction to a single true value by returning a
single error value. For an extensive literature review on prognostic algorithm performance evaluation the reader
is referred to part 2 of this thesis.

2.3 Maintenance scheduling

Schneider and Cassady introduce a maintenance scheduling model in which the probability that all future
missions of aircraft in a set are completed successfully is maximized. A cost-based optimization model is used
that minimizes the cost and maximizes reliability [17]. Lam and Banjanic develop a policy that is able to
determine the optimal moments of inspection by monitoring the condition of the component. At each decision
point, a choice is made to either inspect of replace the component, and the inspection interval for the next
time period is determined [18]. Vu et al. introduce a maintenance optimization framework that makes use of
a rolling horizon method that continuously optimizes the maintenance decisions for a certain period of time.
Using a cost model and a heuristic optimization scheme, a maintenance grouping strategy is developed for a
multi-component system [19]. In [20], Wu and Castro develop a maintenance policy for a system of which the
condition is continuously monitored. If a combination of degradation processes has reached a specified threshold,
the system is considered to have failed. Preventive maintenance is used in this model, in which the system is
fully replaced after several preventive maintenance actions.

In [21], Zhang and Zhang first develop a prognostic model that is able to predict probabilistic RUL dis-
tributions for aircraft engines by making use of a stacked autoencoder long short-term memory network. The
obtained predictions are then used to create a condition-based maintenance optimization framework. This
framework makes use of several threshold values that determine the moment in time maintenance is required.
Both a periodic and an ideal maintenance policy are developed in order to compare the scheduling results in
terms of cost. A flaw of this work is that it only outputs the moment in time preventive maintenance should
occur, and thus does not consider the interaction with the aircraft’s flight schedule. More recently, de Pater
and Mitici show how RUL prognostics can be used to perform predictive maintenance for a multi-component
system [22]. Over time, RUL prognostics are updated as new sensor data becomes available. The developed
maintenance planning model combines continuously updated RUL prognostics with available maintenance slots
in the flight schedule. The predictive maintenance strategy was shown to outperform both a corrective and a
preventive strategy in terms of costs.
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3 Predicting RUL Using A Convolutional Neural Network

This section covers the first part of this research: predicting turbofan engine RUL using a machine learning
algorithm. In this part, a machine learning algorithm will be developed that is able to take as input raw sensor
data collected during flight and return as output a probabilistic distribution of the engine’s RUL. First, the
methods used in this section will elaborated on. Next, the experimental set-up of the test case is explained.
The data that is used is highlighted and the pre-processing steps are elaborated on. After that, the performance
evaluation of prognostic algorithms is explained. Both current and novel prognostic metrics will be introduced.
Lastly, the results of the developed model are shown using the metrics that were introduced prior. The results
obtained in this work are also compared to related recent publications to present a full picture of the performance
of the model.

3.1 Methods

This section aims to explain the methods that were used to develop the prognostic machine learning model.
First, the convolutional neural network method used in this paper is discussed. After that, Monte Carlo dropout
sampling is explained. Lastly, the network structure used in this paper is stated.

3.1.1 Convolutional neural network

This paper will develop a deep convolutional neural network (CNN) with regression node at the end for RUL
estimation. CNN’s were first introduced by LeCun for image processing as they posses beneficial properties to
deal with 2D inputs that have a grid like topology [23]. Using spatially shared weights and pooling, CNN’s are
able to identify hidden features in the input data that become more complex as more layers are added. The
convolutional layers convolve the input array with several learned filters to obtain features. Pooling layers can
then be used to ensure that only local features are kept that posses the most information. For example, when
using a CNN for image recognition, the output of the first layer might be abstract features such as lines and
shapes, but after multiple layers the features might be more detailed, such as faces or objects. A CNN performs
particularly well on data that has spatially neighbouring features in the input data, meaning that the input
values close to each other are similar and that there is a relation between them. For example, the pixels in an
image are spatially neighbouring features as pixels with similar RGB-values are likely to be part of the same
object. In this paper, the CNN will be used to find a pattern along the temporal dimension of the sensor input
data.

In this paper, the input to the CNN will be signals of a variety of sensors that are placed inside the aircraft
turbofan engines that record a single value per flight cycle. An example might be the average pressure in the
low pressure turbine during a single flight. The format of the input array is 2D, where one dimension is the
number of features (sensors) included and the other is the number of historical flight cycles. Note that the
data is only spatially neighbouring across the temporal dimension and not across the feature dimension. Even
though the input is 2D, the effective CNN that is developed in this work can be regarded as a 1D CNN as the
filter width is kept at 1 and the filters only slide along the temporal dimension.

Suppose x1 represents the vector containing all measured sensor values after the first flight cycle. Combining
all vectors for all the N recorded flight cycles leads to the following sequential 1D representation of the complete
input array: x = [x1,Z2,...,2y]. The convolution operation can now be defined as the multiplication between
a filter w with length F;, and the array obtained by concatenating F, vectors from x. Note that a filter w is
a 1D array of weights that can be learned by the model. This concatenation operation leads to the input array
Xii+F,—1 and is obtained as shown in Equation 1. The array x;.,+r, —1 now represents an input array of Fp,
consecutive signals starting at point ¢ and ending at point ¢ + Fy, — 1.

XiitFr—1=T; DTig1 D O Tippp—1 (1)

The convolution operation of filter w on subset x;.;1r, —1 is defined in Equation 2. In this equation, wT is

the transpose of the filter w, b is a bias value and ¢ is the activation function that is applied. Furthermore, z;
can be seen as the learned feature of the filter w on a subset of the full input array, namely x;.;4+ 7, —1. While
sliding the filter over the complete input z, the value of i keeps increasing until the edge of the input array is
reached. When doing this, one filter w will generate Fy, values of z;, which can be denoted by z; as shown in
Equation 3. z; now represents a single feature map that is obtained using one filter.

2 = ¢(W Xisivr, -1+ b) (2) z; =2}, 27,...,2 TtH (3)
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In a CNN, each layer can have many filters each
generating its own feature map. Figure 1 shows how
multiple filters can generate feature maps from a sin- Pl
gle 1D input array. The output of this is then a 3D Py ;
array with depth n, as the depth is determined by the Fior 1. | M
number of feature maps generated.

The number of feature maps generated per layer e
F and the length of the filters F, are amongst the / £ 1
most important model hyperparameters. While tun-
ing the model hyperparameters, trial and error meth-
ods will be applied to optimize these values in order Input |
to maximize model performance. It should be noted se%‘;‘:’:’e f .
that F7 has a clear upper limit as it is not possible
to make the filter longer than the available history of
flight cycles for each engine. Lastly, the application
of pooling layers is common when designing CNN’s.
However, as the input data size is relatively small due
to the low number of input features, it is chosen to ne-
glect pooling in this paper as some useful information
might be filtered out. This likely does not outweigh Figure 1: CNN feature map generation using multiple
the potential benefit of increased computational time filters on a 1D input [5]
that can be achieved due to the decrease in feature
dimensionality.
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3.1.2 Network architecture

The network architecture that will be used can be seen in Figure 2. On the left, the input array can be seen.
This input array has size N, X Ny, where Ny, equals the number of historical flight cycles included and Ny,
equals the number of features (sensor signals) included. The convolution operation is then applied to this 2D
input array using the 1D filter with size F, X 1, making the convolution operation 1D as well. In the image shown
in Figure 2, 10 feature maps are generated after each convolutional layer and a hyperbolic tangent activation
function is applied. Note that the number of feature maps generated after each layer Fy and the activation
function at each layer are model hyperparameters that need to be carefully tuned. After Lo convolutional
layers, a final convolutional layer is placed that only generates a single feature map using a smaller filter size
F'1, final, making the output of this layer 2D. This 2D output is then flattened and connected to a single fully
connected layer that consists of npcyp neurons. The final layer is a single neuron with linear activation that
