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ABSTRACT  
 

In the field of civil infrastructure, Structural Health Monitoring systems are implemented more and more 

frequently with the aim to safeguard the safety and service-life of structures such as bridges and tunnels. 

Changes in the integrity of the material and/or structural properties of this class of structures is known to 

adversely affect their performance, which can also be observed from the structures’ dynamic response, such as 

the natural frequencies, damping ratios and mode shapes. The procedure to obtain these response parameters is 

known as modal analysis. Two methods for obtaining these parameters are compared in this paper, one based on 

a careful analysis of measured vibration sensor data, and another one is based on a structural calculation using a 

Finite Element Method (FEM). 

 

The dynamic modal characteristics of a structure can be obtained by using vibration-based damage identification 

techniques such as Stochastic Subspace Identification (SSI). The SSI technique is capable of extracting modal 

parameters from output-only measurements, i.e. using raw data collected by simply monitoring a structure under 

its normal load. In this paper the application of SSI for the “Hollandse Brug”, which is a six-lane Dutch concrete 

highway bridge under in-service conditions, is described. The bridge is equipped with a sensor network of 145 

sensors, including 34 vibration sensors (geo-phones). This paper demonstrates how the key modal parameters 

can be extracted by applying SSI to the sensor readings. 

 

To assess the quality of the sensor-based results, the modal parameters derived using SSI are compared with the 

results obtained from Finite Element Method (FEM) calculations. For the FEM calculation, the computer 

program Scia Engineer is used. The results of the two methods agree well, which shows that the SSI technique 

under output-only and in-service conditions is an effective tool for modal analysis, and thus a valuable method 

to be used in structural health monitoring systems. 
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INTRODUCTION  

 

The work reported in this paper is conducted as part of the InfraWatch program, which is a cooperative research 

project between the data analysis group of Leiden University and the materials & Environment group of Delft 

University of Technology. The aim of the project is to develop methods that can be used to assess the structural 

health of concrete bridges, by means of both data-driven and structural analysis of high-resolution sensor 

recordings measured under in-service conditions. The test-case of the project is a major Dutch highway bridge 

that was recently refurbished, and fitted with an extensive sensor network for determining strain, vibration and 

weather parameters. Because modal parameters are informative and stable indicators for structural health, 

determining these modal parameters for bridges is an important issue in the InfraWatch project. Tracking modal 

parameters over the course of the life span of a bridge will offer a handle to monitor the progress of degradation. 

InfraWatch is part of a larger nationally funded program, known as IS2C (Solution for Sustainable 

Construction), which includes a range of topics related to the aging of infrastructures, such as proof loading, 



Alkali-Silica Reaction (ASR) and Chloride penetration. The current paper reports the bridge data used, the data 

analysis, the structural analysis and ends with a modal analysis of the two approaches, being the data driven 

approach and the FEM approach.    

DESCRIPTION OF THE BRIDGE 

 

The bridge in this project, shown as Figure 1, is called Hollandse Brug, which is a concrete bridge, built in the 

late sixties, and opened in 1969. This bridge forms the motorway connection between Amsterdam and the north-

east of the Netherlands. The bridge is composed of 7 spans, with a total length of 354 meters. As shown in Table 

1, each span contains 9 pre-stressed prefab girders, which are connected with in situ concrete and reinforcement 

steel in transverse direction. In addition, two in situ post-tensioned cross girders are present to reduce rotation 

and torsion of the girders.  

 
Figure 1. The Hollandse Brug 

 

 
                                           Figure 2. The layout of the sensor network on the Hollandse Brug 

 

Dilatation joints are installed between the girders in longitudinal direction. Due to this connection, the girders 

can deform freely, and imposed deformations do not influence the internal stresses. Due to these deformation 

properties, the girders cannot transmit internal forces, and the bridge must be calculated in separated spans. 

  

                                                      Table 1. Parameters of Hollandse Brug (one span only) 

Parameters Value Unit 

Weight of  the girders 2830 Kg/m 
Number of  girders 9 - 
Weight of  the bridge deck 500 Kg/m

2
 

Width of  bridge deck 34 m 
Total  bridge deck weight 43000 Kg/m 
Elastic modulu 38500 MN/m

2
 

Total bending stiffness 650*10
9
 Nm

2
 

Girder length 50.55 m 

 

In the last decades, the condition of the Hollandse Brug decreased dramatically, and after an inspection of TNO 

(the Dutch National Research Institute) in 2007, the bridge was considered ‘unsafe’. Heavy traffic was blocked 

from the bridge until a necessary renovation was finished. During renovation, the width of the bridge was also 

increased with extra girders. Due to these girders, an extra traffic lane in both directions could be realized. In 

addition to the renovation and the extra girders, a sensor network was installed underneath the first span of the 

bridge. The monitoring network consists of 34 geo-phones, 91 strain gauges, and 20 temperature sensors. These 



sensors were installed at three cross-sections along the width of the bridge. The placement of sensors is shown 

in Figures 2-3. Furthermore, a weather station and a camera were installed. 

 

 
Figure 3. Sensor locations of one of the three cross-sections 

 

DATA DRIVEN CALCULATION 

 

Modal analysis is a procedure that extracts model parameters (dynamic characteristics) of a structure from its 

measured response data. Modal analysis was originally used for Experimental Modal Analysis (EMA), primarily 

applied to aerospace and mechanical structures, where the structures are excited by controlled dynamic forces. 

The responses to these forces are then recorded, and the modal parameters are obtained based on both input and 

output measurements (Renders 2012). Due to improvements in computing capacity, technological advances and 

developments in sensors and data acquisition systems, these analysis techniques can also be applied in Structural 

Health Monitoring (SHM) systems for civil infrastructures. In SHM, modal analysis is often applied as a form of 

Operational Modal Analysis (OMA) (Zhang et al. 2012). The major difference between OMA and EMA is that 

the input forces of OMA are unknown, and only the output measurements are available. Considering a highway 

bridge under normal in-service conditions, the input forces may include various vehicles and environmental 

effects, such as wind and temperature changes, influences which are difficult to measure or quantify. 

Unfortunately, various techniques upon which EMA relies are invalid for OMA. 

 

Driven by the demand for assessing the health of civil structures, a number of powerful techniques for OMA 

have been developed. Some common techniques are the Peak-Picking method, the Auto Regressive-Moving 

Average Vector model (Bodeux and Golinval 2001), the natural excitation technique (Next) (James 1993; James 

1995), the Random Decrement Technique (Ibrahim 2001), the Frequency Domain Decomposition (Brincker et 

al. 2001) and the Stochastic Subspace Identification (SSI) (Van Overschee and De Moor 1996, Peeters and De 

Roeck 1999). The SSI algorithm is known as one of the most robust methods for OMA measurements, and has 

already been successfully applied to infrastructures under operational conditions, such as bridges (Peeters and 

De Roeck 2000a, Thai et al. 2007), towers (Foti et al., 2012; Peeters and De Roeck 2000b), buildings (De Roeck 

et al. 2000; Bakir 2011). 

 

The SSI Method 
 

Stochastic state space model 

 

The SSI method is especially suited for operational modal parameter identification when only output 

measurements are available. In the text below, the core steps of the SSI method is discussed. A detailed 

explanation is beyond the scope of this paper and can be found in the reference (Van Overschee and De Moor 

1996, Peeters and De Roeck 1999). The dynamic system of a vibration structure can be modeled by the 

following discrete-time state space model: 

 																																																		���� = ��� + 	
� +��																																																																																																																(1�) 																																																				�� 		= ��� + �
� 	+ �� 																																																																														(1�) 
 

where ��  is the measurement of � at discrete time instant �; ��		is the state vector; 
� is the input vector; A is the 

discrete state matrix, B is the discrete input(system control influence coefficient) matrix, C is a real output 



influence coefficient matrix and D is the out control influence coefficient matrix; �� is the process noise due to 

disturbances and modeling inaccuracies and models also the white noise input; ��  is the measurement noise due 

to sensor inaccuracy; Here the process noise w�  and measurement noise v�	 are assumed to be zero-mean, white 

and with covariance matrices. 

 

                                              � ������ � �� ! � !"# = 	 � $ %%! &� '� 																																																																						(2) 
 

where E is the expected value operator and '�  is the Kronecker delta. The sequences �� and ��are assumed 

statistically independent of each other. In practice, the input vector 
� is not measured, and only the response of 

a structure is measured, so it is impossible to distinguish 
� from the process noise �� and the measurement 

noise	�� .  By implicitly modeling u� with the noise terms	w�, v�, the discrete-time stochastic state space model 

can be represented as: 																																																		���� 	= ��� 	+ ��																																																																																						(3a)                                                                          																																																				�� 					 = ��� 	+ v�																																																																																							(3b) 
 

Here the noise terms ��, ��  still follows the white noise assumptions. One drawback of the stochastic state 

space model is that if the input contains some dominant frequency components except for the white noise, these 

frequency components will appear as poles1 of the state matrix A. 

 

Estimation of state matrices 

 

Based on Eq. 3, there are several techniques that can be used for system identification through ambient 

measurements. The technique employed in this paper is called data-driven stochastic subspace identification. All 

the output measurements are organized in a block Hankel matrix / ∈ &123×5 with 26 block rows and 7 columns. 

Every block consists of � rows. For statistical reasons, it is assumed that 7	 →	∞ The block Hankel matrix / can 

be represented as: 

/ = 	 �95
:
;;
;;
<

�= �� ⋯ �5?��� �1 ⋯ �5⋯ ⋯ ⋯ ⋯�3?� �3 ⋯ �3�5?1�3 �3�� ⋯ �3�5?��3�� �3�1 ⋯ �3�5⋯ ⋯ ⋯ ⋯�13?� �13 ⋯ �13�5?1@
AA
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B
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where 
�
95 is the scaled factor, P� is stands for the past output matrix, PQ represents the future output matrix. 

The key element of the data-driven SSI is the projection of the row space of the future outputs into the row 

space of the past outputs. This projection can be defined as: 

 

R3 = PQP�	 =	PQP�!(P�P�!)SP�																																																																									(5)		where	(•)S	represents	the	pseudo-inverse	of	a	matrix.		
The projection R3 can be factorized  

 

																						R3 = 	d3	e= 	=
:
;<

��A��1⋯��3?�@
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where  d3  is the observability matrix,  and  e= represents the Kalman filter state sequence at time lag zero. 

With the help of the singular value decomposition (SVD), the projection R3 can be further decomposed as: 

 

                                                 
1
Poles can be understood as peaks in a spectrum, which represent modes. 



R3 = h%i! = 	 (h� h1) C%� 00 %1K Ci�
!

i1!K 	≈ 	h�%�i�																																																(7) 
 

The order m of the system can be determined by neglecting the smaller singular values in %1, and the 

observability matrix d3 and Kalman filter state sequence e=can be estimated by: 

 dn3 =	h�%��/1																																																																																														(8�) 									en= =	%��/1i�! 																																																																																													(8�) 
 

The system parameter matrices � and � can be obtained based on the estimated observability matrix dn3: 
 � = dn3�Sdn31																																																																																																		(9�) � = 	dn23 																																																																																																							(9�) 
 

where dn3�denotes d3without the last � rows, dn31 represents dn3 without the first � rows, and dn23 stands for the first � 
rows of d3 . 
 

Modal parameters 

 

The modal parameters are derived from the system parameter matrices � and �: � = 	rst3ur?�																																																																																											(10) 
v3 = 	 |w3|2x 																																																																																																						 (11) 
y3 = 	&z(w3)|w3| 																																																																																																 (12) 
{ = �r																																																																																																								(13) 

where t3 are the discrete time poles, w3 = 	 |}	(~G)∆! 	are the continuous poles, v3 are the natural frequencies, y3 are 

the damping ratios, { is the mode shape matrix. 

 

The stabilization diagram 

 

It is assumed that all the input forces of the SSI procedure are white noise and the length of the recording is 

infinite. In practice, the measurements used for SSI are limited, and usually contain some other dominant 

frequency components. As shown in Eq. 7, the order of the system is obtained by ignoring the smaller singular 

values, which is usually higher than the actual system order. All of these factors may introduce spurious, 

numerical poles to the system. To criticize the physical and the spurious, numerical poles, the stability diagram 

is introduced. The basic idea of the stabilization diagram is to iterate the system order n from a lower value to 

the maximum order. It is assumed that the lowest order is unstable, so the modal parameters of current order 

with those of one order lower are compared. If the differences are under user defined limits, then this order is 

considered to be a stable order. The limits are defined as: 

�v� 	− 	v�?�v� � < 	 �6�Q%																																																																																									(14) 
�y� − y�?�y� � 	< 	 �6��%																																																																																									(15) 

�1 − 	���(�, � − 1)" < 	 �6����%																																																																																(16)	 
 

where � > 1 denotes the model order, v is the frequency, y is the damping ratio, limQ % is the frequency limit, �6��% is the limit for the damping, �6����% is the limit for the modal assurance criterion (MAC). 

 The MAC value ranges from 0 to 1. 0 means that there is no similarity between the compared mode shapes, and 

1 means these two mode shapes are consistent. The MAC can be defined as: 

 

���(�, � − 1) = 	 |{��{�?�|1({��{�)({�?�� {�?�)																																																																									 (17) 
 

STRUCTURAL  CALCULATION 

 



The mode properties can be calculated using measurement data, but also by using structural properties. 

Structural calculation has been used to model the behaviour of the Hollandse Brug as well. The calculations are 

mainly based on the preserved blue prints, which were made in the mid-sixties. These drawings contain 

information about the dimensions and properties of the bridge, including reinforcement and prestressing details. 

Properties which are not present in the drawings are based on a site visit or based on information obtained from 

bridges of the same age. The computer program Scia Engineer (Nemetschek_Scia 2011) is used for the 

structural calculation. This program is based on the finite element method (FEM), which includes line and 

surface elements. The two-dimensional elements contain additional properties for approximating the three-

dimensional properties of the actual deck. In addition, it is possible to apply a certain vertical distance between 

elements to include the correct properties. The bridge is modelled as plate with a constant width, which is the 

deck, and internal edges, which are the girders of the bridge, as shown in Figure 4. The girders are located 

underneath the deck, so that the structural properties are calculated correctly. The moment of inertia of the 

bridge is calculated automatically by the program, and validated using manual calculation. 

 

 
                           Figure 4. Model Figure 5. Elements FEM 

 

The calculation method is based on the Mindlin-Reissner plate theory (Durban, Givoli, Simmonds 2002) (Steele, 

Balch 2009), which contains stresses and deformations due to moments, as well as shear. Mindlin-Reissner is a 

first order shear deformation theory that implies a linear displacement variation through the thickness of an 

element. The relative error can be reduced by using smaller elements. For an acceptable relative error, there 

must be at least twenty elements in longitudinal direction. For the calculation of the Hollandse Brug, average 

element sizes of 1.0 meters were chosen, which corresponds to one fourth of the distance between the girders 

and one fiftieth of the span (see Figure 5). Mode calculation is one of the possible calculation methods of the 

program. Natural frequencies are calculated based on the modulus of elasticity, sectional area, moment of inertia, 

and the unit mass of the materials. 

 

 
                                                 Figure 6. Free vibration period: the period between two red lines 

 

MODAL ANALYSIS ON THE HOLLANDSE BRUG 



 

Data Acquisition 

 
The 145 sensor at the bridge have been measuring around the clock, at a sampling frequency of 100 Hz. The 

signals of geo-phones (vibration) sensors are chosen for modal analysis. A total of 12 vibration sensors located 

on the girders were selected, which were equally spaced in both longitudinal and transversal direction. The 

sensors are located on four different girders on three locations. To reduce the influence of inputs that cause non-

natural frequencies, only data from the free vibration period is selected, which is the period that occurs 

immediately after a vehicle has passed, and before a next vehicle appears on the bridge. Details of how such 

periods can be identified in the data can be found in (Miao et al. 2013). Following this procedure, a free 

vibration period lasting for 34 seconds (3400 data points for each sensor) has been obtained. 

 

Modal Parameters Extraction 

 
The first activity to extract modal parameters from measurements with the SSI method, is creating a Hankel 

matrix with 24 block rows (30 rows per block), and 3377 columns. One key parameter for SSI is the order of the 

system. Because of operational noise, it is impossible to obtain the system order precisely from the singular 

value of the Hankel matrix projection. If the system order is estimated with a lower value, some physical poles 

will be missed; otherwise, spurious numerical poles may appear. The stabilization diagram is useful to separate 

physical poles from spurious numerical poles. In the stabilization diagram, the stable criteria are set as 1% for 

natural frequencies, 30% for damping ratios and 1% for MAC.  The system order is tested from a minimal order 

2 to a maximum order of 30. As shown in Figure 7, the physical poles are represented as red stars and spurious 

poles are represented as black circles. We assume the initial status of each pole is instable, e.g. the two poles of 

mode order 2 are represented as blue circles.  The background spectrum is derived from the discrete Fourier 

transform (DFT) on one of the selected 12 vibration signals. The high coherence between the peaks in DFT 

spectrum and physical poles obtained with the SSI method indicates that it is reasonable to employ the SSI 

method to analyze modal parameters. However, with the SSI method, we can obtain more poles, e.g. the one 

around 10 Hz, which is absent in the DFT method. 

 

 
Figure 7. The stabilization diagram: The red stars represent stable physical poles; 

The black circles represent the spurious poles 

 

In this paper, the modal parameters calculated with the FEM are based on the first and the second order mode 

shapes. The modal parameters for higher modes are obtained by making combinations of these two basic mode 

shapes.  

 

RESULTS 
 

Natural Frequency 
 

The natural frequencies obtained from the two methods are displayed in Table 2. It can be observed that the first 

three frequencies show a good match, while the fourth and the fifth frequency contain differences up to 21 per 

cent.  



 

                                                                      Table 2. Modal parameters 

Mode Mode shape 
Frequency 
(SSI calculation) 

Frequency 
(FEM calculation) 

Relative error 

1
st
 Bending 2.51 Hz 2.63 Hz 4.8 % 

2nd Torsional 2.81 Hz 2.74 Hz 2.5 % 
3

rd
 Bending & Torsional 5.74 Hz 6.25 Hz 8.9 % 

4
th

 Bending 10.09 Hz 8.56 Hz 15.2% 
5

th
 Torsional 11.47 Hz 9.05 Hz 21.1% 

6
th

 Bending & Torsional 11.99Hz 11.68 Hz 2.6% 

  

There could be three reasons for this error. The first is an FEM modeling error; the second order frequency is 

sensitive to non-equally distributed masses, like the cross girders. Due to uncertainty in mass and connection of 

these girders, FEM calculation errors increase. The second and the third reason could point to the SSI 

calculation. Due to the finite measurements, it is difficult to measure the exact cycle of a higher frequency. 

Furthermore, the amplitudes of the higher modes are marginal, which makes it difficult to generate the natural 

frequencies from the noise. 

 

Mode Shapes 

 
Figures 8-13 show the first six mode shapes for respectively the SSI calculation (left) and the FEM calculation 

(right). Because the sensor network just covers half of the bridge span, the mode shapes of the unmeasured half 

span are modeled using the existing measurements and structural knowledge. Clearly, the mode shapes derived 

from measurements are comparable. 

 

Damping Ratios 

 
The damping ratio depends on the material properties, the chemical composition, and the structural properties of 

the bridge. Additionally, the damping ratio depends on the size and amount of micro-cracks and the type of 

support and connection. Finally, the damping ratio is influenced by the construction work. Because the 

contribution of the damping ratio depends on a number of uncertain parameters, it is nearly impossible to 

calculate the damping ratio through structural analysis. Because of this, the damping ratio is not further 

discussed in this paper.  

 

 
Figure 8. The first bending mode shapes: left: based on SSI; right: based on FEM 

 

 
Figure 9. The second torsional model shapes: left: based on SSI; right: based on FEM 



 

 

Figure 10. The third bending and torsional model shapes: left: based on SSI; right: based on FEM 

 

Figure 11. The fourth bending model shapes: left: based on SSI; right: based on FEM 

 

 
Figure 12. The fifth torsional model shapes: left: based on SSI; right: based on FEM 

 

 

Figure 13 The sixth bending and torsional model shapes: left: based on SSI; right: based on FEM 

 

CONCLUSIONS 

 

The mode properties of a concrete highway bridge are calculated using two different calculation principles. The 

first method is an SSI calculation, which is based on the measurement data archived from the sensor network at 

the bridge. The second method is an FEM calculation, which is mainly based on design drawings with structural 

properties. The first-order natural frequencies show good agreement between both calculation methods. The 

second-order frequencies show some level of relative error. Uncertainties in modeling and measuring are the 



main causes of this phenomenon. The error can be limited using more sensors, working at a higher frequency 

and a more realistic calculation model.  
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