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Abstract. Phylogenetic networks are important for the study of evolution. The number of
methods to find such networks is increasing, but most such methods can only reconstruct
small networks. To find bigger networks, one can attempt to combine small networks. In this
paper, we study the Network Hybridization problem, a problem of combining networks
into another network with low complexity. We characterize this complexity via a restricted
problem, Tree-child Network Hybridization, and we present an FPT algorithm to
efficiently solve this restricted problem.

Keywords: Phylogenetic networks, Network hybridization, Tree-child networks, FPT algo-
rithms

1 Introduction

Evolutionary histories are often represented by phylogenetic trees, and more recently, by phylo-
genetic networks. Knowing the evolutionary history of a species is vital for understanding their
biology. Therefore, it is important to have methods for finding phylogenetic networks that accu-
rately represent the true evolutionary histories. Many methods exist to find evolutionary histories;
some are purely combinatorial, others have a likelihood component as well. Here, we focus mainly
on the purely combinatorial problems.

One classic combinatorial method is to solve Hybridization: given a set of trees, find the
simplest network that displays these trees [1]. Unfortunately, the problem is NP-hard, even on
inputs of two trees [2]. For this problem, it is assumed we can construct accurate phylogenetic
trees for small parts of the genomes of the studied taxa. When the input consists of only two or
three trees, it can be solved relatively efficiently—EPT time [17, 8]—even though the problem is
already NP-hard in that case. For an input consisting of three trees or more, there is still an FPT
algorithm [9], but it is not practical. In these cases, it is useful to limit the search space to networks
with a restricted structure, such as tree-child networks [7], or temporal networks [6].

Another combinatorial approach for finding phylogenetic networks is to combine smaller net-
works. The smaller networks are often assumed to have certain properties. For example, it may be
assumed that we are given all strict subnetworks containing the full set of leaves. In that case, it
is possible to reconstruct a level-k tree-child network from all its level-(k − 1) subnetworks [15].
Another assumption could be that the input consists of all subnetworks obtained by removing
exactly one leaf [11]. Instead of having almost all leaves, the subnetworks can also be allowed to
have only few leaves. For example, low level networks can be reconstructed from their full set of
binets [5, 12], trinets [16, 10] or quarnets [4].

In practice, it may not be easy to find all subnetworks. This renders many of the previously
mentioned methods useless. Furthermore, these methods typically only work for low level networks.
This means that they cannot be used when the phylogenetic signal comes from a complicated
evolutionary history, or if there is some randomness in the data, complicating the data as well.

In this paper, we combine networks that all contain the full set of leaves, but we do not assume
we have all the subnetworks of the network we want to find. The problem we solve is analogous
to Hybridization, but with networks as the input, Network Hybridization: Given a set of

? Research funded by the Netherlands Organization for Scientific Research (NWO), with the Vidi grant
639.072.602.



networks with taxa X, find a network N with minimal reticulation number, that displays all
input networks. Since this is a generalization of the Hybridization problem, the problem remains
NP-hard in general, even for inputs of two networks. We show that for the restricted problem
on tree-child (topologically restricted class of networks; defined formally in Section 2) inputs and
output, we can use tree-child sequences to obtain an FPT algorithm. This FPT algorithm is an
extension of the one introduced in [7] in which they considered tree inputs; the tree-child sequence
approach was first introduced in [14]. We also comment briefly on how some measure of an optimal
solution to the Network Hybridization problem can be characterized by solving this restricted
problem.

Structure of the paper We start with a quick introduction of relevant concepts from mathematical
phylogenetics in Section 2. Then, in Section 3, we formally introduce Tree-child Network
Hybridization and prove its relation to tree-child sequences. This section also relates this problem
to the more general Network Hybridization. In Section 4.1, we lay the theoretical foundation
to extend the algorithm in [7] that takes inputs of trees to also work for inputs of networks.
As a last theoretical section in the paper, we present an FPT algorithm that solves Tree-Child
Network Hybridization (Section 4.2). We conclude the paper with a discussion, including some
open questions (Section 5).

2 Preliminaries

The main objects of study for this paper are phylogenetic networks. These graphs are used in
biology to represent evolutionary scenarios for a given set of species.

Definition 1. A (rooted phylogenetic) network on a finite set of taxa X is a directed acyclic
graph with

– one node of indegree-0 and outdegree-1, the root;
– nodes of indegree-1 and outdegree-0 labelled bijectively with X, the leaves;
– nodes of indegree-1 and outdegree-2, the tree nodes;
– nodes of indegree greater than 1 and outdegree-1, the reticulations.

If all the reticulation nodes have indegree-2, the network is called binary. An edge uv is called
a tree edge if v is a tree node or leaf, and a reticulation edge if v is a reticulation. The vertex u is
the parent of v, and v is the child of u. The reticulation number r(N) of a network N is the total
number of reticulation edges minus the total number of reticulations.

A network is stack-free if every reticulation has a child that is a tree node or a leaf. A network
is tree-child if it is stack-free and every tree node has a child that is a tree node or a leaf. We now
define some relevant notation for local structures in phylogenetic networks.

Definition 2. Let N be a network on X and x, y ∈ X two leaves. Then we say N has a cherry
{x, y} if the parent of x is the parent of y; we say that N has a reticulated cherry (x, y) if the
parent of x is a reticulation, and the parent of y is a parent of this reticulation. If (x, y) is a cherry
or a reticulated cherry in N , then it is called a reducible pair.

Tree-child sequences are built on the notion of reducing cherries and reticulated cherries from
networks.

Definition 3. Let N be a network on X, and (x, y) a pair of leaves. Let px and py denote the
parents of x and y in N , respectively Then reducing (x, y) in N results in a network N(x, y)
obtained as follows:

– If {x, y} is a cherry in N , remove x and the pendant edge pxx, and suppress px if it has become
a degree-2 node;

– If (x, y) is a reticulated cherry in N , remove the reticulation edge pypx and suppress px or py
if it has become a degree-2 node.

– Otherwise, N(x, y) := N .



The reversal of reducing cherries and reticulated cherries can be done by adding ordered pairs
of leaves to the network.

Definition 4. Let N be a network and let (x, y) be reducible pair. Then we may construct N
from N(x, y)—also called add (x, y) to N(x, y)—by applying the following.

1. If x is a leaf in N(x, y) (i.e., if (x, y) is a reticulated cherry in N), and
(a) if p, the parent of x in N(x, y), is a reticulation then add a node q directly above y, and

add an edge qp.
(b) otherwise, add nodes p and q directly above x and y respectively, and add an edge qp.

2. If x is not a leaf in N(x, y) (i.e., if (x, y) is a cherry in N) then add a labelled node x, insert
a node q directly above y, and add an edge qx.

The above notion of adding an ordered pair of leaves (x, y) to a network N is well-defined if y is
already a leaf in N . If this is indeed the case, we may obtain a network from a sequence of ordered
pairs by iteratively adding ordered pairs to an existing network. To do so, we impose the following
condition on our sequence of ordered pairs: The second coordinate of each pair has to occur as a
first coordinate in the remainder of the sequence, or as the second coordinate of the last pair. Then,
the following procedure constructs a network from a sequence.

Procedure ConstructNetworkFromSequence(S)

Input: A sequence of ordered pairs S = (x1, y1) · · · (xn, yn);
Output: The network that can be constructed from S;

1 Set N to be the tree on one leaf yn;
2 for i = n, . . . , 1 do
3 if xi is a leaf of N then
4 if the parent of xi is a reticulation then
5 Let px denote the parent of xi;
6 else
7 Subdivide the incoming edge of xi with a node px;

8 Subdivide the incoming edge of yi with a node py;
9 Add the edge pypx to N ;

10 else
11 Subdivide the incoming edge of yi with a node py;
12 Add a new node labelled xi to N ;
13 Add the edge pyxi to N ;

14 return N ;

Note that because we only add reticulation edges to existing reticulation nodes wherever pos-
sible (Line 4), the network obtained by using the above procedure is always stack-free. Imposing
another condition: no first coordinate leaf is used as a second coordinate in the remainder of the
sequence on the sequence ensures that the network we obtain is tree-child. With this in mind, we
formally define a tree-child sequence.

Definition 5. A tree-child sequence (TCS) is a sequence of ordered pairs of two leaves such that
the following conditions hold:

– the second coordinate of each pair has to occur as a first coordinate in the remainder of the
sequence or as the second coordinate of the last pair;

– no first coordinate leaf is used as a second coordinate in the rest of the sequence.

Let S be a TCS, that involves the leaves X. Then, the weight of S is w(S) = |S| − |X| + 1.
Given a sequence of ordered pairs S = S1S2 · · ·S|S|, we let NS denote the network

NS := (· · · ((NS1)S2) · · ·S|S|−1)S|S| = NS1S2 · · ·S|S|.



We introduce some notation for subsequences of a sequence S. For i ∈ [|S|], we use the following
notation for subsequence of S. The ith ordered pair of S is Si = (xi, yi). The first i ordered pairs
in S is denoted by S[:i] = (x1, y1), . . . , (xi, yi). The subsequence of S without the first i ordered
pairs is denoted by S[i+1:] = (xi+1, yi+1), (xi+2, yi+2), . . . , (xn, yn). We say that the leaves x1, . . . , xi

are forbidden for S[:i]. Forbidden leaves do not appear as a second coordinate leaf in a TCS (by
the second condition of TCSs).

We say S reduces N to the leaf x if NS is the tree with the single leaf x. Similarly, let N be a
set of networks, then we denote by NS the set of reduced networks {NS : N ∈ N}, and we say S
reduces N to x if NS is the one leaf tree x for all N ∈ N .

We call a sequence S′ of ordered pairs a partial TCS if there exists a TCS S such that S[:i] = S′

for some i.

S = (3, 4)(2, 1)(2, 4)(3, 1)(1, 4)(1, 4)

1 2 3 4 1 2 3 4 1 2 3 4 1 3 4 1 4

(3, 4) (2, 1) (2, 4) (3, 1) (1, 4) (1, 4)

41 4

N NS[:1] NS[:2] NS[:3] NS[:4] NS[:5] NS[:6]

Fig. 1. A binary tree-child network N (grey and black) reduced to a leaf 4 by a tree-child sequence S.
The reduction is shown as a sequence of networks NS[:i] for i = 0, 1, . . . , 6 from left to right, in which an
element of S is applied to the network successively. Each element of S reduces a pair in N . An example
of a cherry (3, 1) can be seen in the network NS[:3], and a reticulated cherry (3, 4) can be seen in the
network N . The subnetwork of N consisting of the black edges is also reduced by S, and the embedding
can be constructed by building both networks simultaneously and keeping track of the edges added by the
pairs that change the subnetwork (black pairs and arrows).

3 Network Hybridization

In this section we formally define the Tree-child Network Hybridization problem, which
asks to find a tree-child network with minimal reticulation number that displays all input tree-
child networks on the same set of taxa. We generalize the results presented in [14] (they considered
inputs of trees while we consider inputs of networks) by showing how this problem relates to the
more generalized problem of Network Hybridization and also to the Tree-child Weight
problem. For the Tree-child Network Hybridization problem, it turns out that there is not
always a solution for some given inputs; we also comment on when this is the case.

We start by defining what it means for a network to display another network.

Definition 6. Let N be a network on the set of taxa, X. A network N ′ on Y ⊆ X is a subnetwork
of N if N ′ can be obtained from N by deleting reticulation edges, removing leaves not labelled by
Y , and suppressing all degree-2 nodes in the resulting subgraph. If N ′ can be obtained from a
subnetwork of N by contracting edges, then we say N displays N ′. Given a set of networks N on
some subsets of the taxa X, then we say that N displays N if N displays all networks in N .

If a network N ′ on X is a subnetwork of another network N on X, then an embedding of N ′

into N is the mapping of the nodes of N ′ to the nodes of N such that the leaves of N ′ are mapped
to the leaves of N with the same labels, and the edges of N ′ are mapped to edge-disjoint paths
of N . Our main focus of this paper is to solve the following problem.

Tree-child Network Hybridization
Input: A set of rooted tree-child networks N on X.
Output: A tree-child network that displays N with minimal reticulation num-
ber if it exists, NO otherwise.



Given an optimal tree-child network to the Tree-child Network Hybridization problem,
one may find a TCS that reduces it. We will show that the weight of such a TCS is equal to the
weight of an optimal solution to the following related problem.

Tree-child Weight
Input: A set of rooted networks N on X.
Output: A minimal weight TCS that reduces N if it exists, NO otherwise.

LetN be a set of networks on X. The reticulation number of an optimal solution to Tree-child
Hybridization is denoted htc(N ). The weight of an optimal solution to Tree-child Weight is
denoted stc(N ).

For a set of trees T , the relation htc(T ) = stc(T ) holds. We will extend this result for network
inputs. We first recall some key lemmas from [13]. The first lemma loosely states that each TCS
reducing a set of networks N gives a tree-child network with corresponding reticulation number
that displays N . The second lemma gives the reverse statement: each tree-child network that
displays a set of networks N gives a TCS of corresponding weight that reduces N .

Lemma 1 ([13], Lemma 8). Let N and N ′ be a tree-child network. Suppose there is a TCS S
that reduces both N and N ′, such that each element of S that reduces a pair in N ′ also reduces a
reducible pair in N . Then N ′ is a displayed by N .

Lemma 2 ([13], Corollary 4). Let N,N ′ be tree-child networks on X such that N ′ is displayed
by N . If a TCS S reduces N , then S also reduces N ′.

Unlike when the input consists of only trees, a solution to Tree-child Network Hybridiza-
tion does not always exist when the input may also contain networks.

Definition 7. A set of tree-child networks N are tree-child compatible if there exists a tree-child
network that displays all networks in N .

Our next step, is to prove that there is a strong connection between tree-child compatibility
and TCSs.

Lemma 3. Let N be a set of tree-child networks on X. Then N is tree-child compatible iff there
exists a TCS that reduces N . Furthermore, if a solution exists, then htc(N ) = stc(N ).

Proof. Suppose that N is tree-child compatible. Then there exists a tree-child network N that
displays N , with minimal reticulation number. Now let S be a TCS for N . By Lemma 2, S also
reduces all displayed networks of N , and hence it reduces N . Furthermore, the weight of S is equal
to the reticulation number of N by Lemma 3 from [13], (originally proved slightly less strong in
[14]).

Now suppose there exists a TCS S that reduces N . Let N be the tree-child network that can be
constructed from S. Then, by Lemma 1, N displays N . Because N is the network corresponding
to S, the reticulation number of N is equal to the weight of S.

3.1 The existence of a tree-child solution

In the previous subsection, we have found a strong connection between Tree-child Network
Hybridization and Tree-child Weight for feasible solutions. Not all inputs, however, are
feasible. Here, we investigate the feasibility of inputs, and how to deal with infeasible inputs.

Lemma 4. Let N be a tree-child network with reticulated cherry (x, y), then any TCS that reduces
N must contain the pair (x, y).

Proof. Suppose S is a TCS that reduces N . The only ways to reduce the reticulated cherry (x, y)
are by either reducing it directly with the pair (x, y), or by first turning it into a cherry {x, y} and
then reducing it with a pair (x, y) or (y, x). This second option, however, leads to a contradiction:
To make the reticulated cherry into a cherry, we must reduce a pair of the form (x, ·); however,
any sequence that includes (x, ·) and later (y, x) cannot be tree-child.
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Fig. 2. Two networks N = {N1, N2} that are tree-child incompatible (black parts only). The network M
displays N , but it is not tree-child. By adding leaves Z = {3, 4} to M , we get the network MZ which is
tree-child. Then, adding these leaves in the right places to N1 and N2, we get the set of networks NZ ∈ N+

on X ∪ Z, that are displayed by the tree-child network MZ .

Using the connection between tree-child compatibility and the existence of TCSs, we can prove
an obstruction to tree-child compatibility of Lemma 5. This obstruction will turn out to be quite
valuable in the proofs in the rest of this paper, as it allows us to quickly check whether a set of
networks is tree-child compatible.

Lemma 5. Let N1, N2 be tree-child networks on the same set of leaves X. For any pair of leaves x, y,
if N1 contains the reticulated cherry (x, y) and N2 contains the reticulated cherry (y, x), then N1

and N2 are not tree-child compatible.

Proof. Let N be a tree-child network that displays both N1 and N2. Then any TCS S for N reduces
both N1 and N2. By Lemma 4, the sequence S must contain the pair (x, y), because N1 has the
reticulated cherry (x, y); similarly, S must contain (y, x). This means S is a TCS, but it includes
both pairs (x, y) and (y, x), a contradiction. Hence we conclude that N1 and N2 are not tree-child
compatible.

Even if an input is infeasible, we still desire a network that displays all input networks. For
this purpose, we can relax the tree-child constraint on output (and input) of the Tree-child
Network Hybridization problem, giving rise to the following problem.

Network Hybridization
Input: A set of rooted networks N on X.
Output: A network that displays N with minimal reticulation number.

This problem can be viewed as the natural extension of the classic Hybridization problem for
trees. Linz and Semple show that Hybridization can be solved by adding leaves in the right
place to all input trees, and then solving Tree-child Hybridization [14]. This also holds for
the network versions of these problems, as the solution to Network Hybridization can be
made tree-child by adding leaves, and all networks displayed by a tree-child network are tree-child
networks as well (Figure 2).

4 An Algorithm for Tree-child Network Hybridization

In this section, we give an FPT algorithm for Tree-child Network Combination. We extend
the algorithm given in [7] by allowing for inputs to be networks, and by looking for reducible pairs
within networks rather than cherries in trees. Given an input N of tree-child networks, we first
look for trivial reducible pairs. We show that it is safe to reduce trivial reducible pairs as soon as
we encounter one, in any order. We then branch on all possible non-trivial reducible pairs of the
network, and by showing that the total number of possible reducible pairs at each branching point
is at most 8k for the reticulation number k of the optimal solution, we show that the running time
of the algorithm is O((8k)k · poly(|X|, |N |).



4.1 Counting Cherries

Trivial pairs The algorithm in [7] reduces trivial cherries (a pair of leaves {x, y} that appear
as a cherry in any input tree containing x and y) whenever possible. Here, only looking at trivial
cherries is not sufficient. For an input of networks, we will need to reduce trivial reducible pairs
(trivial pairs for short) whenever possible. A trivial pair is a pair of leaves (x, y) such that all
networks either only have the leaf y, or they have a reducible pair (x, y). In the following two
lemmas, we prove that it is safe to reduce such a pair as soon as we encounter one.

Lemma 6 (Move to the left). Let N = {N1, . . . , NI} be a set of tree-child networks on a
common set of leaves, and let S(a, b)(x, y)S′ be a TCS for N . Suppose that for each N ∈ NS we
have either x is not a leaf in N , or (x, y) is a reducible pair of N , and there is at least one network
such that the latter holds. Then there is a TCS for N starting with S(x, y) of length equal to that
of S(a, b)(x, y)S′.

Proof. Suppose b = x. Then there must be a network in NS that has both the reducible pairs
(x, y) and (a, x). This can only occur if a = y: as x is the first as well as the second element of a
reducible pair, it must form a cherry with another leaf, namely the leaf y. However, S(y, x)(x, y)S′

is not a TCS, which contradicts our assumption that S(a, b)(x, y)S′ is a TCS for N .
Hence, for the rest of the proof, we assume b 6= x. In this case, S(x, y)(a, b)S′ is a TCS. It

remains to prove that it reduces N . This is clear if {x, y} ∩ {a, b} = ∅. Observe that a 6= y, as
otherwise S(a, b)(x, y)S′ would not have been a TCS to begin with. Therefore, we still need to
check the cases a = x and b = y.

If a = x and a network has both reducible pairs (x, b) and (x, y), then this network has a
reticulation with reticulated cherries (x, b) and (x, y). The order of reducing these pairs obviously
does not matter for such networks: both options remove the reticulation edges between the parents
of b and y, and the parent of x. For a network N that only has the reducible pair (x, y) after S
(and not (x, b)), the network NS(x, y)(x, b) is a subnetwork of NS(x, b)(x, y) = NS(x, y). This
means S(x, y)(x, b)S′ also reduces N [13]. Hence if a = x, the sequence S(x, y)(a, b)S′ is a TCS for
N .

Now suppose b = y. Let N be a network that has both reducible pairs (a, y) and (x, y). But
all tree nodes of N are of outdegree-2; this implies that every leaf can be the second coordinate
of at most one reducible pair. Therefore such a network cannot exist, and thus this case is not
possible.

Lemma 7 (Trivial pair reduction). Let N = {N1, . . . , NI} be a set of tree-child networks on
a common set of leaves such that there exists a TCS SS′ for N . Suppose x, y are leaves such that
for each N ∈ NS we have either x not in N , or (x, y) a reducible pair of N , and there is at least
one network such that the latter holds. Then there exists a TCS S(x, y)S′′ of length equal to SS′

that reduces N , or if y is forbidden after S and there is a sequence of the form S(y, x)S′′′ of the
same length as SS′ that reduces N .

Proof. To reduce a network with reducible pair (x, y), the sequence S′ must contain either (x, y)
or (y, x). Let S′i be the first occurrence of such a pair.

First suppose S′i = (x, y). Then for each intermediate set of networks NSS′[:j] for j < i we have

that all the networks in the set either do not contain x, or have the reducible pair (x, y). Hence,
by repeated application of Lemma 6, there is a sequence S(x, y)S′′ for N . This sequence has the
same length as SS′, because it is simply a reordering of the pairs.

Now suppose S′i = (y, x), then x cannot have been the first coordinate in any pair of S, so all
networks in NS contain x. Furthermore, S′ does not contain the pair (x, y), as this would violate
the assumption that SS′ is a TCS. Hence, each network in NS has a cherry or reticulated cherry
on x and y, which is ultimately reduced by a pair (y, x) in S′. Suppose a network N ∈ NS does
not have the cherry {x, y}. Then it has the reticulated cherry (x, y). To make this into a cherry, so
that it can be reduced by (y, x), the sequence must first contain a pair of the form (x, z). However,
this implies S′ first contains (x, z) and then (y, x), which contradicts the fact that SS′ is a TCS.
Hence, we may assume that all networks in NS have the cherry {x, y}.

If y is not forbidden after S, we can switch the roles of x and y in the remaining part of the
sequence S′ to get a new TCS SS∗ for N . In S∗, the first occurrence of (x, y) or (y, x) is S∗i = (x, y),



and we are in the previous case. If y is forbidden after S, repeated application of Lemma 6 on SS′

and S′i gives a sequence S(y, x)S′′′ for N .

Bounding reducible pairs in networks with all leaves In the algorithm in [7], a bound on
the number of cherries after having reduced all trivial cherries was required to compute the running
time. Here, we require something similar; we require a bound on the number of reducible pairs
after we have reduced all the trivial pairs. [7] prove such bounds by first focusing on the case where
all input trees have the same leaf set. We do the same, by first focusing on the case where all input
networks have the same leaf set.

Let N be a set of networks. Then the set of displayed trees of N is the set of all trees that are
displayed by the networks of N .

Lemma 8. Let N = {N1, . . . , NI} be a set of tree-child networks on a common set of leaves such
that there exists a TCS S for N . If N does not contain any trivial pairs, then the set of displayed
trees of N has no trivial cherries.

Lemma 9 ([7] Lemma 10). Let T be a set of phylogenetic trees with leaf set X such that there
is a tree-child network N with k reticulations that displays T . If T has no trivial cherries, then
the total number of cherries of the trees in T is at most 4k.

Lemmas 8 and 9 gives the bound on the number of reducible pairs for networks with common
leaf sets.

Lemma 10. Let N be a set of tree-child networks with leaf set X such that there is a tree-child
network N with k reticulations that displays N . If N has no trivial pairs, then the total number of
reducible pairs of the networks in N is at most 8k.

Proof. Each reducible pair of a network is a cherry in one of its displayed trees, and the set of
displayed trees is displayed by the solution network N as well. Hence, by Lemma 9, there are at
most 8k reducible pairs in the trees, and therefore at most 8k reducible pairs in the networks.

Bounding reducible pairs in general Recall that the algorithm will build a TCS by successively
appending reducible pairs; it terminates upon finding the shortest possible sequence that reduces
all the input networks. In the process, it branches on all possible non-trivial pairs that the input
network may have. Depending on the sequence that is being built, it is possible that leaves that
exist in some of the input networks (after reduction by the existing sequence) may have already
been deleted from others. Here, we show that even for these instances, it is still the case that the
number of possible reducible pairs that we can branch on is bounded by 8k. This result follows
directly from Lemma 7 of [7]: we change the wording of the statement slightly to accommodate for
network inputs.

Lemma 11. Let N be a set of tree-child networks on X, and let S = (x1, y1), (x2, y2), . . . , (xr, yr)be
a TCS for N with weight k. For any j ∈ [r] ∪ {0}, either there exists a trivial pair of NS[:j], or
NS[:j] has at most 8k reducible pairs.

The idea of the proof is as follows. Let j be such that NS[:j] has no trivial pairs. Then we find

a set of tree-child networks N̂j on X with the same set of reducible pairs as NS[:j] and tree-child
hybridization number at most k. By Lemma 10, this shows that NS[:j] has at most 8k reducible
pairs.

The set of networks is constructed by adding back each missing leaf to each network in NS[:j]

at the root. The order in which they are placed at the root is the same as the order in which these
leaves appear as first element in S[:j]. Now, we may construct a TCS of the same weight as S that
reduces this set of networks. By first reducing the part that corresponds to the part in NS[:j], and

then the leaves placed by the root, we have a TCS that reduces N̂j of weight at most k:

(xj+1, yj+1), (xj+2, yj+2), . . . , (xr, yr), (x1, yr), (x2, yr), . . . , (xj , yr).

An example of the corresponding networks and their embeddings can be found in Figure 3.



N N ′ N̂2 N̂ ′2

1 2 3 4 1 2 4

S = (4, 3)(1, 2) ◦ (4, 5)(3, 2)(3, 5)(1, 2)(2, 5) Ŝ = (4, 5)(3, 2)(3, 5)(1, 2)(2, 5) ◦ (4, 5)(1, 5)

3

1

2

4

31 2 435 5 5 5

Fig. 3. A set N = {N,N ′} of tree-child networks on the set of taxa {1, 2, 3, 4, 5}, with a TCS S that
reduces it. A set N̂2 = {N̂2, N̂

′
2} of tree-child networks obtained by reducing the first two elements of S

from N , and reattaching the tail of the deleted edges (red edge) to the root edge, in the order that they
were deleted in (as explained in the sketch proof of Lemma 11). The sequence Ŝ is a TCS of the same
weight as S, obtained from S by deleting the first two elements and appending these two elements to the
end of the sequence, for which we replace the second coordinate of the elements by 5 (the leaf that appears
as the second coordinate element in the last element of S.

4.2 Adapting the algorithm

Our algorithms are the same as those presented in [7], except for the following changes.

– The input set of trees T is changed into an input set of tree-child networks N ;
– trivial cherries are now trivial pairs;
– In line 4, the stop condition of a non-pickable reticulated cherry is added;

The first change is necessary for the algorithm to take an input consisting of networks. The
second change is necessary as not all reducible pairs are cherries anymore, when the input consists
of networks. The while-loop that reduces all the trivial pairs is still correct in the algorithm,
because there is an optimal sequence that first reduces all trivial pairs (Lemma 7). The last change
makes sure we stop when the reduced input NS cannot be fully reduced using a TCS that can be
appended after the prefix S.

Otherwise, the algorithm is still correct. Indeed, the algorithm branches over all non-trivial
pairs, to find a shortest sequence that reduces all input networks; and this shortest sequence
corresponds to a network with minimal reticulation number that displays all input networks. Fur-
thermore, the running time follows as each branch-out is over at most 8k pairs, and the search
depth is at most k.

Theorem 1. Let N be a set of tree-child networks on a set of taxa X. If there exists a tree-child
network with at most k reticulations that displays N , then it can be found in O((8k)k·poly(|X|, |N |))
time using TreeChildNetwork(N , k).

5 Discussion

In this paper, we have introduced Network Hybridization, the problem of finding a network
with minimal reticulation number that displays a set of networks. We showed that the Tree-child
Network Hybridization problem, in which we restrict our inputs and output to be tree-child
networks, can be solved by making slight adjustments to the FPT algorithm presented in [7].

In practice, our algorithm can be sped up using the heuristic improvement that was introduced
in [7]. We may consider branch reduction, in which we ignore parts of the search tree where no
better solution can be found.

For this problem, FPT is essentially the best we can do, because solving the Network Hy-
bridization problem for an input set of tree-child networks is NP-hard. This follows from the fact
that it is already NP-hard for an input set of trees. It has recently been shown that if all level-
(k − 1) subnetworks of a level-k tree-child networks are given, this network can be constructed



Procedure TreeChildSequence(N , S, k)

Input: A collection N of tree-child networks, a partial TCS S, an integer k;
Output: An optimal TCS SS′ of weight at most k for N if such a sequence exists; Fail otherwise;

1 while There exists a trivial pair (x, y) in NS with y not forbidden by S do
2 Set S = S(x, y);

3 Set N ′ = NS;
4 if some network in N ′ has a cherry (x, y) with x, y forbidden or a reticulated cherry (x, y) with y

forbidden then
5 return Fail;

6 else
7 Set n′ = |{x ∈ X : x is a leaf in N ′}|;
8 Set k′ = |S| − |X|+ n′;
9 Set C = {(x, y) | (x, y) is a reducible pair of some network in N ′};

10 if |C| == 0 then
11 return S;
12 else if |C| > 8k or k′ ≥ k then
13 return Fail;
14 else
15 Set Sopt = Fail;
16 foreach (x, y) ∈ C with y not forbidden by S do
17 Set Stemp = TreeChildSequence(N , S(x, y), k);
18 if Stemp 6= Fail and (Sopt = Fail or (Sopt 6= Fail and w(Stemp) < w(Sopt))) then
19 Set Sopt = Stemp;

20 return Sopt;

Procedure TreeChildNetwork(N , k)

Input: A collection N of tree-child networks, an integer k;
Output: A tree-child phylogenetic network N on X that displays N with reticulation number at

most k, if such a network exists; otherwise None;
1 Set S = TreeChildSequence(N , ∅, k);
2 if S == Fail then
3 return None;

4 else
5 Set N = ConstructNetworkFromSequence(S);
6 return N ;

in polynomial time [15]. In other words, the Tree-child Network Hybridization problem is
easy to solve when we are given all level-(k − 1) subnetworks of a level-k network. This suggests
that the problem becomes easy if the difference in reticulation number between the inputs and
the output network is bounded. We wonder if this is still true for networks that are not tree-child,
and therefore it would be interesting to see whether the Hybridization problem is FPT with
this difference in reticulation number as parameter. And, if this is the case, whether the current
algorithm can be proven to have this running time.

Recall that a TCS is a sequence of ordered pairs with two conditions imposed on them: the
first condition ensures that we obtain a network from the sequence upon using the Construct-
NetworkFromSequence algorithm; the second condition ensures that the network we obtain is
tree-child. Upon removing this second condition from sequences of ordered pairs, we obtain what is
called a cherry-picking sequence [13]. Networks that can be reduced by a cherry-picking sequence
are called orchard networks [13, 3]. A natural extension of the results we have presented in this
paper would be to consider the following problem.



Orchard Network Hybridization
Input: A set of orchard networks N on X.
Output: An orchard network that displays N with minimal reticulation num-
ber.

Ideally, in Algorithm TreeChildSequence, we would simply remove the tree-child condition
to obtain an algorithm which works for orchard networks as well. However, simply doing so could
potentially result in a much higher running time, as we do not have a bound on the number of
reducible pairs for orchard networks (see Figure 4). Nevertheless, solving Orchard Network
Hybridization could lead to better upper bounds for the network hybridization number, and the
algorithm could still be efficient in practice. In this light, this paper has taken the first step towards
finding good solutions for Network Hybridization.

x1 x2 x3 xn1−1 xn1

y1 y2 y3 yn2yn2−1yn2−2

z1 z2 z3 zn2−2 zn2−1 zn2

Fig. 4. An orchard network with n1 +n2− 1 reticulations such that the set of displayed trees have at least
n1n2 cherries.
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