
Delft University of Technology

TI3806 Bachelor Project

Coda: A Change Impact
Analysis Tool for Scala

Marc MACKENBACH & Aaron ANG

Coach
Annibale PANICHELLA, PhD.

Client
Charlotte GOEDMAKERS, KeyLocker BV

Bachelor Project Coordinator
Martha LARSON & Felienne HERMANS

August 28, 2015

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Preface

This report concludes the TI3806 Bachelor Project course at the Delft University of
Technology and is part of the compulsory curriculum of the Bachelor of Computer
Science. This report contains all information about the project that was carried out by
two students over the course of sixteen weeks and the resulting product. The client
for this Bachelor project was KeyLocker BV, a start-up that develops cryptography
products and operates from Delft. During these sixteen weeks the students worked
at least 24 hours a week, scrutinizing the software development process at KeyLocker
and developing a software application that can assist in this development process. The
goal of this report is to inform the reader about the work carried out by the students
and serve as a reference to the company, documenting the considerations and design
decisions made during the project. The report extensively discusses the quality of the
delivered product and provides ample recommendations for future work.

i

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Summary

KeyLocker, a start-up developing cryptographic products that put the control of encryp-
tion keys into the hands of the end-users, has requested a review of their own software
development process. During their first year of existence, the company experienced
problems in following software development methodologies, sharing knowledge effec-
tively between employees, and with testing the software being developed. Being a
start-up where its employees are always busy, the company requested outside assis-
tance in analyzing their own processes.

Consequently, two students, who previously worked part-time at the company, were
tasked with researching the development practices at KeyLocker, identifying problem
areas. Subsequently, the students were charged with developing a software applica-
tion that could assist in the development process, remedying some of the highlighted
problems. Two problem areas of knowledge sharing and test maintenance were se-
lected and research was conducted in the field of Change Impact Analysis - the iden-
tification of potential consequences of a change to components in software.

A tool was designed that could perform an analysis of the source code projects at
the company. As Scala was the chief programming language used at the company,
the application needed to be able to parse Scala source code and interpret changes
to this source code. Then, the application needed to be able to analyze the code
for potential consequences of those changes. Needless to say, developing such an
application required an in depth knowledge of the Scala programming language.

The three main goals of designing such an application were utility, usability, and
maintainability. In short, the software needed to solve the problems experienced at
KeyLocker effectively, in a user-friendly manner, and be easy to maintain in the future.
Over the course of sixteen weeks, the application has been developed with exactly
these three goals in mind. During the completion phase of the project the application
has been tested by the development team at KeyLocker, receiving a positive response.
Nevertheless, there is room for improvement and some recommendations are provided
for future work.

ii

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Acknowledgements

Although carried out by only two students from the Delft University of Technology, this
project could not have been completed without the invaluable help of some people.
We would like to take this opportunity to thank a few of them in particular. First and
foremost, we would like to thank Annibale Panichella, our coach from the TU Delft, for
his guidance on the technical aspects of the project and valuable advice when deci-
sions needed to be made. Moreover, we would like to thank him for our incredibly fun
and motivating weekly talks that went beyond the compulsory status update and did
more than just keep us focused, they spurred us along. Secondly, we would like to
thank Charlotte Goedmakers, our company supervisor, who closely managed us and
our development process. She was instrumental in our self-improvement during the
project, always asking us where we could have performed better and making us reflect
on our own modus operandi. Furthermore, we would like to thank our colleagues at
KeyLocker, especially Steffan Norberhuis and Remco Verhoef, for the insightful discus-
sions we had during the project on the intended use and utility of our product under
development. Finally, we would like to thank Martha Larson and Felienne Hermans for
their assistance to our project in their capacity as Bachelor project coordinator.

iii

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Abbreviations
AST Abstract Syntax Tree
CLI Command-line Interface
IDE Integrated Development Environment
JVM Java Virtual Machine
MVP Minimal Viable Product
MVC Model-View-Controller
RegEx Regular Expression
SIG Software Improvement Group
UML Unified Modeling Language

iv

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Contents

Preface i

Summary ii

Acknowledgements iii

Abbreviations iv

1 Introduction 1
1.1 Assignment . 1
1.2 Structure of this Report . 2

2 Case Study 3
2.1 History of KeyLocker . 3
2.2 Development Process at KeyLocker . 4

2.2.1 Design . 4
2.2.2 Implementation . 4
2.2.3 Code Review . 5

2.3 Encountered Problems . 5
2.3.1 Scrum Product Design . 5
2.3.2 Knowledge Sharing . 6
2.3.3 Testing . 7

2.4 Root Causes . 7
2.4.1 Team Dynamics . 8
2.4.2 Team Homogeneity . 8
2.4.3 Direction Drivers . 8

3 Problem 10
3.1 Problem Analysis . 10

3.1.1 Knowledge Sharing Problem . 10
3.1.2 Testing Problem . 11

3.2 Change Impact Analysis . 11
3.2.1 Relevance . 13
3.2.2 Scope . 13
3.2.3 Analysis Techniques . 13
3.2.4 Algorithm . 14

v

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

4 Design 17
4.1 Design Goals . 17

4.1.1 Utility . 17
4.1.2 Usability . 18
4.1.3 Maintainability . 19

4.2 Requirements . 20
4.2.1 Functional Requirements . 20
4.2.2 Non-functional Requirements . 21

4.3 Application Overview . 22

5 Implementation 25
5.1 Development Process . 25

5.1.1 Design . 25
5.1.2 Implementation . 25
5.1.3 Review . 26

5.2 Design Decisions . 26
5.2.1 Model-View-Controller . 26
5.2.2 Graph . 27
5.2.3 Impact Analysis Algorithm . 28
5.2.4 Parsing Challenges . 29
5.2.5 User Interface . 32

5.3 SIG Feedback . 33
5.3.1 First Evaluation . 33
5.3.2 Response . 34
5.3.3 Second Evaluation . 35

6 Conclusion 36
6.1 Product . 36
6.2 Product Review . 37

6.2.1 Functional Requirements . 37
6.2.2 Non-functional Requirements . 39

7 Discussion 43
7.1 Product . 43

7.1.1 Value to the Company . 43
7.1.2 Unable to Separate Class Changes in File 44
7.1.3 Obscure Scala Code . 44

7.2 Process . 45
7.2.1 Case Study . 45
7.2.2 ’Full-Stack First’ . 45
7.2.3 Redesign and Refactor Phases 46

8 Recommendations 47
8.1 Areas for Improvement . 47

vi

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

8.2 Areas for Extension . 48

References 49

Appendix A: Infosheet 51

Appendix B: Abstract Syntax Tree Example 52

Appendix C: Developer Survey 54

Appendix D: Assignment 55

vii

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

1 Introduction

Founded in 2014, KeyLocker is a start-up that is currently developing cryptographic
protocols that put the control of encryption keys into the hands of the end-users, in-
stead of service providers. Founded on the philosophy that Internet services should
be ‘given back’ to the consumer, KeyLocker develops cryptographic products from the
ground up that are unparalleled in the market. The one-year-old start-up has experi-
enced problems in their development process over the course of their existence and
has asked us to research and solve these problems (to some extent). The company
has identified that the main issues in development lie with scaling the workforce from
zero people with very little experience to a team of multiple people with various de-
grees of experience and different skill sets.

KeyLocker wants to know where in its history better decisions could have been made
and what practices worked well. More importantly, KeyLocker wants to gain insight in
how its development team can be more productive and produce higher quality code
in the future. Therefore, after evaluating the problem areas of software development
at the company, KeyLocker wants us to tackle at least one of the problem areas by
developing a tool that will assist a small development team in the process of developing
robust software for now and for the future.

1.1 Assignment

The assignment consists of performing a case study that researches the development
practices of KeyLocker, identifying problem areas, and determining their root causes.
Most importantly, we are required to focus on the scalability of the development team
and on evaluating whether traditional practices scale well with the development of
the company. After identifying the challenges of scaling the small company, we are
charged with developing a tool that assists the company in the development of software
and tackles at least one of the identified challenges and/or root causes.

What makes this bachelor’s project unique from other projects, is the almost bound-
less freedom we enjoyed during the project. We were free to determine the problem
the tool should solve and what form our solution should take, as long as it satisfied
the needs and wishes of the development team. Of course, quality was a principal re-
quirement, as well as integration into the current development work flow of KeyLocker’s
developers, but aside from that we enjoyed a lot of freedom.

1

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

1.2 Structure of this Report
This report will document the process and the results of the assignment. The report is
structured as follows. In chapter 2 the KeyLocker company and its development team
are closely studied and problems in its development process will be highlighted. Af-
ter discussing the set of problems of software development discovered at KeyLocker,
chapter 3 will select two problems from this set, further analyse the selected problems,
and provide change impact analysis as a direction for a solution to develop. Then, in
chapter 4 a software application named Coda will be proposed and its design will be
discussed, outlining the design goals, requirements and providing an overview of the
intended application. After having discussed the design for Coda, the actual imple-
mentation of the application will be examined in chapter 5, discussing the challenges,
considerations and quality of the solution. Subsequently, chapter 6 will review the
resulting product and chapter 7 will discuss both the product and its development pro-
cess. Finally, the report will be concluded with recommendations for future work in
chapter 8.

2

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

2 Case Study
As part of the assignment, the KeyLocker company and its software development ap-
proach shall be examined before choosing a problem area to develop a solution for.
First, a brief history of the company will be provided, followed by a description of
the development process at Keylocker. Then, a characterization of the encountered
problems in software development at KeyLocker will be provided and the startup en-
vironment will be compared with an industrial software engineering company. Finally,
we shall examine the methodologies applied at KeyLocker and determine why these
did not work adequately.

2.1 History of KeyLocker
KeyLocker was founded in the summer of 2014 by an experienced management team,
when its founders saw a growing need for encryption for both business and consumer
and a great lack of expert products fulfilling that demand. The main problem in current
cryptography products, they noticed, was not the implementation of strong and secure
encryption algorithms (although that poses a significant challenge in itself), but rather
keeping the secret keys used in these encryption schemes a secret. They set out to
create a unique product, breaking new ground on encryption schemes and creating a
new kind of market for encryption key management.

To create this product, the founders enlisted the help from some talented Bachelor
and Master students from the Delft University of Technology. Aside from programming
skills, the main requirement for these youngsters was that they would be able to handle
the steep learning curve of the company. Most of what was under development had
never been done before, in that way at least. Having to invent the wheel each day
generated a huge amount of knowledge and experience for the developers, making
the development as much a job as an education. Therefore, knowledge sharing was
a crucial component for the company’s success and this was promoted heavily by
management.

Over the course of the first year of its existence, the size and composition of the
development team at KeyLocker fluctuated greatly. In a matter of months, the develop-
ment grew from two people to three, then to four people and then shrank back to three.
After that, an experienced senior developer - a veteran of many projects - joined the
team. This changed the composition of the team greatly, which before had consisted
of mainly part-time student developers. During the months following these changes,
two more students were hired. These fluctuations in size and composition of the de-
velopment team increased overhead and called for a systematic on- and off-boarding

3

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

policy. Among other things, documentation of source code, learned principles, theory,
and practice formed a vital part of this on-boarding process.

As the development team evolved, so did the design for the product. Not only the
architecture changed, but also the intended application of the application. Being a
cryptography product, KeyLocker’s product could be used for many types of applica-
tions and over the course of the first year different market opportunities ’pulled’ the
design of the product to be tuned to that specific purpose. Moreover, new insights of-
ten provided a basis for (some) change in direction. However, in the summer of 2015
an order for a first proof-of-concept was placed by a Dutch government agency, firmly
setting the direction of the product design. On top of that, other market opportunities
started to play out, solidifying the design of the product even more.

2.2 Development Process at KeyLocker
In this section an overview of the development process of KeyLocker will be given.
Although being inexperienced at developing industrial grade applications, the develop-
ment team tried to apply some of the widely used practices in software development,
such as agile and test-driven development. The development team of KeyLocker has
defined a definition of done, which states the required procedure for approving an
implemented feature. This procedure can be divided in three phases: design, imple-
mentation, code review.

2.2.1 Design
The development process starts off by ensuring that the requirements of the imple-
mented feature are clear. Once the requirements are clear, the developer designs
the required components by drawing UML diagrams. Afterwards, the technical de-
sign must be reviewed by another team member. The design review often results in
a small brainstorm session in how the design can be improved, which then can be
implemented. In the early stages of the development process it is important that mis-
takes are detected early, preventing unnecessary delays in development. Having brief
review sessions enforces this.

2.2.2 Implementation
The definition of done requires that the implemented feature is thoroughly tested,
therefore the developers try to follow the test-driven development process. However,
sticking to this software development approach has proven to be difficult. Currently,
the developers work with Eclipse1 as integrated development environment. Version
control is done by using Git2 and GitLab3. Additionally, the builds are managed by

1http://scala-ide.org/
2https://git-scm.com/
3https://about.gitlab.com/

4

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

using Typesafe Activator4, which is built upon the default Scala build tool sbt5. To
test the implemented feature, the developers use Activator to run the tests. Once the
implementation phase is done, the reviewing process starts.

2.2.3 Code Review
During the code review phase, another developer reviews the code of the first devel-
oper. The code review has two goals: to enforce software quality and to promote
knowledge sharing. The reviewer checks if the code is readable, understandable and
well engineered. The reviewing process makes use of pull requests. This makes it
possible for the reviewer to see the differences between the old and new code. Fur-
thermore, GitLab facilitates commenting on code, to which the author can reply and/or
make another code change until the reviewer and the developer are satisfied with the
implementation. The review is as much a control mechanism as it is a collaboration
process.

2.3 Encountered Problems
After reviewing the development procedure, interviewing the developers and manager,
and considering our own experience at the company, we identified some problems in
software development at KeyLocker. One should note that we, Marc and Aaron, have
been working at the company for almost a year and half a year, respectively, at the
time of writing this report. Although often closely related and amplifying each others
effects, these problems can be categorized as related to Scrum and product design,
related to knowledge sharing, and related to testing:

2.3.1 Scrum Product Design
• Estimation of task effort proved difficult: during planning, the team often had

difficulty estimating the effort of a proposed task and often estimated incorrectly,
without improving much over multiple sprints.

• Prioritization was an issue: aside from uncertainty about task size, prioritizing
the right tasks proved difficult sometimes. Often, sprint reviews indicated that
some tasks were not finished that should have been prioritized over other tasks
that were.

• There was no clear product backlog: the product changed much and often,
resulting in a product backlog that was valid for a limited amount of time. Eventu-
ally, this resulted in the team neglecting to groom the backlog, leaving an unclear
product backlog riddled with holes.

4https://www.typesafe.com/community/core-tools/activator-and-sbt
5http://www.scala-sbt.org/

5

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

• Ad-hoc sprint-backlog selection: the team decided ad-hoc on a per sprint (or
a few sprints) what the backlog should be and what should be included in the
next sprint.

• Little oversight and direction: overview/oversight depended on a few individ-
uals who were already overburdened. These individuals were responsible for
directing the team and the team did not effectively ’self-manage’.

• Individuals were not equally employable: not only did every team member
work at different hours, all had different levels of experience and had enjoyed or
were still completing various types of education. Therefore, team members were
not equally able to pick up a random task, making the division of labor a complex
matter.

• Irregular part-time ’rhythm’: because nearly all developers worked part-time,
most time would be spent on meetings when developers would work on the same
day, instead of on solving problems together. Not only did this influence the way
problems would be solved, it caused the team to have great difficulty finding a
rhythm. As opposed to working five days a week as a team, all developers being
able to continue the next day where they left off the evening before, the team
worked more as individuals at irregular intervals. This meant that the team would
hardly ever gain the momentum one would expect.

• Team maturity was not achieved: as a team works together for more sprints it
is assumed that the team improves itself iteratively, eventually reaching a ’mature’
state where the different members can work together effectively and efficiently.
As the team did not always improve enough each sprint, this ’mature’ state was
not achieved.

2.3.2 Knowledge Sharing
• Areas of expertise: as team members started to focus more on a specific area

of development, areas of expertise started to form. Moreover, these areas of
focus were carried over from one sprint to the next. Consequently, puddles of
”inexpertise” arose, widening the gap between developers and reducing their
ability to work on any component of the code base.

• Poorly documented design decisions: although documentation existed for
what code was written, often design decisions were poorly documented. When
poorly reviewed together, sharing these design decisions and the reasoning be-
hind them became a burden.

• On- and off-boarding strained company resources: in such a small develop-
ment team, the on- and off-boarding of a team member had an enormous impact.
Especially because not one individual knew everything about the code base, the

6

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

entire team had to be actively involved in on-boarding a new employee. Because
of the areas of expertise, this expert knowledge had to be transferred to the team
upon off-boarding, requiring active participation of all team members.

2.3.3 Testing

• No use of code metrics: no code metrics were used for reviewing code, such
as code coverage metrics. This meant that detecting poor quality code and early
detection of bugs was a lot harder, if performed at all.

• Absence of continuous integration: no form of automated continuous integra-
tion was in place. Although code reviews were performed, code was often not
run on the machine of the reviewer. This meant that the integrity of the ’working
product’ could not bet guaranteed entirely. Moreover, code would be tested by
the developer before being pushed to the version control system, but it was by
no means guaranteed that all tests had been run by the developer, neither did
any mechanism exist to verify afterwards that the version of source code was
working. This meant that there was no guarantee that the code worked in any
environment other than the workstation of the developer, let alone in a production
environment.

• Inadequate code reviews: although reviewers would walk through the imple-
mented functionality for review, hardly ever did reviewers perform in-depth anal-
ysis of the test code belonging to that functionality.

• Test maintenance: although tests of the touched pieces of source code were up-
dated when introducing a change, it was not uncommon that a developer would
stumble upon some outdated tests. Apparently, not all tests were updated each
time a change was introduced. Moreover, tests were rarely added to existing
components.

2.4 Root Causes

Once these problems are identified, it is necessary to analyze why these problems
occurred, and how they could have been avoided. Something that is obvious from the
start is that most of these problems have not much to do with personal ineptitude, but
constitute a collective organizational problem.

Interesting to note is that many theories and best practices exist for development in
teams of 3 to 9 people (such as Scrum [26]), but little is written for building a software
development team from scratch, starting from zero people with very little experience.
There are very few best practices, or even guidelines, for building and growing the de-
velopment team as happened at KeyLocker. The development team tried to employ a
hybrid form of Scrum, which offered some relief in the form of guidelines and practices.

7

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

However, applying these practices correctly and consistently to a process subject to
so much change as was the case at KeyLocker proved a difficult task.

When examining the history of KeyLocker, and comparing it against an ’industrial’
development team within an established environment, three striking differences be-
come clear: team dynamics, team homogeneity, and direction drivers.

2.4.1 Team Dynamics

In this start-up the team dynamics differ a lot from a mature software development
organization. At KeyLocker, team size was determined by the course of the company.
As start-ups have the tendency to fluctuate heavily between explosive growth and
downsizing, team size at KeyLocker tended to fluctuate as well. On the other hand, a
mature organizations is not impacted (that much) by the course of the organization, as
the continuity of the organization is more or less guaranteed.

2.4.2 Team Homogeneity

The development team at KeyLocker consisted of individuals who greatly differ in age,
experience, working hours and education. However, the development team of a mature
organization will generally have individuals who are more equal in these matters. This
can greatly impact the synergy of the team and the ability of members to be equally
capable of picking up random tasks during develpoment. In a team such as the one
at KeyLocker, individuals were employable for a very distinct task for a very limited
amount of time, at various skill levels.

2.4.3 Direction Drivers

In a start-up the direction of product development is often determined by the vision of
its founders, whereas the direction of an industrial development team is largely deter-
mined by concrete customer demand. As the start-up grows, this vision is adjusted
and/or fundamentally changed to newfound market insight.This means that the direc-
tion of the product can change a lot and very often in a start-up environment. When
KeyLocker entered the cryptography business, with little knowledge of the market be-
forehand, this was especially the case.

In short, the average start-up provides a far less stable environment than its in-
dustrial established counterpart. Many software development methodologies, such as
Scrum, exist that enable developers to be flexible in the product under development.
For this to succeed, however, a certain stability in the environment is generally neces-
sary. The prevailing assumption is that a more or less a stable team can improve itself
as time progresses. Additionally, having a more or less homogeneous team where
each member is equal in his/her ability to pick up a random task is beneficial to the

8

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

process. Finally, many modern software development practices, such as Scrum, are
designed for fine-tuning the product development to the customer’s wishes.

This is exactly what caused many of the problems experienced at KeyLocker. For,
the team changed too much and changes were too impactful to reach this team ma-
turity, the team was too heterogeneous, and there was no concrete customer demand
with direction being driven by a changing vision of what the customer would want in the
future, or ought to want. With this in mind, it is not surprising that the development pro-
cess at KeyLocker suffered as much as it did. Being very critical of our own approach
while working at the company, we see these problems pose a serious challenge to the
company’s future success.

9

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

3 Problem
The case study has brought to light many problems in software development at Key-
Locker, some of which are solvable within the scope of this project. In this chapter a
selection of those problems that we intend to solve will be presented, gathered into one
comprehensive problem definition and finally change impact analysis will be discussed
as a solution to these problems.

3.1 Problem Analysis
Now that the problems have been identified and some light has been shed on their
causes, we will select an area of improvement and propose a solution that will solve
some of the issues. One thing that strikes even the most superficial reader is that
most of the problems highlighted by the case study are organizational problems. With
enough effort and discipline, adhering to best practices of software development and
accounting for the development team’s unstable nature, most of these problems can
be remedied.

Although reorganizing the company’s development process falls outside the scope
of the project, an obvious solution would be to eliminate the three root causes outlined
before. Instead, our solution must consist of a technical application that supports the
development process and helps developers to adhere to the best practices in software
development.

Therefore, we will tackle some problems that are more technical in nature, problem
areas where developers could benefit from some assistance by ways of a software ap-
plication. More specifically, a solution will be developed that tries to improve the spread
of knowledge throughout the company and simultaneously increase the quality of the
code base. Below, the two problem areas to tackle will be defined as a knowledge
sharing problem and a testing problem, both of which reinforce each other.

3.1.1 Knowledge Sharing Problem
As indicated before, sharing knowledge between developers at KeyLocker had become
a burden. Due to the complexity of code, most developers do not have the required
knowledge and insight about the (complete) code base. This makes it difficult for the
developers to change or add code and to create integration tests and end-to-end tests
for parts of the code base they are not familiar (enough) with.

This can be an absolute productivity-killer. Although asking another developer for as-
sistance might seem beneficial for sharing knowledge, doing so will cut the productivity

10

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

of the other developer. One way or another, the productivity of the team suffers be-
cause of this disparate division of knowledge. Therefore, we are looking for a solution
that can provide insight into code projects and increase the developers understanding
of a code base, independently from other developers.

3.1.2 Testing Problem
Due to developer’s lack of insight, small code changes are bound to introduce bugs into
the system that the developers can remain unaware of until it is too late and the bug
disrupts a user’s experience. Something that ought to catch most erroneous changes
and additions to source code is test maintenance. Keeping test suites up to date to
software changes provides, to some extent, assurance that no bugs are inadvertently
introduced.

Moreover, maintaining the complete test suite has proved difficult for the KeyLocker
development team. Neglecting to maintain a test suite creates a false sense of confi-
dence. This is known as the pesticide paradox principle [14]. According to the pesti-
cide paradox principle, a test suite should be maintained and new test code should be
added for already tested code to catch possible new bugs introduced in later stages.

Additionally, written test cases are not reviewed during code reviews. A good test
suite ensures that code quality is high and should focus on finding defects in the code.
If a test suite is not written well and not reviewed, there is a high probability that de-
fects are not detected. According to the RIP (Reach, Infect, Propagate) [3] principle all
code should be covered (reached) to detect defects in the code. Correct usage of test
coverage can benefit the development team to enforce the RIP principle.

So, productivity suffers because of poor knowledge sharing and software quality suf-
fers because of poor test maintainability. Because developers are not familiar enough
with the code base, tests are maintained even worse. For, how is a developer sup-
posed to maintain tests, if he does not know which tests to maintain? Moreover, be-
cause tests are incomplete, outdated or simply absent, developers will have a worse
time trying to understand the code base. Without high quality and up-to-date test
suites, knowledge sharing suffers. These two problems are clearly tightly related and
can strongly influence each other, spiraling downwards to a state of poor productivity
and poor software quality. It is exactly these two productivity and quality problems that
will be tackled during this project by developing a tool that performs change impact
analysis.

3.2 Change Impact Analysis
In this chapter change impact analysis will be discussed, starting off with an explana-
tion what exactly change impact analysis is. Afterwards, we will discuss why change
impact analysis is relevant for the productivity and quality problems mentioned before.
Subsequently, dynamic and static change impact analysis will be discussed. Finally,

11

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

an overview of existing code based change impact analysis techniques will be given.

Change Impact Analysis is a technique used in software engineering for estimating
affected areas when a change is made to source code. A definition of change impact
analysis has been proposed by Bohner and Arnold as:

”Identifying the potential consequences of a change, or estimating what
needs to be modified to accomplish a change.” [7]

Impact Analysis is necessary because code changes might work on their own, but
might break or change existing functionality. This is especially the case for object-
oriented programming languages, because object-oriented code is based on the com-
munication and interaction between objects. This interaction can cause ripple effects
of impact throughout a codebase, if improperly designed.

For example, assume components A, B and C exist and component B is directly
dependent on component A, because it interacts with component A. Changing com-
ponent A might affect or break the functionality of component B. Additionally, assume
that component C is directly dependent on component B. Changes in component A
might affect component C, because component C is indirectly dependent on compo-
nent A by being directly dependent on component B. Changes in component A can
greatly impact dependent components B and C. Consequently, several ways exist in
which changes in component A can render testing of dependent components B and C
incomplete or incorrect:

• Tests of dependent components fail. This is actually good, as the impact is de-
tected by failing tests (assuming tests are evaluated after introducing changes).
The developer can then simply correct the broken functionality.

• New behavior is not tested. If new behavior is introduced in a class upon which
other classes depend, the tests of the dependent classes are not aware of this
change. The current set of test cases of the dependent components is not aware
of the new behavior of the changed component. This means that either the new
behavior makes the existing test cases fail, which is good, or the new behavior
is simply not tested, which is very bad. When left untested, it remains unknown
whether the dependent classes have been broken or otherwise affected. This
creates a false sense of code quality and is also known as the pesticide paradox
principle [14].

• Tests of dependent components pass, but are no longer correct. For in-
stance, if tests for component B use a mocked version component A, not re-
flecting the new changes in component A, test results of component B will be
incorrect. This is where things start to go wrong. When running tests for the de-
pendent components, nothing shows up. However, the dependent components
might very well have been impacted, without the developer or any form of contin-
uous integration detecting it.

12

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

The first type of effect above is relatively obvious to developers, however the other
two might not be so straightforwardly apparent. This is where change impact analysis
comes in.

3.2.1 Relevance

Software that employs change impact analysis could solve the problems defined above.
Change impact analysis gives developers an overview of what to change when code is
refactored or redesigned. This knowledge of what to change not only ensures that the
right tests are written, but also confronts the developers with what tests should be writ-
ten, making it harder to neglect testing. This results in better testing, code coverage,
improving executable documentation and code quality, lessening the burden of knowl-
edge sharing. In addition, it is possible to use change impact analysis for estimation
of task effort, before actually starting on the implementation of that task. By touching
the right components, the analysis could provide insight into the complexity of fixing a
bug or implementing a feature.

As far as we know, currently there is no tool for Scala that does such kinds of anal-
yses. With an ever growing Scala code base both at KeyLocker and elsewhere, this
practice becomes especially relevant. Therefore, a tool that can perform change im-
pact analysis will greatly benefit the KeyLocker development team.

3.2.2 Scope

Change impact analysis has already undergone a lot of research [20] [21]. S. Lehnert
[20] reviews most of the change impact analysis techniques and mentions that change
impact analysis can be done in three different scopes: source code, models and mis-
cellaneous artifacts. The majority of change impact analysis approaches are done in
source code. This approach focuses mainly on the relations between source code enti-
ties and how they interact with each other [5] [8]. Model based change impact analysis
focuses on high level representations of the system, for example UML diagrams and
requirements models [23] [6]. Miscellaneous artifacts change impact analysis deals
with changes made to documentation, configuration files, and other auxiliary tools [25]
[17].

During the bachelor’s project we will focus on source code-based change impact
analysis, because KeyLocker’s system models and miscellaneous artifacts are rela-
tively small in size compared to the wealth of information we could extract from their
code base. Moreover, most research is done on source code-based change impact
analysis [20], improving the chances of developing a tool that produces useful results.

3.2.3 Analysis Techniques

Source code-based change impact analysis can be performed in various ways, most
notably static and dynamic analysis of source code [21]. Static analysis is mainly

13

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

focused on analyzing graphs constructed from source code and is able to detect im-
pacted components without executing source code. However, this can be inaccurate
in object-oriented programs, especially when polymorphism is used [2]. In contrast to
static analysis, dynamic analysis does execute source code. Dynamic analysis can
be more accurate than static analysis by analyzing the execution traces of a program
and does solve the polymorphism problem [18]. However, dynamic analysis does only
analyze executed statements, unable to detect impact in parts of source code that are
not executed. Moreover, dynamic analysis causes a bigger overhead in both time and
space [16] than static analysis. Because the solution to build for KeyLocker needs to
be kept as light as possible, as will be discussed in chapter 4, we therefore chose
to implement static analysis and only combine it with dynamic analysis if it fit in the
project’s timeline (which it did not).

3.2.4 Algorithm

Many techniques exist for performing static change impact analysis [1]. For this project,
we will be using an algorithm proposed by Rajlich named ”top-down-approach” [24]
due to its simplicity and rapid execution. This algorithm presupposes that a depen-
dency graph has been generated, on which the algorithm can be run. This depen-
dency graph consists of nodes that represent source code components, e.g. classes
or methods, that share a directed edge if the components depend on each other, e.g.
extend or use each other. The algorithm computes the minimal distance of nodes in
the graph to the changed nodes and uses this as a quantification of the likelihood that
a node is impacted.

In figure 3.1 a dependency graph is shown containing four classes: A, B, C, and D.
The edge from A to B indicates that A is using B, therefore a dependency exists, e.g. A
extends B. For the same reason edges (B,C), (B,D), and (D,A) exist. Note, that this
notation will be used in further discussion, where (u, v) refers to a directed edge that
exists between node u and node v, starting from node u and ending in node v. The
number next to the name represents the distance of the node, which is equal to the
minimum distance to the change set. The change set contains class nodes that are
modified. In this case, the change set consists of node B. The goal of impact analysis
is to use the dependency graph and the change set to determine the impact set. The
impact set contains all classes that are impacted by the change set, i.e. classes that
potentially no longer function correctly due to a change. In figure 3.1 the impact set
consists of class nodes A and D. Class A is directly dependent on class B and class D
is indirectly dependent on class B via class A.

Determining the depth of a node can be done by using a breadth-first traversal de-
scribed in algorithm 1.

The algorithm visits every node and edge once, therefore the runtime complexity of
this algorithm is equal to O(n+m), where n represents the total amount of nodes and
m represents the total amount of edges in the dependency graph. Of course, the run
time can be improved by introducing a stopcriterion such as the maximum depth to

14

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Algorithm 1 Impact analysis using breadth-first traversal.
Require: G← Dependency graph
Require: C ← Change set, where C ⊆ G

S ← Empty set
distance← 0

for all n← node in G do
n.distance←∞

end for

for all n← node in C do
S.add(n)

end for

while !S.isEmpty do
N ← Empty set
for all n← node in S do

if distance < n.distance then
n.distance← distance
for all e← incoming edge of n do
s← source node of e
if distance+ 1 < s.distance then
N.add(s)

end if
end for

end if
end for
distance← distance+ 1
S ← N

end while

return G

15

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Figure 3.1: Depth-based change impact analysis. The darkest color indicates the
change set. The varying grey nodes indicate the impact set.

analyze. One could imagine a scenario where analyzing very far from the changed
nodes can produce diminishing returns when it comes to usefulness of the results.

Once the depth for each node is computed it can be concluded that nodes with a
lower depth are more likely to be impacted. Although the distance to changed nodes
does not represent actual impact, it does provide a quantification of the likelihood that
a node is impacted, compared to the other nodes.

Now that the problem has been analyzed and change impact analysis has been
proposed as a technique to solve the problem, the next chapter will discuss the design
of a software application that employs this technique to do exactly that.

16

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

4 Design

In this chapter, the design of the product under development will be discussed. First,
the design goals will be formulated, followed by a definition of the requirements of the
project. Subsequently, an overview of the design of the application will be provided.

4.1 Design Goals
The design goals form the guiding principles in designing, implementing, and deploying
the proposed solution. Moreover, originating from these goals the requirements have
been determined that will be discussed in the next section. The design goals can be
roughly categorized as utility, usability, and maintainability.

4.1.1 Utility
First and foremost, the solution should be useful. It should fulfill the developers’ needs
and solve the problems defined before. Most notably, it should fill the knowledge gap
of dependencies between source code components. The utility of the solution is deter-
mined chiefly by three factors: result quality, performance, and developer satisfaction.

• Result Quality: the solution is only useful if the impact set computed by the algo-
rithm is relevant for the development process. It is important that, for each sug-
gested component, the computed impact accurately describes the actual impact.
The application should strike a balance between suggesting relevant pieces of
source code to inspect and not flooding the user with false positives. Moreover,
the impact set should contain all the impacted components. For, if developers
cannot rely on the produced results being precise, i.e. containing all impacted
components, they would still need to perform a manual impact analysis them-
selves. Finally, the results should be consistent across multiple runs, providing
a reliable basis for development. In short, results should be accurate, precise
and consistent. Accuracy and precision can be measured by computing the ex-
pected results manually and comparing them with the results of the application.
Additionally, consistency can be determined by comparing multiple runs of the
application with each other.

• Performance: as a rule of thumb, the solution should be able to produce the
same results or better in less time than an experienced developer with in-depth
knowledge of the system would. Consulting the analysis should take less time

17

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

than asking an experienced developer for help. Therefore, performance of the
solution is determined by the speed at which results are produced. The speed of
the implemented solution can be determined by starting a timer at the start of the
application and ending the timer once the application has finished its analysis.

• Developer Satisfaction: for the application to be of any use, the developers
themselves must believe in the utility of the application. The tool should provide
a clear added value to the developer and developers must be satisfied with the
information the application can provide, without having to ask someone for help.
Developer satisfaction can be measured by surveying developers who have used
the tool in a development situation.

4.1.2 Usability

Aside from being useful, the solution should also be usable. The solution should assist
the user and not hinder them in their development process. The usability of the solution
is determined by three main factors: comprehension, integration into the development
process, and intuitiveness.

• Result Comprehension: the results of impact analysis that the tool provides
should be comprehensible to the user. The solution should make every effort to
make the output legible and understandable to the user. On a most basic level,
this boils down to not only providing the ’what’, but also the ’why’. For instance,
the user should not only be able to see that some part of the code is impacted,
but should also be able to understand to some extent why and how the code is
impacted. Most importantly, the results should not confuse the user, but rather
empower them.

• Integration into the Development Process: the solution should not be a hin-
drance to the developer, but rather speed up and simplify their work flow. There-
fore, seamless integration into the development process is a principal design
goal. Using the application should take place at a natural point in the develop-
ment process, e.g. just before committing source code changes.

• Intuitiveness: users should intuitively know how to use the solution without
much instruction. This means that the user interaction with the application should
fit well within previous experience of the users. As the users will be software
developers, the user interaction should resemble that of applications they are
familiar with. In short, interaction with the solution should make sense to the
developer and should require as few additional overhead for the developer as
possible.

18

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

4.1.3 Maintainability
As development will be iterative and during the course of the BEP the solution will
grow more and more sophisticated, maintainability is a key design goal. Moreover, the
company will most likely continue development after the BEP is finished. This means
that the code should be easily understandable and modifiable by another developer,
even after the original authors might be unavailable for counsel. Below, three vital el-
ements of maintainability are outlined: code comprehension, test quality, and modular
independence.

• Code Comprehension: the source code must be easy to understand by a de-
veloper with no prior knowledge of the project itself. For this to be achieved,
the code must be readable, documented, simple, cohesive, and tested. First
and foremost, improving readability of source code involves using consistent and
self-explanatory naming schemes, consistent and functional use of white-space
and indentation, limited line-length, and more. Additionally, documentation that
accurately and concisely describes the function of source code is indispensable
for writing comprehensible code. This means that documentation should provide
additional information where needed, but refrain from flooding the reader with
useless and superfluous comments in source code. Moreover, crucial for com-
prehensible code is simple code. In short, code complexity should be kept to
a minimum, refraining from using deeply nested and convoluted control flows.
Additionally, code cohesion should be high for comprehensible code. Each com-
ponent in the system should have one clearly defined job and components should
be grouped according to those jobs. Finally, tests function as executable docu-
mentation, providing the developer with information of the expected behavior of
components. Therefore, source code should be tested extensively to increase
code comprehension.

• Test Quality: besides functioning as executable documentation, testing source
code provides quality assurance. Tests ensure that the application functions as
intended and still functions properly after introducing a change in the source
code. When testing is performed well, changing source code will be less likely to
introduce bugs. Therefore, test quality is vital for maintainability. Two main factors
determining test quality are code coverage and test coverage. Code coverage
metrics express the extent to which tests cover the source code. Code coverage
can be analyzed on different levels, be it class, method, or line level. High code
coverage means that most behavior of the application has been evaluated at
least once. Almost as important as code coverage is test coverage. Similarly, test
coverage measures the extent to which the tests cover the business scenarios
of the application. High test coverage mostly ensures the application meets the
requirements of the customer.

• Modular Independence: modular independence improves testability and error
traceability in source code, greatly improving maintainability. Moreover, modular

19

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

independence makes the system much more open to modification and exten-
sion. Especially since the company might want to make the tool Open Source in
the future, easy modification and extension is key. Adhering to the best practices
of software engineering, the project should contain low coupling between com-
ponents, i.e. contain few direct dependencies between components. To achieve
this, it is important that software engineering best practices are employed where
needed.

4.2 Requirements

Stemming from the design goals outlined above, the following requirements have been
defined for the application. The requirements are divided between functional and
non-functional requirements. Functional requirements specify *what* the application
should do and non-functional requirements place constraints on *how* the application
should do so. It is important to note that fulfillment of each requirement should be mea-
surable. Functional requirements are measured by testing whether the desired func-
tionality exists, while non-functional requirements can be quantified and measured.

4.2.1 Functional Requirements

The application must ...

1. ... be able to parse Scala source code.
2. ... be able to detect class definitions.
3. ... be able to detect full names of classes.
4. ... be able to detect parent-child relations between classes.
5. ... be able to compute the impact of a change on class level.
6. ... be able to create a dependency graph of a Scala project on class level.
7. ... be able to detect the changed set of classes when a change is introduced in

source code.
8. ... be able to output impacted classes to the user, prioritized by relevance.
9. ... be executable from the command line.

The application should ...

10. ... be able to parse most commonly used types of valid Scala source code and
combinations thereof.

The application could ...

11. ... visualize the impact graph to the user.
12. ... parse all possible combinations of valid Scala source code.
13. ... persist the results in a log or a database.

20

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

The application won’t ...

14. ... automatically select and execute test cases for impacted classes.

4.2.2 Non-functional Requirements
Utility

1. The application should produce results within 5 seconds.
2. The application should have a precision of at least 76%.
3. The application should have a recall of at least 94%.
4. The application should consistently produce the same results on the same input.
5. Users should rate accuracy at least average.
6. Users should rate usefulness of the results at least average.
7. Users should indicate that they would use the application in the future at least

average.

Usability

8. Users should rate result comprehension at least average.
9. Users should rate the seamlessness of the integration into the development pro-

cess at least average.
10. Users should rate the intuitiveness of the application at least average.

Maintainability

11. Statement coverage should be at least 85% [12].
12. Methods should not consist of more than 100 lines of code and hardly ever ex-

ceed 20 lines of code [22].
13. Each class and method should be documented and contain ScalaDoc comments.
14. Each class should contain as few in-line comments as possible. Where it is

present, it usually indicates poor adherence to naming conventions and convo-
luted control flows.

15. Components must have a higher cohesion than coupling.
16. The medium to display results should be isolated from the results themselves,

i.e. the display must be able to change without needing to change anything else.
17. Different algorithms for computing impact must be easily interchangeable.
18. Different types of input must be easily interchangeable.

Requirement 1 is based on the compile speed of sbt, used by the KeyLocker devel-
opment team. Running the complete test suite of KeyLocker took at least 6 seconds,
therefore the impact analysis application should produce results within 5 seconds, be-
ing faster than sbt.

Requirements 2 and 3 are based on research done by Lile Hattori et al. [15]. Lile
Hattori et al. developed Impala to perform static analysis on Java source code. The re-

21

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

sults of Impala had an average precision of 76% and an average recall of 94%. Accord-
ing to Jesse Davis et al. precision is computed as follows [11]: Precision = TP

TP+FP
,

where TP is the total amount of true positives, and FP is the total amount of false
positives detected by the application. Furthermore, their research states that recall
can be calculated as follows: Recall = TP

TP+FN
, where TP is the total amount of true

positives, and FN is the total amount of false negatives detected by the application.
Requirements 5, 6, 7, 8, 9, and 10 should all score a score at least average. The de-

velopers of KeyLocker will be asked to experiment with the application. Subsequently,
they are asked to answer a survey that will verify if these requirements are met.

Finally, requirement 15 is defined, because KeyLocker demands that software qual-
ity of written code is high, the coupling and cohesion of classes will be analyzed.
Coupling is determined by the degree of interdependence between parts of the design
[10], i.e. the amount of external method calls. Cohesion is determined by the degree of
internal dependence within parts of the design [10], i.e. the amount of internal method
calls.

4.3 Application Overview
To meet the requirements formulated above and fill the knowledge gap of dependen-
cies in source code, we propose Coda. Coda is short for CODe Analysis and consists
of a software application that analyzes source code with its changes and provides the
developer with a collection of impacted components. In figure 4.1 the activity diagram
of the application’s core is depicted.

The application starts with the source code of a Scala project that has to be an-
alyzed by Coda. Based on the source code a dependency graph is constructed and
changed source code is derived which results in the change set. Subsequently, a com-
putation can be done with the dependency graph of the source code and the change
set resulting in an impact graph. Finally an impact set can be derived which can be
used in various ways. In-depth analysis of every component in the activity diagram will
given in the next chapter.

The impact set can be used for various purposes. In the context of the bachelor’s
thesis and the needs of KeyLocker the following potential applications were formulated:

• Visualization of the Impact Set

Visualizing the impact set can help the developer with identifying possible im-
pacted classes. Furthermore, additional information can be provided to the de-
veloper like type of relationships between classes and likelihood of impact. The
possibilities to visualize the impact set are virtually endless, therefore only two
solutions will be discussed.

– To-Do List: A to-do list is a simple solution that provides the developer with
a list of possible impacted classes that should be reviewed. Additionally, the

22

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Figure 4.1: An activity diagram of the application

likelihood of impact can be shown by sorting the list from likely impacted to
unlikely impacted.

– Graph Visualization: A graph gives an overview of all classes and rela-
tionships between them. Usage of colors, variation in edge length and node
size can all be used to provide a way to indicate impacted nodes.

• Automatic Regression Testing

Automatic regression testing can be done by running all test suites related to the
impacted classes. Automatic regression testing is useful when running the full
test suite is impractical and time consuming.

The purpose of Coda has been discussed with the KeyLocker development team
and these potential applications were presented to the team. The development team
then provided feedback and chose for a simple to-do list accessible from the command-
line interface (CLI). KeyLocker suggested that the project focuses on the application’s
core logic, i.e. parsing source code, parsing changed code, analyzing it for dependen-
cies, and computing the impact set. Displaying the impact set was seen as a minor
activity, one that could always be altered later. In fact, they required Coda to only

23

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

output an ordered list of impacted components. Moreover, adhering to a model-view-
controller (MVC) architecture enforces that core logic is separated from the view, which
allows implementation of different views, e.g. graph visualization.

Furthermore, the team deemed that automatic regression testing had little to no
added value for the company, because of the relatively small size of the existing code
base. The developers had no issues with always running the complete test suite.
Therefore, this application type was discarded for this bachelor’s project.

Now that the design goals, requirements and intended application of the product have
been discussed, the next chapter will discuss the implementation of that application.

24

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

5 Implementation
In this chapter, an overview of our own development process will be provided, followed
by a description of the most impactful design decisions made during development,
along with their motivation. The chapter will be concluded with the feedback from
the Software Improvement Group6 (SIG) on the quality of our code and our actions in
response to that feedback.

5.1 Development Process
In this section an overview of our development process will be given. We developed
in sprints of 1 week following a kind of hybrid Scrum method. The core of the process
was focused on defining a narrow as possible Minimally Viable Product (MVP) that
included the full stack of the application flow described in chapter 4, to be able to test
out the application as soon as possible and validate its usefulness and usability. After
the initial design phase described in chapter 4, the iterative development process of
the sprints can be divided into three distinct phases.

5.1.1 Design
The development process starts off by selecting a set of features to be included in
the next sprint. This selection happens during the weekly meetings with our company
supervisor and the meetings with our TU Delft supervisor. We ensure that the require-
ments of the chosen features are clear and that both supervisors are satisfied with the
direction of the project. Once the requirements are clear, the design is often done in
a small brainstorm session and some UML might be drawn to communicate. If neces-
sary the design decisions will be documented accompanied by some diagrams, after
which one of the developers can take up the task of implementing the feature.

5.1.2 Implementation
Because we require that every implemented feature is thoroughly tested, we try to fol-
low the test-driven development process. Especially for interpreting different types of
Scala patterns proved to be heavily reliant on testing, due to its complex and some-
times unpredictable nature. Naturally, our Scala analysis tool is developed in Scala.
We use IntelliJ7 as an integrated development environment and version control is per-

6https://www.sig.eu/
7https://www.jetbrains.com/idea/

25

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

formed by using Git and GitHub8. Additionally, the builds are managed by using the
default Scala build tool sbt. To test implemented features, developers use sbt to run
the tests. Once the implementation phase is finished, the reviewing process starts.

5.1.3 Review
During the review phase, the authoring developer makes a pull request and the other
developer will have to review it, before it can me merged into the sprint branch. This
makes it possible for the reviewer to see the differences between the old and new
code. The reviewer can comment on code, to which the author can reply and/or make
another code change until the reviewer and the author are satisfied with the imple-
mentation. The review enforces the quality of the software and promotes knowledge
sharing. The reviewer checks if the code is readable, understandable, tested, and
engineered well. When both author and reviewer are satisfied, the feature is merged
into the sprint branch. Using Travis9 for continuous integration ensures that the prod-
uct and intermediate products work and pass the tests. At the end of the week, the
features are merged into the working product and reviewed with the supervisors, their
feedback is processed and the development cycle can start anew.

During development many design decisions were made, the most notable of which
have been documented in the next section.

5.2 Design Decisions
Over the course of the project, we encountered many challenges. Faced with a mul-
titude of potential solutions to those challenges decisions had to be made, choosing
the right solution where the appropriate solution was not always obvious. The most
notable design decisions that had the greatest impact on the resulting product are
described below.

5.2.1 Model-View-Controller
During the project, one of the major design choices is the implementation of the Model-
View-Controller (MVC) software architecture pattern [13]. The MVC is implemented to
enforce the separation of concerns into three parts:

• Model: The model contains the functionality of the application, e.g. construction
of dependency graph and computation of impact.

• View: The view is responsible for displaying the computed results of the model,
e.g. displaying a list of impacted classes. In other words, the view is responsible
for the user interface.

8https://github.com/
9https://travis-ci.org/

26

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

• Controller: The controller is responsible for delegating work to the model and
view based on events triggered by the user.

The implementation of the MVC is shown in figure 5.1.

Figure 5.1: Class diagram of MVC pattern in Coda

The MVC pattern is currently implemented using the observer pattern. The observer
pattern is used to decouple the view from the model, where the model is extending an
Observer class and the view is implementing the Observer interface. Once the model
is finished with computing the impact, the model notifies the view with the impact graph.
Subsequently, the view displays the impacted classes based on the provided graph.

Currently, the view is displaying data via the command-line interface (CLI). Decou-
pling the view from the model allows different views for the same model. If, in the
future, a developer would like to implement a view that displays the impacted classes
via a visualized graph. The developer could extend the provided abstract class View

and visualize the impact graph. Using the observer pattern ensures that changing the
view does not have any impact on the model.

5.2.2 Graph
Constructing a dependency graph of the source code requires a graph data structure.
Unfortunately, we have not found a graph library that was easy to use. A known graph
library for Scala is ”Graph for Scala”10. Due to the rich features of this library it had a
steep learning curve and would have cost too much time to implement. Therefore, we
decided to build a custom graph data structure in Scala. The graph required methods
to add nodes, add edges and get incoming edges of a node. At first, a graph was
created by having two fields: a set of edges and a set of nodes. However, asking the
graph for the incoming edges of a node n resulted in a run time complexity of O(m)
where m is the amount of edges, because all the edges had to be traversed to find the
incoming edges by comparing node n to endpoint v of an edge (u, v).

Consequently, it was desired to change the custom graph data structure. The goal
was to improve the run time complexity. Redesigning the graph resulted in a hash map
10http://www.scala-graph.org/

27

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

with the hash of an edge as the key and the edge itself as the value. Saving the hash
values of the edges in the node where the node is part of made it possible to look up
the incoming edges in O(1). Asking the graph for the incoming edges of a node could
be accomplished as follows.

1. Graph asks the node for the hash values of the incoming edges.

2. Look up the hash values in the map of edges.

3. Return the set of edges.

Looking up a hash value of an edge in the hash map of edges has a run time
complexity of O(1). In worst case a node has an edge to every other node in the
graph. This results in a run time complexity of O(k) where k is the amount of nodes.
O(k) is not a huge improvement compared to O(m) assuming that there are more
edges than k. However, the worst case where a component has an edge to every
component is often not present. Therefore, in practice a run time complexity of O(k) is
considered an improvement compared to O(m).

The class diagram for the described graph data structure is depicted in figure 5.2.
An edge and a node are part of one graph. A graph is composed of multiple nodes
and multiple edges. An edge is always composed of one or two nodes.

Figure 5.2: Class diagram of graph data structure.

5.2.3 Impact Analysis Algorithm
Change impact analysis can be done in various ways. Currently, a breadth-first traver-
sal is used to calculate the minimal distance for each class node relative to nodes
marked as changed. As explained in chapter 3 this algorithm determines how changed
components impact unchanged components by looking at the minimal distance. This
algorithm is implemented using the strategy pattern [28]. Extending the ImpactAnaly-

sisStrategy trait allows usage of different impact analysis algorithms without breaking

28

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

existing code. Additionally, the strategy pattern allows change in impact analysis be-
havior during run-time if necessary. In figure 5.3 a class diagram of the implemented
strategy pattern is shown.

Figure 5.3: Class diagram of strategy pattern used for impact analysis algorithms

The Model in figure 5.3 computes the impact based on the changes by calling
the getImpact method of the ImpactAnalysisStrategy concrete class. Implement-
ing a new impact analysis algorithm requires that the trait ImpactAnalysisStrategy
is extended. Subsequently, the concrete class should implement the abstract method
getImpact.

5.2.4 Parsing Challenges

In order to derive a dependency graph and a change set, the application is required to
be able to parse source code. The application must be able to extract class definitions
and dependencies from the source code files.

Extracting the right information from source code can be performed by parsing com-
piled Java bytecode or by parsing plain Scala source code. As the Scala language is
built to work with the Java Virtual Machine (JVM) and compiles to Java byte-code, a
possible solution would be to look in this byte-code for class definitions and dependen-
cies. However, Karim Ali et al. [2] have demonstrated that analysis of Java byte-code
yields very imprecise results, because information about typing is lost during the com-
pilation process from Scala to Java byte-code. In addition, Scala provides features that
are difficult to analyze on a Java byte-code level because they have no Java equiva-
lent, such as traits and abstract type members. Therefore, this project will attempt to
parse plain Scala source code for dependency analysis.

One possible solution to extract class definitions and dependencies from plain Scala
code would be to parse the source code using Regular Expressions (RegEx). RegEx
is a technique that allows applications to match for patterns of characters occurring
in text. The set of all possible patterns that can occur as valid Scala code is pro-
hibitively large to write a parser for, requiring an effort equal to writing a full Scala
parser. However, for this application, the RegEx parser would need to be able to parse
class definitions and usage of classes. This might seem like a relatively small subset
of patterns, when compared to all valid Scala patterns, but is still prohibitively large as

29

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

there are too many ways in which classes can be used syntactically. Moreover, pars-
ing on a class level requires the application to be able to parse at the package level.
Subsequently, parsing on lower levels such as method or statement level in the future
would require being able to parse on all higher levels first. Because writing a RegEx
parser would, therefore, be poorly extensible for future modification and too time con-
suming to implement, the RegEx solution was discarded. For an interesting read on
the types of Scala code such a parser would have to be able to interpret, the reader is
referred to Karim Ali et al. [2].

A discussion with the KeyLocker team resulted in a different approach: the Scala
Toolbox11, which provides the parsing ability of the Scala compiler. The Scala Tool-
box parses any string containing Scala source code and provides an abstract syntax
tree (AST) that can be traversed using a traverser provided by the Scala Compiler li-
brary. This traverser made the graph construction considerably easier compared to
constructing a graph with RegEx.

Scala provides the ability to create packages just like Java does. One of the ad-
vantages of packaging is that the developer can create their own name-space. For
example, if the developer would like to create a class named Set, he can create and
use a class named Set in his own package without breaking the built-in Set of Scala as
demonstrated in listing 5.1. Instantiating a class in another package requires the full
name of the class, e.g. foo.Bar where foo is the package name and Bar is the class
name. Using the full name of a class to instantiate seems troublesome and therefore
imports are provided by Scala. import foo.Bar allows instantiation of class Bar with-
out its full name. In addition, classes in the same package can use each other without
imports.

Listing 5.1: Scala source code using packaging.
package foo {

class A

class B {

val a = new A

val s = new Set

}

class Set

}

Class foo.B can instantiate an instance of foo.A without importing class foo.A.
Additionally, class foo.B instantiates an instance of foo.Set.

Constructing a dependency graph requires that full names of classes can be de-
tected. Assumed is that most programmers do not use full names to instantiate an
object, because using full names reduces the readability of the code. The obvious first

11http://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html

30

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

step would be to parse the imports and to save them before a class is parsed. How-
ever, with this solution does not cover the possibility that classes in the same package
can use each other without the need for an import statement. Therefore, this solution
would produce an incorrect result. For example, in listing 5.1 class foo.B instantiates
an instance of class foo.A. Constructing the graph of this source code would con-
tain an edge (foo.B,A), which is incorrect. The correct graph should contain an edge
(foo.B,foo.A). Moreover, Scala provides a default object, named Predef12 including
basic functionality, e.g. printing to console, commonly used types like Set and String,
assertions, and implicit conversions. In listing 5.1 class foo.B instantiates a new Set.
Detecting the full name of Set has proven to be difficult. In the AST of listing 5.1 (see
Appendix B) there is no clue found for determining which of the two Set classes is
instantiated. In further discussion this AST will be referred to as AST1. Compiling and
running the code snippet would result in an instantiation of foo.Set.

To solve this problem, the AST of the source code is being traversed twice. During
the first traversal all class definitions are detected and saved in a Map, where the key
is the full name of a class and the value is its corresponding node object. The values
of the resulting Map is equal to the node set of the dependency graph. In further
discussion this Map will be referred to as MapFN . The goal of the second traversal is
to detect the use of classes, creating the dependencies between class nodes, resulting
in the map of edges of the dependency graph. To clarify these two steps, listing ?? will
be analyzed.

The first traversal of the AST1 would result in the following map containing the full
names.

Map(

"foo.A" -> ClassNode("foo.A")

"foo.B" -> ClassNode("foo.B")

"foo.Set" -> ClassNode("foo.Set")

)

During the second traversal of AST1, the dependencies will be created. Moreover,
in this step it will become clear why a map of full names (MapFN) is created. Walking
through AST1 a stack is used to keep track of the current package level and another
stack to keep track of the previous encountered class name. In AST1, the package
stack would contain ”foo” during the traversal of the class definitions. Encountering the
class definition of foo.B results in pushing ”foo.B” to the class stack. Once the instanti-
ation of Set is encountered, the full name of Set is resolved to foo.Set. Subsequently,
the full name is looked up in MapFN and results in the creation of a dependency be-
tween foo.B and foo.Set with help of the class stack. The second traversal results in
the following dependencies.

"foo.B" -> "foo.A"

"foo.B" -> "foo.Set"

12http://www.scala-lang.org/api/current/index.html#scala.Predef\$

31

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

5.2.5 User Interface

In this section the user interface will be discussed by exploring the possibilities of
displaying the impact set. Additionally, the chosen solution will be motivated. Finally,
displaying the impact will be discussed.

The user interface is an important aspect of the application and greatly affects the
usability of Coda. As discussed in chapter 4, the impact set, displayed by Coda, should
be comprehensible, fit in the development process of the developer, and is expected
to be intuitive.

The first solution that emerged from a brainstorm session with the KeyLocker de-
velopment team was to deploy Coda as an IDE plugin, e.g. integrating into Eclipse or
IntelliJ. However, creating an IDE plugin would require knowledge of an existing IDE
and would be too time consuming. Moreover, writing an IDE plugin would limit the us-
ability of the apllication to only development environments making use of that specific
IDE.

Furthermore, an analysis of the workflow at KeyLocker, see chapter 2, indicates
that the developer is always using the command-line interface (CLI) to run a test suite
with sbt. Additionally, the developer will use git from the CLI when they are finished
with making changes to the source code and are ready to commit the changes to the
code base. Therefore, based on integration into development process, a command-
line interface application would fit most seamlessly into the development process of
the KeyLocker team. Moreover, it does not make sense to analyze impact after each
small change, but just before merging a feature into the master branch.

The last solution that emerged from the brainstorm session was to deploy Coda as a
web application. The advantage of a web application is that many visualization libraries
exist. This would enable a more graphical visualization of the impact and could greatly
improve the usability of the application. However, the KeyLocker team suggested that
working on the CLI would layout a fundamental core for the web application. For the
sake of staying on schedule, this option was abandoned, but kept as a useful addition
for future work. The KeyLocker team added that, should the Coda CLI be able to
provide useful results, they would like to build their own interface to integrate in their
own respective development environments.

We have, therefore, decided that a CLI application would satisfy the developers and
will layout a fundamental core for future extension. Another important aspect of Coda
is how impact is displayed. The CLI application will display the impacted classes re-
sulting from impact analysis. Various ways exist to display impact. One potential way is
to display the shortest distance for each impacted class to a changed class. Because
this representation requires knowledge of the concept of distance analysis on the part
of the user, the impact is represented as a score on a relative scale. That way, no ac-
tual knowledge about impact analysis is necessary for using Coda, merely reading that
one component is impacted more heavily than another suffices for the user. Moreover,
using numbers can falsely imply a certain precision of an absolute impact, which is not
the case. Dependency analysis merely suggests ways in which components could be

32

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

impacted, but has no actual clue about whether this is true or not. All impact is relative,
one component being more likely to be impacted than another.

Now that the design decisions during development have been discussed in detail, the
consequences of those decisions shall be examined in the next section where the
results of a maintainability review will be discussed.

5.3 SIG Feedback

In context of the bachelor project, the source code of Coda had to be submitted to
the Software Improvement Group (SIG) twice. SIG is a Dutch company that reviews
source code from a multitude of companies, governmental organizations, and student
submissions from the TU Delft. For the student submission, they mainly review the
maintainability of the software based on a model they developed, an example of which
is shown in figure 5.413. Using metrics to measure volume, code duplication, unit
complexity, unit size, unit interfacing, module coupling, component balance, and com-
ponent independance, the SIG model computes a maintainability score. This section
will discuss the SIG feedback and subsequently document our response.

Figure 5.4: SIG maintainability model of an example project.

5.3.1 First Evaluation

The first quality assurance done by SIG resulted in the following feedback in Dutch.

13https://www.sig.eu/nl/over-sig/sig-research/sig-model-maintainability/

33

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

”[Analyse]

De code van het systeem scoort 4 sterren op ons onderhoudbaarhei-
dsmodel, wat betekent dat de code bovengemiddeld onderhoudbaar is. De
hoogste score is niet behaald door een lagere deelscore voor Duplication.

Voor Duplicatie wordt er gekeken naar het percentage van de code welke
redundant is, oftewel de code die meerdere keren in het systeem voorkomt
en in principe verwijderd zou kunnen worden. Vanuit het oogpunt van
onderhoudbaarheid is het wenselijk om een laag percentage redundantie
te hebben omdat aanpassingen aan deze stukken code doorgaans op
meerdere plaatsen moet gebeuren.

Bij jullie is de hoeveelheid gedupliceerde code beperkt, maar om-
dat jullie qua score al vrij hoog zitten is dit alsnog een ver-
beterpunt. Je zou bijvoorbeeld kunnen beginnen met het du-
plicaat tussen ClassBasedTS.scala:traverse-PackageDef() en Names-
pace.scala:traversePackageDef(), die methode is namelijk tussen de twee
bestanden gekopieerd.

Daarnaast is het goed om te zien dat jullie test-driven werken: de hoeveel-
heid testcode is zelfs hoger dan de hoeveelheid productiecode. Hopelijk
lukt het jullie om dit in stand te houden tijdens het vervolg van het project.

Kortom, zowel qua onderhoudbaarheid als qua testcode scoren jullie
boven-gemiddeld, en we hopen op een soortgelijke score in het vervolg
van het ontwikkeltraject.”

The feedback indicates that code quality of Coda is above average, obtaining a near
perfect score. The Coda project scored 4 stars out of 5, nearly missing the 5-star mark
because of some small code duplication between two components. Consequently, SIG
expects the final submission to acquire the same maintenance rating, if not better.

5.3.2 Response

According to the feedback that SIG provided, we have reviewed the source code of
Coda by mainly looking at code duplication. However, as a matter of fact, inheritance
should be used to create class hierarchies that makes sense, not to avoid code dupli-
cation [4]. Implementing a class hierarchy here did not make sense, especially simply
to remove a small code duplication of a few lines of code. For this reason and because
said duplication was actually tangential in functionality, we elected to keep some small
duplication in place and only remove where necessary. Furthermore, we have im-
plemented the Model-View-Controller architecture pattern to improve maintainability in
the future, e.g. creating different views for the same core application.

At the time of writing this report we have not yet done the final submission to SIG.
Therefore, the final feedback of SIG is not included in this report, but will likely be
presented during the final presentation.

34

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

5.3.3 Second Evaluation
The final code submission resulted in the following feedback of SIG.

”[Hermeting]

In de tweede upload zien we dat zowel de omvang van het systeem als
de score voor onderhoudbaarheid is gestegen. Het systeem scoort nog
steeds 4 sterren, wat betekend dat het bovengemiddeld onderhoudbaar is.

Het is echt goed om te zien dat jullie de score voor Duplicatie een stuk
hebben verbeterd. Deze is nu ook bovengemiddeld. Verder zijn er geen
opmerkingen in de code te vinden. Complimenten daarvoor.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de
vorige evaluatie zijn meegenomen in het ontwikkeltraject.”

The feedback indicates that the code quality has improved. SIG appreciates the
fact that we took their feedback into consideration, resulting in a better score for code
duplication.

35

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

6 Conclusion

In this chapter an overview of the product, named Coda, will be given by looking at its
functionality and its user interface. Furthermore, the product will be compared with the
functional and non-functional requirements discussed in chapter 4.

6.1 Product

Coda is an analysis tool that performs change impact analysis on Scala projects. A
prerequisite for using Coda on a Scala project is that the project is under git version
control, because the application uses git to derive the change set. Currently, Coda
should be used before merging changes into the production code. Running Coda in
the root directory of a project without any arguments will display the following output
below. Coda will output a summary of impact analysis followed by a list of classes
in descending order based on the likelihood of impact. Naturally, when no change is
applied to the analyzed project no impact classes will be shown, as can be seen in
listing 6.1.

Listing 6.1: Coda analysis for an unchanged project
$ coda

Coda 1.0

Analyzing project from ~/coda/.

Total classes: 65

Changed classes: 0

Impacted classes: 0

In listing 6.2 a change is applied to the code base of the Coda project itself. Note
that this time an argument, a project directory, is provided to Coda. Using Coda, it can
analyze the change to its own code and compute the impact. Coda displays a list of
changed nodes, impacted nodes, and an indication of the likelihood of impact. Based
on the impact indication the developer can walk through the list ensuring that missing
test cases are added and/or impacted classes are fixed.

36

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Listing 6.2: Coda analysis for a changed project
$ coda ~/coda

Coda 1.0

Analyzing project from ~/coda/.

Total classes: 65

Changed classes: 1

Impacted classes: 13

IMPACT CLASS

CHANGED eu.keylocker.model.graph.Graph

[#####] eu.keylocker.model.ia.DepthBasedIA

[#####] eu.keylocker.model.Model

[#####] eu.keylocker.model.ast.ClassBasedTS

[#####] eu.keylocker.view.NonInteractiveCLIView

[#####] eu.keylocker.model.ia.ImpactAnalysisStrategy

[####-] eu.keylocker.model.graph.GraphSpec

[####-] eu.keylocker.Application

[####-] eu.keylocker.model.ast.TraverseStrategySpec

[####-] eu.keylocker.controller.NonInteractiveCLIController

[####-] eu.keylocker.model.ia.DepthBasedIASpec

[####-] eu.keylocker.controller.Controller

[####-] eu.keylocker.model.ast.ClassBasedTSSpec

[###--] eu.keylocker.view.View

Furthermore, the developer could use the default --help flag to read more informa-
tion about Coda and its use cases.

6.2 Product Review
This section will review whether the requirements formulated at the beginning of the
project have been met. First, an overview of all functional requirements will be pro-
vided and whether they have been met or not. Where necessary, the overview will
be followed by an explanation. Then, a similar overview of the non-functional require-
ments shall be provided, along with its respective explanations. Finally, it is concluded
that Coda can help to solve the knowledge sharing and testing problems it set out to
solve.

6.2.1 Functional Requirements
The functional requirements are evaluated in tables 6.1, 6.2, 6.3, and 6.4 below, fol-
lowed by an explanation where necessary.

37

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Table 6.1: The application must . . .
Nr. Requirement Requirement met
1 . . . be able to parse Scala source code. Yes
2 . . . be able to detect class definitions. Yes
3 . . . be able to detect full names of classes. Yes
4 . . . be able to detect parent-child relations between classes. Yes
5 . . . be able to compute the impact of a change on class level. Yes
6 . . . be able to create a dependency graph of a Scala project on class level. Yes
7 . . . be able to detect the changed set of classes when a change is introduced in source code. Yes
8 . . . be able to output impacted classes to the user, prioritized by relevance. Yes
9 . . . be executable from the command line. Yes

Table 6.2: The application should . . .
Nr. Requirement Requirement met
10 . . . be able to parse most commonly used types of valid Scala source code and combinations thereof. Yes

Table 6.3: The application could . . .
Nr. Requirement Requirement met
11 . . . visualize the impact graph to the user. No
12 . . . parse all possible combinations of valid Scala source code. No
13 . . . persist the results in a log or a database. No

Table 6.4: The application won’t . . .
Nr. Requirement Requirement met
14 . . . automatically select and execute test cases for impacted classes. No

Requirement 11 was not met due to the time constraint of the bachelor project.
However, the Model-View-Controller architecture pattern is implemented in Coda as
discussed in chapter 5, making it simple to extend the application with different views
in the future.

Requirement 12 was not met, because not all possible class definitions are parsed.
To verify this statement, two existing open-source Scala projects, scct14 and browse15,
and the Coda project have been analyzed.

Table 6.5: Project Class Count
Project Manual Class Count Coda Class Count
scct 62 64
browse 72 62
Coda 55 53

14https://github.com/mtkopone/scct - a Scala code coverage tool.
15https://github.com/harrah/browse - a tool that generates browsable HTML pages from source

code.

38

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

In table 6.5 the amount of encountered classes are shown for each Scala project.
The amount of class definitions were counted manually and with Coda. Based on the
results it can be concluded that most class definitions are detected, but there is still
plenty of room for improvement.

Requirement 13 was not met, results of Coda are not persisted in a file or database.
Once printed to the terminal and the Coda application exits, the results are only left
on screen. However, an impact analysis by Coda takes less than 5 seconds for most
projects, making executing the analysis multiple times fairly simple. Therefore, storing
the results had a low priority and has not been implemented.

Requirement 14 was not met. As explained in chapter 4, KeyLocker deemed that
automatic regression testing had little to no added value for the company. Therefore,
this feature has not been implemented.

6.2.2 Non-functional Requirements

The non-functional requirements are evaluated in tables 6.6, 6.7, and 6.8 below, fol-
lowed by an explanation where necessary.

Table 6.6: Utility
Nr. Requirement Requirement met
1 The application should produce results within 5 seconds. Yes
2 The application should have a precision of at least 76%. No
3 The application should have a recall of at least 94%. Yes
4 The application should consistently produce the same results on the same input. Yes
5 Users should rate accuracy at least average. No
6 Users should rate usefulness of the results at least average. Yes
7 Users should indicate that they would use the application in the future at least average. Yes

Table 6.7: Usability
Nr. Requirement Requirement met
8 Users should rate result comprehension at least average. Yes
9 Users should rate the seamlessness of the integration into the development process at least average. Yes
10 Users should rate the intuitiveness of the application at least average. No

Table 6.8: Maintainability
Nr. Requirement Requirement met
11 Statement coverage should be at least 85%.
12 Methods should not consist of more than 100 lines of code and hardly ever exceed 20 lines of code [22]. Yes
13 Each class and method should be documented and contain ScalaDoc comments. Yes
14 Each class should contain as few inline comments as possible. Yes
15 Components must have a higher cohesion than coupling. Yes
16 The medium to display results should be isolated from the results themselves. Yes
17 Different algorithms for computing impact must be easily interchangeable. Yes
18 Different types of input must be easily interchangeable. Yes

39

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

As described in chapter 4, the precision and recall of Coda’s analysis is computed
using the formulas below. To determine the precision and recall of Coda, the true
positives, false positives, true negatives, and false negatives found in an open-source
Scala project have been used in a confusion matrix. The numbers shown in table 6.9
were obtained by manually counting the actual positives and negatives, and comparing
these numbers with the predicted positives and negatives by Coda. The true positives
are determined with PP∩AP . True negatives is not necessary for calculating recall and
precision, therefore it is not determined. False positives are determined with PP ∩AN .
False negatives are determined with PN ∩ AP . These numbers have been obtained
by analyzing a git commit16 in Coda, where name changes were made to GraphUtility.

Table 6.9: Confusion Matrix of Coda’s Analysis
Actual Positive (AP) Actual Negative (AN)

Predicted Positive (PP) 3 2
Predicted Negative (PN) 0 -

Based on the confusion matrix, we can determine precision and recall as follows.

Precision =
TP

TP + FP
=

3

3 + 2
= 60%

Recall =
TP

TP + FN
=

3

3
= 100%

As the recall is 100%, requirement 3 has been met. The precision, however, is
below 76%. The reason for this is that Coda, currently, does not analyze changes
on statement level. In GraphUtility some value names were changed. These values
are not used in every class that is using the GraphUtility. However, Coda does perform
analysis on class level and did not catch this, leading it to predict that every class using
the GraphUtility was impacted.

For this project, code quality is measured by comparing coupling with cohesion.
Good software design is achieved by minimizing coupling and maximizing cohesive-
ness [10]. In table 6.10 coupling and cohesion of every class in Coda is shown. Note
that only method calls between classes of Coda are counted, i.e. method calls to ex-
ternal classes are not counted. In addition, it is important to note that ”the number of
method invoked” is counted, which is not to be confused with ”the number of method
invocations” [19].

16Commit 9536e9cb8443b305cf87a1a5c3da28cd5134d82e

40

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Table 6.10: Coupling & Cohesion for the Coda Project
Class Coupling Cohesion
Controller 1 1
NonInteractiveCLIController 3 0
ASTFactory 1 1
ClassBasedTS 6 16
Namespace 5 10
TraverseStrategy 0 0
Edge 2 4
Dependency 0 0
Inheritance 0 0
AbstractClassNode 0 0
ClassNode 0 0
Node 0 4
ObjectNode 0 0
TraitNode 0 0
Graph 12 8
GraphFactory 1 0
DepthBasedIA 5 2
ImpactAnalysisStrategy 0 0
Correctable 0 2
DiffParser 3 4
ScalaFile 2 3
ScalaSourceCode 1 0
SourceComponent 0 0
SourceComposite 2 1
Model 9 2
NonInteractiveCLIView 4 4
View 0 3

Based on table 6.10 Coda is meets the coupling requirement 15 well, because many
classes have a higher cohesion than coupling. However, there is still room for improve-
ment, because some classes that combine functionality have a higher coupling than
cohesion.

Requirements 5, 6, 7, 8, 9, and 10 are measured with a survey, see Appendix C.
The developers were asked to answer a survey by giving a rating from 1 to 5 for each
aspect shown in table 6.11.

41

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Table 6.11: The average of the results of the developer survey, 1 being very bad and 5
being very good.

Aspect Average Rating
Accuracy 2.5
Usefulness 4
Comprehension 3.5
Integration 3
Intuitiveness 2.5
Use in future 3.5

The results show that intuitiveness (2.5) and accuracy (2.5) score below average.
The intuitiveness was rated below average because an ambiguous exception mes-
sage was shown to the user, during a developer’s test. Thrown exceptions were caught
and handled, but the error messages were insufficiently informative. Furthermore, a
developer felt that the accuracy of the program was low because the test project we
provided did not allow him to introduce changes that resembled real-life code changes
closely enough, thus resulting in inaccurate suggestions by Coda.

Finally, as the highest priority functional requirements and most of the non-functional
requirements have been met, we conclude that Coda solves the two knowledge shar-
ing and testing problems it set our to solve.

We can conclude that impact analysis with the use of Coda solves some of the
knowledge sharing issues at KeyLocker. Developers acquire knowledge by using Coda
without having to ask other developers, maintaining productivity. Although, we demon-
strated that Coda could benefit from improvement and is far from perfect, it provides
insight in dependencies between classes, making it easier for developers to under-
stand the code base. Moreover, based on the confusion matrix, Coda is able to obtain
a 100% recall.

Furthermore, we can conclude that impact analysis can improve testing at Key-
Locker. Writing end-to-end tests and integration tests have proven to be difficult.
Based on the dependency analysis that Coda provides, developers can acquire insight
into the inter-dependencies between components, making it easier to write tests. Fur-
thermore, the pesticide paradox principle is enforced. As developers are confronted
with which classes are impacted, they are moved to maintain and extend existing test
suites to keep up with the introduced changes and improve test quality.

42

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

7 Discussion

In this chapter, the results and process of the project will be reviewed. The following
sections will critically examine the resulting product and process, respectively. The
product section will discuss where functionality partially works, is faulty, or is missing.
Furthermore, the process section will discuss some of the challenges and pitfalls of
our development process.

7.1 Product

7.1.1 Value to the Company
When examining the resulting product, the most useful functionality Coda provides is
its ability to parse Scala source code into a dependency graph. At the moment, this
graph is only used for impact analysis. However, analyzing the dependency graph can
tell a developer way more about the Scala project besides the impact of a change:
the dependency graph can be used to identify poorly engineered code using coupling
metrics, or node in- and out-degrees; the dependency graph can be used to identify
anti-patterns, such as God objects [27] to suggest ways of improving the code base
using many types of algorithms (e.g. an interesting approach would be to use algo-
rithms like Google’s PageRank algorithm [9] to identify most important components
in a project); combining coverage information with dependency analysis might offer
insight for regression testing and where impact remains untested. Moreover, simply
visualizing the dependency graph could potentially yield great insight into a code base
for a developer. In short, the dependency graph analysis can prove a lot more useful
than only for impact analysis.

The point under discussion is whether impact analysis truly provides the most value
for the company. Knowing what we know now, it would have been possible to part
from impact analysis and pursue one of the different type of analysis suggested above.
However, impact analysis clearly solves the problem defined at the start of the project.
Although the freedom we enjoyed during the project might have allowed us to change
this problem definition, the problem we set out to solve was broadly agreed upon with
the development team and our supervisors. Moreover, although dependency analysis
for purposes such as identifying poor software engineering might have more commer-
cial value to the company, our purpose was to solve some of the problems experienced
in the company’s software development process. Poor software engineering was not
among those problems. Therefore, we feel confident that the choice for change impact
analysis was the right one.

43

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

7.1.2 Unable to Separate Class Changes in File

At the moment, Coda is able to detect which files have been changed in a Scala
project. Coda is then able to read the changed files, parse the classes inside those
files and mark those classes as changed. Usually, files contain only one class and this
approach results in a fairly high accuracy. However, when multiple classes are defined
in the same file, Coda is not able to distinguish which classes inside the file were
touched and marks them all as changed. This causes a significant drop in accuracy,
suggesting many false positives of classes that were, in fact, left intact. Due to time
constraints we were unable to develop a mechanism that can successfully distinguish
changed classes from unchanged classes, even if they are contained in the same file.
This is definitely an issue up for improvement in future work.

7.1.3 Obscure Scala Code

Although Coda is able to parse most forms of valid Scala syntax, it is limited by the
Toolbox17 used to parse Scala code. This Toolbox will throw compile errors for certain
syntax patterns that do, in fact, compile.

For instance, the Toolbox does not parse the example pattern in listing 7.1 correctly.

Listing 7.1: Scala source code using a rare package declaration.
package a

package b

Which is equivalent to writing package a.b followed by import a.*. This provides
access to all of the contents of a in in the subpackage b. Although this is valid Scala
code and compiles successfully, the Toolbox parses this incorrectly. Parsing these
occurrences manually would have been very time consuming. However, luckily and
not surprisingly, this obscure use of package declarations almost never occurs in real
Scala projects in our experience.

Another syntax pattern that is not matched for currently are abstract type members.
This is one of the difficult to parse patterns in Scala, as its use is not straightforward.
Abstract type members are components whose type is not precisely known and whose
type can be overridden in subclasses. Take, for instance, the example in listing 7.2.

17http://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html

44

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Listing 7.2: Scala source code using abstract type members.
abstract class SomeAbstractClass {

type T

val element: T

}

abstract class SomeSubClass extends SomeAbstractClass {

type U

type T <: Seq[U]

def length = element.length

}

In this example, we only know that each instance that extends SomeAbstractClass

has a type member T, but it is up to the implementation of the subclass what this
type T looks like. As can be seen in the definition of SomeSubClass, the type of T is
tightened to be a subtype of a Seq (a sequence) of some other type U. This means
that the method length() can be called on the element, as this is a method of Seq.
As the type of abstract type members are by nature undefined, it is not difficult to see
that the dependencies can become very complex very fast. Altough the Toolbax can
parse these types, we elected not to interpret these syntax patterns in order to stay
on schedule. Interpreting these patterns could go a long way in improving the recall of
Coda’s dependency analysis in the future.

7.2 Process

7.2.1 Case Study
Immediately after performing our initial analysis of the company’s development ap-
proach and a discussion with our TU Delft supervisor, we alerted our company super-
visor and the rest of the KeyLocker team that we were developing code fundamentally
wrong way (in some aspects), as described in chapter 2. However, in chapter 2 there
was no room to discuss what actually went well for the team and how well the com-
pany was actually doing. Moreover, after discussing the need to alter course and how
to solve the problems highlighted by the case study, everyone agreed and measures
were taken immediately to improve on the highlighted problems. We are happy to see
that, over the course of the project, the development process at KeyLocker (and our
own), has greatly improved.

7.2.2 ’Full-Stack First’
At the beginning of the project it was determined to implement the full stack of the ap-
plication first, before starting to perfect every component. This was intended to be able

45

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

to quickly validate the utility and usability of the application with the KeyLocker team.
However, it was not until six weeks into development that a first full stack application
could be presented. Too much time was spent on perfecting the dependency analysis,
which took by far the most time to implement correctly. As described before, especially
interpreting the multitude of different valid forms of Scala code correctly proved very
time consuming to both implement and test - most tests have been written to test ex-
actly that. This caused us to get bogged down on the details of dependency analysis,
postponing the delivery of a full stack application and thus postponing the validation of
the application. Had we followed this agreed procedure more closely, perhaps different
decisions could have been made.

7.2.3 Redesign and Refactor Phases
During the project we did notice a growing buildup of technical debt. The applica-
tion would not be broken, it was just that we were not satisfied with the elegance and
maintainability of the solution. We would then sometimes dedicate a few hours to
solve this. However, over the course of the project, technical debt did accumulate and
therefore one entire sprint was dedicated to redesigning the some parts of the archi-
tecture, before submitting to SIG. This ensured that Coda was well maintainable and
consequently sped up our own development process. The good score received from
SIG was a confirmation of the quality and served as justification for the redesigning
phase. However, the fact that such a dedicated week for redesigning the architecture
was needed means something went wrong during the development process. Although
caught early enough and dealt with swiftly, our development process did not prevent
the buildup of technical debt. Nevertheless, we managed to stay on schedule and
keep up the high quality design of Coda.

All in all, a quality product has been developed in a responsible way and challenges
have been dealt with efficiently. After having considered what could have gone better,
the next chapter will discuss recommendations for future work.

46

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

8 Recommendations
In this chapter, recommendations for future work will be discussed. First, some compo-
nents of the application that could benefit from improvement will be discussed, followed
by a description of some areas where useful extensions can be made to expand the
functionality of the application.

8.1 Areas for Improvement
Currently, the deployment mechanism of Coda is simply compiling the source code
and distributing this to developers who want to use the application. This is far from
developer friendly. By far preferable would be to deliver a packaged application with a
simple install mechanism that requires very little action from the user. At the moment,
an install script is provided to create an alias for Unix based systems, but this is not up
to the standard of a production deployment mechanism.

Additionally, Coda is currently unable to distinguish changes to classes when located
in the same file, as discussed earlier. Coda currently uses Git commands to find
these changes and subsequently parses the changed files suggested by Git. However,
if Coda were to parse the diff files provided by git, showing the difference between
versions for each line of a changed file, a more fine grained selection of the change
set can be performed. Not only could the change set be limited to the changed classes,
the change to that class could also be interpreted. This restriction and the additional
information could greatly improve the precision of the solution.

Furthermore, the command-line application currently supports very little customiza-
tion for the developer. The application can be carried out in the default way, analyzing
a directory of the user’s choosing. However, using command-line arguments, the CLI
could offer to execute the analysis tweaked to the user’s needs. Some examples
include providing a stopping distance for the impact analysis algorithm to restrict run-
time, instructing the application to provide more verbose output with e.g. the graph
outputted to the terminal, and the results of the analysis could be outputted to a file or
database to be stored for later quality assurance. Providing more options to tweak the
experience to the developers needs can greatly improve the utility of the application.

Finally, the current parsing engine that uses the Toolbox described earlier suffers
from many limitations. As mentioned before, the Toolbox is often unable to parse
Scala code that does compile. Therefore, to be able to analyze more Scala projects
and improve the quality of the analysis, a different parsing engine could provide great
improvement. A possible solution is to develop a custom plugin for the Scala compiler.
Although this was too time consuming for the scope of the project, it would provide

47

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Coda with the full parsing power of the Scala compiler. This would eliminate the need
for altering code before it can be compiled by the Toolbox, as is currently the case to fix
some bugs in the Toolbox. Moreover, this would enable full typechecking, eliminating
the need for the somewhat slow process of name resolution currently used.

8.2 Areas for Extension
Currently, Coda will analyze Scala projects on a class level, finding dependencies be-
tween classes that use each other or extend/implement each other. However, it does
not distinguish between what methods are called. If a class is changed, Coda will
suggest other classes that need to be fully checked. If Coda were to analyze on a
method level, it could construct a call graph and pinpoint what methods could be im-
pacted, instead of classes. Going even further, if Scala were to analyze on a statement
level, it could identify the types of changes made to files and perhaps pinpoint the im-
pacted statements if possible. We recommend expanding the current functionality to
the method level for improving the accuracy and limiting the suggested lines that a
developer will need to check. Such an approach would need a new implementation of
a TraverseStrategy and require little changes elsewhere.

Additionally, Coda’s functionality need not be limited to mereley parsing Scala code.
The current coda project could be expanded to include many other object oriented
programming languages, e.g. Java, requiring only minimal changes to the analysis
components. Only the input and parsing components would have to be extended or
substituted to enable Coda to analyze these other projects.

The same goes for version control systems: currently, Coda anlyzes git reposito-
ries, but this can be easily expanded to include other version control systems such
as Apache Subversion18. Again, this would require substituting a few isolated compo-
nents and some minor changes elsewhere.

Furthermore, different impact analysis algorithms could be employed to offer a broaded
range of options to developers and perhaps increased result quality. This would, as
most recommendations for extension, require implementing a new ImpactAnalysisStrategy

and minor changes elsewhere.
Finally, the current command-line based user interface could be extended to an

interactive user interface or, even better, extended to a generated web-based user
interface that can run in the browser of the user. This would enable many more options
for visualizing output to the user and improving the user’s understanding of the code
base and Coda’s analysis.

18https://subversion.apache.org/

48

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

References

[1] M. Acharya and B. Robinson, “Practical change impact analysis based on static
program slicing for industrial software systems”, in Proceedings of the 33rd in-
ternational conference on software engineering, ACM, 2011, pp. 746–755.

[2] K. Ali, M. Rapoport, O. Lhoták, J. Dolby, and F. Tip, “Constructing call graphs
of scala programs”, in ECOOP 2014–Object-Oriented Programming, Springer,
2014, pp. 54–79.

[3] P. Ammann and J. Offutt, Introduction to software testing. Cambridge University
Press, 2008.

[4] J. M. Armstrong and R. J. Mitchell, “Uses and abuses of inheritance”, Software
Engineering Journal, vol. 9, no. 1, pp. 19–26, 1994.

[5] L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change impact analy-
sis: A control call graph based technique”, in Software Engineering Conference,
2005. APSEC’05. 12th Asia-Pacific, IEEE, 2005, 9–pp.

[6] F. S. de Boer, M. M. Bonsangue, L. Groenewegen, A. Stam, L van der Torre, et
al., “Change impact analysis of enterprise architectures”, in Information Reuse
and Integration, Conf, 2005. IRI-2005 IEEE International Conference on., IEEE,
2005, pp. 177–181.

[7] S. A. Bohner, “Software change impact analysis”, 1996.

[8] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mechanisms
into impact analysis for increased precision”, in Software Maintenance, 2006.
ICSM’06. 22nd IEEE International Conference on, IEEE, 2006, pp. 55–65.

[9] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual web
search engine”, Computer networks, vol. 56, no. 18, pp. 3825–3833, 2012.

[10] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design”,
1994.

[11] J. Davis and M. Goadrich, “The relationship between precision-recall and roc
curves”, 2006.

[12] M. Fowler, Testcoverage, http://martinfowler.com/bliki/TestCoverage.
html.

[13] E. Freeman, E. Robson, B. Bates, and K. Sierra, Head first design patterns. ”
O’Reilly Media, Inc.”, 2004.

49

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

[14] D. Graham, E. Van Veenendaal, and I. Evans, Foundations of software testing:
ISTQB certification. Cengage Learning EMEA, 2008.

[15] L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, and J. Damásio, “On the preci-
sion and accuracy of impact analysis techniques”, 2008.

[16] L. Huang and Y.-T. Song, “Dynamic impact analysis using execution profile trac-
ing”, in Software Engineering Research, Management and Applications, 2006.
Fourth International Conference on, IEEE, 2006, pp. 237–244.

[17] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more efficient static soft-
ware change impact analysis method”, in Proceedings of the 8th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering,
ACM, 2008, pp. 84–90.

[18] J. Law and G. Rothermel, “Whole program path-based dynamic impact analysis”,
in Software Engineering, 2003. Proceedings. 25th International Conference on,
IEEE, 2003, pp. 308–318.

[19] J. K. Lee, S. J. Jung, S. D. Kim, W. H. Jang, and D. H. Ham, “Component identi-
fication method with coupling and cohesion”, 2001.

[20] S. Lehnert, “A review of software change impact analysis”, Ilmenau University of
Technology, Tech. Rep, 2011.

[21] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change impact
analysis techniques”, Software Testing, Verification and Reliability, vol. 23, no. 8,
pp. 613–646, 2013.

[22] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship. 2008.

[23] A. McNair, D. M. German, and J. Weber-Jahnke, “Visualizing software architec-
ture evolution using change-sets”, in Reverse Engineering, 2007. WCRE 2007.
14th Working Conference on, IEEE, 2007, pp. 130–139.

[24] V. Rajlich, “A model for change propagation based on graph rewriting”, in Soft-
ware Maintenance, 1997. Proceedings., International Conference on, IEEE, 1997,
pp. 84–91.

[25] M. Sherriff and L. Williams, “Empirical software change impact analysis using
singular value decomposition”, in Software Testing, Verification, and Validation,
2008 1st International Conference on, IEEE, 2008, pp. 268–277.

[26] J. Sutherland and K. Schwaber, The scrum team, http://www.scrumguides.
org/scrum-guide.html.

[27] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “Tracking design smells:
Lessons from a study of god classes”, in Reverse Engineering, 2009. WCRE’09.
16th Working Conference on, IEEE, 2009, pp. 145–154.

[28] P. Wolfgang, Design patterns for object-oriented software development. Read-
ing, Mass.: Addison-Wesley, 1994.

50

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Appendix A: Infosheet
Project Title: Coda: A Change Impact Analysis Tool for Scala
Client: KeyLocker BV
Date of the final presentation: 26-08-2015

Description
KeyLocker, a start-up developing cryptographic products, has requested a review of
their own software development process. We were tasked with this review as well
as developing a software application that could assist in the development process,
remedying knowledge sharing and test maintenance using change impact analysis.

Developing this application required research in the field of change impact analysis,
the identification of potential consequences of a change to components in software.

Throughout the project we worked in sprints of one week, loosely following the
Scrum methodology. Weekly meetings were held with our TU Delft coach and Key-
Locker’s supervisor separately to discuss our progress and plan the next sprint. Soft-
ware design was discussed amongst ourselves, sometimes presenting it to the Key-
Locker development team or our TU Delft coach if we ran into issues.

The bachelor project resulted in a command-line application, Coda, that performs
impact analysis on Scala projects under Git version control and outputs the impact of
changes to the user.

The Coda project laid out a fundamental core, which is ready to be picked up by the
KeyLocker development team for integration and further development.

Team Roles
Marc Mackenbach - marcmackenbach@gmail.com
Interests: Cryptography, Big Data, Web Services, User Interaction.
Contributions: I/O, Detecting the change set, Impact Analysis, MVC, User Interface.

Aaron Ang - awz.ang@gmail.com
Interests: Software Engineering, Web, User Interface, User Experience
Contributions: Parsing Scala, Dependency graph construction

All team members contributed to preparing the report, the final presentation, develop-
ing and testing Coda.

Client: Charlotte Goedmakers, KeyLocker BV
TU Coach: Annibale Panichella, Software Engineering Research Group, TU Delft
Contact: charlotte.goedmakers@keylocker.eu
The final report for this project can be found at: http://repository.tudelft.nl

51

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Appendix B: Abstract Syntax Tree
Example

Listing 8.1: An example of an AST, parsed from Scala source code.
PackageDef(

Ident(TermName("foo")),

List(

ClassDef(

Modifiers(),

TypeName("A"),

List(),

Template(

List(Select(Ident(scala), TypeName("AnyRef"))),

noSelfType,

List(DefDef(Modifiers(), termNames.CONSTRUCTOR, List(), List(List()),

TypeTree(), Block(List(pendingSuperCall),

Literal(Constant(()))))))),

ClassDef(

Modifiers(),

TypeName("B"),

List(),

Template(

List(Select(Ident(scala), TypeName("AnyRef"))),

noSelfType,

List(

DefDef(Modifiers(), termNames.CONSTRUCTOR, List(), List(List()),

TypeTree(), Block(List(pendingSuperCall), Literal(Constant(())))),

ValDef(Modifiers(), TermName("a"), TypeTree(),

Apply(Select(New(Ident(TypeName("A"))), termNames.CONSTRUCTOR),

List())),

ValDef(Modifiers(), TermName("s"), TypeTree(),

Apply(Select(New(Ident(TypeName("Set"))), termNames.CONSTRUCTOR),

List()))))),

ClassDef(

Modifiers(),

TypeName("Set"),

List(),

Template(

52

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

List(Select(Ident(scala), TypeName("AnyRef"))),

noSelfType,

List(DefDef(Modifiers(), termNames.CONSTRUCTOR, List(), List(List()),

TypeTree(), Block(List(pendingSuperCall),

Literal(Constant(())))))))))

}

53

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Appendix C: Developer Survey

The developers at KeyLocker were provided with an example project and asked to
make changes and use Coda to evaluate the impact of their changes. They were then
asked to provide answers to the following survey:

The following questions must be answered from 1 to 5.

1. - very bad

2. - bad

3. - average

4. - good

5. - very good

Questions:

1. How well does Coda integrate into your workflow?

2. How familiar does the use of Coda feel to you? How intuitive do you
rate use of Coda?

3. How understandable do you rate the output of Coda?

4. How do you rate the accuracy of the results?

5. How do you rate the usefulness of the results?

6. Would you use Coda when working on Scala projects?

54

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

Appendix D: Assignment

In this appendix the original assignment description, found at bepsys.herokuapp.com,
is shown. Note that the assignment has been fine-tuned during the project.

Designing Development for Growth

The problem to be solved

KeyLocker started with a two-man development team. Both developers were second
year Computer Science students from Technical University Delft and relatively inexpe-
rienced in both professional software development and the technologies used to build
the product. It is safe to say that the learning curve was steep.

Going along, the development team tried to apply some of the best practices of
software development, such as agile and test driven development. However, applying
these practices correctly and consistently to a process subject to change as experi-
ence was gained proved a difficult task. Eventually the dev-team grew to four people,
increasing overhead and a need for a systemic on- and off-boarding policy arose.
Among other things, documentation of both source code and learned principles, the-
ory, and practice formed a vital part of this on-boarding process. An important aspect
of the knowledge sharing is the reasoning involved in development, documenting the
what and the why. Currently, the team is being scaled up even further and KeyLocker
is in the midst of a process of fine tuning workflow scalability.

Many theories and best practices exist for development in teams of 4-8 people (such
as scrum), but little is written for building a software development team from scratch,
starting from zero people with zero experience. KeyLocker wants to know where in
its history better decisions could have been made and what practices worked well.
More importantly, KeyLocker wants to gain insight in how it can do better in the future.
Therefore, after evaluating the problem areas of creating a scalable workforce in both
experience and number and formulating a strategy accordingly, KeyLocker wants to
tackle at least one of the problem areas by developing a tool that will assist a small
dev team in the process of developing robust software for now and for the future.

Assignment

Your assignment is use (the history and practice of) KeyLocker as a case to research
what the best practices are to scale from zero to something and how best to design

55

Coda: A Change Impact Analysis Tool for Scala M. Mackenbach & A. Ang

a development process for scalability. Identify the challenges of scaling tiny develop-
ment teams to regular sized development teams and formulate a development strategy
that scales well with a growing company. Build a tool that will assist the early stage
company in the development of software and that will tackle one of the signalled chal-
lenges.

Usage of your tool by a development team should result in easier growth of the dev
team. You are free to determine the problem the tool should solve and what form your
solution should take, as long as it is centred on improving the scalability of the dev
team. There are no language requirements, as long as it can be used on workstations
used by the dev team (running Ubuntu Linux).

Obviously, building a tool that assists in better software engineering, your product
should be designed well and according to the best practices of software engineering.
You will be strongly evaluated on developer satisfaction and effectiveness of the tool in
helping teams to grow.

Company Description
Founded in 2014, KeyLocker is a start-up that is currently developing cryptographic
protocols that put the control of encryption keys into the hands of the end-users, in-
stead of service providers. Founded on the philosophy that Internet services should be
‘given back’to the consumer, KeyLocker develops crypto products from the ground up
that are unparalleled in the market. Employing mainly talented students from the TU
Delft that can handle the steep learning curve, knowledge sharing is a crucial compo-
nent of the company’s success. The chief languages used for development are Scala
and C, on linux systems.

56

