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 A B S T R A C T

Growing incidents of structural damage and failures underscore the urgent need for more advanced Structural 
Health Monitoring (SHM) solutions. While Multi-Temporal Interferometric Synthetic Aperture Radar (MT-
InSAR) has revolutionised SHM by enabling automated, long-term, and large-scale displacement monitoring of 
structures using Persistent Scatterers (PSs), its applicability is often constrained by the unpredictable spatial 
distribution of PSs. Conventional suitability assessments that rely primarily on PS density fail to account for 
the underlying structural behaviours, limiting their reliability.

This paper introduces a novel structural-based inverse approach that uniquely integrates MT-InSAR 
characteristics with structural response modelling to overcome these limitations. Unlike existing approaches, 
the method explicitly evaluates whether observed surface displacements adequately represent a target damage 
mechanism by comparing outputs from a pseudo sensor with those from a virtual MT-InSAR sensor. If this 
condition is satisfied, it then determines the minimum required number and optimal spatial arrangement 
of ideal PSs using modified pivoted QR factorisation, where satellite-induced positional uncertainties are 
rigorously modelled through Radial Basis Function kernels.

The proposed method was validated on a quay wall in Amsterdam using Finite Element Method (FEM) 
simulations of three distinct damage mechanisms. Results demonstrate its unique capability to quantitatively 
assess displacement representativeness and to pinpoint ideal PSs for robust monitoring. Leveraging these 
insights, the method was further applied to evaluate MT-InSAR monitoring feasibility across Amsterdam’s 
historic centre, successfully identifying quay wall segments amenable to reliable observation. This work 
represents a significant advancement in MT-InSAR-based SHM, providing a more targeted and structurally 
informed approach for real-world infrastructure monitoring.
. Introduction

A significant portion of the world’s infrastructure was constructed 
ecades ago and no longer meets modern service demands or does not 
omply with current standards and regulations [1–3]. At the same time, 
he increasing frequency and intensity of environmental stressors pose 
rowing risks to these ageing structures, accelerating their degrada-
ion [4,5]. Consequently, regular infrastructure monitoring has become 
 global priority [6,7].

I This article is part of a Special issue entitled: ‘Smart Sensing for SHM’ published in Engineering Structures.
∗ Corresponding author.
E-mail address: h.kuai@tudelft.nl (H. Kuai).

In response, several countries have developed formal monitoring 
guidelines, such as the U.S. National Bridge Inspection Standards 
(NBIS) [8,9], China National Standards for Technical Condition Eval-
uation of Highway Bridges [10], Italian National Standard [11], and 
German National Standard [12]. Although these guidelines have been 
periodically revised, they continue to rely heavily on visual inspections 
and non-destructive testing methods. While effective in engineering 
practice, these techniques are labour-intensive and costly, limiting 
their scalability and frequency of application [13,14]. Furthermore, 
ttps://doi.org/10.1016/j.engstruct.2026.122103
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compliance with the prescribed regular inspection intervals does not 
always guarantee structural safety [15].

1.1. MT-InSAR as a promising alternative for SHM

Multi-Temporal Interferometric Synthetic Aperture Radar
(MT-InSAR) has emerged as a promising alternative to traditional 
Structural Health Monitoring (SHM) methods. By processing a series of 
satellite images over time, MT-InSAR provides displacement data for 
infrastructure monitoring [16] using Persistent Scatterers with stable 
backscattering properties that enable millimetre level accuracy [17–
19]. Unlike conventional SHM methods, MT-InSAR does not require 
in-situ sensor installation, is less labour-intensive, and functions under 
all lighting conditions. Satellite revisit intervals can be as short as a few 
days, enabling frequent and spatially extensive monitoring.

Numerous studies have demonstrated MT-InSAR’s ability to detect 
structural anomalies across various types of infrastructure, including 
bridges [20–23], tunnels [24–26], buildings [27–29], dams [30–32], 
and railways [33–36]. These anomalies, typically identified through 
unusual displacement patterns in PSs located on structures, can serve 
as early warning signs of damage [37]. Therefore, both the quantity 
and spatial distribution of PSs are crucial to MT-InSAR’s effectiveness. 
However, identifying PSs on a given structure is subject to uncertainty, 
as it depends on both the quality and temporal stability of radar 
backscatter, which are influenced by surface characteristics, weather 
conditions, sensor resolution, acquisition geometry, and the nature of 
deformation [38–40]. These factors affect not only the number of PSs 
but also their spatial distribution, ultimately influencing MT-InSAR’s 
reliability for SHM.

1.2. Limitations of existing evaluation approaches

Despite its promise, there is currently no standardised approach for 
evaluating whether the spatial distribution and number of PSs obtained 
through MT-InSAR for a given structure are sufficient for effective SHM. 
Most studies assume that a sufficient number or density of PSs guar-
antees reliable monitoring [41–46]. While this approach has yielded 
promising results, it suffers from three main limitations. First, while 
MT-InSAR detects PSs only on a structure’s surface, some structural be-
haviours do not manifest as surface displacements, meaning that even a 
high PS density may fail to capture relevant structural behaviour. Sec-
ond, although PS density is commonly used as a proxy for effectiveness, 
no threshold has been proposed to define when MT-InSAR becomes 
a viable SHM method. Finally, PS density metrics typically ignore 
structural information such as geometry, loading conditions, and the 
nature of potential mechanisms, which can influence the displacement 
field. For instance, a simple, undamaged beam bridge under uniform 
loading may require only a few PSs to capture its half-sine deflection 
profile. In contrast, a more complex structure subjected to localised 
damage would require a different PS distribution. Solely relying on 
PS density risks underestimating or misrepresenting MT-InSAR’s actual 
potential.

1.3. Introducing the concept of ideal PSs

To overcome these limitations, we propose shifting the focus from 
PS density to the concept of ‘‘ideal PSs’’, which refer to the minimal 
set of optimally located PSs required to fully capture a structure’s dis-
placement behaviour. These ideal PSs serve as a benchmark to evaluate 
the adequacy of real PSs detected by MT-InSAR. If the observed PSs 
spatially cover the ideal set, MT-InSAR can be considered suitable for 
SHM in that structure. If not, its use may be inadequate.

Identifying ideal PSs, in terms of both quantity and locations, can 
be achieved using pivoted QR factorisation [47], a method proven 
effective for sparse sensor placement in fields such as fluid dynamics 
and ocean monitoring [48,49]. This technique ranks points in the 
2 
structure based on their importance in reconstructing the full displace-
ment field. Additionally, pivoted QR factorisation is computationally 
efficient while maintaining accuracy [48], allowing scalable analysis 
across multiple infrastructures.

However, applying pivoted QR factorisation to MT-InSAR-based 
SHM presents unique challenges. First, unlike traditional sensor sys-
tems, MT-InSAR can only measure displacements at surface-accessible 
PSs. Therefore, before identifying ideal PSs, we must determine
whether surface displacements adequately represent the internal struc-
tural behaviour. Second, the PS detection process is subject to posi-
tion uncertainty [50,51], which must be accounted for in evaluating 
MT-InSAR’s capability.

1.4. A structural-based inverse approach for evaluating MT-InSAR

Building on the concept of ‘‘ideal PSs’’, we propose a structural-
based inverse approach to evaluate MT-InSAR’s suitability for SHM. 
This approach incorporates both the physical characteristics of the 
structure and the position uncertainties associated with MT-InSAR mea-
surements. The potential evaluation bias caused by measurement noise 
is also discussed. The process starts with a numerical simulation of the 
target structure, including potential damage mechanisms. Displacement 
data from the simulation are then analysed to assess whether surface 
displacements alone can capture the complete structural response. If so, 
ideal PSs are identified using a modified pivoted QR factorisation ap-
proach, which incorporates a kernel function to account for PS position 
uncertainties from MT-InSAR. This approach offers a comprehensive 
and scalable evaluation of MT-InSAR’s effectiveness for infrastructure 
monitoring.

We applied the proposed approach to the Marnixkade quay wall in 
Amsterdam. Three damage mechanisms were simulated: failure due to 
traffic loading, degradation of central foundation piles, and degradation 
of randomly distributed foundation piles. For each case, we evalu-
ated whether surface displacements could reliably represent internal 
behaviour, and subsequently identified the corresponding ideal PSs.

To further demonstrate its practical application, the identified ideal 
PSs were used as benchmarks to assess MT-InSAR’s effectiveness across 
all quay walls in the historic centre of Amsterdam, assuming that 
these structures exhibit similar behaviour to the Marnixkade quay wall. 
Real PS data were collected in both ascending and descending satellite 
tracks from 2011 to 2020. By comparing the spatial distribution of 
the observed PSs with the ideal PS benchmarks, we evaluated the 
monitoring coverage and reliability. This application illustrated how 
the proposed approach can support a systematic evaluation of MT-
InSAR’s suitability for SHM and provides a clear path for its integration 
into operational monitoring frameworks.

2. Methodology

This paper proposes a structural-based inverse approach to evaluate 
the feasibility of applying MT-InSAR for SHM. As shown in Fig.  1a, 
when MT-InSAR is employed to monitor infrastructure, it uses PSs 
positioned on the structure surface to measure displacements over time. 
If PSs are sufficient in number and well-distributed, their displacements 
can effectively reflect the structural deformation patterns. Since these 
patterns vary depending on the type of structural damage mechanism 
that is observed, they may offer insights into the location, severity, and 
nature of structural damage.

To determine whether MT-InSAR can effectively detect specific 
structural damage mechanisms, we proposed a methodology that re-
versed the conventional monitoring process (Fig.  1b). This inverse 
approach consists of four steps: (i) generating a displacement basis 
matrix through numerical simulations of relevant structural damage 
mechanisms, (ii) evaluating the representativeness of surface displace-
ments by comparing reconstruction errors between pseudo sensor and 
virtual MT-InSAR, (iii) identifying ideal PSs using modified pivoted QR 
factorisation, and (iv) integrating PS position uncertainties into ideal 
PS regions. Each step is outlined in detail below.
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Fig. 1. MT-InSAR monitoring (a) and structural-based inverse evaluation (b) 
for SHM.

2.1. Displacement basis matrix generation

The structural-based inverse approach began by identifying po-
tential damage mechanisms that a structure might experience. These 
were categorised into two types: acute mechanisms, which occurred 
suddenly, e.g., due to extreme loads or impact, and progressive mech-
anisms, which evolved gradually over time. Due to the temporal reso-
lution of MT-InSAR measurements, the technology is inherently better 
suited for monitoring progressive mechanisms rather than acute ones, 
which may occur too rapidly to be captured between satellite acqui-
sitions. Consequently, this study focused exclusively on progressive 
damage mechanisms.

For each progressive mechanism identified, a displacement basis 
matrix was generated using high-fidelity numerical simulations of the 
infrastructure under investigation and the relevant mechanism. Specifi-
cally, Finite Element (FE) models were developed, due to the FE method 
versatility and accuracy in modelling both linear and nonlinear struc-
tural behaviour. Depending on the structural typology and complexity 
of resulting damage, alternative methods such as the Discrete Element 
Method may also be applicable [52].

The output of these simulations was a state-space observation ma-
trix 𝐗, defined as: 
𝐗 = [𝐱1, 𝐱2, 𝐱3, 𝐱4,… , 𝐱𝑚] (1)

Each column vector 𝐱𝑖 represents the structure’s displacement at time 
instant 𝑖, with 𝑚 total steps covering the full damage progression over 
time. Each row corresponds to the displacement time history of a 
single node. Dimensionality reduction techniques can be applied to 𝐗 to 
extract the dominant spatial deformation modes, resulting in a reduced 
basis matrix Ψ. One example is Proper Orthogonal Decomposition 
(POD), which extracts an orthogonal basis capturing the dominant 
spatial modes of the displacements [53].

2.2. Surface representation evaluation

Since MT-InSAR can only measure surface displacements, it is cru-
cial to assess whether surface measurements alone can adequately 
reflect the global structural behaviour. To this end, two conceptual 
sensing models were introduced: pseudo sensor and virtual MT-InSAR 
(Fig.  2). The pseudo sensor assumed full access to all nodal displace-
ments across the structure, representing an idealised extension of MT-
InSAR and serving as a theoretical benchmark for comparison. The 
virtual MT-InSAR mimicked MT-InSAR constraints by restricting access 
to surface-visible nodes only.

For both models, the pivoted QR factorisation method, originally 
introduced by Businger and Golub [47] to solve least squares problems, 
3 
was used to rank candidate observation points. This algorithm has 
demonstrated its effectiveness in various applications. However, it has 
never been applied to the selection of ideal PSs for MT-InSAR.

MT-InSAR surface measurements at 𝑟 selected PS points can be 
described mathematically as: 
𝐲 = 𝐂𝐱 (2)

where 𝐂 ∈ ℜ𝑟×𝑛 is the matrix encoding the positions of the PSs. The 
matrix 𝐂 is usually populated by zeros and ones to identify individual 
components of 𝐱. In the context of determining the ideal PSs, this matrix 
𝐂 is unknown, and the task is to identify the smallest number of PSs 
needed to capture the structural behaviour so that 𝑟 ≪ 𝑛.

Since the displacement pattern 𝐱 corresponds to a particular instant 
in the evolution of a specific structural damage mechanism that can 
be observed through surface displacements, it can be assumed that 
the state 𝐱 evolves in time according to a unknown nonlinear func-
tional form 𝑓 , so that 𝐱̇ = 𝑓 (𝐱(𝑡)). Following [48], the dynamics can 
be expressed on a low-dimensional space obtained by identifying an 
appropriate transformation basis Ψ that reduces the number of active 
components: 
𝐱 = Ψ𝐬 (3)

where 𝐬 is a sparse vector of coefficients that identifies the active 
spatial eigenmodes collected in the matrix Ψ (note: mode here does 
not refer to the structural modes of the underlying structure). Since 
this is a time-evolving problem, the coefficients 𝐬 are time-dependent. 
This means that instead of collecting high-dimensional states 𝐱, we aim 
to compress and discard most of the information by inferring the 𝐬 in 
the transformed coordinate system.

By combining Eqs. (2) and (3), the problem can be reformulated as: 

𝐲 = 𝐂𝐱 = 𝐂Ψ𝐬 = Θ𝐬 (4)

When using MT-InSAR to collect the displacement of PSs, 𝐂 and 𝐲
are obtained after the MT-InSAR analysis. Ideally, the sparse vector 𝐬
can then be obtained using the Moore–Penrose pseudoinverse [54]. 
𝐬 = (𝐂Ψ)†𝐲 (5)

In our study, identifying the ideal PSs involved selecting an effective 
measurement matrix 𝐂∗ that contained only ones at the locations of 
the ideal PSs, such that the displacement data 𝐲 collected at these 
points could be used to derive the sparse vector 𝐬 via Eq.  (5) with 
high accuracy. Numerically, this involved designing 𝐂∗ such that Θ was 
well conditioned. A well-conditioned Θ reduced numerical instability 
during signal reconstruction and ensured reliable computation of 𝐬. 
To achieve this, the pivoted QR factorisation was effectively used, as 
recommended by [48].

Matrices often contain sets of linearly dependent columns. Pivoted 
QR factorisation aims to identify a set of columns that are ‘‘as linearly 
independent as possible’’. The process iteratively selects one column 
at a time. At each step, it chooses the column that is most difficult 
to represent as a combination of the columns that have already been 
selected in the previous steps, using the norm to quantify this difficulty. 
In this context of this study, applying pivoted QR factorisation to 
the basis matrix Ψ for a potential damage mechanism produced the 
effective measurements matrix 𝐂∗, identified by the pivot columns, 
along with an orthonormal matrix 𝐐 and an upper triangular matrix 
𝐑: 
Ψ⊤𝐂∗⊤ = 𝐐𝐑 (6)

Specifically, the pivoted QR factorisation processed the basis matrix 
Ψ⊤ and obtained the ideal PSs matrix 𝐂∗ following the procedure as 
shown in Fig.  3. First, the column with the largest norm was selected 
from the matrix. This column corresponded to the first ideal PS and 
was moved to the first position in the matrix. Next, all the remaining 
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Fig. 2. Conceptual sensing models and their observation matrices: virtual MT-InSAR (left), which observes only the top surface of the structure; pseudo sensor 
(right), which observes all points of the structure.
Fig. 3. Pivoted QR factorisation for structural-based inverse approach.

columns were orthogonalised with respect to this selected column. 
After orthogonalisation, the norms of the remaining columns were 
recalculated, and the column with the largest updated norm was chosen 
as the second ideal PS. This process, selecting the column with the 
largest norm and orthogonalising the remaining columns, was repeated 
iteratively until all columns had been processed. Ultimately, each col-
umn of 𝐂∗ represented one of the potential candidates (i.e., ideal PSs 
for virtual MT-InSAR and ideal sensor locations for the pseudo sensor) 
ranked by significance.

To address whether surface displacements could sufficiently rep-
resent the overall structural behaviour, we compared the ability of 
top-ranked ideal PSs and ideal sensor locations to reconstruct the dis-
placement pattern. This reconstruction was achieved through a linear 
mapping approach. It derived the relationship 𝐋 between the training 
signals (displacement data from the selected 𝑟 candidate observation 
points at 𝑣 time instants) and prediction signals (displacement data 
from the same point at a time instant 𝑡) by minimising the following 
optimisation problem: 
min
𝐑

‖𝐚𝐋 − 𝐛‖2 (7)

where 𝐚 ∈ ℜ𝑟×𝑣 is the matrix of training signals, and 𝐛 ∈ ℜ𝑟 is the 
vector of the prediction signals at a time instant 𝑡. This relationship 
𝐋 was then used to reconstruct the displacement pattern of the entire 
structure, 𝐱𝐿 ∈ ℜ𝑛, at a time instant 𝑡 as: 
𝐱𝐿 = 𝐀𝐋 (8)

where 𝐀 ∈ ℜ𝑛×𝑣 is the training signal, including the displacements of all 
𝑛 points in the structure throughout 𝑣 time instants in the mechanism 
evolution process.

The reconstruction ability of selected candidate observation points 
only based on numerical simulation results, the difference between the 
reconstructed displacement pattern 𝐱𝐿 and the simulated displacement 
pattern 𝐱 was referred to as the reconstruction error: 
𝐞𝐿 = |

|

𝐱𝐿 − 𝐱|
|

(9)
4 
Fig. 4. The procedure of surface representation evaluation.

Two metrics were used to assess this ability: the Mean Reconstruc-
tion Error, which represents the average error across all points in 
the structure and providing an overall measure of performance, and 
the Maximum Reconstruction Error, which indicates the largest error 
among all points and is critical for identifying localised inaccuracies 
that could mislead damage assessments. The reconstruction errors were 
evaluated at each time instant of the mechanism evolution. This en-
sured accuracy across all stages of the process and avoided overlooking 
discrepancies at specific time instants.

Fig.  4 summarises the procedure of surface representation evalua-
tion. Firstly, only the displacements of the surface visible to MT-InSAR 
(the blue region in Fig.  2) obtained from numerical simulation were 
processed using pivoted QR factorisation to rank ideal PSs candidates. 
The reconstruction errors were then calculated iteratively, starting with 
the top-ranked ideal PS, followed by the top two, the top three, and so 
on. The pseudo sensor followed a similar procedure, but it considered 
the displacements of all points in the structure (the purple region in Fig. 
2). If the reconstruction errors of virtual MT-InSAR were significantly 
larger than those for the pseudo sensor, then MT-InSAR was judged 
unsuitable for detecting the damage mechanism of the target structure. 
Otherwise, it was considered applicable for this purpose.
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2.3. Ideal PSs identification

The reconstruction errors provided an overall indication of the 
ability of MT-InSAR to determine whether displacement data collected 
from surfaces accessible by MT-InSAR could adequately represent the 
global damage mechanism of the target structure. However, even if 
surface displacement data could theoretically represent the structural 
damage mechanism, MT-InSAR might still fail to provide a sufficient 
number of PSs or might result in poorly distributed PSs. As a result, 
the displacements derived from these PSs could still be unable to 
capture the full extent of the mechanism. This highlights the necessity 
of identifying the number and positions of ideal PSs, which can serve 
as benchmarks to evaluate MT-InSAR’s ability in each specific case.

As previously mentioned, pivoted QR factorisation processes the 
basis matrix of virtual MT-InSAR to rank potential ideal PS candidates 
based on their significance. However, determining the number and 
regions of ideal PSs still involves addressing two key issues.

First, the positions of ideal PSs should be defined as regions rather 
than exact points. From the perspective of MT-InSAR, placing PSs 
within structures introduces inherent position uncertainties [50,51]. 
Even after applying correction methods, position uncertainties related 
to satellite measurements persist [55]. Structurally, when an exact loca-
tion for a PS is identified, there are possibilities that nearby points may 
exhibit similar displacement behaviour. Therefore, considering both 
MT-InSAR’s intrinsic position uncertainties and structural behaviour, 
identifying regions for ideal PSs placement is more practical.

Second, a cutoff point is required to determine the number of ideal 
PSs needed, based on the ranking of potential candidates. Reconstruc-
tion errors provide a general guidance here [48]. For instance, if the 
reconstruction error reaches an acceptable level with three ideal PSs, it 
may suggest that three ideal PSs are sufficient. However, this remains 
a rough estimation. The number of ideal PSs should comprehensively 
capture the displacement behaviour of the entire structure. While re-
construction errors offer a threshold-based assessment, they do not 
guarantee that the selected PSs fully represent the structural behaviour. 
The error threshold is arbitrary, whether set at 1 mm or 0.1 mm, 
and may not truly reflect how well the PSs capture the displacement 
pattern.

To identify the ideal PS regions, we modified the pivoted QR 
factorisation as shown in Fig.  5. A ‘‘Detected’’ part was introduced into 
the matrix during the determination of each ideal PS. This modification 
happened at each stage of the column pivot selection. For instance, 
after the first location of the ideal PS was identified, the corresponding 
column was moved to the ‘‘Detected’’ part. This ensured that once 
a location was chosen, it was excluded from further iterations. The 
remaining columns were then processed to find additional possible 
locations for the same ideal PS. This iterative process continued until 
all columns in the ‘‘To Be Detected’’ part were processed, generating a 
ranking of possible positions for each ideal PS.

Once the position ranking of each ideal PS candidate was obtained, 
displacement correlations between the initially selected position and 
the following selected positions were tested. The goal was to ensure 
that all points in the identified region of the same ideal PS exhibited 
similar behaviour during damage evolution. The Radial Basis Function 
(RBF) kernel was employed to evaluate this correlation: 
𝐾(𝐱, 𝐲) = exp(−𝛾‖𝐱 − 𝐲‖2) (10)

where 𝐱 ∈ ℜ𝑚, 𝐲 ∈ ℜ𝑚 represent the displacement columns of 
the initially selected position and the subsequently selected position, 
respectively. The scale parameter 𝛾 was set to 1∕𝑚, where 𝑚 is total 
number of steps covering the full damage progression, to ensure the 
stabilisation of the RBF kernel [56].

Positions with high correlations were grouped into the same re-
gion. By applying a predefined threshold to the correlation values, the 
regions of each ideal PS were determined. Furthermore, these corre-
lations guided the determination of the number of ideal PSs required 
5 
Fig. 5. Modified pivoted QR factorisation for identifying regions for PSs.

Fig. 6. The procedure of ideal PSs identification.

to comprehensively capture the target structural damage mechanism. 
If an ideal PS candidate exhibited consistently high correlations (close 
to 1) across all nodes on the structure, it implied that its contribution 
to capturing structural displacement behaviour is minimal, and this 
candidate could be excluded. If significant variations in correlation 
were observed, the candidate was considered essential. In this way, 
the correlation variation provides a data-driven and systematic cutoff 
for determining the number of ideal PSs, avoiding the subjectivity of 
a reconstruction-error threshold and ensuring that the full structural 
displacement behaviour is captured.

The entire procedure for determining the number and regions of 
ideal PSs is summarised in Fig.  6. Initially, the basic displacement 
matrix Ψ𝑀  was processed using pivoted QR factorisation to rank the 
ideal PS candidates. Each candidate was then analysed individually. 
The following process began by testing the first ideal PS. The modified 
pivoted QR factorisation was applied to rank the possible positions for 
this ideal PS. The displacement correlations between these positions 
and the initially selected position were then evaluated. If the correla-
tion showed significant variation, this ideal PS was considered essential 
for capturing the structural behaviour; otherwise, it was regarded as 
unnecessary. The region of this PS was then defined by identifying 
positions whose correlations exceeded a predefined threshold. This 
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Fig. 7. Integration of MT-InSAR position-related uncertainties into ideal PS 
region identification.

procedure was repeated for the next ideal PS candidate until the corre-
lation variation became sufficiently small, indicating that no additional 
PSs were needed.

2.4. Integration of PS position uncertainties

Up to this point, regions of ideal PSs have been determined based 
solely on numerical results of the structural displacement behaviour, 
specifically by assessing the similarity of displacement responses over 
time. While this approach ensured that selected PS regions were struc-
turally representative, it did not account for position uncertainties 
inherent to MT-InSAR measurements, which can reach several metres, 
depending on the SAR sensor characteristics, orbital accuracy, and the 
geocoding process [57].

To address this, we introduced additional spatial constraints based 
on RBF kernels. These kernels characterised the spatial variability in 
measurement accuracy and were used to refine the previously identified 
PS regions, ensuring they lay within domains that MT-InSAR could 
reliably capture. Each directional uncertainty was represented by a 
dedicated RBF kernel. The scale parameter 𝛾 captured the extent of the 
uncertainty in each direction: 

𝛾 = 1
𝜎2

(11)

where 𝜎𝟐 represents the variance in the RBF kernel to model uncer-
tainty in the respective direction.

By applying a predefined threshold to the kernel value in each 
direction, we defined uncertainty bounds accordingly. The ideal PS 
region was then defined as the intersection of the region derived from 
structural displacement correlations and the uncertainty bounds in two 
planar directions (east–west and north–south), as shown in Fig.  7. 
This ensured that the selected PSs are both structurally informative 
and practically measurable given MT-InSAR’s spatial resolution and 
position-related uncertainties. In the vertical direction, the same prede-
fined kernel threshold was mapped onto a tolerance band around the 
known structural surface, which was directly applied in the preliminary 
stage to filter the PS candidate, in line with standard practice [23]. For 
instance, considering the 2.22 m vertical uncertainty reported in the 
literature [55], we set 𝜎 = 2.22 in Eq.  (11). The predefined correlation 
threshold of 𝐾 = 0.8 was then mapped to a corresponding vertical 
tolerance of approximately 1.05 m. This tolerance was defined around 
the surface of the target structure and used to filter PS candidates in 
the preliminary stage.

2.5. Other uncertainty sources affecting the evaluation of MT-InSAR’s ef-
fectiveness

In reality, the displacement measurements at real PS locations are 
affected by various sources of uncertainty [60]. Directly using the nu-
merically simulated displacements neglects these uncertainties. There-
fore, it is important to discuss how uncertainties could influence the 
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Fig. 8. The Marnixkade quay wall.
Source: (reproduced from [58,59])

displacement observations and how the estimation of MT-InSAR’s ef-
fectiveness may be biased. 

Typically, measurement uncertainty can be represented in terms of 
a random measurement noise (e.g., decorrelation noise) and/or sys-
tematic errors (e.g., orbital errors and topographic residuals) [40,60]. 
Since the random measurement noise is an aleatory irreducible uncer-
tainty, while the systematic errors can be reduced if properly accounted 
for [61], in what follows only the random measurements noise is going 
to be considered. At each acquisition time, it can be assumed that the 
displacement from each PS is a statistically uncorrelated observation 
of the underlying true displacement. Given the limited information, 
it is reasonable to assume that these observations follow a Gaussian 
distribution. The measured displacement 𝐀𝐦𝐞𝐚𝐬𝐮𝐫𝐞 at real PSs can be 
expressed as: 

𝐀𝐦𝐞𝐚𝐬𝐮𝐫𝐞 = 𝐀𝐭𝐫𝐮𝐞 + 𝝐, 𝝐 ∼  (0, 𝜎2error𝐼). (12)

where 𝐀𝐭𝐫𝐮𝐞 is the true displacement at real PS positions, which is not 
known, and 𝝐 represents an equivalent zero-mean measurement noise 
with variance 𝜎2error.

Further, we assumed that the true displacement of the entire struc-
ture 𝐀𝐭𝐫𝐮𝐞 can be obtained from simulations (i.e. the model has been 
validated and calibrated, and there are no sources of uncertainties [61] 
in the model form, model parameters or solver). Therefore, the error in 
reconstructing the displacements of the entire structure using ideal PS 
data 𝐞 can be expressed as: 

𝐞 = 𝐱𝐿,measured − 𝐱𝐿,true = 𝐀𝐦𝐞𝐚𝐬𝐮𝐫𝐞 𝐋 − 𝐀𝐭𝐫𝐮𝐞 𝐋 = 𝝐 ⋅ 𝐋 (13)

where 𝐱true is the true displacement of all the nodes in the structure, and 
𝐋 is the relationship calculated using Eq.  (7). According to Eq.  (13), the 
reconstruction will be affected proportionally to both the measurement 
noise level and the magnitude of the reconstruction coefficients. It 
is important to note that this noise impact is limited to the surface 
representation evaluation, where Eq.  (8) is used.

3. Case study

To demonstrate the applicability of the proposed approach, this was 
applied to a historic quay wall located at Marnixkade in Amsterdam 
(see Fig.  8). Quay walls present particular monitoring challenges due 
to their limited top-surface area, which limits visibility in MT-InSAR 
data. Successfully identifying the number and location of ideal PSs 
under these constraints would highlight the method’s potential for 
application to other types of infrastructure. The structural model used 
has been validated through both cross-model comparisons and field 
measurements, confirming its accuracy. Detailed description of the 
model and the finite element analysis can be found in [58,59].
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Fig. 9. Displacements and deformed configuration of the quay wall at the final load step. The dashed lines indicate the original, undeformed contour.
Fig. 10. Layouts of piles for different degradation scenarios.
3.1. Failure induced by traffic loading

The first mechanism was simulated by monotonically applying in-
cremental lateral forces to the structure. These forces simulated the 
pressure induced by a truck positioned on the road, four metres from 
the quay wall. The vertical load from the truck weight was transferred 
through the soil and manifests as lateral pressure on the masonry wall 
and adjacent timber floor. The resulting structural response involved 
significant displacements at the top surface of the wall. The simulation 
captured the complete progression of damage up to failure over 110 
load steps. Fig.  9(a) illustrates the lateral displacement of the quay wall 
at the end of the incremental load application.

3.2. Failure induced by degradation of central foundation piles

In the second scenario, failure was induced by the progressive 
degradation of a region of foundation piles located at the centre of 
the modelled section of the quay wall. This mechanism was based on 
inspection data from 2016, which identified deterioration in several 
central piles of the Marnixkade quay wall [62]. To simulate this, the 
cross-sectional diameters of 27 out of 81 piles were gradually reduced 
to zero, representing full structural failure (Fig.  10(a)). The simulation 
proceeded through 100 load steps, tracking the gradual collapse of 
the structure due to pile failure. Unlike the traffic loading case, this 
scenario produced primarily vertical displacements. Fig.  9(b) shows the 
vertical displacement field of the quay wall at the point of complete 
failure of the affected piles.

3.3. Failure induced by degradation of random foundation piles

While the two previous cases exhibited approximately symmetric 
deformation patterns, real-world scenarios are often non-symmetric. 
Additionally, the degradation of central piles is relatively rare in prac-
tice. To address these aspects, a third scenario was modelled in which 
27 piles were randomly degraded, as shown in Fig.  10(b). The progres-
sion of this non-symmetric damage mechanism was simulated through 
7 
Fig. 11. Top selected ideal PSs and horizontal displacement at the final load 
step for the traffic loading failure case. All parts other than the masonry walls 
are shown in dashed lines.

100 load steps, ultimately producing an irregular vertical displacement 
pattern across the quay wall surface. The final deformation state is 
shown in Fig.  9(c).

4. Results

4.1. Failure induced by traffic loading

Fig.  11 shows the horizontal (Y-direction) displacements at the final 
load step of the numerical simulation. The results indicate that the 
application of a large and localised vertical load, such as the weight of 
a truck, induced large displacements at the central region of the wall 
(blue area), with maximum values reaching -189 mm. Since this struc-
tural damage mechanism primarily generated lateral displacements, the 
Y-direction displacements were the focus of the analysis.
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Fig. 12. Evaluation of the surface displacement capability to represent traffic loading failure: (a) maximum absolute reconstruction error and (b) mean square 
absolute reconstruction error. The average reconstruction error is shown by lines, while the dashed envelopes and the shaded areas represent the corresponding 
error ranges.
Fig. 13. Signal correlation trends during sequential selection for each ideal PS, in case of traffic loading failure.
First, we assessed whether displacement data acquired solely from 
the top surface were sufficient to represent the entire mechanism. To 
this end, we compared the reconstruction errors between the pseudo 
sensor and the virtual MT-InSAR data. For each load step, both the 
maximum absolute error and the mean square error were computed. 
To effectively summarise these results, Fig.  12 presents the average 
values across all load steps using red lines (pseudo sensor) and blue 
lines (virtual MT-InSAR) on a logarithmic scale. In addition, the full 
error range over all the load steps is visualised using a dashed envelope 
for the pseudo sensor and shaded areas for the virtual MT-InSAR. 
The results show that with only three ideal PSs, the virtual MT-InSAR 
achieves reconstruction accuracy that is comparable to the pseudo 
sensor, with average errors below 0.1 mm (indicated by the green 
dashed line). Furthermore, the error range is also well constrained from 
this point onward, indicating the robustness of surface measurements 
in capturing the full displacement behaviour. This suggests that top-
surface monitoring using MT-InSAR may be sufficient to characterise 
the failure induced by traffic loading.

Then, pivoted QR factorisation was used to rank all surface points 
on the structure according to their suitability as ideal PSs. The top four 
ranked points are visualised as spheres in Fig.  11. The first point was 
located in the region exhibiting the largest displacement (blue area), 
capturing the peak deformation. The second and third points were 
positioned on either side of this central region, capturing the gradient 
between the severely and mildly affected areas (between red and 
yellow areas). The fourth point further refined the spatial distribution, 
lying between the maximum displacement region (blue area) and the 
moderate displacement region (green area). Overall, these four selected 
PSs were spatially well distributed and enabled representation of the 
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entire mechanism, including both peak and transitional displacement 
regions.

Then, we determined the number of ideal PSs required and the 
corresponding regions they represented. To this end, a modified piv-
oted QR factorisation was applied for each top-ranked point. Unlike 
pivoted QR factorisation, the modified version sequentially selected 
surface points based on their ability to substitute for a given ideal 
PS. At each selection of an ideal PS, the displacement signal of the 
newly selected point was compared with that of the first selected point 
(the corresponding sphere in Fig.  11). Fig.  13 shows how the signal 
correlation evolves with the selection sequence for each of the top four 
ideal PSs. A clear downward trend in correlation values for the first 
three PSs (Fig.  13(a), (b), and (c)) indicates that the algorithm was 
effectively selecting points in order of decreasing representativeness. 
In contrast, the correlation values for the fourth ideal PS (Fig.  13(d)) 
remained consistently close to one throughout the selection process, 
suggesting that additional PSs beyond the third were redundant for 
accurately capturing the displacement characteristics.

To visualise these signal correlations spatially, the values were 
mapped onto the physical domain. For each ideal PS, the signal cor-
relation of newly selected positions was represented by colour at their 
respective spatial locations. These colour maps are shown in the signal 
correlation panels of Figs.  14(a), 14(b), and 14(c). Positions with corre-
lation values above 0.8 were considered to exhibit similar displacement 
behaviour and were regarded as viable alternatives to the selected PS 
from a signal similarity perspective (highlighted by black outlines in 
each panel).

Subsequently, positional uncertainties inherent in MT-InSAR were 
considered. These uncertainties depend on both the satellite and the 
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Fig. 14. Ideal PS regions for traffic loading failure.
positioning correction method. As an illustration example, we adopted 
the uncertainty values reported for the Sentinel and the single-epoch 
corner reflectors (CR) method [55]. In this case, the uncertainty in 
the 𝑦 direction (corresponding to the east–west orientation along the 
Marnixkade quay wall) was 3.47 m, while the uncertainty in the 𝑥
direction (north–south orientation) was 3.63 m. These uncertainties 
were modelled using an RBF kernel to account for spatial correlations. 
The results are shown in the ‘‘x direction uncertainty’’ and ‘‘y direction 
uncertainty’’ panels in Figs.  14(a)–14(c). Similar to the signal correla-
tion, the positions with correlation values above 0.8 were considered 
acceptable alternatives to the top-selected position from a positional 
uncertainty perspective (highlighted by black outlines in each panel).

Finally, the region for each ideal PS was defined as the intersection 
of the regions meeting all three criteria: high signal correlation, ac-
ceptable 𝑥-direction uncertainty and acceptable 𝑦-direction uncertainty. 
The regions for first, second and third ideal PS are shown in the right 
panels of Figs.  14. It can be observed that the second and third ideal PSs 
exhibit an almost symmetric regional placement, reflecting the inherent 
symmetry of the structural damage mechanism.

4.2. Failure induced by degradation of central foundation piles

The second scenario was the failure induced by the degradation 
of central foundation piles. The failed piles were unevenly distributed 
across the three pile rows: 11 in the front (nearest the water), 9 in the 
middle row, and 7 in the back (see Fig.  10(a)). Since the degradation of 
the central foundation piles induced significantly larger displacements 
in the vertical direction (𝑧 direction), compared to the other two direc-
tions, the vertical displacements were used as inputs for this analysis. 
Fig.  15 shows the vertical displacements at the final load step of the 
numerical simulations. The largest displacements were concentrated 
in the central region, where the degraded piles were located, with a 
maximum value of −34.3 mm. Due to the symmetric layout of the 
degraded piles along the 𝑥 direction, the displacement pattern also 
showed a symmetric distribution.
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Fig. 15. Top selected ideal PSs and vertical displacements at the final load 
step for the central piles degradation case. All parts other than the masonry 
walls are shown in dashed lines.

To evaluate surface representability, we compared the reconstruc-
tion errors between the pseudo sensor and virtual MT-InSAR. As shown 
in Fig.  16, the reconstruction error of virtual MT-InSAR was comparable 
to that of the pseudo sensor, suggesting that surface measurements 
alone are sufficient to capture the overall mechanism.

The top selected positions for the first three ideal PSs are shown in 
Fig.  15: the first ideal PS was located in the area with the maximum 
vertical displacement (in blue colour), corresponding to the centre of 
the degraded piles. The second ideal PS was positioned in a region that 
was less affected by the degradation, while the third was located near 
the boundary of the degraded pile region.

After applying the modified pivoted QR factorisation, the signal 
correlation over the selection sequence for each ideal PS is shown in 
Fig.  17. The significant variation in the correlation values for the first 
and second ideal PSs suggests that critical displacement characteristics 
continued to emerge (Fig.  17(a) and (b)). On the other hand, the 
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Fig. 16. Evaluation of the surface displacement capability to represent central piles degradation failure: (a) maximum absolute reconstruction error and (b) 
mean square absolute reconstruction error. The average reconstruction error is shown by lines, while the dashed envelopes and the shaded areas represent the 
corresponding error ranges.
Fig. 17. Signal correlation trends during sequential selection for each ideal PS, in case of central pile degradation.
Fig. 18. Ideal PS regions for central pile degradation failure.
consistently high correlation for the third ideal PS (Fig.  17(c)) indicates 
that its contribution was minimal, implying that its inclusion was not 
necessary.

As shown in the right panels of Figs.  18, the signal correlations for 
each ideal PS are displaced spatially on the top surface, along with 
the MT-InSAR’s position uncertainties in both the 𝑥 and 𝑦 directions. 
The uncertainties in the 𝑥 and 𝑦 directions remained 3.63 m and 
3.47 m, respectively, and were modelled using an RBF kernel. Locations 
where both the signal and spatial correlation values exceeded 0.8 were 
considered as the representative region for each ideal PS, as shown in 
the left panels. Like the previous case study, the failure induced by the 
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degradation of central piles exhibited symmetric features, leading to 
two representative regions for the second ideal PS.

4.3. Failure induced by degradation of random foundation piles

Compared to previous case studies, assuming a random,
non-localised failure of foundation piles better reflected real-world 
scenarios. This random distribution of damage at the foundation level 
resulted in a damage mechanism that produced a displacement pattern 
with greater asymmetry compared to the previously tested damage 
mechanisms. This mechanism primarily induced displacements in the 
vertical direction (𝑧 direction), which were used as inputs for the 
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Fig. 19. Top selected ideal PSs and vertical displacements at the final load 
step for the random piles degradation case. All parts other than the masonry 
walls are shown in dashed lines.

analysis. Fig.  19 shows the vertical displacements at the final load step 
of the numerical simulations. The largest displacements were observed 
at the right edge of the quay wall (blue area), where most piles were 
degraded, with a maximum displacement of −18.4 mm. The surface 
displacement representability was validated by the results obtained 
after introducing a pseudo sensor, as shown in Fig.  20.

The top selected position for each ideal PS is shown in Fig.  19. The 
first ideal PS was located in the region with the highest concentra-
tion of failed piles, while the second ideal PS was placed where the 
pile degradation was least concentrated. The third was positioned in 
the intermediate region. Similar to previous cases, each ideal PS was 
processed by modified pivoted QR factorisation to identify the region. 
The correlation between the new selection and the top selection is 
illustrated in Fig.  21. Since the correlation for the second ideal PS (Fig. 
21(b)) already ranged between 0.5 and 1, and the correlation for the 
third ideal PS (Fig.  21(c)) remained consistently at 1, the third ideal PS 
was unnecessary.

Subsequently, the obtained signal correlations were combined with 
the uncertainties in both the 𝑥 (3.63 m) and 𝑦 directions (3.47 m) to 
identify the ideal PS regions. The resulting regions are presented in the 
right panels of Figs.  22.

5. Translating case study findings to city-wide MT-InSAR evalua-
tion in Amsterdam

Based on the simulations performed on the Marnixkade quay wall, 
the proposed method was used to identify ideal PS regions for detecting 
the three specific damage mechanisms described in the previous sec-
tion. These regions can serve as benchmarks to evaluate the practical 
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applicability of MT-InSAR at a regional scale. To this end, we conducted 
a systematic assessment to determine whether MT-InSAR can effec-
tively detect these mechanisms across the quay walls of Amsterdam 
historic centre.

The historical centre of Amsterdam was selected as the test area 
due to its dense network of historic quay walls, most of which were 
constructed over a century ago and have remained in active use until 
today [63]. Fig.  23 shows the target area. Quay walls are marked in red, 
while real PSs collected between 2011 and 2020 from ascending and 
descending satellite tracks are overlaid. These PSs were derived from 
TerraSAR-X imagery and processed by SkyGeo using their proprietary 
PyAntares algorithm, which is based on the method proposed by Van 
Leijen [64]. A preliminary filtering was applied as a vertical measure-
ment tolerance around the top surface of the quay walls. This tolerance 
was defined based on a correlation threshold of 0.8 to account for the 
uncertainty in the 𝑧 direction.

The Amsterdam Municipality reports that structural typology data 
is incomplete for all quay walls [65]. However, among the quay walls 
with available information, a total length of 10233.45 km has been 
documented. Of this, 7158.12 km, about 70%, share the same structural 
typology as the Marnixkade quay wall. This substantial proportion 
supports the use of the Marnixkade simulation as a representative 
model for quay walls in Amsterdam’s historic centre.

The numerical model for Marnixkade had a length of 29.7 m, 
which was determined through sensitivity analysis assessing its impact 
on quay wall displacements [58]. However, the actual quay walls in 
Amsterdam historic centre are significantly longer. To ensure com-
prehensive coverage, each quay wall was divided into overlapping 
29.7 m segments, with a 1 m sliding window between consecutive 
segments. This segmentation approach ensured that all parts of the 
quay walls were systematically analysed while keeping each segment 
length consistent with the numerical model.

The regional benchmarking involved a two-step analysis: first, the 
real PSs identified within each segment were assessed to determine 
whether they fell within the ideal PS regions for each structural mech-
anism. This step provided a binary result (‘‘yes’’ or ‘‘no’’) for each ideal 
region and mechanism, indicating whether the real PSs aligned with 
the identified ideal regions. Second, the reconstruction error relative to 
the real PSs was calculated to provide a quantitative measure of MT-
InSAR’s effectiveness. The reconstruction error was calculated using 
the method described in previous sections, as shown in Eq.  (9). While 
earlier sections focused on the reconstruction error of the identified 
ideal PSs, this evaluation extended the analysis to the real PSs present 
in the segments.

The results of evaluating MT-InSAR’s effectiveness in Amsterdam 
historical centre show that for ascending geometry, 25.11% of the 
segments had at least one PS, while for descending geometry, this 
percentage was 24.2%. As illustrative examples, we considered failure 
induced by the degradation of central foundation piles and failure 
Fig. 20. Evaluation of the surface displacement capability to represent random piles degradation failure: (a) maximum absolute reconstruction error and (b) 
mean square absolute reconstruction error. The average reconstruction error is shown by lines, while the dashed envelopes and the shaded areas represent the 
corresponding error ranges.
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Fig. 21. Signal correlation trends during sequential selection for each ideal PS, in case of random piles degradation.
Fig. 22. Ideal PS regions for random piles degradation failure.
Fig. 23. Study area: Amsterdam historic centre with quay walls and PS data.

induced by traffic loading, using real PSs collected in ascending ge-
ometry. As shown in Fig.  18(a), the first ideal PS region for the failure 
induced by the degradation of central foundation piles was relatively 
small. Consequently, segments with real PSs in this region were rare, 
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as illustrated in Fig.  24(a) . This scarcity of PSs resulted in large 
reconstruction errors, as shown in Fig.  24(c) and Fig.  24(d). In contrast, 
for the failure induced by traffic loading, many segments contained real 
PSs in the first, second and third ideal PS regions, as shown in Fig.  25(a) 
to 25(c). This led to lower reconstruction errors for most segments, as 
depicted in Figs.  25(d) and 25(e). Comparing these two mechanisms, 
MT-InSAR demonstrated a greater monitoring ability for traffic loading 
failure, as more segments of the quay wall can be effectively observed.

Other results can be found in Appendix  A. These results demonstrate 
that the ideal PS regions identified through the proposed approach 
can help determine which parts of the quay walls are detectable by 
MT-InSAR for specific damage mechanisms.

6. Discussion

The results demonstrate that the proposed method can effectively 
identify ideal PSs, which serve as benchmarks to assess the spatial 
adequacy of real PS distributions obtained from MT-InSAR data. By 
comparing the locations of real PSs with the ideal PS regions, the prac-
tical applicability of MT-InSAR for SHM can be evaluated. When real 
PSs are located within the ideal PS regions, it indicates that MT-InSAR 
is well-positioned to detect critical displacement patterns associated 
with structural damage mechanisms. In such cases, the monitoring data 
is considered reliable for capturing the relevant structural response, 
and MT-InSAR can be confidently used as a tool for damage detection. 
It is worth mentioning that depending on the infrastructure under 



H. Kuai et al. Engineering Structures 352 (2026) 122103 
Fig. 24. MT-InSAR’s effectiveness in detecting the failure induced by degradation of central foundation piles in the historical centre of Amsterdam (ascending 
geometry)
Fig. 25. MT-InSAR’s effectiveness in detecting the failure induced by traffic loading in the historical centre of Amsterdam (ascending geometry)
investigation, it might occur that real PSs are absent from the ideal 
PS regions. Consequently, the effectiveness of MT-InSAR in detecting 
the damage mechanism would become limited. The absence of real 
PSs may result from various factors such as the satellite’s acquisition 
geometry, unfavourable viewing angles, or obstructions like vegetation 
or urban structures that block the line of sight. Issues related to 
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real PS availability, including visibility analysis, layover, and shadow-
ing, have been discussed in previous works [26]. In these situations, 
MT-InSAR could be used in combination with other complementary 
damage detection techniques, such as ground-based sensors, or alter-
native remote sensing methods, to ensure comprehensive and reliable 
SHM.
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Compared to conventional metrics based solely on PS density, the 
proposed method significantly enhances the assessment framework 
by incorporating both temporal and spatial characteristics from nu-
merically simulating potential structural damage mechanisms. This 
integration not only improves the accuracy of evaluating MT-InSAR’s 
performance but also supports the development of more robust dam-
age indicators. Most existing MT-InSAR-based damage detection ap-
proaches are trend-based, focusing on temporal anomalies such as 
unexpected acceleration or cumulative displacements at PS locations. 
By considering spatial relationships between PSs and their relevance to 
specific damage mechanisms, the proposed method enables a shift to 
more predictive and structurally informed monitoring strategies. Fur-
thermore, since the proposed method relies exclusively on displacement 
data as input, it is not limited to any particular structural typology. Pro-
vided that suitable methods are used to obtain representative displace-
ment measurements, the framework can be applied directly to a wide 
variety of structures, making it highly adaptable and widely applicable.

While this method represents significant advancement, it also raises 
a few practical considerations. One of these concerns the choice of 
reconstruction strategy. During the surface representation evaluation, a 
linear mapping approach was employed to estimate the reconstruction 
error. Its performance was benchmarked against a nonlinear method, 
the Kernel Ridge Regression (KRR) [66]. In this case both approaches 
achieved comparable accuracy, with KRR requiring a substantially 
higher computational effort due to hyperparameter tuning (see Ap-
pendix  B for more details). Given this trade-off between accuracy 
and efficiency, the linear mapping approach was adopted for the 
present case study. For applications involving more complex structures, 
such comparisons might be revisited, as different geometries or data 
characteristics could influence which reconstruction technique is most 
suitable.

Computational requirements should be considered when applying 
the proposed method. These requirements arise mainly from three com-
ponent: numerical modelling, displacement matrix size, and structure 
segmentation. FEA has long been an established standard for structural 
analysis [67]. However, high-fidelity finite element analysis (FEA) can 
be computationally demanding, particularly for large or complex struc-
tures. Variations in key parameters like foundation stiffness, pile spac-
ing, or wall thickness could potentially alter deformation modes and 
ideal PS locations. High-fidelity FE models are typically developed and 
validated when dealing with critical infrastructures, and it is assumed 
that this was available in the present study (as detailed in Section 5). 
FE model-based sensitivity study and appropriate uncertainty quantifi-
cation strategies might be required to quantify how much the identified 
ideal PS regions shift when these parameters are varied within realistic 
bounds for historic quay walls. Alternatively, when no validated FE 
model is available, alternative models such as surrogate or analytical 
models can be employed. Since the proposed method relies only on 
displacement outputs rather than element-level formulations, these 
alternatives provide a practical and cost-effective means of generating 
the required data without limiting the applicability of the approach.

The size of the displacement matrix can influence computational 
cost and accuracy, especially for large structures. In the preliminary 
analysis of the case study, we compared the identification of ideal PSs 
using the full displacement matrix with that obtained from a dimen-
sionally reduced matrix derived from POD. The results indicated that 
full displacement matrix provided a satisfactory balance between com-
putational cost and accuracy. For other structures, similar assessments 
may be useful to determine an efficient and reliable basis matrix.

Finally, in the present case study, the considerable length of the 
quay walls and the limited information on their possible subdivision 
made it necessary to apply segmentation through a sliding window, 
which introduced additional computational cost. This requirement, 
however, is not universal. For shorter structures, such as bridges, 
segmentation may be minimal or unnecessary. Even for long structures, 
incorporating prior information, such as the presence of expansion 
joints, can reduce the number of required segments, thereby lowering 
computational cost.
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7. Conclusions

This study introduced a novel structural-based inverse approach 
for systematically assessing the effectiveness of MT-InSAR for SHM. 
The proposed approach integrates structural behaviour characteristics 
with MT-InSAR measurement properties, moving beyond traditional 
assessments based solely on PS density and enabling a more reliable 
evaluation of MT-InSAR applicability for different structural damage 
mechanisms.

First, a numerical simulation of potential structural damage mech-
anisms was conducted to generate displacement data, which were 
then analysed to assess whether surface-only measurements, typical 
of MT-InSAR observations, can reliably represent the internal struc-
tural behaviour. Second, when surface displacements were found to 
be representative, the concept of ‘‘ideal PSs’’ was introduced. These 
identified ideal PSs served as benchmarks to assess the adequacy of real 
PS distributions obtained from actual MT-InSAR satellite observations.

The applicability and robustness of the proposed approach were 
demonstrated through a practical case study involving the Marnixkade 
quay wall in Amsterdam. The results validated the capability of the 
proposed method to effectively evaluate whether surface displacement 
measurements could capture the entire structural responses and to 
accurately determine the ideal PSs. These ideal PSs were subsequently 
applied as benchmarks for evaluating the effectiveness of MT-InSAR 
in detecting quay walls across the whole Amsterdam historical centre. 
This city-scale implementation demonstrated the practical utility of the 
approach in operational SHM scenarios.

In conclusion, the proposed approach provides a structured, ro-
bust and scalable framework for evaluating MT-InSAR’s applicability 
in SHM. It explicitly integrates structural behaviour, damage mecha-
nism characteristics, and MT-InSAR measurement constraints, thereby 
advancing the practical adoption of satellite-based monitoring tech-
nologies.
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Appendix A. MT-InSAR’s effectiveness in the historical centre of 
Amsterdam

See Tables  A.1–A.3
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Table A.1
MT-InSAR’s capability of detecting failure induced by traffic load of quay walls in the historic centre of Amsterdam.
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Table A.2
MT-InSAR’s capability of detecting failure induced by degradation of central foundation piles of quay walls in the historic centre of Amsterdam.
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Table A.3
MT-InSAR’s capability of detecting failure induced by degradation of random foundation piles of quay walls in the historic centre of Amsterdam.

 

Appendix B. Comparison between linear and nonlinear mapping

To examine whether the linear mapping used for evaluating re-
construction error is sufficient given the potentially nonlinear nature 
of structural degradation, we conducted a quantitative comparison 
with a nonlinear regression method, namely Kernel Ridge Regression 
(KRR) [66].
17 
KRR performs nonlinear regression by implicitly mapping the input 
data into a high-dimensional feature space using a kernel function 
and subsequently fitting a regularised linear model in that space. The 
model involves two key hyper-parameters: the regularisation parame-
ter, which controls the model complexity, and the kernel coefficient, 
which determines the influence radius of the data points, where larger 
values result in more localised influence.
Fig. B.1. The reconstruction error using linear mapping and KRR considering different number of ideal PSs: (a) the maximum absolute reconstruction error and 
(b) the mean square absolute reconstruction error.
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To ensure solution robustness and identify the performance, we 
conducted a 5-fold cross-validation to determine the best combination 
of 𝛼 and 𝛾 for KRR.

As a representative case, the failure induced by traffic loading was 
used for evaluation. Fig.  B.1 presents the reconstruction errors obtained 
from both linear mapping and KRR under varying number of ideal 
PSs. The results indicate that KRR achieves lower reconstruction errors 
when the number of ideal PSs is small, demonstrating its stronger ca-
pability for modelling nonlinear relationships. However, as the number 
of PSs increases, the reconstruction error of the linear mapping method 
converges rapidly to the sub-millimetre scale, which is sufficiently small 
for practical SHM applications.

In terms of computational efficiency, the linear mapping approach 
required only 2.5075 s, whereas KRR (including hyperparameter tun-
ing via cross-validation) required 47.9340 s. These experiments were 
conducted on a laptop equipped with a 12th-generation intel i7-1265U 
CPU and 16 GB RAM. Thus, KRR is approximately 19 times more 
computationally expensive than the linear mapping method.

Considering both the reconstruction accuracy and computational 
cost, this comparative analysis demonstrates that the linear mapping 
method provides a highly efficient and sufficiently accurate solution 
for the studied case.

Data availability

Non commercial data can be made available on request.

References

[1] Ellingwood Bruce R. Risk-informed Condition Assessment of Civil Infrastructure: 
State of Practice and Research Issues. Struct Infrastruct Eng 2005;1(1):7–18.

[2] Jensen Jens, Casas Joan, Karoumi Raid, Plos Mario, Cremona Christian, Mel-
bourne Clive. Guideline for load and resistance assessment of existing European 
railway bridges. Technical report, 2008.

[3] Aktan AE, Brownjohn JMW. Structural Identification: Opportunities and 
Challenges. J Struct Eng 2013;139(10):1639–47.

[4] Mori Yasuhiro, Ellingwood Bruce R. Reliability-Based Service-Life Assessment of 
Aging Concrete Structures. J Struct Eng 1993;119(5):1600–21.

[5] Kumar Prashant, Imam Boulent. Footprints of Air Pollution and Changing 
Environment on the Sustainability of Built Infrastructure. Sci Total Environ 
2013;444:85–101.

[6] Chen Huapeng, Ni Yiqing. Introduction to structural health monitoring. In: 
Structural health monitoring of large civil engineering structures, chapter 1. John 
Wiley & Sons, Ltd; 2018, p. 1–14.

[7] Shim Seungbo. Self-training approach for crack detection using synthesized crack 
images based on conditional generative adversarial network. Computer-Aided Civ 
Infrastruct Eng 2023;39(7):1019–41.

[8] American Association of State Highway and Transportation Officials. The Man-
ual for Bridge Evaluation, . In: American association of state highway and 
transportation officials. Washington, D.C., 2nd ed. /2011 edition. 2011.

[9] Federal Highway Administration USA. National bridge inspection standards. 
2022.

[10] Ministry of Transport of the People’s Republic of China. Standards for technical 
condition evaluation of highway bridges. 2011.

[11] Ministry of Infrastructure and Sustainable Mobility. 2022, Guidelines for Risk 
Classification and Management, Safety Assessment, and Monitoring of Existing 
Bridges.

[12] German Institute for Standardization. Engineering structures along roads and 
paths – monitoring and inspection. 2024.

[13] Le Tuan, Gibb Spencer, Pham Nhan, La Hung Manh, Falk Logan, Berendsen Tony. 
Autonomous Robotic System Using Non-destructive Evaluation Methods for 
bridge deck inspection. In: 2017 IEEE international conference on robotics and 
automation (ICRA). 2017, p. 3672–7.

[14] Feroz Sainab, Dabous Saleh Abu. UAV-Based Remote Sensing Applications for 
Bridge Condition Assessment. Remote Sens 2021;13(9):1809.

[15] Washer Glenn, Connor Robert, Nasrollahi Massoud, Provines Jason. New 
Framework for Risk-Based Inspection of Highway Bridges. J Bridg Eng 
2016;21(4):04015077.

[16] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using per-
manent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote 
Sens 2000;38(5):2202–12.
18 
[17] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR interferometry. IEEE 
Trans Geosci Remote Sens 2001;39(1):8–20.

[18] Ferretti Alessandro, Savio Giuliano, Barzaghi Riccardo, Borghi Alessandra, 
Musazzi Sergio, Novali Fabrizio, Prati Claudio, Rocca Fabio. Submillimeter 
Accuracy of InSAR Time Series: Experimental Validation. IEEE Trans Geosci 
Remote Sens 2007;45(5):1142–53.

[19] Rucci A, Ferretti A, Monti Guarnieri A, Rocca F. Sentinel 1 SAR interferometry 
applications: The outlook for sub millimeter measurements. Remote Sens Environ 
2012;120:156–63.

[20] Selvakumaran Sivasakthy, Plank Simon, Geib Christian, Rossi Cristian, Mid-
dleton Campbell. Remote monitoring to predict bridge scour failure using 
Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. Int J Appl 
Earth Obs Geoinf 2018;73:463–70.

[21] Milillo Pietro, Giardina Giorgia, Perissin Daniele, Milillo Giovanni, Co-
letta Alessandro, Terranova Carlo. Pre-Collapse Space Geodetic Observations 
of Critical Infrastructure: The Morandi Bridge, Genoa, Italy. Remote Sens 
2019;11(12):1403.

[22] Farneti Elisabetta, Cavalagli Nicola, Costantini Mario, Trillo Francesco, Mi-
nati Federico, Venanzi Ilaria, Ubertini Filippo. A method for structural 
monitoring of multispan bridges using satellite InSAR data with uncertainty 
quantification and its pre-collapse application to the Albiano-Magra Bridge in 
Italy. Struct Health Monit 2023;22(1):353–71.

[23] Macchiarulo Valentina, Kuai Hao, Karamitopoulos Pantelis, Milillo Pietro, Gi-
ardina Giorgia. Structural evaluation of urban bridges in Amsterdam through 
InSAR-based displacement data. E-Journal Nondestruct Test 29(07):2024.

[24] Perissin Daniele, Wang Zhiying, Lin Hui. Shanghai subway tunnels and highways 
monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J Photogramm 
Remote Sens 2012;73:58–67.

[25] Giardina Giorgia, Milillo Pietro, DeJong Matthew J, Perissin Daniele, Milillo Gio-
vanni. Evaluation of InSAR monitoring data for post-tunnelling settlement 
damage assessment. Struct Control Health Monit 2019;26(2):e2285.

[26] Macchiarulo Valentina, Milillo Pietro, DeJong Matthew J, Martí Javier González, 
Sánchez Jordi, Giardina Giorgia. Integrated InSAR monitoring and structural 
assessment of tunnelling-induced building deformations. Struct Control Health 
Monit 2021;28(9):e2781.

[27] Drougkas Anastasios, Verstrynge Els, Balen Koenraad Van, Shimoni Michal, Croo-
nenborghs Thibauld, Hayen Roald, Declercq Pierre-Yves. Country-scale InSAR 
monitoring for settlement and uplift damage calculation in architectural heritage 
structures. Struct Health Monit 2021;20(5):2317–36.

[28] Carlo Fabio Di, Miano Andrea, Giannetti Ilaria, Mele Annalisa, Bonano Manuela, 
Lanari Riccardo, Meda Alberto, Prota Andrea. On the integration of multi-
temporal synthetic aperture radar interferometry products and historical 
surveys data for buildings structural monitoring. J Civ Struct Health Monit 
2021;11(5):1429–47.

[29] Ma Peifeng, Zheng Yi, Zhang Zhengjia, Wu Zherong, Yu Chang. Building risk 
monitoring and prediction using integrated multi-temporal InSAR and numerical 
modeling techniques. Int J Appl Earth Obs Geoinf 2022;114:103076.

[30] Mazzanti P, Perissin D, Rocca A. Structural Health Monitoring of Dams by 
Advanced Satellite SAR Interferometry: Investigation of Past Processes and future 
monitoring perspectives. In: 7th international conference on structural health 
monitoring of intelligent infrastructure (SHMII 2015). Torino, 2015.

[31] Marchamalo-Sacristán Miguel, Ruiz-Armenteros Antonio Miguel, Lamas-
Fernández Francisco, González-Rodrigo Beatriz, Martínez-Marín Rubén, 
Delgado-Blasco José Manuel, Bakon Matus, Lazecky Milan, Perissin Daniele, 
Papco Juraj, Sousa Joaquim J. MT-InSAR and Dam Modeling for the 
Comprehensive Monitoring of an Earth-Fill Dam: The Case of the Benínar 
Dam (Almería, Spain). Remote Sens 2023;15(11):2802.

[32] Tavakkoliestahbanati Amin, Milillo Pietro, Kuai Hao, Giardina Giorgia. Pre-
collapse Spaceborne Deformation Monitoring of the Kakhovka dam. Ukr, from 
2017 To 2023. Commun Earth & Environ 2024;5(1):1–9.

[33] Qin Xiaoqiong, Liao Mingsheng, Zhang Lu, Yang Mengshi. Structural Health 
and Stability Assessment of High-Speed Railways via Thermal Dilation Mapping 
With Time-Series InSAR Analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 
2017;10(6):2999–3010.

[34] Chang Ling, Dollevoet Rolf PBJ, Hanssen Ramon F. Nationwide Railway Moni-
toring Using Satellite SAR Interferometry. IEEE J Sel Top Appl Earth Obs Remote 
Sens 2017;10(2):596–604.

[35] D’Amico Fabrizio, Gagliardi Valerio, Ciampoli Luca Bianchini, Tosti Fabio. 
Integration of InSAR and GPR techniques for monitoring transition areas in 
railway bridges. NDT & E Int 2020;115:102291.

[36] Chen Mi, Li Zhenhong, Tomás Roberto, Herrera Gerardo, Gong Huili, Li Xiaojuan, 
Gao Wenfeng, Hu Leyin. Land subsidence-induced damage assessment along 
Beijing–Tianjin high-speed railway from space using high-resolution TerraSAR-X 
data. Struct Health Monit 2025. 14759217251334328.

[37] Sousa JJ, Bastos L. Multi-temporal SAR interferometry reveals acceleration of 
bridge sinking before collapse. Nat Hazards Earth Syst Sci 2013;13(3):659–67.

[38] Hanssen Ramon F. Satellite radar interferometry for deformation monitoring: 
A priori assessment of feasibility and accuracy. Int J Appl Earth Obs Geoinf 
2005;6(3):253–60.

http://refhub.elsevier.com/S0141-0296(26)00015-5/sb1
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb1
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb1
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb2
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb2
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb2
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb2
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb2
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb3
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb3
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb3
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb4
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb4
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb4
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb5
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb5
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb5
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb5
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb5
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb6
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb6
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb6
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb6
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb6
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb7
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb7
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb7
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb7
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb7
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb8
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb8
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb8
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb8
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb8
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb9
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb9
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb9
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb10
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb10
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb10
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb11
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb11
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb11
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb11
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb11
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb12
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb12
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb12
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb13
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb14
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb14
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb14
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb15
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb15
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb15
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb15
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb15
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb16
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb16
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb16
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb16
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb16
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb17
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb17
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb17
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb18
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb19
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb19
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb19
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb19
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb19
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb20
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb21
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb22
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb23
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb23
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb23
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb23
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb23
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb24
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb24
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb24
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb24
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb24
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb25
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb25
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb25
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb25
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb25
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb26
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb27
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb28
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb29
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb29
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb29
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb29
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb29
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb30
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb31
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb32
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb32
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb32
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb32
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb32
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb33
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb34
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb34
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb34
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb34
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb34
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb35
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb35
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb35
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb35
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb35
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb36
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb37
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb37
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb37
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb38
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb38
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb38
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb38
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb38


H. Kuai et al. Engineering Structures 352 (2026) 122103 
[39] Crosetto Michele, Monserrat Oriol, Cuevas-González María, Devanthéry Núria, 
Crippa Bruno. Persistent Scatterer Interferometry: A review. ISPRS J Photogramm 
Remote Sens 2016;115:78–89.

[40] Macchiarulo Valentina, Milillo Pietro, Blenkinsopp Chris, Reale Cormac, 
Giardina Giorgia. Multi-Temporal InSAR for Transport Infrastructure Mon-
itoring: Recent Trends and Challenges. Proc Inst Civ Eng - Bridg Eng 
2023;176(2):92–117.

[41] Milillo Pietro, Giardina Giorgia, DeJong Matthew, Perissin Daniele, Milillo Gio-
vanni. Multi-Temporal InSAR Structural Damage Assessment: The London 
Crossrail Case Study. Remote Sens 2018;10(2):287.

[42] Zhu Mao, Wan Xiaoli, Fei Bigang, Qiao Zhuping, Ge Chunqing, Minati Federico, 
Vecchioli Francesco, Li Jiping, Costantini Mario. Detection of Building and 
Infrastructure Instabilities by Automatic Spatiotemporal Analysis of Satellite SAR 
Interferometry Measurements. Remote Sens 2018;10(11):1816.

[43] Chang Ling, Sakpal Nikhil P, Elberink Sander Oude, Wang Haoyu. Railway 
Infrastructure Classification and Instability Identification Using Sentinel-1 SAR 
and Laser Scanning Data. Sensors 2020;20(24):7108.

[44] Gagliardi Valerio, Tosti Fabio, Ciampoli Luca Bianchini, D’Amico Fabrizio, 
Alani Amir M, Battagliere Maria Libera, Benedetto Andrea. Monitoring of bridges 
by MT-InSAR and unsupervised machine learning clustering techniques. In: Earth 
resources and environmental remote sensing/GIS applications XII. vol. 11863, 
2021, p. 132–40, SPIE.

[45] Gao Q, Crosetto M, Monserrat O, Palama R, Barra A. Infrastructure Monitoring 
Using the Interferometric Synthetic Aperture Radar (InSAR) Technique. In: 
The international archives of the photogrammetry, remote sensing and spatial 
information sciences, XLIII-b3-2022. 2022, p. 271–6.

[46] Ma Peifeng, Lin Hui, Wang Weixi, Yu Hanwen, Chen Fulong, Jiang Lim-
ing, Zhou Lifan, Zhang Zhengjia, Shi Guoqiang, Wang Jili. Toward Fine 
Surveillance: A review of multitemporal interferometric synthetic aperture 
radar for infrastructure health monitoring. IEEE Geosci Remote Sens Mag 
2022;10(1):207–30.

[47] Businger Peter, Golub Gene H. Linear Least Squares Solutions by Householder 
Transformations. Numer Math 1965;7(3):269–76.

[48] Manohar Krithika, Brunton Bingni W, Nathan Kutz J, Brunton Steven L. Data-
Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits 
of Exploiting Known Patterns. IEEE Control Syst Mag 2018;38(3):63–86.

[49] Zhang Qiannan, Wu Huafeng, Mei Xiaojun, Han Dezhi, Marino Mario Donato, 
Li Kuan-Ching, Guo Song. A Sparse Sensor Placement Strategy Based on Infor-
mation Entropy and Data Reconstruction for Ocean Monitoring. IEEE Internet 
Things J 2023;10(22):19681–94.

[50] Gernhardt Stefan, Auer Stefan, Eder Konrad. Persistent scatterers at building fa-
cades – Evaluation of appearance and localization accuracy. ISPRS J Photogramm 
Remote Sens 2015;100:92–105.

[51] Dheenathayalan Prabu, Small David, Schubert Adrian, Hanssen Ramon F. 
High-precision Positioning of Radar Scatterers. J Geod 2016;90(5):403–22.

[52] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. 
Geotechnique 1979;29(1):47–65.
19 
[53] Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH, Wu CG. Proper or-
thogonal decomposition and its applications—part i: theory. J Sound Vib 
2002;252(3):527–44.

[54] Penrose R. A generalized inverse for matrices. In: Mathematical proceedings of 
the cambridge philosophical society. vol. 51, (3):1955, p. 406–13.

[55] Yang Mengshi, López-Dekker Paco, Dheenathayalan Prabu, Liao Mingsheng, 
Hanssen Ramon F. On the value of corner reflectors and surface models in InSAR 
precise point positioning. ISPRS J Photogramm Remote Sens 2019;158:113–22.

[56] Pedregosa Fabian, Varoquaux Gaël, Gramfort Alexandre, Michel Vincent, 
Thirion Bertrand, Grisel Olivier, Blondel Mathieu, Müller Andreas, Nothman Joel, 
Louppe Gilles, Prettenhofer Peter, Weiss Ron, Dubourg Vincent, Vanderplas Jake, 
Passos Alexandre, Cournapeau David, Brucher Matthieu, Perrot Matthieu, 
Duchesnay Édouard. Scikit-learn: Machine Learning in Python. 2018.

[57] van Leijen FJ, Ketelaar VBH, Marinkovic PS, Hanssen RF. Persistent scatterer 
interferometry: precision, reliability and integration. In: Proceedings of ISPRS 
hannover workshop. 2005.

[58] Sharma Satyadhrik, Longo Michele, Messali Francesco. A novel tier-based nu-
merical analysis procedure for the structural assessment of masonry quay walls 
under traffic loads. Front Built Environ 2023;9.

[59] Sharma Satyadhrik, Longo Michele, Messali Francesco. Analysis procedures 
accounting for load redistribution mechanisms in masonry earth retaining 
structures under traffic loading. Eng Struct 2024;315:118420.

[60] Giordano Pier Francesco, Kamariotis Antonios, Giardina Giorgia, Chatzi Eleni, 
Limongelli Maria Pina. Uncertainty propagation in satellite InSAR data analysis 
for structural health monitoring. Autom Constr 2025;177:106371.

[61] Kamariotis Antonios, Vlachas Konstantinos, Ntertimanis Vasileios, Koune Ioannis, 
Cicirello Alice, Chatzi Eleni. On the Consistent Classification and Treatment of 
Uncertainties in structural health monitoring applications. ASCE-ASME J Risk 
Uncert Engrg Sys Part B Mech Engrg 2024;11(011108).

[62] Nebest BV. Marnixkade in Amsterdam. Funderingsonderzoek. definitive. 
Technical Report 2785401-01, Netherlands: Vianen, 2016.

[63] Luongo Davide, Nicodemo Gianfranco, Venmans Arjan, Korff Mandy, Sar-
torelli Luca, Maljaars Hanno, Peduto Dario. The Quay Walls of Amsterdam, 
Netherlands: An Approach for Collapse Risk Mitigation at the Municipal 
Scale Based on Multisource Monitoring and Surveying Data. J Geotech 
Geoenvironmental Eng 2025;151(2):05024014.

[64] Van Leijen FJ. Persistent Scatterer Interferometry Based on Geodetic Estimation 
Theory. Delft, (Ph.D. thesis), Delft University of Technology; 2014.

[65] ARK. Amsterdamse risicobeoordeling kademuren, versie 2.0. 2024, https:
//openresearch.amsterdam/nl/page/110353/ark-amsterdamse-risicobeoordeling-
kademuren-versie-2.0.

[66] Regression Vladimir Vovk Kernel Ridge. Kernel ridge regression. In: 
Scholkopf Bernhard, Luo Zhiyuan, Vovk Vladimir, editors. Empirical inference: 
festschrift in honor of vladimir n,vapnik. Berlin, Heidelberg, Springer; 2013, p. 
105–16.

[67] Liu Wing Kam, Li Shaofan, Park Harold S. Eighty Years of the Finite 
Element Method: Birth, Evolution, and future. Arch Comput Methods Eng 
2022;29(6):4431–53.

http://refhub.elsevier.com/S0141-0296(26)00015-5/sb39
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb39
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb39
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb39
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb39
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb40
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb41
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb41
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb41
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb41
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb41
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb42
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb43
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb43
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb43
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb43
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb43
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb44
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb45
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb46
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb47
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb47
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb47
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb48
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb48
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb48
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb48
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb48
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb49
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb50
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb50
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb50
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb50
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb50
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb51
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb51
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb51
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb52
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb52
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb52
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb53
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb53
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb53
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb53
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb53
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb54
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb54
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb54
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb55
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb55
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb55
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb55
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb55
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb56
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb57
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb57
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb57
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb57
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb57
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb58
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb58
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb58
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb58
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb58
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb59
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb59
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb59
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb59
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb59
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb60
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb60
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb60
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb60
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb60
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb61
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb62
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb62
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb62
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb63
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb64
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb64
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb64
https://openresearch.amsterdam/nl/page/110353/ark-amsterdamse-risicobeoordeling-kademuren-versie-2.0
https://openresearch.amsterdam/nl/page/110353/ark-amsterdamse-risicobeoordeling-kademuren-versie-2.0
https://openresearch.amsterdam/nl/page/110353/ark-amsterdamse-risicobeoordeling-kademuren-versie-2.0
https://openresearch.amsterdam/nl/page/110353/ark-amsterdamse-risicobeoordeling-kademuren-versie-2.0
https://openresearch.amsterdam/nl/page/110353/ark-amsterdamse-risicobeoordeling-kademuren-versie-2.0
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb66
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb67
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb67
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb67
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb67
http://refhub.elsevier.com/S0141-0296(26)00015-5/sb67

	Identification of mechanism-specific persistent scatterers for enhancing MT-InSAR in Structural Health Monitoring applications
	Introduction
	MT-InSAR as a promising alternative for SHM
	Limitations of existing evaluation approaches
	Introducing the concept of ideal PSs
	A structural-based inverse approach for evaluating MT-InSAR

	Methodology
	Displacement basis matrix generation
	Surface representation evaluation
	Ideal PSs identification
	Integration of PS position uncertainties
	Other uncertainty sources affecting the evaluation of MT-InSAR's effectiveness

	Case study
	Failure induced by traffic loading
	Failure induced by degradation of central foundation piles
	Failure induced by degradation of random foundation piles

	Results
	Failure induced by traffic loading
	Failure induced by degradation of central foundation piles
	Failure induced by degradation of random foundation piles

	Translating case study findings to city-wide MT-InSAR evaluation in Amsterdam
	Discussion
	Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Acknowledgments
	Appendix A. MT-InSAR's effectiveness in the historical centre of Amsterdam
	Appendix B. Comparison between linear and nonlinear mapping
	Data availability
	References


