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We investigate the interference correction to the conductivity of a medium consisting of metallic grains
connected by tunnel junctions. Tunneling conductance between the grains, e2gT/��, is assumed to be large,
gT�1. We demonstrate that the weak localization correction to conductivity exhibits a crossover at tempera-
ture T�gT

2�, where � is the mean level spacing in a single grain. At the crossover, the phase relaxation time
determined by the electron-electron interaction becomes of the order of the dwell time of an electron in a grain.
Below the crossover temperature, the granular array behaves as a continuous medium, while above the cross-
over the weak localization effect is largely a single-junction phenomenon. We elucidate the signatures of the
granular structure in the temperature and magnetic field dependence of the weak localization correction.
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I. INTRODUCTION

Quantum effects in conduction of two-dimensional disor-
dered electron systems draw attention of both experimental-
ists and theorists for decades. The interest is motivated in
part by the interplay between several fundamental physical
phenomena, such as quantum interference, localization, su-
perconductivity, and single-electron tunneling occurring in
these systems. The interplay affects the properties of normal
conductors,1–3 nominally superconducting films,4,5 and ar-
rays of junctions.6 Quantum effects become increasingly im-
portant at sheet conductances decreasing towards the funda-
mental quantum value of GQ�e2 /��. The interpretation of
some of the most intriguing data, however, may depend on
whether the investigated conductors are homogeneous or
granular. While this question has a definite answer in the
case of an array6 of lythographically defined junctions, it is
less clear for nominally homogeneous deposited metallic
films4,5 or electron gases in semiconductor heterostructures.3

Checking the samples’ homogeneity traditionally involves
application of auxiliary techniques, such as local probe
spectroscopy.5,7

We demonstrate that information about the granularity of
a conductor is contained in the temperature and magnetic
field dependence of the weak localization �WL� correction to
the conductivity. The granular structure of a conductor af-
fects the correction even at high film conductivity, �0�GQ.
While being universal at the lowest temperatures and mag-
netic fields, the WL correction becomes structure dependent
at higher values of field and temperature. The corresponding
crossover temperature is of the order of ��0 /GQ�2�, where
the mean-level spacing � in a single grain is inversely pro-
portional to the grain volume. The field dependence of the
WL correction at low temperatures exhibits two crossovers.
These are associated with a significant change in structure of
closed electron trajectories, allowing for phase-coherent
electron motion.

The WL correction in a homogeneous medium originates
from the quantum interference of electrons moving along
self-intersecting trajectories1 and is proportional to the return
probability of an electron diffusing in a disordered medium.
In one-dimensional or two-dimensional conductors this prob-
ability diverges due to the contribution coming from long
trajectories. For a fully coherent electron propagation, this
divergence would lead to a divergent WL correction. Finite
phase relaxation time �� makes sufficiently long trajectories
ineffective for the interference and limits the correction. In a
two-dimensional conductor, the WL correction to conductiv-
ity is ��=−�GQ /2��ln��� /��, where � is the electron mo-
mentum relaxation time. There are various mechanisms of
the electron phase relaxation, some of them being material
specific.8 The most generic mechanism common for all the
conductors stems from the electron-electron interaction.9,21 It
yields 1 /���T�GQ /�0�ln�GQ /�0� and provides the tempera-
ture dependence of the conductivity

� = �0 − �GQ/2��ln�T*/T� , �1�

with T*��0 /GQ�. The typical area under an electron trajec-
tory that barely preserves coherence, L�

2 =D��, depends on
the electron diffusion constant. Magnetic field B significantly
affects the WL correction if the corresponding magnetic flux
through a contour of area L�

2 exceeds the quantum �0. This
makes the magnetoresistance measurement a useful tool for
the investigation of the electron interference.

To model a granular medium, we consider a regular two-
dimensional array of grains of size d connected by tunnel
junctions. The grains have internal disorder, but are charac-
terized by conductance far exceeding the conductance gTGQ
of a single tunnel junction. The classical conductivity of a
square array is thus �0=GQgT. It corresponds10 to the effec-
tive electron diffusion constant D=�−1gT�d2. In the absence
of phase relaxation, an electron may pass through any num-
ber of junctions coherently. It will result in a diverging WL
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correction, just like in a homogeneous conductor. The
electron-electron interaction limits the phase relaxation time,
yielding 1/���T /gT. As long as the corresponding length
L��d�gT

2� /T significantly exceeds d, an electron may re-
turn to a grain coherently after passing many junctions, and
the inhomogeneity of the granular medium is irrelevant. The
comparison of L� with d defines a crossover temperature

Tcr = gT
2� . �2�

Roughly, above the crossover temperature the electron trajec-
tories contributing to the WL do not cross more than a single
junction. In this regime granular medium behaves similarly
to a single grain connected to highly conducting leads by
tunnel junctions of conductance gT.

The WL correction at T	Tcr comes from electron trajec-
tories that pass through a single tunnel junction. Electrons
moving along longer trajectories, which include more junc-
tions, have a much smaller probability of a phase-coherent
return. We find that already the shortest intergrain trajectories
�see Fig. 2 in Sec. IV� provide the temperature dependence
of the WL correction

��WL = − A
Tcr

T
, �3�

with A being a geometry-dependent coefficient of the order
of one. In deriving Eq. �3�, we assume that gT is much
smaller than the number of channels in the intergrain tunnel
junction, although gT�1.

Equation �3� does not account for the phase relaxation
rate within the grains. At a sufficiently high temperature T
	T* the latter exceeds the electron escape rate gT� from a
grain, which leads to a suppression of the WL correction
below the value Eq. �3�. The characteristic scale T* here
depends on the intragrain phase relaxation mechanism. As-
suming that it is due to the electron-electron interaction,11

and that the dimensionless conductance of the grain ggr is
large, ggr	gT

2, we find

T* � Tcr
ggr

gT
2
�gT. �4�

In a more exotic case of a smaller grain conductance, gT
2

�ggr�gT, the temperature T* still exceeds significantly Tcr,
but the specific relation between the two temperature scales
depends on the grain shape, and is different for disklike or
domelike grains.

We turn now to the discussion of the magnetic field effect
on the weak localization in the granular medium. To deter-
mine the characteristic field suppressing the interference cor-
rection to conductivity, we need to estimate the directed area
covered by a typical closed electron trajectory.12 For a single
grain, such area is of the order d2�ggr /gT and is limited by
the electron dwelling time. At low temperatures, T
Tcr, the
number of grains visited by an electron having a typical
closed trajectory, is of the order of Tcr /T. The single-grain
directed areas have random signs, so the estimate for the full
directed area is

Seff � d2�Tcrggr

TgT
+ d2Tcr

T
. �5�

The first term here corresponds to the sum of the directed
areas under the electron trajectory within the grains visited
by electron; the second, conventional,1 term comes from the
fact that the “visited” grains form a closed contour of an area
L�

2 , see Fig. 1. The characteristic level of the field necessary
to affect ��WL is found from the condition SeffB���0. We
see now, that even within the temperature range T�Tcr, the
granularity of the material matters.

At the lowest temperatures the characteristic field coin-
cides with that of a film with the corresponding value of
diffusion coefficient

B� �
�0

d2

T

Tcr
, T 
 Tcr

gT

ggr
. �6�

At higher temperatures, the characteristic field is

B� �
�0

d2 � TgT

Tcrggr
, Tcr

gT

ggr

 T 
 Tcr. �7�

The higher the applied field, the shorter are the trajectories
contributing to the interference correction, and the smaller
the correction is. Such trajectories span only a single grain
provided the field B is of the order or higher than

B�
sg =

�0

d2 � gT

ggr
. �8�

At B�B�
sg, even the single-grain Cooperon is suppressed.

Consequently, Eq. �8� defines the characteristic field sup-
pressing at T	Tcr the WL correction Eq. �3�, which stems
from the transitions within the closest grain pairs.

To develop a quantitative theory of the interference cor-
rection, we derive the expression for the weak localization
correction and adapt the Cooperon equation for granular me-
dium.

FIG. 1. �Color online� A typical diffusive trajectory in a granular
array. The directed area Seff consists of two components. The first
one is the combined contribution of separate grains, see the first
term in Eq. �5�. The second component is the area under the coarse-
grained trajectory, which is the counterpart of the directed area un-
der an electron trajectory in a homogeneous disordered sample.
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II. CONDUCTANCE AND WEAK LOCALIZATION IN A
GRANULAR ARRAY

Tunnel junctions between metallic grains are described
adequately by a model with an infinitely large number of
weakly conducting channels. Within this model, one can use
the tunneling Hamiltonian formalism for the evaluation of
the conductivity of the granular array. In this formalism, tun-
neling between the grains m and n is described by the Hamil-
tonian

ĤT = �
�
�

t�
eiVmntâ��
† â
� + h.c.

= �
�
�

m

dr1�
n

dr2t�r1,r2�eiVmnt�̂m�
† �r1��̂n��r2� + h.c.,

�9�

where the points r1 and r2 belong to the grains m and n,
respectively, Vmn is the voltage applied to the barrier, ��m
and 
�n are exact single-particle states, and � is the spin
index. In the limit of thin barrier, the tunnel amplitude t
significantly deviates from zero only if the vectors r1 and r2
refer to two closest to each other points at opposite sides of
the interface

t�r1,r2� = a��y − y���z�z���z���z�� . �10�

Here the coordinate y runs along the interface S, and trans-
verse coordinates z in the grain m and z� in the grain n are
defined in such a way that at the interface z=z�=0. �We
wrote Eq. �10� for the planar geometry, generalization to
three-dimensional arrays is straightforward.	 The constant a
is of the order of magnitude of �T /�kF, where � is the elec-
tron density of states of the material of the grains, and T is
the transmission coefficient of the barrier. The numerical fac-
tor in a can be related to the measurable quantity, the barrier
conductance gT. Using Eq. �10�, one may express the tunnel
amplitude in terms of the eigenfunctions �� and �
 of an
electron in the grains m and n, respectively �see, e.g., Ref.
13�,

t�
 = a�
S

dy�z��
*�y,z��z��

�y,z��
z=z�=0. �11�

The current through the contact is defined as Î=−eṄ
ˆ

m=

−ie�ĤT , N̂m	, where N̂m is the number of particles in the grain
m,

N̂m = �
��

â��
† â��.

Calculating the average current through the barrier, we ob-
tain

I�t� = − e Re � dr1dr2�t�r1,r2�Gnm
K �r2,r1,t,t�eiVmnt

− t*�r1,r2�Gmn
K �r2,r1,t,t�e−iVmnt	 ,

where GK is the Keldysh component of the matrix Green’s
function, and the subscripts m and n are introduced for con-
venience, in order to indicate which grain points r1 and r2
belong to. We now need to calculate the function GK by the
perturbation theory in tunneling Hamiltonian. Let us first dis-
cuss the first order and calculate the average conductance.
Using the standard technique,14 we obtain for the current in
the frequency representation �terms which do not depend on
the time difference would correspond to the Josephson effect
and thus are dropped�

I��� = 2e Re � dr1 ¯ dr4
d�

2�
t*�r1,r2�t�r3,r4�

� Tr��̂xĜm�r1,r3,� + eVmn�Ĝn�r4,r2,��	 , �12�

where �x is the Pauli matrix in the Keldysh space, Gn�Gnn,
and we use the standard representation

Ĝ = �GR GK

0 GA � .

In the linear regime, it suffices to use the equilibrium func-
tion here, GK�E�=tanh�E /2T��GR�E�−GA�E�	. Expressing
the Green’s functions in terms of the exact eigenfunctions,
calculating the energy integrals, and substituting the trans-
mission amplitudes �10�, we obtain I=�Vmn for the intergrain
current, and �= �e2 /��gT for the Drude conductivity of the
granular array. The dimensionless intergrain tunneling con-
ductance introduced here is

gT = 4�2
a
2�
S

dydy�
��
�

�z���yz��z���
* 
�y�z��
z=z�=0������
2

= 4
a
2�
S

dydy���z�z� Im
�GR�yz;y�z���
z=z�=0	2, �13�

where �� are the exact energy eigenvalues measured from the
Fermi level in a grain, and angular brackets mean impurity
averaging within a grain �the eigenfunctions in different
grains are not correlated�. In the last equation, �GR� is the
impurity-averaged Green’s function evaluated at the Fermi
energy. It is represented as the density of states � multiplied

with a dimensionless function rapidly decaying with the dis-
tance y−y�. The characteristic length of that decay is given
by the Fermi wavelength, and the integral in Eq. �13� is
converging rapidly. Therefore, the dimensionless function
of y−y� may be evaluated within the free-electron
approximation.13 The precise shape of this function is not
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important for our purposes. Equation �13� thus relates the
tunnel conductance to the previously introduced constant a.

We proceed now with the evaluation of weak localization
correction. The next-order contribution to the current �Fig. 2�
contains four tunnel amplitudes and four Green’s functions

with the Keldysh structure Tr��̂xĜĜĜĜ�, where Ĝ is the ma-
trix Green’s function in the Keldysh space. The trace of a
product of several Green’s functions can only have the fol-
lowing structure: several first functions are retarded, fol-
lowed by one Keldysh function and then a number of ad-
vanced functions. Thus, we have the combination of the type
GKGAGAGA+GRGKGAGA+GRGRGKGA+GRGRGRGK. How-
ever, the second and third terms in this combination are con-
siderably greater than the other two, since the impurity scat-
tering inside the grains is the most effective if the impurity
line connects advanced and retarded, advanced and Keldysh,
and Keldysh and retarded Green’s functions, but not two
retarded or two advanced ones. Thus, retaining only these
two terms,9,15 we express the weak localization correction in
terms of the Cooperon Cmn in the time representation

��WL = −
2e2

�
Re � dr1 ¯ dr4t*�r1,r2�t�r3,r4�

� �
−�

�

dtCmn�r1,r4;r3,r2;t,− t� , �14�

where the subscripts of the Cooperon indicate that it starts
and ends in the grains m and n, respectively. Note that due to
the structure of the tunneling amplitudes t�r ,r��, point r1 is
just across the barrier from point r2 and similarly point r3 is
across the barrier from point r4. The Cooperon C can be
presented in the form

Cmn�r1,r4;r2,r3� =
�

�
Im�Gm

R�r1 − r4��

�Im�Gn
R�r2 − r3��C̃mn�r1,r3� .

Rapid decay of functions �GR� with the distance between the
corresponding arguments makes points in pairs r1, r4 and r2,
r3 in the spatial integral of Eq. �14� to be within the Fermi
wavelength from each other. On the other hand, the Coop-

eron C̃�r1 ,r3� is generally a long-range function. Provided
we are interested in times long compared to the intragrain

diffusion time, C̃ almost does not change while its coordi-

nates vary within respective grains. However, C̃mn�r1 ,r3�
with m�n may differ significantly from the value of single-
grain Cooperon �m=n�. Substituting this coarse-grained

Cooperon C̃mn into Eq. �14� and taking into account Eqs.
�10� and �13�, we obtain

��WL =
e2gT

2��2 Re �
−�

�

dtC̃mn�t,− t� �15�

with m and n being the neighboring grains. Note that Eq.
�15� is valid for any dimension, not just in two dimensions
�2D�.

The form �15� of weak localization correction is valid
provided the phase coherence between the grains barely sur-

vives, and C̃mn
 C̃nn at m�n. This limit is realized at a
sufficiently high temperature, T�Tcr. Note also that the per-
formed derivation, unlike the consideration of, e.g, Ref. 16
assumes the limit of large number of channels taken at fixed
value of gT.

To consider phase relaxation in a granular array, we de-

rive now the proper equation for C̃nm in a granular medium.

III. COOPERON IN A GRANULAR ARRAY

Cooperon describes the probability amplitude of electron
return and in the case of a homogeneous medium with elec-
tron diffusion coefficient D obeys the equation

� �

�t
− D� �

�r
− i

e

c
A�r,− t/2� − i

e

c
A�r,t/2��2�C̃�r,r�;t,t��

= ��r − r����t − t�� . �16�

Here the vector potential A accounts for the fluctuating elec-
tric fields representing the effect of electron-electron interac-
tions, and should be considered as a Gaussian classical ran-
dom variable with zero average.

In order to adapt Eq. �16� to the case of a granular me-
dium, it is convenient to perform a gauge transformation,
after which the fluctuating fields are described by a random
scalar potential ��r , t�, rather than by the vector potential
A�r , t�,

A�r,t� = c�t

�r��r,t��dt�

�we assume there are no magnetic fields applied to the sys-
tem�. Defining the Cooperon C�r ,r� ; t , t�� in the new gauge
by the relation

FIG. 2. Second-order correction to the conductivity. Black
circles represent the tunnel amplitudes, and dashed lines denote
impurity scattering inside the grains.
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C̃�r,r�;t,t�� = C�r,r�;t,t��exp�ie�t/2

��r,t��dt�

− ie�t�/2

��r�,t��dt� + ie�−t/2

��r,t��dt�

− ie�−t�/2

��r�,t��dt�� , �17�

we obtain the equation

� �

�t
+

ie

2
��r,t/2� −

ie

2
��r,− t/2� − D

�2

�r2�C�r,r�;t,t��

= ��r − r����t − t�� . �18�

Note that C̃�r ,r ; t ,−t�=C�r ,r ; t ,−t�, and thus C can be used

instead of C̃ for evaluation of the WL correction �15�.
Returning to the consideration of a granular array, we as-

sume that the intragrain conductance is high, ggr�gT. Then
the fluctuating potential ��r , t� does not vary from point to
point within a single grain, while exhibiting random fluctua-
tions of the intergrain potential differences. This allows us to
coarse-grain function ��r , t�, replacing its dependence on r
by the dependence on the grain number n. We also can sim-
plify the spatial dependence of the Cooperon C�r ,r� ; t , t��, in
case we are interested in times long compared to the intra-
grain diffusion time. Indeed, in that case C does not change
while r or r� vary within a grain. Therefore, the dependence
of the Cooperon on the coordinates may be replaced by the
dependence on the grain numbers n and n� to which the
coordinates r and r� belong. The resulting coarse-grained
equation for the Cooperon reads

� �

�t
+

ie

2
�n�t/2� −

ie

2
�n�− t/2� + N

gT�

�
�Cnn��t,t��

−
gT�

�
�

k

Ckn��t,t�� = �nn���t − t�� . �19�

Here N is the number of junctions to a single grain �i.e., the
coordination number of the lattice of grains; N=4 for a two-
dimensional square lattice�, and the summation in the last
term on the left-hand side runs over N nearest neighbors k of
the grain n.

Equations �15� and �19� provide a convenient starting
point for evaluation of the weak localization correction at
temperatures T
T*, see Eq. �4�. At higher temperatures, the
spatial dispersion of the fluctuating potentials and of the
Cooperon inside a grain becomes important.

The temperature domain T�T* is separated in two char-
acteristic regions by the scale Tcr, Eq. �2�. At T
Tcr, the
dependence of Cooperon C on n–n� is smooth, and the finite
difference equation �19� can be replaced by the correspond-
ing differential equation, which essentially returns one to the
continuous-medium case, see Eq. �18�. Weak localization
corrections in this case are studied in detail in Refs. 9 and 15.
Below we concentrate on the temperatures above the cross-
over.

IV. QUANTUM CORRECTION TO CONDUCTIVITY
ABOVE THE CROSSOVER TEMPERATURE

In the temperature regime of interest

T* � T 	 Tcr, �20�

as we have explained in Sec. I, electron trajectories are clas-
sified according to the number of tunnel junctions they
cross—the longer the trajectories, the less significant are
their contributions. It means that the matrix Cnn� rapidly de-
cays away from the diagonal. The biggest matrix elements
are Cnn, and the most important trajectories are those which
do not leave the grain. Equation �15� implies that these tra-
jectories do not contribute to the weak localization correc-
tion, and one needs to consider the next-order contribution
coming from trajectories crossing a single junction once.
This leads us to Eq. �3� and also allows us to verify the
existence of the crossover temperature Eq. �2�.

At T�Tcr we expect strong fluctuations of the potential
differences between the grains, making coherent returns of
an electron to the grain of its origin improbable. The returns
are described by the term in Eq. �19� containing the sum over
k. Neglecting that term, we find for the diagonal component
Cnn�tt�� of the Cooperon

Cnn
�0��t,t�� = ��t − t��exp�− N

gT�

�
�t − t�� − ie�

t�/2

t/2

�n�t��dt�

− ie�
−t�/2

−t/2

�n�t��dt�� . �21�

The phase factors here reflect the specific gauge we used in
Eq. �19�.

Next, we write the Cooperon equation �19� for the
nearest-neighbor sites m and n,

� �

�t
+

ie

2
�m�t/2� −

ie

2
�m�− t/2� + N

gT�

�
�Cmn�t,t��

=
gT�

�
Cnn

�0��t,t�� . �22�

The terms with Cn�,n describing the grains n� separated from
n by two tunnel junctions, are small and can be omitted in
this approximation. Using Eqs. �21� and �22�, we obtain for
the neighboring grains m and n

Cmn�t,t�� =
gT�

�
��t − t��exp�− N

gT�

�
�t − t����

t�

t

dt1

�exp�− ie�
t�/2

t1/2

�n�t��dt� − ie�
−t�/2

−t1/2

�n�t��dt�

+ ie�
t/2

t1/2

�m�t��dt� + ie�
−t/2

−t1/2

�m�t��dt�� . �23�

This expression has to be averaged over the Gaussian fluc-
tuations of the field �. The phase relaxation is caused by
fluctuations with frequencies �
T. Using the fluctuation-
dissipation theorem in this �classical� limit, one finds for the
correlation function of fluctuations17
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e2�����q,�� = − Im
2T

�

1

��q,��
,

where � is the polarization operator. For a granular medium,
it is essentially the Green’s function of the discretized diffu-
sion equation, and in the space-time domain it has the form10

e2��n�t��n��t��� =
�Td2

gT
��t − t��

�� dq

�2��d

eiq�n−n��

�a
�1 − cos qad�

, �24�

where the summation in the denominator is carried over all
available Cartesian components a=x ,y, and qa are the basis
vectors of square lattice of grains.

Performing the averaging in Eq. �23� with the help of Eq.
�24� is cumbersome but straightforward, since for Gaussian
fields �exp�i . . . ��=exp�−�. . .� /2�. For the weak localization
correction, we obtain

��WL

�0
= − A

gT�

T
,

A �
1

N2V
�

a
�� dq

�2��d

1 − cos qad

�a
�1 − cos qad��−1

, �25�

where V is the volume of the grain �V=d2 in 2D�. Note that
the interference correction Eq. �25� depends on temperature
and on the type of lattice the grains form. The dependence on
the lattice type comes through the coefficient A; for a square
2D lattice we find A=1/4. One can easily generalize the
evaluation of A onto the case of a triangular and more
complicated lattices, eventually even describing disordered
media like ceramics.

V. MAGNETIC FIELD EFFECT

As the estimate Eq. �5� suggests, the action of the mag-
netic field on Cooperon is twofold. A part of the Cooperon
suppression comes from the intragrain electron motion, and
another part stems from the magnetic field effect on the inter-
grain coherence. Since ggr�gT, the interesting range of the
fields corresponds to a small flux penetrating a grain, Bd2


�0. We can then consider the effect of magnetic field on
the Cooperon within a grain perturbatively. To implement the
perturbation theory, it is convenient to use a “tailored” to the
grains shape gauge of the magnetic field B. For definiteness,
we concentrate on the case of a two-dimensional array of
“flat” grains connected by pointlike tunneling contacts, see
Fig. 1. We define the gauge for the points within the grains
by the relations

A��r� = � � ��n�r� + An, �2�n = B, �n�r � bn� = 0.

�26�

Here � is the normal to the plane of the grains, and bn is the
boundary of the nth grain. The second and third relations in
Eq. �26� fully define the boundary problem for a scalar func-

tion �n�r�. The constants An are tuned in such a way that the
vector potential is continuous at the points of contact be-
tween the grains. Up to a discrete analog of the gradient of a
scalar function, these constants are determined fully by the
solution of the boundary problems for all �m�r�. It is clear
that the discrete version of curl applied to An must be equal
to B upon averaging over the array; the characteristic differ-
ence An−Am for two nearby junctions is of the order An
−Am�Bd.

In the definition of the Cooperon, it is convenient to
present again the coordinates as pairs �r ,n� and �r� ,n��,
which point explicitly to the label of grains the two points
r ,r� belong to. In addition, we multiply the Cooperon de-
fined in Eq. �17� by yet one more gauge factor

Cmn�r,r�;t,t�� = Cmn
� �r,r�;t,t��exp�iAm · r − iAn · r�� .

�27�

In these new notations, the equation for Cooperon in the
absence of tunneling has the form

� �

�t
+

ie

2
��r,t/2� −

ie

2
��r,− t/2�

− Dgr� �

�r
− i

e

c
� � �m�r��2�Cmn

� �r,r�;t,t��

= �mn��r − r����t − t�� , �28�

where Dgr�d2ggr� is the diffusion coefficient within the
grain �here ggr� is the Thouless energy for the electron mo-
tion within a grain�. With the defined gauge Eq. �26�, the
normal to the boundary component of A�r� is zero. Thus, the
magnetic field does not affect the boundary conditions for
Cooperon, i.e., the normal component of �C� /�r at the
boundary is zero.

As long as the flux piercing one grain is small compared
with the unit quantum, Bd2
�0, we may treat the effect of a
magnetic field within a grain perturbatively. Considering the
low-energy limit, T
ggr�, and taking into account the
boundary conditions for C�, we start perturbations from
r-independent Cooperon Cmn

� �t , t��. In the presence of inter-
grain tunneling, the corresponding generalization of Eq. �19�
reads

� �

�t
+ �ggr��Bd2

�0
�2

+
ie

2
�m�t/2� −

ie

2
�m�− t/2�

+ N
gT�

�
�Cmn

� �t,t�� −
gT�

�
�

k

eirkm·�Ak−Am�Ckn
� �t,t��

= �mn��t − t�� . �29�

Here the magnetic field dependence

�ggr��Bd2

�0
�2

=
Dgr

d2

e2

c2�
grain

d2r
��n�r�
2

comes from the �n-dependent term in Eq. �28� integrated
over the volume of a single grain; ��1 is the dimensionless
coefficient depending on the grains’ shapes. The vector rkn
points to the junction between grains k and n.
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The discreteness of the medium is adequately accounted
for by the structure of Eq. �29�. However, the discreteness is
not important in the domain of low temperatures and rela-
tively low fields, T
Tcr and B
B�

sg. There we can replace
the left-hand side of Eq. �29� by its gradient expansion. After
the expansion and replacement of the grain number n by the
corresponding coarse-grained coordinate R, we find

� �

�t
+ �ggr��Bd2

�0
�2

− D��R −
ie

c
A�R��2

+
ie

2
��R,t/2�

−
ie

2
��R,− t/2��C��R,R�;t,t�� = ��R − R����t − t�� .

�30�

The second term in the left-hand side here reflects the sup-
pression of interference by the magnetic flux penetrating the
grains. Apart from that term and from the value of the effec-
tive diffusion constant D=�−1gT�d2, which reflects the
granularity of the medium, this equation is identical to that of
a homogeneous thin film. Using the known results1 for the
films, we find the magnetoresistance of a granular array,

��MR�B,T� = ��WL�B,T� − ��WL�0,T�

=
e2

2�
�ln� T

Tcr
+

ggr

gT
�Bd2

�0
�2

+
Bd2

�0
� − ln

T

Tcr
�
�31�

�we dispensed with the factor ��1 here�. The two field
scales introduced in Eqs. �6� and �7� can be obtained from a
comparison �in the argument of logarithmic function Eq.
�31�	 of the dephasing term T /Tcr with the linear and qua-
dratic in B terms, respectively. At lowest temperatures, there
is a clear crossover in the ��WL vs B dependence from
��WL� ln B to ��WL�2 ln B. Note that the crossover occurs
in the 2D regime, where the typical closed path for a coher-
ent electron motion spans many grains. It is remarkable that
even in the 2D regime there is a clear difference in the mag-
netoresistance of a granular system from that of a homoge-
neous film, see Fig. 3.

VI. DISCUSSION

Let us now discuss the temperature dependence of the
conductance in various magnetic fields �Fig. 4�. In zero field,
the weak localization correction behaves as ��WL/�0
�gT

−1 ln T at T�Tcr and then crosses over to the power-law
behavior, ��WL/�0�Tcr / �gTT�, at higher temperatures. The
finite magnetic field leads to the suppression of the WL cor-
rection even at the lowest temperature. Thus, at B

 ��0 /d2��gT/ggr� the WL correction becomes temperature
independent. �Note that ��0 /d2��gT/ggr�
B�

sg.	 At higher
temperatures, the dimensionless conductivity ��WL/�0 has
the same temperature dependence as at B=0. In higher fields,
��0 /d2��gT/ggr�
B
B�

sg, the same low-temperature satura-
tion occurs at T= �Bd2 /�0�2�ggr /gT�Tcr, see Fig. 4. In the
highest fields, B�B�

sg, the WL correction is suppressed for
all trajectories—even those lying within a single grain, and
the WL correction disappears at all temperatures.

Note that all magnetic fields which we have discussed
above are too small to change orbital dynamics of electrons.
Indeed, the cyclotron radius, rc=mvFc /eB must be smaller
than the mean free path l in order to affect the electron mo-
tion. This corresponds to magnetic fields B� ��0 /d2�����−1,
with � being the momentum relaxation time in a grain. Since
��
1 �conditions for metallic diffusive behavior�, such
fields are well outside our consideration range.

Apart from the weak localization correction, there is one
more temperature dependent contribution to the
conductance—interaction correction. For granular media, it
was calculated for all temperatures in Ref. 18. It crosses over
from low-temperature to high-temperature regime at the tem-
perature gT�, which is different �much lower� than Tcr. For a
two-dimensional array, this correction is logarithmic at any
temperatures; for T�gT�, one has �� /�0�gT

−1 ln�gTEC /T�,
where EC is the charging energy in a single grain. The tem-
perature dependence of the interaction correction is feature-
less at T�Tcr, and therefore it should not mask the crossover
in the temperature dependence of the WL correction.19

The interaction correction is also independent of the mag-
netic field. Thus it does not affect the crossover in the mag-
netic field dependence of the conductance, which is induced
by the granular structure. The measurements of the conduc-
tance therefore can be used to characterize the medium.

FIG. 3. Magnetic field dependence �31� of the conductivity at
low temperatures, T
TcrgT/gcr. The horizontal axis here is propor-
tional to the logarithm of the applied magnetic field, y
=ln�Bd2 /�0�+ln�ggr /gT�; the vertical axis is the magnetoresistance
in dimensionless units, ��MR= �e2 /2��f�y� with f�y�=y+ln�1+ey�,
see Eq. �31�. The crossover between ln B and 2 ln B dependences is
clearly seen.

FIG. 4. Sketch of the temperature dependence of the conduc-
tance in various magnetic fields: B=0 �1�; B
B�

sg �2�. The tempera-
tures at which curve 2 departs considerably from curve 1 depend on
the applied field; these temperatures are of the order of Tcr�Bd2 /�0�
and Tcr�Bd2 /�0�2�ggr /gT� for B
 ��0 /d2��ggr /gT� and B
� ��0 /d2��ggr /gT�, respectively.
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Let us finally give some estimates. We consider metallic
grains of a size of 500 nm, which can be easily produced
lythographycally.6 They have the level spacing of order
� /kB�20 mK. Choosing gT=10, we obtain the crossover
temperature Tcr=2 K, that can be easily observed experimen-
tally.

Note added. After completing this work, we noticed that a
formula similar to our Eq. �31� was derived, with a different
method, in the work by Biagini et al. very recently.20 We are
grateful to Andrei Varlamov for the discussion of relation
between the two works.
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