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ARTICLE

Kibble-Zurek exponent and chiral transition of the
period-4 phase of Rydberg chains
Natalia Chepiga 1,2✉ & Frédéric Mila 3✉

Chains of Rydberg atoms have emerged as an amazing playground to study quantum physics

in 1D. Playing with inter-atomic distances and laser detuning, one can in particular explore the

commensurate-incommensurate transition out of density waves through the Kibble-Zurek

mechanism, and the possible presence of a chiral transition with dynamical exponent z > 1.

Here, we address this problem theoretically with effective blockade models where the short-

distance repulsions are replaced by a constraint of no double occupancy. For the period-4

phase, we show that there is an Ashkin-Teller transition point with exponent ν= 0.78 sur-

rounded by a direct chiral transition with a dynamical exponent z= 1.11 and a Kibble-Zurek

exponent μ= 0.41. For Rydberg atoms with a van der Waals potential, we suggest that the

experimental value μ= 0.25 is due to a chiral transition with z≃ 1.9 and ν≃ 0.47 surrounding

an Ashkin-Teller transition close to the 4-state Potts universality.
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Understanding the nature of quantum phase transitions in
low-dimensional systems is one of the central topics in
condensed matter physics1,2. Over the last decades, the

combination of conformal field theory in 1+1D3,4 and advanced
numerical techniques such as the density matrix renormalization
group (DMRG) algorithm5–8 has proven to be extremely pow-
erful in coming up with theoretical predictions for numerous
fascinating critical phenomenas. In that respect, modern quan-
tum simulators based on Rydberg atoms trapped with optical
tweezers offer a remarkably rich experimental playground to
further investigate quantum physics in 1D. In particular, in a
recent experiment9, the quantum critical dynamics of a chain of
Rubidium atoms 87Rb with programmable interactions has been
probed. The atoms are excited to a Rydberg state by a homo-
geneously applied laser with Rabi frequency Ω, while the laser
detuning Δ controls the population of excited atoms. The quan-
tum many-body Hamiltonian of the system can be written in
terms of hard-core bosons (i.e. bosons with no more than one
particle per site) as

HRyd ¼
X
i

�Ω

2
ðdyi þ diÞ � Δni þ

Xþ1

R¼1

VRniniþR

" #
ð1Þ

where the van der Waals potential between Rydberg states decays as

VR ¼ V
1
R

� �6

: ð2Þ

The competition between the detuning term Δ that favors a high
density of Rydberg states and the blockade leads to a sequence of
lobes of density-wave phases with fixed periodicities. In general,
these periodicities can be any rational number, and in the classical
limit Ω→ 0 they form a Devil’s staircase10, but at finite values of Ω,
the phase diagram is dominated by lobes of integer periodicities
p= 2, 3, 4, …9,11,12, surrounded at least partially by a critical
floating phase for p ≥ 3 (ref. 11). However, according to recent
experiments in which the detuning frequency has been swept for
various interatomic distances a, this floating phase cannot be pre-
sent along the whole boundary for p= 3 and 4 since a direct
transition with a non-integer dynamical exponent z larger than 1
has been detected in the vicinity of the tip of the lobe9.

The transition out of a period-p phase is an example of
commensurate–incommensurate transition, a problem with a
long history that goes back to the investigation of adsorbed
monolayers on surfaces13–15. In these systems the role of Rydberg
atoms is played by domain walls between periodic phases, and
quite remarkably the melting of these periodic phases is a very
subtle problem that has not yet received a full solution. For p= 2,
the transition is known to be generically Ising, while for p ≥ 5 it is
a two-step process through a Luttinger liquid phase (called a
floating phase in the context of adsorbed monolayers) if it is not
first order. The difficult cases are precisely p= 3 and p= 4. In
these cases, along the commensurate line, i.e. the line along
which, in the disordered phase, the wave vector keeps the value
q= 2π/p of the ordered phase, the transition is expected to be
continuous in the three-state Potts universality class for p= 3,
and in the Ashkin–Teller universality class (see below) for p= 4.
Away from this line, the disordered phase is incommensurate. As
pointed out by Ostlund16 and Huse17, this introduces a chiral
perturbation, and the open problem is to understand the effect of
this chiral perturbation on the transition.

For p= 3, the chiral perturbation is always relevant, and the
question is whether it immediately opens a floating phase away
from the Potts point, or whether the transition remains direct and
continuous for a while, but in a new chiral universality class, as
suggested by Huse and Fisher18, with a dynamical exponent z > 1.
Numerical19–23 and experimental evidence14,15 in favor of this

possibility has been obtained in the 1980s and early 1990s in the
context of adsorbed layers, and very recently in the context of
Rydberg atoms9,12,24–26.

For p= 4, the situation is even richer because the chiral per-
turbation is not always relevant13. With four degrees of freedom,
there is in fact a family of universal classes described by the
Ashkin–Teller model in which the local degrees of freedom are
described by two Ising spins σi⊗ τi coupled by an interaction σiσj
+ τiτj+ λσiτiσjτj. The asymmetry parameter λ controls the rele-
vance of the chiral perturbation. Indeed, according to Schulz27,
the crossover exponent ϕ of the chiral perturbation for the
Ashkin–Teller model is given by

ϕ ¼ 3ν
2
þ 1
4
� ν2

2ν � 1
ð3Þ

where ν is the exponent of the correlation length The chiral per-
turbation is relevant if ϕ > 0, i.e. if ν > νc ¼ ð1þ ffiffiffi

3
p Þ=4 ’ 0:683,

irrelevant otherwise. Now, the exponent ν is known exactly as a
function of λ28,29:

ν ¼ 1

2� π
2 ½arccosð�λÞ��1 ð4Þ

At λ= 0, the model is known as the four-state clock model and
corresponds to two decoupled transverse-field Ising chains. In that
case, ν= 1: The chiral perturbation is relevant, and it is known to
drive the system immediately into a critical phase. By contrast, at
the four-state Potts model (λ= 1), ν= 2/3 < νc: The chiral per-
turbation is irrelevant. The critical value of λ below which the
chiral perturbation becomes relevant is given by

λc ¼ � cos
πð ffiffiffi

3
p þ 1Þ

4ð ffiffiffi
3

p � 1Þ ’ 0:9779 ð5Þ

As long as the chiral perturbation is irrelevant, a line of con-
tinuous transition in the Ashkin–Teller universality class can be
expected around the commensurate line until the chiral pertur-
bation becomes relevant. Then the situation is similar to the p= 3
case, with again the possibility of a chiral transition before a
floating phase appears, as emphasized by Huse and Fisher30.
These two possibilities are summarized in the generic phase dia-
grams of Fig. 1. In this figure, λ denotes the parameter of the
Ashkin–Teller model that describes the transition along the
commensurate line, and δ stands for the amplitude of the chiral
perturbation. For Rydberg atoms, δ should be understood as the
distance to the Ashkin–Teller point along the transition into the
disordered phase. For the Ashkin–Teller model itself, the chiral
perturbation is given by δ(σiτj− τiσj), the form used in ref. 27 to
derive the crossover exponent ϕ.

Fig. 1 Scenarios for the phase transition in the presence of a chiral
perturbation. Sketches of the possible phase diagrams of the transition out
of period-4 phase as a function of the parameter λ that describes the
Ashkin–Teller universality class in the absence of a chiral perturbation, and
of the amplitude δ of the chiral perturbation a with and b without a chiral
transition. The width of the Ashkin–Teller (AT) phase has been
exaggerated for visibility. Along the horizontal axis, the transition is always
in the Ahskin–Teller universality class, ranging from the four-state clock
model at λ= 0 to the four-state Potts model at λ= 1.
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Now, for p= 4, the experimental results on Rydberg atoms9,12

are compatible with a continuous transition, with a Kibble–Zurek
exponent μ≃ 0.25. This exponent is related to ν by the relation
μ= ν/(1+ νz), where z is the dynamical exponent. Since between
the clock model (λ= 0) and the Potts model (λ= 1) the exponent
ν decreases from 1 to 2/3, the Kibble–Zurek exponent should be
between 1/2 and 2/5 if the dynamical exponent was equal to 1. So,
according to these experiments, the dynamical exponent has to be
larger than 1. This implies that the transition should be a chiral
Huse–Fisher transition, i.e., that the scenario of Fig. 1a is realized.

In this paper, we investigate this problem in the context of an
effective model for the period-4 phase, the quantum hard-boson
model with two-site blockade (see below). We show that: (i) the
transition along the commensurate line is sufficiently far from the
four-state Potts point to ensure that the chiral perturbation is
relevant; (ii) there is an intermediate floating phase far enough
from this point; (iii) there is evidence in favor of a small region of
chiral transition in between for which we estimate the dynamical
exponent and the Kibble–Zurek exponent. Implications for the
original model of Eq. (1) and for the experiments on Rydberg
atoms are also discussed.

Results
The blockade models. Because of the very steep increase of the
van der Waals potential at short distance, the simultaneous
excitation of atoms at a distance smaller than the so-called
Rydberg blockade radius Rb � ðV1=ΩÞ1=6 is essentially excluded,
a phenomenon known as Rydberg blockade. This means that, on
a chain with lattice parameter a, the interaction between sites i
and j can be considered to be infinite if i− j ≤ r, where r is the
largest integer satisfying r < Rb/a. Keeping only the dominant
next-to-blockade repulsion leads to the following effective
Hamiltonian:

H ¼
X
i

�Ω

2
ðdyi þ diÞ � Δni þ Vrþ1niniþrþ1; ð6Þ

where di (d
y
i ) is an annihilation (creation) operator that acts in a

constrained Hilbert space:

niðni � 1Þ ¼ niniþ1 ¼ ::: ¼ niniþr ¼ 0: ð7Þ
We will refer to this model as the r-site blockade model. When r
= 1, it reduces to the original hard-boson model introduced by
Fendley et al.31. Note also that a constrained Hilbert space
equivalent to r= 2 has been introduced by Huijse et al.32 in the
context of a supersymmetric model on a zig-zag ladder. Quite
generally, the r-site blockade model allows one to discuss period
p= r+ 1 and p= r+ 2 phases and their surrounding (see Sup-
plementary Note 1). The main advantage of these constrained
models is that their Hilbert space grows much more slowly than
that of the original model of Eq. (1), and simulations can be
performed on systems large enough to keep track of small
changes in the incommensurability and to identify the critical
behavior at the transition. Interestingly, the r-site blockade model
can be seen as the limit of Rydberg atoms with infinitely fast
decaying interactions. Indeed, if we consider the model of Eq. (1)
with the interaction

VR ¼ Vrþ1
r þ 1
R

� �m

; ð8Þ

the r-site blockade model corresponds to m→+∞ while the 1/R6

model of Eqs. (1) and (2) is recovered for m= 6.

Overview of the phase diagram for p= 4. As a first step towards
the period-4 phase of Rydberg atoms, let us now turn to the
properties of the two-site blockade model. Our numerical results

have been obtained with a state-of-the-art DMRG algorithm5–8

that explicitly implements the constraints (see “Methods” for
details about the algorithm). They are summarized in the phase
diagram of Fig. 2. There are three main phases: a disordered
phase with incommensurate short-range correlations, and two
ordered commensurate phases with period 3 and 4, respectively.
Note that these three main phases have been accessed in recent
Rydberg atom experiments9,12. There are also small floating
phases close to the ordered phases. In particular, for large values
of Δ, there are two floating phases at the boundaries of the
period-three and period-four phases that come closer and create
an area of extremely high correlation length. It is therefore
probable that the disordered phase eventually disappears and
that, for some parameter range, the two ordered phases are
connected through a single floating phase, as suggested in
refs. 11,12 for the model of Eq. (1). Due to the exponential growth
of the correlation length at the Kosterlitz–Thouless33 phase
transition, an accurate investigation of this scenario would
require simulations beyond our current limitations.

Commensurate line. The transition out of the period-four phase
is the main focus of the rest of this section. Our first task is to
locate the point on the phase boundary where the chiral pertur-
bation vanishes, hence where the transition can be expected to be
described by a conformal field theory. Note that for the original
hard-boson model of Fendley et al.31 this was not necessary
because the three-state Potts belongs to an integrable line, and its
location is known exactly. Here this is not the case, but we can
expect this point to be located at the intersection of the phase
boundary and of the line with wave vector q= π/2 since along
this line the correlations remain commensurate in the disordered
phase so that there is no chiral perturbation. To achieve this goal,
we have extracted the wave vector q (see “Methods”) and have

Fig. 2 Phase diagram of the hard-boson model with two-site blockade. At
the commensurate transition point located at Δ/Ω≃ 1.593 and V3/Ω≃
1.2839 the transition is in the Ashkin–Teller universality class with λ≃ 0.57
(open green circle). Away from it but not too far (for V3/Ω≲ 1.8 and for
Δ/Ω≲ 1.7), our results are consistent with a chiral transition in the
Huse–Fisher30 universality class. Further away from the Ashkin–Teller point
we detect intermediate floating phases bounded by Pokrovsky–Talapov
(PT) and Kosterlitz–Thouless (KT) transitions. Above the Ashkin–Teller
point the width of the floating phase is always smaller than the width of the
gray line. The transition into the p= 3 phase is a direct chiral transition
from the disordered phase at small Δ/Ω and a PT transition from the
floating phase at large Δ/Ω26. For large Δ/Ω, the two floating phases
adjacent to the p= 3 and p= 4 phases eventually merge into a single
floating phase connecting the two ordered phases. Dotted lines are
constant correlation length lines with ξ= 50 (yellow), 100 (purple), and
200 (green).
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mapped the results over the disordered phase to determine the
lines of constant incommensurate wave vector q. These lines are
depicted in Fig. 3a. The line q= π/2 enters the period-four phase
at Δ/Ω≃ 1.593. An accurate estimate of the second coordinate
has been obtained by a finite-size scaling of the order parameter.
It turns out that open boundary conditions favor a boson on the
first and last sites. This effectively acts as a conformally invariant
fixed boundary condition at the critical point and induces Friedel
oscillations in the local boson density. According to boundary
conformal field theory, the profile of these oscillations on a finite-
size chain is proportional to ½N sinðπj=NÞ��d , where the scaling
dimension d= 1/8 for the Ashkin–Teller model34. By scanning
V3/Ω for Δ/Ω= 1.593, we identify a separatrix in the log–log
scaling at V3/Ω= 1.2839 as shown in Fig. 3b. The slope corre-
sponds to d≃ 0.124, in excellent agreement with the scaling
dimension d= 1/8. As a further check that this is a critical point,
we have extracted the central charge by fitting the profile of the
reduced entanglement entropy to the Calabrese–Cardy formula
(see “Methods”), leading to a central charge c≃ 0.96, within 4% of
the conformal field theory prediction c= 1.

The correlation length of the hard-boson model can be simply
obtained by fitting correlations, a straightforward task along the
commensurate line (see “Methods”). The resulting correlation
diverges at the critical point with an exponent ν≃ 0.78. This is the

first indication that λ must be significantly smaller than 1. This is
actually quite natural. Indeed, when λ= 1, the model corresponds
to the four-state Potts model with the same amplitude for all
flipping processes, while for λ < 1 two processes are favored over
the third one by the transverse field term. Such an asymmetry
naturally appears in the hard-boson model due to the two-site
blockade. In the p= 4 phase every fourth site is occupied by a
boson. So each of the ground states, let us call them A, B, C, and
D, corresponds to the location of the occupied sites mod 4. From
Fig. 4 one can see that domains B and D shifted by one site with
respect to the bulk A cost less energy than the domain C shifted
by two sites.

One can also estimate λ directly by comparing the excitation
spectrum of the two-site blockade model with that of the
quantum 1D version of the Ashkin–Teller model (see “Meth-
ods”). This leads to λ≃ 0.57, in excellent agreement with ν= 0.78.
At that point, the chiral transition is relevant, with a crossover
exponent ϕ≃ 0.33. This means in particular that, away from that
point, the transition cannot be a standard continuous transition
in the Ashkin–Teller universality class. Either a floating phase
opens or the transition becomes chiral.

Chiral transition versus floating phase. Quite generally, the
incommensurate wave vector q is expected to approach the com-
mensurate value π/2 with a critical exponent called �β. To the best
of our knowledge the exact value of this critical exponent is not
known for the Ashkin–Teller model, but Huse and Fisher30 argue
that �β> ν. This implies that the product ξ × ∣π/2− q∣ decays to zero
upon approaching the Ashkin–Teller transition. By contrast, if the
transition is chiral, the equality �β ¼ ν should hold, and ξ × ∣π/2−
q∣ is expected to go to some finite value30. When the transition is
Ashkin–Teller or chiral, the exponents of the correlation length ν
in the disordered phase and ν0 in the ordered phase should satisfy
ν ¼ ν0. By contrast, in the presence of an intermediate floating
phase, the correlation length in the disordered phase diverges
exponentially at a Kosterlitz–Thouless33 transition, while the wave
vector q remains incommensurate, so that the product ξ × ∣π/2− q∣
diverges. The commensurate–incommensurate transition between
the floating and the ordered phases is then expected to be in the
Pokrovsky–Talapov35 universality class with critical exponent
�β ¼ ν0 ¼ 1=2.
In Fig. 5 we take a closer look at three cuts across the

transition. Let us start with the vertical cut through the
Ashkin–Teller point identified above at Δ/Ω= 1.593. The critical
exponents ν and ν0 are in good agreement with each other, and
they are also in reasonable agreement with the value obtained for
ν along the commensurate line and with the value of λ. An
accurate estimate of �β is very difficult due to the proximity of the
commensurate value of q in the disordered phase. Nevertheless it
is clear qualitatively, just looking at the curvature, that �β is
significantly larger than ν, in agreement with Huse and Fisher30.
As a consequence, the product ξ × ∣π/2− q∣ goes to zero at the
critical point as shown in Fig. 5c.

Fig. 3 Identification of the conformal point. a Phase diagram with equal-q
lines in the disordered phase extracted for N= 601 (systematically) and for
N= 1201 (in the vicinity of the critical lines). Colors used for equal-q lines
are guides to the eye. The location of the Ashkin–Teller point has been
determined as the crossing point of the critical (green) line and the q= π/2
line (black, open circles). b Finite-size scaling of the amplitude of the
oscillations in on-site boson density in the middle of the finite-size chain.
The separatrix corresponds to the critical point. Inset: Scaling of the
entanglement entropy with the conformal distance d(n) after removing the
Friedel oscillations, leading to a central charge c≃ 0.96.

Fig. 4 Asymmetry of domain walls in the model with two-site blockade.
For p= 4, domains with B or D inside A cost an energy V3 while domains
with C inside cost an energy Δ > V3 since there is one particle less, leading
to an asymmetry in the effective transverse field term.
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The next cut at V3/Ω= 1.35, slightly away but very close to this
Ashkin–Teller point, is presented in Fig. 5d–f. The correlation
length diverges as a power law with similar exponents on both
sides of the transition, but, by contrast to the Ashkin–Teller point,
the critical exponent �β is much smaller than 1, a clear indication
that the chiral perturbation changes the physics immediately
away from the Ashkin–Teller point. Its value is comparable to ν
and ν0, and accordingly, even if it increases slightly towards the
transition, the product ξ × ∣π/2− q∣ seems to remain finite. The
absence of divergence of the product ξ × ∣π/2− q∣ is a clear
indication in favor of the Huse–Fisher universality class.
However, as in the case p= 3, an extremely narrow floating
phase cannot be excluded.

Further away from the commensurate point, the inverse of the
correlation length decays in a very asymmetric way, as we show for
the horizontal cut at V3/Ω= 3.5 in Fig. 5g–i. The numerically
extracted critical exponent ν0 is in reasonable agreement with the
Pokrovsky–Talapov value 1/2, while the product ξ × ∣π/2− q∣ clearly
diverges towards the transition. By fitting the divergence of the
correlation length ξ with the predictions for Kosterlitz–Thouless and
Pokrovsky–Talapov transitions, we estimate the width of the floating
phase to be dΔ/Ω ≈ 3 × 10−3. The physics is very similar on the
other side of the Ashkin–Teller line (see Supplementary Note 3 for
more data).

As a further check, we have investigated the behavior of the
second derivate of the ground-state energy, the equivalent of the
specific heat for quantum systems. If the transition is continuous, it
is expected to diverge with the same exponent α on both sides of the
transition, while if there is an intermediate floating phase it is
expected to diverge with exponent 1/2 at the Pokrovsky–Talapov
transition when coming from the incommensurate phase, and to
saturate with a logarithmic singularity on the other side30. As can be
seen in Fig. 6, the results are fully consistent with a single transition
at and close to the commensurate line, and with an asymmetric
behavior far enough from it. According to hyperscaling, α should be
related to ν at the Ashkin–Teller point by α= 2 (1− ν)≃ 0.44, in
good agreement with the numerical results of Fig. 6a. Interestingly,
α barely changes as long as the transition is continuous, a fact
already noticed and rigorously established for integrable and self-
dual versions of the three-state chiral Potts model36–38.

Kibble–Zurek mechanism and dynamical exponent. To estimate
the Kibble–Zurek exponent μ= ν/(1+ νz), we need both the
dynamical exponent z and the correlation length exponent ν. Along
the commensurate line, the transition is in the Ashkin–Teller uni-
versality class and has conformal invariance, so z= 1. The esti-
mate ν= 0.78 then leads to a Kibble–Zurek exponent μ= 0.44.
Away from the Ashkin–Teller point, the dynamical exponent z can

Fig. 5 Inverse correlation length 1/ξ, wave vector q/π, and product ξ × ∣π/2− q∣ along three different cuts across the transition. a–c Vertical cut
through the Ashkin–Teller point at Δ/Ω= 1.593; d–f, g–i Horizontal cuts at V3/Ω= 1.35 and V3/Ω= 3.5, respectively. Inside the p= 4 phase, the
correlation length is fitted with a power law with critical exponent ν0. In the disordered phase, the correlation length is fitted either with a power law
with critical exponent ν (a, d) or with the KT form ξ / expðC = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gKT � g
p Þ (g), where g is the coordinate along the cut. The wave vector q is fitted with a

power law with exponent �β (dotted lines). Wave vectors q are defined within the error bars ±πξ/N2; and ξ × ∣π/2− q∣ is defined up to ±πξ2/N2. For
points without error bars, the error bar is smaller than the size of the symbol. In the lower panels, the red lines indicate the boundary of the
ordered phase.
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be extracted from ν and α according to the hyperscaling relation for
anisotropic systems: ν+ zν= 2− α. For the cut of Fig. 5d, ν= 0.74.
Assuming that α keeps the value α= 0.44 of the Ashkin–Teller
point, in agreement with the discussion above, leads to z= 1.11.
Across this cut, the Kibble–Zurek exponent is thus given by μ=
0.41, smaller than across the Ashkin–Teller transition. This con-
clusion remains true even if we assume that α slightly increases
away from the Ashkin–Teller point, as suggested by Fig. 6.

Discussion
To make contact with experiments, let us briefly discuss the
implications of the present results for the model with 1/R6 long-
range interactions. As explained above, both models belong to the
same family of models defined by Eq. (8). Let us estimate the effect
of reducing m from +∞ to 6 for r= 2 in the vicinity of the
Ashkin–Teller transition. The critical values of the two-site
blockade are given by Δ/Ω= 1.593 and V3/Ω= 1.2839. This
value of V3 corresponds to a Rydberg blockade radius
Rb=a ¼ 3ðV3=ΩÞ1=6 ¼ 3:1276, near the tip of the p= 4 lobe where
the experiments have been carried out9, and where there is no
evidence of a floating phase11. The critical value of Δ/Ω= 1.593 is
different from that of the Rydberg model at the tip of this lobe
(around 2.39), but this is not surprising since Δ is the chemical
potential in the bosonic language, and its critical value must be
strongly affected by the details of the interactions.

Now let us turn to the nature of the transition, assuming that
there is a portion of boundary without floating phase. The
physical reason behind λ < 1 is the difference in energy cost of
domains shifted by one or two sites with respect to the bulk (see
Fig. 4). In the very simple classical approximation δEB,D ≃ V3

while δEC ≃ Δ. At the Ashkin–Teller critical point, these
expressions lead to δEB,D ≃ 1.2839 and δEC ≃ 1.593 for the
blockade model. Taking into account longer-range interactions,
the energy of domain walls for the Rydberg model can be

estimated as δEB,D ≃ V3− 2V4+ V5 and δEC ≃ Δ− 3V4+ 2V7.
Assuming V3= V ≃ 1.2839 and a 1/R6 decay, we get δEB,D ≃
0.885 and δEC ≃ 0.925. The asymmetry is still present, but it is
smaller, implying that the point where the chiral perturbation
vanishes gets closer to the four-state Potts point. Therefore,
there are two possibilities: (i) λ is still smaller than λc= 0.9779.
Then the chiral perturbation remains relevant, and the transi-
tion immediately becomes chiral until a floating phase emerges;
(ii) the long-range interactions bring the Ashkin–Teller point
close enough to the four-state Potts point so that the chiral
perturbation is irrelevant; then there will be an extended region
of direct Ashkin–Teller transition, followed on both sides by a
chiral transition, and ultimately by a floating phase. Since λc ≃
0.9779 is very close to 1, the first possibility (i) is more likely.
More importantly, the fact that the asymmetry can be expected
to be reduced by long-range interactions and not increased
implies that, if anything, the Rydberg model is further away
from the clock limit λ= 0 where there would be an inter-
mediate floating phase all along the boundary. So our conclu-
sion that there is a portion of the boundary to the period-4
phase where the transition is direct and continuous in the chiral
universality class before a floating phase opens can be con-
sidered as a prediction for the Rydberg model with 1/R6

interactions.
Note that the finite-size effects associated with the restricted

number of Rydberg atoms in experiments9,12 will, if anything,
enlarge the portion without the floating phase. Indeed, if, coming
from the disordered phase, the floating phase starts at an
incommensurate wave vector q, its detection requires the size of
the chain to be significantly larger than the period necessary to
form at least one helix N > 2π/(q− π/2). So, for a finite-size
system, the floating phase can only be detected further away from
the commensurate line than in the thermodynamic limit, and the
transition will look continuous in a larger parameter range,
making the observation of this direct transition easier.

Fig. 6 Behavior of the second derivative of the energy close to the transition line. Effective critical exponent α across a the Ashkin–Teller point and
b, c the chiral transition across oblique cuts perpendicular to the critical line. d Second derivative of the energy per site with respect to Δ/Ω for V3/Ω= 2
around the Pokrovsky–Talapov transition. The results are extracted from the ground-state energy of a chain with N= 1201 sites (blue circles) and N=
2101 sites (red squares), and from the difference between the two (black diamonds). The gray area indicates the expected value of α for a critical exponent
ν≈ 0.78 ± 0.02.
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Finally, let us discuss briefly the consequences for the
Kibble–Zurek experiment. If the transition is chiral, the scaling
becomes anisotropic, but if hyperscaling applies, the correlation
exponent along the chains ν and the dynamical exponent z are
related by ν(1+ z)= 2− α. Let us further assume that, as for the
two-site blockade model and the self-dual three-state chiral Potts
model, the specific heat exponent keeps the value it has at the
Ashkin–Teller critical point α= 2(1− νλ). Then we get ν(1+ z)=
2νλ, where the Ashkin–Teller critical exponent νλis given by Eq. (4).
This implies that ν and z can be deduced from the Kibble–Zurek
exponent μ and the asymmetry parameter λ according to ν ¼
μð1þ 2νλÞ½ �=ð1þ μÞ and z ¼ ð2νλ � μÞ= μð1þ 2νλÞ½ �. Taking the
experimental value μ≃ 0.25 and assuming that λ is close to 1, as
suggested by the small asymmetry of domain walls for Rydberg
atoms, we get z≃ 1.9 and ν≃ 0.47. It will be interesting to see if
these values can be confirmed by a direct numerical investigation of
the model of Eqs. (1) and (2).

Methods
Details about the algorithm. The size of the Hilbert space for a model with two-
site Rydberg blockade can be calculated using a recursive relation
HðNÞ ¼ HðN � 1Þ þ HðN � 3Þ, with the first three elements of the sequence
Hð1Þ ¼ 2, Hð2Þ ¼ 3, and Hð3Þ ¼ 4. So the growth of the Hilbert space with the
system size HðNÞ / 1:466N is much slower than HðNÞ / 2N for an unconstrained
model. In order to fully profit from the restricted Hilbert space we implement the
blockade explicitly into the DMRG. Recently it has been shown that the hard-
boson model with r= 1 can be rigorously mapped onto a quantum dimer model on
a two-leg ladder39 that provides a simple and intuitive way to encode the constraint
into DMRG. Although this mapping is not valid for r > 1, we can rely on the idea of
auxiliary quantum numbers that would preserve the block-diagonal structure of the
local tensors. This is achieved by a rigorous mapping onto an effective model that
spans the local Hilbert space over three consecutive sites on the original lattice as
shown in Fig. 7b. The new local Hilbert space contains four states listed in Fig. 7c.
Because of the overlap, the three possible states of two shared sites can be used as a
quantum label for the auxiliary bond between two consecutive sites of the new
model. By adding a site, for example, by increasing the left environment, one can
change the quantum labels according to the fusion graph shown in Fig. 7d. The
fusion graph for the right environment can be obtained by inverting the arrows. An
example of the label assignment is provided in Fig. 7e.

At the next step, one has to rewrite the hard-boson model given by Eq. (1) of
the main text in terms of new local variables hij i. For example, the boson
occupation number operator ni, which is also equal to (1− ni−1)ni(1− ni+1), can
be written in the new local Hilbert space as a 4 × 4 matrix ~ni with the only non-zero
element ~nið3; 3Þ ¼ 1. The term V3ni−1ni+2 can be written in the new Hilbert space
as a nearest-neighbor interaction V3~pi~qiþ1 where the only non-zero matrix
elements of the operators ~p and ~q are given by ~pð4; 4Þ ¼ 1 and ~qð2; 2Þ ¼ 1. Finally
the constrained flip term

�Ω

2
ð1� ni�2Þð1� ni�1Þðdyi þ diÞð1� niþ1Þð1� niþ2Þ

can be rewritten as a three-site operator

�Ω

2
ð~ai�1

~bi~ciþ1 þ h:c:Þ;

where the only non-zero matrix elements of the operators ~a, ~b, and ~c are given by
~að1; 2Þ ¼ 1, ~bð1; 3Þ ¼ 1, and ~cð1; 4Þ ¼ 1.

With these definitions, the matrix product operator in the bulk takes the
following simple form:

~I : : : : : :

~q : : : : : :

~c : : : : : :

~cy : : : : : :

: : ~b : : : :

: : : ~b
y

: : :

�Δ~n V3~p : : � Ω
2 ~a � Ω

2 ~a
y ~I

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

; ð9Þ

where dots mark zero entries of the tensor. Close to the edges one has to carefully
modify the MPO to properly encode the boundary terms. This requires the
definition of local operators slightly different from those used in the bulk.

There is yet another crucial point that we want to mention. The labels that we
have introduced split the Hilbert space into blocks or sectors and therefore
correspond to some conserved quantity. For the hard-boson model with a single-
site blockade, the quantum labels correspond to the parity of the domain walls. In
the present case, the physical meaning of the conserved quantity is not as obvious.
However, the only relevant information for us is that the conservation of this
abstract quantity requires at least three sites. In other words, by acting with any
term (read flip term) on a two-site MPS, one necessary changes one of the out-
going labels, while the flip term applied on three consecutive MPS keeps all external
labels fixed. As a consequence, neither single- nor two-site DMRG routines are
compatible with the presented constraint implementation, and one has to go for at
least three-site updates. At a glance this might look costly with a local Hilbert space
of dimension 4 since it leads in principle to an MPO operator of size 7 × 7 × 64 ×
64. However, taking into account all the constraints on three sites, the projected
three-site MPO is only of size 7 × 7 × 9 × 9.

The explicit implementation of two-sites blockade allows us to reach systems
with up to N= 3001 sites systematically (and N= 4801 sites occasionally), keeping
up to 2000 states.

Calabrese–Cardy formula. According to Calabrese and Cardy40 the entanglement
entropy in finite-size chain with open boundary conditions scales with the block
size l as

SLðlÞ ¼
c
6
log dðlÞ þ s1 þ log g; ð10Þ

where dðlÞ ¼ 2L
π sin πl

L

� �
is the conformal distance; s1 and log g are non-universal

constants. The presence of Friedel oscillations caused by the fixed boundary con-
ditions is also reflected in the entanglement entropy profile. In order to remove the
oscillations we follow ref. 41 and construct the reduced entanglement entropy:

~SNðlÞ ¼ SNðlÞ � ζhnl�1nlþ2i; ð11Þ
where ζ is a non-universal constant in front of the leading local correlations
between nearest allowed neighbors adjusted to best remove the oscillations. The fits
are performed using sites sufficiently far from the edges (l, L− l≫ 1).

Comparison with the Ashkin–Teller model and estimate of λ. To estimate λ
directly, one can compare the excitation spectrum of the two-site blockade model
with that of the quantum 1D version of the Ashkin–Teller model defined in terms
of Pauli matrices σx,z and τx,z by the Hamiltonian:

HAT ¼ �PN
j¼1

σxj þ τxj þ λσxj τ
x
j

� �

�β
PN�1

j¼1
σzj σ

z
jþ1 þ τzj τ

z
jþ1 þ λσzj τ

z
j σ

z
jþ1τ

z
jþ1

� �
;

ð12Þ

at its critical point β= 1. The spectra have been obtained by targeting several states
(up to 11) at every DMRG iteration42. In Fig. 8a we show the energy spectrum of
the Ashkin–Teller model for N= 60 with fixed A–A boundary conditions. We
compare these results with the spectrum of the constrained model with N=
201 sites. Since the velocity is a non-universal constant, one cannot compare the
absolute values of the gap. However we find that the structure of the spectrum in
the hard-boson model corresponds to the structure of the Ashkin–Teller spectrum
at λ≃ 0.57 (red line in Fig. 8a). In Fig. 8c we further compare the finite-size scaling
for hard-boson (red) and Ashkin–Teller model at λ= 0.57 (green) and at λ= 1
(four-state Potts, blue) and the agreement with λ= 0.57 is quite good.

The comparison can be made even more systematic by re-scaling both spectra
with respect to the lowest excitation energy as explained in the Supplementary
Note 2.

We compute the energy spectrum in a chain with open and fixed boundary
conditions. There are two reasons for that. First, DMRG is well known to be more
efficient for open boundary conditions than for periodic ones. Second, the number
of conformal towers of states that appears in the spectra of periodic or anti-periodic

Fig. 7 Rigorous mapping onto a model that preserves the block-diagonal
structure of tensors. a Local Hilbert space of the original model li

		 

. The

open (filled) circle stands for an empty (occupied) site. b Rigorous mapping
onto a model with a local Hilbert space spanned over three consecutive
hard bosons that consist of four states sketched in c. The index of the new
site corresponds to the index of the middle site. d Fusion graph for the
recursive construction of the left environment; for the right environment the
direction of the arrows should be inverted. e Example of the label
assignment in MPS representation on two consecutive tensors (green
circles) written for the selected state.
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chains are usually larger than the number of towers selected by fixed boundary
conditions. However, we have to establish the correspondence between the
different boundary conditions in the hard-boson model and in the original
Ashkin–Teller model. In the hard-boson model, the simplest way to fix the
boundary is to force the first and the last sites to be occupied. If the total number of
sites is 4k+ 1 the same state is favored at each edge, corresponding to the A–A
boundary condition in the Ashkin–Teller model. If the total number of sites is 4k
or 4k+ 2, we expect A–B and A–D boundary conditions. They are expected to give
the same spectrum (assuming that states B and D have equal weight in the
transverse field applied on A, while C has a factor λ). Finally, if the total number of
sites is 4k+ 3, we expect to observe the spectrum of the A–C boundary condition.
Numerical results for A–C and A–B/A–D boundary conditions are provided in the
Supplementary Note 2.

We extract the correlation length critical exponent along the commensurate line
which, close to the transition, is given by V3/Ω= 0.3645Δ/Ω+ 2.825. Since we
expect a direct transition the critical exponent has to be the same on both sides of
the critical point. However, the pre-factor is non-universal. We therefore fit our
numerical data with:

jx � Δcjν ´ ½aθðx � ΔcÞ þ bθðΔc � xÞ�;
where a, b, Δc, and ν are fitting parameters; and θ(x) is the Heaviside function: θ(x)
= 1 if x > 0 and zero otherwise. The results are presented in Fig. 9a.

We compare the values of λ and ν obtained to fit the hard-boson model with the
conformal field theory result of Kohmoto et al.28,29 in Fig. 9b. The agreement is
very good.

Extraction of the critical exponent α. In order to extract the specific heat critical
exponent α we look at the divergence of the second derivative of the ground-state
energy density d2e/d(Δ/Ω)2. In order to check the finite-size effects we take the
energy per site e= E/N extracted from the total ground-state energy E for finite
chains with two values of the number of sites: N= 1201 and N= 2101. We also
consider the difference between the two ground-state energies E2101− E1201 to
suppress the edge effects and get a better estimate for the bulk energy per site as
(E2101− E1201)/900. Approaching the Ashkin–Teller point the specific heat should
diverge as ∣Δ− Δc∣α. The effective exponent αeff close to the transition can thus be
obtained as the slope of log d2e=dðΔ=ΩÞ2 with respect to log jΔ� Δcj. The results
are presented in Fig. 6a, where the pink line shows the location of the critical point.
According to the hyperscaling relations α= 2− 2ν and to our estimate of the
correlation critical exponent ν ≈ 0.78 ± 0.02, the specific heat critical exponent is
expected to be α ≈ 0.44 ± 0.04. This corresponds to the gray area in Fig. 6a, showing
that our results for α are in reasonable agreement with this estimate at the
Ashkin–Teller point.

Far enough from the Ashkin–Teller point, the transition is expected to take
place through an intermediate floating phase. At the Pokrovsky–Talapov point, the
second derivative of the energy is expected to be very asymmetric, with a
divergence with exponent 1/2 on the incommensurate side and no divergence on
the commensurate side30. The results of Fig. 6d obtained for V3/Ω= 2 are in good
agreement with these predictions.

Extraction of the correlation length and of the wave vector. In order to extract
the correlation length and the wave vector q, we fit the boson–boson correlation

function to the Ornstein–Zernicke form43

COZi; j /
e�ji�jj=ξ
ffiffiffiffiffiffiffiffiffiffiffiji� jjp cosðqji� jj þ φ0Þ; ð13Þ

where the correlation length ξ, the wave vector q, and the initial phase φ0 are fitting
parameters. In order to extract the correlation length and the wave vector with a
sufficiently high precision, we fit the correlation function in two steps. First, we
discard the oscillations and fit the main slope of the decay as shown in Fig. 10. This

Fig. 8 Identification of the Ashkin–Teller parameter λ from the conformal tower of states. a Excitation spectrum of the Ashkin–Teller model as a function
of λ for N= 60 and A−A boundary conditions (black). Reg line indicate the point where the Ashkin–Teller spectrum resembles the structure presented in
b. b Excitation spectrum of the hard-boson model with N= 201 sites (red). c Conformal towers of states for hard-boson (red), Ashkin–Teller at λ= 0.57
(green), and four-state Potts as Ashkin–Teller with λ= 1 (blue). The tower is plotted with respect to the lowest excitation energy.

Fig. 9 Extraction of the correlation length exponent ν and comparison
with Ashkin–Teller model. a Inverse of the correlation length along the
commensurate line. b Critical exponent ν as a function of the Ashkin–Teller
asymmetry parameter λ. The dark blue line shows the exact result of
refs. 28,29. The open red circle is the numerical result of this work ν≃ 0.777
(result for N= 3001 shown in panel a, finite-size error do not exceed
±0.02) and λ≃ 0.57 ± 0.01 as shown in Fig. 8.
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allows us to perform a fit in a semi-log scale logCðx ¼ ji� jjÞ � c� x=ξ � log ðxÞ=2,
which in general provides more accurate estimates of the correlation length on a long
scale. Second we define a reduced correlation function

~Ci;j ¼ Ci;j

ffiffiffiffiffiffiffiffiffiffiffiji� jjp
e�ji�jj=ξþc

ð14Þ

and fit it with a cosine ~Ci;j � a cosðqji� jj þ φ0Þ as shown in Fig. 10b. The agree-
ment is almost perfect: The DMRG data (blue dots) are almost completely behind the
fit (red dots). Fitting the correlations over different windows shows that the error on
the correlation length does not exceed 3%, and that the wave vector q is determined
with a precision O(10−6). However, the main source of error in the case of q is not the
fit itself, but finite-size effects. If the correlation length was infinite, q would exhibit
finite-size steps of width 2π/N, leading to an error bar of π/N. But if the correlation
length is smaller than the number of sites, this is a clear overestimate. Indeed the q
vector adapts close to the boundary, and the steps in the q vector in the bulk are
significantly rounded and disappear in the limit of small correlation length. To take
this effect into account, we include a factor ξ/N into the error, leading to an error bar
of the order πξ/N2.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that support the findings of this study is available from the corresponding
author upon reasonable request.
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