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Quantifying the Impact of Automated Vehicles on
Traffic

Martin Sigl1 Binnert Prins1 Christoph Schütz1 Sebastian Wagner1 Frederik Schulte2 Daniel Watzenig3

Abstract— One of the major challenges in the development
of Automated Driving is its assessment. It is expected that
Automated Vehicles behave differently than human drivers.
Therefore, mixed human-robot traffic will yield different and
new driving situations as human-only traffic. It is important to
know how this mixed traffic will change the composition of traffic
situations to be able to quantify the impact Automated Vehicles
will have on everyday traffic. This paper presents a methodology
on how to find metrics that quantify traffic in order to detect
changes in the traffic space that will come with the introduction
of Automated Vehicles. Additionally, this methodology provides
tools to help with the validation of virtual testing platforms such
as simulation.
Index Terms—Autonomous Vehicles, Automated Driving, Impact
Analysis

I. INTRODUCTION

After reaching a certain level of automation, testing auto-
mated vehicles (AVs) solely based on real-world test drives
is infeasible [1]. With rising level of automation, more and
more complex situations have to be assessed. Simulations are
expected to reduce the effort to test automated driving (AD)
functions [1] and are already in use [2], [3].
With the first market introduction of AVs, the fraction of AVs
in the real-world traffic will rise from a small number of
vehicles to more and more market penetration. Therefore, one
can expect a hybrid traffic made out of human drivers and
AVs. Since the perception, planning and action of AVs differ
from the human driving process, AVs are expected to show a
different behavior in real-world traffic scenarios. Therefore, in
a hybrid traffic environment, previously unseen compositions
of traffic scenarios will occur compared to human-only traffic
(see fig. 1).
When developing AD functions, it cannot be expected that
these new scenarios are present in any data set. Each change
in a AD function may result in a different or new hybrid
traffic space. Therefore it is necessary to detect these new
scenarios as they occur. In principle, this is possible in both
real-world test drives or with virtual testing. Next to checking
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Fig. 1: Predicted traffic space change. With a mix of human
drivers and AVs, new and previously unseen scenarios will
occur.

if this new traffic space contains safety critical scenarios and
offers a comfortable ride complying with traffic rules, it is
also necessary to check how the hybrid state impacts the traffic
space in general. Quantifying the shift in the traffic space helps
in developing AD functions that are accepted by customers.
For example, an AV providing a safe and comfortable ride
might be unattractive to buy if it constantly travels significantly
below the official speed limit, causing traffic jams.
Usually, previous investigations of the impact of AD func-
tions only focus on single evaluation criteria to answer those
questions, like ”What will be the change in traffic flow?” or
”What will be the impact on the fuel consumption?” [4]–[7].
This work aims to develop a holistic, more general approach
describing and quantifying the changes in the traffic space as
precise as possible. This quantification process will rely on
virtual test environments because of their property to quickly
generate new data.
In Section II, a short overview of virtual testing with sim-
ulations is given, as well as an introduction to metrics that
describe traffic. It is followed by Section III which presents
the used approach to quantify the change caused by the hybrid
traffic space. This paper ends with the results in Section IV
showing both the evaluation of the presented method to
describe changes in traffic space and the impact AVs will have
in a hybrid traffic scenarios, and concludes with a summary
in Section V.

II. STATE OF THE ART

The first subsection states the key principles and requirements
for virtual testing which are the foundation for the presented
approach. The second subsection provides an overview of
state-of-the-art methods to quantify traffic.

A. Simulation for AD Assessment

In the following, two approaches of AD assessment using
simulations are presented. Coming from a test-case-centered
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automotive development process [8], data-driven simulation
(DDS) tries to recreate real-world test cases or so called
scenarios [3], [9], [10]. With a simulation framework which
produces valid results, the scenario can be assessed and
variations (e.g. regarding the environment or AD function)
can be applied. Thus, the scenario space can be explored and
covered, finally leading to an assessment of AD in the expected
scenario space.
With stochastic simulations based on the Monte Carlo method
(Monte-Carlo Simulation, MCS), parameters which describe
real-world scenarios are used. Test cases for the simulations
are created which try to recreate real-world test conditions
within the virtual test bench by sampling over the distribu-
tions of those parameters. Both approaches focus on different
aspects of the assessment process:
The strength of DDSs is the precise recreation of real-world
test cases. This is especially useful for critical or potential
dangerous scenarios, that can then be repeated and explored
in-depth in a scalable and safe environment with adjustable
conditions. Due to its focus on the exact recreation of real-
world scenarios, it lacks the ability to naturally explore the
scenario space in an unrestricted way [11]. If a scenario is
varied too much, its difference to the underlying verified real-
world scenario gets too big and therefore may become a
unverifiable scenario without realistic foundation.
Stochastic MCSs have their strength in generating large quan-
tities of traffic observations and scenarios independent from a
direct representation in a real-world test case. After extracting
environment-defining parameters and their distributions, no
more variance in the underlying real-world data is needed.
This facilitates capturing rare events without the need to first
record them in real-world test cases.
Both approaches focus on generating virtual test cases from
real world test cases or parameters. In contrast to using purely
synthetic tests, these approaches facilitate the verification and
validation process of simulations. DDS can be cross-verified
by evaluating the real-world test case with the virtualized
version of the test [3]. MCS can be verified by comparing
the real-world parameters that define test spaces with the
distribution of parameters in the virtual test space [12].
For the course of this work, the focus will lie on MCS due to
their ability to generate much data with only a relatively small
set of parameters compared to the large amount of real-world
data that is needed for DDS.

B. Description and Classification of Traffic Quantification
Metrics

In the past, many approaches evolved for quantifying traffic
with regard to specific objectives. For example, road construc-
tion has been focusing on traffic rule based manipulation of
traffic and traffic flow for many decades. For the validation if
road planners reach their goal, they apply metrics to describe
the traffic in a quantitative way [13]. Typical goals include
increased safety and traffic flow, especially in bottleneck
situations with many vehicles and restricted space. In the
following, a classification of the many Traffic Quantification

Metrics (TQMs) that exist nowadays will be performed.
TQMs can be assigned to either being macroscopic or micro-
scopic [4], [14]. Generally speaking, microscopic measures
can be linked to individual vehicles. This includes velocities,
positions, relative distances, and also incorporates modeling
desired speeds, intended destinations, and other parameters
defining the individual behavior of traffic participants. Macro-
scopic TQMs aggregate individual measures and therefore
lose their ability to describe individual behavior. Examples
for macroscopic TQMs are traffic densities or traffic flows,
mean velocities, or average travel times. Next to aggregating
multiple traffic participants, macroscopic measures typically
also cover a certain time span.
Also, TQMs can be divided into four major objectives which
they are trying to fulfill [15], [16]. First, quantifying traf-
fic can help to measure the safety of traffic. For example,
calculating time-to-collision (TTC) values for all individual
traffic participants gives a method to assess the danger that
lies withing a traffic situation. Second, TQMs can also be
used to implement traffic rules and evaluate their adherence
[17]. In order to avoid dangerous situations, time-to-headway
(THW) is used to provide means to comply to a safe style
of driving. The THW TQM is easily verifiable by drivers and
law enforcement and independent of variable traffic rules like
speed limits. Third, after ensuring safe traffic, one of the main
goals for road designers and city planners is generating a road
network capable of handling the amount of expected traffic
[14]. Therefore, TQMs are needed that describe traffic flow in
order to provide means to detect or anticipate traffic congestion
and maximum vehicle throughput of roads. Fourth, there exist
TQMs aiming to describe the comfort of traffic participants.
In general, microscopic values are considered to describe the
comfort of vehicle passengers [18]–[20]. This includes for
example measuring accelerations that feel uncomfortable or
capturing movements that are associated with inducing motion
sickness.

III. METHODOLOGY & APPROACH

The core idea of this work is to provide means for quantifying
the change in traffic between different traffic observations. The
primary criterion the chosen TQMs fulfill is their applicability
to an arbitrary combination of real-world or simulated traffic
observations. In the following, this feature is used to perform
two things. First, we can cross-verify simulations that aim
to recreate real-world traffic observations. For example, if a
MCS extracts traffic-defining parameters from a real-world
traffic observation, TQMs should deliver similar results when
evaluating both the simulated traffic space and the real-world
traffic space. Second, after assuming a valid simulation is
available, the TQMs can be used to quantify the impact of
automated vehicles. If comparing two different simulations,
one recreating a real-world traffic observations with only hu-
man drivers, and another one that contains a certain amount of
AVs, it is possible to quantify how these two traffic scenarios
differ.
To achieve the above, several steps are necessary which will
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be described in detail in the next sections. With two traffic
observations as start, dividing them up into sub-spaces is the
first step. These sub-spaces can be similar to logical scenarios
or more generally clusters in the scenario space. Then, TQMs
are applied to these sub-spaces and deliver a quantitative de-
scription of the sub-space. The quantified sub-spaces then can
be evaluated between the two traffic observation, delivering
the actual difference between those two traffic observations
regarding the specific sub-space. In the following, these steps
will be explored in detail.

A. Traffic Observations

A traffic observation contains data of traffic objects over time,
for example velocity and positions of vehicles. In general there
are no diverging limitations in either using real-world, virtual
or synthetic data as source for traffic observations. As long as
they fulfill the requirements to provide all the necessary data
to calculate TQMs, all data sources can be used to measure
the difference of the traffic space.
In order to test the ability of the presented approach to help
validating simulation, we use a real-world data set as well as
traffic observations coming from simulation frameworks. For
real-world traffic observations the highD data set was used,
in which drones collect video data by hovering over German
highway sections [21]. For the simulated traffic observations
we use the MCS framework openPASS [22]. In general, there
exist more influences on traffic than only driver behavior.
To account for this, only traffic observations with similar
environmental conditions are compared in this paper. This
especially includes weather and road conditions, and therefore
also visibility ranges. There may be additional influences that
are not within the scope of this paper, e.g. time of day, day
of the week, or season.

B. Traffic Sub-spaces

It is important to divide traffic observations into sub-spaces,
because otherwise rare events are underrepresented in data. For
example, if an AV acts very differently in a specific situation
like being overtaken from a vehicle driving right of the AV,
the effect would vanish in the vast amount of more common
driving situations. The definitions of these sub-spaces can be
chosen freely, as long as they contain only scenarios which
qualify as similar. These can either be logical scenarios such
as overtaking, emergency braking, lane changes, or defined in
a more abstract way like clusters in the scenario space [23].
For this work, lane changes are used as exemplary traffic sub-
space, as they are easily detectable and lateral movement is
involved, with the latter being rare on highways. Lane changes
are defined by a change of an object’s lane ID. The time points
where the lateral movement exceeds a certain threshold marks
the beginning and end of the lane change. The duration of the
lane change is limited to 7.5 seconds to avoid inconsistencies
that might arise with aborted or double lane changes.
Although it is possible to aggregate sub-spaces back to a global
traffic space, this is not part of this paper. It is sufficient to
solely look onto sub-spaces, it provides information in which

sub-space the AV causes major changes in the traffic space
instead of describing minor impact on a global level. Even
macroscopic TQMs such as traffic flow don’t have to be
aggregated over sub-spaces, because the evaluation of sub-
spaces and their weight regarding the total traffic observation
suffice to extrapolate the overall effect on the global traffic
space.

C. Traffic Quantification Metrics

In this paper, several different TQMs are applied to the traffic
sub-spaces. Since the focus is on traffic observations which
always span a certain amount of time, the presented TQMs
are always either macroscopic or aggregate microscopic TQMs
over time.
Table I presents an overview over the used TQMs in this
paper. The velocity v, acceleration a, and jerk j are aggregated
over all object traces of a traffic observation. Also, both
lateral and longitudinal characteristics are covered, using the
subscripts lat. and long. . The Time-To-Headway (THW)
metrics measures the time that is needed for a vehicle to reach
the position of its predecessing vehicle. THW is capped at 20
seconds because its unreasonable to assume an influence of a
preceding vehicle on the following vehicle with a high distance
[17]. Time-to-collision (TTC) calculates the time that will pass
until a collision with the predecessing vehicle occurs [24], if
the velocity of the following vehicle is higher than the velocity
of the leading vehicle. The Quickness Q serves as description
metric for lane change speed and also for measuring comfort,
since lateral movements can directly be linked to the subjective
comfort experience driving in vehicles. It divides the lateral
velocity vlat. by the traveled lateral distance dlat..

D. TQM evaluation

In principle, it is expected that a TQM is an objective
measure for the similarity. If two similar traffic observations
are compared, the applied TQMs should distributed similarly.
Analogously, two highly deviating observations should yield
the TQMs to indicate different key values. In the following,
we call this the homogeneity (similarity) and heterogeneity
(difference) property.
To compare the TQM distributions between two traffic obser-
vations TO1, TO2, the following null hypothesis is used:

H0 : µ(TQMTO1) = µ(TQMTO2) (1)

The null hypothesis that the means µ of the TQM results
of two distinct traffic observations are equal. If the null
hypothesis is accepted, homogeneity between the two traffic
observations is assumed, if the null hypothesis is rejected,
heterogeneity is assumed. Regarding the TQMs to all be
distributions, the Welch’s test is applied to test for the null
hypothesis. The p-value threshold of 0.03 is chosen as ac-
ceptance criteria to reject or accept the null hypothesis. The
null hypothesis test is performed for all TQMs, and between
all traffic observations. If a TQM fails to meet the expected
homogeneity and heterogeneity properties, it can be considered
to be unsuited for describing changes in traffic spaces.
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TABLE I: Overview of the proposed TQMs that will be used throughout the approach. Velocity, acceleration, and jerk are
further split between lateral and longitudinal values. The presented TQMs are applied to all vehicles or vehicle traces of an
individual traffic observation if not stated otherwise.

Symbol Description Definition Unit
v Distribution of vehicle velocities dx/dt m/s
a Distribution of vehicle accelerations d2x/dt2 m/s2

j Distribution of vehicle jerks [25] d3x/dt3 m/s3

THW Distribution of time gaps between vehicles and their
predecessor [26]

min(t-gap, 20) for t-gap > 0
with t-gap := |poslead. − posfoll.|/vfoll.

s

TTC Distribution of time-to-collision values between ve-
hicles and their predecessor [24]

min(ttc, 20) for ttc > 0
with ttc := |poslead. − posfoll.|/∆v
with ∆v = (vlead. − vfoll.) if vlead. < vfoll. else 0

s

Q Distribution of the quickness of lane changes [25] vlateral/dlateral (during lane change) 1/s
TF Traffic Flow in vehicles per hour and per lane num(vehicles)/(hour · lane) 1/s

To test for homogeneity and heterogeneity, data sets have to
be established that contain either similar or dissimilar overall
traffic situations. To have a most realistic data base, the highD
data set is used to provide test data for the homogeneity and
heterogeneity analysis. First, basic parameters like the road
architecture are fixed to contain only sets with three lanes
per road. Second, clusters in the highD traffic observations
are investigated with the k-means method for the parameters
mean velocity, mean THW, and traffic flow (TF). Two clusters
were identified that share strong inner-cluster similarity but are
also distinct to the other cluster. With ± depicting standard
deviation, the cluster properties are:

C1,highD :µTF = 3338± 178[veh/hour]

µTHW = 0.65± 0.25[
1

s
]

µvlong. = 25.7± 2.9[
m

s
]

C2,highD :µTF = 1740± 235[veh/hour]

µTHW = 0.55± 0.23[
1

s
]

µvlong. = 25.75± 3.6[
m

s
]

The data retrieved from openPASS is also placed into two
clusters with the condition C1,openPASS ∼= C1,HighD. The clusters
are not perfectly similar which is caused by the limitations
of the internal methods of recreating real-world traffic in
openPASS. An arbitrary combination of the cluster parameters
could not be achieved in openPASS. Regarding the second
cluster, the goal is to achieve heterogeneity between the
clusters. Therefore, the following properties are true:

C1,openPASS :µTF = 3068± 220[veh/hour]

µTHW = 1.3± 0.05[
1

s
]

µvlong. = 32.78± 0.68[
m

s
]

C2,openPASS :µTF = 1691± 400[veh/hour]

µTHW = 1.28± 0.14[
1

s
]

µvlong. = 33.37± 1.03[
m

s
]

In a final step to evaluate TQMs, a correlation analysis is
performed in order to find TQMs that can be omitted in the
overall TSA, due to mutual redundancy.

E. AD Function

In principle, the presented approach is able to show any kind
of traffic space changes, independent of their origin. Therefore,
it is applicable to provide means to quantify the impact of AVs
and AD on traffic. This can also be extended to cover other
influences on traffic like weather, time of day, and so on.
Since this paper uses a MCS, no specific real-world test cases
to base the simulation on exist. Therefore, also the human
behavior must be generated stochastically. This is performed
with the Stochastic Cognitive Driver Model (SCM) [12]. As
AD function which controls the AVs in the simulation, a
simple lane keeping assistant is used. For the proof of concept,
an elaborated, complex AD function is not necessary.

IV. RESULTS

This chapter presents results after applying the methodology
to traffic observations from the real world and simulations.
It starts with TQM evaluation, showing the homogeneity
and heterogeneity analysis, as well as a correlation analysis.
Afterwards, the evaluated TQMs demonstrate the necessity
of dividing traffic observation into sub-spaces. Additionally,
the evaluated TQMs show their use in validating simulation.
The last subsection applies the TQMs to simulated traffic
observations with different ratios of AVs in the traffic, showing
the AV’s influence on the traffic observation.
As mentioned earlier, several global parameters have to be
fixed in order to make traffic observations comparable. The
results in this section are limited to road sections with three
lanes. The boxplots in this section are standard boxplots with
1.5 inter-quartile range and showing outliers as well as the
median. Their y-axes are logarithmic to account for boxes
whose range is close to zero.

A. TQM Evaluation

In this subsection, the presented TQMs are evaluated regarding
their ability to detect changes in different traffic observations.
In fig. 2, the homogeneity analysis is depicted to check if
traces within a cluster in a traffic observation are similar, and
a heterogeneity analysis to check if traces from distinct classes
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(b) Heterogeneity of traces between C1,openPASS and C2,openPASS

Fig. 2: Homogeneity and heterogeneity tests for traffic observation from either real-world HighD data or synthetic openPASS
data.

are diverging. The p-value level line at 0.03 shows if the null
hypothesis is accepted or rejected. The boxes for the individual
TQMs are colored in a way to show if the expected result is
achieved. In the case of the homogeneity plots, this means
blue boxes if the null hypothesis is accepted and the median
of p-values is below the p-value threshold, and red if it is
above. For heterogeneity, dissimilarity is expected, therefore
the colors are swapped.
In fig. 2a, the homogeneity between traces within the HighD
cluster C1,HighD is shown and most of the TQMs are similar.
There are two notable results in the homogeneity analysis
within clusters. First, lateral and longitudinal acceleration
seem to be diverse within a real-world traffic observation,
probably indicating a wide variety of driver behavior. Second,
a similar homogeneity analysis shows the simulated openPASS
traffic observation is much more homogeneous than compared
to the real world traffic. Again, this can also be explained by
a driver behavior, but in this case with a much more narrow
bandwidth.
Fig. 2b shows the TQM’s ability of capturing heterogeneous
traffic by comparing the two openPASS clusters C1,openPASS
and C2,openPASS. While the comparison of the two HighD clus-
ters rejects all null hypotheses (not depicted), the comparison
between the two openPASS clusters does not show as many
rejected null hypotheses. This can again be explained by less
diverse driver behavior models in the simulation.
In summary, the homogeneity and heterogeneity analysis prove
the ability of TQMs to differ between similar and dissimilar
traffic observations. The evaluation of TQMs also provides
insights like showing more diverse traffic in real-world than
within simulations, and that not every aspect of driver behavior
is influenced equally by traffic conditions.
As final step in the evaluation process, the correlation between
the TQMs is analysed (see table II) with the Spearman rank
coefficient correlation, to avoid using TQMs that express
similar or equal results as other TQMs. The highest correlation
within this table is between TF and THW, causing TF to
be dropped as a TQM in the used TQM set. There are no

other strong correlations within the TQM list, therefore the
best way to proceed is to keep all of the remaining TQMs.
Moderate correlations such as between along and vlat do not
necessarily contain useful information, especially since lateral
movement on highways is generally very rare and restricted.
The quickness Q does not seem to be correlated to any of
the other TQMs, indicating significant knowledge gain by
calculating and using this TQM. In conclusion, there are some
medium correlations between individual TQMs, but they are
not strong enough to fully omit one or the other. TF and THW
are the only exception with very strong correlation. Since
THW also contains information about driving safety, TF is
being dropped in the remainder of this paper.

B. Sub-Space validation

Applying homogeneity and heterogeneity analysis as presented
in the last subsection to different sub-spaces delivers further
insight on the need of dividing traffic observations into smaller
parts. When testing the whole traffic observation and the
sub-space for homogeneity, individual TQMs may indicate
significant dissimilarities. Fig. 3 applies the homogeneity
analysis for sub-space lane changes and the whole traffic
observation. It shows similarity of some of the TQMs, while
mostly the longitudinal variables of the observed vehicles
differ significantly from the original whole traffic observation.
A similar effect occurs when comparing the same sub-spaces
of different traffic observations. Most of the TQMs still fail
the heterogeneity test, indicating that driver behavior in the
lane change sub-space share similarities over otherwise very
dissimilar traffic observations.
In conclusion, dividing traffic observations into sub-spaces is
essential. The presented approach can be used to evaluate if
sub-spaces such as rare events in traffic observations show a
significant deviation and therefore are necessary to investigate
in order to detect critical changes in overall traffic.
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vlong along THW TTC Q vlat alat TF
vlong 1.00 0.10 0.43 -0.44 0.23 0.14 -0.16 -0.46
along 0.10 1.00 0.07 0.59 0.22 0.66 0.01 -0.03
THW 0.43 0.07 1.00 -0.55 0.32 0.12 -0.46 -0.94
TTC -0.44 0.59 -0.55 1.00 -0.13 0.34 0.28 0.62
Q 0.23 0.22 0.32 -0.13 1.00 0.26 -0.29 -0.32
vlat 0.14 0.66 0.12 0.34 0.26 1.00 0.01 -0.09
alat -0.16 0.01 -0.46 0.28 -0.29 0.01 1.00 0.38
TF -0.46 -0.03 -0.94 0.62 -0.32 -0.09 0.38 1.00

TABLE II: Spearman’s rank coefficient correlation table of a selection of TQMs.
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Fig. 3: The homogeneity test compares the whole traffic
observation of C1,HighD with its lane change sub-space. Some
of the sub-space’s TQMs fail the similarity test, since lane
changes do not share all the same properties as the whole
traffic observation.

C. Simulation cross-verification

The presented approach can be used as a tool that helps
to validate simulation. In principle, it can be applied when
trying to virtually recreate a real-world traffic observation.
A homogeneity test can provide insight which aspects of a
virtual twin of a traffic observation meet the requirements
and which ones have to be improved. Under the assumption
that all necessary values to parameterize a simulation can be
extracted from a real-world traffic observation and the simu-
lation framework being able to provide all tools for realistic
traffic simulation, both the real-world and the simulated traffic
should not differ. The openPASS cluster C1,openPASS uses
parameterization directly from the HighD cluster C1,HighD.
Fig. 4 shows the result of the homogeneity analysis between
the real world and the re-simulated traffic. Not all TQMs fulfill
the expected similarity between the two traffic observations. In
order to improve the simulation framework one could focus on
the missed homogeneity criteria and look into the modeling
of acceleration models of the virtual vehicles. Another goal
to optimize the simulation is to increase homogeneity by
applying measures that make the accepted H0 in blue more
narrow or move their median p-value closer to 1.
While this methodology does not yield an absolute evaluation
about the validity of a simulation framework, it can provide
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Fig. 4: Homogeneity between C1,HighD and C1,openPASS ,
expressing the quality of the simulation’s recreation of a real-
world traffic observation.

insight which traffic sub-spaces cannot be simulated suffi-
ciently. Also, single TQMs are able to show shortcomings,
e.g. a vehicle model that generates unrealistic vehicle acceler-
ations throughout a simulated traffic observation. Additionally,
measures to improve simulation tools can be evaluated quali-
tatively and therefore speed up the development of simulation
frameworks.

D. Impact of AVs

The described process is able to provide expressive TQMs
and valid simulation frameworks. This allows to use this
methodology to evaluate the impact of AVs to quantify the
change that will come in hybrid traffic (compare fig. 1).
After applying the previously described steps, AD function
developers can be sure to use a quantification metric that is
expressive and able to capture significant changes, and that
the simulation framework is sufficiently precise and valid.

V. CONCLUSION AND OUTLOOK

The aim of this work is to provide a methodology to holis-
tically describe changes between traffic observations. A lit-
erature research resulted in a set of TQMs that are able to
quantify different aspects of real-world and simulated traffic.
First, these TQMs have been evaluated and it has been proven
that they are sensitive to changes in traffic and can correctly
identify similarities and dissimilarities. For this task, the
homogeneity and heterogeneity tests of Section III-D are used.
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Second, the overall methodology’s ability to provide insight
to simulation framework validity is presented, again using the
homogeneity and heterogeneity test approach. Finally, with
expressive TQMs and valid simulation, the impact of AVs is
quantified. This provides the necessary tools to quantitatively
analyse the hybrid traffic space as depicted in fig. 1.
The goal to develop a method to holistically quantify the
impact of AVs on traffic has been achieved. Furthermore,
the presented methodology is able to comprise any additional
TQM since it provides means to evaluate the any metric
regarding its ability to capture changes in traffic spaces.
Unfortunately, it is not possible to say how small changes
in traffic can be to still be detected. One possible solution
is to use methods to divide the whole traffic observation
into sub-spaces and to investigate them. Only if the traffic
space as a whole, divided into sub-spaces, is considered,
new scenarios can be detected and quantified. Next to this
traffic space decomposition, a promising approach to evaluate
the results of this paper is to investigate if and how the
TQMs as objective traffic description metrics are subjectively
experienced by human traffic participants. For example, an
averagely attentive driver might not perceive changes in the
mean velocity while traveling a long distance, but might react
negatively to slight changes in the acceleration behavior of the
AV and even develop nausea.

REFERENCES

[1] W. Wachenfeld and H. Winner, “Die Freigabe des autonomen Fahrens,”
in Autonomes Fahren: Technische, rechtliche und gesellschaftliche As-
pekte, M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Eds. Springer
Berlin Heidelberg, 2015, pp. 439–464.

[2] T. Helmer, L. Wang, K. Kompass, and R. Kates, “Safety Performance
Assessment of Assisted and Automated Driving by Virtual Experiments:
Stochastic Microscopic Traffic Simulation as Knowledge Synthesis,” in
2015 IEEE 18th International Conference on Intelligent Transportation
Systems, 2015, pp. 2019–2023.

[3] K. Groh, S. Wagner, T. Kuehbeck, and A. Knoll, “Simulation and Its
Contribution to Evaluate Highly Automated Driving Functions,” SAE
International Journal of Advances and Current Practices in Mobility,
vol. 1, no. 2019-01-0140, pp. 539–549, 2019.

[4] K. Li and P. Ioannou, “Modeling of traffic flow of automated vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 2,
pp. 99–113, 2004.

[5] R. Hoogendoorn, B. van Arerm, and S. Hoogendoom. (2014) Automated
Driving, Traffic Flow Efficiency, and Human Factors: Literature Review.

[6] S. C. Calvert, W. J. Schakel, and J. W. C. van Lint, “Will Automated
Vehicles Negatively Impact Traffic Flow?” Journal of Advanced Trans-
portation, vol. 2017, 2017.

[7] T. Ard, L. Guo, R. A. Dollar, A. Fayazi, N. Goulet, Y. Jia, B. Ayalew,
and A. Vahidi, “Energy and flow effects of optimal automated driving in
mixed traffic: Vehicle-in-the-loop experimental results,” Transportation
Research Part C: Emerging Technologies, vol. 130.

[8] H. Winner, K. Lemmer, T. Form, and J. Mazzega, “Pegasus—first
steps for the safe introduction of automated driving,” in Road Vehicle
Automation 5. Springer, 2019, pp. 185–195.

[9] K. Groh, T. Kuehbeck, B. Fleischmann, M. Schiementz, and C. C.
Chibelushi, “Towards a Scenario-Based Assessment Method for Highly
Automated Driving Functions,” 2017.

[10] P. Minnerup, T. Kessler, and A. Knoll, “Collecting Simulation Scenarios
by Analyzing Physical Test Drives,” in 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, 2015.

[11] S. Wagner, K. Groh, T. Kühbeck, and A. Knoll, “Towards Cross-
Verification and Use of Simulation in the Assessment of Automated
Driving,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.

[12] A. Fries and F. Fahrenkrog, “Validation and Verification of the Stochastic
Cognitive Driver Model,” 2021.

[13] R. J. Smeed and G. T. Bennett, “Research on Road Safety and Traffic
Flow. Road Engineering Division.” The Institution of Civil Engineers
Engineering Division Papers, 2015.

[14] M. S. Grewal and H. J. Payne, “Identification of Parameters in a Freeway
Traffic Model,” vol. SMC-6, no. 3, pp. 176–185, 1976.

[15] S. S. Mahmud, L. Ferreira, M. S. Hoque, and A. Tavassoli, “Application
of proximal surrogate indicators for safety evaluation: A review of recent
developments and research needs,” IATSS Research, vol. 41, no. 4, pp.
153–163, 2017.

[16] C. Hyden, “The Development of a Method for Traffic Safety Evaluation:
The Swedish Traffic Conflicts Technique,” Bulletin Lund Institute of
Technology, Department, no. 70, 1987.

[17] K. Vogel, “A comparison of headway and time to collision as safety
indicators,” Accident Analysis & Prevention, vol. 35, no. 3, pp. 427–
433, 2003.

[18] S. P. Hess, “Automobile Riding-Comfort,” SAE Transactions, vol. 19,
pp. 250–272, 1924.

[19] I. Bae, J. Moon, J. Jhung, H. Suk, T. Kim, H. Park, J. Cha, J. Kim,
D. Kim, and S. Kim. (2020) Self-Driving like a Human driver instead of
a Robocar: Personalized comfortable driving experience for autonomous
vehicles.

[20] A. L. Higgins, The Transition Spiral and Its Introduction to Railway
Curves with Field Exercises in Construction and Alignment. New York,
Van Nostrand Company, 1922.

[21] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD Dataset:
A Drone Dataset of Naturalistic Vehicle Trajectories on German High-
ways for Validation of Highly Automated Driving Systems,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 2118–2125.

[22] C. Guindon. OpenPASS Working Group — The Eclipse Foundation.
OpenPASS. [Online]. Available: https://openpass.eclipse.org/

[23] J. Kerber, S. Wagner, K. Groh, D. Notz, T. Kühbeck, D. Watzenig,
and A. Knoll, “Clustering of the Scenario Space for the Assessment of
Automated Driving,” in 2020 IEEE Intelligent Vehicles Symposium (IV),
2020, pp. 578–583.

[24] J. C. Hayward, “Near-Miss Determination though Use of a Scale of
Danger,” Pennsylvania State University - University Park, 1972.

[25] H. Bellem, T. Schönenberg, J. F. Krems, and M. Schrauf, “Objective
metrics of comfort: Developing a driving style for highly automated
vehicles,” Transportation Research Part F: Traffic Psychology and
Behaviour, vol. 41, pp. 45–54, 2016.

[26] L. Evans, Traffic safety and the driver. Science Serving Society, 1991.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 11:48:39 UTC from IEEE Xplore.  Restrictions apply. 


