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SUMMARY

The overall buckling mode of Z-stiffened panels in compression is
composed of the usual bending of the stiffeners in the plane normal to
the panel and of sideways bending of the stiffener flanges. Thereby the
stiffener cross-section is being distorted as well as the plate between
the stiffeners. The paper presents a simple analytical method for es-
tablishing critical load and mode, thereby using some- slight approxim--
ations. Deformation by shear load is taken into account. The necessity
to account for shear is not specific for this particular structure;
the fact that in general shear lowers the critical Toad of stiffened
panels (in the order of 10% at low slenderness) is not common knowledge.

Numerical illustrations refer to three configurations having every-
thing equal except the shape of the flanges, one of them having symmetric
flanges. The critical load appears to depend very much on the stiffness
of restraint (u), offered by the panel plate to the root of the stiffen-
er web. This stiffness is much better with bonded than with riveted
stiffeners. With symmetric flanges Euler buckling and overall flange
buckling are uncoupled. With asymmetric flanges sideways flange bending
dominates the Euler component of the mode more and more with decreasing
restraint of the web root. Comparison with solutions obtained from
exact or nearly exact methods confirm the accuracy of the method.

Formulae for the stiffness of restraint (o), the shear stiffness
and the structural coefficients occurring in the main equations are

given 1in appendices.
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NOTATION

a [12 (1 - v%) k1? ("—t’l)% A

b, bl’ C, Iy . .

s, t, tl’ " } defined by Fig. 8

e gH

f ' A/A¢

i radius of gyration

k buckling coefficient, defined by (3.12)
kg ' coefffcient,of shear buck]ing,.defined by (3.12)
L ‘ v half-wave ]enéth

no L/g

p critical stress

q (Ay + 3A)/A

defined by Fig. 1

A Af + Aw + Al’ total area per stiffener pitch

A, AL, A cross-sectional area of resp. flange, web,
f2 w71
plate and flange
B, B1 bending stiffness of stiffener wall and plate resp.
E modulus of elasticity
F defined by (3.13)
I moment of inertia
Ie . j‘yz dA of flange
I defined by (3.5)

L - bay Tlength



iv

[ y dA of flange

torsional stiffness of flange

defined by (3.26)

coefficient of restraint of web root, defined by
(3.18)

wH/L

Poisson's ratio

z/H
d( )/dx
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1.

INTRODUCTION

The special feature of the Z-stiffened panel is that the principal
axis of inertia is not perpendicular to the panel plate. Due to this
pecularity the mode in overall buckling by axial compression is not the
pure Euler mode: the deflexion of the stiffeners in the normal direct-
ion is accompanied by sideways bending of the stiffener flange. This
additional deformation causes decrease of the buckling stress as com-
pared to the Euler stress. The mode has some resemblance to torsional
buckling but is different. Torsional buckling is a mode where the cross
section does not deform or deforms so little that it may be assumed to
be rigid. With this type of panel sideways flange bending is being re-
strained by the stiffener web, which thereby deforms out-of-plane and
causes moreover deformation of the plate between the stiffeners. These
latter phenomena have much in common with the local buckling mode but
again there is an essential difference between the two modes. Local
buckling has a short wave mode; then the in-plane deformafions are
negligibly small. The present structure has a Tong wave mode with con-
sequently non-negligible deformation in the plane of the composing
plate strips. ) ’

So it would be incorrect to classify this case under one of the
headings: Euler, torsional or local buckling. The pecularity of the
mode being the sideways flexure of the stiffener flange the mode might
be called "overall flange buckling". This name is certainly appropriate
with the special case where the neutral axis of the flange section is
in the plane of the stringer web. Sideways bending of the flange is in
that case uncoupled from the pure Euler mode. The flange buckles as a
column upon the elastic foundation supplied by out-of-plane bending of
the stringer web. Clearly "overall flange buckling" is here a mode in
its own right independent of the Euler mode. .

With configurations like Z-stiffened panels, where flange bending
causes in-plane deformation of the web the same mechanism is active,
which speaks for the same name in these cases.

The problem of panel buckling ih whatever mode is formulated in




most general terms when allowing for both in-plane and out-of-plane de-
formations of every plate strip of the assembly. The general solution
for the behaviour of a plate strip - assuming sinusoidal deformation
Tongitudinally - contains 4 integrations constants for in-plane and 4
for out-of-plane deformations. At the junction of plate strips the 8
integration constants are related to those of the adjoining strip by 4
conditions of compatibility and 4 equilibrium conditions. The resulting
transcendental equations require a powerful computer for numerical evalu-
ation. This exact method has been developed and applied by W.H. Wittrick
and F.W. Williamst1+2], '

The aim of the present paper is to present a simpler method, apt
even for numerical evaluation by means of the pocket-computer, which
nevertheless yields a very good approximation of buckling stress and
mode and which may be useful for parameter studies.

So as to be able to introduce reasonable schematizations and
assumptions one should imagine how the mode Tooks like. This will be
discussed in chapter 2. The derivation of the equations and their way
of solution is given in chapters 3 and 4. The various types of restraint
at the root of the web are discussed in ‘chapter 5. Chapter 6 gives
numerical results for some related structures together with their dis-
cussion. The Appendices supply the formulae needed for numerical appli-
cation.

. THE BUCKLING MODE AND ITS SCHEMATIZATION

The structure is assumed to be infinitely long and to be supported
at regular intervals L. The compressive stress p is constant. Then the
buckling mode is sinusoidal with the argument mx/%, where & is the half-
wave length £ = L/n, n being integer.

The cross section of the panel shows a large number of identical
stiffeners at constant pitch. The longitudinal edges of the panel are
supported in some way. Then the mode has lateral curvature of the panel
plate. However, the bending stiffness of the plate is very much smaller



than the bending stiffness of the stiffeners, which means that the
energy of lateral bending 1is negligibly small compared to that of
longitudinal bending. Then the edge support affects the buckling stress
negligibly Tittle and the problem of the panel of finite width may be
replaced by the problem of the infinitely wide plate, where all stiff-
eners behave equally. Then the analysis is being confined to the part
of the structure comprising one single stiffener pitch.

A qualitative picture of the buckling mode is given in Fig. 1.
Sideways bending of the flange over the distance V yields positive and
negative strains in the flange as indicated by the symbols + and - res-
pectively. Then the top of the web has negative strain as well. Buckling
occurs under constant normal force, so the negative strain of the top
has to be compensated by positive strain at the root of the web. The
web appears to be curved in its plane such that the stiffeners move
downward the distance -W; V/W < 0. Only when the neutral axis of the
flange falls in the plane of the web (y = 0 e.g. symmetric flange)
flange buckling is not coupled with web bending (W = 0); overall flange
buckling and Euler column buckling are uncoupled. ’ .

Sideways bending V of the flange is being restrained by the web,
which thereby is being bent out-of-plane, v(z). Its rotation @, at the
top forces torsion upon the flange. The web is being restrained at its
root by the Tower flange of the stiffener and the panel plate. The
stiffness of this restraint is of paramount importance for the restraint
of the flange against the deflexion V. Fig. 1 assumes that the stiffen-
ers deflect in the same sense. Then the mode of the plate has S-shape.
The stiffness of the plate against this deformation is greater than the
stiffness against a deformation where the rotations 0 have opposite
sign at successive stiffeners (Fig. 2). In the latter case all deform-
ations of successive stiffeners are opposite, also their vertical dis-
placements W. When the stiffeners force the alternating deflexions W
upon the plate, the plate reacts by applying restraining forces K to
the stiffeners, which reduce their deflexion. So this mode comprises
two effects: lesser restraint against rotation @ and restraint against
deflexion W not occurring in the mode of Fig. 1. Beforehand one cannot



decide which one of the two modes is critical. With the numerical
example, discussed in chapter 6, the case of alternating stiffener
deflexions turned out to be not critical. This mode will not be con-
sidered further in the sequel.

Qut-of-plane deformations occur with flange, web and plate. As to
the flange its deflexion is mainly due to the rotation o of its root:
@ ¥ and to the translation W. In addition a small contribution to its
deflexion occurs due to the curvature near the root, but this deflexion
appears to be negligible in comparison to W - @ y- Therefore it will
be assumed that the out-of-plane deformation of the flange is just
torsion. For convenience the eventually existing flange 1ip will be
assumed to have its centre of gravity in the edge of the flange.

The out-of-plane deformations of web and plate are governed by
the differential equation (for the web)

4 32v
BV v+pt=—ms= 0. ' (2.1)

X

The half-wave length of v is ¢ in the direction of x and in the direct-
ion of z it is of the order H (web height).

Therefore
4 242
4 v [ H
W= 1+0(—)].
a2t 2
Since (H/IL)2 is of the order 10-2 the plate equation may be simplified
to
4 32
0
B2y +ptiy=o. (2.2)
.oz X~ . ,

It replaces the plate equation by a strip theory; the load pt v" is
transmitted by web strips to their edges z = 0 and z = H.

The in-plane deformations are of course curvature of flange and
web on account of the deflexions V and W. The author owes to W.T. Koiter
the hint that the deflexion due to shear is non-negligible in stiffened



3.

3.1.

panels because their shear load carrying area is only a small fraction
of the total area of the cross section. Therefore the deflexion W has
to be subdivided into a part wb due to bending and a part ws due to
shear.

The normal stresses of flange and web are assumed to have linear
distribution. The same assumption for the plate means constant normal
stress because successive stiffeners have equal strains.

Shear stresses are proportional to the gradient of the normal
stresses and follow from axial equilibrium. The shear stiffness derives
from equating the elastic energy of the shear stresses and the work
done by the shear load (Appendix B). The normal stress distribution
depends on V/W, therefore as well the shear stresses and the shear
stiffness.

Summarizing the simplifications and assumptions are:

1. Flange deflexion in the y-z-plane other than due to rotation

and translation is negligibly small.
2. The flange lip is concentrated in tHe edge of the flange.
3. The plate equation of web and plate may be simplified to
Eq. (2.2).

4. Normal stresses are linear in y and z.

5. Finite shear stiffness is taken into account, thereby deriving
the shear stiffness on the basis of assumption 4.

DERIVATION OF THE EQUATIONS

Equilibrium of the element dx of the panel

The normal stresses originate from the deflexions wb and V. The
assumption of Tinear distribution means that the longitudinal dis-
placements u are Tinear in y and z.

With u = u; at the root of the web (y = z = 0) the web has




and the flange

u=up - wb' H-V'y. ' (3.2)

Then the condition that at buckling the normal force remains constant,
therefore that the integral of the stress increments over the total
cross section vanishes, yields

Ut = (1 - q) Hou 317, (3.3)

where q = (A1 + %Aw)/A.
Hence the normal stresses of flange, web and plate are resp.

E [-q H My + (3 - y) V1"

Of=
o, = E[{(1-q) H-2} U+ % V" (3.4)
op = E [(1-q) HH +3V1"

The bending moment in the x-z-plane is
M= fozdA.
After some manupulation M can be written as

M= [E 1 W +ETI V], , (3.5)

b

‘where I =S Haq.
Next we consider the equilibrium of the element dx of the panel
(fig. 3). '

The compressive force P gives the shear load

D = PW'. : ' (3.6)



The equilibrium condition is

M'+D =0, ’ (3
The deflexion by shear ws follows from

D=KW', , (3.

where K is the shear stiffness.
(3.6) and (3.8) yield

whereupon (3.5,7,8,9) give the relation between V and wb.

P/EI

Because k <1 (3.13) shows that V/wb < 0, as has already been con-
cluded from qualitative considerations.

1) As appears from (3.6,8) K is the buckling load at infinite bend-
ing stiffness (Wb = 0).

7)

.9)

"wo_ I m o [
e U TR ). (3.10)
Since
Wb(X) = Wy sin mx/%,  V(x) =V sin mx/2 (3.11)
and introducing the buckling coefficients
™ El 1
= ppp = P/l and kg = K/ ) (3.12)
(3.10) yields
N k/n? I
VI = - — (1 = +—— ) = - F. (3.13)
b T TR T



3.2.

With
ul(x) = U cos wx/% ’ (3.14)

(3.3) and (3.13) yield
2

H
U= (l-q-—5F) T-W.
qH
Also from (3.9,12,13)
VM= - 1 F (1 - k/k). (3.15)
S

Equilibrium of the flange, in-plane

Fig. 4 depicts the in-plane forces and moments acting upon the
element dx, where the moment Mf is taken with respect to y = 0, the
junction between flange and web. The forces exerted by the web on
the flange are R and Q per unit length. R has been accounted for im-
plicity when considering the equilibrium of the element of the total
structure. Only Q has to be established.

The conditions of equilibrium are:

-Q+D' =0,

Mf' +D+p Af V' = 0.
Hence

Q=-M" - pA V" .
Using (3.4)

M- [oydh=El(aHuy -3 V) S+ 1V



3.3.

3.4.

and

) |
Q= E [~ qHS Wy - (Ip - 50) VI™ - p A V™. (3.16)

Equilibrium of the flange, out-of-plane

The point y of the flange has_the displacement in the direction
of z W - @ Y. This generates upon the element dA per unit length of
x the load (Fig. 5)

-pdA (W - y)"

The flange is assumed to be completely rigid in the y-z-plane.
Only the moment with respect to y = 0 has to be considered; it
affects the deformation of the web. The torsional stiffness T however,
is being taken into account (Fig. 5). Then the moment per unit length
is

my = [pSW + (T - p Ie) @1" | (3.17)

Equilibrium of the web

For webs and other pTate strips plate theory is being simplified
to strip theory, the equation (2.2). Fig. 6 shows the load system per
unit length of x. The web is restrained at its root by the lower
stringer flange and the plate. The restraining moment mlis formulated
as

B .
m =ag®, (3.18)

where a is non-dimensional. Appendix A gives the formulae for the
coefficient of restraint a of riveted and bonded joint between flange
and plate.

Since v(x,z) = v(z) sin mx/% the partial differential equation
(2.2) becomes an ordinary one, the non-dimensional form of which is
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=0, . (3.19)

where ¢ = z/H and
a=112 (1- )kt @M | (3.20)
Its general solution is
| vV = C1 cos azg + Czisin ag + C3 cosh ag + C4 sinh az. (3.21)

The boundary conditions are

£=0:v=0, ' (3.22)
from (3.18) ¢ = 0:
2
dv dv
- o =0, (3.23)
o ® :

from (3.17) ¢ = 1:

2
dv 1 1 dv, ,mH\2
oz +glSW+(T-pl)ggl () =0,
from (3.16) ¢ = 1:
3 2 4 2
d v E S 7H H ,mH _

The latter two boundary conditions can be written, thereby using
(3.13,15,20), as ¢ = 1:

2

d_,"z+x%%-vv=0, o (3.24)

4

3
g—% + a4 Zv=0, (3.25)
dz .



1

where
X=]2(1-v2)k2r12/—3—T —kx“z If\(x=“_”) ]
\et3 i +2 3/ C
2
=1z (1= a0t g o (e=aH) 1 (3.26)
At> H
2 I 2 2 A
S 1e2 f H" n f
LS 4 et .o i 4
sl G R B J

4. SOLUTION OF THE EQUATIONS

The 4 boundary conditions. are homogeneous and linear equations in
v and its derivatives, therefore by (3.21) homogeneous and Tinear in
the four integration constants Ci' The equations are

+C,=0 (4:1)

" _
.2.a + 0 —CI_ = O, : (4'2)
E-2—-(X l-cos a-(1+ Y } sin a] + Ei rX 1 cosh a +
L7 e 2 17¢ 1"
Y . ]
+ (1 - —) sinh a} =
2 ]
= COs a + cosh a + ég(sin_a + sinh a) +
+ (cos a - cosh a) (4.3)
a2 ’ ;
c, C, '
T (- cos a +2Z a sin a) o (cosh a + Z a sinh a) =
1 : 1

= sinh a - sin a + Z a (cosh a - cos a). (4.4)
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With given structural dimensions the problem is to solve for the
smallest root k of these transcendental equations in a (n,k). After
making a guess of n and k so as to determine a and F k can be solved
from these equations. Repeating this procedure for other assumed values
of 'k the root can be established by interpolation. This is a rather
tedious method. A much simpler one is the following.

Having chosen n and some values of k the correspbnding values of
F can be solved as indicated in Appendix B. Then a and the coefficients
X, Y, Z occurring in (4.3,4) are known and these equations can be solved
for C2/C1 and C4/C1. Their substitution into (4.2) yields o, the stiff-
ness of the restraint at the root of the web at which the assumed value
~of k is the exact solution.

o= - 2a C/(Cy * Cy). ' ' (4.5)

In this way k as function of o is being obtained from which the
value of k pertaining to a specific o can be established.

. THE RESTRAINT AT THE ROOT OF THE WEB

The magnitude of o has a dominant effect upon k over the range
o < 10, as appears from the numerical example considered in chapter 6
(Figs. 9 and 10). _

With stiffeners bonded to the plate the combined thicknesses of
plate and flange yield a very great bending stiffness of this part of
the stiffener pitch resulting in large value of a, o > 10. Appendix A
section 1 gives the formula for a. Thereby the assumptions have been
made

1. The deformation of the glue larger is neglected and in general

the load diffusion at the edges of the thickened part of the
plate is instantaneous.

2. The effect of p Upon the stiffness of the plate is negligible.
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The overestimation of o resulting from these assumptions has little
effect upon k, because in this range of o dk/da is small, It appears
from Appendix A section 2 that neglect of the load ptazw/ax2 affects
the stiffness negligibly when stiffener pitch is small, as occurring
in heavily stiffened panels, and when rotations @ of successive stiff-
eners are in the same sense.

With riveted flange-plate joint a is in the range of a < 10, where
dk/da is large. So accurate prediction of o is needed. Unfortunately
the riveted joint is not well suited for accurate analysis. The follow-
- ing assumptions have been made (Appendix A section 2).

1. The Tocal joints around rivets may be replaced by a contineous
joint along the rivet line. This line contact is the only
contact between flange and plate.

2. At the rivet Tine the deflexion w and slope sw/3y of flange and
plate are equal, thus neglecting the deformation of the rivets.

3. The effect of the compressive stress p upon the stiffness of
plate and flange is neg11g1b1y, as proven in Appendix A.2.)

When © > 0 the first assumption is 1nadequate, it yields pene-
tration of the edge of the flange into the plate. It means that a
second line of contact will occur near the root of the web. Then
assumption 2 has to be supplemented with the assumption that the.de-
flexions w of flange and plate in y = 0 are equal (Fig. 7b). This
condition results in a considerable increase of o in comparison to the
case @ < 0 (Fig. 7a), where flange and plate lose contact at the web
root. With the numerical example the case @ < 0 yields a, = 2.3
{k = 0.59) and the case @0 >0 o =6.4 (k =0.69). Formulae (A.4) and
(A.9) give oy and o, respectively. ‘

In multi-bay panels successive bays have opposite sign of ®; . In
spite of their unequal restraint they have a common buckling load due to
unequal half-wave lengths. Bays with ¥ < 0 have za < L3 where 0 > 0
lb > L, such that za + lb = 2L. Numerically it means that for some
values of Za and corresponding values of Qb ka and kb pertaining to oy
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and o respectively have to be established so as to find the half-wave
length at which ka = kb'

~ The restraint is weaker when successive stiffeners are buckling in
the opposite sense, because then the lateral half-wave length is equal
to the stiffener pitch in stead of half pitch length (Fig. 2}. However,
as stated in chapter 2, the opposite deflexions W of successive stiff-
eners are being resisted by the plate. Due to this additional restraint
this mode is not critical. However, when the deflexion W is absent this
mode is the critical one. Such is the situation when the flange at the
top is symmetrical. This case is analyzed in Appendix A section 3,
however, without taking into account the effect of edge contact where
@ > 0 (Fig. 7b). Due to the greater Tateral wave length the effect of
p upon the stiffness cannot be neglected. o is given by (A.11).

. NUMERICAL EXAMPLE AND DISCUSSION OF RESULTS

The numerical application refers to the panel of Fig. 8. This
structure is represéntative of heavily loaded panels: the cross-section-
al area of the stiffeners is about equal to that of the plate; the plate
thickness is greater than that of the stiffeners because the width of
the plate strip between successive stiffeners is greater than the widths
of the stiffener strips and high local buckiing stress is to be achieved.

Fig. 8 also shows its model as used in the analysis, the dimensions
of which are: ‘

H = 38.08, b = 18.08, b1 = 27.04, 2s §y7bf§_t = 1.92, t1 = 2.4,

c = 0.3894, L = 540.

It yields i = 14.80 (L/i = 36.5). Hence a = 1.118057 k% n%,
= 0.91914 k* n?,
Appendix A giVes the coefficients of restraint of the web for bond-
ed joint a = 30.3;
for riveted joint (Z-stiffener)'aa = 2.31 (Fig. 7a, 0 < 0) or
= 6.39 (Fig. 7b, ® > 0)s

4

%
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for riveted joint (symmetrical flange) o, = 1.50.

Three flange configurations with equal cross-sectional area have -
been analyzed. . '

I Lipped flange. The cross-section of the lip is c t b.

II Unlipped flange. Its thickness being (1 + c) t.

IIT Symmetrical flange, again with thickness (1 +c)t.
Appendix C expresses the structural coefficients X, Y, Z occurring in
the Eqs (4.3,4) in the dimensions of the panels and gives their numeri-
cal vaTues.

The behaviour of panel III is Teast complex. Here overall Euler
buckling and "overall flange buckling" are uncoupled.

With Euler buckling kS = 7.60 and 9.82 for riveted and bonded
joint respectively. Then the buckling coefficient derives from.

1 1 1
- = — 4+ .
k ke kS

With n 1; ke = 1. Then k = 0.884 and 0.908 respectively for riveted
and bonded joint. So shear distinctly reduces the buckling stress parti-
cularly in this range of Tower slenderness.

With panel III overall flange buckling is not accompanied by de-
flexion W of the stiffener. Neither does it involve stiffener shear.
The mode is just column buckling of the flange on elastic foundation
supplied by the web. Due to the kind of joint between flange and web
bending of the flange entails torsion. The stiffness of the elastic
foundation is strongly affected by the stiffness of restraint at the
web root (a). It is well-known that the critical wave length of columns
on elastic foundation decreases with increasing foundation stiffness.
Fig. 9 gives k as function of a for the wave numbers n = 1, 2, 3. Only..
when o is close to zero the mode n = 1 is critical. Over the range of
a of practical interest n = 2 is critical; with a = 1.50, k = 0.565. .

For two values of a, a large and a small one, Fig. 11 depicts the
mode. When o is small the slope @] at the web root gives the major con-
tribution to the deflexion V of the flange, whereas with very stiff
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restraint this contribution is almost negligible and the deformation of
the web is dominant. This deformation is a measure of the elastic
support offered to the f]énge and consequently of the buckling load.

The numbers in rectangular frame are representative for the curva-
ture or bending moment at root and top of the web. The difference with
non-symmetric flanges is negative curvature at the top. The reason is
that the symmetric flange has much smaller If than the flanges of panels
I and II. Moreover its torsional stiffness is greater than that of panel
I. Hence T - p If > 0, which stabilizes the flange against torsion; the
web forces torsion upon the flange as appears from its negative curva-
ture. ' '

The panels I and II with their asymmetric flanges have coupled de-
flexions V and W. When the elastic foundation of the flange, offered by

the web and its. restraint at the root, is very stiff, this stiffness
keeps the éideways deflexion V down. Therefore with increasing o |V/W|
decreases. This conclusion 1is confirmed by the modes shown in Fig. 11
and by Table 1. The curvature at the top of the web is positive due to
the large If and because pt (dZW/dxz) contributes to the bending moment
of the web. The smaller curvature with panel II is due to its smaller
If and greater torsional stiffness T.

Figs 9 and 10 and Table 1 give k as function of o, also when the
effect of shear is being neglected. With o > 10 the effect of restraint
approaches the effect of infinite rigidity. It concurs with the small
value of @ in Fig. 11. Over the range o < 10 o appears to have the
dominant effect on k. Since with decreasing o V dominates more and more
over W, the effect of shear upon k must decrease. In the range of
o > 10 k is being overestimated some 10% whén neglecting the effect of
shear. '

The large difference of o between riveted and bonded stiffeners
yields much difference of k. Considerable gain of strength is being
achieved when replacing the riveted by a bonded joint. Bonded (a = 30)
has with panel I k = 0.750 and with panel II k = 0.804. Riveted without
"penetration" (a = 2.3) has with the panels I and II respectively
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k = 0.59 and 0.66; with prevented penetration (o = 6.4) k = 0.69 and -
0.75 respectively. . _ _

The better buckling strength of panel II is due to the smaller
eccentricity of the flange with respect to the web and its greater
torsional stiffness. With riveted joint k appears to depend very much
on the more or less doubtful assumptions on the behaviour of the joint.

With these asymmetric stiffeners coupling of stiffener bending W
with flange sideways bending'v is so strong that the mode n = 2 never
becomes critical; the component W of the overall mode dictates the wavé
length.

This method can be checked with some available exact or nearly ex-
act-solutions. Using finite strip method J.H. van der Sloot (Fokker
Aircraft Company) got the results shown in the table. Between brackets
are the values of k read from Figs 9 and 10 at the indicated values of
a, which are usually less than 5% greater. These rather small differ-
ences of k may be partly attributed to small differences of dimensions
of the two models.

I IT
o= 12.7 o= 15.5
bonded joint
k= 0.71 (0.73) | k = 0.75 (0.79)
o= 2.7 a= 4.4
riveted joint
k = 0.59 (0.61) | k = 0.66 (0.715)

However, one case enables comparison of results referring to iden-
tical models and assumptions. W.H. Wittrick has kindly performed a check
with his exact method[l’Z] and applying the programme VIPASA. The model
is the case of unlipped flange and stiffener bonded to plate. For n = 1
the exact solution is kex = 0.797 whereas the presént method yields v
k =0.804. For n = 2, kex = 0.947 and the present method gives k =0.940.
Also the comparison of the modes in these two cases is excellent (Table 2).
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Overestimation and underestimation both are possible. Underestima-

4 (more important with

tion because A4w is being approximated by a4w/3y
n = 2); overestimation by neglecting the effect of p on the stiffness
of the plate and bending of the flange in the plane of the cross-section

(both of 1ittle importance}.
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Table 1

Lipped flange (model I)

k ks - v/W o

0.81 0.889 28.14

0.75 1.170  6.52

shear 0.65 1.637  2.63
neglected | 0.55 2.105  1.446
0.4 2.807  0.607

0.25’ 3.509  0.132

0.76 9.19 0.736 73.3

o bonded 1 475 9.20 0.788 26.4

flange to | 471 921 0.996 7.36

plate 0.5 9.09 1.614 2.12
0.4  7.77 2.566  0.644
0.25 4.62 3.256  0.143

0.71 7.07 0.887 10.06

riveted | 559 ‘685 1.515 2.26
flange to | o4 576 2.482  0.708
plate 0.25 3.58 3.18  0.147

0.9  3.97 2.565 12.25

riveted 0.85 3.70 2.609  4.87
flange to 0.75 3.15 2.687 ~ 1.164
plate 0.7 2.88 2.722 - 0.412
0.68 2.58 2.649  0.187
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Table 2

Comparison with exact mode (model II)

n=1, k =0.797 (0.804)




Fig. 3. Equilibrium of the element dx.
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Fig. 11. Overall flange buckling modes.
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APPENDIX A: THE RESTRAINT AT THE ROOT OF THE WEB

. Bonded stiffeners

Stiffener flange and plate are integral, causing a'very great
stiffness of this part of the stiffener pitch. It will be assumed that
deformation of the glue layer and load diffusion effects at the edges
of the flange are negligible. These assumptions overestimate the stiff-
ness. However, in this range of o dk/do is so small that overestimation
affects k negligibly.

When all stiffeners deflect in the same direction the plate shows
an S-curve between two successive stiffeners (Fig. Al). The bending
stiffness per unit length of the plate is B1 and of the thicker part BO'

The stiffness ratio g=B,/B,= (1+t/t1)-3

As will be shown in section 2 the effect of the compressive stress
p on the stiffness of the plate is negligible. So the Toad pazw/axz may
be disregarded. Then equilibrium of the plate strip 2s requires (Fig. Al)

My =m - 2 Ks;

the restraining moment against rotation 0 at the root of the web is
per unit length

mo=m- my = 2 Ks |

and the stiffness can be established by means of the elementary "beam

formulae", yielding for the coefficient of restraint o, defined by
m

~h1

a = %’ (A.1)

H

o

t, 3
=65 () By (1+v)®[s et

-1
+(1-8) (v} - s)] , (A.2)



A-2

where
v = {2s - bl)/bl'

With the dimensions of the numerical example (Fig. 8) g = 0.1715,
Y = 1.589, a = 30.3.

2. Riveted stiffeners

2.1. Anti-symmetric plate deflexion

The joint between stiffener and plate is thought to be a line-
joint in the center of the flange. Since successive stiffeners have
equal rotation ® and deflexion W the plate deformation is anti-sym-
metric with respect to the point half-way between successive rivet
rows (Fig. A2). ‘

It is being assumed that the deflexions and slopes of flange and
plate at their junction are equal.

The moment my applied by the plate is transmitted to the stiffen-
er somewhere near the center of the flange and has to pass through
the flange over the distance r before reaching the web. So the flexi-
bility of the flange reduces the stiffness of restraint.

The rotation of the rivet line by can be deduced from (A.2) when
putting 8 = 1, which yields the stiffness of the plate

m /Y, = 6 By/s. (A.3)

The additional rotation due to flange bending is

by =M r/B.

S r
Then ®p 120 ¢2 = my (EEI + I—3-),
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3-1
6 r t1

H
s ( Tl ( —r) ~ (R.4)

o=6

With the dimensions of the numerical example and assuming r = %bl

3
6 r t1

?3- = 4.53,

which means that at the assumed geometry the contribution of the
flange to the flexibility of the restraint.is 4.5 times the contri-
bution of the plate. Instead of the stiffness 6 Bl/s it is 1.086 Bl/s,
a = 2.31. The difference in stiffness with bonded stiffeners is
enormous: it is only 1/13-th of the latter one.

As stated before it has been assumed that the compressive stress
affects the stiffness negligibly. This will be verified. '

Similar to Eqs (3.20,21) and accounting for anti-symmetry with
respect to the center y = 0 of the plate

w = C5 sin a; &+ C6 sinh a; &,
where
2 3 ,in : s : '
a; = [12 (1 - V%) k1* () 2 £ =y/s (A.5)
1 t T

The boundary conditions are
y=s: w=20, aw/ay = by ' (A.6,7)

Then the stiffness of restraint offered to the stiffener by the
two adjoining plate strips is

- -1
4 Bl/s 3y (cotgh a; - cotg al) .
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Without p the stiffness is given by (A.3). Therefore p causes a re-
duction of stiffness

n = % a; (cotgh a; - cotg al)—l. ‘ | (A.8)
In the numerical example a, = 0.92 k% n?. Withn=1, k = 0.8
n = 0.996.

n decreases with increasing aps therefore with increasing n and s.
The table illustrates their effect.

n k s |-2s/H a1 n

1 0.8 35| 1.84 0.87 0.99
2 0.8 35| 1.8 1.23 0.985
1 0.8 50| 2.6 1.23 0.98
2 0.8 50|26 1.74 0.940

In view of the much greater importancé of flange flexibility n can be
taken to be unity. S

The assumption of equal deflexions and slopes of plate and stiff-
ener flange at the rivet line has the consequence that the edge of the
flange where it meets the web penetrates into the plate when the ro-
tation 0 > 0. In a multi-bay panel ®] of successive bays has opposite
sign. Therefore the assumption applies to half of the bays, those
where 0 < 0. Those bays where w0 > 0 have to be reconsidered. Intro-
ducing the further assumption that flange and plate have equal de-
flexions in y = 0 (edge of the flange, Fig. 7b)

a=3Hr (4 («+1)+u (4 +1)] x
X [3 (k+ 1) +u (<F+ B+ 1) + K (A.9)

where «k = 2s/r-1, u = B/Bi.



2.2.

With the numerical example k = 4.18,'u = 0.512 and o = 6.39.

Symmetric plate deflexion

Stiffness of restraint is smaller with symmetric than with anti-

‘symmetric plate deflexion. Successive stiffeners are now buckling in

opposite sense. Taking into account the effect of the compressive
stress p the symmetric solution of Eq. (3.19) is

W = C7 cos a, £ + C8 cosh 3 £.

The boundary conditions are again (A.6,7) yielding the stiffness
of restraint offered by the two plate strips

-1
4 Bl/s a; (tgh a; + tg al) .

Without p the stiffness is 2 Bl/s. Therefore p causes a reduction of

stiffness

n=2a (tgha; + tga)) L. (A.10)
This symmetric plate deflexion applies only to the case III of

symmetric stiffener flange, where the critical mode has n = 2.

With the numerical example n = 2, k ~ 0.6 follows from (A.5)

a; = 1.144, n = 0.759. So the effect of p may nct be disregarded.
Bending of the flange adds by = my r/B to by =m s/(2 n Bl);

£, \

*t:r)—l' (A.11)

(%3 [ o

a=2n

w|=

t, 3
() (1+2n

With the numerical example o = 1.50.
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APPENDIX B: THE SHEAR STIFFNESS

The shear stiffness will be established by equating the elastic
energy of shear stresses and the work done by the shear load. Per unit
length of x:

A-[TdA—A—D2~DZ B.1
e =l dh=t = " wr; (B.1)

where Ps is the shear stiffness and as well the critical Toad in the
absence of bending.

With thin-walled structures the shear stresses due to shear load
can be considered to be constant through the wall-thickness. Then t
follows from the equilibrium condition (Fig. Bl)

s
_ o0
(Tt)sb- (rt)SO =- X t ds. (B.2)
50

In this prob]em'o depends on the two curvatures wb", V" (Egs 3.4),
whereas V and wb are related by (3.13) such that V/wb, therefore o and
t and consequently PS depend on the buckling coefficient k.

With 1ipped and unlipped flange the shear flows in the web are

equal:
(Tt)W " E 2
E =-HWb [qu+(q_%)Aw+(1-Q)AwC-%AWC]+
» S Vlll A A
mx V(A Ay ) | (8-3)
1 (tt)
D 2 . ]_ m
F=Hé‘ Ewdg= -H" W™ g (l-9g)A-zA)-SqHY" =
- - I wbm _ IS Vm

and using (3.13)

D=-EI Wb"'(l - F). (B.4)
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Expressing kS into F by means: of the definition (3.13) of F

1 1 1 |
LN . , (B.5) |
ks "k W21 o R

the work done by D is

2
ET w ™ 2
- 3 (ET W™ [(1 -0f 1-F) .
PE n !
2 2
l+c b L (1-F)°_1-F] .
Ky R | 55, (.6
where

(= EH (20 (W, "2
T 2Gt b7 -

The formulae needed for numerical calculation of Ae are the follow-
ing.
~ For the case of lipped flange

(TE)p/E = th° W™ (T + Ty £+ Ty £5) £= y/b (8.7)

Ty = e/b [-1 + (i/e)? (f - 1) F1 (1 + c)
(B.8)

. 2 . 2 .14+
T = e/b [+ (i/e)° F1, T, = -e/b (i/e)° f 17HC F
With the unlipped flange, but such flange thickness t2 that
tb = (1+c) th
To = Uodyippeds T1 = (1 * €} (Ty)y5ppeq0
T2 = (1+2c) (T2)1ipped' (B.8a)

Lipped flange:

2




Unlipped flange:

1
‘ Aefﬁ= '1-+—C K b/H g(T).

B-3

Web (1ipped and unlipped):

(16) /B = % W™ (Ty + Ty £ + T, %),
A A
e[ 1-q. ;0241 o . w 1H
TO —B*Ft[ q + (1/8) #] N T]. _KITO’ T2—'2-E
Aew = K g(T).
Bonded joint (approximate):-
K se2™ , 1-q.,.,.2..2
Rey = 3‘(;2? K; (- q + (i/e)” F)".
Riveted joint:
2 A
,se2[,r 1 t, Al r. 2 t, " 1r
Rey = K (p) [%*mf) G ~G*r3g)eep”
2 t, 2] (1 2 \?
2E D ] (-2 e F)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

AD is a function Bf n, k aqd F, whereas'Ae is function of F only.
AD andvAe both are quadratic in F. Having chosen a value of n and of k
F can be solved from the quadratic equation

Ae = Aef + Aew + Ae]. = AD.

Next the shear>buckling coefficient kS follows from (B.5).

(B.15)



APPENDIX C: THE.STRUCTURAL COEFFICIENTS X, Y, Z

The structural coefficients X, Y, Z occurring in (3.24,25) and de-
fined by (3.26) are expressed in the structural dimensions of the three
types of stiffener: Z-stiffener with Tipped flange (I), Z-stiffener
with thickened unlipped flange (II) and I-stiffener with thickened sym-
metric flange.

Lipped flange

x:g(1_\,)%A2n2[1+c-6(1+v)‘(%)ﬁ%m)xzk]
(3 + c)2 1 b3 e .4 4,1
Y—12(1-\))2+C ?zzﬁz-)n(r'l)
| |
3 2 2
_ b (3 +c)° 1 1 ,e2.1n b
z= ;;2‘{‘ et @ rpaeo

Unlipped flange

X=2(1-v)2(1+c)a%n [(1+’c)2-2(1+ )(%)zxzk]
Y=3(1—v2) (1+c)%=%2;§->\4n4 (é-l)

3 - 2
Z=£i—2-(1+c)'{-%-+111?[1+%(?)2]}%_+%(1+c)

Symmetric flange

X=2(1—\))%(1+c)>\2n2[(1+c)2-%(1+\)) (%%)szk}
Y=0

3
z--L1D0

1 ﬁ;7 (1 + c)‘%? + % (1 +c¢)

With the numerical example where q = 0.75155, f = 7.0756:
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Lipped flange:

(0.045328 - 0.120872 k) n,

X =
Y = 0.066970 n* (+ - 1),
)
Z'= (- 0.45518 + 0.21328 ) T— + 0.65966.

Unlipped flange:

X = (0.087500 - 0.077457 k) n°,
Y = 0.040859 n* (£ - 1),
2
Z = (- 0.29344 + 0.130125 1) "~ + 0.65966

Symmetric flange:

(0.087500 - 0.019365 k) n’,

X:
Y=0
n2
Z = - 0.082058 Tt 9.65966.
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