
Fixed-Point (Value) Recursion with Algebraic
Effects and Handlers in Haskell

Gijs van der Heide1

Supervisor(s): Casper Bach Poulsen1, Jaro S. Reinders1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Gijs van der Heide
Final project course: CSE3000 Research Project
Thesis committee: Casper Bach Poulsen, Jaro S. Reinders, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Algebraic effects and handlers are a new programming technique that allows for the

definition of abstractions as interfaces, with handlers providing modular, concrete im-
plementations of these interfaces. In this paper, we consider algebraic effects and han-
dlers implemented in Haskell, and explore how they behave under fixed-point (value)
recursion. We give different possible implementations of fixed-point combinators for
effectful functions, and work out their evaluation processes. We find that these func-
tions behave very predictably under normal fixed-point recursion, while value recursion
seems to be a much harder problem. We discuss the difficulties of implementing value
recursion, and several possibile solutions are explored, but the question of whether a
fixed-point combinator with value recursion semantics can exist at all in the presence
of algebraic effects remains unanswered.

1 Introduction
Algebraic effects and handlers are a new programming technique. Effects allow for the
definition of abstractions as interfaces, while handlers modularly provide concrete imple-
mentations of these interfaces. Possible effects include, but are not limited to, stateful
computation, I/O operations, and exceptions. Using these abstractions may make it easier
to write complex programs with effects, and to verify that they behave as intended. The
main benefits come from this modularity and the separation of interface and implementa-
tion, as well as the making explicit of the effects used in a certain program.

Because algebraic effects and effect handlers are still mostly a topic of research, there is
usually no out-of-the-box support in mainstream programming languages, and it is usually
not immediately clear what would be the best way to define the infrastructure needed to
work with algebraic effects. In this paper, we will work with algebraic effects and handlers
in Haskell using the approach described by Swierstra [1] and a series of blog posts by Bach
Poulsen [2].

Because recursively defined functions are very common in functional programming, one
of the questions that naturally arises when using these algebraic effects and handlers is how
they interact with recursive computations. Erkök [3] notes that there is very little research
into the interaction between effects and recursion, and specifically value recursion - recursion
over the result values of a computation while only executing side-effects once. They analyze
effects encoded with monads and use fixed-point combinators as a theoretical framework for
recursion. We will attempt to apply similar principles, and also focus on fixed-point com-
binators, but consider effects encoded as algebraic effects with handlers instead. We aim
to explore and explain how these algebraic effects and handlers behave under fixed-point
(value) recursion, and to also prove certain laws pertaining to this recursion.

To this end, the main research question of this paper is "How can effectful fixed-point
(value) recursion be used in combination with algebraic effects and handlers in Haskell?".
To answer this question, we propose the following subquestions:

• What motivates the need for effectful fixed-point (value) recursion with algebraic ef-
fects and handlers in Haskell?

• What is the intended behavior of effectful fixed-point (value) recursion in Haskell and
how can this behavior be implemented?

1

• What are the mathematical laws pertaining to effectful fixed-point (value) recursion,
and can the provided implementation in Haskell be proven to respect these laws?

The contributions made in this paper consist of a description and (formal) analysis of a
way of working with recursion with algebraic effects and handlers in Haskell. We also de-
scribe the difficulties and possible solutions for working with value recursion using algebraic
effects and handlers. Unfortunately, none of the discussed solutions were able to adequately
implement value recursion semantics. We hope that the discussion in this paper can serve
as the basis for future research into the problem of value recursion with algebraic effects and
handlers.

In section 2, we will discuss background information on the way we will work with al-
gebraic effects and handlers in this paper, what fixed-point recursion is exactly, as well as
what value recursion is. In section 3, we will discuss the solutions found to working with
(value) recursion and algebraic effects and handlers. Then, in section 4, we focus on normal
recursion. Some example programs that use effects and recursion will be provided to mo-
tivate the need for the implementations discussed in section 3, as well as to show how and
why these implementations work. In section 5 we focus more on value recursion. Because
no working implementation was found, we will instead discuss laws that should hold for a
possible value recursion operator, and we discuss the possiblity and challenges of deriving
a value recursion operator from these laws. Then, in section 6, we provide some insight
into the responsible research concepts relevant to this paper. Finally, we provide a short
discussion of the results, a conclusion and recommendations for future work in section 7.

We also provide an introduction to working with algebraic effects and handlers in Ap-
pendix A, and discuss how to access the full code for this paper in Appendix B.

2 Background
In this section, we will quickly discuss our method of working with algebraic effects and
handlers in Haskell, and provide explanations of fixed-point recursion and value recursion.

2.1 Algebraic Effects and Handlers in Haskell
As noted in section 1, the approach taken to working with algebraic effects and handlers
in Haskell in this paper is based on the one described by Bach Poulsen [2]. It is highly
recommended to read the relevant blog posts. Alternatively, a short explanation discussing
only those details relevant to understanding this paper has been included in Appendix A.

2.2 Fixed-Point Recursion
Like Erkök [3], we will use fixed-point recursion as a theoretical framework for recursion
in this paper. Functions written in this way are not inherently recursive, but rely on a
fixed-point combinator to make them recursive. This fixed-point operator is defined as:

fixf = f(fixf)

A simple fixed-point combinator can then be implemented in Haskell like so:

2

fix :: (a −> a) −> a
fix f = let x = f x in x

Note how this combinator takes a function f and creates a repeated application of this
function - f(f(f(...))). Due to Haskell’s laziness, fix f is not immediately expanded to an
infinite sequence of applications of f, and it is in fact possible to write terminating recursive
functions with fix. This does require f to indicate in some way when to stop the recursion.
We will demonstrate what this could look like by implementing a function that calculates
the factorial of a number n - given by (n · (n− 1) · (n− 2) · ... · 1).

factorial :: (Int −> Int) −> Int −> Int
factorial f n

| n <= 1 = 1
| otherwise = n ∗ (f (n − 1))

fact :: Int −> Int
fact = fix factorial

The factorial function certainly looks very similar to the normal recursive version, but
note that it is not recursive as it never calls itself. It only calls a function f, which we can
provide with fix to make the function recursive.

To make clear why this works, the evaluation process of fact 2 is detailed below.

fact 2
(fix factorial) 2 −− expand ‘fact’
(let x = factorial x in x) 2 −− expand and apply ‘fix’
let x = factorial x in (x 2) −− apply ‘x’
let x = factorial x in (factorial x 2) −− evaluate let−statement
let x = factorial x in (if 2 <= 1 then 1 else 2 ∗ (x (2 − 1))) −− apply ‘factorial ’
let x = factorial x in (2 ∗ (x 1)) −− execute if−statement
let x = factorial x in (2 ∗ (factorial x 1)) −− evaluate let−statement
let x = factorial x in (2 ∗ (if 1 <= 1 then 1 else 1 ∗ (x (1 − 1)))) −− apply ‘factorial ’
let x = factorial x in (2 ∗ 1) −− execute if−statement
let x = factorial x in 2 −− multiply
2 −− evaluate let−statement

Here, it becomes clear how Haskell’s laziness helps - when evaluating the let-statement,
factorial x is substituted for x only once, which allows for the application of factorial only
as many times as is necessary.

2.3 Value Recursion
As mentioned, we will not just explore normal recursion, but also value recursion with
algebraic effects and handlers in this paper. Moggi et al. [4] explain that value recursion
differs from normal recursion only in the presence of effects. They describe how, in normal
recursion, the repeated application of the function is unfolded in such a way that all side-
effects are duplicated, and may thus be executed multiple times. In value recursion, however,
side-effects are evaluated only once (the first time the function is executed), such that the
recursion happens only over the values of the function. It is not obvious at all how this
behavior can be implemented, and while the problem has thus been solved for effects encoded
with monads, there exists no clear analogue for a value recursion operator when working

3

with algebraic effects and handlers. This problem and possible solutions will be discussed
in more detail in section 3.

3 Implementation
In this section, the solutions found to working with (value) recursion using algebraic effects
and handlers will be presented.

3.1 Normal Fixed-Point Recursion
Analyzing the way algebraic effects interact with the normal fixed-point combinator to per-
form regular recursion was, initially, the main purpose of this paper. Whether this should
work is not at all immediately obvious, because the function would have to be fixed before
applying any handlers (as once the handlers have been applied, what remains is just a pure
value). But, the behavior of the function may differ significantly depending on the handler
that will be applied later. Consider, for example, a choice effect that determines branching,
executed with either a handler that always picks True or a handler that picks either True
or False randomly.

Several different function signatures and their relevant fixed-point operators were con-
sidered, and it became clear that all seem to work, aided by Haskell’s laziness. Indeed, it
seems algebraic effects behave normally under fixed-point recursion. In this subsection, we
will discuss the different function signatures and combinators. In section 4, we will walk
through a sample evaluation process showing how and why they work..

3.1.1 The Either Signature

The Either signature is the signature initially recommended as the focus for this paper. It
makes explicit whether or not the computation should recurse again by use of the Either
data type.

data Either a b = Left a | Right b

Following the convention of the Right case of the Either data type usually holding a
result value, we chose to represent a value that should be used in a recursive step again
(continuing the computation) with the Left case, whereas a value that represents the com-
putation should finish is represented with the Right case.

With Either, we can write fixable functions with algebraic effects with the following
signature:

fun :: a −> Free f (Either a b)

So, one constructs a syntax tree using the free monad which may include any effects
from f, and results in a final value of type Either a b. In the case of Left a, the combinator
should ensure that all the steps of the syntax tree are repeated again on this new value, and
in the case of Right b, it should ensure that this is the final returned value. The following is
a possible implementation of such a combinator:

efixEither :: (a −> Free f (Either a b)) −> a −> Free f b
efixEither f x = do

4

y <− f x
case y of

Left l −> efixEither f l
Right r −> Pure r

An interesting note here is that functions constructed using this signature must neces-
sarily be tail-recursive, as they can only return a Right x or a Left x, which will be used
directly as the argument to a possible recursive call.

3.1.2 The Regular Fix Signature

The second signature is very similar to the one used for regular fixed-point operations
without the free monad. Fixable functions are implemented with the following signature:

fun :: (a −> Free f a) −> a −> Free f a

In fact, functions with this signature are even accepted by the regular fix combinator.
Indeed, fix takes a function with type a -> a - substituting a -> Free f a for a gives exactly
the signature of fun.

So, it seems that when constructed in the right way, it is possible to use normal fixed-
point combinators to make functions with algebraic effects recursive. This is further evidence
to support the idea that effectful functions behave normally under (fixed-point) recursion.
As mentioned, this will be supported and further formalized in the following section.

3.2 Value Recursion
With the findings of the investigation into the interaction between algebraic effects and
normal recursion in mind, it was decided that it would also be worthwhile to explore value
recursion with algebraic effects. It can be concluded from Erkök [3] and Moggi et al. [4] that
value recursion is a much harder problem. In the context of effects encoded with monads,
Erkök [3] concludes that no implementation can be given that can work for all monads, and
much time is spent on a formal analysis of value recursion. Moggi et al. [4] use a different
semantics that also invalidates one of the axioms found by Erkök [3], but under which a
generic implementation can be given.

While a fair amount has been written about value recursion with monads, there seems
to be no research into value recursion with algebraic effects and the free monad at all. The
analysis performed in this paper is, unfortunately, inconclusive. However, we hope to lay
the groundwork for future research into value recursion with algebraic effects with it. Two
possible solutions that have been explored will be presented in this subsection, but the
question of whether any of them can provide a working implementation of value recursion
remains unanswered. In fact, it is not clear whether such an implementation can exist at
all.

3.2.1 The Problem

To see why an implementation of a value recursion operator for the free monad is not trivial,
we will look at its intended behavior with the help of an example. We consider a function
that reads in a character from the standard input and appends this character to a list of

5

characters received as an argument to the function (with ChIn the effect to read a character).
This function is adapted from Erkök [3].

chars :: [Char] −> Free (ChIn + End) [Char]
chars cs = do

c <− chin
return (c:cs)

When fixed with a normal recursion operator, we would expect the function to contin-
uously ask for a new input character, and then construct a list of all the provided input
characters. Under value recursion, however, the effect to read in a character is only per-
formed once, and an infinite list of only this character is constructed. The desugared version
of the function above looks like this1:

chars = \cs −> Op (ChIn (\c −> Pure (c:cs)))

From this, it becomes clear that if the entire function is fixed, there is seemingly no
way to get around executing the ChIn effect multiple times. We also cannot only fix the
continuation of the effect, as the return value is a list of characters, but it only takes a single
character as input - so there is no way to construct the infinite list that we want. Ideally,
then, the entire function should be fixed, but after the first execution all effects should be
ignored.

We should also note again that we discuss the intended behavior of a value recursion
operator more formally in section 5, where we also discuss the possibility of deriving an
operator from these laws. In particular, the left shrinking law may allow for only the con-
tinuation to be fixed in this example, but there are some further challenges to it that we
discuss in more detail in section 5.

First, we will now look at two other possible solutions that were considered for this
problem, but again, it is not clear for any of them whether they can work at all.

3.2.2 Dummy Handlers

Dummy handlers are handlers that will be used instead of the normal handlers after the
first evaluation of the function. They attempt to simply execute the continuation without
executing the effect again. Then, something similar to the following (pseudo-)code could be
used to implement value recursion.

(handleAll normalHandlers f x) >>= (\res −> handleAll dummyHandlers (fix f) res)

This method initially seemed promising, and it does actually work for some effects. For
example, for the StrOut effect, the continuation k is freely available:

data StrOut k = Out String k
deriving Functor

This means a dummy handler for StrOut can easily be provided:

hStrOutDummy :: Functor f’ => Handler StrOut a f’ a
hStrOutDummy = Handler {

ret = pure,

1We ignore the L and R that normally surround the effect to select it from the effect row, as they are
not relevant here

6

hdlr = \x −> case x of Out _ k −> k
}

However, this approach unfortunately cannot work for effects that don’t have a freely
accessible continuation. Consider for example the State effect introduced in section 2, which
has a case Get (s -> k). This means an s has to somehow be provided in order to access
the continuation. However, using this approach, there is no way to store and provide such
an s, or any other inputs necessary for other effects in general.

A second problem is that this approach seems to be semantically incorrect, as the effects
are, in fact, executed multiple times, just with a different handler. In real value recursion,
we would expect the effects to really only be executed once.

3.2.3 fixIO-inspired Stateful Handling

The fixIO function is the value recursion operator for the IO monad discussed by Erkök
[3]. An implementation and an explanation of how it works are given by Fancher [5]. In
essence, the argument passed to the function to be fixed is wrapped in a mutable variable,
and the result returned by the function is stored in this variable again. This interaction
is able to create value recursion for the IO monad, and we may expect there to exist an
analogue of this process for working with the free monad. Unfortunately, this has not been
explored further due to time constraints. While it does seem promising, it should be noted
that mutable variables are not necessary to implement value recursion for most monads, so
whether a value recursion operator for the free monad using this concept will be general
enough is not clear.

4 Applications and Analysis of Effectful Normal Recur-
sion

In this section, we will focus on an analysis of normal recursion with algebraic effects and
handlers. We discuss a motivating example, explaining the need for effectful, recursive
functions. We will also detail the evaluation process for the combinators for normal recursion
given in section 3 with the help of another example program. This detailed working out
already makes explicit how these combinators work, and can easily be generalized to other
effects if necessary. Combined with the fact that no specific laws were found to be relevant
for normal recursion, it was decided a formal analysis of the normal recursion operators
would not have any additional value.

4.1 Motivating Example: A Circuit Simulator
Erkök [3] discusses how the modelling of electronic circuits can benefit from the use of effects,
and how these models frequently makes use of (value) recursion. In this subsection, we will
discuss an example with algebraic effects and handlers largely based on the one presented
by Erkök [3].

Indeed, as Erkök [3] mentions, if we are able to provide an abstract description of a
circuit, describing only its components and wires, this would allow us to modularly choose
exactly what we want to do with our circuit. For example, one might want to simply simulate

7

it, or render it graphically, or perhaps translate it to a different hardware design language,
etc. Effects allow us to do exactly this.

We first define a signal, representing the values (high/low) at certain points in the circuit
at different discrete time steps, encoded as a list of boolean values. We could then define
the components of a circuit as an effect called CircuitComponent like so:

type Signal = [Bool]

data CircuitComponent k =
CircAnd Signal Signal (Signal −> k)
| CircXor Signal Signal (Signal −> k)
| CircInv Signal (Signal −> k)
| CircDelay Bool Signal (Signal −> k)

CircAnd, for example, represents a logical-and gate. It takes two input signals, and then
provides an output signal to the continuation (the result of the and operation). Exactly
what this result is depends on the handler we choose to apply later, of course.

This is a possible implementation of a handler that just simulates the circuit:

hCircuitSimulate :: Functor f ’ => Handler CircuitComponent a f’ a
hCircuitSimulate = Handler

{
ret = pure,
hdlr = \x −> case x of

CircAnd x y k −> k (zipWith (&&) x y)
CircXor x y k −> k (zipWith (/=) x y)
CircInv x k −> k (map not x)
CircDelay v x k −> k (v : x)

}

Then, this is how one could describe a simple half-adder with this system:

halfAdder :: Signal −> Signal −> Free (CircuitComponent + End) (Signal, Signal)
halfAdder x y = do

res <− circ_xor x y
carry <− circ_and x y
return (res, carry)

halfAdderExample :: (Signal , Signal)
halfAdderExample = un (handle hCircuitSimulate (halfAdder [True, True] [False , True]))
−− ([True, False], [False, True])

To see how recursion is used in circuit simulation, we will look at a toggle gate, the
output of which is defined as the inverse of its input, which clearly results in a gate that will
toggle between the high and low signals forever. To implement it, we will need the invert
gate, and we will also need to make use of the delay component, which takes a single boolean
value as well as a signal. It is defined as being this single boolean value for one time step,
and becomes the input signal after that.

If the function is only executed once, we will not get the infinite list we want. To achieve
this, we will also have to fix the function. For example, using the Either signature. This
results in the following definition for the toggle gate:

8

toggleFixable :: (Signal , Signal) −> Free (CircuitComponent + End) (Either (Signal, Signal) a)
toggleFixable (inp , out) = do

inp <− circ_inv out
out <− circ_delay False inp
return (Left (inp , out))

toggle :: Signal
toggle = un ((handle hCircuitSimulate (efixEither toggleFixable ([], []))) >>=

(\(inp , out) −> return out)
)

−− [False, True, False, True, ...

It should be noted that, while normal recursion does work in this case for simulating
the circuit, things get more complicated if we wanted to, for example, create a graphical
representation of the circuit using this same description. Of course, our intention is not to
draw an infinite amount of invert gates. So, indeed, we would then only want the effects of
this function to be executed once, meaning the function would have to be fixed with a value
recursion operator.

We have now implemented most of the behavior also implemented by Erkök [3] with
algebraic effects and handlers. The approaches very similar, but we have all the benefits of
working with algebraic effects: easily switchable modular handlers, explicit effects, and the
ability to easily incorporate multiple different effects into the function, if desired.

4.2 The Evaluation Process
To explore why the combinators and signatures for normal recursion found in section 3 work,
and how they are able to work around the problem described in the beginning of section 3
(the fact that functions need to be fixed before the application of any handlers), we will look
at an example program. This program is implemented using the Either signature and uses
a random choice effect to branch. The evaluation process of the regular fix signature is very
similar, and will not be discussed separately.

The following is our example program. This program uses a choice effect to generate a
random boolean. If it is True, the computation terminates with the input value. If it is
False, the computation continues with the input value plus one.

data Choice k = Choose (Bool −> k)
deriving Functor

choices :: Int −> Free (Choice + End) (Either Int Int)
choices k = do

b <− choice
if b then do

return (Right k)
else do

return (Left (k + 1))

We will now detail the evaluation process of efixEither choices 0 and see how recursion
can be achieved without knowledge of the implementation of the handler for the Choice
effect. For this, we will use implementations of »=, fold, and handle provided by Bach
Poulsen [2]. These are also given in the full code (see Appendix B).

9

un (handle ... (efixEither choices 0))

−− The expression ‘efixEither choices 0’ will be evaluated first , so:

un (handle ... (do y <− choices 0;
case y of {Left l −> efixEither choices l ; Right r −> Pure r}

)) −− apply ‘efixEither’
un (choices 0 >>=

(\y −> case y of {Left l −> efixEither choices l ; Right r −> Pure r})
) −− desugar ‘do’

−− We substitute ‘lby’ for ‘(\y −> case y of {Left l −> efixEither choices l ; Right r −> Pure r})’

un (handle ... (choices 0 >>= lby))
un (handle ... (fold lby Op (choices 0))) −− apply ‘>>=’
un (handle ... (fold lby Op

(Op (L (Choose (\b −> if b then do return (Right 0) else do return (Left (0 + 1))))))
)

) −− evaluate ‘choices 0’

−− We substitute lbb0 for ‘(\b −> if b then do return (Right 0) else do return (Left (0 + 1)))’

un (handle ... (fold lby Op (Op (L (Choose lbb0)))))
un (handle ... (Op (fmap (fold lby Op)

(L (Choose lbb0))
)

)
) −− apply ‘fold’

un (handle ... (Op (L
(fmap (fold lby Op)

(Choose lbb0)
)

))
) −− apply ‘fmap’

un (handle ... (Op (L (Choose
(\z −> (fold lby Op) (lbb0 z))

)))
) −− apply ‘fmap’

At this point, the expression cannot be evaluated any further without applying han-
dlers. Note, however, how the lby from the efixEither function has been brought inside
the Choose operation by function composition with the original function (lbb0) that was
inside the Choose operation. When the Choice effect is handled now, the boolean value
will be provided to this composed function. We get either a Pure (Left n) or a Pure (Right
n) from evaluating lbb0 with this value. Then, fold lby Op is applied to this new value Pure v.

We know from the definition of fold that, when applied to a Pure value, it will simply
evaluate to (in this case) lby v. And indeed, from the definition of lby, we see that depending
on whether v was a Right or a Left case, the computation ends here or we end up with a
recursive step - applying all the same steps again. To see exactly how this recursive step
is computed, we will apply a handler for the Choice effect that supplies a random boolean
value. Exactly how this random value is generated is not relevant here, but can be found in

10

the full code (see Appendix B).

hChoice :: Functor f ’ => Handler Choice a f’ a
hChoice = Handler

{
ret = pure,
hdlr = \x −> case x of Choose k −> k bool
−− with ‘bool’ some random boolean value

}

We now continue the evaluation with this handler.

un (handle hChoice (Op (L (Choose
(\z −> (fold lby Op) (lbb0 z))

)))
)

un (fold (ret hChoice) (\x −> case x of
L y −> hdlr h y
R y −> Op y

)
(Op (L (Choose

(\z −> (fold lby Op) (lbb0 z))
)))

) −− apply ‘handle’

−− We substitute lbx for ‘(\x −> case x of {L y −> hdlr h y; R y −> Op y})’
−− And substitute lbz0 for ‘(\z −> (fold lby Op) (lbb0 z))’

un (fold (ret hChoice) lbx (Op (L (Choose lbz0))))
un (lbx (fmap (fold (ret hChoice) lbx) (L (Choose lbz0)))) −− apply ‘fold’
un (lbx (L (fmap (fold (ret hChoice) lbx) (Choose lbz0)))) −− apply ‘fmap’
un (hdlr hChoice (fmap (fold (ret hChoice) lbx) (Choose lbz0))) −− apply ‘lbx’
un (hdlr hChoice (Choose

(\m −> (fold (ret hChoice) lbx) (lbz0 m))
)

) −− apply ‘fmap’

Note how at this point we end up with another function composition inside the Choose
operation. Continuing the evaluation by executing the hChoice handler gives:

un ((fold (ret hChoice) lbx) (lbz0 b1))
−− with ‘b1’ some random boolean value

Then, as discussed previously, we know that evaluating lbz0 will give either the value
Pure 0, or a recursive call efixEither choices 1 depending on whether b1 was True or False,
respectively. We will work out both cases below.

−− In case ‘b1’ was True
un ((fold (ret hChoice) lbx) (Pure 0))
un (ret hChoice 0) −− apply ‘fold’
un (Pure 0) −− apply ‘ret’
0 −− apply ‘un’

−− In case ‘b1’ was False
un ((fold (ret hChoice) lbx) (efixEither choices 1))

11

−− Similarly to the above steps to evaluate ‘ efixEither choices 0’
−− And similarly with ‘lbz1’ equal to ‘(\z −> (fold lby Op) (lbb1 z))’
−− In which ‘lbb1’ is equal to ‘(\b −> if b then do return (Right 1) else do return (Left (1 + 1)))’
un ((fold (ret hChoice) lbx) (Op (L (Choose lbz1))))

−− Then, similar to the above steps to evaluate the handlers, we get
un (hdlr hChoice (Choose

(\m −> (fold (ret hChoice) lbx) (lbz1 m))
)

)
un ((fold (ret hChoice) lbx) (lbz1 b2)) −− evaluate ‘hdlr’
−− with ‘b2’ some random boolean value

Here, similarly, we will end up with either a value Pure 1 or a recursive call efixEither
choices 2, depending on the value of b2, which completes all the recursive evaluation steps.

As mentioned in the introduction to this section, this evaluation process can easily be
generalized for other effects. The function lbb0 can be any continuation function in general,
and the same steps of composing functions lazily apply to create a recursive computation.

5 Formal Analysis of Effectful Value Recursion
In this section, we will focus on an analysis of value recursion with algebraic effects and
handlers. We discuss the laws that will have to hold for a value recursion operator for al-
gebraic effects and handlers. These laws are given for monads by Erkök [3], and have been
translated to be relevant for algebraic effects and handlers.

Erkök [3] gives multiple laws, but explains that strictness, purity, and left shrinking are
enough to capture all the necessary requirements for a value recursion operator. It may
thus be possible to derive a value recursion operator for algebraic effects from these laws.
Especially the left shrinking law seems to be very interesting.

5.1 Strictness
The strictness law captures the idea that fixing a strict function should result in ⊥ - that
is, a non-terminating expression. Essentially, because fixing a function is repeated self-
application of some function f, if f is strict in its argument this will result in the forced
evaluation of an infinite chain of self-applications, which can of course never terminate. Our
law is very similar to the one given by Erkök [3]. We assume that vfix is some value recursion
operator for algebraic effects.

f :: α → Free ϕ β

f⊥ ≡ ⊥ ⇒ vfix f ≡ ⊥

5.2 Purity
The purity law states that a value recursion operator should behave exactly like the fix
operator for normal recursion for pure functions (that is, functions that do not use any

12

effects). We encode the law as follows, where vfix is some value recursion operator for
algebraic effects, and efix is a normal recursion operator for algebraic effects.

f :: α → Free End β

efix h ≡ vfix h

5.3 Left shrinking
The left shrinking law states that if a computation is fixed, parts that do not use any
recursive bindings may be lifted out of the fix, starting from the left. This happens because
value recursion only executes effects once, so lifting an effect out whenever possible should
not change the behavior of the fixed function. We consider a function f defined as follows -
with E some effect2:

h :: a −> b −> Free h’ a

f :: a −> Free (E + h’ + End) a
f x = do

y <− e
h x y

−− Desugaring do−notation gives
f = \x −> Op (E (\y −> h x y))

Then, we consider g = vfix f with vfix some value recursion operator. If E does not use
any recursive bindings (that is, x or anything defined in the continuation), we should be
able to lift it out of the fix - which gives the following:

g :: Free (E + h’ + End) a
g = do

y <− e
vfix (\x −> h x y)

−− Desugaring do−notation gives
g = Op (E (\y −> vfix (\x −> h x y)))

Formally, we get the following law:

h :: α → β → Free ϕ α

vfix (λx. Op (E (λy. h x y))) ≡ Op (E (λy. (vfix (λx. h x y))))

5.4 Deriving an Operator from the Laws
In section 3 and in the introduction to this section, we briefly mentioned that it may be pos-
sible to derive an operator for value recursion from these laws. Especially the left shrinking
law seems to capture a lot of the desired behavior of such an operator, as lifting out an effect
ensures that it is only executed once. Still, it is not obvious how to derive the operator.
Even if there is a way to perform the transformation described by the left shrinking law in
general, the law does not consider effects that do use recursive bindings - as they cannot

2We should make use of higher-order effects to properly write down the type of f, but those are not
relevant here - see Bach Poulsen [2] for more details

13

be lifted out of the fix. If effects cannot be lifted out, we end up with the same problem
described in section 3: it is simply not clear how to force effects to only be executed once,
if this can even be done at all.

6 Responsible Research
In this section, we discuss responsible research considerations taken into account in the
writing of this paper.

6.1 Reproducibility
Care has been taken to ensure that it is possible to reproduce all results found in this paper.
To this end, an extensive background section was included, and full code listings are available
(see Appendix B). We clearly mention all details skipped for brevity in the main text, and
always refer to where a more detailed explanation can be found.

6.2 Ethics
No specific ethical issues are relevant to this paper, as it focusses on the discussion of abstract
concepts such as (value) recursion and algebraic effects and handlers in general.

7 Discussion, Conclusion, and Future Work
In this paper, we have explored fixed-point (value) recursion with algebraic effects and han-
dlers in Haskell.

Our first subquestion was: "What motivates the need for effectful fixed-point (value)
recursion with algebraic effects and handlers in Haskell?". We discussed the benefits of
working with algebraic effects and handlers, and a motivating example of a circuit simulator
was discussed in section 4 that makes clear why recursive, effectful functions might be used.

Then, we asked: "What is the intended behavior of effectful fixed-point (value) recursion
in Haskell and how can this behavior be implemented?". This was explored in section 2 and
section 3. We found that effectful functions behave very predictably under normal recursion,
and we have seen that the provided fixed-point combinators are able to implement normal
recursion in the presence of effects. Value recursion, on the other hand, has been shown to
be a much harder problem. It is not obvious how to implement the idea of executing effects
only once and recursing only over the values of a function for any effect in general. Several
possibilities were explored, but none were able to provide a conclusive answer as to whether
value recursion with the free monad is even possible at all.

Our final subquestion was: "What are the mathematical laws pertaining to effectful
fixed-point (value) recursion, and can the provided implementation in Haskell be proven
to respect these laws?". For normal recursion, we found that the functions behave very
predictably, and the how and why behind the operation of the provided combinators was
already clearly explained with the help of a detailed working out of an example program
in section 4. Furthermore, no specific laws were found to be relevant for normal recursion

14

in this context. For value recursion, we discussed the laws that should hold for a possible
value recursion operator in section 5. We also discussed that it may be possible to derive a
value recursion operator from these laws, but that there are still some challenges to doing so.

In this process, we have (partially) answered the main research question: "How can
effectful fixed-point (value) recursion be used in combination with algebraic effects and han-
dlers in Haskell?". Partially, because while it is now clear how effectful functions behave
under and can be used with normal recursion, it is unfortunately not clear how to use value
recursion with the free monad.

Value recursion with the free monad thus presents an interesting open problem for future
research. If it can be solved, it would not only be useful, but also provide valuable further
insight into the relation between effects encoded with monads and effects encoded with
algebraic effects. We thus hope that this paper can serve as the foundation for future
research into this topic.

15

A Appendix: Algebraic Effects and Handlers in Haskell
Unless otherwise specified, code examples and explanations in this appendix may be assumed
to be adapted from Bach Poulsen [2].

In this appendix, we will provide an introduction to working with algebraic effects and
handlers in Haskell using the approach described by Bach Poulsen [2]. It should be noted that
the introduction given to algebraic effects and handlers here is relatively short, providing the
information crucial to understanding the paper, but in some places omitting implementation
details. We will refer to Bach Poulsen [2] for an explanation of these details.

A.1 Algebraic Effects
Programs using algebraic effects are written using the free monad. This monad allows for
the construction of syntax trees with computations and values.

data Free f a = Pure a | Op (f (Free f a))

In this free monad, f represents a list of possible effects that can be used in the syntax
tree, while a is the type of the final result of the program. The Pure case represents a value
of type a, while the Op case represents a computation, applying some effect from f, and then
continuing execution with its continuation, itself another syntax tree of type Free f a.

As an example, we consider the State effect. It has Put and Get operations, allowing for
the storing and retrieval of some value, respectively. It looks like this:

data State s k = Put s k | Get (s −> k)
deriving Functor

Note how the effect is parameterized over s, the type of the value being stored in the state.
It also has a parameter k, which allows us to encode a continuation. The Put operation,
in this case, allows us to take in some value of type s, and a continuation to execute after
that. The Get operation contains a function that requires a value of type s to be provided
in order to be able to execute the continuation. The concrete implementation of these ef-
fects will be provided later by handlers - for now, it only matters that the interface is correct.

A.2 Writing Programs with Algebraic Effects
An example of a program that could be written using the free monad and the State effect
is given below. It first retrieves an integer value from the current state, increments it by
one, and subsequently stores this new value in the state. It also returns this incremented
value at the end of the computation. Note the signature of this function - it is a free monad
(syntax tree representing a program), with as a possible effect only State Int, and a final
return value of type Int.

increment :: Free (State Int) Int
increment = Op (Get (\s −>

Op (Put (s + 1) (Pure (s + 1)))
))

From this, it should hopefully be clear how programs using effects are constructed. One
might note, however, that it could quickly become quite cumbersome to write programs in

16

this manner, with nested Op’s. To overcome this, infrastructure is borrowed from Swier-
stra [1], allowing us to write the above program much more elegantly in combination with
Haskell’s do-notation:

increment’ :: Free (State Int + End) Int
increment’ = do

(s :: Int) <− get
put (s + 1)
return (s + 1)

The End effect seen here is an implementation detail - essentially, it encodes the idea of
"no effect".

A.3 Handlers
Finally, we briefly discuss effect handlers. Handlers allow us to provide concrete implemen-
tations for the effects used in programs constructed using the free monad. When applied to
a free monad, they handle and remove effects, until eventually only a value remains.

Handlers are defined using the following signature:

data Handler f a f ’ b =
Handler { ret :: a −> Free f’ b

, hdlr :: f (Free f ’ b) −> Free f’ b
}

Here, f is the effect this handler handles, a the return type of the program before apply-
ing the handler, f ’ the effects used in the program being handled, and b the return type of
the program after applying the handler. Handlers must then provide implementations for
the two functions ret (to take raw values of type a to type b while wrapping them in the
free monad) and hdlr (actually handling the f effect).

We define a function to apply handlers like so (omitting its implementation for brevity):

handle :: (Functor f , Functor f ’) => Handler f a f’ b −> Free (f + f’) a −> Free f’ b

We also need a function to take a free monad for which all effects have been handled to
a normal value (unwrapping it from the free monad):

un :: Free End a −> a

With this infrastructure, we can finally execute programs we write using the free monad.
For example, to execute the increment program defined earlier, we could do this:

un (
(handle handlerState

increment’
)

)

A reader familiar with effects and handlers may note that this definition makes it quite
difficult to properly handle the state effect - for example, no initial state can be provided.
A version of handle that takes an initial state as input and allows for the passing along
of states during the handling does also exist, and this version should actually be used for
the State effect. However, we will not see any more effects like State in this paper, so it

17

was decided to omit the explanation of the alternative handle. As mentioned, we refer to
Bach Poulsen [2] for more details.

B Appendix: Code
The full code used in the process of writing this paper can be found in the following GitHub
repository: https://github.com/gijsh21/RP-PWEA-FixedPointRecursion. For conve-
nience, we will also list the implementations of some important functions referenced in the
text here.

Handle
This is the implementation of the handle function, as given by Bach Poulsen [2]:

handle :: (Functor f , Functor f ’)
=> Handler f a f’ b −> Free (f + f’) a −> Free f’ b

handle h = fold
(ret h)
(\x −> case x of

L y −> hdlr h y
R y −> Op y

)

Fold
This is the implementation of the fold function, as given by Bach Poulsen [2]:

fold :: Functor f => (a −> b) −> (f b −> b) −> Free f a −> b
fold gen _ (Pure x) = gen x
fold gen alg (Op f) = alg (fmap (fold gen alg) f)

»=
This is the implementation of the »= function for the monad instance of Free, as given by
Bach Poulsen [2]:

instance Functor f => Monad (Free f) where
m >>= k = fold k Op m

18

https://github.com/gijsh21/RP-PWEA-FixedPointRecursion

References
[1] W. Swierstra, “Data types à la carte,” Journal of Functional Programming, vol. 18,

no. 4, pp. 423–436, 2008. doi: 10.1017/S0956796808006758.

[2] C. Bach Poulsen. “Algebraic Effects and Handlers in Haskell.” (2023), [Online]. Avail-
able: http://casperbp.net/posts/2023-07-algebraic-effects/.

[3] L. Erkök, “Value recursion in monadic computations,” AAI3063791, Ph.D. dissertation,
2002, isbn: 0493822941.

[4] E. Moggi and A. Sabry, “An abstract monadic semantics for value recursion,” RAIRO
- Theoretical Informatics and Applications - Informatique Théorique et Applications,
vol. 38, no. 4, pp. 375–400, 2004. doi: 10.1051/ita:2004018.

[5] W. Fancher. “MonadFix is Time Travel.” (2017), [Online]. Available: https://elvishjerricco.
github.io/2017/08/22/monadfix-is-time-travel.html/.

19

https://doi.org/10.1017/S0956796808006758
http://casperbp.net/posts/2023-07-algebraic-effects/
https://doi.org/10.1051/ita:2004018
https://elvishjerricco.github.io/2017/08/22/monadfix-is-time-travel.html/
https://elvishjerricco.github.io/2017/08/22/monadfix-is-time-travel.html/

	Introduction
	Background
	Algebraic Effects and Handlers in Haskell
	Fixed-Point Recursion
	Value Recursion

	Implementation
	Normal Fixed-Point Recursion
	The Either Signature
	The Regular Fix Signature

	Value Recursion
	The Problem
	Dummy Handlers
	fixIO-inspired Stateful Handling

	Applications and Analysis of Effectful Normal Recursion
	Motivating Example: A Circuit Simulator
	The Evaluation Process

	Formal Analysis of Effectful Value Recursion
	Strictness
	Purity
	Left shrinking
	Deriving an Operator from the Laws

	Responsible Research
	Reproducibility
	Ethics

	Discussion, Conclusion, and Future Work
	Appendix: Algebraic Effects and Handlers in Haskell
	Algebraic Effects
	Writing Programs with Algebraic Effects
	Handlers

	Appendix: Code

