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Abstract 

Temporal networks are networks whose topology changes over time. Two nodes 
in a temporal network are connected at a discrete time step only if they have a con-
tact/interaction at that time. The classic temporal network prediction problem aims 
to predict the temporal network one time step ahead based on the network observed 
in the past of a given duration. This problem has been addressed mostly via machine 
learning algorithms, at the expense of high computational costs and limited inter-
pretation of the underlying mechanisms that form the networks. Hence, we propose 
to predict the connection of each node pair one step ahead based on the connec-
tions of this node pair itself and of node pairs that share a common node with this 
target node pair in the past. The concrete design of our two prediction models 
is based on the analysis of the memory property of real-world physical networks, i.e., 
to what extent two snapshots of a network at different times are similar in topology (or 
overlap). State-of-the-art prediction methods that allow interpretation are considered 
as baseline models. In seven real-world physical contact networks, our methods are 
shown to outperform the baselines in both prediction accuracy and computational 
complexity. They perform better in networks with stronger memory. Importantly, our 
models reveal how the connections of different types of node pairs in the past contrib-
ute to the connection estimation of a target node pair. Predicting temporal networks 
like physical contact networks in the long-term future beyond short-term i.e., one step 
ahead is crucial to forecast and mitigate the spread of epidemics and misinformation 
on the network. This long-term prediction problem has been seldom explored. There-
fore, we propose basic methods that adapt each aforementioned prediction model 
to address classic short-term network prediction problem for long-term network pre-
diction task. The prediction quality of all adapted models is evaluated via the accuracy 
in predicting each network snapshot and in reproducing key network properties. The 
prediction based on one of our models tends to have the highest accuracy and lowest 
computational complexity.

Keywords:  Temporal networks, Network-based prediction, Short- and long-term 
prediction, Network memory

Introduction
Complex systems can be represented as networks, where nodes represent the compo-
nents of a system and links denote the interaction or relation between the components. 
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The interactions are, in many cases, not continuously active. For example, individu-
als connect via email, phone call, or physical contact at specific times instead of con-
stantly. Temporal networks (Holme and Saramäki 2012; Masuda and Lambiotte 2016; 
Holme 2015) could represent these systems more realistically with time-varying network 
topology.

The classic temporal network prediction problem aims to predict the interactions (or 
equivalently the network) one step ahead based on the network observed in the pre-
vious L steps. This problem is also equivalent to problems in recommender systems, 
e.g., predicting which user will purchase which product, which individuals will become 
acquaintances at the next time step (Kumar et  al. 2019; Dhote et at. 2013). The tem-
poral network prediction problem is more challenging than the static network predic-
tion problem, which aims to predict the missing links or future links based on the links 
observed (Lü and Zhou 2011; Kumar et al. 2020; Cui et al. 2017; Zou et al. 2021; Zhan 
et al. 2020). Recently, machine learning algorithms have been developed to predict tem-
poral networks. Embedding algorithms embed each node in a low-dimensional space 
based on the network observed. If the learned representations of two nodes are closer in 
the vector space, it is more likely to have a contact between this node pair one time step 
ahead (Kumar et al. 2019; Kazemi et al. 2020; Zhou et al. 2018; Wang et al. 2021; Rah-
man et al. 2018; Xu et al. 2020). Restricted Boltzmann machine (RBM) based methods 
(Li et al. 2014) and Graph neural networks (Pareja et al. 2020; Wu et al. 2022; Ma and 
Tang 2021) have also been developed for this prediction task and they can achieve high 
prediction accuracy. These methods, however, are at the expense of high computational 
costs and are limited in providing insights regarding which mechanisms enable the pre-
diction and thus could possibly form temporal networks.

Network-based methods have been proposed to predict new links, i.e., the node pairs 
that will have contact in the future but have not had any contact in the past, instead of 
predicting all contacts at a specific future time step. These network-based methods con-
sider a network property, also called similarity, of a node pair as the tendency that a new 
link will appear between the node pair (Liben-Nowell and Kleinberg 2003; Ahmed et al. 
2016; Xu and Zhang 2013). Network-based methods tell directly which mechanisms or 
properties are used for the prediction and tend to have a low computational complex-
ity. Recently, network properties of a node pair have been combined with learning algo-
rithms to address the classic temporal network prediction problem (Li et al. 2019).

In this work, we aim to design network-based methods to solve the classic temporal 
network prediction problem and to unravel which mechanisms and network properties 
enable the prediction.

A temporal network measured at discrete times can be represented as a sequence of 
network snapshots G = {G1,G2, ...,GT } , where T is the duration of the observation win-
dow, Gt = (V ;Et) is the snapshot at time step t with V and Et being the set of nodes and 
contacts, respectively. If node j and k have a contact at time step t, (j, k) ∈ Et . We assume 
all snapshots share the same set V of nodes. The time aggregated network Gw contains 
the same set V of nodes and set of links E = ∪T

t=1Et . That is, a pair of nodes is connected 
with a link in the aggregated network if at least one contact occurs between them in 
the temporal network. We give each link in the aggregated network an index i, where 
i ∈ [1,M] and M = |E| is the total number of links. The temporal connection or activity 
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of link i over time could then be represented by a T-dimension vector xi whose element 
is xi(t) , where t ∈ [1,T ] , xi(t) = 1 when link i has a contact at time t and xi(t) = 0 if 
no contact occurs at t. A temporal network can be thus equivalently represented by its 
aggregated network, where each link i is further associated with its activity time series 
xi.

Specifically, the prediction task is to predict the activation/connection tendency 
of each link i at the next time step t + 1 based on the network observed in the previ-
ous L steps [t − L+ 1, t] , where 1 ≤ t − L+ 1 < t ≤ T  . The aggregated network Gw is 
assumed to be known in the prediction problem because it represents social relation-
ships and varies relatively slowly in time compared to contacts. The prediction accuracy 
is evaluated via the area under the precision-recall curve (AUPR), which compares the 
predicted activity tendency and the ground-truth connection of each link at the predic-
tion time step.

Firstly, we explore the structural similarity between two network snapshots at any two 
time steps with a given time lag. We find the similarity or so-called network memory 
is relatively high when the time lag is small and decays as the time lag increases in the 
seven real-world physical contact networks considered. Based on this observed time-
decaying memory in temporal networks, we design two network-based temporal net-
work prediction models.

The self-driven (SD) model assumes that the activation tendency of a link at a predic-
tion step is solely influenced by its past activity states, with a stronger influence from 
more recent states. This concept is not new (Li et al. 2019; Jo et al. 2015). The SD model 
is emphasized as one model here because we will explore in depth the choice and inter-
pretation of its parameter and it is the basis to build our self- and cross-driven (SCD) 
model (Zou et al. 2023). In the SCD model, the activity tendency is firstly derived for 
each link at the prediction time step based on SD model. SCD assumes the connection 
tendency of a target link at a prediction step depends not only on the SD activity ten-
dency of the link itself at the same prediction step but also of the neighboring links (links 
share a common end node with the target link) in the aggregated network. State-of-the-
art models that allow interpretation are considered as baselines: Common Neighbor, 
Lasso Regression, Correlated Discrete Auto-regression model, and the Markov model. 
In several real-world contact networks, we find that SCD outperforms SD model and 
both SCD and SD models perform better than the baselines. Both SD and SCD perform 
better in networks with a stronger memory. Additionally, the SCD model allows us to 
understand how different types of neighboring links (depending on whether they form a 
triangle with the target link or not) contribute to the prediction of a target link’s future 
activity.

It is essential to predict the contact network in the long-term future, instead of one step 
ahead, in order to develop strategies to mitigate the epidemic or information spreading on 
the network. However, this long-term prediction problem on temporal networks remains 
unexplored. Hence, we further propose basic methods that adapt the aforementioned mod-
els for short-term network prediction to solve the long-term network prediction problem. 
Specifically, the long-term temporal network prediction problem is to predict the network 
(activities of all links) at each time step within the prediction period [t + 1, t + L∗] based 
on the network observed within [t − L+ 1, t] . Moreover, the aggregated network Gw and 
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the total number of contacts at each time step within the prediction period are assumed 
to be given. The latter assumption aims to simplify the problem, also because the number 
of contacts can be influenced by factors like weather and policy other than the network 
observed in the past. The prediction quality is evaluated via whether the predicted network 
within the prediction period is precise and could reproduce key network properties. We 
find in general, the adapted SD model performs the best among all models in all data sets. 
Its prediction accuracy decays as the prediction step is further ahead in time and this decay 
speed is positively correlated with the decay speed of network memory. Finally, networks 
predicted by various models respectively within the prediction period have a heterogene-
ous distribution of inter-event time of contacts along a link, similar to real-world networks.

The rest of the paper is organized as follows. We will introduce real-world tempo-
ral networks to be used to design and evaluate temporal network prediction methods 
in section  "Empirical data sets". Key temporal network properties will be analyzed in 
section  "Memory in temporal networks" to motivate our network-based models (Sec-
tion  "Short-term network prediction methods") for the classic short-term network 
prediction problem. The proposed models will be evaluated and interpreted in section "Per-
formance analysis in short-term prediction". Finally, our network-based models and base-
line models will be further developed and evaluated for the long-term prediction problem 
in sections "Long-term prediction methods" and "Performance analysis in long-term pre-
diction" respectively.

Empirical data sets
To design and evaluate temporal network prediction methods, we consider seven empiri-
cal physical contact networks: Hospital (Vanhems et al. 2013), Workplace (Génois and Bar-
rat 2018), PrimarySchool (Stehlé et al. 2011), HighSchool (Mastrandrea et al. 2015), LH10 
(Génois and Barrat 2018), SFHH (Rossi and Ahmed 2015) and Hypertext2009 (Isella et al. 
2011). The basic properties of these data sets are given in Table 1. The time steps at which 
there is no contact in the whole network have been deleted.

Table 1  The number of nodes ( N = |V | ), the number of node pairs that have contact(s) (M), the 
length of the observation time window (T), time resolution ( δ sec), the type of contacts and the 
location where the data is collected

Network N M T δ Type Location

Hospital 75 1139 9453 20 Physical Hospital

Hypertext2009 113 2196 5246 20 Physical Conference

Workplace 92 755 7104 20 Physical Office

LH10 73 1381 12605 20 Physical Hospital

HighSchool 327 5818 7375 20 Physical School

PrimarySchool 242 8317 3100 20 Physical School

SFHH 403 9565 3509 20 Physical Conference
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Memory in temporal networks
In this section, we explore whether a temporal network has memory, i.e., the network 
observed at different times share certain similarity. Such memory property may inspire 
the design of network-based temporal network prediction methods and influence pre-
diction quality.

Auto-correlation Firstly, we explore the correlation of the activity of a link at two 
times with a given interval � , called time lag, via the auto-correlation of the activity series 
of each link. The auto-correlation of a time series is the Pearson correlation between the 
given time series and its lagged version. We compute, for each link i, the Pearson corre-
lation coefficient Rxixi(�) between {xi(t)}t=1,2,...,T−� and {xi(t)}t=�+1,�+2,...,T as its auto-
correlation coefficient. Figure 1a shows that the average auto-correlation coefficient over 
all links decays with the time lag � in every real-world network. The average auto-corre-
lation decays slower as the time lag increases.

Jaccard similarity Furthermore, the similarity of the network at two times with a 
given time lag � is examined via Jaccard similarity (JS). JS measures how similar two sets 
are by considering the percentage of shared elements between them. Given two snap-
shots of a temporal network Gt and Gt+� , their Jaccard similarity is defined as the size of 
their intersection in contacts divided by the size of the union of their contact sets, that 
is, JS(Gt ,Gt+�) =

Et∩Et+�

Et∪Et+�
 . Large JS means a large overlap/similarity between the two 

snapshots of the temporal network. Figure 1b shows the average Jaccard similarity over 
all possible pairs of temporal network snapshots that have a time lag � . Similar to auto-
correlation in link activity, the similarity between temporal snapshots decays with their 
time lag in all empirical data sets, manifesting the time-decaying memory of real-world 
temporal networks.

Short‑term network prediction methods
In this subsection, we will propose two network-based prediction models and four base-
line models for the classic short-term temporal prediction problem, that is, predict-
ing the activation tendency of each link in the aggregated network Gw ( Gw is given) at 
the next time step t + 1 based on the network observed in the previous L steps within 
[t − L+ 1, t].

Fig. 1  a The average auto-correlation coefficient Rxx over all links as a function of the time lag � and b the 
average Jaccard similarity of two snapshots of a temporal network with a given time lag � in each of the 
seven data sets
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Our network‑based models

Inspired by the time-decaying memory of temporal networks, we propose two network-
based temporal link prediction models. In our previous work (Zou et al. 2022) that uses 
Lasso Regression for short-term prediction explained in  “Lasso regression” section, it 
has been found that a link’s state at the next step is largely determined by the current 
state of the link itself and of the neighboring links that share a common node with the 
target link in the aggregated network. Hence, our two network-based models will esti-
mate a link’s activity tendency one step ahead based on the past activities of the link 
itself and of its neighboring links respectively by taking the memory effect into account.

Self‑driven (SD) model

The self-driven (SD) model predicts the tendency wi(t + 1) of the link i to be active at 
the prediction time t + 1 as:

where the decay factor τ controls the rate of the memory decay and xi(k) is the state of 
link i at time step k. A large τ corresponds to a fast decay of memory, such that a small 
number of previous states affect the tendency of connection. When τ = 0 , all past states 
have equal influence on the future connection tendency, and wi(t + 1) reduces to the 
total number of contacts of link i during the past L steps. Such exponential decay has 
also been considered in Li et al. (2019), Yu et al. (2017). In “Model evaluation” section, 
we will show that the SD model performs well for a common wide range of the decay 
factor τ among all real-world networks considered and we do not need to learn τ from 
the temporal network observed in the past.

Self‑ and cross‑driven (SCD) model

Furthermore, we generalize the SD model to a self- and cross-driven (SCD) model. The 
SCD model assumes that the activity tendency of a target link one step ahead depends 
on the SD connection tendency defined in Eq. (1) of the link itself and also of neighbor-
ing links that share an end-node node with the target link in the aggregated network. 
The union of the target link and its neighboring links is also called the ego-network cen-
tered at the target link, exemplified in Fig. 2. Furthermore, we differentiate three types 
of links in an ego-network, colored differently in Fig. 2: the target link itself (in grey in 
Fig. 2), links that form a triangle with the target link (in blue), and the remaining links 

(1)wi(t + 1) =

k=t

k=t−L+1

e−τ(t−k)xi(k).

Fig. 2  An illustrative example of an ego-network centered at a targeted link i. The target link itself, links that 
form a triangle with the target link, and the other neighboring links, are colored in grey, blue and green 
respectively
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(in green). We assume that the previous states of these three types of links may con-
tribute differently to the connection tendency of the target link. This is motivated by a) 
our finding that, when Lasso Regression is used to estimate connection tendency (Zou 
et al. 2022), the previous activity of the target link itself contributes more than that of the 
neighboring links, b) the common neighbor similarity method in static network predic-
tion and c) the observation of temporal motifs (e.g., three contacts that happen within a 
short duration with a specific ordering in time, and form a triangle in topology) in tem-
poral networks (Paranjape et al. 2017; Saramäki and Moro 2015).

Specifically, our SCD model assumes that the tendency hi(t + 1) for link i to be active 
at time step t + 1 is a linear function

of the contributions of the link itself wi(t + 1) as defined in Eq. (1), the neighboring 
links that form a triangle with the target link ui(t + 1) and the other neighboring links 
gi(t + 1) . The latter two factors ui(t + 1) and gi(t + 1) will be defined soon as a function 
of the SD tendency at t + 1 of links in the ego-network.

The contribution ui(t + 1) of the neighboring links that form a triangle with the target 
link i is defined as follows. For each pair of neighboring links j and k that form a triangle 
with the target link i, the geometric mean 

√

wj(t + 1) · wk(t + 1) suggests the strength 
that the two end nodes of link i interact with the corresponding common neighbor. We 
define ui(t + 1) as the average geometric mean over all link pairs that form a triangle 
with the target link. This design of ui(t + 1) aims to capture the weighted version of 
common neighbor similarity. The contribution of the other links gi(t + 1) in the ego-
network is defined as the average of their SD activity tendency. For each prediction time 
step t + 1 , a set of coefficients β∗

0 , β∗
1 , β∗

2 , and β∗
3 in Eq. (2) will be learned through Lasso 

Regression from the temporal network observed in the past L steps for all possible target 
links.

Baseline models

Our goal is to develop network-based models for predicting temporal networks. This 
is because they usually have low computation complexity and allow us to understand 
the underlying mechanism that enables the prediction, thus mechanism that potentially 
forms temporal networks. Hence, as baselines, we introduce four models that are rela-
tively interpretable in their mechanisms of prediction.

Common neighbor

We generalize the common neighbor method from static network prediction (Liben-
Nowell and Kleinberg 2003) to the temporal network prediction problem. The number 
of common neighbors of a target node pair can be computed for each of the previous L 
snapshots. The total number of common neighbors (CN) over the past L snapshots is 
used as the target node pair’s tendency of connection at the prediction time step t + 1.

Scholz et al. (2013) and Tsugawa et al. (2013) have used the number of common neigh-
bors (CNagg ) of a target node pair in the unweighted aggregated network over the past L 
snapshots to estimate if there will be a new link between this node pair at the prediction 

(2)hi(t + 1) = β∗
0 + β∗

1wi(t + 1)+ β∗
2ui(t + 1)+ β∗

3 gi(t + 1).
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time step. Later, we will show that the CNagg method performs overall worse than the 
CN method in all real-world networks.

Lasso regression

Lasso Regression (Zou et al. 2022) assumes that the activity of link i at time t + 1 is a lin-
ear function of the activities of all the links at time t, i.e.,

The objective is

where M is the number of features, as well as the number of links in the aggregated net-
work, ci is the constant coefficient, and βi = {βi1,βi2, · · · ,βiM} are the regression coef-
ficients of all the features for link i. The coefficients will be learned from the temporal 
network observed in the past L steps for each link. We use L1 regularization, which adds 
a penalty to the sum of the magnitude of coefficients 

∑M
j=1 |βij| . The parameter α con-

trols the penalty strength. The regularization forces some of the coefficients to be zero 
and thus leads to models with few non-zero coefficients (relevant features). The opti-
mal α that achieves the best prediction is chosen by searching 50 logarithmically spaced 
points within [10−4, 10].

CDARN model

The correlated Discrete Auto-Regression Network (CDARN) model has been shown to 
be able to capture the non-Markovian evolution of temporal networks and also the cor-
relation between links in their activities (Williams et al. 2022). It assumes that the state 
of a link at each time step t is either a copy of a previous state of the link itself or another 
link or is a Bernoulli random variable. The dynamics of each link i is governed by the 
process:

where Qi(t) ∼ B (q1) is a Bernoulli variable and Qi(t) = 1 (or Qi(t) = 0 ) with probabil-
ity q1 (or 1− q1 ), the current state xi(t) of a link i is equal to the state of link Ci(t) at a 
past time t − Zi(t) if Qi(t) = 1 , and Yi(t) ∼ B (q2) is a Bernoulli variable with average q2 
controlling the density of the network.
Zi(t) is a discrete random variable that is uniformly distributed within {1, 2, . . . ,P} and 

it means that states of previous P steps have equal probability to be chosen as xi(t) . This 
random variable Ci(t) encodes which link’s state would be copied by link i and distrib-
uted as

(3)xi(t + 1) =

M
∑

j=1

xj(t)βij + ci.

(4)min
βi







�

t=1

(xi(t + 1)−

M
�

j=1

xj(t)βij − ci)
2 + α

M
�

j=1

|βij|







(5)xi(t) = Qi(t)xCi(t) (t − Zi(t))+ (1− Qi(t))Yi(t).
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where Ŵi is the set of neighboring links of link i in the aggregated network Gw . Two links 
in the aggregated network are neighboring links if they share a common end node.

At any time t, Qi(t) is an independent and identically distributed random variable. The 
same holds for Ci(t) , Zi(t) and Yi(t) . The parameters q1 , q2 , and c can be estimated via 
Maximum Likelihood Estimation as described in Williams et al. (2022) based on the net-
work topology observed in the previous L steps. The same as Lasso Regression models, we 
confine ourselves to the CDARN model with memory length P = 1 , where a link’s current 
state is determined probabilistically by the states of the link itself or its neighboring links 
at the previous time step. This choice is also motivated by the high computational cost of 
CDARN.

Based on the estimated parameters ( q1 , q2 and c), the CDARN tendency for each link i to 
be active at t + 1 has been derived in Williams et al. (2022) for link prediction task, as

with

where δ(a, b) is the Kronecker delta, equal to 1 if a = b , otherwise 0, and Ŵi is the set 
of neighboring links of link i in the aggregated network. The term C̃i(t + 1) repre-
sents the fraction of active links among all the neighboring links of link i at t. The term 
(1− c)D̃i(t + 1)+ cC̃i(t + 1) interprets the probability that the state of link i at t + 1 is 
active given it is a copy of a previous state of the link itself or its neighboring links.

Markov model

Markov model (Kemeny and Snell 1976; Tang et al. 2020) assumes that the activity or time 
series of a link in a temporal network is independent of that of other links and a link’s activ-
ity at the current time step depends only on its state at the previous time step. For each 
link, we can obtain a 2× 2 transition matrix, where each element represents the transition 
probability from each possible state (either 0 or 1) at any time step to each possible state at 
the next consecutive time step, based on the states of the link observed in the last L steps. 
The Markov tendency for each link being active at t + 1 is the transition probability from its 
state at t to an active state.

Performance analysis in short‑term prediction
In this section, we will evaluate and interpret the performance of these short-term network 
prediction models in the aforementioned set of real-world physical contact networks.

(6)Pr[Ci(t) = j] =







1− c, if j = i;

c 1
|Ŵi|

, if j ∈ Ŵi;

0, otherwise.

(7)Si(t + 1) = q1((1− c)D̃i(t + 1)+ cC̃i(t + 1))+ (1− q1)q2.

(8)D̃i(t + 1) =δ(1, xi(t)),

(9)C̃i(t + 1) =
∑

j∈Ŵi

1

|Ŵi|
δ(1, xj(t))
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Model evaluation

We first introduce the method to evaluate the prediction accuracy of a model. Secondly, we 
explore how to choose the decay factor in the SD model. Thirdly, we compare the perfor-
mance of all the models.

Temporal network prediction accuracy of short‑term prediction

Each model predicts the activation tendency of each link at time step t + 1 based on 
the temporal network observed in the past L steps. The prediction step t + 1 is sampled 
1000 times from [T/2+ 1,T ] with equal space.

The average proportion of the M links that are active at a time step is lower than 1% in 
all the real-world networks we considered. The classification labels (the number of active 
links and inactive links per time step) are imbalanced. Hence, we evaluate the predic-
tion accuracy via the area under the precision-recall curve (AUPR) (Davis and Goadrich 
2006). An AUPR can be derived for the prediction of each network snapshot, using the 
connection tendency of each link derived by a given model and the actual network snap-
shot. AUPR provides an aggregated accuracy across all possible classification thresholds. 
The average AUPR of a model over the 1000 prediction snapshots quantifies the predic-
tion accuracy of the model. A high AUPR means high prediction accuracy.

Choice of decay factor

How to choose the decay factor τ will be motivated by comparing two possibilities. We 
first consider a simple case where τ is a control parameter and does not vary over time, 
i.e., remaining the same for the 1000 samples of the prediction time step t + 1 . Given a 
τ , the tendency wi(t + 1) ( i ∈ [1, 2, ...,M] ) can be obtained at each prediction step based 
on Eq. (1). Figure 3 shows that the decay factor τ indeed affects the prediction accuracy 
AUPR of the SD model. A universal pattern is that the optimal performance is obtained 
by a common and relatively broad range of τ ∈ [0.5, 5] in all networks. This implies that 
our real-world physical contact networks measured at school, hospital, workplace, etc., 
may be formed by a universal class of time-decaying memory. Hence, τ can be chosen 
arbitrarily within [0.5, 5].

Fig. 3  Link prediction accuracy AUPR of the SD model as a function of the decay factor τ in seven data sets
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In the second method of choosing τ , a τ (t + 1) for each prediction step t + 1 is learned 
from the network observed in the past L steps. The τ (t + 1) is chosen as the one that 
allows the SD model to best predict the temporal network at t based on the network 
observed in the past L steps. The prediction accuracy achieved by the first (second) 
method of choosing τ is 0.63 (0.61), 0.68 (0.67), 0.69 (0.63), 0.75 (0.74), 0.68 (0.67), 0.34 
(0.33) and 0.65 (0.63), for the seven data sets, respectively.

Hence, τ could be chosen arbitrarily from [0.5,  5], which has lower computational 
complexity and better prediction accuracy than learning τ dynamically over time. We 
consider τ = 0.5 to derive the SD tendency and SCD tendency in the rest analysis.

Comparison of models

We further compare the prediction accuracy of all models. As shown in Fig. 4, both 
SD and SCD models perform better than the baselines. The SCD model, which pre-
dicts a link’s connection utilizing SD tendency of the neighboring links and of the link 
itself, indeed performs better than the SD model that uses only the SD tendency of 
the link itself. Moreover, the SD and SCD models perform the best (worst) in LH10 
(PrimarySchool), in line with the strongest (weakest) memory/similarity of LH10 
(PrimarySchool) observed in Fig. 1.

Previous studies have shown that the number of common neighbors (CNagg ) in the 
unweighted aggregated network over the past observation period could relatively 
accurately predict new links to appear in the aggregated network (Scholz et al. 2013; 
Tsugawa and Ohsaki 2013). However, our CN method, though performs better than 
the CNagg , performs poorly in the short-term network prediction problem. This is 
likely because when the neighboring links that form a triangle with the target have 
contacts is crucial for the short-term network prediction problem, but largely ignored 
by CN and CNagg methods. The SCD model, in contrast, weighs events that happen 
earlier in time less and estimates implicitly the chance those two neighboring links 
have contacts at the same time, giving rise to its superior performance. CN method 
uses the sum of the number of common neighbors over the past L snapshots to esti-
mate a target node pair’s tendency of connection at the prediction time step. In this 
case, every two contacts of a node with the target node pair respectively at the same 

Fig. 4  Temporal network prediction accuracy AUPR of Common Neighbor model (CN and CNagg ), Lasso 
Regression (LR), CDARN model, Markov model, SD model, and SCD model. All methods consider L = T/2 and 
τ = 0.5 except for SD ( τ = 0.5 , L = 3 ), which is needed only for “Duration L of past observation” section
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time contribute to the connection tendency. The CN method taking into account 
more time information of contacts than CNagg , performs better than CNagg.

Model interpretation

In this subsection, we interpret firstly the SCD model, to understand how the past 
states of different types of links in the ego-network (neighborhood) of a target link 
contribute to the activation tendency of the target link. Afterwards, we interpret the 
decay factor τ and the duration L of past observation to understand how past contacts 
over time contribute to the prediction.

Interpretation of SCD model

As defined in Eq. (2), SCD model predicts a link’s future connection, based on the SD 
tendency of the link itself, links that form a triangle with the link, and the rest of the 
links that share a common node with the link. The contributions of these three types of 
links are reflected in the learned coefficients in Eq. (2). The average of each coefficient 
over all prediction steps is given in Table 2. In all networks except for Primary School, 
|β∗

1 | > |β∗
2 | > |β∗

3 | ≈ 0 . This means that the activity of a target link in the future is mainly 
influenced by the past activity of the link itself, slightly influenced by the activity of the 
neighboring links that form a triangle with the target link, and seldom affected by the 
activity of the other neighboring links. The predictive power of neighboring links that 
form a triangle with the target link may come from the nature of physical contact net-
works: contacts are often determined by physical proximity; two people that are close to 
a third but not yet close to each other are likely to already be in relatively close proximity.

One exception is the PrimarySchool, where β∗
2 > β∗

1 . Table  2 shows the aggregated 
network of PrimarySchool has the largest clustering coefficient1 in the aggregated net-
work as shown in Table 2. In general, we find the contribution β∗

2 of links that form a tri-
angle with the target link tends to be more significant in temporal networks with a larger 
clustering coefficient cc.

Duration L of past observation

According to the definition of SD tendency of connection in Eq. (1), only the coeffi-
cients/contributions e−τ(t−k) of the previous 24 steps (3 steps) are larger than 10−5 when 

Table 2  The learned coefficient β∗
1 , β∗

2 , and β∗
3 in SCD model averaged over 1000 prediction steps 

and the clustering coefficient (cc) of the aggregated network in each empirical network

Network β∗
1 β∗

2 β∗
3 cc

Hospital 0.31 0.07 0.00 0.37

Hypertext2009 0.32 -0.02 0.00 0.32

Workplace 0.32 0.00 0.00 0.28

LH10 0.32 0.21 0.00 0.41

HighSchool 0.33 0.04 0.00 0.38

PrimarySchool 0.24 0.48 -0.02 0.54

SFHH 0.32 0.03 0.01 0.21

1  The clustering coefficient of a network is the probability that two neighbors of a node are connected.
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τ = 0.5 ( τ = 5 ), out of L = T/2 > 1000 previous steps observed. We wonder whether 
considering only a few previous steps instead of L = T/2 steps would be sufficient for 
a good prediction. As shown in Fig. 4, the prediction accuracy of SD model when L = 3 
and τ = 0.5 is worse than that when L = T/2 and τ = 0.5 . This suggests that although 
the contribution of each early state of a target link is small, the accumulated contribution 
of many early states improves the prediction accuracy. The prediction accuracy of the SD 
model when L = 3 and τ = 0.5 , whose computational complexity is extremely low, is still 
better or similar to that of Lasso Regression, reflecting the prediction power of recent 
states of a link.

The choice of L may influence the prediction accuracy of all models. Hence, we com-
pare further the prediction accuracy of all models when L = T/4 in Fig. 5. We find the 
same conclusion holds as that when L = T/2 : both SD and SCD models perform better 
than the baselines, and SCD performs better than SD model. Additionally, we observe a 
significant decrease in prediction accuracy when L decreases from L = T/2 to L = T/4 
for both Lasso Regression and CDARN models, likely because these learning models 
need a sufficiently long period of observation for training. In contrast, the prediction 
accuracy remains relatively stable for the SD, SCD, Makrov, and CN models, despite the 
change in L. This suggests that the SD, SCD, Markov, and CN models are more resilient 
to variations in L compared to Lasso Regression and CDARN models.

Long‑term prediction methods
Strategies to mitigate epidemics or information spreading are supposed to be carried out 
for a relatively long period instead of only one time step. Hence, predicting the temporal 
network in the long-term future is essential for the development of mitigating strategies.

The long-term prediction problem is to predict the temporal network in the long-
term future within [t + 1, t + L∗] based on the network topology observed in the past 
L time steps within [ t − L+ 1, t ]. The number of contacts m(t +�t) at each prediction 
step and the aggregated network over the whole time window [1, T] of each data set are 
known. We introduce two basic methods that adapt each short-term network prediction 
model for the long-term prediction task: recursive long-term prediction and repeated 
long-term prediction. The common neighbor model is not considered in view of its low 
performance in short-term prediction.

Fig. 5  Link prediction accuracy AUPR of all models when L = T/4 , and τ = 0.5 in seven data sets. The 
prediction accuracy is averaged over 1000 prediction snapshots for all models except that the accuracy of the 
CDARN model is averaged over 100 prediction snapshots due to its computational complexity
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Recursive long‑term prediction

In short-term prediction, the SD model differs from all the other models in the sense 
that SD model has only one parameter τ , which can be chosen arbitrarily from [0.5, 5] 
to achieve approximately the optimal performance, whereas parameters for the other 
models (Eq.   2 for SCD model, Eq.   3 for Lasso Regression, Eq. 7 for CDARN model, 
and transition matrix for Markov model) need to be trained from the network observed 
in the past. Hence, we will explain how to make recursive long-term predictions using 
these two kinds of models respectively.

For SD model, the SD connection tendency for each link at t + 1 can be obtained 
according to Eq.  1 based on the network observed in the past [ t − L+ 1, t ] and 
τ = 0.5 . Since the number of contacts m(t + 1) is known, we predict the temporal net-
work by considering the m(t + 1) links with the highest connection tendency as con-
tacts. The predicted network G′

t+1 at t + 1 could be represented by the predicted state 
of each link {x′1(t + 1), x′2(t + 1), . . . , x′M(t + 1)} at t + 1 . The predicted network G′

t+1 
at t + 1 and the network observed within [ t − L+ 2, t ] will be used to compute the SD 
connection tendency of each link at t + 2 and to derive further the predicted network 
G′
t+2 at t + 2 , equivalently the m(t + 2) contacts. The connection tendency of each 

link at each future step t +�t , where 2 ≤ �t ≤ L∗ is derived recursively using the 
network observed in [ t +�t − 1− L, t ] and network predicted in [ t + 1, t +�t − 1 ] 
according to

The SD connection tendency of each link and the given number of contacts at each 
future step t +�t are used to predict the temporal network at that time step.

For SCD model, Lasso Regression, CDARN model, and Markov model, we train 
each model only once based on the network observed in the past L steps within 
[ t − L+ 1, t ] to obtain its parameters. Each trained model will be used to derive the 
activation tendency of each target link at t + 1 using the network observed at t. Then 
we predict the temporal network at t + 1 by considering the m(t + 1) links with the 
highest connection tendency to be active. The same trained model will be applied 
recursively to derive the activation tendency at t +�t using the network G′

t+�t−1 pre-
dicted at t +�t − 1 and predict the network G′

t+�t as the set of contacts along the 
m(t +�t) links with the highest connection tendency.

Repeated long‑term prediction

The repeated long-term prediction based on each of the aforementioned models is 
defined as follows. We firstly derive the connection tendency of each link at t + 1 
in the same way as in short-term prediction based on the network observed within 
[ t − L, t ] using a given model. Then the connection tendency of each link at any pre-
diction step t +�t where �t ∈ [2, L∗] is assumed to be the same as the connection 
tendency of that link at t + 1 . Given the connection tendency of each link at any 

(10)wi(t+�t)=

k=t
∑

k=t+�t−1−L

e−τ(t−k)xi(k)+

k=t+�t−1
∑

k=t+1

e−τ(t−k)x′i(k).
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prediction step t +�t where �t ∈ [1, L∗] , we predict the network G′
t+�t by consider-

ing the m(t +�t) links with the highest connection tendency to be active.
Our short-term prediction models can be applied thus either recursively or repeat-

edly to predict the network in the long-term future. The repeated long-term predic-
tion assumes that the connection tendency of each link remains the same over the 
long-term prediction period. In contrast, the recursive long-term prediction uses 
both the observed network and predicted network to predict the network further in 
time. Hence, it possibly captures the evolving nature of the network over time but 
leads to accumulative prediction error over time.

Performance analysis in long‑term prediction
In this section, we explore the performance of different models applied either repeatedly 
or recursively in long-term prediction and its relation with the memory property of tem-
poral networks.

The prediction quality of any method is evaluated via the accuracy in 1) predicting the 
network at each prediction step within the prediction period [ t + 1, t + L∗ ], 2) predict-
ing the weighted aggregated network over the prediction period and 3) reproducing the 
inter-event time distribution of contacts along a link within the prediction period. The 
accuracy in these three perspectives is, in general, desirable for long-term network pre-
diction since the network per snapshot, the aggregated network, and the distribution of 
inter-event time of contacts along a link affect evidently spreading processes unfolding 
on the network (Scholtes et al. 2014; Vazquez et al. 2007; Newman 2003; Horváth and 
Kertész 2014).

The prediction length L∗ is chosen as 10%T  , and the starting point t + 1 of each pre-
diction period [t + 1, t + L∗] is sampled 1000 times from [ T/2+ 1, 90%T  ] with equal 
space, to illustrate our method.

Network snapshot

Model evaluation

Since the number of contacts m(t +�t) in each prediction step t +�t ∈ [t + 1, t + L∗] 
is given, the number of contacts in the network predicted G′

t+�t at time step t +�t is 
the same that of the real-world network (ground-truth) Gt+�t . Hence, we evaluate the 
accuracy of the network predicted at each time step t +�t ∈ [t + 1, t + L∗] via recall, 
the number of contacts that exist both in the predicted network snapshot G′

t+�t and the 
real-world network Gt+�t divided by m(t +�t).

Firstly, we compare the prediction accuracy recall of each model using the recursive 
and repeated prediction methods respectively, as a function of prediction time gap �t , 
the number of time steps that the prediction step t +�t is ahead of the observation win-
dow [t − L+ 1, t] . For each �t ∈ [1, L∗] , the prediction accuracy recall is averaged over 
the 1000 samples of the prediction period. From Fig. 6 (for network Hospital) and Fig. 11 
(for other networks) in the Appendix, we could not recognize any difference between 
the repeated and recursive methods for SD and SCD models, while Lasso Regression, 
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CDARN, and Markov model tend to perform better using the repeated prediction 
method.

The similar performance of the SD model when it is applied recursively and repeat-
edly can be explained by the following. When SD model is applied recursively to predict 
the network at step t + 1 , the m(t + 1) links with the highest connection tendency are 
predicted to have contacts, which in return makes their connection tendency at t + 2 
higher than the other links. In this way, the ranking of links in connection tendency at 
each prediction time step within [ t + 1, t + L∗ ] remains nearly the same, as in the SD 
model applied repeatedly. At any prediction step, it is the ranking of links in connection 
tendency that decides the predicted network.

The prediction accuracy of Lasso Regression, CDARN model, and Markov model is 
low in short-term prediction. When we use the network predicted by any of these mod-
els at t +�t to predict a network at t +�t + 1 using the recursive prediction method, 
the prediction error is accumulated. This is likely why these three models tend to per-
form better using the repeated prediction method. We consider the repeated prediction 
method in the rest analysis of this section.

Secondly, we compare the performance of all models using the repeated prediction 
method in each data set. Figure 7 shows the average Recall decreases as the prediction 
gap �t increases for all models in all temporal networks. In general, SCD performs the 
best among all models in all data sets when �t = 1 , as observed in the short-term pre-
diction in “Model evaluation” section. When �t > 2 , SD achieves roughly the best pre-
diction accuracy.

Prediction accuracy in relation to network memory

As SD achieves roughly the best prediction accuracy among all models, we further 
explore the relation between the prediction accuracy of SD model and the memory 
property of temporal networks, aiming to understand in which kind of temporal net-
works the SD model predicts better.

Fig. 6  The prediction accuracy, Recall, for SD, SCD, Lasso Regression, CDARN, and Markov model, respectively 
applied recursively or repeatedly, in Hospital at each �t step ahead
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The prediction accuracy recall of SD model in general decreases as the prediction 
time gap �t increases. The decrease is faster when �t is smaller, as shown in Fig. 7. We 
will focus on the prediction gap within [1,1%T  ] since the prediction accuracy is too low 
when �t > 1%T .

Intuitively, it’s probably difficult to predict a temporal network if the network has a 
weak memory, i.e., the network observed at different times shares low similarity, espe-
cially for models like SD and SCD that utilize network memory in network prediction. 
Hence, we explore the relation between the prediction accuracy of the SD model and the 

Fig. 7  The prediction accuracy, Recall, for SD, SCD, Lasso Regression, CDARN, and Markov model applied 
repeatedly, respectively in seven temporal networks at each prediction step t +�t . In the Random model, 
the m(t +�t) predicted contacts are randomly chosen at the prediction step t +�t

Fig. 8  a The prediction accuracy, recall, of SD model applied repeatedly, b the Jaccard similarity (JS), c the 
decay rate of recall and d the decay rate of JS as a function of normalized prediction time gap �t

1%T
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memory property of the temporal network. Figure 8a shows the recall of SD model as a 
function of the normalized prediction time gap �t

1%T  . Figure 8b illustrates the average Jac-
card similarity of two snapshots of a temporal network when their time lag equals �t

1%T  . 
We observe that approximately the prediction accuracy tends to be better in networks 
with stronger memory (Jaccard similarity). For example, the recall is the largest (small-
est) in LH10 (PrimarySchool, Workplace, and Hospital), whose Jaccard similarity is also 
the largest (smallest). Furthermore, the decay rate of the prediction accuracy with pre-
diction time gap �t

1%T  in Fig. 8 seems to be related to the decay rate of Jaccard similarity 
with the time lag �t

1%T  in Fig. 8b. The decay rate of recall within the interval [  1
1%T  , �t

1%T  ] is 

defined as Recall(
�t
1%T )−Recall( 1

1%T )
�t
1%T − 1

1%T

 , and the same definition holds for the decay rate of Jac-

card similarity. Figure 8c and d show the decay rate of recall and JS respectively within 
[ 1
1%T ,

�t
1%T ] as a function of �t

1%T  . We find the ranking of the real-world networks in the 
decay rate of recall approximates that in decay rate of JS at any �t

1%T  . This means that the 
prediction accuracy of SD model decays fast in networks with fast decaying memory.

Aggregated network

We evaluate further the precision of the predicted aggregated network G′
w(t + 1, t + L∗) , 

which is the network predicted per time step aggregated within the prediction period 
[t + 1, t + L∗] . The aggregated network Gw(t + 1, t + L∗) of the real-world network is 
constructed as follows. Two nodes are connected by a link in Gw(t + 1, t + L∗) , if the two 
nodes have at least a contact in the real-world network within [ t + 1, t + L∗ ]. Moreo-
ver, the weight of each link is defined as the number of contacts along the link within 
[ t + 1, t + L∗ ]. The weighted aggregated network Gw(t + 1, t + L∗) could be represented 
by a weighted adjacency matrix AGw(t+1,t+L∗) whose element in row i and column j is 
the number of contacts between node i and node j within [ t + 1, t + L∗ ]. Similarly, we 
can construct the predicted aggregated network G′

w(t + 1, t + L∗) , a weighted network, 
based on the network predicted within [ t + 1, t + L∗ ] and represent it by the weighted 
adjacency matrix A′

Gw(t+1,t+L∗) . Note that the number of contacts in the predicted net-
work is the same as that in the real-world network at any prediction step.

We evaluate the accuracy in predicting the aggregated network via the generalized 
recall ( Recallwei):

which measures the extent that the two weighted aggregated networks G′
w(t + 1, t + L∗) 

and Gw(t + 1, t + L∗) overlap.
We first compare the generalized recall of each model using the recursive and repeated 

prediction methods respectively, as a function of the prediction period L∗ . Instead of 
considering L∗ = 10%T  as in the previous sections, we consider the general scenario 
where L∗ is a variable L∗ ∈ [1, 10%T ] . We have observed the same when evaluating the 
prediction accuracy per snapshot and per aggregated network. We could not recognize 
any difference in prediction accuracy between the repeated and recursive methods for 

(11)

∑

i  =j min{AG′
w(t+1,t+L∗)(i, j),AGw(t+1,t+L∗)(i, j)}

∑

i  =j AGw(t+1,t+L∗)(i, j)
,
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both SD and SCD models, while Lasso Regression, CDARN, and Markov model tend to 
perform better using the repeated prediction method (see Fig. 12 in Appendix).

When all models are applied repeatedly, SD achieves roughly the best prediction accu-
racy (see Fig. 13 in Appendix). The SD model tends to predict better in networks with a 
strong memory, and the prediction accuracy of SD model decays fast in networks with 
fast-decaying memory as shown in Fig. 14 in Appendix.

The distribution of inter‑event time

The inter-event time ( � ) is the time between two consecutive contacts of a link. 
Firstly, we derive the inter-event distribution of a real-world (predicted) temporal 
network within [t + 1, t + L∗] from the inter-event times collected from all links that 
have at least two contacts within [t + 1, t + L∗] . The objective is to explore whether 
the predicted network and corresponding real-world network during the prediction 
period have a similar inter-event distribution. Figure 9 (Fig. 15 in Appendix) shows 
the inter-event time distribution in each real-world network and the correspond-
ing predicted networks when each model is applied repeatedly (recursively). In each 
data set, the networks predicted by various models possess almost the same hetero-
geneous inter-event time distribution, which can be explained as follows.

For repeated prediction, the tendency for each link to be active at each predic-
tion time step t +�t ( �t ∈ [2, L∗] ) is the same as its activation tendency at t + 1 , 
and m(t +�t) links with the highest connection tendency are considered to have 
contacts at t +�t . When no links have the same rank in tendency, the total number 
of contacts in the network at each time step over time decides the distribution of 
inter-event time. The link whose connection tendency is the rth largest among all 
links will be active at a prediction step if the total number of contacts at that predic-
tion step is no less than r. Links with high (low) link tendency are likely to be active 
(inactive) at each time step, leading to many (few) small (large) inter-event times, 
which leads to a heterogeneous distribution of inter-event time. The distribution of 
inter-event time observed in predicted networks approximates roughly the distribu-
tion in the corresponding real-world network.

Fig. 9  The probability density function of inter-event time ( � ) in each real network and network predicted 
by various models applied repeatedly
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Still, this does not mean that predicted networks have the burstiness of inter-event 
time as observed in real-world networks: contacts between a pair of nodes usually 
occur in bursts of many contacts close in time followed by a long period of inactiv-
ity. To systematically explore the burstiness property of inter-event time along a link, 
we group links based on their total number of contacts within [t + 1, t + L∗] as in 
the method of Goh and Barabási (2008) and derive the probability density function 
f�(x) of inter-event times ( � ) collected from all links in each group. Figure 10 shows 
the scaled probability density function �0f�(x) for each group of links as a func-
tion of x/�0 , where �0 is the average inter-event time of the same group. As shown 
in Fig. 10, the distributions of inter-event time of all groups in both the real-world 
network and the network predicted by SD model follow a similar heavy-tail distribu-
tion. Networks predicted by our SD model reproduce approximately the burstiness 
of inter-event times as observed in real-world networks.

Conclusion
In this work, we propose two network-based models to solve the short-term tempo-
ral network prediction problem. The design of these models is motivated by the time-
decaying memory observed in temporal networks. The proposed self-driven (SD) model 
and self- and cross-driven (SCD) model predict a link’s future activity based on the past 
activities of the link itself, and also of the neighboring links, respectively. Both models 
perform better than the baseline models. Interestingly, we find that SD and SCD models 
perform better in temporal networks with a stronger memory.

The SCD model reveals that a link’s future activity is mainly determined by (the past 
activities of ) the link itself, moderately by neighboring links that form a triangle with the 
target link, and hardly by other neighboring links. However, if the temporal network has 
a high clustering coefficient in its aggregated network, the contribution of the neighbor-
ing links that form a triangle with the target link tends to be significant and possibly 
dominant.

We further apply these short-term network prediction models either recursively 
or repeatedly to make the long-term network prediction., that is the prediction of the 

Fig. 10  The scaled probability density function �0f�(x) of the inter-event times derived from each group of 
links as a function of x/�0 , where �0 is the average inter-event time of the same group, in each real temporal 
network (circle) and network predicted by SD model (asterisk). Different colors indicate the distribution 
derived from different groups of links. Links are sorted into 10 groups with a logarithmically increasing width 
based on their number of contacts



Page 21 of 25Zou et al. Applied Network Science            (2023) 8:76 	

temporal network in the long-term future based on the network topology observed in 
the past and given the number of contacts at each prediction step. The accuracy of long-
term prediction accuracy is evaluated from the perspective of the network predicted 
per snapshot and the predicted aggregated network. The repeated method performs, in 
general, better for all prediction models. This is likely because the iterative method uses 
both the observed network and the predicted network which is not precise enough to 
predict the network further in time. In general, SD model performs the best among all 
models in all data sets. It predicts better in networks with a stronger memory. The pre-
diction accuracy decays as the prediction step is further ahead in time and this decay 
speed is positively correlated with the decay speed of network memory. Finally, networks 
predicted by various models respectively have a heterogeneous distribution of inter-
event time similar to real-world networks, and also the burstiness of inter-event times 
of a link.

Our work is a starting point to explore network-based temporal network prediction 
methods. Our findings may shed light on the modeling of the formation of temporal net-
works which is crucial in understanding and controlling the dynamics of and on tempo-
ral networks. Our finding that activities of neighboring links that form a triangle with a 
target link have prediction power on the connection of the target link may suggest that 
higher-order events (Ceria and Wang 2023; Benson et al. 2018) like triangles in each net-
work snapshot may contribute to the prediction of (pairwise and higher-order) tempo-
ral networks. It is also interesting to evaluate the prediction accuracy of network-based 
prediction methods in comparison with state-of-the-art machine learning methods that 
target at high accuracy.

Appendix: The prediction accuracy in long‑term network prediction
See Figs. 11, 12, 13, 14 and 15.

Fig. 11  The prediction accuracy, Recall, of SD, SCD, Lasso Regression, CDARN, and Markov model, 
respectively applied recursively (blue curve) or repeatedly (yellow curve) in each real-world network at each 
prediction step that is �t step ahead of the training/observed network
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Fig. 12  The accuracy Recallwei in predicting the aggregated network within [t + 1, t +�t] , for SD, SCD, Lasso 
Regression, CDARN, and Markov, respectively applied recursively or repeatedly, as a function of �t

Fig. 13  The accuracy Recallwei in predicting the aggregated network within [t + 1, t +�t] , of SD, SCD, Lasso 
Regression, CDARN, and Markov model applied repeatedly, respectively in seven temporal networks
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Fig. 14  a The accuracy, Recallwei , of SD model applied repeatedly in predicting the aggregated network 
over [t + 1, t +�t] , b the Jaccard similarity (JS), c the decay rate of Recallwei and d the decay rate of JS as a 
function of the normalized prediction time gap �t

1%T

Fig. 15  The probability density function of inter-event time ( � ) in each real network and network predicted 
by various models applied recursively
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