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Abstract

The 2017 Nobel Prize in Physiology or Medicine awarded for discoveries of molecular mechanisms controlling the cir-
cadian rhythm has called attention to the challenging area of nonlinear dynamics that deals with synchronization and
entrainment of oscillations. Biological circadian clocks keep time in living organisms, orchestrating hormonal cycles and
other periodic rhythms. The periodic oscillations of circadian pacemakers are self-sustained; at the same time, they
are entrainable by external periodic signals that adjust characteristics of autonomous oscillations. Whereas modeling
of biological oscillators is a well-established research topic, mathematical analysis of entrainment, i.e. the nonlinear
phenomena imposed by periodic exogenous signals, remains an open problem. Along with sustained periodic rhythms,
periodically forced oscillators can exhibit various “irregular” behaviors, such as quasiperiodic or chaotic trajectories.

In this paper, we present an overview of the mathematical models of circadian rhythm with respect to endocrine
regulation, as well as biological background. Dynamics of the human endocrine system, comprising numerous glands and
hormones operating under neural control, are highly complex. Therefore, only endocrine subsystems (or axes) supporting
certain biological functions are usually studied. Low-order dynamical models that capture the essential characteristics
and interactions between a few hormones can than be derived. Goodwin’s oscillator often serves as such a model and
widely regarded as a prototypical biological oscillator. A comparative analysis of forced dynamics arising in two versions
of Goodwin’s oscillator is provided in the present paper: the classical continuous oscillator and a more recent impulsive
one, capturing e.g. pulsatile secretion of hormones due to neural regulation. The main finding of this study is that,
while the continuous oscillator is always forced to a periodic solution by a sufficiently large exogenous signal amplitude,
the impulsive one commonly exhibits a quasiperiodic or chaotic behavior due to non-smooth dynamics in entrainment.

Keywords: Biomedical systems, Nonlinear dynamics, Synchronization, Entrainment, Hybrid Systems, Impulse signals.

1. Introduction

On October 2, 2017, the Nobel Assembly at Karolinska
Institutet has decided to award the 2017 Nobel Prize in
Physiology or Medicine jointly to Jeffrey C. Hall, Michael
Rosbash, and Michael W. Young for their discoveries of
molecular mechanisms controlling the circadian rhythm,
[1]. Throughout the whole history of the Nobel Prize since
1901, this is arguably the first time, when the awarded
discoveries are so closely related to the areas of dynamical
systems, nonlinear control, and synchronization.
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The Nobel Assembly states further that “Their discover-
ies explain how plants, animals and humans adapt their bi-
ological rhythm so that it is synchronized with the Earth’s
revolutions.” The Nobel Prize winners’ main contributions
(see e.g. [2–4]) and historical milestones in studying circa-
dian clocks are surveyed in [5].

The purpose of this review is to look into mathematical
models that capture the mechanism of biological synchro-
nization and to demonstrate their capability to explain a
diversity of phenomena due to circadian rhythm observed
in the endocrine system of an organism.

In biological systems, particularly in endocrine regula-
tion, the control laws are designed by nature and are, typ-
ically, highly nonlinear. Further, in pulsatile feedback reg-
ulation, widely implemented in numerous endocrine loops,
the dynamics are as well non-smooth. Restricting consid-
eration of the present paper to only analytical approaches
would not cover a fraction of the possible non-linear be-
haviours. Therefore, bifurcation analysis becomes neces-
sary in order to reveal and study the complexity of the
dynamics arising in endocrine loops subject to periodic
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exogenous signals, e.g. circadian rhythm.

1.1. Circadian clock and circadian rhythm

The life on Earth is greatly influenced by the rotation
of the planet. Most of the organisms, from microbes to
mammals [6], are able to anticipate the environmental
changes following the day-night cycle and adapt to them.
The arising 24 hours pattern is called circadian rhythm,
to simply indicate that the period of it is approximately
a day: the Latin words circa meaning “around” and dies
meaning “day”. Experimental investigations of circadian
rhythms in biology date back to the 18th century , when
the astronomer Jean Jacques d’Ortous de Mairan studied
Mimosa pudica plants [7]. He noticed that the leaves of
the plant were directed towards the sun during daytime
and then closed at dusk. Even when the plants were iso-
lated from sunlight , their leaves continued to follow their
normal daily oscillation. The heliotrope flower thus does
not respond to the Sun motion; its rhythm is controlled
by some endogenous mechanism. De Mairan also conjec-
tured the possibility to influence this mechanism (e.g. to
reverse the order of day and night) by artificial lighting;
such experiments were later conducted by de Candolle [8]
who also discovered that the free-running period of Mi-
mosa pudica rhythm was discernibly less than the solar
day and varied between 22 and 23 hours. As a result of
these experiments , a clear evidence of an internal clock
controlling the plant behavior has emerged. The circadian
clock is entrained by external cues, called zeitgebers (“time
givers” in German) such as sunlight, food intake, physi-
cal activity, temperature variations, social rhythms, etc.
A mechanism of adaptation to environmental change, en-
trainment is a fundamental notion in the circadian rhythm
regulation. Entrainment is also referred to as forced syn-
chronization [9], being a special kind of synchronization
that occurs in dynamical systems under external forces.

1.2. Cell level of circadian clock

In 1970’s, a gene responsible for the circadian rhythm
has been discovered in experiments with Drosophila by
Ronald Konopka working in the lab of Seymour Benzer at
the California Institute of Technology, [10]. A mutation in
this gene named period (Per) has led to disruption in the
circadian rhythm of flies, manifesting itself in their late
eclosion and altered patterns of locomotor activity. Along
with earlier works on genetic regulation of protein synthe-
sis [11], Konopka’s discovery has become a breakthrough
in understanding genetic control mechanisms.

The circadian clock within a cell is a series of biochemi-
cal reactions, involving so-called clock proteins, that gives
rise to a sustained oscillation (a limit cycle) through a
dynamical feedback mechanism. A negative feedback of
gene expression is thus a necessary part of the molecu-
lar mechanism of circadian oscillations. These circadian
rhythms can occur under constant environmental condi-
tions and are therefore endogenous. At the same time, the

circadian clock is adjusted to the environment via the en-
trainment of circadian rhythms by light-dark (LD) cycles.
Most of the molecular studies of circadian rhythms were
first performed on Drosophila and Neurospora but have
been extended further to cyanobacteria, plants, and mam-
mals [12–15]. Simplified circadian clock models used Hill-
type terms [16] for transcription regulation and Michaelis-
Menten type [17] or delay terms for posttranslation regula-
tion. In the absence of external disturbances, the solutions
of such models usually either converge to limit cycles or
stable equilibria.

The extensive mathematical model in [14] portrays the
mammal circadian clock by means of 16 differential equa-
tions. This model possesses periodic solutions within a
wide biologically supported range of parameters. The free
running period of the model, i.e. in absence of external
cues, varies between 46.4 h and 14.3 h, when the model
parameters are set to their maximal and minimal values,
one by one. A detailed mathematical (stochastic) model of
the circadian clock found in mouse cells is build in [15] and
involves altogether 36 reactions. It exhibits a free running
limit cycle of 24.299 h and can be entrained to 24 h day
by interchanging periods of light and darkness, 12 h each.

The simulation models in [14, 15] exploit the full avail-
able knowledge about biochemical reactions regulating the
mammal’s circadian clock. When implemented, the mod-
els produce periodic solutions in continuous darkness (free
run) with realistic temporal characteristics; this periodic
solutions are entrainable by suitable LD cycles. The
changes in the period and phase of the circadian rhythm
under such entrainment naturally depend on the model’s
parameters. Pathological phase locking is observed in e.g.
familial advanced sleep phase syndrome, a lifelong disorder
characterized by a pattern of sleep onset around 7:30 p.m.
and offset around 4:30 a.m. The condition has been shown
to be related to genetic mutations [18] and has been re-
produced in genetically modified animals [19].

An interesting insight obtained in [14] is that (period-
ical) entrainment to LD cycles occurs only in a limited
parametric and state subspaces, while the rest of the solu-
tions are quasi-periodic in nature. The latter means that
the phase of the model solution does not lock to the phase
of the LD cycle. The authors produce a biological explana-
tion to this phenomenon related to the levels of the protein
CRY in the cell, with other model variables potentially in-
volved. Typically, a domain of entrainment to LD cycles
is flanked by two areas where periodical solutions do not
occur. Therefore, one can assert that entrainment is not a
universal property of the circadian clock and depends on
both the clock’s performance and environmental signals.
The same statement is presumably also true with respect
to pulsatile endocrine systems.

1.3. Suprachiasmatic nucleus

Although each cell possesses a circadian clock, in mam-
mals, there is a higher level pacemaker center in the hy-
pothalamus, which is called the suprachiasmatic nucleus
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(SCN) and sometimes termed as the “master clock” of the
brain. The SCN serves as best example of a brain center
with a single dedicated function. The individual neurons
comprising the SCN can independently continue to keep
time, when dispersed in culture. Within the SCN, all the
neurons (approximately 20.000) are tightly synchronized.
The circadian rhythm is collectively produced by the neu-
rons of the SCN. A certain transcription factor, Lhx1, en-
ables communication between the cells in the SCN [20].
In the absence of hypothalamic Lhx1, the cells of the SCN
still maintain oscillation but, as a loosely connected group,
are unable to develop a strong circadian pattern without
a daily light signal synchronizing their activity. The cir-
cadian clocks in cells of other tissues of the organism syn-
chronize to the rhythm of the SCN, thereby creating a hier-
archical time-keeping structure. Actually, the SCN is the
only mammalian oscillator entrained by light, through the
Lhx1 gene that is strongly suppressed by light. The light
signals recieved by the hypothalamus from the retina are
passed on by the SCN into the pineal gland that produces
melatonin [21], the hormone regulating sleep and wakeful-
ness. The full mechanism of SCN functioning is not fully
understood; recent experiments have revealed a tight cou-
pling between the genetically controlled mechanism of the
SCN pacemaker and oscillations in metabolic oxidation-
reduction (redox) reactions [22, 23]. Redox reactions mod-
ulate membrane excitability and ion channel gates of the
SCN neurons, influencing neuronal activity [23].

The role of strong synchronization in the SCN is to ro-
bustify the circadian rhythm against phase shifts in the
firing of individual neurons, neural noise, and other exoge-
nous impacting factors. However, no mechanism for fast
adjustment of the circadian rhythm has appeared during
mammalian evolution. For this reason, long-haul air pas-
sengers suffer from jet lag [24]. Clinical symptoms of jet lag
consist of insomnia, sleepiness, neural (fatigue, headaches,
and irritability) and cognitive impairments (concentration,
judgment and memory disturbance), [25]. Jet lag severity
is individual but also clearly depends on the number of
passed time zones, i.e. the magnitude of the phase shift.
The highly nonlinear nature of entrainment gives rise to
asymmetric phase response to time difference: eastward
jet lag is worse than the westward kind. Note that this is
consistent with the already mentioned observation of the
free-running circadian rhythm being slightly less than 24
hours. The robustness of the circadian clock against dis-
turbances leads to a long transient in response to a drastic
change in the phase of the day-night cycle. In spite of a
rapid phase shift within the SCN , it can take many days
to reset circadian rhythm in other parts of the brain and
the peripheral tissue [25].

1.4. Circadian rhythm in endocrine regulation

Specialization of cells in a multi-cellular organism is es-
sentially possible due to the communication mechanisms,
where some cells produce signals and other ones respond to
them in a certain biological manner. In mammals, actions

and interactions of two communication systems - nervous
and endocrine - underlie every regulatory mechanism of
the body. The former makes use of fast electrical signaling,
while the latter utilizes slow chemical imparting means.

Hormones act as chemical messengers from one cell (or
a group of cells) to another, and are produced by nearly
every organ and tissue type in a multi-cellular organism.
Hormones are secreted mainly in endocrine glands directly
into the blood stream and can potentially signal all cells
in an organism that are reached by the blood.

Endocrine regulation. Hormonal (endocrine) regulation is
a complex dynamic biological system, where hormones, of-
ten represented as their serum concentrations, interact via
numerous feedback and feedforward mechanisms [26, 27]
that can be stimulatory (positive) or inhibitory (nega-
tive) and lead, respectively, to an increase or a decrease
in the hormone’s production. Hormone secretion can also
be in one of two distinct modes, namely, continuous or pul-
satile [28]. While continuously secreted hormones can be
suitably captured in mathematical modelling as an inflow
and described by a differential equation, pulsatile secre-
tion demands a formalism of impulsive and hybrid systems
theory in order to quantify the number, size, and shape of
secretory bursts. Pulsatility is a physiological mechanism
of rapid adjustment of hormone concentrations and com-
municating signaling information to target tissues. The
loop of interacting hormones in an organism is closed and
dynamically stable, which properties guarantee homeosta-
sis, i.e. biological self-regulation. In endocrine loops with
pulsatile secretion, homeostasis corresponds to sustained
oscillations rather than staying at an equilibrium; already
the seminal publication on homeostasis [29] actually rec-
ognizes oscillation as a possible form of homeostatic con-
dition.

Circadian rhythm is known to influence the dynamical
behavior of endocrine systems, by e.g. modulating the hor-
mone levels [30]. While the SCN is central to the regula-
tion of some hormones, such as melatonin, the local molec-
ular clock implemented in endocrine tissue plays a critical
role in regulation of e.g. insulin and cortisol [31]. Known
also as the stress hormone, cortisol controls response to
stress and anxiety, exhibiting one of the most distinct cir-
cadian rhythm in humans. In healthy individuals, levels of
cortisol are very low or almost undetectable at midnight
and then build up to peak in the morning (7:00–8:00) and
prepare thus the organism to physical activity. It has been
suggested [32] that cortisol acts as a secondary messenger
between the SCN and peripheral clocks and is involved in
synchronization of all bodily circadian rhythms.

Cortisol regulation. Secretion of cortisol by the adrenal
cortex is controlled by adrenocorticotropin hormone
(ACTH) produced by the anterior pituitary gland. ACTH
release is in turn controlled by corticotropin-releasing hor-
mone (CRH). Cortisol has negative feedback effect on both
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the hypothalamus and the anterior pituitary, inhibits re-
spectively the formation of CRH and the synthesis of
ACTH. These mechanisms constitute a classical negative
feedback loop, whose response time is within several min-
utes. Since the CRH secretion site and the SCN are lo-
cated in the hypothalamus , the action of the SCN on
the cortisol regulation involves neuronal connection with
hypothalamic neurosecretory neurons [33]. Yet, there is
no feedback on the SCN and thus the effect of the cen-
tral circadian clock can be seen as an exogenous signal
with respect to the closed loop of cortisol regulation. The
adrenal gland contains a (local) circadian clock that is re-
tarded six hours in phase with respect to the oscillation in
the SCN [32].

Testosterone regulation. The pulsatile activity of the hy-
pothalamus is also prominent in regulation of other hor-
mones, for instance testosterone. In the endocrine sys-
tem of testosterone (Te) regulation in the male, an es-
sential role is played by the luteinizing hormone (LH) and
gonadotropin-releasing hormone (GnRH). While Te is pro-
duced in Leydig cells of testes, LH and GnRH are secreted
in different parts of the brain, i.e. in the hypophysis (pi-
tuitary gland) and the hypothalamus, respectively. The
pulsatile secretion of GnRH, influenced by the SCN , stim-
ulates the secretion of LH, which, in turn, stimulates the
production of Te, while Te inhibits the secretion of GnRH
and LH [34], thus framing testis-brain inhibitory loop. The
cell autonomous pulse-generating mechanism of GnRH se-
cretion plays an important role in Te regulation [35].

Oscillations in Te levels show multi-scale repetitive pat-
terns. Ultraradian harmonics with a period of 1–3 h,
depending on the individual, and the circadian rhythm
of 24 h are clearly observed [36]; in particular, the Te
level typically has a peak value between 7:00 am and
7:30 am [37]. Longer cycles of plasma testosterone levels
with periods ranging between 8 and 30 days, with a cluster
of periods around 20–22 days have been also reported [38].

Actual biological measurements, including those of hor-
monal levels, are never periodic in the mathematical sense
and display fluctuations. This complex signal shape can
be portrayed in two ways: either as a periodic function
corrupted by random noise or as a solutions of a nonlin-
ear dynamical system admitting quasi-periodic and chaotic
attractors. Chaotic dynamics might underlie normal phys-
iological function, producing no periodicity and being (in
some sense) easier to control than periodic rhythms [39].

Notably, telling a perturbed periodic solution from a2.3
quasiperiodic one from a temporally limited data set is
virtually impossible. The discussion regarding the rel-
evance of deterministic chaos to biological oscillation is
long-established, e.g. [40], and has been substantiated by
experimental evidence [41]. With all the unstable modes
accompanying a chaotic attractor, it can be seen as a ve-
hicle to promote adaptation to the environment through
exploration of the state space. In both cases, entrainment
phenomena are highly relevant and have not been studied

previously in hybrid oscillators.
Another complication in discerning rhythms from dis-

crete biological data sets is sampling time [42]. This is a
sensitive point in many experimental studies of endocrine
systems as blood samples cannot be taken arbitrarily of-
ten. There is also a limit on the total amount of blood
drawn from an organism. For instance, in studies of Te
regulation, 10 min sampling is standard for measuring
the concentrations of LH and Te, while an analysis of the
closed-loop dynamics rather suggests 1–3 min sampling to
capture the relevant transients, see e.g. [43].

1.5. The paper organization

The rest of this review is organized as follows. Section 2
presents a brief review of dynamic models, used to por-
tray circadian clocks. In Section 3, the basic stability and
entrainment properties of the classical Goodwin oscillator
are considered; its hybrid counterpart used in modeling
of endocrine rhythms is also introduced. Section 4 and
Section 5 present the results of bifurcation analysis for the
continuous and hybrid Goodwin models, respectively. Sec-
tion 6 concludes the paper.

2. Dynamical models of circadian rhythm

The main circadian oscillator, located at the SCN, is
constituted by tens of thousands of interacting neurons;
each of them exhibits circadian oscillations, however, their
periods may slightly differ. A suitable model for this com-
plex system is therefore a network of coupled dynamical
systems. Each of the coupled oscillators, corresponding
to an individual cell, is expected to exhibit a stable limit
cycle and be entrainable to periodic external cues.

Mathematical modeling is about approximation and re-
duction of the underlying phenomena and does not make
much sense unless the purpose of modeling is clearly spec-
ified. In the biomedical field, a range of models of in-
creasing complexity is needed, to highlight different levels
of system organization. Simple models usually lend them-
selves to analytical methods; this class of model is typically
used to study entrainability of circadian rhythms, their ef-
fect on endocrine system and other systems of the organ-
ism. More complex and detailed models, describing the
biochemical mechanisms of circadian clocks in full, usually
cannot be examined without recourse to numerical studies.
Two questions arise with regard to the circadian oscilla-
tor network modeling: First, what is the most appropriate
mathematical model for individual clock and, second, how
to describe the coupling among them that leads to global
entrainment.

2.1. Individual circadian clocks

From a mathematical viewpoint, an oscillator can be
defined as a dynamical system whose trajectories are
bounded yet do not converge (have non-trivial ω-limit
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set); such systems are also referred to as Yakubovich-
oscillatory [44–46]. In physics and biology, a more narrow
class of oscillators is usually considered, featuring stable
limit cycles or at least periodic orbits [9] and thus able to
generate self-sustained periodic solutions.

One of the simplest mathematical descriptions of a T -
periodic signal is the sine wave

x(t) = A sin(ω0t+ ϕ0), ω0 =
2π

T
,

produced by the second-order linear system

ẍ(t) + ω2
0x(t) = 0

with circular orbits {(x(t), ẋ(t))}. The intensity of oscilla-
tion is determined by the amplitude A, and the quantity
ϕ0 is called phase shift. With T = 24 h, this model is capa-
ble of capturing the periodicity of the circadian rhythms,
as well as describing the deviations from the normal LD
cycle through positive or negative values of ϕ0. From a
biological viewpoint, it is reasonable to introduce a bias to
the sine wave in order to guarantee non-negativity of the
signal

x(t) = A(1 + sin(ω0t+ ϕ0)).

The corresponding signal is apparently generated by a
third-order linear system. In physical literature, oscilla-
tors whose trajectories can be approximated by harmonic
signals are sometimes called quasilinear [9].

The harmonic oscillator and other linear models have
several shortcomings. They do not in particular allow for
dynamical interaction within the loop but only describe
the effect of an oscillator on another system. Linear os-
cillators are marginally stable systems, whose trajectories
are non-robust to small disturbances, thus posing a risk of
numerical issues and solution divergence. Also , the signal
shape of the assumed model is not very close to the ob-
served LD-cycles due to day-night variations of light and a
nonlinear description of the dynamics has to be introduced
in the model to resolve this issue.

For the aforementioned reasons, sustained circadian os-
cillations are commonly described by nonlinear limit-cycle
oscillators. One of the simplest systems, exhibiting stable
limit cycle, is known as the Liénard equation [47]

ẍ+ f(x)ẋ+ g(x) = 0, (1)

where f and g are continuous function; Usually, f is even
f(x) = f(−x) and g is odd g(x) = −g(−x) (in the orig-
inal work [47], g(x) = x). The system (1) may be con-
sidered as mass-spring-damper system, where character-
istics of the damper and spring are nonlinear. Liénard
established conditions on the function F (x) =

∫ x
0
f(s)ds,

ensuring the existence and uniqueness of the limit cycle
(which, in this case, appears to be exponentially stable).
These conditions hold e.g. for the celebrated van der Pol
oscillator [48], being a special case of (1)

ẍ− µ(1− x2)ẋ+ ω2x = 0. (2)

In the case when 0 < µ << 1, equation (2) may be con-
sidered as a regular perturbation of the usual harmonic
oscillator. As one of its applications, van der Pol pro-
posed, in particular, the heartbeat rhythm modeling [49].
In general, Liénard oscillator (1) may have several limit cy-
cles, and estimation of their number remains a challenging
problem even for polynomial functions f, g, see [50].

A long-studied problem is the behavior of forced solu-
tions in the perturbed Liénard oscillator

ẍ+ f(x)ẋ+ g(x) = Mp(t), (3)

where p(t) = p(t + T ) stands for an exogenous periodic
excitation. It is known that, for some amplitudes M > 0,
the harmonically disturbed oscillator p(t) = sin(ωt) has
several periodic solutions, and at least one of them is un-
stable [51]. For some parameters, a harmonic excitation
may lead to unbounded solutions in (3), even though all
solutions of the undisturbed (autonomous) system (1) are
bounded [52]. A method to study input-to-state stability
(ISS) of (1) with respect to p(·) has been proposed in [53],
establishing, in particular, the ISS property for the van
der Pol model.

With properly tuned parameters, the van der Pol os-
cillators [54–56] and their interconnections [57] capture
many properties of circadian rhythms, in particular, light
entrainment. Alternative second-order models for cir-
cadian rhythms in Drosophila have been introduced by
Pavlidis [58]. However, these simple second-order mod-
els only mimic the behavior, making the circadian clock
“tick”, but do not disclose the actual biological mecha-
nism. These mechanisms of sustained oscillations are re-
vealed by more sophisticated molecular models.

In their seminal paper [59], Yates and Pardee described
a feedback mechanism of self-regulation in the metabolic
pathway that controls production of pyrimidines in E. coli
cells and leads to self-sustained oscillations in the metabo-
lites’ levels. Later on, a genetic feedforward mechanism of
lac (lactose) operon in enteric bacteria was described by
Jacob and Monod [11], whose discovery became a break-
through in genetics and was recognized, along with Lwoff’s
works on virus synthesis, by the Nobel Prize in physiol-
ogy and medicine in 1965. In the same year, the seminal
model of Goodwin’s oscillator was proposed [60], being a
joint “offspring” of the Yates-Pardee and Jacob-Monod’s
control circuits and describing a self-sustained generic os-
cillation in a cell, maintained by inhibitory feedback.

In its classical formulation, Goodwin’s model is given by

ẋ1(t) = −b1x1(t) + h(x3(t)),

ẋ2(t) = −b2x2(t) + g1x1(t),

ẋ3(t) = −b3x3(t) + g2x2(t).

(4)

The state variables xi(t), i = 1, 2, 3, stand for the con-
centrations of some chemicals and the constant bi > 0
correspond to their clearing rates. The gains g1, g2 > 0
and a non-increasing nonlinearity h(·) > 0 characterize
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the production rates of the chemicals. Typically,

lim
ξ→∞

h(ξ) = inf
ξ>0

h(ξ) = 0.

The nonlinearity h(·) closes the negative feedback loop and
is often chosen to be the Hill function [16]

h(ξ) =
a

1 +K ξn
, (5)

with a > 0, K > 0. The Hill exponent n > 0 is not nec-
essarily integer, and often interpreted as the cooperativity
in ligands’ binding to macromolecules [16, 26].

As will be discussed in the next sections, the simple con-
struct of Goodwin’s oscillator model has been adopted as
a basic modeling paradigm in endocrine systems. It is re-
markable that eight year prior to the publication of Good-
win’s work, a special case of his model with a piecewise-
linear feedback nonlinearity h(·) was proposed in [61] to
describe periodic oscillations in the thyroid hormones.

Intuitively, Goodwin’s oscillator (4) functions as follows.
When the level of Chemical 3 is low, the production rate of
Chemical 1 is near its maximum, thus accelerating produc-
tion of Chemical 2 (since g1 > 0) and, indirectly, Chem-
ical 3 (since g2 > 0). On the other hand, a high con-
centration of Chemical 3 corresponds to a low production
rate of Chemical 1, which also decelerates the production
of Chemical 2 and Chemical 3. In [60], Chemicals 1-3
are respectively a gene’s mRNA, a protein into which the
gene expresses, and an intermediate enzyme, repressing
the gene’s activity. Later in [62], Goodwin’s model has
been used to describe testosterone regulation in the male,
treating xi(t) as the blood levels of GnRH, LH and Te hor-
mones; similar models are also used to describe oscillatory
metabolic pathways of the Yates-Pardee type [63, 64].

Goodwin reported that the feedback mechanism in (4)
may exhibit a stable limit cycle, choosing the Hill func-
tion (5) with n = 1, which statement proves to be wrong:
the equilibrium point of such a system is globally attrac-
tive [65, 66]. It was also noticed [67] that Goodwin’s os-
cillator (4),(5) with n 6 8 always has a stable equilib-
rium, whereas the system can have stable periodic orbits
for n > 8, arising through the Hopf bifurcation. Stability
properties of Goodwin’s model are discussed in Section 3.

The third (dynamical) order of Goodwin’s oscillator is
caused by the necessity to have a stable limit cycle (an
isolated periodic orbit). Systems of two coupled reactions
exhibit stable limit cycles only in rare situations, when
one of the reactions is auto-catalytic [68], otherwise peri-
odic oscillations are exhibited only when the model has a
center -type equilibrium, surrounded by a nested family of
closed orbits, as in the usual harmonic oscillator [60, 69].

The complete molecular mechanisms of circadian clocks
are much more complicated than the Goodwin construct,
as demonstrated by the aforementioned models of genetic
oscillators in mammals, insects, plants and bacteria [13–
15, 17, 70]. Another example is the model of circadian
rhythm in cyanobacteria, controlled by the cluster of three

genes kaiA, kaiB, kaiC and the three corresponding pro-
teins that are coupled by multiple stimulatory and in-
hibitory feedbacks (the word “kai” is the Japanese for “cy-
cle”) [12, 71]. Nevertheless, the third-order Goodwin-like
oscillators are often used as “minimal” models of intra-
cellular circadian clocks in studies on entrainment [72–
74]. Unlike (4), the reactions’ kinetics in these models are
typically nonlinear and described by e.g. the Mikhaelis-
Menten equations [73, 74]. More important, third-order
Goodwin-type models naturally arise via reduction of high-
order biochemical oscillators, e.g. models of protein phos-
phorylation in eukaryotes [16].

2.2. Networks of oscillators

Whereas models of circadian clocks accurately describe
individual neurons, their synchronization mainly remains a
mystery. In reality, neurons communicate via sending out
electric pulses, or stimuli, of very short length, compared
to the oscillation periods. Photoreceptors of the retina also
convert light into pulsatile signals, influencing the SCN. To
simplify analysis of networked circadian clocks, these pul-
satile interactions are often emulated by “averaged” con-
tinuous coupling [73, 75–77], depending on the mean-field
concentration of a special neurotransmitting peptide (a
byproduct of the clock gene’s expression); the exogenous
signals are also continuous. Extensive numerical simula-
tions reveal [73, 76, 77] that coupling among slightly dif-
fering circadian oscillators not only leads to the phase and
frequency locking, but also dramatically increases entrain-
ability of the oscillators to exogenous cues.

At the same time, mathematical results on synchroniza-
tion of Goodwin’s oscillators are in fact very limited and
primarily deal with diffusively coupled oscillators (the cou-
pling is continuous in time and depends on the deviations
between the solutions of coupled subsystems) and special
interaction graphs (e.g. undirected or balanced). Local
criteria for synchronization in such networks can be es-
tablished by using Master Stability Function (MSF) ap-
proach [78]. Non-local synchronization of oscillators is usu-
ally proved by using such tools as passivity [79] and its ex-
tensions, e.g. convergent dynamics [80] or incremental dis-
sipativity [81–84]. Most of the aforementioned results are
restricted to identical oscillators; for heterogeneous net-
works, only a few global synchronization conditions are
known, see e.g. [85, 86]. Characteristics of the collective
periodic rhythm in oscillator networks are usually com-
puted by using harmonic balance methods [87–89].

To reduce the complexity of oscillator network models,
the actual dynamics of phase oscillators are often replaced
by one-dimensional phases, evolving on the real line or the
unit circle S1. A tacit assumption adopted in such models
is that pulsatile interactions between the individual clocks
are rather weak, so the neighbors’ stimuli do not drive the
oscillator’s trajectory away from the stable periodic orbit.
The oscillator phase can be imagined as the angular coor-
dinate of the solution along this orbit, and the influence of
electric pulses is modeled as the instantaneous jump in the
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phase, or phase resetting. The magnitude of this jump is
phase dependent, that is, the same stimulus affects oscilla-
tor differently at different parts of its cycle. The correspon-
dence between the phase and its jump is described by the
phase response (resetting) curve (PRC), which can be con-
sidered as a counterpart of the impulse response function
in linear systems and used as a control tool [90–93]. The
reader is referred to [91, 93] for the relevant mathemati-
cal theory. Zeitgeber signals are also modeled as periodic
sequences of pulses, and the influence of each pulse on an
oscillator is also described by a PRC map [94, 95]. Hence
the ensemble of oscillators is modeled as a complex hy-
brid system [96], which is referred to as the pulse-coupled
oscillator (PCO) network and determined by the set of in-
dividual PRC maps and an event-triggered communication
protocol, determining when and how oscillators emit stim-
uli. PCO networks have attracted serious attention since
the publication of seminal work [97], see e.g. [98–108] and
references therein. However, even the reduction of the ac-
tual circadian pacemaker model to a PCO network does
not shed light on synchronization of heterogeneous oscil-
lators: most of the results are confined to synchronization
between oscillators with identical natural frequencies.

For this reason, the model complexity is further reduced,
replacing the event-triggered pulsatile interactions by the
conventional diffusive coupling (mathematically, this re-
duction relies on averaging techniques [109]). The result-
ing continuous-time dynamical system is referred to as the
Kuramoto network [110, 111]

θ̇i(t) = ωi +

N∑
j=1

aijQ(θj(t)− θi(t)), i = 1, . . . , N. (6)

Here N stands for the number of oscillators, θi(t) ∈ R is
the phase of ith oscillator, ωi is its natural frequency, Q is
a periodic function (being a counterpart of the PRC map)
and the gains aij > 0 encode the interaction graph and
intensities of interactions between subsystems. Under the
assumption of identical frequencies, Kuramoto oscillator
networks are closely related to multi-agent consensus al-
gorithms [112, 113]. For a survey of mathematical results,
pertaining to Kuramoto networks, and their numerous ap-
plications in physics and engineering, the reader is referred
to [114–117]. The problem of jet lag, without any relation
to the endocrine system, is studied in [24] with respect to
the forced Kuramoto oscillator representing the neurons of
the SCN in the hypothalamus implementing the circadian
clock. The model is shown to explain the differences in re-
covery from jet lag symptoms due to east-bound and west
bound long-distance longitudinal travel.

3. Continuous and Impulsive Goodwin’s Models

In this section, basic properties of the continuous Good-
win model given by (4) and its impulsive counterpart are
discussed.

3.1. Stability properties of the continuous Goodwin model

Henceforth assume that the function h : [0,∞)→ [0,∞)
in (4) is C1-smooth and non-increasing, i.e. h′(ξ) 6 0.

Introducing the state vector x(t) = [x1, x2, x3]T , (4) is
rewritten in a state-space form as

dx

dt
= f(x) = Ax + Bh(x3),

A =

[
−b1 0 0
g1 −b2 0
0 g2 −b3

]
, B =

[
1
0
0

]
, x(t) =

[
x1(t)
x2(t)
x3(t)

]
.

(7)

Since A is Hurwitz and Metzler, the vector B is non-
negative and h(x3) > 0 for x3 > 0, the system is easily
shown to be positive: any solution starting at a nonnega-
tive point x(0) > 0 (the inequalities apply element-wise)
remains non-negative x(t) > 0. Since h(x3) is bounded
0 6 h(x3) 6 h(0), all such solutions are uniformly bounded
and forward complete (exist up to ∞).

The point x∗ is an equilibrium of (4) if and only if
f(x∗) = 0, which is equivalent to the system of equations

−b1x∗1 + h(x∗3) = g1x
∗
1 − b2x∗2 = g2x

∗
2 − b3x∗3 = 0

⇔


x∗1 =

b2
g1
x∗2 =

b2b3
g1g2

x∗3, x∗2 =
b3
g2
x∗3,

x∗3 = c h(x∗3), c =
g1g2
b1b2b3

> 0.

(8)

Since the function h(·) is non-increasing, the latter system
has the only (non-negative) root x∗3 > 0, corresponding to
the unique biologically feasible equilibrium x∗ > 0.

Stability properties of the unique equilibrium are deter-
mined by the eigenvalues of the Jacobian

Df(x∗) =

[
−b1 0 h′(x∗3)
g1 −b2 0
0 g2 −b3

]
, (9)

being the roots of the characteristic equation

det (λI−Df(x∗)) = λ3 + a1λ
2 + a2λ+ a3 = 0,

a1 = b1 + b2 + b3 > 0,

a2 = b1 b2 + b1 b3 + b2 b3 > 0,

a3 = b1 b2 b3 − g1g2h′(x∗3) > b1 b2 b3 > 0.

(10)

Using the Routh-Hurwitz criterion, the equilibrium of
(4) is stable if Θ = a1a2 − a3 < 0 and unstable when
Θ > 0. This leads to the following lemma.

Lemma 1. If M(ξ) = (−ξh′(ξ)/h(ξ)) < 8 for any ξ >
0, then the equilibrium is stable for all bi, gi > 0. If
supξ>0M(ξ) > 8, the discriminant Θ = a1a2 − a3 can be
both positive and negative, depending on bi, gi > 0, and the
system undergoes an Andronov-Hopf bifurcation as Θ = 0.

The first part of Lemma 1 follows from the secant sta-
bility criterion for circulant matrices [118, 119], implying
that the Jacobian Df(x∗) is Hurwitz if and only if

g1g2(−h′(x∗3))

b1b2b3

(8)
= −x

∗
3h
′(x∗3)

h(x∗3)
=M(x∗3) 6

(
sec

π

3

)3
= 8.
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An alternative simpler proof, based on the McLaurin’s in-
equality, is available in [62, 120]. The second part relies on
the implicit function theorem and has been proved (for a
more general non-cyclic feedback system) in [120, 121].�

Lemma 1 implies the following well-known fact [62, 67].

Corollary 1. For Goodwin’s oscillator in (4) with Hill
nonlinearity (5), the equilibrium is locally stable whenever
n 6 8. When n > 8, the system may have unstable equlib-
rium and undergoes the Hopf bifurcation as Θ = 0.

Indeed, for Hill function (5) one has

M(ξ) =
nKξn

a+Kξn
< n = lim

ζ→∞
M(ζ) ∀ξ > 0.�

Note that establishing global stability of the equilibrium
when M(ξ) < 8 remains a non-trivial problem. Some
sufficient conditions are given by the “global” version of
the secant criterion [119] and monotonicity-based crite-
ria [65, 66, 122], which imply, in particular, the global
stability of the equilibrium for n = 1. Simulations show
that the same holds for any n 6 8, but a proof, to the best
of the authors’ knowledge, remains elusive. It should be
noticed that Corollary 1 is not valid for Goodwin’s model
with transport delays [123, 124]

ẋ1(t) = −b1x1(t) + h(x3(t− τ3)),

ẋ2(t) = −b2x2(t) + g1x1(t− τ1),

ẋ3(t) = −b3x3(t) + g2x2(t− τ2).

(11)

Such a system may have limit cycles for any n > 1 (pro-
vided that the sum of the delays

∑
i τi is sufficiently large).

Detailed analysis of delayed Goodwin’s model is beyond
the scope of this review; its entrainability properties have
not in fact been studied yet.

A fundamental property of Goodwin’s oscillator is the
existence of a non-trivial periodic orbit in the case when
the (unique) equilibrium is unstable.

Theorem 1. Let the equilibrium x∗ be unstable, i.e. the
real part of an eigenvalue of Df(x∗) is positive. Then sys-
tem (4) has a (non-constant) periodic orbit. Furthermore,
almost all trajectories converge to closed orbits.

The proof is based on the seminal result from [125], ex-
tending the Poincaré-Bendixsson theory to cyclic systems
and implying [126] that the ω-limit set of any bounded so-
lution in (4) can be the equilibrium point, a closed orbit or
a homoclinic cycle. A more detailed analysis shows [126]
that, in the case of Goodwin’s oscillator, homoclinic trajec-
tories are impossible, and hence every solution converges
to the equilibrium or a closed orbit. Solutions of the first
type span the stable manifold of the unstable equilibrium
x∗, which is a zero-measure set [127, Proposition 4.1]. �

Remark 1. An alternative topological proof of the first
statement was published in [128, 129] (and requires some

technical assumptions, e.g. h(·) being C2-smooth). This
proof is based on the existence of an invariant toroidal do-
main in the vicinity of the equilibrium, enabling one to
prove the existence of a periodic orbit by means of the stan-
dard method of Poincaré sections. The second statement
of Theorem 1 can be proved [120] by using the well-known
Yakubovich criterion [45], stating that in a dynamical sys-
tem with bounded solutions and hyperbolic equilibria almost
all solutions oscillate (have non-trivial ω-limit sets).

Notice that Theorem 1 does not establish the unique-
ness of a periodic orbit in the Goodwin model and showing
uniqueness remains a non-trivial open problem. It is re-
markable that the delayed version of Goodwin’s oscillator
in (11) may have arbitrarily many limit cycles [124].

3.2. Entrainment to periodic signals

Consider now the dynamics of the forced Goodwin’s os-
cillator

ẋ1(t) = −b1x1(t) + h(x3(t)),

ẋ2(t) = −b2x2(t) + g1x1(t),

ẋ3(t) = −b3x3(t) + g2x2(t) +Mβ(t),

(12)

that can be rewritten in a matrix form as follows

dx

dt
= f(t,x) = Ax + Bh(x3) +MB0β(t),

where A,B are defined in (7) and B0 =
[
0 0 1

]T
. Here

β(t) > 0 stands for a Tβ-periodic function. In the con- 2.1
text of endocrine regulation, Mβ(t) corresponds to the
signal produced by SCN of the hypothalamus and influ-
encing the secretion of the hypothalamic release hormones,
e.g. CRH, GnRH. The phase and, to some extent, the fre-
quency of β(t) are controlled by the zeitgebers. This signal
may be considered as a feedforward control input to the
closed-loop pulsatile endocrine system that modulates the
hormone concentrations to an oscillation pattern consis-
tent with the circadian rhythm. Then M stands for the
corresponding feedforward gain. Alternatively, M can be
considered as the sensitivity of an individual endocrine reg-
ulation system (“axis”) to circadian rhythm. The analysis
below primary deals with the influence of the feedforward
control gain M > 0 on the behavior of system (12), in
particular, the existence and stability of forced periodic
solutions.

Using the Schauder fixed point theorem, the following
existence result can be proved [130].

Lemma 1. Consider system (12), where h(ξ) > 0,∀ξ >
0, h′(·) is continuous, and both h and h′ are bounded on
[0,∞) (monotonicity of h is not required). Then, for any
M > 0 and bounded function β(t) = β(t + Tβ) > 0, (12)
has a strictly positive Tβ-periodic solution.

Obviously, all T -periodic solutions of (12) are non-
constant unless β(·) is constant. A natural question arises
whether the periodic solution is unique and stable. Both
properties can be guaranteed for sufficiently large M , as
shown by the following theorem.
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Theorem 2. Let the assumptions of Lemma 1 hold and
h′(ξ) → 0 as ξ → ∞, β(t) > 0 and β(t) > 0 on the set of
positive measure. Then, for large M > 0, the Tβ-periodic
solution xM (·) to (12) is unique and globally attractive.

The proof of Theorem 2 is based on the following tech-
nical lemma, proved in Appendix.

Lemma 2. Under the assumptions of Theorem 2, there
exists a number η > 0, such that system (12) is conver-
gent (incrementally stable) in the domain Gη = [0,∞) ×
[0,∞) × (η,∞) ⊂ R3 in the following sense: if two solu-
tions x(t), x̃(t) stay in Gη for all t > t0, then the deviation
between them vanishes asymptotically

lim
t→∞

|x(t)− x̃(t)| = 0. (13)

To prove Theorem 2, we are going to show first that, for
large M , every solution x(t) of the system (12) arrives at
the set Gη defined in Lemma 2 and stays there for large t.
Consider the Tβ-periodic solution of the linear system

dx+

dt
= Ax+ + B0β(t), x+(t) = x+(t+ Tβ).

As demonstrated in [84], such a solution is unique:

x+(t) =

∞∫
0

esAB0β(t−s)ds =

t∫
−∞

e(t−s)AB0β(s)ds. (14)

Moreover, this solution is strictly uniformly positive since
the vector esAB0 is positive for any s > 0 and thus the
integrand is positive on a set of positive measure. In par-
ticular, x+3 (t) > κ > 0, where κ depends only on β(·) and
the parameters bi, gi in (12) but not on M and h(·).

Consider now an arbitrary solution x(·) to (12) and no-
tice that the function ζ(t) = x(t) −Mx+(t) satisfies the
equation

ζ̇(t) = Aζ(t) + Bh(x3(t)).

Recalling that ∀t : h(x3(t)) > 0, A is a Hurwitz, and the1.1
function esAB is positive, one shows that

lim
t→∞

ζ3(t) > 0,

entailing that lim
t→∞

x3(t) > Mκ. Choosing M > η/κ and

recalling that x1(t), x2(t) > 0 in view of the system’s pos-
itivity, results in x(t) ∈ Gη for t sufficiently large.

Now Lemma 2 implies that (13) holds for any two solu-
tions x(t), x̃(t). In particular, the Tβ-periodic trajectory
is unique and globally attractive.�

Remark 2. The uniqueness part of Theorem 2 remains
valid for a more general class of nonlinearities that actu-
ally can be unbounded; The corresponding proof inspired
by the techniques from [131] can be found in [84]. No-
tice however that this approach does not allow to prove
global stability. The idea of the proof presented above was

communicated to the authors by Dr. Denis Efimov. The-
orem 2 remains valid for any non-negative matrix B0 6= 0
and vector function β(t) = β(t+Tβ) > 0 of appropriate di-
mension, ensuring thus the Goodwin’s model entrainment
by arbitrary multidimensional periodic cues.

The general results of Lemma 1 and Theorem 2 remain
valid for many positive nonlinear systems, different from
Goodwin’s oscillator, e.g. “repressilators” and “promoti-
lators” [132]. In view of Lemma 1, the forced system has a
periodic solution even when the equilibrium of autonomous
system (4) (M = 0) is stable; the solution xM (t) is then
also stable for small M . If the equilibrium of (4) is unsta-
ble, the periodic solution of (12) is usually also unstable
for small M > 0 (unless Tβ coincides with the free-running
period, xM (t) is close to the equilibrium x∗ as M → 0).

Notice that the critical amplitude M0, beyond which the
uniqueness and stability of the periodic orbit is ensured by
Theorem 2, can be explicitly estimated, but the estimate
is very conservative. At the same time, Theorem 2 gives
no clue regarding the character of the system’s solutions
for small amplitudes of M . Simulations, presented in Sec-
tion 4 for the case of a harmonic signal β(t), demonstrate
that, for small M , the system exhibits quasiperiodic be-
havior, arising via the secondary Hopf (torus) bifurcation
as the Tβ-periodic cycle looses its stability.

3.3. Goodwin-type models of endocrine regulation

The original paradigm of Goodwin’s oscillator, i.e. (4)
and (5), fits well into the simplified structure of Te reg-
ulation in the male, with the concentration of the three
hormones constituting the axis GnRH-LH-Te assigned to
be the state variables. The concentration of Te exhorts
negative feedback on the concentration of GnRH through
h(x3) by inhibiting its release. Similarly, the regulation of
cortisol can also be cast within the same structure but for
the axis CRH-ACTH-cortisol, e.g. with Michaelis-Menten
degradation kinetics in the hypothalamic, pituitary, and
adrenal regions to avoid the use of unrealistically high Hill
coefficients necessary for oscillation in the classical model,
[133]. Goodwin’s oscillator is often called the Smith model
[62] in the context of endocrine regulation.

Being a conceptual (phenomenological) model, Good-
win’s oscillator, in its classical form, neither necessarily fits
experimental data nor captures in detail the underlying bi-
ological mechanisms. In the endocrine regulation of Te, a
significant modelling difficulty is presented by the fact that
GnRH secretion by the hypothalamic neurons is not con-
tinuous but rather episodic. In fact, synchronized GnRH
neurons collectively produce bursts of hormone concentra-
tion [134], whose amplitude and frequency are dependent
on the concentration of Te. This pulse-modulated mecha-
nism has been established experimentally [135] and imple-
ments a negative feedback as the amplitude and frequency
of the GnRH pulses decrease.

To bring Goodwin’s oscillator (the Smith model) in
agreement with the compelling biological evidence, the
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original static nonlinear feedback h(·) in (12) is substituted
with a frequency-amplitude pulse modulation mechanism
in [43, 136]. The resulting model is termed the impulsive
Goodwin’s oscillator. It possesses hybrid dynamics as the
feedback is implemented by pulse modulation of the first
kind [137] and thus introduces a first-order discrete sub-
system into the closed loop of the oscillator. The state of
the forced continuous part is given by

dx

dt
= Ax +MB0β(t), (15)

where x1(t) undergoes jumps at the time instants tk, k > 0

x1(t+k ) = x1(t−k ) + λk, tk+1 = tk + Tk,

whose timing and magnitudes are specified by the ampli-
tude and frequency modulation functions

λk = F (x3(tk)), Tk = Φ(x3(tk)).

The superscripts “−” and “+” denote the left- and right-
side limits, respectively. A distinctive property of the im-
pulsive Goodwin’s oscillator is absence of equilibria that
resolves the issue with convergent (non-oscillatory) trajec-
tories in the continuous Goodwin model [43]. Along with
boundedness of the solutions [43], it agrees well with the
original biological function of producing oscillatory tempo-
ral patterns. Furthermore, a rich diversity of signal shapes
(hormone concentration profiles) can be achieved by vary-
ing the pulse modulator nonlinearities Φ(·) and Ψ(·). Even
without time delay, the impulsive Goodwin’s oscillator can
exhibit multiple periodic solutions of different periods, as
well as deterministic chaos [138].

4. Bifurcation analysis of the continuous Goodwin
model

In this section, we study nonlinear dynamics of Good-
win’s oscillator, in its autonomous mode as well as subject
to exogenous force, by means of bifurcation analysis.

4.1. Autonomous Goodwin’s oscillator

Fig. 1 and Fig. 2 exemplify the behaviors of the clas-
sical Goodwin’s oscillator given by (4),(5). Fig. 1a de-
picts the Andronov-Hopf bifurcation for n = 9 producing
the oscillatory dynamics. For b1 < bL1 , the system pos-
sesses a stable equilibrium x∗. For this parameter interval
(Fig. 2), Jacobian (9) has a pair of complex-conjugated
eigenvalues λ1,2 = µ ± iω with negative real parts µ < 0,
and one negative real eigenvalue λ3 < 0. At the point
b1 = bL1 , the equilibrium state undergoes an Andronov-
Hopf bifurcation. As illustrated in Fig. 1b, when the
parameter b1 passes through the value b1 = bL1 , a pair
of complex-conjugated eigenvalues λ1,2 = µ ± iω crosses
the imaginary axis into the positive real half-plane. As
a result, the equilibrium state becomes unstable, and a
stable limit cycle appears. With further increase in the

value of b1, the unstable equilibrium point undergoes a re-
verse Andronov-Hopf bifurcation at the point b1 = bR1 , in
which a stable limit cycle turns into a stable equilibrium
state (Figs. 1a,b). In the bifurcation diagram Fig. 1a, the
oscillatory state exhibits maximum and minimum values
in the temporal variation of the state variable x3. The
maximum and minimum values of the state variable x3
correspond to the points, where phase trajectories inter-
sect the surface S = {x : g2x2 − b3x3 = 0} in the phase
space of system (4),(5) from the two directions (two-sided
Poincaré map). Fig. 2a shows a two-dimensional projec-
tion of the phase portrait for a stable equilibrium point O
(n = 8). Fig. 2b–d illustrate two-dimensional projections
of the phase portrait for n = 9, 12, 14 after the Andronov-
Hopf bifurcation, where the equilibrium point becomes un-
stable. Here C denotes a stable limit cycle and O∗ is the
unstable equilibrium point.

(a)

(b)

Figure 1: Birth of a limit cycle from a stable equilibrium point in
an Andronov-Hopf bifurcation. n = 9, b2 = 0.5, b3 = 0.3, g1 = 2.0,
g2 = 0.5, a = 100, K = 0.1 and 0.2 < b1 < 0.8. (a) Bifurcation
diagram. bL1 and bR1 are the Andronov-Hopf bifurcation points. (b)
Variation of the real part Reλ1,2 = µ of eigenvalues λ1,2 = µ ± iω.
Note that λ3 < 0.

4.2. Forced oscillations

Consider the forced Goodwin’s oscillator in (12) with
the Hill nonlinearity (5), subject to a positive single-tone
harmonic exogenous signal (i.e. the linear oscillator por-
traying circadian rhythm) β(t) = 1 + sin(ωt + θ) of the
period Tβ = 2π/ω.
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(a) (b)

(c) (d)

Figure 2: Phase portraits dynamical system (4),(5) for different val-
ues of n; b1 = 0.4, b2 = 0.5, b3 = 0.3, g1 = 2.0, g2 = 0.5, a = 100,
K = 0.1. (a) n = 8, O is the stable equilibrium point. (b)-(d)
Two-dimensional projection of the phase portrait for n = 9, n = 12
and n = 14, respectively. Here O∗ is the unstable equilibrium point
surrounded by the stable limit cycle C. The maximum value of x3
corresponds to the points where phase trajectories intersect the sur-
face S = {x : g2x2 − b3x3 = 0} in the state space (1) in the one
direction (Poincaré map).

For the analysis, the parameters are chosen as n = 9,
a = 100 K = 0.1, b1 = 0.4, b2 = 0.5, b3 = 0.3, g1 = 2.0,
g2 = 0.5, 0 < M < 0.055, Tβ = 2π/ω = 1440, θ = 0.

A period-Tβ solution xM (t) of (12) corresponds to the
fixed point of the stroboscopic map x(t) 7→ x(t + Tβ).
The fixed point of this map is located using the Newton-
Raphson algorithm that allows not only to evaluate stable
cycles but also unstable ones. To test stability of the pe-
riodic solutions, one computes the eigenvalues ρ1, ρ2, ρ3
(henceforth |ρ1| > |ρ2| > |ρ3|) of the monodromy matrix
Φ(Tβ) that satisfies

dΦ(t)

dt
= Df(t,xM )Φ(t), Φ(0) = I.

Fig. 3a shows a one-dimensional bifurcation diagram cal-
culated for 0 < M < 0.055 and constructed from a
Poincaré section in the phase space of (12). For large
amplitudes M of the forcing signal β(t), (12) exhibits a
stable period-Tβ solution. As M is reduced, this solution
undergoes an Andronov-Hopf bifurcation (or a Neimark-
Sacker bifurcation for the fixed point in the corresponding
Poincaré map), and loses stability when the absolute value
of the complex-conjugate multipliers |ρ1| = |ρ2| becomes

greater than one.
The variation of ρ1,2 as a function of the amplitude

M is shown in Fig. 3b. The pair of complex-conjugate
multipliers leaves the unit circle at a point M = Mϕ.
The loss of cycle stability leads to the soft appearance
of two-frequency quasiperiodic oscillations corresponding
to a two-dimensional invariant torus Tq in the phase space
of (12), and the intersection of Tq with the Poincaré sec-
tion corresponds to the closed invariant curve Ca of the
Poincaré map. Fig. 3c presents the phase portrait of (12)
after the Andronov-Hopf bifurcation for M = 0.035.

As emphasized in Sec. 3.1, autonomous system (4),(5)
has no periodic orbits for n 6 8. Simulation shows that
the forced continuous Goodwin’s oscillator in (12) exhibits
only a period-Tβ solution for n 6 8 (see Fig. 3d).

5. Circadian entrainment of the impulsive Good-
win’s oscillator

Consider a solution x(t) to (15). Due to linearity of
the continuous part of the model, it can be written as
x(t) = xp(t) + B0ϑ(t), where xp(t) is governed by

dxp
dt

= Axp(t), xp(t
+
k ) = xp(t

−
k ) + λkB, (16)

and ϑ(t) satisfies

ϑ̇(t) = −b3ϑ(t) +Mβ(t).

In the interval tk 6 t < tk+1, the solution to system (16)
is given by

xp(t) = eA(t−tk)xp(t
+
k ), (17)

with
xp(t

+
k ) = xp(t

−
k ) + λkB. (18)

Substituting (18) into (17) yields

xp(t) = eA(t−tk)(xp(t
−
k ) + λkB). (19)

For t = tk+1, the solution above has the form

xp(t
−
k+1) = eA (tk+1−tk)(xp(t

−
k ) + λkB),

tk+1 = tk + Φ(x3(t−k )), λk = F (x3(t−k )).
(20)

In this way, the evolution of continuous-time system (15)
through the jump points tk is as follows [139]

xp(t
−
k+1) = Qp(xp(t

−
k ), tk), (21)

where the discrete map Qp is defined by

Qp(xp(t
−
k ), tk) = eATk(xp(t

−
k ) + λkB),

Tk = Φ(x3(t−k )(tk)), λk = F (x3(t−k )).

To simplify the index notation, rename the components
of the continuous state vector xp(t) = [x(t), y(t), z(t)]T .

Since x3(t) = z(t) + ϑ(t), then

tk+1 = tk + Φ(z(t−k ) + ϑ(tk)), λk = F (z(t−k ) + ϑ(tk)).

11



(a) (b)

(c) (d)

Figure 3: Periodic and quasi-periodic solutions in continuously forced Goodwin’s oscillator: (a) Bifurcation diagram illustrating the ap-
pearance of the two-dimensional torus through a Andronov-Hopf bifurcation. b1 = 0.4, b2 = 0.5, b3 = 0.3, g1 = 2.0, g2 = 0.5, a = 100,
K = 0.1, n = 9, 0.0 < M < 0.055. Mϕ is the bifurcation point. (b) Multiplier diagrams for the stable 1-cycle, 0.045 < M < 0.055. As the
parameter M decreases, a pair of complex-conjugated multipliers ρ1,2 = α ± iβ of the 1-cycle leave the unit circle at the point M = Mϕ.
(c) Two-dimensional projection of the phase portrait after the Andronov-Hopf bifurcation for M = 0.035. Here Tq is the two-dimensional
torus associated with the quasiperiodic solution of (12) and Ca denotes a closed invariant curve Ca of the corresponding Poincaré map. (d)
Two-dimensional projection onto the plan (x2, x3) of the period-Tβ solution for n = 6 and M = 0.6.

Here ϑ(t) = M
b23+ω

2 [b3 sin(ωt+ θ)− ω cos(ωt+ θ)] + M
b3

.

Introduce ϕ = ωt and x(t−k ) = xk, y(t−k ) = yk, z(t
−
k ) =

zk, ϕ(tk) = ϕk. In this way ϕk+1 = ϕk + Φ(zk + ϑ(ϕk))
and λk = F (zk + ϑ(ϕk)). Then the Poincaré map of the
forced model in (15) can be rewritten as [139]

xk+1 = e−b1Tk(xk + λk), (22)

yk+1 = E21(Tk)(xk + λk) + e−b2Tkyk,

zk+1 = E31(Tk)(xk + λk) + E32(Tk)yk + e−b3Tkzk,

ϕk+1 = ϕk + ω Tk (mod 2π), k = 0, 1, 2, ...,

with

Tk = Φ(σk), λk = F (σk),

σk = zk +
M

b23 + ω2
[b3 sin(ϕk + θ)− ω cos(ϕk + θ)] +

M

b3
,

0 6 ϕk 6 2π, 0 6 θ 6 2π,

E21(T ) =
g1

b2 − b1
(e−b1T − e−b2T ),

E32(T ) =
g2

b3 − b2
(e−b2T − e−b3T ),

E31(T ) = α1e−b1T + α2e−b2T + α3e−b3T ,

α1 =
g1g2

(b2 − b1)(b3 − b1)
, α2 =

g1g2
(b1 − b2)(b3 − b2)

,

α3 =
g1g2

(b1 − b3)(b2 − b3)
.

The modulation functions of the intrinsic pulsatile feed-
back are selected as

Φ(σ) = k1 + k2
(σ/r)n

1 + (σ/r)n
, F (σ) = k3 +

k4
1 + (σ/r)n

.

12



(a)
(b)

(c) (d)
(e)

Figure 4: The impulsive Goodwin’s oscillator: (a) Bifurcation diagram for 0.23 6 M 6 0.26 illustrating a transition from quasiperiodic to
periodic dynamics and vice versa in a saddle-node bifurcation at ML and MR. b1 = 0.45, n = 3. (b) Phase portrait of the map before the
saddle-node bifurcation for M = 0.242. (c) Phase portrait of the map after the saddle-node bifurcation. M = 0.246. Here, solid circles mark
the stable 14-cycle and open circles mark the saddle ones. WU

± are unstable manifolds of the saddle 14-cycle. (d) Phase portrait of the map
after the saddle-node bifurcation at M = MR. M = 0.2546. (e) Bifurcation diagram for large values of M illustrating a period-doubling
transition to chaos, 3.0 6M 6 14.0.

The introduction of the exogenous signal β modifies the
argument of the modulation function and can be effectively
interpreted as time-dependence of F (·) and Φ(·). Actually,
from a solution to (22), it is impossible to tell whether
β(t) exerts effect on the closed-loop dynamics through an
additive contribution to the continuous part of (15) or
directly alters the modulation functions. The latter fact
is meaningful since important properties of the impulsive
Goodwin’s oscillator, such as intrinsic boundedness of the
solutions, are preserved in the forced version of the model.
Yet, compared to the autonomous case, bistability appears
in the forced system dynamics, [139]. Another crucial ob-
servation is that σk > xk due to the positivity of the ex-
ogenous signal. Since the modulation functions F (·) and
Φ(·) are bounded from below and above, the modulation
depth is reduced by β > 0 thus resulting in a smaller range
of λk, Tk.

5.1. Bifurcation analysis

The parameter values are selected as: 0.0 6 M 6 12.0,
0.23 < b1 < 0.69, b2 = 0.014, b3 = 0.15, g1 = 0.6, g2 = 1.5,
k1 = 50, k2 = 220.0, k3 = 1.5, k4 = 5.0, r = 2.7, n = 3. In

the following analysis, the amplitudes of the forcing signal
M and b1 are used as the bifurcation parameters.

For a relatively small amplitude M , map (22) displays
a quasiperiodic orbit. As M increases, the system enters
the 1:7 entrainment region (or phase-locked region) via a
saddle-node bifurcation at the point ML. This transition
is shown in Fig. 4a for b1 = 0.45. On the part of the bifur-
cation diagram in Fig. 4a that falls to the left of the point
ML, map (22) has a stable closed invariant curve, associ-
ated with quasiperiodic dynamics, as illustrated in Fig. 4b.
The saddle-node bifurcation at the edge of the entrain-
ment region produces a new attracting closed invariant
curve (Fig. 4c). This closed curve includes two 14-cycles,
a saddle and stable node, and is formed by the saddle-node
connection composed of the unstable manifolds WU

± of the
saddle cycle. In this way, inside the entrainment region,
map (22) has the stable and saddle 14-cycles. The green
lines in Fig. 4a (marked with 1) represent the saddle 14-
cycle and the magenta lines (marked with 2) represent the
stable 14-cycle.

When crossing the saddle-node bifurcation point MR
with increasing amplitude M of the forcing signal, the sta-
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Figure 5: (a) Bifurcation diagram showing the transition from a quasiperiodic orbit to a period-14 resonant dynamics in a saddle-node
bifurcation with subsequent transition to a chaotic attractor through loss of smoothness and destruction of the invariant curve. 0.25 6M 6
0.288. b1 = 0.5, n = 3. (b) Phase portrait of the map before the saddle-node bifurcation at ML. M = 0.252. (c) Phase portrait of the map
after the saddle-node bifurcation. M = 0.258. Here, solid circles mark the stable 14-cycle and open circles mark the saddle ones. WU

± are
unstable manifolds of the saddle 14-cycle. (d) Phase portrait of the map near the second saddle-node bifurcation at MR, M = 0.27116. (e)
Phase portrait of the map when the system lives the entrainment region (after the destruction of the closed invariant curve). M = 0.0.27325.

ble 14-cycle merges with the saddle one and disappears. As
one can see in Figs. 4c,d, the saddle-node bifurcation at
MR leads to the appearance of the stable closed invariant
curve, associated with quasiperiodic dynamics (Fig. 4d).
The one-dimensional bifurcation diagram in Fig. 4e shows
a period-doubling transition to chaos for large M .

Fig. 5 shows another example of a bifurcation transition
in which a stable closed curve is destroyed when leaving
the 1:7 entrainment region for b1 = 0.5. The destruction
of a stable closed invariant curve typically leads to the
appearance of a chaotic attractor [140, 141].

As already mentioned, within each entrainment region
(tongue of periodicity), there is a closed invariant curve
that is formed by the unstable manifold of the saddle cycle
and the points of the stable and saddle cycles.

As one can see in Fig. 5a–c, the transition from a stable
closed invariant curve (Fig. 5b), associated with quasiperi-
odic dynamics, to the closed curve with a periodic attrac-
tor (see Fig. 5c) takes place via a saddle-node bifurcation
occurring at ML in the same way as in the example dis-
cussed above (see Fig. 4).

However, by contrast to the previous example, with fur-
ther increase of the forcing signal amplitude M , the invari-

ant curve loses its smoothness at the points of the stable
node 14-cycle due to folding of the unstable manifold WU

+

of the saddle 14-cycle (Fig. 5d) and, at the right edge MR
of the entrainment region, transforms to a folded set [142].
This leads to the destruction of the closed curve [140]. Fi-
nally, leaving the entrainment region, the saddle and stable
node 14-cycles merge and disappear through a saddle-node
bifurcation at MR. This bifurcation creates a chaotic at-
tractor (Fig. 5e).

Recall that the saddle-node bifurcation points ML and
MR define the edges of the the entrainment region (reso-
nance tongue).

Fig. 6a displays a one-dimensional bifurcation diagram
for b1 = 0.65 and 0.27 < M < 0.38, illustrating period-
doubling cascades, multistability, and chaotic dynamics.

By contrast to the previous examples (see Fig. 4 and
Fig. 5), the transition to period-7 entrainment region
ML < M < MR takes place via a subcritical period-
doubling bifurcation occurring at M = ML. Note that
the subcritical period-doubling bifurcation at the left edge
ML of the entrainment region produces a stable node 7-
cycle (denoted by 2 in Fig. 6a) and a saddle-14 cycle.

When the system leaves the entrainment region ML <
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(a) (b)

(c)

Figure 6: (a) Bifurcation diagram for b1 = 0.65, illustrating multistability and chaotic dynamics in the period-7 entrainment region
ML < M < MR. The line marked by 1 represents the saddle 7-cycle and the line denoted by 2 represents the stable 7 cycle. Here ML is
the reverse subcritical period-doubling bifurcation point for 7-cycle and MR is the saddle-node bifurcation point for 7-cycle. (b) Magnified
part of the bifurcation diagram that is outlined by the rectangle in (a). Here M1

SN , M2
SN are the fold bifurcation points for 7- and 14-cycles,

respectively and M1,2
PD are the supercritical period-doubling bifurcation points for 14-cycles. M0

PD is the period-doubling bifurcation point for
the unstable 7-cycle. (c) Magnified part of the bifurcation diagram in (b). Here MNS is the Neimark-Sacker bifurcation point for 14-cycle.

M < MR through the boundary MR, the stable node 7-
cycle and saddle 7-cycle merge and disappear in a saddle-
node bifurcation. This bifurcation leads to the appearance
of a chaotic attractor.

Fig. 6b shows a magnified part of the bifurcation dia-
gram that is outlined by the rectangle in Fig. 6a. Fig. 6c
is a magnification of the rectangle outlined in Fig. 6b. The
domain between the points of subcritical period-doubling
bifurcation ML and of saddle-node bifurcation M2

SN is a
region of multistability, where the stable 7-cycle (denoted
by 2) coexists with chaotic or quasiperiodic and stable
high-periodic attractors.

Now consider the characteristics of the bifurcational be-
havior depicted in Fig. 6a and Fig. 6b in more detail in
order to understand the mechanism behind the appear-
ance of the coexisting attractors.

As the parameter M increases (see Fig. 6b), two unsta-
ble 7-cycles appear through a fold bifurcation at M =
M1
SN . As already mentioned, when the parameter M

passes the value M = ML, the first unstable 7-cycle under-

goes a period-doubling bifurcation. The original unstable
7-cycle turns into the stable 7-cycle (denoted by 2), and
the saddle 14-cycle appears (Fig. 6b,c).

With further increase of the parameter M , the saddle
14-cycle, which has appeared from the unstable 7-cycle
as a results of a subcritical period-doubling bifurcation at
M = ML (see Fig. 6c), merges with the stable 14-cycle
and disappears in a saddle-node bifurcation at M = M2

SN
(Fig. 6b).

As illustrated in Fig. 6b, when the parameter M de-
creases from the value M2

SN , one can observe an infinite
cascade of period-doubling bifurcations, leading finally to
a transition to chaos. In this way, there exists a region
of bistability where where the stable 7-cycle coexists with
the chaotic and high periodic attractors.

Finally, as the parameter M increases, the second un-
stable 7-cycle, which has appeared at M = M1

SN in a fold
bifurcation, undergoes a supercritical period-doubling bi-
furcation at M0

PD (see Fig. 6c). This bifurcation leads
to the appearance of an unstable 14-cycle and unstable
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7-cycle (denoted by 1 in Fig. 6b).
With further increase in the value of M , the unstable 14-

cycle becomes a stable one via a reverse Neimark-Sacker bi-
furcation at M = MNS (Fig. 6c). Hereafter, when crossing
the point M1

PD with increasing M , an infinite cascade of
period-doubling bifurcations is observed once again, lead-
ing to a transition to chaos (Fig. 6c).

Between the point of the Neimark-Sacker bifurcation
MNS and the point M1

PD of the period-doubling bifur-
cation, the stable period-7 cycle coexists with the stable
14-cycle.

Note that when crossing the Neimark-Sacker bifurca-
tion point MNS with decreasing M , the stable 14-cycle
turns into an unstable focus 14-cycle. As a result, a
stable 14-cyclic closed invariant curve, associated with a
quasiperiodic dynamics softly arises from the stable 14-
cycle (Fig. 6c). The domain between the points of subcriti-
cal period-doubling bifurcation ML and of Neimark-Sacker
bifurcation MNS in Fig. 6c is a region of bistability, where
the stable 7-cycle coexists with the quasiperiodic attractor.

6. Conclusions

Mathematical theory of entrainment and synchroniza-
tion is mathematically challenging and, being applied to
biological oscillators, of fundamental importance for un-
derstanding how the circadian rhythm impacts physio-
logical regulation. In particular, the effects of circadian
rhythm on the endocrine system, controlling the basic
organism functions such as metabolism and reproduc-
tion, are especially significant due to their implication in
widespread medical condition, e.g. diabetes and cancer.

Constructing a tractable mathematical model of a bio-
logical oscillator with a sufficient for the end-purpose re-
alism is a task that demands qualified and coordinated
efforts of biologists, mathematicians, as well as engineers.
The present paper overviews a number of models devel-
oped along this research avenue. The dynamics of two har-
monically forced models of Goodwin’s oscillator are stud-
ied by means of bifurcation analysis with emphasis on en-
trainment phenomena. In the classical continuous model,
quasiperiodic solutions are discovered for small amplitudes
of the exogenous signal that, in an Andronov-Hopf bifur-
cation, become periodic with an increase in the amplitude.
Hybrid dynamics lead to much more complex scenarios in
the case of the impulsive Goodwin’s oscillator, where peri-
odic solutions are observed for moderate values of the ex-
ogenous signal, while small and high amplitudes of it can
result in quasiperiodicity or deterministic chaos. These2.3
simulation results can be validated in biological experi-
ments but demand high-resolution hormone concentration
data over several days in a row to be conclusive.

Another characteristic phenomenon appearing in the
forced impulsive Goodwin’s oscillator is the transitions
from phase-locked dynamics to quasiperiodicity and chaos
that are controlled by the phase of the exogenous signal.

The latter property is presumably related to the changes
in the endocrine system due to the jet lag.

The transitions from phase-locked periodic dynamics to
quasiperiodicity and vice versa are first described in a sad-
dle node bifurcation. Further, it is demonstrated how a
stable closed invariant curve loses its smoothness at the
point the stable cycle due to folding of the unstable man-
ifold of the saddle cycle as when leaving the entrainment
region. This leads to the destruction of the closed curve
and appearance of a chaotic attractor.

Appendix A. Appendix. Proof of Lemma 2

The proof of Lemma 2 is based on the seminal idea of
convergent dynamics (or incremental stability), originat-
ing from works by B.P. Demidovich and T. Yoshizawa [80].
We start with the following proposition.

Proposition 1. Consider a convex set G ⊆ Rn and the
mapping f : [0,∞)×G → Rn. Suppose that f(t,x) has a
continuous partial derivative ∂

∂xf(t,x) at any point (t,x) ∈
[0,∞)×G and there exists a matrix P = P> such that

P
∂f(t,x)

∂x
+
∂f(t,x)

∂x

>
P ≤ −αIn ∀t > 0,x ∈ G. (A.1)

Then for any t > 0, x0,x1 ∈ G the inequality holds

2(x1 − x0)>P [f(t,x1)− f(t,x0)] 6 −α|x1 − x0|2. (A.2)

In the special case G = Rn, Proposition 1 has been
proved in [80] (see the proof of Theorem 1), the general
case is proved in the same way. The principal requirement
is convexity of G, entailing that for any x0,x1 ∈ G and
s ∈ [0, 1] one has xs = sx1 + (1− s)x0 ∈ G, and therefore

f(t,x1)− f(t,x0) =

∫ 1

0

∂

∂s
f(t,xs)ds =

=

∫ 1

0

∂f

∂x
(t,xs)(x1 − x0)ds.

Multiplying the latter equality by (x1−x0)>P , one obtains

2(x1 − x0)>P (f(t,x1)− f(t,x0)) =

= 2(x1 − x0)>

 1∫
0

P
∂f

∂x
(t,xs)ds

 (x1 − x0) =

= (x1 − x0)>
1∫

0

P

(
∂f

∂x
(t,xs) +

∂f

∂x
(t,xs)

>P

)
ds(x1 − x0)

(A.1)

≤ −α|x1 − x0|2.�

Corollary 2. Let the assumptions of Proposition 1 be
valid and P = P> > 0. Then the following ODE

ẋ(t) = f(t,x(t))
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is convergent in G in the following sense: any two solu-
tions x1(t),x2(t) that are well-defined and stay in G for
t > t0 > 0 converge to each other in the sense that

|x1(t)− x2(t)| −−−→
t→∞

0,

and the convergence is exponentially fast.

The proof of Corollary 2 is immediate from Proposi-
tion 1, introducing the Lyapunov function V (x1,x2) =
(x1 − x2)>P (x1 − x2). Choosing ε > 0 so small that
εP < αIn and applying (A.2), one arrives at

d

dt
V (x1,x2) = 2(x2 − x1)>P (f(t,x2)− f(t,x1)) ≤

(A.2)

≤ −εV (x1,x2).

Since P > 0, this implies exponentially fast vanishing of
the deviation |x1(t)− x2(t)| as t→∞.�

We are now ready to prove Lemma 2. It suffices to show
that for sufficiently large η > 0 the system (12) satisfies the
conditions of Corollary 2 for G = Gη (obviously, this set
is convex). Recall that the matrix A from (7) is Hurwitz.
Hence, a matrix P = P> > 0 exists such that

PA + A>P 6 −2I3.

By assumption, h′(ξ) → 0 as ξ → 0. Therefore, for η
sufficiently large one has (P B̃+B̃>P )h′(ξ) < I3 whenever
ξ > η; here B̃ = (0, 0, 1)B. By noticing that

∂

∂x
f(t,x) = A + B̃h′(x3),

one shows that for large η > 0 the inequality (A.1) holds
with α = 1 whenever t > 0 and x ∈ Gη, which ends the
proof in view of Corollary 2.�

List of Acronyms

ACTH adrenocorticotropin hormone

CRH corticotropin-releasing hormone

GnRH gonadotropin-releasing hormone

ISS input-to-state stability

LD light-dark

LH luteinizing hormone

MSF Master Stability Function

PCO pulse-coupled oscillator

PRC phase response (resetting) curve

SCN suprachiasmatic nucleus

Te testosterone
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[138] Z. Zhusubaliyev, A. Churilov, A. Medvedev, Bifurcation phe-
nomena in an impulsive model of non-basal testosterone regu-
lation, Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence 22 (2012) 013121–1–013121–11.

[139] P. Mattsson, A. Medvedev, Z. Zhusubaliyev, Pulse-modulated
model of testosterone regulation subject to exogenous signals,
in: Proceedings of the 55th IEEE Conference on Decision and
Control, Las Vegas, NE, 2016, pp. 5023–5028.

[140] V. S. Afraimovich, L. P. Shilnikov, Invariant two-dimensional
tori, their breakdown and stochasticity, Amer. Math. Soc.
Transl. 149 (1991) 201–211.

[141] D. G. Aronson, M. A. Chory, G. R. Hall, R. P. McGehee,

Bifurcations from an invariant circle for two parameter families
of maps of the plane: A computer-assisted study, Commun.
Math. Phys. 83 (1982) 303–353.

[142] V. Maistrenko, Y. Maistrenko, E. Mosekilde, Torus breakdown
in noninvertible maps, Physical Review E 67 (2003) 046215–1
– 046215–6.

20


	Introduction
	Circadian clock and circadian rhythm
	Cell level of circadian clock
	Suprachiasmatic nucleus
	Circadian rhythm in endocrine regulation
	The paper organization

	Dynamical models of circadian rhythm
	Individual circadian clocks
	Networks of oscillators

	 Continuous and Impulsive Goodwin's Models 
	Stability properties of the continuous Goodwin model
	Entrainment to periodic signals
	Goodwin-type models of endocrine regulation

	Bifurcation analysis of the continuous Goodwin model
	Autonomous Goodwin's oscillator
	Forced oscillations

	Circadian entrainment of the impulsive Goodwin's oscillator
	Bifurcation analysis

	Conclusions
	Appendix. Proof of Lemma 2

