
Cloud platform for EV
charging management

Qixiang Xu

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft

Cloud platform for EV charging
management

by

Qixiang Xu

in partial fulfillment of the requirements for the degree of

Master of Science
in Electrical Engineering

at the Delft University of Technology,
to be defended publicly on Tuesday October 27th, 2021 at 13:30 PM.

Supervisor: Dr. ir. Zian Qin, TU Delft
Thesis committee: Prof. dr. ir. Pavol Bauer, TU Delft

Dr. ir. Zian Qin, TU Delft
Dr. ir. Pedro P. Vergara, TU Delft

Abstract

Electric vehicle (EV) charging stations play an important role in the future development of the EV mar
ket. Uncoordinated charging will generate extra costs and bring unexpected stress to the grid. Multiple
efficient charging strategies were proposed in past papers in order to solve the issues brought by un
coordinated charging. However, to put the algorithms into practical use, it is necessary to develop a
platform for practical testing of the algorithms. In recent years, in the context of the gradual maturity
of Internet technology, with the aid of embedded programming, the deployment of largescale smart
chargers on cloudbased platforms becomes possible. In cloudbased systems, the development, oper
ational cost and system complexity are reduced compared with hardware PLC programming. Therefore,
the cloud based platform is chosen as the testing platform for charging algorithms.

In the meanwhile, the energy storage systems combined with photovoltaic systems also can be
used to lease the stress from the chargers. Hence, in this thesis, the ESS to cloud and its control
strategy are implemented to reduce the impact from the chargers. In general, this thesis implements
a cloudbased platform with the integration of the ESS, which is able to monitor the status of all the
devices from the cloud, and distribute power to all devices with the aid of the charging algorithms on
cloud.

To begin with, the different IoT solutions are discussed in introduction. Based on analysis and the
experimental conditions, the most proper solution is chosen. Then, the details of cloud system structure
is explained. Afterwards, the implementation procedure of the cloud platform is introduced by dividing
the whole platform into different sections according to different functions on cloud. The contents include
charger monitoring and control, charger grouping, ESS monitoring and control, database management.

Subsequently, two charging algorithms and an ESS control strategy are proposed. The theory of the
algorithms and their function are introduced. Next, the interface design procedure on cloud platform
is illustrated to show how the data is collected from the device to cloud, how the message is processed
and computed on cloud. Based on above results, the simulation results are displayed to investigate
the performance of the different control strategies on cloud in an ideal condition.

Finally, the whole cloud system and charging algorithms are validated and evaluated through the
piratical experiment. The performance of the algorithms under the practical conditions are evaluated.
The system cost and the delay are discussed. At the end of the thesis, the characteristics of the cloud
based system are given based on previous analysis.

iii

Acknowledgement

I would like to acknowledge and give my warmest thank to my supervisors Dr. Zian Qin, and Prof. dr.
ir. Pavol Bauer for their insightful comments and suggestions.

Additionally, I would like to express my sincere gratitude to my daily supervior Dr. Zian Qin. His
insightful comments and suggestions helps me to finding the way when I am lost during the project.
With his help and supervising, I kept motivated for eight months since I have been working on this
thesis.

I also would like to offer my special thanks to my colleagues from Third Place Energy B.V., with their
help, my works can proceed smoothly.

I would like to extend my sincere thanks to my parents and my friends for their unwavering support
and belief in me.

Qixiang Xu
Delft, September 2021

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Background . 1

1.1.1 General background . 1
1.1.2 Chargers with ESS . 1

1.2 Motivation and Objectives. 2
1.2.1 Motivation . 2
1.2.2 Objectives . 3

1.3 Project overview and approaches . 3
1.4 Project contribution . 5
1.5 Structure of the work . 5

2 Design & implementation of cloud platform 7
2.1 Charger management platform Tom . 7

2.1.1 The introduction of Tom . 7
2.1.2 Tom APIs. 8

2.2 The design and implementation of Bob . 10
2.2.1 The structure overview of Bob . 11
2.2.2 Charger management . 12
2.2.3 Cloudbased inverter management . 16
2.2.4 Database of Bob . 21

2.3 Summary . 27

3 Charging algorithm theory & design 29
3.1 Fast charging by ratio (FCR) Method . 29

3.1.1 FCR algorithm Design . 29
3.1.2 FCR algorithm implementation . 30

3.2 Coordinated Charging algorithms . 30
3.2.1 Problem formulation . 31
3.2.2 Offline Charging algorithm (OFFCC) . 32
3.2.3 Online Charging algorithm (OLCC) . 33

3.3 ”PowerConfig” API on Bob . 34
3.4 ESS management . 36
3.5 Simulation. 38

3.5.1 Simulation parameters . 38
3.5.2 Simulation results . 38

3.6 Summary . 42

4 Experiment validation & evaluation 43
4.1 Experiment devices . 44

4.1.1 Chargers . 44
4.1.2 ESS . 45

4.2 Experiment results . 45
4.3 Discussion & evaluation . 47

4.3.1 Performance evaluation of algorithms. 47
4.3.2 System Cost . 47
4.3.3 The analysis of communication time delay. 49
4.3.4 Suggestions . 50

vii

viii Contents

5 Conclusion & Future work 51
5.1 Conclusion . 51
5.2 Future work . 52

A EMS design 53

B Part of source codes of Bob 55

C Simulation data 59

Bibliography 61

List of Figures

1.1 The Statistic of charging points in Netherlands from 2016 to 2021 1
1.2 Two cloud solutions . 2
1.3 The structure overview of the project . 4

2.1 The details of one of chargers on ”Tom” . 8
2.2 The grouping service on ”Tom” . 8
2.3 The ideal structure of ”Bob” . 11
2.4 The ideal structure of ”Bob” . 11
2.5 The UML class diagram of function: ”Display charger data” 12
2.6 The view of chargers on ”Bob” . 13
2.7 The UML class diagram of function: ”charger group management” 14
2.8 The view of charger group management on ”Bob” . 15
2.9 The UML class diagram of function: ”send power change request” 16
2.10 The block diagram of the inverter to cloud . 16
2.11 The software block diagram of the inverter to cloud . 17
2.12 The UML class diagram of Java program . 18
2.13 The integration of IoT services . 19
2.14 The UML diagram of Inverter management . 20
2.15 The view of Inverter management on ”Bob” . 21
2.16 The structure of CosmosDb . 21
2.17 The example of CosmosDb . 22
2.18 The configuration of CosmosDb . 24
2.19 The UML class diagram of Add/Delete/Edit/Query function for the CosmosDb 25
2.20 CosmosDb management on ”Bob” . 26

3.1 The flow chart of FRC method . 30
3.2 The discretization exmaple for OFFCC . 32
3.3 The implementation of OLCC method . 34
3.4 The message sequence flow from the charger to cloud platform 35
3.5 The flow chart of how SetPowerTrigger function functioning 36
3.6 The ESS managment options on Bob . 37
3.7 The flow chart of how SetPowerTrigger function functioning with ESS management . . 37
3.8 The total charging power with different methods from 12:00 to 24:00 for a day under

light traffic . 39
3.9 Charging power for each EV with different methods in shortterm simulation 39
3.10 The total cost of different methods for shortterm simulation 39
3.11 The total charging power with different methods for a day under medium traffic 40
3.12 Charging power for each EV with different methods in mediumterm simulation 40
3.13 The total cost of different methods for mediumterm simulation 41
3.14 The simulation result of the Peak shaving algorithm . 41

4.1 Hardware connection schematic . 43
4.2 The photo of three chargers in lab . 44
4.3 The photo of ESS in lab . 45
4.4 The FCR result under practical test . 45
4.5 The OLCC result under practical test . 46
4.6 The OLCC Charging demand . 46
4.7 The OLCC with ESS result under practical test . 46
4.8 The cost from the Microsoft Azure services . 47

ix

x List of Figures

4.9 The OLCC response analysis . 49
4.10 The delay from charger platform . 50

5.1 The preview of the complete system . 52

A.1 The flow chart of Qt program . 54
A.2 The UI of industrial computer . 54

C.1 The total charging power with different methods for a day under heavy traffic 59
C.2 The total cost of different methods for heavyterm simulation 59

List of Tables

2.1 The web APIs from Tom . 9
2.2 The variables in class SimulatedDevice . 17
2.3 The web APIs from Bob . 27

3.1 The EV timetable for shortterm simulation . 38
3.2 The EV timetable for shortterm simulation . 38
3.3 The web APIs from Bob . 42

4.1 The parameters of 30kW DC Charger . 44
4.2 The parameters of Industrial Computer . 44
4.3 The parameters of Hybrid Inverter . 45
4.4 The parameters of Battery . 45
4.5 The timetable of charging sequence . 46
4.6 The pricing of Azure IoT Hub . 48
4.7 The pricing of Azure service APP . 48

A.1 Modbus RTU format . 53

xi

1
Introduction

1.1. Background
1.1.1. General background
Over the last few years, the sales of electric vehicles (EV) in European Union grows rapidly. From 2019
to 2020 sales of electric vehicles in Europe have almost doubled[1]. To fulfil the growing charging
demands, and with the develop of fast charging technology, a large number of fast charging stations
(FCS) have been built in recent years. In early 2021, the dutch government published a statistic of
charging points in Netherlands, the statistical result is shown in 1.1[1]. According to statistics, from
2019 to 2021, the total charging points rose by 25%. Among these new charging points, the number
of fast charging points increased by 825, the amount of growth is almost twice of 2019. However, if
these newly established fast charging stations charge EVs without any control method, the large impact
loads will be generated, which may brings additional issues to the power grid[2]; such as harmonic
issue[3–5], unbalance voltage[6, 7], and peak loads [8].

612 755 1116 1262 2027 20870 0 0 433 897 911148 178 197 339 467

26088

32875
35861

49520

63577
66083

0

10000

20000

30000

40000

50000

60000

70000

2016 2017 2018 2019 2020 Jan.2021

Statistic of charging points in NL

Fast charging points, public + semi‐public of which>100kW Fast Charging Locations Regular public +semi‐public

Figure 1.1: The Statistic of charging points in Netherlands from 2016 to 2021

1.1.2. Chargers with ESS
In the mean time, the energy storage technologies develop rapidly. Thereby, the cost of setting up
a energy storage system is reduced. It is possible to integrate the ESS into the charging station.
Furthermore, some government gives incentive to the charging stations for integrating more renewable
energy to the station [9]. Besides, the charging station owner aim to gain more profit by running a
charging station. Therefore, multiple optimization algorithms are proposed by past papers, such as
[10, 11]. With the aid of these optimization algorithms, the profit of the charging station can be
further increased. So, integrate the ESS into the charging station is the future trend and it can bring
amount of benefits to the charging station owner.

1

2 1. Introduction

1.2. Motivation and Objectives
1.2.1. Motivation
Currently, people are focusing on how to develop the more advanced and efficient algorithms for
charging station, and most of the algorithms are validated through the simulation, not the practical
test. There might be a lot of considerations has to be taken before putting an algorithm into piratical
scenes. Hence this thesis will focus on the implementation of the whole charging behavior management
system through the cloud solution.

Why manage charging behavior
According to introduction in this section 1.1.2and 1.1.1, it can be noticed that the uncoordinated charg
ing behavior and the uncontrolled ESS may bring multiple issues to the grid or to the charging station.
Therefore, it is necessary to manage the charging behavior when EV is in charging in a charging station.

Why cloudbased
In the current market, the majority solution to the power management for chargers or ESS is through
the EMS device, which will be placed at local site. This solution responses fast and reliable. However,
the core of the EMS device is developed based on programmable logic controller, which may further
increase the cost of the system. Furthermore, the local system is hard for maintenance and has limited
scalability.

As for cloud solution, no extra component is required for the cloud solution so the overall cost can
be reduced. Moreover, the cloud solution is easier to maintain, and the algorithms can be updated
fast so that the development and maintenance cost will be reduced as well. Nevertheless, the cloud
solution requires the network configuration, which may be unstable. But with the development of 5G
or WiFi technology, this issue can be minimized. In addition, the cloud solution or the IoT technology
is the future trends to the system, many companies are trying to embed the cloud platform into their
systems, such as Sungrow, Huawei. Therefore, the cloud based platform is chosen to be the solution
to this project.

There are two stateofart cloud solutions to the charging management cloud platform, the one
can be called manufacturing execution system (MES) to cloud and another one can be called cloud
interconnection method, the structure of these two methods are shown in fig 1.2

D
A
TA

D
A
TA

Customer

Inverter ESS

DATADATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

ESS-PV-Charger cloud

platform

Cloud PlatfomCloud PlatfomCloud Platfom

ESS-PV-Charger cloud

platform

Cloud Platfom

EMS

R
S4
8
5

R
S4
8
5

Station operator

D
A
TA

Customer

Inverter ESS

DATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

ESS-PV-Charger cloud

platform

Cloud Platfom

EMS

R
S4
8
5

Station operator

Energy

management

Monitor

Data

D
A
TA

Customer

Inverter ESS

DATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

ESS-PV-Charger cloud

platform

Cloud Platfom

EMS

R
S4
8
5

Station operator

Energy

management

Monitor

Data

(a) MES to cloud

DATADATA

4G/ Ethernet/

Bluetooth / Wifi

Customer

Charger Info DisplayCharger Info Display

Charger Cloud

platform

Cloud

Platform

Cloud

Platform

Cloud

Platform

Charger Cloud

platform

Cloud

Platform

C
h

arge
r D

ata
C

h
arge

r D
ata

P
o

w
er

 M
an

ag
em

e
n

t
P

o
w

er
 M

an
ag

em
e

n
t

Web

 API

Inverter ESS

DATADATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

ESS-PV side cloud platform

Third party

platform

Third party

platform

Third party

platform

ESS-PV side cloud platform

Third party

platform

EMS

R
S4

8
5

R
S4

8
5

Integrated Info DisplayIntegrated Info Display

Station operator

DATA

4G/ Ethernet/

Bluetooth / Wifi

Customer

Charger Info Display

Charger Cloud

platform

Cloud

Platform

C
h

arge
r D

ata

P
o

w
er

 M
an

ag
em

e
n

t

Web

 API

Inverter ESS

DATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

ESS-PV side cloud platform

Third party

platform

EMS

R
S4

8
5

Integrated Info Display

Station operator

Energy

management

&

Data

Monitoring

DATA

4G/ Ethernet/

Bluetooth / Wifi

Customer

Charger Info Display

Charger Cloud

platform

Cloud

Platform

C
h

arge
r D

ata

P
o

w
er

 M
an

ag
em

e
n

t

Web

 API

Inverter ESS

DATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

ESS-PV side cloud platform

Third party

platform

EMS

R
S4

8
5

Integrated Info Display

Station operator

Energy

management

&

Data

Monitoring

(b) Cloud interconnection

Figure 1.2: Two cloud solutions

The MES to cloud method will put the charger and the ESS together to the EMS which is highlighted
in fig 1.2a, in this method, the computation of the algorithms will be put at local EMS device, and the
device will be connected to cloud directly. In this method, the cloud only provides the monitoring and

1.3. Project overview and approaches 3

remote control function to the devices which are connected in this system. Since all the computation will
be done in local device, the data traffic from device to cloud will be low. However,all the devices will be
connected to the EMS device, this method requires better performance of the hardware and the system
logic will be more complex which will greatly increase the system development cost and development
period. This method is suitable for the companies which can provide complete chargerESS integrated
system to customer.

On the contrary, the second cloud interconnection method provides a completely different cloud
structure compared with the MES method. This cloud interconnection method aims to dock the other
charging platform developed by other companies. For further explanation, currently, there are many
charger companies have developed their own charging platforms. However, if the customer wants to
buy an ESS for the chargers, there will be no suitable platform for this situation. Hence, a third party
platform is purposed in cloud interconnection method to solve this issue. This third party platform
will use web APIs to collect the data from the charger cloud platform and send the commands to
the charger platform through the APIs as well. Besides, the third party platform is able to monitor
the ESS condition and manage the power of ESS. Furthermore, the optimization will be done on the
third party cloud platform is based on the data collected from the ESS and the charger. Compare with
the previous design, this design has lower system complexity, due to the fact that charger platform
is provided by other company, therefore, the development cost will be reduced as well. Still, due to
the existence of this charger platform, the system logic does not need to be changed which means
the development period can be reduced significantly, and thereby, the versatility of this structure is
better than the previous solution. Nevertheless, all the optimization calculation will be done through
the cloud, the data traffic to cloud will be significantly increased. Hence, the data transmission rate
has to be considered carefully.

In this thesis, the charging platform has been already provided by the other company. Hence the
second method is selected to be the core structure of the whole system. The more detailed structure
will be introduced in section 1.3.

1.2.2. Objectives
From a macroscopic point of view, this thesis is aiming to build a cloudbased EV charging management
platform for fast charging stations. Therefore, a cloudbased platform will be created, the connection
of all cloudconnected internet of things (IoT) devices will be implemented, and several economic
charging algorithms will be proposed.

In general, the objectives of this thesis can be listed below:

1. Build a cloudbased platform with following functions.

• The platform is able to collect and display the required realtime information. Such as inverter
data, charger data, etc...

• The platform is able to set the charging power of each chargers.

• The platform is able to read and set the inverter parameters,and the charging and discharg
ing power of ESS.

2. Design and implement charging algorithms to optimize the charging performance of the charging
station.

3. Design and implement a peak shaving method to increase the power capacity of a charging station
with the integration of ESS.

More details will be explained in section 1.3.

1.3. Project overview and approaches
The structure of this project can be found in 1.3. The structure is similar to 1.2b. The blocks with black
color represent the devices which need to be monitored and controlled; The cloudbased technologies
are pointed by blue blocks and arrows. In brief, the cloudbased platform will collect the data from
the hardware devices, and the cloud will do the calculation to find the optimal power for each devices.
Finally, the result will be send back to devices.

4 1. Introduction

There are two cloudbased platforms: the first one is called ”Tom”, and the other one is called
”Bob”. ”Tom” platform is a commercialized platform that can collect all charger data registered under
this platform and can set the charging power of each charger, display the data on webpage, or pass
the data to the other application through the web APIs. The ”Bob” platform is the power management
service to be built in this project which also can be called the third party platform with the reference
to fig 1.2b. The functions in ”Bob” are displayed in the dotted area of the block diagram. As shown in
1.3 dotted area, the ”Bob” will receive the data from the ”Tom” and the inverter. Then the useful data
will be stored in the database of ”Bob”. After that, the ”Bob” will use selected optimization algorithm
to calculate the optimal power for the charger and ESS, at the meanwhile, the relevant information will
be displayed on the webpage of ”Bob”. Finally, the results will be send back to the connected devices.

EV Chargers

DATADATA

Microsoft Azure

Iot services

Charging Staion

Admin

Charger Info DisplayCharger Info Display

Bob

Commercialized

platform “Tom”

TomTomTom

Commercialized

platform “Tom”

Tom
C

h
arge

r D
ata

C
h

arge
r D

ata

P
o

w
er

 M
an

ag
em

e
n

t
P

o
w

er
 M

an
ag

em
e

n
t

Web

 API

Power management platform:
Inverter

ESS

DATADATA

Microsoft Azure

Iot services Process

Data

Save useful

data in

DataBase

Display

Data on

Webpage

Compute

Optimal

Power

Send

Results

EV Chargers

DATA

Microsoft Azure

Iot services

Charging Staion

Admin

Charger Info Display

Bob

Commercialized

platform “Tom”

Tom
C

h
arge

r D
ata

P
o

w
er

 M
an

ag
em

e
n

t

Web

 API

Power management platform:
Inverter

ESS

DATA

Microsoft Azure

Iot services Process

Data

Save useful

data in

DataBase

Display

Data on

Webpage

Compute

Optimal

Power

Send

Results

Figure 1.3: The structure overview of the project

In order to build the ”Bob”, the first step is to clarify the requirements. Next, sorting out all the
external Web APIs and all the data requires power management algorithms because the appropriate
usage of APIs and message format can improve the development efficiency and maintenance of the
cloud platform. Afterwards, the basic functions of the ”Bob” can be implemented. Such as the data
processing from the other devices through the Web APIs or IOT Hub [12], and data sending to those
devices.

After the basic functions are done, several coordinated charging algorithms are proposed and sim
ulated on MATLAB. Then these algorithms will be implemented on built ”Bob” and prepared for testing.
To do the final validation, all hardware devices are connected and tested.

Finally, the experiment validation is done based on simulation results. The performance of each
coordinated charging algorithms is evaluated by comparing the experiment results and the simulation
results.

1.4. Project contribution 5

1.4. Project contribution
The thesis project has contribution in the implementation of a real cloudbased charging management
platform and the real use of charging optimization algorithm. The contributions are listed below:

1. A platform for the EV charger and ESS power management is built. This platform is able to manage
charging behavior along with the ESS in station; the platform also able to monitor the inverter
and all data from chargers; The platform user is able to choose different charging algorithms
from the cloud platform.

2. Two charging algorithms are implemented and tested through the experiment to prove the cloud
solution is feasible. The fast charging by ratio and online coordinated charging algorithm and the
performance of these algorithms are evaluated.

3. Different cloud solutions for different scenarios are suggested by evaluating the system cost and
overall communication delay of the system.

1.5. Structure of the work
This thesis are divided into five chapters:

1. In chapter 1, the background, research objectives were introduced; the project overview and the
approaches, the contributions were briefly described.

2. In following Chapter 2, the structure of the EV charging management cloud platform will be clearly
introduced and analysed. The detailed information of the cloud platform such as Web API, UI
interface and the hardware communication protocol will be mentioned as well.

3. In Chapter 3, the principle of each charging algorithms will be discussed. To show the per
formance of each algorithm, the simulation results and the comparison of these results will be
presented in this chapter. The MATLAB CVX Tool is used to solve every optimization problems.
Therefore, the detailed solving process of each optimization problems will be ignored in this
chapter.

4. In Chapter 4, the test environment and the experiment result will be presented.

5. In Chapter 5, a conclusion will be made to summarizes the work and the achievements based on
the contents of previous chapters. After the conclusion, the future works will be discussed.

2
Design & implementation of cloud

platform

A platform that can manage each charger in FCS is crucial, as introduced in section1.3, the commer
cialized platform ”Tom” supports several basic charger management functions. Such as EV charger
data storage and display, remote charger charging power control and charger grouping. However,
the power charging power of the charger can only be manually set by the administrator. Moreover,
”Tom” platform does not support the management of inverter. Therefore, to build a complete plat
form demonstrated in 1.3, a power management platform ”Bob” that can support different charging
algorithms and the inverter management need to be built.

In this chapter, the basic introdurction of ”TOM” platform will be made; the structure and the
functions of ”Bob” will be explained. The content includes:

• the introduction to commercialized platform ”TOM” .

• the structure design and implementation of cloudbased power management platform ”BOB”

2.1. Charger management platform Tom
2.1.1. The introduction of Tom
”Tom” platform is a commercialized charger management platform supported by the Third Place Energy
B.V. [13]. Once the charger is registered on this platform and has an internet connection, the charger’s
data will be displayed on ”Tom”. Therefore system users are able to view the details of each charger
registered on ”Tom”. The screenshot of one of the charger information details on ”Tom” are shown
in Fig.2.1. There are two titles in this screenshot: ”Charger Detail Dto Static Information” and ”Real
Time Data”. The former indicates the static information of the charger, such as the serial number of
the charger, the software Version and the hardware detail of the charger, etc... The latter shows the
dynamic data of the charger, for example, the charger status, charging power and vehicle details.

Furthermore, ”Tom” also provides the grouping service. Hence each charging station can put their
own chargers into a group, by doing so, the chargers can be managed by group. Fig 2.2 shows one
of the group on registered on ”Tom”. the name of the charging station is ”test1”, which contains two
chargers: ”testCharger4” and ”testCharger2”, and the maximum charging power that this charging
station can afford is 20𝑘𝑊.

7

8 2. Design & implementation of cloud platform

Figure 2.1: The details of one of chargers on ”Tom”

Figure 2.2: The grouping service on ”Tom”

2.1.2. Tom APIs
As introduce in last subsection, ”Tom” was not only able to display the data of the chargers on its
website, ”Tom” also provided some Web APIs for the other applications to call. Before developing
proposed power management platform ”Bob”, it is necessary to conclude all Web APIs within a table
for future use. Thus, the APIs from ”Tom” and their functions are concluded in Table 2.1.

There are 6 interfaces provided by ”Tom”, the full url to access the each API is: https://<address of
Tom>/api/< request url>. The first two interfaces use the GET method. By sending a GET request to
”Tom”, ”Tom” will return a JSON list of all chargers’ ID or return a JSON message with detailed informa
tion about a certain charger as response. Due to confidentiality agreements and space considerations,
listing 1 only show part of JSON messages as example.

2.1. Charger management platform Tom 9

Table 2.1: The web APIs from Tom

All request url for interfaces start with https://tpeportaldev.azurewebsites.net/api/
Request url Function Method Body

TpeCharger/all Get the ID of all chargers GET None
TpeCharger/details/<chargerId> Get the details of the specified charger GET None

TpeCharger/setpower/<chargerId> Set the maximum output power of the specified charger POST JSON
TpeChargerGroup/all Get the ID of all charger groups GET NONE

TpeChargerGroup/Create Create a new charger group POST JSON
TpeChargerGroup/Update Edit existing charger information PUT JSON

1 Response from TpeCharger/all
2 [
3 {
4 ”chargerId”: ”QixiangTest002”,
5 ”installDate”: ”05/01/2021”
6 },
7 {
8 ”chargerId”: ”QixiangTest001”,
9 ”installDate”: ”05/01/2021”

10 }
11]

Listing 1: The JSON message example of Tom API Tpecharger/all

The example response of TpeCharger/all API includes a list, which is indicated by sign ”[” ”]”, there
are two items in this list, each item includes two messages: charger ID and install date. In fact, in real
development, the developer is able to view all chargers ID registered on tom by deserilize this JSON
message. Moreover, the developer can go further by calling the Tpecharger/details/<chargerId> API
to view the details of the specified charger (<chargerID> needs to be changed to a specified charger
ID). The response of Tpecharger/details/<chargerId> API includes the charger ID, status, location,
maximum output power, current, voltage, vehicle SOC, software version, and hardware details.

The third API from Table 2.1 can be used to set the maximum output power of the specified charger
by replacing the <chargerId> to specified charger Id. This POST method is used by this API. Therefore,
a body must be included while sending a POST request to ”Tom”, the body should be in JSON format.
listing 2 shows the POST body of setting the output power of charger ”QixiangTest001”.

1 Body of TpeCharger/SetPower/QixiangTest001
2 {
3 ”ActivePower”: [
4 ”Value”: ”30”,
5 ”Unit”: ”kW”
6],
7 ”ReactivePower”: [
8 ”Value”: ”0”,
9 ”Unit”: ”kVar”

10]
11 }

Listing 2: The JSON body example of Tom API TpeCharger/SetPower/<ChargerId>

10 2. Design & implementation of cloud platform

1 Response from TpeChargerGroup/all
2 [
3 {
4 ”groupId”: ”test1”,
5 ”chargerIds”: [
6 ”testCharger4”,
7 ”testCharger2”
8],
9 ”maximumPower”: {

10 ”value”: ”50”,
11 ”unit”: ”kw”
12 }
13 }
14]

Listing 3: The JSON body example of Tom API TpeCharger/SetPower/<ChargerId>

The last three APIs from Table 2.1 provide the view, as well as creating editing services to the
charger group stored in ”Tom”. As mentioned in the last subsection, each charger group represents
a charging station. In addition, the charging station can allocate its chargers into different groups
for easier management. Hence the developer is able to call these three APIs for different purposes.
The TpeChargerGroup/all uses GET method, similair to TpeCharger/all, it returns the list of all charger
groups stored in ”Tom”. The example is shown in list 3. The example list contains a charger group
named ”test1”, also includes all chargers’ Id within the group ”test1”, and the total maximum allowable
active power of this group. 3.

As for the interface ”TpeChargerGroup/Create” and ”TpeChargerGroup/Update”, although they use
different methods, both methods require the body, the body format is in JSON format, consistent with
the item format displayed in the listing 3. The interface ”TpeChargerGroup/Create” will create a new
charger group on ”Tom”, and the ”TpeChargerGroup/Update” will edit and update the existing charger
group on ”Tom”. Thus, with the aid of the ”Tom” interfaces the information exchange between charger
and proposed platform ”Bob” can be achieved, which will be discussed in following sections.

2.2. The design and implementation of Bob
In this project, the Microsoft Azure Iot hub services is used to implement IOT functions, and the
Microsoft official provides strong support for ASP.Net for their Azure Iot hub [14]. Therefore, the
ModelViewController (MVC) framework [15] supported by Asp.Net v2.2 is selected as the frame of
the ”Bob”.Hence, before starting the detailed design procedure, the basic functioning theory of the MVC
framework needs to be introduced. Fig 2.3 shows a brief structure of the Asp.net MVC framework.

The essence of cloud platform is web application, and the web application can be created based
on ModelViewController framework [16]. It splits a web application into three components: model,
view and controller.

• Model: The Model component stores all data format and manage the data transferring between
the View and the Controller. Furthermore, the algorithms and database management are included
in Model component as well.

• View: Base on the data provided by Model component, View component displays a user interface
on web page.

• Controller: The Controller component processes the request sent from View component and gives
the response to View or Model component. Therefore, the controller can be treated as the brain
of the web application.

As for ”Bob”, the View component will handle the UI of the platform; the the database management,

2.2. The design and implementation of Bob 11

Controller
Brain

Model
Data

View
Interface

Updates

Browser

Controller
Brain

Model
Data

View
Interface

Updates

Browser

Figure 2.3: The ideal structure of ”Bob”

algorithm implementation, and the definition of all data format will be finished in Model component;
The controller will implement all the external and internal interfaces on ”Bob”.

2.2.1. The structure overview of Bob
As mentioned in section1.3,at the beginning of designing the platform ”Bob”, it is necessary to sort
out the parameters and the web APIs required by the ”Bob”.To clarify the parameters and interfaces
required by ”Bob”, the first step is to define the functions that need to be implemented on ”Bob”.
According to objectives introduced in section 1.2.2, the functions can be specified in fig 2.4.

Commercialized

platform “Tom”

TomTomTom

Commercialized

platform “Tom”

Tom

Tp
e

C
h

arge
r/all &

Tp

e
C

h
arge

r/d
etails

Tp
e

C
h

arge
r/all &

Tp

e
C

h
arge

r/d
etails

Tp
e

C
h

ar
ge

r/
Se

tP
o

w
e

r
Tp

e
C

h
ar

ge
r/

Se
tP

o
w

e
r

Web

 API

Microsoft Azure Iot

services

Display received inverter

data

Save inverter

data in Bob

database

Display

charger data

Inverter

ESS

Inverter

ESS

D2C MessageD2C Message

C2D CommandC2D Command

BobPower management platform:BobPower management platform:

Ability to set the inverter

settings remotely

Set charger

output power

Save charger

data in Bob

database

Compute the

optimal

charging power

Manage

Charger

Groups

Tp
e

C
h

ar
ge

rG
ro

u
p

/C
re

at
e

Tp
e

C
h

ar
ge

rG
ro

u
p

/U
p

d
at

e
Tp

e
C

h
ar

ge
rG

ro
u

p
/C

re
at

e
Tp

e
C

h
ar

ge
rG

ro
u

p
/U

p
d

at
e

Save group data

in Bob database

Compute the

optimal ESS

power

Tp
e

C
h

arge
rG

ro
u

p
/all

Tp
e

C
h

arge
rG

ro
u

p
/all

Commercialized

platform “Tom”

Tom

Tp
e

C
h

arge
r/all &

Tp

e
C

h
arge

r/d
etails

Tp
e

C
h

ar
ge

r/
Se

tP
o

w
e

r

Web

 API

Microsoft Azure Iot

services

Display received inverter

data

Save inverter

data in Bob

database

Display

charger data

Inverter

ESS

D2C Message

C2D Command

BobPower management platform:

Ability to set the inverter

settings remotely

Set charger

output power

Save charger

data in Bob

database

Compute the

optimal

charging power

Manage

Charger

Groups

Tp
e

C
h

ar
ge

rG
ro

u
p

/C
re

at
e

Tp
e

C
h

ar
ge

rG
ro

u
p

/U
p

d
at

e

Save group data

in Bob database

Compute the

optimal ESS

power

Tp
e

C
h

arge
rG

ro
u

p
/all

Power management

Inverter

management

Charger

management

Commercialized

platform “Tom”

Tom

Tp
e

C
h

arge
r/all &

Tp

e
C

h
arge

r/d
etails

Tp
e

C
h

ar
ge

r/
Se

tP
o

w
e

r

Web

 API

Microsoft Azure Iot

services

Display received inverter

data

Save inverter

data in Bob

database

Display

charger data

Inverter

ESS

D2C Message

C2D Command

BobPower management platform:

Ability to set the inverter

settings remotely

Set charger

output power

Save charger

data in Bob

database

Compute the

optimal

charging power

Manage

Charger

Groups

Tp
e

C
h

ar
ge

rG
ro

u
p

/C
re

at
e

Tp
e

C
h

ar
ge

rG
ro

u
p

/U
p

d
at

e

Save group data

in Bob database

Compute the

optimal ESS

power

Tp
e

C
h

arge
rG

ro
u

p
/all

Power management

Inverter

management

Charger

management

Commercialized

platform “Tom”

Tom

Tp
e

C
h

arge
r/all &

Tp

e
C

h
arge

r/d
etails

Tp
e

C
h

ar
ge

r/
Se

tP
o

w
e

r

Web

 API

Microsoft Azure Iot

services

Display received inverter

data

Save inverter

data in Bob

database

Display

charger data

Inverter

ESS

D2C Message

C2D Command

BobPower management platform:

Ability to set the inverter

settings remotely

Set charger

output power

Save charger

data in Bob

database

Compute the

optimal

charging power

Manage

Charger

Groups

Tp
e

C
h

ar
ge

rG
ro

u
p

/C
re

at
e

Tp
e

C
h

ar
ge

rG
ro

u
p

/U
p

d
at

e

Save group data

in Bob database

Compute the

optimal ESS

power

Tp
e

C
h

arge
rG

ro
u

p
/all

Power management

Inverter

management

Charger

management

Figure 2.4: The ideal structure of ”Bob”

According to figure showed in fig 2.4, the design procedure of ”Bob” can be divided into three parts
by different functions: The first part is called charger management which is encircled by green dotted
line; The second part is the inverter management part, encircled by orange dotted line; The last part is
power management, the implementation will be introduced in next chapter, because the optimization
algorithms will be discussed in that chapter.

12 2. Design & implementation of cloud platform

2.2.2. Charger management
From the fig 2.4, it can be seen that the different APIs from ”Tom” support different functions on ”Bob”.
Therefore, the function blocks can be implemented separately.

Display charger data on Bob web page
To display the charger data, the interface TpeCharger/all and TpeCharger/details/<chargerId> will be
used. The MVC structure design and the relationship between each blocks can be summarized in an
UML class diagram, fig 2.5.

<<TomAPI>>

+ TpeCharger/all
+TpeCharger/Details/<chargerId>

HomeController

- _tomDbService: ITomDbService
+DataFromTom(): Task<TomData>
+SearchChargerId(searchstring)

<<ITomDbService>>

+ GetChargerDetails(chargerId) : Task<TomData>
+ GetChargerList : Task<IEnumerable<ChargerList>>

TomDbService (Model)

+ GetChargerDetails(chargerId) : Task<TomData>
+ GetChargerList : Task<IEnumerable<ChargerList>>

DataFromTom (View)

+ Update()
+ SearchChargerId();

TomData

+ chargerId: string
+ chargerOnline: string
+ gunMaximumPower: string
+ MeterValues: List<MeterValue>
+ gunStatus: string

ChargerList

+ chargerId: string
+ installDate: string

MeterValue

+ value: string
+ measurand: string
+ unit: string

SearchChargerId (View)

+ Update()

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.5: The UML class diagram of function: ”Display charger data”

In order to better distinguish the subordinates of each block, the blocks are colored with different
colors in fig 2.5. Each block represents a class or an interface, the interface is indicated by the sign: ”<<
>>”. There are four components in this diagram: API from ”Tom”, Model, View, Controller. The block
marked as blue represents the APIs from ”Tom”, the first layer defines the type of the block. The second
layer of the interface block defines the methods (or operations) of the interface, the plus sign in front of
the method indicates the defined method is public. So, as displayed in fig 2.4 and the content in section
2.1.1, these two methods are the APIs provided by ”Tom”. To process the data transmitted in these
APIs, an interface is defined in Model component called ”ITomDbService”, and all blocks which belongs
to the Model component are marked as orange. The arrow between ”TomAPI” and ”ITomDbService”
means the ”ITomDbService” is the dependency of the newly defined interface ”ITomDbService”. In this
interface, two methods are defined to deserialize the JSON message from the response of the ”Tom”
API: One is to get the detailed information of a specified charger called ”GetChargerDetials()”, and the
other is to obtain all charger IDs on ”Tom” called ”GetChargerList()”. After the defining interfaces, the
function of these interfaces needs to be implemented. Hence, another class ”TomDbService” is defined
to implement the interface ”ITomDbService”. Since the ”ITomDbService” defined two methods, two
methods with the same name will be defined in class ”TomDbService”. These methods are implemented
by the classes which are connected below the ”TomDbService” class. For further explanation, the class
”TomData” and ”ChargerList” define the data format that will be used by the methods defined in class
”TomDbService”. Once, the methods defined in class ”TomDbService” can be successfully implemented,
the interface ”ITomDbService” will be fully functional.

Due to the characteristic of the MVC framework, the interface need to be scheduled correctly by
the controller. Thus, a controller component ”HomeController” is defined and colored by yellow, and
this controller is partially aggregated by the interface ”ITomDbService”. Class ”HomeController” has

2.2. The design and implementation of Bob 13

three layers: the first layer indicates the class name; The second layer instantiate an object of ”ITo
mDbService” interface, the methods defined in ”ITomDbService” interface can be called through this
instance object and the minus sign in front of the ” _tomDbService” means the attribute of this object
is private. The blocks in green represent the View components, and similar to the relationship between
the interface and controller, the HomeController is partially aggregated by the View DataFromTom. The
view DataFromTom has two methods, the Update() method will display the charger list recived from
TomAPI with the format of class chargerList. The SearchChargerId() method provides a search bar for
the users to search and views the specific information of the charger. Another View SearchChargerId
defines a method Update() to display search results.

With the aid of the UML class diagram, the function: ”Display charger data on ”Bob” web page” can
be implemented, the results are shown in fig 2.6. By clicking the label chargersOnTom on the ”Bob”
website, the chargers on ”Tom” will be displayed on this page. In addition, the search bar can be used
to view the specific charger data, the example is shown in fig 2.6b.

Search Bar

Title page

Charger List

Search Bar

Title page

Charger List

(a) The View of charger List (b) The View of charger detail

Figure 2.6: The view of chargers on ”Bob”

Charger group management on Bob
Move to the implementation of functioncharger group management. According to fig 1.3, from the
”Tom” side, there are three APIs will be used to fulfil the function of charger group management.
Similar to last section, an UML class diagram will be used to explain how this function is implemented.

The structure of the charger group management function is clearly shown in fig 2.7. Same with
the previous class diagram fig 2.5, the MVC components are marked by three different colors: Orange,
yellow and green. The blue block shows the APIs selected from ”Tom” to implement the charger group
management. There are three APIs: View all, Create and Update. Accordingly, the charger groups
should be displayed, and able to create or edit on ”Bob”. By referring the design procedure introduced
in the first part of 2.2.2, an interface should be defined to process the data transmitted by ”Tom”.
At the meanwhile, the charger group management function is aggregated to charger management,
which means all the functions under the charger management will share a common interface. Thus,
the new operations will be defined in interface ITomDbService which was defined in last part. There
are three newly defined functions: GetChargerGroupList(); UpdateChargerGroup(chargerGroup); Cre
ateChargerGroup(chargerGroup). The first method will be used to deserilaize the JSON message from
the response of the TpeChargerGroup/all to get the list of charger groups stored in database of ”Tom”.
The other two methods will be used to edit and create the elements stored in database of ”Tom”
according to the PUT and POST functions provided by HTML. Subsequently, the implementations of
these interfaces are defined in classTomDbService. The message format of the charger group is de
fined in class ChargerGroup as the dependency of the TomDbService. There are three attributes in the
ChargerGroup: groupId shows the name of the charger group; chargerIds contains all chargers in this
group; The maixmumPower is a class which includes two arrtibutes, the value and the unit, this class
will record the maximum power that the charging group can output.

In order to distinguish the scheduler of different functions, a new controller component Charger
GroupController is defined. This controller has one private attribute and five methods. The private
attribute ” _tomDbService” is an instance object of the interface ITomDbService. Its role is the same
as that of the object in the HomeController, and they are all instantiated objects in order to be able

14 2. Design & implementation of cloud platform

<<TomAPI>>

+ TpeChargerGroup/all
+TpeChargerGroup/update
+ TpeChargerGroup/create

ChargerGroupController (Controller)

- _tomDbService: ITomDbService
+Index()
+Create()
+CreateAsync(chargerGroupDto)
+Edit(groupId,chargerIds,value,unit)
+EditAsync(chargerGroupDto)

<<ITomDbService>> (Model)

+ GetChargerGroupList() : Task<IEnumerable<ChargerList>>
+ UpdateChargerGroup(chargerGroup)
+ CreateChargerGroup(chargerGroup)

TomDbService (Model)

+ GetChargerGroupList() : Task<IEnumerable<ChargerList>>
+ UpdateChargerGroup(chargerGroup)
+ CreateChargerGroup(chargerGroup)

Index (View)

+Update()
+Edit()
+Create()

ChargerGroup (Model)

+ groupId: string
+ chargerIds: list
+maximumPower: MaximumPower

MaximumPower (Model)

+ value: string
+ unit: string

Create (View)

+Update()
+Create()

ChargerGroupDto (Model)

+ groupId: string
+ chargerIds: list
+maximumPowerValue: string
+maximumPowerUnit: string

Edit (View)

+Update()
+Edit()

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.7: The UML class diagram of function: ”charger group management”

to call the functions in the interface. To clarify the connection between controller and views, a list
describes the meaning and the content of these five methods and their relationship between the View
components is as follows:

• Index(): This operation triggers the method GetChargerGroupList() defined in interface and get
the return value (Charger group list) of that method. Then parse the return value and transfer
the result to the View component Index. The Update() function in View Index() will makes the
received data to be visualized and update it to the web page.

• Create(): This operation will be used as a trigger. In more detail, there is an operation Create
defined in View Index(), this creates operation will create a ”create new” button on the Index
page. Once this button is clicked, the Create() method defined in controller will be triggered to
finish the page jump action, the web page will be redirect to the View Create, which supports for
the creation of the charger group.

• CreateAsync(chargerGroupDto): This operation has an argument called chargerGroupDto, the
chargerGroupDto is a class defined to make the page visualization more convenient. This oper
ation will be used as a trigger as well: Once the pager is redirected to group creation, and the
user finished the input and click the create button, the CreateAsync(chargerGroupDto) will be
triggered to POST the input to ”Tom” API.

• Edit(groupId, chargerIds, value,unit): This operation will be used as a trigger, the operation
theory is same as the Create() method.

• EditAsync(chargerGroupDto): This operation is similar to CreatAsync(chargerGroupDto), this op
eration will be triggered once the user want to upload the changes by clicking the edit button on
Edit View. The changed data will be PUT to ”Tom”.

After implementing all the methods introduced above, the group management function is visualized
on ”Bob”. The results are shown in fig 2.8. By clicking the label Charger Groups on the ”Bob” website,
the charger groups on ”Tom” will be listed on this page. The create and edit button can be used to
create or edit the charger group, the example is shown in fig 2.8b, 2.8c. Moreover, the create and edit
functions has been validated as well.

2.2. The design and implementation of Bob 15

Title Page

Charger
Group List

To group creation
page

To group edit page

Title Page

Charger
Group List

To group creation
page

To group edit page

(a) The View of charger group List

Upload
create
Upload
create

(b) The View of charger group creation

Upload the
changes

Upload the
changes

(c) The View of charger group edit

Figure 2.8: The view of charger group management on ”Bob”

Send power change request from Bob
According to fig 2.4, the ”Bob” should be able to send the power change request. The value of the
power will be determined by the Compute the optimal charging power function on ”Bob”. Furthermore,
”Tom” leaves an API to process the power change request. Therefore, this sends power change request
function only needs to process the power sent by other functions and POSTs the data to ”Tom”. Fig
2.9 shows the UML class diagram of this function.

In order to POST the power change request to ”Tom”, A method called PostPowerToTom(powerConfig)
is defined in interface ITomDbService. Subsequently, this method is implmented in class TomDbSer
vice, and the format of the message to be sent to ”Tom” is defined by class PowerConfig. As motioned
in the above paragraph, to put this method in use, the SetPowerTrigger(changedCharger) is defined
in PowerLimitController. Consequently, once the SetPowerTrigger(changedCharger) function is called,
the PostPowerToTom(powerConfig) will be executed to POST the calculated charging power to ”Tom”.
In addition, there is no View component in this diagram, because this controller is defined as an API
controller, the API name is: api/powerConfig. This controller is created to support the charging algo
rithms on ”Bob”. Hence, the more details about this API controller and its methods will be explained
in next Chapter. In addition, there should be a database to store the charger information and charger
group data. So that the charging algorithm can use these data to perform calculations. The establish
of database on ”Bob” will be illustrated in subsection 2.2.4.

16 2. Design & implementation of cloud platform

<<TomAPI>>

+TpeCharger/setpower/<chargerId>

PowerLimitController (API controller)

- _tomDbService: ITomDbService
[Route(template: "api/powerConfig")]
+SetPowerTrigger(changedCharger)

<<ITomDbService>>

+PostPowerToTom(powerConfig)

TomDbService (Model)

+PostPowerToTom(powerConfig)

PowerConfig (Model)

+ activePower: string
+ reactivePower: string

MeterValue (Model)

+ value: string
+ unit: string

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.9: The UML class diagram of function: ”send power change request”

2.2.3. Cloudbased inverter management
Based on the objectives of this thesis, the ”Bob” should be able to view and manage the inverter
parameters remotely. In this thesis, the Micorsoft Azure Iot[12] is used as the bridge between the
device and cloud platform. The inverter used in this project is the R10KH3 10𝑘𝑊 PVESS hybrid
inverter from the ShenZhen Megarevo Technology Co., Ltd. The detailed inverter technical parametrs
will be provided in Chapter 4, in this section, only the IoT procedures will be introduced. Fig 2.10 shows
the relationship between ”Bob” and the inverter.The inverter has two COM port for data transmission,
but has no ports for network cable. Since the inverter has no internet connection, an extra component
is required to obtain the internet connection. Furthermore, the original screen on the inverter is too
small to use, to improve the user experience, it is necessary to add an extra large screen for users
to operate. Therefore, a 12 inch ARM based industrial computer from Chipsee is selected, the more
details about this screen can be found in chapter 4. This ARM based computer provides the WIFI or
4G connection to the network and the inverter data can be read/write through the COM port on the
inverter side. Hence, the inverter to cloud can be implemented by appropriate coding on industrial
computer and the cloud platform.

InverterInverter Industrial Computer Cloud-based

platform Bob

BobBobBob

Cloud-based

platform Bob

Bob

 IoT services

Inverter

Rs485

Industrial Computer Cloud-based

platform Bob

Bob

 IoT services

Figure 2.10: The block diagram of the inverter to cloud

A more detailed block diagram that illustrates the IoT procedures of the software programs can
be found in fig 2.11. According to the block diagram, there are two software applications, which
will be implemented in the industrial computer: One is the QT based application, this application will
collect/send the data/instructions from/to the inveter, then display the required data on the screen
of the industrial computer and send the data to JAVA program through the named pipe; The other
one is the Java based application, this application is used to establish the connection between the
industrial computer and the Azure Iot Hub (cloud side). Further, after the connection is established, this

2.2. The design and implementation of Bob 17

application will read the data from the named pipe and send it to IoT hub. Vice versa, this application
is also able to write the data into the named pipe once the cloud to device command has been sent.
Next, there is a middleware between the industrial computer and platform ”Bob”. It is marked by blue
dotted line with the name Azure Iot services. In this middleware, it has two parts: Azure events and
Azure functions. The role of the Azure events is the trigger. This trigger holds the connection between
the device and the cloud, and will be triggered once there is an message to be processed to device or
cloud. Furthermore, the Azure functions is associated to Azure events, the Azure events will send the
raw data received from the device to Azure functions, the functions defined in Azure functions will parse
the raw data sent from Azure events and then store the parsed data into the database of ”Bob”. Finally,
the rest functions on ”Bob” will extract the data stored in data base and display it on the webpage of
”Bob”. The detailed implementations are shown in following paragraphs. This section is only focusing

Industrial Computer

Read/Write the data from the Inverter

Display the data on the screen of the

industrial Computer

Set up the connection to IoT Hub

Send/Receive the data from

device/cloud

QT based

Application

Named

pipe

JAVA

program

D2C MessageD2C Message

C2D CommandC2D Command

 Azure events Azure events

 Azure functions Azure functions

 Azure IoT services

D2C Message

C2D Command Display/Set the

Inverter data on

Bob

Platform Bob

Query DB

Inverter

Rs485

Inverter Processor

Industrial Computer

Read/Write the data from the Inverter

Display the data on the screen of the

industrial Computer

Set up the connection to IoT Hub

Send/Receive the data from

device/cloud

QT based

Application

Named

pipe

JAVA

program

D2C Message

C2D Command

 Azure events

 Azure functions

 Azure IoT services

D2C Message

C2D Command Display/Set the

Inverter data on

Bob

Platform Bob

Query DB

Inverter

Rs485

Inverter Processor

DataBase

Industrial Computer

Read/Write the data from the Inverter

Display the data on the screen of the

industrial Computer

Set up the connection to IoT Hub

Send/Receive the data from

device/cloud

QT based

Application

Named

pipe

JAVA

program

D2C Message

C2D Command

 Azure events

 Azure functions

 Azure IoT services

D2C Message

C2D Command Display/Set the

Inverter data on

Bob

Platform Bob

Query DB

Inverter

Rs485

Inverter Processor

DataBase

Figure 2.11: The software block diagram of the inverter to cloud

on the implementing the IoT function. Therefore, the implementation of QT based application and the
analysing of the protocol between the inverter and the industrial computer will not be discussed in this
section.

Java program
As demonstrated above, this Java program will be embedded to industrial computer to act as the
medium between the device and the cloud. To further illustrate the structure of this program, the UML
class diagram is shown in fig 2.12.

Due to the characteristic of the JAVA, there will be one public class. In this program, SimulatedDe
vice is the public class defined in this class, it has four private attributes. These four attributes define
the characteristics of this java program, the details can be found in table 2.2. In addition, there are
some private classes that are defined inside the classSimulatedDevice. Thus these private classes are
associated to SimulatedDevice. The use of these private classes is explained in list below.

Table 2.2: The variables in class SimulatedDevice

Variable Function
connString The connection string to IoT Hub
protocol The communication protocol between the cloud and device
testInv1 The Object name of the device

telemetryInterval Time interval for sending telemetry data

• 1. InverterData: This class is defined to process the data received/sent from/to the inverter.
Therefore, the declared variables represent the inverter parameters. the function getPipeData()

18 2. Design & implementation of cloud platform

SimulatedDevice

-connStrig: string
-protocol: IotHubClientProtocol
-testInv1: DeviceClient
-telemetryInterval: int

AppMessageCallback

+execute(): IotHubMessageResult

InverterData

+InverterId: string
+BatteryVoltage: string
+BatteryCurrent: string
+Line1V: string
+Line2V: string
+Line3V: string
+Line1A: string
+Line2A: string
+Line3A: string
+TimeStamp: string
+WorkMode: string
+BatteryChargingCurrent: string
+InverterOutputPower: string
+BatteryOutputPower: string
+BatteryType: string
+BatteryChargingVoltage: string
+BatteryOvervoltageProtection: string
+ getPipeData(): string
+ toString()： string
+writePipeData(): string

TelemetryDataPoint

+InverterId: string
+BatteryVoltage: string
+BatteryCurrent: string
+Line1V: string
+Line2V: string
+Line3V: string
+Line1A: string
+Line2A: string
+Line3A: string
+TimeStamp: string
+WorkMode: string
+BatteryChargingCurrent: string
+InverterOutputPower: string
+BatteryType: string
+BatteryChargingVoltage: string
+BatteryOvervoltageProtection: string
+serialize(): String

EventCallback

+execute()

MessageSender

+run()

Runable IotHubEventCallback

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.12: The UML class diagram of Java program

is used to retrieve the inverter data written in the pipeline by the QT program. Similarly,
writePipeData is used to write the cloud command into the pipeline. The toString() is an over
ridden function of function toString(). This newly defined toString() function will convert a JSON
object into a string.

• 2. TelemetryDataPoint: This class defines the final format of the message to be sent to the
cloud. Hence, the declared variables represent the inverter parameters, which are the same as
the variables defined in InverterData. The operation serialize() will convert a string to a JSON
object.

• 3. AppMessageCallBack: This class is defined to process the cloud to device commands, this class
implement the father class IoTHubEventCallback. The further details of IotHubEventCallback can
be found in [17]. The method execute() will be triggered if a cloud to device command is sent.
Then this method will process the recived command and write it into the pipeline. Finally, it
returns the communciation result. If the message is successfully received and written into the
pipeline, the ”OK” will be returned.

• 4. EventCallback: This class is the implementation of the father class IotHubEventCallback.
Similar to 3, an operation defined in this class is called execute. This operation will print the
acknowledgement received from IoT Hub for the telemetry message sent. If the message is sent
to cloud, the ”Message sent successful” will be printed on console.

• 5. MessageSender: This class is the implements of the father class Runable[18]. Run() is defined
as a function in this class, run() will use the methods defined in class InverterData and Teleme
tryDataPoint to retrieve the data from the pipeline and then send the processed data to cloud by
a certain time interval. The time interval is defined in public class SimnulatedDevice

2.2. The design and implementation of Bob 19

Azure IoT Services
From the fig 2.10, it can be seen that the messages need to be processed by the middlewares provided
by Azure IoT Hub. Fig 2.13 shows the screenshot from the Azure IoT Hub. The defined Azure event
is IoTHubMessages, this trigger connects to a azure function. Azure IoT hub provides an online editor
to edit the function on Azure IoT hub. The detailed code of this function can be found in Appendix
B. In this function, the recived JSON message from the device will be deserilized and stored to cloud
database. There are two databases connected to this function. One is called testInvDB and the other
one called outputBlob. The structure of testInvDB is CosmosDB, this database is used for real time
data querying and storage. The other one is based on the Azure blob storage. This storage will be
used to store the history data of the inverter.

Figure 2.13: The integration of IoT services

Inverter data remote management on Bob
The remote management includes the display the inverter data on ”Bob” and change the inverter
settings from ”Bob”. As displayed in fig 2.11. To display the inverter data on ”Bob”, the real time data
need to be read from the database. Moreover, the Azure event should be able to receive the command
sent from cloud. To further illustrate how remote management is implemented on ”Bob”, an UML class
diagram will be displayed below in fig 2.14:

As mentioned above, the inverter data will be stored in database of ”Bob”. To display the data
on the website, the inverter data needs to extracted from the database with the interfaces defined
on ”Bob”. Therefore, an interface ITestInvDbService is defined. Two operations are declared in this
interface, one is GetItemAsync() and the other one is GetStaticItemsAsync(). Their implements are
defined in class ITestInvDbService. This class has one private variable _container, this variable will be
used to extract the data from the specific database. Moreover, this class implmenets three functions:

• 1. TestInvDbService(dbClient,databaseName,containerName): This function will returns a refer
ence to a container object, the database cannot be accessed without this function.

• 2. GetItemAsync(id): This function is the implementation of the interface GetItemAsync(). It has
one argument id, by pass on this argument into the function, the function will return an object
from the database with the same id. The object extracted from the database can be deserilized
with the format showed in class InverterData.

• 3. GetStaicItemAsync: This function will return all the objects saved in database as a list for user
to iterate. However, this project only has one inverter. Thus, this function is designed for future
use.

Similar to previous sections, a controller is needed to call the methods in the interface. There are
four methods will be used in this controller. The explianation of each function can be found in list
below:

• 1. Index(): Within this function, GetItemAsync() is called. Furthermore, this function connects
to the View of Index. Home means the homepage of the website. Therefore, once the website
is opened, this Index() function will be called and then GetItemAsync() will extract the inverter
data by finding the specified inverter Id.

20 2. Design & implementation of cloud platform

DataBase

+InverterData

HomeController (Controller)

- _testInvDbService: ITestInvDbService
+Index()
+InverterInfoViewComponet(id)
+InverterSettings()
+SettingCommand(command,setting)

<<ITestInvDbService>> (Model)

+GetItemAsync: Task<InverterData>
+GetStaticItemAsync: Task<IEnumerable<InverterData>>

ITestInvDbService (Model)

- _container: Container
+ TestInvDbService(dbClient, databaseName, containerName)
+ GetItemAsync(id)
+ GetStaticItemsAsync(queryString)

Index (View)

+Update()
+ViewAndChangeSettings()

InverterData (Model)

+ Id: string
+ InverterId: string
+BatteryVoltage: string
+BatteryCurrent: string
+ Line1V: string
+ Line2V: string
+ Line3V: string
+ Line1A: string
+ Line2A: string
+ Line3A: string
+ TimeStamp
+ WorkMode
+ BatteryChargingCurrent
+ InverterOutputPower
+ BatteryType
+ BatteryChargingVoltage
+ BatteryOvervoltageProtection

InvSettings (View)

+ Update()
+ Set()

Site (JavaScript)

+sendSettings(setting)

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.14: The UML diagram of Inverter management

• 2. InverterInfoViewComponent(id): To display the data in real time, the data displayed on View
has to be refreshed periodically. Hence, this function uses the script from the JavaScript. By
calling this function in View Index, the webpage can be refreshed periodically.

• 3. InverterSetting: This function implements the push button defined in View Index ViewAnd
ChangeSettings(), by clicking the ”Go inverter settings” button, this function InverterSettings will
be called and the page will jump to View InvSettings.

• 4. SettingCommand(command,setting): This function sends the received settings from the web
site to the device. For further explanation, the View InvSettings defines multiple push buttons
for different inverter options. These push buttons are implemented by the Set function defined
in View InvSettings. To distinguish which button is triggered, an extra method is defined in static
file Site, this method is written by JavaScript. This sendingSettings method will add an extra
attribute to each push buttons, called setting. For example, if the user wants to set the charging
voltage of the inverter to 156V, once the ”set” button is clicked, the sendSettings(setting) will be
called automatically and add a tag ”BatChargingVoltage” as setting along with the value 156V as
the command. Afterwards, this JavaScript function will post the setting and the command to the
HomeController to trigger the function SettingCommand(command,setting). Once this Setting
Command(command,setting) function is triggered, this function will send the recived arguments
command and setting to the device through the Azure IoT service.

By implmenting the UML class diagram above, the inverter management can be implemented, the
screen shot of the website can be seen in fig 2.15. The data will be updated every seconds. By clicking
the button Go inverter settings, the user is able to view change the settings of the inverter. The user
can input the newer value in to the text box as shown in circled red line in fig 2.20c, then by clicking
the ”Set” button, the command will be sent to device.

2.2. The design and implementation of Bob 21

Jump to inverter settingsJump to inverter settings

(a) The View of Index
(b) The View of inverter settings

Figure 2.15: The view of Inverter management on ”Bob”

2.2.4. Database of Bob
In order to record the data from the inverter and the data from the charger for calculating, it is necessary
to establish the database on ”Bob”. This section will introduce how to establish the database by using
tools provided by Azure and what types of data will be stored in database.

Azure CosmosDb
The Azure CosmosDb is selected to be the database on ”Bob”. CosmosDb is commonly selected as the
solution to the IoT. This is because the CosmosDb is able to get the telemetry data from the device
at high rates and its queries has low latency and high availability [19]. The CosmosDb can be created
through the Azure portal Fig 2.16 shows a typical structure of the CosmosDb.

Items

Items

Items

Items

Items

Items

Items

Items

Items

Items

Items

Items

CosmosDb

Containers

Items

Items

Items

Items

Items

Items

CosmosDb

Containers

Figure 2.16: The structure of CosmosDb

The CosmosDb may have multiple containers, all the data will be stored in the container in the form
of item. For example, in this thesis, a CosmosDb is established with the name of evChargingDatabase,
as shown in fig 2.17, this CosmosDb has two containers: dynamicData and groupChargingMethod
Data. The past charger data will be stored in container dynamicData, each item represents a charger.

22 2. Design & implementation of cloud platform

The charging methods will be stored in container groupChargingMethodData, each item represents a
charger group. The data format stored in database are shown in list 5 and 4. The data stored in these
two containers will be used for future optimization algorithms.

Figure 2.17: The example of CosmosDb

Furthermore, as mentioned in last section, the inverter data will be stored in a database as well. To
reduce the cost of using the IoT service, the inverter data is stored in another existed CosmosDb, this
CosmosDb belongs to ”Tom”, called ChargerTestData, a new container is created called testInvData,
the format of inverter data is similar to the list 4.

1 {
2 ”id”: ”fda36c711484494da2713959ca4f4416”,
3 ”groupNum”: ”test5”,
4 ”groupChargingMethod”: ”OLCC”,
5 ”CompensatingPower”: ”10kW”,
6 ”ESSMethod”: ”PeakShaving”,
7 ”_rid”: ”XYxyAONhhyIFAAAAAAAAAA==”,
8 ”_self”: ”dbs/XYxyAA==/colls/XYxyAONhhy”,
9 ”_etag”: ”\”4500509000000d000000613a18280000\””,

10 ”_attachments”: ”attachments/”,
11 ”_ts”: 1631197224
12 }

Listing 4: The format of charger data stored in groupChargingMethodData

2.2. The design and implementation of Bob 23

1 {
2 ”id”: ”f7bae122663146b3af540c798b6b226d”,
3 ”chargerID”: ”20210126PC018”,
4 ”carNum”: ”C018”,
5 ”arrivalTime”: ”2021/9/9 16:24:20”,
6 ”departureTime”: ”2021/9/9 18:33:30”,
7 ”evMaximumPower”: ”80”,
8 ”chargerMaximumPower”: ”13”,
9 ”chargingDemand”: ”50”,

10 ”currentTimeStamp”: ”2021/9/9 16:24:20”,
11 ”chargerGroup”: ”test5”,
12 ”status”: ”Preparing”,
13 ”controlMethod”: ”OLCC”,
14 ”gun1MeterValues”: [
15 {
16 ”value”: ”1”,
17 ”format”: ”raw”,
18 ”measurand”: ”ActivePower”,
19 ”unit”: ”kW”
20 },
21 {
22 ”value”: ”10”,
23 ”format”: ”raw”,
24 ”measurand”: ”ReactivePower”,
25 ”unit”: ”kVar”
26 },
27 {
28 ”value”: ”0”,
29 ”format”: ”raw”,
30 ”measurand”: ”ActiveConsumptionEnergy”,
31 ”unit”: ”kWh”
32 },
33 {
34 ”value”: ”400”,
35 ”format”: ”raw”,
36 ”measurand”: ”DCVoltage”,
37 ”unit”: ”V”
38 },
39 {
40 ”value”: ”60”,
41 ”format”: ”raw”,
42 ”measurand”: ”DCCurrent”,
43 ”unit”: ”A”
44 },
45 {
46 ”value”: ”60”,
47 ”format”: ”raw”,
48 ”measurand”: ”SoC”,
49 ”unit”: ””
50 }
51],
52 ”_rid”: ”XYxyAJKqRMkTAAAAAAAAAA==”,
53 ”_self”: ”dbs/XYxyAA==/colls/XYxyAJKqRMk”,
54 ”_etag”: ”\”20006e8400000d000000613a19130000\””,
55 ”_attachments”: ”attachments/”,
56 ”_ts”: 1631197459
57 }

Listing 5: The format of charger data stored in dynamicData

24 2. Design & implementation of cloud platform

Add/Delete/Edit/Query of the Db
After successfully establishing the database, the data in database should be able to be managed re
motely from the website. Hence, it is necessary to add the Add/Delete/Edit/Query function on ”Bob”.

The first step is to configure the environment for the Cosmos Db in MVC project. Therefore, a
configuration file is created to configure the environment. The content in this file is shown in list 6.
The configuration file is in Json format. The Key ”Account” means the address of the CosmosDb;
Key ”Key” represents the password to connect to the CosmosDb; The following attributes mean the
database name and the container name of the CosmosDb.

1 ”CosmosDb”: {
2 ”Account”: ”https://chargertestdata.documents.azure.com:443/”,
3 ”Key”: ”xuu2piH4CuPEK3M2hrVcd5VS3GMdY
4 2lMj7VhP45EwUDulNi2UkJVAFkdgBX0hwK9wj
5 dOko1zwH20AiIzzFxBEg==”,
6 ”DatabaseName”: ”testInvdata”,
7 ”InverterData”: ”testdata”
8 },
9 ”CosmosDbEV”: {

10 ”Account”: ”https://evchargingdata.documents.azure.com:443/”,
11 ”Key”: ”5vHblKBLa0xHAo1i4RUOfejOvBueq
12 78GBKDu4LqH7Dfuzm633Q4jOh98V6kDttKydt
13 3kVRDGJ4dnKQ0stQsMiw==”,
14 ”DatabaseName”: ”EVChargingDatabase”,
15 ”DynamicData”: ”dynamicData”,
16 ”GroupChargingMethodData”: ”groupChargingMethodData”
17 }

Listing 6: The configuration file for CosmosDb

To connect the CosmosDb from the Website, the configuration file is not enough, the CosmosDb
service need to be injected into the dependencies. Therefore, there are three functions are de
fined to do the service injection for three containers in two CosmosDb. For example: InitializeInvD
bAsync(IConfigurationSection configurationSection), the argument configurationSection of this function
contains the Json message extracted from the configuration file, and it returns an object to the Service
class which was defined in above section. For further illustration, the flow chart of how CosmosDb is
connected to the MVC project is shown in fig 2.18.

Containers

Azure CosmosDb

EVChargingDatabase

Startup.cs

dynamicData

Group

Charging

MethodData

dynamicData

Group

Charging

MethodData

void ConfigureService()

}testData

Azure CosmosDb

testInvData

testData

Azure CosmosDb

testInvData

{ InitializeEVDataDbAsync

()

InitializeGroupCharging

MethodDbAsync()

InitializeInvDbAsync()

Task<EVChargingDbService>
InitializeEVDataDbAsync

(IConfigurationSection configurationSection)

Task<GroupChargingMethodDbService>
InitializeGroupChargingMethodDbAsync

(IConfigurationSection configurationSection)

Task<TestInvDbService> InitializeInvDbAsync

(IConfigurationSection configurationSection)

Model

EVChargingDbService

Model
GroupChargingMethodDbS

ervice

Model

TestInvDbService

Azure CosmosDb

EVChargingDatabase

Startup.cs

dynamicData

Group

Charging

MethodData

void ConfigureService()

}testData

Azure CosmosDb

testInvData

{ InitializeEVDataDbAsync

()

InitializeGroupCharging

MethodDbAsync()

InitializeInvDbAsync()

Task<EVChargingDbService>
InitializeEVDataDbAsync

(IConfigurationSection configurationSection)

Task<GroupChargingMethodDbService>
InitializeGroupChargingMethodDbAsync

(IConfigurationSection configurationSection)

Task<TestInvDbService> InitializeInvDbAsync

(IConfigurationSection configurationSection)

Model

EVChargingDbService

Model
GroupChargingMethodDbS

ervice

Model

TestInvDbService

Containers

Azure CosmosDb

EVChargingDatabase

Startup.cs

dynamicData

Group

Charging

MethodData

void ConfigureService()

}testData

Azure CosmosDb

testInvData

{ InitializeEVDataDbAsync

()

InitializeGroupCharging

MethodDbAsync()

InitializeInvDbAsync()

Task<EVChargingDbService>
InitializeEVDataDbAsync

(IConfigurationSection configurationSection)

Task<GroupChargingMethodDbService>
InitializeGroupChargingMethodDbAsync

(IConfigurationSection configurationSection)

Task<TestInvDbService> InitializeInvDbAsync

(IConfigurationSection configurationSection)

Model

EVChargingDbService

Model
GroupChargingMethodDbS

ervice

Model

TestInvDbService

Figure 2.18: The configuration of CosmosDb

2.2. The design and implementation of Bob 25

As shown in fig 2.18, In MVC project, there is a C sharp file named with startup. The function
ConfigureService() handles the dependency service injection for the MVC project. Inside this function,
there are three functions that are called, and these will functions return an object from the Model
component and the CosmosDb will be connected.

Once the connection between CosmosDb and the Website is established, the items inside the Cos
mosDb are able to be extracted and changed by appropriate coding. Same as above, an UML class
diagram will be displayed to show how Add/Delete/Edit/Query of the CosmosDb is achieved. The
methods used for managing different the containers in different CosmosDbs are the same. There
fore, only the implementation of Add/Delete/Edit/Query of the container dynamicData in cosmosDb
EVChargingDataBase will be presented.

EVDataController (Controller)

- _evChargingDbService: evChargingDbService
+Index()
+Create()
+CreateAsync(item)
+Edit(item)
+EditAsync(id, carNum)
+DeleteAsync(id, carNum)
+DeleteConfirmedAsync(id, carNum)
+DetailsAsync(id, carNum)

<<IEVChargingDbService>> (Model)

+ AddItemAsync(item) : Task<IEnumerable<ChargerList>>
+ GetItemsAsync(queryString) : Task<IEnumerable<EVData>>
+ GetItemAsync(id,carNum): Task<EVData>
+ DeleteItemAsync(id, carNum): Task
+ UpdateItemAsync(id, item): Task

EVChargingDbService (Model)

+ AddItemAsync(item) : Task<IEnumerable<ChargerList>>
+ GetItemsAsync(queryString) : Task<IEnumerable<EVData>>
+ GetItemAsync(id,carNum): Task<EVData>
+ DeleteItemAsync(id, carNum): Task
+ UpdateItemAsync(id, item): Task

Index (View)

+Update()
+Details()
+Edit()
+Delete()
+Create()

EVData (Model)

+ Id: string
+ ChargerIds: list
+ CarNum: string
+ ArrivalTime: string
+ DepartureTime: string
+ EVMaximumPower: string
+ ChargerMaximumPower: string
+ ChargingDemand: string
+ CurrentTimeStamp: string
+ ChargerGroup: string
+ Status: string
+ ControlMethod: string
+ gun1MeterValues: List<MeterValues> MeterValues (Model)

+ value: string
+ unit: string

Create (View)

+ Update()
+Create()

Details (View)

+ Update(Id,carNum)

Edit (View)

+ Update(Id,carNum)
+Save()

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2.19: The UML class diagram of Add/Delete/Edit/Query function for the CosmosDb

According to fig 2.19, it can be seen that the Add/Delete/Edit/Query function is implemented by
the class EVChargingDbService. The argument item is an object from the class EVData. The EVDat
aController will call the function defined in IEVChargingDbService interface. Then the View index will
display all the data read from the database. The meaning of each function is similar to the functions
showed in fig 2.5. So these functions will not be explained again. The implemented view pages are
shown in fig 2.20. To manage the container dynamicData on ”Bob”, the Charging Status needs to be
clicked from the title bar first. Then the list of items stored in this container will be displayed, and each
item has several options for user to view/edit/delete the item in the container.

26 2. Design & implementation of cloud platform

Database
management

Database
management

(a) Index

Database
management

Database
management

(b) Details

Database
management

Database
management

(c) Edit

Figure 2.20: CosmosDb management on ”Bob”

2.3. Summary 27

2.3. Summary
In this chapter, the position of ”Tom” and the implementation of ”Bob” were introduced. As the sum
mary of this chapter, there are some vital points need to be reviewed:

• The cloud platform supporting ESSCharger system consists two parts: ”Tom” and ”Bob”, ”Tom”
handles the remote monitoring and remote controlling of the chargers and the latter platform
handles the remote power management calculating and the inverter monitoring and controlling.
The information exchange between these two platforms is web APIs.

• The platform ”Bob” was implemented under the ModelViewController framework, because the
MVC structure is simple and clear, the development efficiency can be ensured.

• The IoT functions were implemented with the aid of Microsoft Azure IoT services.

• The database used in this project is CosmosDb which is supported by Microsoft. Since the Cos
mosDb is a remote database, there will be an unavoidable communication delay between the
application and the database server, the more detailed communication issue caused by the delay
will be discussed in Chapter4.

This Chapter only introduced how the cloud platform was designed and implemented. The detailed
algorithms and how these algorithms are implemented will be presented in next Chapter. Furthermore,
for the convenience of future use, all design interfaces in ”Bob” designed to interact with the API in
”Tom” will be summarized and listed in the following table 2.3. The first part ”Bob Interfaces (functions)
to call interfaces from Tom” have been tested by inputting the uri on ”Bob” website.

Table 2.3: The web APIs from Bob

Bob Interfaces (functions) to call interfaces from Tom
All request url Start with https://tpeportaldev.azurewebsites.net/api/

Request Url Function Method Body
Home/DataFromTom Call ”TpeCharger/all” interface on ”Tom” GET None

Home/SearchChargerId
Call ”TpeCharger/details/<chargerId>”

interface on ”Tom” POST string: searchString

ChargerGroup/Index
Call ”TpeChargerGroup/all”
interface on ”Tom” to get

the list of all charger groups
GET NONE

ChargerGroup/CreateAsync
Call ”TpeChargerGroup/Create” interface

on ”Tom” to create a
new charger group

POST
chargerGroupDto:
chargerGroup

ChargerGroup/EditAsync
Call ”TpeChargerGroup/Update” interface on

”Tom” to edit existing
charger information

PUT
chargerGroupDto:
chargerGroup

3
Charging algorithm theory & design

After constructing the cloud platform for EV charger management, the design and implementation of
different charging algorithms that can be supported on this cloud platform will be introduced in this
chapter. Furthermore, some simple simulated results will be shown at the end of this Chapter.

3.1. Fast charging by ratio (FCR) Method
As introudced in Chapter1, the uncoordinated charging behavior will put a heavy load on grid, and
even the total charging power may exceed the upper limit of the capacity of the charging station or a
house. Therefore, the first algorithm Fast charging by ratio method is designed to solve this problem.

3.1.1. FCR algorithm Design
Assuming there are of chargers in the charging station is 𝑛 and 𝑖 ∈ 𝑛, and the charging power, rated
power of each charger are 𝑃𝑖𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 and 𝑃𝑖𝑚𝑎𝑥 respectively. Then assume the power capacity of the
charging point(group) is 𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝. The idea is to limit the total charging power ∑𝑛𝑖=1 𝑃𝑖𝑚𝑎𝑥 of chargers
under the group capacity 𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝 without shutting down one of the charger or distributing the unbal
anced power to each charger.Therefore, by finding the ratio between the specific charger’s maximum
power and the total charging power, this algorithm can be implemented. Say the calculated power for
every chargers 𝑖 in group is 𝑃𝑖𝑙𝑖𝑚𝑖𝑡𝑒𝑑The equation for can be written as:

𝑃𝑙𝑖𝑚𝑖𝑡𝑒𝑑 =
𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝 ⋅ 𝑃𝑖𝑚𝑎𝑥
∑𝑛𝑖=1 𝑃𝑖𝑚𝑎𝑥

(3.1)

From the equation 4.1, it can be seen that, the maximum output power for every charger is limited
by the ratio of group capacity to the sum of rated powers of chargers being charged. Then calculate
the product of rated power of a specific charger and the ratio. For example, if there are two chargers
with the rated power 10kw and 30kW respectively in the station, and the station’s capacity is 30kW.
When these two chargers charge together at the rated power, the total power will exceed the capacity.
Hence, if applies the FCR method on it, the equations will be:

𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝
∑𝑛𝑖=1 𝑃𝑖𝑚𝑎𝑥

= 30
40 = 0.75 (3.2)

𝑃𝑙𝑖𝑚𝑖𝑡𝑒𝑑10𝑘𝑊 = 𝑟𝑎𝑡𝑖𝑜 ⋅ 𝑃10𝑘𝑊𝑚𝑎𝑥 = 7.5𝑘𝑊 (3.3)

𝑃𝑙𝑖𝑚𝑖𝑡𝑒𝑑30𝑘𝑊 = 𝑟𝑎𝑡𝑖𝑜 ⋅ 𝑃30𝑘𝑊𝑚𝑎𝑥 = 22.5𝑘𝑊 (3.4)

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑙𝑖𝑚𝑖𝑡𝑒𝑑10𝑘𝑊 + 𝑃𝑙𝑖𝑚𝑖𝑡𝑒𝑑30𝑘𝑊 = 30𝑘𝑊 = 𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝 (3.5)

From the equations showed above, it can be seen that the total power is limited under the capacity
of the charger group. The detailed implementation will be discussed in next subsection.

29

30 3. Charging algorithm theory & design

3.1.2. FCR algorithm implementation
As introduced in Chapter 2, all the charging algorithms will be implemented on ”Bob” platform, the
detailed implementation procedure will be illustrated step by step. The first step is to design the flow
chart of how the FCR method is executed on ”Bob”:

Start

Input charger
Group, chargers

in group

Pi =Pi +Pimaxsum sum
Preparing or

Charging

End of the group?

return the
calculated results

End

Yes

chargerGroup
Exists

Iterate chargers i
inside the group

Yes

No
End of the group?

Yes

Iterate chargers i
inside the group

Add the charger Id
into the group:

chargersInCharging

Yes

No

Pi =P *Pi
/Pi

limit groupCap

max sum

No Add the Pi to result
list
limit

return null

No

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 3.1: The flow chart of FRC method

Before starting the calculation, the system will put the charging group that needs to be optimized
as the input. Next, the algorithm will iterate the chargers registered in this group to find out which
charger is in charging (Charging) or ready to start charging (Preparing). If the charger is in charging
or going to charge, the maximum output power of this charger will be recorded. Then iterate the
recorded chargers and calculate the new limited power for each charger respectively. Finally, return
the calculated results as a list and wait for further processing.

3.2. Coordinated Charging algorithms
In reality, the charging station owners or the community residents are interested in the operating
costs.From the view of charging station owners, they want to maximize the profit between the paid to
grid and the customer’s charging consumption, and from the view of the community residents, they
want to pay electricity bill as less as possible. Therefore, it is meaningful to propose an optimization
algorithm to minimize the charging cost paid to electricity company. Thus, there is a large amount of
optimization charging algorithms that has been proposed by past papers, such as [20]. However, most
charging algorithms only stay at the theoretical level. To put the theoretical into practical use, there are
many aspects that need to be considered. Hence, this thesis will focus on the practical implementation
of the optimization algorithms instead of developing new and better algorithms. Moreover, the problems
and defects encountered in the implementation of the algorithm will be discussed in the future Chapter.

In this thesis, the optimization algorithm is designed based on the algorithm in [20], also several

3.2. Coordinated Charging algorithms 31

changes have been made to this algorithm in order to adapt to practical use cases. Before introducing
the theory of the algorithm, it is necessary to formulate the problem first.

3.2.1. Problem formulation
The problem can be well formulated by introduce a scenario in reality. Assuming the community wants
to build a DC fast charging station to satisfy the growing charging demands from the residents in the
community. So in the community, the load characteristics can be divided into two types: elastic loads
(EV chargers) and inelastic loads. The Head of the community wants to minimize the charging cost,
and the residents want their charging demands of their EVs to be fulfilled within a time period that
they can accept. Say the charging demand of an EV 𝑖 is 𝐷𝑖(𝑘𝑊ℎ) and suppose the time of charging
starts, the time of charging ends, the rated power of charger are 𝑡𝑖𝑠 , 𝑡𝑖𝑒 and 𝑃𝑖𝑟𝑎𝑡𝑒𝑑 respectively. The
first equation can be written as:

𝐷𝑖 ≤ 𝑃𝑖𝑟𝑎𝑡𝑒𝑑 ⋅ (𝑡𝑖𝑒 − 𝑡𝑖𝑠) (3.6)

Subsequently, to derive the minimum charging cost, the calculation method of electricity price needs
to be modeled, according to [20–22], the electricity price can be written as a linear function which the
instant price (𝐶𝑖𝑛𝑠𝑡𝑎𝑛𝑡) is relevant to total instant load at the moment:

𝐶𝑖𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑎 + 2𝑏 ⋅ 𝑧𝑡 (3.7)

Where 𝑎 and 𝑏 are varying by time the exact value depends on the quoted price provided by electricity
company. 𝑧𝑡 represents the total instant load at the time t. Furthermore, as mentioned at the beginning
of this section, there are two types of loads, say the total elastic load caused by EV chargers is 𝐿𝑐ℎ𝑎𝑟𝑔𝑒𝑟,
and the instant power for each charger is 𝑥𝑖𝑡 . Then assume the total inelastic load caused by other
purposes is 𝐿𝑜𝑡ℎ𝑒𝑟. Then, the total loads at the time t 𝐿𝑡𝑜𝑡 can be replaced by:

𝐿𝑡𝑜𝑡 = 𝐿𝑐ℎ𝑎𝑟𝑔𝑒𝑟 + 𝐿𝑜𝑡ℎ𝑒𝑟 =
𝑁

∑
𝑖=1
𝑥𝑖𝑡 + 𝐿𝑜𝑡ℎ𝑒𝑟 (3.8)

As for equation 3.7, this equation only decides the total instant price, to get the actual cost of the
charging behavior, the equation 3.7 can be further derived as:

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖𝑛𝑠𝑡𝑎𝑛𝑡 = ∫
𝐿𝑡𝑜𝑡

𝐿𝑜𝑡ℎ𝑒𝑟
(𝐶𝑖𝑛𝑠𝑡𝑎𝑛𝑡(𝑧𝑡))𝑑𝑧𝑡 = ∫

𝐿𝑡𝑜𝑡𝑡

𝐿𝑜𝑡ℎ𝑒𝑟
(𝑎 + 2𝑏𝑧𝑡)𝑑𝑧𝑡 (3.9)

Thus, base on the equation 3.9, to get the actual charging cost over a fixed time period T, a time
integral to equation 3.10 will be applied, the charging cost can be derived:

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∫
𝑇

0
∫
𝐿𝑜𝑡ℎ𝑒𝑟

𝐿𝑡𝑜𝑡
(𝑎+2𝑏𝑧𝑡)𝑑𝑧𝑡𝑑𝑡 = ∫

𝑇

0
(𝑎(

𝑁

∑
𝑖=1
𝑥𝑖𝑡+𝐿𝑜𝑡ℎ𝑒𝑟)+𝑏(

𝑁

∑
𝑖=1
𝑥𝑖𝑡+𝐿𝑜𝑡ℎ𝑒𝑟)2−(𝑎𝐿𝑜𝑡ℎ𝑒𝑟+𝑏𝐿2𝑜𝑡ℎ𝑒𝑟))𝑑𝑡

(3.10)
Hence, according to the equation 3.10, the objective function of this problem can be found. The
optimization variable is 𝑥𝑖𝑡 and the objective is to have minimum cost 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 by calculating the
value of 𝑥𝑖𝑡 for each vehicles which are in charging status. Besides, while meeting the minimum
charging cost, it also needs to meet the user’s charging demands and keep the charging power within
an allowable range. Thereby, the objective equation and the constraints can be expressed as follows:

min
𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑥𝑖𝑡)

= ∫
𝑇

0
(𝑎(

𝑁

∑
𝑖=1
𝑥𝑖𝑡 + 𝐿𝑜𝑡ℎ𝑒𝑟) + 𝑏(

𝑁

∑
𝑖=1
𝑥𝑖𝑡 + 𝐿𝑜𝑡ℎ𝑒𝑟)2 − (𝑎𝐿𝑜𝑡ℎ𝑒𝑟 + 𝑏𝐿2𝑜𝑡ℎ𝑒𝑟))𝑑𝑡 (3.11)

𝑠.𝑡. 𝐷𝑖 = ∫
𝑡𝑖𝑒

𝑡𝑖𝑠
𝑥𝑖𝑡 , 𝑖 ∈ [1, 𝑁] (3.12)

0 ≤ 𝑥𝑖𝑡 ≤ 𝑃𝑖𝑟𝑎𝑡𝑒𝑑 , 𝑖 ∈ [1, 𝑁], 𝑡 ∈ [𝑡𝑖𝑠 , 𝑡𝑖𝑒] (3.13)

32 3. Charging algorithm theory & design

0 ≤ 𝑠𝑢𝑚𝑁𝑖=1𝑥𝑖𝑡 ≤ 𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝𝑖 ∈ [1, 𝑁] (3.14)

The 𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝 in constraints 3.18 represents the maximum capacity of the charging station in com
munity. By solving quadratic optimization above, the minimum cost can be found. Nevertheless, the
integral is in continuous format, to put the algorithm into practical use, the continuous integral needs
to be discretized. Besides, in reality, it is not possible to know or predict every EV’s arrival time so
accurately. Therefore, before going further, a simple offline charging algorithm is proposed.

3.2.2. Offline Charging algorithm (OFFCC)
In this section, the discretize of equation 3.15 will be discussed, and because this algorithm is offline,
all the other variables will be treated as known. By referring [20], the continuous time interval can
be discretized by events, the length of each event is different. Fig 3.2 is displayed as an example for
better illustration.

Other
loads

Car 1

Car 2

Car 3

Time
Intervals

1 2 3 4 5 6 7

t1s t1e

t2s t2e

t3s t3e

Other
loads

Car 1

Car 2

Car 3

Time
Intervals

1 2 3 4 5 6 7

t1s t1e

t2s t2e

t3s t3e

T

Figure 3.2: The discretization exmaple for OFFCC

From the figure, it can be seen that there are 7 intervals over a fixed time period. The intervals
are divided by events, an event could be the arrival or departure of an EV, or the change of the
other loads. During a specific time interval, the charging power and the amount of other load will be
fixed, and there will be an optimal solution to charging power for an interval, the solution will remain
unchanged until the next interval is reached. The proof of this conclusion can be found in [20]. Based
on this assumption, say there will be 𝑘 intervals in the future and the time length for each interval will
be Δ𝑇𝑘 = 𝑇𝑒𝑣𝑒𝑛𝑡𝑡 − 𝑇𝑒𝑣𝑒𝑛𝑡𝑡−1 . By doing so, the continuous problem can be discretized as follows:

min
𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑥𝑖𝑘)

=
𝑘

∑
𝑘=1
(𝑎(

𝑁

∑
𝑖=1
𝑥𝑖𝑘 + 𝐿𝑜𝑡ℎ𝑒𝑟) + 𝑏(

𝑁

∑
𝑖=1
𝑥𝑖𝑘 + 𝐿𝑜𝑡ℎ𝑒𝑟)2 − (𝑎𝐿𝑜𝑡ℎ𝑒𝑟 + 𝑏𝐿2𝑜𝑡ℎ𝑒𝑟))Δ𝑇𝑘 (3.15)

𝑠.𝑡. 𝐷𝑖 =
𝑘

∑
𝑖=1
𝑥𝑖𝑘Δ𝑇𝑘 , 𝑖 ∈ [1, 𝑁] (3.16)

0 ≤ 𝑥𝑖𝑘 ≤ 𝑃𝑖𝑟𝑎𝑡𝑒𝑑 , 𝑖 ∈ [1, 𝑁] (3.17)

0 ≤ 𝑠𝑢𝑚𝑁𝑖=1𝑥𝑖𝑘 ≤ 𝑃𝑔𝑟𝑜𝑢𝑝𝐶𝑎𝑝𝑖 ∈ [1, 𝑁] (3.18)

Furthermore, for this offline algorithm, assuming that the charging schedule for the next day is known,
and the load profile is known, the only unknown value of this equation set is 𝑥𝑖𝑘 . Therefore, the
optimization problem can be solved. However, in practical, the arrival time of the EV is unknown, and
the load profile is hard to be predict. So, for online charging algorithm, some changes has to be made
based on the OFFCC algorithm.

3.2. Coordinated Charging algorithms 33

3.2.3. Online Charging algorithm (OLCC)
Since the future event cannot be predicted, the OLCC will recalculate the result every time an event
occurs by assuming there will be no more event after this moment. Once an EV arrives, the system
will let the user input the charging demand and the departure time. Once the charging procedure is
initiated, the system will record the starting time and do the calculation. So, compare with the OFFCC,
though the equations for these two methods are same, the OLCC method requires multiple compute
to make sure the online optimization results as closer as possible to the optimal value.

Thus, if an event occurs, all the data at the time have to be updated again, especially under the
charging demand. According to the status of the charger, the charging demand at the time t𝐷𝑖𝑡can be
divided into three conditions:

𝐷𝑖𝑘 {
0 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑
𝐷𝑖 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑠𝑡𝑎𝑟𝑡𝑒𝑑

𝐷𝑖𝑘 − 𝑥𝑖𝑘−1 ⋅ (Δ𝑇𝑘−1) 𝐼𝑛𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔
(3.19)

Equation 3.19 shows different cases of charging demand. Besides, the event interval and the length
of the interval also needs to be updated. In addition, same as the OFFCC, the online algorithm cannot
predict the future as well. So, to make sure all the charging demand can be satisfied a acceleration
factor 𝑄 is introduced [20]. Suppose the optimal value for charging power is 𝑥∗𝑖𝑘, the acceleration factor
𝑄 will be used as a multiplier and multiplied by 𝑥∗𝑖𝑡 to get the final charging power ̂𝑥𝑖𝑘, the detailed
equation can be expressed as follows:

𝑆𝑢𝑚𝑘 = 𝑚𝑖𝑛𝑄 ⋅
𝑁

∑
𝑖=1
𝑥𝑖𝑘 ,

𝑁

∑
𝑖=1
𝑃𝑖𝑟𝑎𝑡𝑒𝑑 (3.20)

̂𝑥𝑖𝑘 = 𝑚𝑖𝑛(𝑥𝑖𝑘 +
𝑃𝑖𝑟𝑎𝑡𝑒𝑑 − 𝑥𝑖𝑘

∑𝑁𝑖=1(𝑃𝑖𝑟𝑎𝑡𝑒𝑑 − 𝑥𝑖𝑘)
⋅ 𝑄 − 1𝑄 𝑆𝑢𝑚𝑘 , 𝑃𝑖𝑟𝑎𝑡𝑒𝑑) (3.21)

The ̂𝑥𝑖𝑘 derived from equation 3.21 will be the final charging power that going to be sent to the charger,
by doing so, although the charging cost will be slightly increased, the charging demand can be satisfied.
Subsequently, with the equations derived above, the OLCC algorithm can be achieved, the processing
steps can be divided into following steps:

• Start the controller, and the number of interval will be set to 0.

• Once an event is occurred, such as: EV arrival, departure or other load changes, the controller
will be triggered, and a new interval will be generated, the current time will be the start point of
the new interval. At the meanwhile, all the parameters will be updated and input as the input to
the controller as well. The parameters are: 𝑃𝑖𝑟𝑎𝑡𝑒𝑑 , 𝑡𝑖𝑠 , 𝑡𝑖𝑒 ,𝐷𝑖𝑘 ,𝐿𝑜𝑡ℎ𝑒𝑟,Δ𝑇𝑘.

• Solve the quadratic problem described in equation 3.15 to get the optimal solution 𝑥∗𝑖𝑘 for each
charger in charging.

• Calculate the final value of charger power ̂𝑥𝑖𝑘 by applying the equation 3.21 to 𝑥∗𝑖𝑘.

• Return to step two and ready for the next event to be triggered.

For better illustration, the above steps can be concluded into two flow charts in fig 3.3a and fig 3.3
With the aid of flow chart fig 3.3a, the OLCC algorithm can be implemented by using the CPLEX in

”Bob”. However, from the fig 3.3a, it can be seen that there are multiple inputs, and some of inputs
have to be derived from the information collected from chargers. Therefore, to derive from the input
and make the OLCC algorithm functional in practical, a larger function is defined, and its flow chart is
shown in fig 3.3b, the blue block represents the function which is shown in fig 3.3a. The final calculated
power of each charger will be formed in a list and with a name corresponding to the power.

Furthermore, in reality, the operator will choose different charging algorithm for different charging
stations to fit for different requirement and situation and the system also need a trigger to trigger
the controller. Therefore, a master controller is needed for ”Bob”. The more detailed design and the
implementation about this controller will be introduced in next section.

34 3. Charging algorithm theory & design

Start

Input Q, a, b, carNum, groupMaxPower, N,
chargingDemand, chargerMaxPower,

Lother, DeltaT

Calculate final
x_ik^

End

CarNum=1&N=1?
Form decision

variable
x_ik[carNum,N]

No

Yes

Form Objective
function

x_ik=null

Form Constraints

Solved?

No

x_ik=solutions

Yes

x_ik=ChargingDemand/DeltaT

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

(a) The flow chart of solving the OLCC method with CPLEX

Start

Input charger
Group, chargers

in group

Preparing or
Charging

return the
calculated results

End

chargerGroup
Exists

Iterate chargers i
inside the group

Yes

No
End of the group?

Yes

Add the charger Id
into the group:

chargersInCharging

Yes

No

x_ik^=null

 OLCC Cplex

CarNum++

CarNum=0?

Yes

No

x_ik^=solution

No

Derive DeltaT,
Lother

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

(b) Flow chart of OLCC method

Figure 3.3: The implementation of OLCC method

3.3. ”PowerConfig” API on Bob
As discussed in the end of the last section, a master controller is required for advanced management.
This controller can be achieved by designing an external interface for third party application to call such
as ”Tom”, and the name of this controller is PowerLimitController. Inside this controller, a POST interface
is defined, and the route of this interface is defined as: ”https://<ip address>/api/powerconfig”, the
function coordinate to this route is SetPowerTrigger(ChargerStatusDto changedCharger). Once, this
interface is called by other application, the algorithms defined on ”Bob” will be triggered.

In this project, this interface will be used by ”Tom”. To trigger the algorithm, the message sequence
can be concluded into fig 3.4. By referring the fig 3.4 and the flow charts above, the operation
mechanism of the algorithm can be well explained:

• First, when the system is running, and if there is a status change of the charger, the software
in charger will POST a charger change information to ”Tom”. There are four status in total:
Available, means the charger is online and awaits for charging; Preparing, means the charger has
been plugged into the EV and ready for charging; Charging, means the charger is charging an
EV; Finishing, means the charging process has ended but the plug haven’t been removed from
the EV.

• Then, the ”Tom” will process this message from the charger, convert the message format in order
to POST it to ”Bob” through the interface api/PowerConfig.

• Next, the interface on ”Bob” will call coordinate function SetPowerTrigger to do message process

3.3. ”PowerConfig” API on Bob 35

ing and calcuation.

• Subsequently, during executing the SetPowerTrigger function, the calculation result will be sent
to ”Tom” through interface SetPower on ”Tom”, once the ”Tom” received the SetPower command,
the command will be sent to EV chargers. By doing so, the control loop can be enclosed.

• Finally, at the end of the SetPowerTrigger function, a response will be returned to ”Tom” to clarify
if the POST request is success.

Do the calculation

BobBobBob

Do the calculation

BobSend Power Change Info

Status Change

Process info

TomTomTom

Process info

Tom

EV ChargersEV Chargers

Send Power Change Info

Post to “Bob”

PowerConfig API

Status:

Preparing, Charging,

Finishing, Available

Send calculation resultsSend calculation resultsSend calculation resultsSet the powerSet the powerSet the power Do the calculation

BobSend Power Change Info

Status Change

Process info

Tom

EV Chargers

Send Power Change Info

Post to “Bob”

PowerConfig API

Status:

Preparing, Charging,

Finishing, Available

Send calculation resultsSet the power

Figure 3.4: The message sequence flow from the charger to cloud platform

Above paragraphs introduced how charging algorithm is triggered in a macro way, to further elabo
rate how function SetPowerTrigger is functioned, a flow chart is made and shown below in fig 3.5. The
general idea is to use the single changed charger data to trigger the algorithm, and algorithm need
to gather all the information required by the algorithms, all the charger data which includes real time
and past should be passed into this function. To do that, in flow chart, the first step is to locate the
charger group and find out all charger Ids inside this group. Next get each chargers’ real time data on
”Tom” by using the function GetChargerDetials defined in 2.2.2. Then, as mentioned in section 2.1,
”Tom” platform only provides the real time data to external applications. Thus, the past data has to
be stored in database of ”Bob” which was introduced in section 2.2.4. In addition, the database on
”Bob” also record the charging algorithm for each charger groups, so by querying to the database,
the PowerDispatch controller will know which optimziation algorithm is chose for target charger group
.Once the real time and past data has been passed and updated to the function and database, the op
timization algorithm is specified, the algorithm can be started. The PowerDispatch controller will select
proper algorithm based on the specified name of charging algorithm (In this project, the OLCC and FRC
method can be selected). The calculation results will be formed in a list. Afterwards, if the results list
is not empty, the function will iterate the items inside the list to get the target power for each chargers
and send the power setting command to ”Tom” and the OK message will be the response to this POST
action. On the contrary, if the results list is empty, which means no chargers need to be controlled or
there is a fault during calculation, no command will be sent to ”Tom” and the bad request will be sent
as the response to this POST action. Finally, if the ”Tom” received the power setting command, the
”Tom” will forward this message to specific charger to limit its maximum charging power.

Moreover, in practical use, to ensure the power setting command can be sent and processed before
the charging starts, the algorithm will be initiated at the Preparing status, which means if the customer
plug the charger into the EV, the charger will be turned from Available to Preparing. If the algorithm
found it is in Preparing status, the algorithm will be applied to this charger. Therefore, the power of
this charger can be limited before customer press the start charging button on screen.

36 3. Charging algorithm theory & design

Start

Input information about changed charger:
Charger Id, Status, Last Report Time, Current

Time, Departure Time, Charing Demand,
Meter Values

End

ChangedCharger=null? Find the group
the charger is in

No Iterate all charger
Ids in the group

Run Charger
Power Dispatch

controller

Collect all charger states on Tom at
current time t by using function
GetChargerDetails(chargerId)

Yes

Update charger
Ids at last interval
(t-1) in database

on Bob

Find the selected
charging method

saved on Bob

Results=null?

Return
BadRequest

Send the power change
request to Tom by using

function PostPowerToTom

Iterate all charger
Ids in the result

list

Return OK

Yes No

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 3.5: The flow chart of how SetPowerTrigger function functioning

3.4. ESS management
As mentioned in Chapter 1, the ESS will be contained in this system. Therefore, a proper ESS manage
ment has to be designed and implemented in this system. Nevertheless, due to development objective
and experiment equipment, only a simple peakshaving method which will be used to shave the peak
power or provide power compensation to grid will be proposed in this section. The complicated algo
rithm with SOC management will not be considered. The proposed peakshaving method can be simply
concluded in equation 3.22

{ 𝑃𝐸𝑆𝑆 = 𝑃𝑔𝑟𝑖𝑑 − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡 𝐸𝑆𝑆 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑤ℎ𝑒𝑛 𝑃𝑝𝑒𝑎𝑘𝑠ℎ𝑎𝑣𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑
𝑃𝐸𝑆𝑆 = 𝑃𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡 𝐸𝑆𝑆 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑤ℎ𝑒𝑛 𝑃𝑔𝑟𝑖𝑑 ≤ 𝑃𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡 (3.22)

Furthermore, this peakshaving method has two modes for user to choose: manual and automatic.

• Manual: this method only enables ESS charging or discharging to the grid with a designated time
zone and fixed power. The charging/discharging time zone and charging/discharging power is
set by the user.

• Automatic: this method will do the peak shaving automatically alone with the charging optimiza
tion algorithms. The user only able to set the charging/discharging point for ESS.

For example, fig 3.8 shows the options for user to set on ”Bob”. It can be seen that, the ”Bob”
platform records the selected charging algorithm, ESS management method, charging/discharging

3.4. ESS management 37

start point, and basic setting options for peakshaving manual. In this figure, the selected charging
optimization for group Test5 is OLCC, and the ESS method is Peakshaving automatic, the charging
start point is 0.5kW, and the discharging start point is 10.5kW.

Figure 3.6: The ESS managment options on Bob

To implement the peakshaving auto method in order to coordinated with the charging optimization
algorithm, the more functions can be added into the SetPowerTrigger function. Hence the flow chart
of SetPowerTrigger in fig 3.5 can be further modified, which is shown in fig 3.7. The newly added ESS
management blocks are highlighted in a blue color. It can be seen that the peak shaving method is
fully decoupled with the charging optimization algorithm. Therefore, the whole power management
system ”Bob” is both adapted to the system with or without the ESS.

Start

Input information about changed charger:
Charger Id, Status, Last Report Time, Current

Time, Departure Time, Charing Demand,
Meter Values

End

ChangedCharger=null? Find the group
the charger is in

No Iterate all charger
Ids in the group

Collect all charger states on Tom at
current time t by using function
GetChargerDetails(chargerId)

Yes

Update charger
Ids at last interval
(t-1) in database

on Bob

Find the selected
charging method

saved on Bob

Results=null?

Return
BadRequest

Send the power change
request to Tom by using

function PostPowerToTom

Iterate all charger
Ids in the result

list

Return OK

Yes No

Run ESS Power
Dispatch
controller

Run Charger
Power Dispatch

controller
Results=null?

Yes

Send the ESS power set
command to Inverter by using
function SendStringRequest

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 3.7: The flow chart of how SetPowerTrigger function functioning with ESS management

38 3. Charging algorithm theory & design

3.5. Simulation
Above sections have introduced and discussed the theory and the implementation of the charging and
ESS management algorithms proposed in this thesis. Before putting these algorithms into practical
use, the simulation must be done. Therefore, in this section, the performance and of the proposed
charging and ESS management algorithms will be evaluated through the simulation.

3.5.1. Simulation parameters
There are only two methods proposed in this project FRC and OLCC. However, the simulation is easier
to implement the other algorithms. Hence, to highlight the performance difference between different
algorithms. The other algorithms also have been made and added to the simulation, such as OFFCC
and average charging (AVG). The OFFCC is the foundation of the method OLCC, it aslo can be called
planned charging. The AVG algorithm is a simply averaging method which will average the charging
power according to the charging demand: 𝑃𝐴𝑉𝐺 =

𝐷𝑖
𝑡𝑖𝑒−𝑡𝑖𝑠

.

In addition, as for OLCC, the electricity price has to be known before starting the simulation. In
this simulation, based on [22], the value of a and b are defined as: 𝑎 = 10−4€/𝑘𝑊ℎ, 𝑏 = 0.6 ⋅
10−4€/𝑘𝑊ℎ/𝑘𝑊. Therefore, the electricity price from equation3.7 can be expressed by 𝐶𝑖𝑛𝑠𝑡𝑎𝑛𝑡 =
10−4€/𝑘𝑊ℎ + 2 ⋅ 0.6 ⋅ 10−4€/𝑘𝑊ℎ/𝑘𝑊 ⋅ 𝑧𝑡. Then, there are only two types DC chargers with two
different maximum charging power level will be considered in this simulation and they are 30kW and
20kW respectively. As for charging demand for each vehicle, the charging demand are divided into
three levels: short, medium and long term, the values are 35kWh, 45kWh, 75kWh respectively. The
simulation are divided into three conditions, halfday simulation with light traffic, all day simulation with
medium traffic and all day simulation with heavy traffic. In order to simplify the simulation process, the
minimum time interval are set to 0.5h. The arrival and departure time for each EV will be listed in tables
below, and with the aid [23, 24], the peak arriving hours are defined from 14:0016:00 and 6:008:00.
In addition, the OLCC introduced a speed factor Q, the Q is set to 1.1 [20]in order to reach the best
performance of the OLCC algorithm. The EV charging data and simulation results will be shown in next
section.

3.5.2. Simulation results
At the beginning the most simple case will be simulated, which is halfday light traffic. In this simulation,
the capacity of the charging station is set to 50 kW, the time starts from 12:00 to 24:00, the specific
EV charging timetable and load profile are shown in table 3.1 and table 3.2 (the load will remains
unchanged reaching the next time point), and the simulation results and the cost of different methods
will be shown in fig 3.8,fig 3.9 and fig 3.10.

Table 3.1: The EV timetable for shortterm simulation

EV Num
Time of Arrival

𝑡𝑖𝑠
Time of Departure

𝑡𝑖𝑒
Charging Demand
𝐷𝑖 (𝑘𝑊ℎ)

Max Charging Power
𝑃𝑖𝑟𝑎𝑡𝑒𝑑 (𝑘𝑊)

1 12:00 16:00 45 30
2 14:00 20:00 35 30
3 14:00 24:00 75 20
4 15:00 18:00 35 30
5 16:30 20:00 45 20
6 18:00 22:00 45 20
7 20:00 24:00 45 30

Table 3.2: The EV timetable for shortterm simulation

Time 12:00 13:00 14:00 15:00 16:00 17:00 18:30 19:00 20:30 21:00
Load (𝑘𝑊) 30 20 16 24 36 48 60 50 40 30

3.5. Simulation 39

12:00 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

10

20

30

40

50

P
o
w

er
(k

W
)

OFCC

OLCC

AVG

FCR

OFCC

OLCC

AVG

FCR

12:00 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

10

20

30

40

50

P
o
w

er
(k

W
)

OFCC

OLCC

AVG

FCR

Figure 3.8: The total charging power with different methods from 12:00 to 24:00 for a day under light traffic

12:00 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

5

10

15

20

25

30

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

0 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

0 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

(a) Charging power for each EV with FCR method

12:00 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

5

10

15

20

25

30

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

0 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

0 14:00 16:00 18:00 20:00 22:00 24:00

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

(b) Charging power for each EV with OLCC method

Figure 3.9: Charging power for each EV with different methods in shortterm simulation

22.3972
21.05

18.28

21.6635

AVG FCR OFFCC OLCC

Charging cost (Euro)

Figure 3.10: The total cost of different methods for shortterm simulation

40 3. Charging algorithm theory & design

From the results, it can be seen that the cost of OFFCC method is lowest, it is because that the
all the charging timetable for this time duration is known, the result must be optimal. As for online
algorithms, the FCR methods spends less money than OLCC method. This may be caused by the speed
factor in OLCC under low traffic condition. Therefore, more simulation will be done under higher traffic
condition.

Similarly the simulation are done under the medium traffic and heavy traffic condition, the simulation
data and the results under medium will be shown in following tables and figures, the station capacity
is set to 90kW. The results for heavy traffic condition were put in Appendix C.

0 5 10 15 20

Time(h)

0

10

20

30

40

50

60

70

80

P
o

w
er

(k
W

)

OFCC

OLCC

AVG

FCR

240 5 10 15 20

Time(h)

0

10

20

30

40

50

60

70

80

P
o

w
er

(k
W

)

OFCC

OLCC

AVG

FCR

24

Figure 3.11: The total charging power with different methods for a day under medium traffic

0 5 10 15 20 25

Time(h)

0

5

10

15

20

25

30

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

0 5 10 15 20 25

Time(h)

0

5

10

15

20

25

30

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

0 5 10 15 20 25

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

0 5 10 15 20 25

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

(a) Charging power for each EV with FCR method0 5 10 15 20 25

Time(h)

0

5

10

15

20

25

30

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

0 5 10 15 20 25

Time(h)

0

5

10

15

20

25

30

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

0 5 10 15 20 25

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

0 5 10 15 20 25

Time(h)

0

5

10

15

20

P
o
w

er
(k

W
)

Car 1

Car 2

Car 3

Car 4

Car 5

Car 6

Car 7

Car 8

Car 9

Car 10

Car 11

Car 12

Car 13

Car 14

Car 15

(b) Charging power for each EV with OLCC method

Figure 3.12: Charging power for each EV with different methods in mediumterm simulation

Fig 3.11, 3.12 shows the power dynamic of whole station or for single EV by applying different
charging methods, and the fig 3.13 shows the cost with different methods under medium traffic con
dition. Moreover, heavy traffic condition in appendix C shows the same result, which is the OLCC
method will further reduce cost while multiple EVs are in charging at the same time. Especially under
heavier traffic condition. Nevertheless, the FCR shows better performance under light traffic condition.
Therefore, the FCR can be used for charger stations which contains less than 5 chargers, and OLCC is
suitable for larger charger station. Further discussion will be given in next chapter.

In addition, the ESS management also have been simulated in a simple way: Assume there is only

3.5. Simulation 41

Figure 3.13: The total cost of different methods for mediumterm simulation

one charger is in charging and no charging algorithms will be applied on this charger. The maximum
charging power of the charger is 10kW, and the peakshaving starting point for ESS is set to 8kW,
the ESS is simulated by OpenEMS [25]. The result is shown in fig 3.14. In this simulation shows the
charging power is shaved 2 kW by ESS and therefore the grid power is limited around the 8kW which
is below the peakshaving starting point.

10

0 10 20 30 40 50 60 70 80 90 97

Time(s)

-5

0

5

10

15

P
o
w

e
r
(k

W
)

Consumption

Charging power
Grid Power

ESS Power8

Shaved by ESS

10

0 10 20 30 40 50 60 70 80 90 97

Time(s)

-5

0

5

10

15

P
o
w

e
r
(k

W
)

Consumption

Charging power
Grid Power

ESS Power8

Shaved by ESS

Figure 3.14: The simulation result of the Peak shaving algorithm

42 3. Charging algorithm theory & design

3.6. Summary
In this chapter, the theory and the implementation of charging and ESS algorithms were discussed.
The simulation results were displayed and briefly analysed. As the summary of this chapter, there are
some vital points need to be reviewed:

• Two charging algorithms were proposed in this chapter: Fast charging by ratio (FCR) and Oline
Coordinated Charging (OLCC) algorithm. The FCR methods is fit for small charging stations or
the light traffic condition, and the latter is more suitable for the large scale charging station which
under heavier traffic condition.

• The ESS managment method was implemented as well, through the peak shaving, the charging
station will gain more power capacity to keep all the chargers charging in a high power rate.

• All the calculation were finished on cloud.

• The cloud control needs to be triggered by the external interface ”PowerConfig” on ”Bob”, then
the PowerDispatchController will do the rest processing, such as selecting the correct charging
method, recording the past data, and initiate the calculation, get the calculation result and send
the proper instructions to ”Tom” or the inverter.

Similarly, the external interface PowerConfig will be summarized in table 3.3, and the message
format can be found in Appendix B. Moreover, this ”Bob external Interfaces” have been tested and
verified in POSTMAN.

Table 3.3: The web APIs from Bob

Bob external Interfaces
API Name Function Method Body

api/powerConfig
Post charging power to a charger

through ”Charger/setpower/<chargerId>”
provided by ”Tom”

POST
ChargerStatusDto:
changedCharger

4
Experiment validation & evaluation

Chapter 2 introduced the implementation of the ”Bob” platform and Chapter 3 illustrated how the
algorithms is designed and implemented on ”Bob”. Hence, the performance of whole platform and
algorithms need to be validated and evaluated through the practical test.

In this chapter, all the device parameters and how their were connected will be introduced. Fur
thermore, the algorithms will be tested through a real charger and real ESS. The system overview is
shown in fig 4.1. More details will be explained in following sections. Finally the results will be analysed
and discussed at the end of this chapter.

Cloud

Platform

Cloud

Platform

43 kW/400V

socket

22 kW/400V

socket

43kW

Power Input

REVO Hybrid Inverter

R10KH3

Chipsee T50C

Industrial Computer

30 kW Charger

12*VARTA 12V 44Ah

Lead Acid Battery

 Charger Emulator 1

(10kW)

 Charger Emulator 1

(10kW)

Charger Emulator 2

(10kW)

Charger Emulator 2

(10kW)

Cloud

Platform

43 kW/400V

socket

22 kW/400V

socket

43kW

Power Input

REVO Hybrid Inverter

R10KH3

Chipsee T50C

Industrial Computer

30 kW Charger

12*VARTA 12V 44Ah

Lead Acid Battery

 Charger Emulator 1

(10kW)

Charger Emulator 2

(10kW)

Figure 4.1: Hardware connection schematic

43

44 4. Experiment validation & evaluation

4.1. Experiment devices
According to figure 4.1, the whole system has 6 components and two sockets. They are two Charger
emulators, a real 30kW DC charger, a battery pack, an inverter and a Industrial computer which will
be used to control the inverter. Besides the inverter and the battery pack, other components are
connected to cloud. Furthermore, the 30𝑘𝑊 DC charger is plugged into 43𝑘𝑊/400𝑉 socket and the
inverter is plugged into 22𝑘𝑊/ socket. The other industrial computers are supported by a 24V DC
source respectively. The total capacity of the laboratory is 43kW. The parameters of these components
will be introduced in following subsections.

4.1.1. Chargers
There are three chargers that will be used for experiment, one is a 30kW DC charger which provided
by Third Place Energy B.V. The other two chargers are virtual chargers which are simulated by two
industrial computers. The parameter of the DC charger can be found in table 4.1, and the industrial
computers is provided by Chipsee. Ltd. The data for this industrial computer is concluded in table 4.2.
The photo of the DC charger and the charger emulator are shown in fig 4.2. In addition, an EV from
Skoda is used for 30kW DC charger, which can be seen in fig 4.2c.

Table 4.1: The parameters of 30kW DC Charger

Charger
Name

Input
Voltage

Output
Voltage

Maximum Input
Current

Maximum output
Current

Power
Factor

Power Capsule
30kW 400±15% AC 200950V DC 50 A 100 A ≥0.99

Table 4.2: The parameters of Industrial Computer

OS CPU DC Input Power Consumption Size
Linux ARM Cortex A8 636 V DC 3.5 W 10.5 inch

(a) The photo of 30kW DC charger

(b) The photo of two charger emulators (c) The photo of EV for DC charger

Figure 4.2: The photo of three chargers in lab

4.2. Experiment results 45

4.1.2. ESS
As for ESS, the parameters of battery pack and the inverter are shown in table 4.3 and 4.4, the
manufacturer of the inverter is MEGAREVO, the type is 10kW hybrid inverter.The battery branch is
VARTA. The photo of the ESS can be found in fig 4.3.

Table 4.3: The parameters of Hybrid Inverter

Inverter
Name

Maximum
Power

Rated Output
Voltage

Maximum Input
Current

Maximum output
Current

Power
Factor

R10KH3 10 kW 400V AC 15.8 A 33.4 A ≥0.99

Table 4.4: The parameters of Battery

Battery Type Rated Voltage Capacity Amount total output power
LeadAcid 12 V 44 Ah 12 144 V

(a) The photo of Inverter

(b) The photo of battery pack (c) The photo of EMS UI

Figure 4.3: The photo of ESS in lab

4.2. Experiment results

0 50 100 150 200 250 300

Time(s)

0

2

4

6

8

10

P
o

w
r
(k

W
)

Real Charger

Charger Emulator 1

Charger Emulator 2

0 50 100 150 200 250 300

Time(s)

0

2

4

6

8

10

P
o

w
r
(k

W
)

Real Charger

Charger Emulator 1

Charger Emulator 2

Figure 4.4: The FCR result under practical test

The practical test includes the test of FCR and OLCC method. In FCR test, only three chargers have
involved: one DC charger and two charger emulators. For safety concerns, the DC charger will not
operates under the maximum power. The output power for FCR test is set to 12kW, and the other two

46 4. Experiment validation & evaluation

charger emulators were set to 8kW. The station capacity is set to 10kW. The result is shown in fig 4.4.
The result shows the overall power is limited under the station capacity.

As for OLCC test, the output power for DC charger is set to 7kW, the charger emulators are set
to 13kW respectivly, the station capacity is set to 30kW. The test time table for different chargers are
listed in table 4.5. Then, Fig 4.5 shows the test result of the OLCC method, and the charging demand
of three ”EVs” are shown in fig 4.6.

Table 4.5: The timetable of charging sequence

Charger Number Time of Arrival Time of Departure Charging Demand
Real Charger 16:55 17:15 1.5 kWh

Charger emulator1 17:05 17:30 3.5 kWh
Charger emulator2 17:00 17:25 1.5 kWh

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
e
r
(k

W
)

Real Charger

Charger emulator1

Charger emulator2

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
e
r
(k

W
)

Real Charger

Charger emulator1

Charger emulator2

Figure 4.5: The OLCC result under practical test
0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

0 20 40 60 80 100 120 140 160 180 200

Time(s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Real Charger

Charger emulator1

Charger emulator2

above charging demand

C
h

a
rg

in
g

 D
em

a
n

d
 (

k
W

h
)

0 20 40 60 80 100 120 140 160 180 200

Time(s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Real Charger

Charger emulator1

Charger emulator2

above charging demand

C
h

a
rg

in
g

 D
em

a
n

d
 (

k
W

h
)

Figure 4.6: The OLCC Charging demand

0 10 20 30 40 50 60 70 80 90 100

Time(s)

-4

-2

0

2

4

6

8

P
o
w

er
(k

W
)

ESS

Charger emulator1

Charger emulator2

0 10 20 30 40 50 60 70 80 90 100

Time(s)

-4

-2

0

2

4

6

8

P
o
w

er
(k

W
)

ESS

Charger emulator1

Charger emulator2

Figure 4.7: The OLCC with ESS result under practical test

At the last the peak shaving method is tested by two charger emulators with ESS. Only the dis
charging function of peak shaving is tested. The peak shaving starting point is set to 11kW. The peak

4.3. Discussion & evaluation 47

shaving mode is automatic. From fig 4.7, it can be seen that if the grid power above the peak shaving
starting point, the ESS will be activated to do the peak shaving, and the overall ESS power is limited
around 11kW.

4.3. Discussion & evaluation
4.3.1. Performance evaluation of algorithms
According to the results showed in Chapter 3 section 3.5, the performance of the OLCC and FCR can
be evaluated. In3.13 and fig 3.10, it can be seen that the OFFCC always be the lowest, because this
algorithm is an offline method, the algorithm only calculates once, and all the other parameters such
as the timetable of the next day, has to be known before the calculation. Hence, if the EVs’ arrival,
departure time and the variation of load exactly follows the timetable, the solution must be optimal
[20]. This explains why the cost of OFFCC method will be lowest for all simulation. Nevertheless,
the timetable is too difficult to be made because the unpredictability of the future. Thereby, an online
algorithm OLCC is implemented in this thesis, which can redistribute the charging power of each charger
when the system status changes. Furthermore, the speed factor Q induces larger deviation from the
optimal solution. Thus, the cost from OLCC method is slightly higher than OFFCC, but OLCC is more
feasible to practical scene.

Section 3.5 also illustrated that the FCR method is suitable for low traffic condition compared to
OLCC method. The reason is the essence of the OLCC is averaging method, because the charger power
for each interval is derived by equation:

𝑥𝑖𝑘 =
𝐷𝑖𝑘
Δ𝑇𝑘

(4.1)

Where k represents the 𝑘𝑡ℎ interval, 𝑖𝑡ℎ represents the 𝑖𝑡ℎ EV, D is charging demand and Δ𝑇𝑘 is
the length of time at 𝑘𝑡ℎ interval. So, by referring to this equation, if the interval is small enough
and the length of each interval is long enough the final results derived by OLCC method will looks
similar to averaging method, this can be proved through fig 3.8, the trend of the OLCC is similar to
the AVG method. Moreover, the averaging method cost is higher than FCR method in every simulation.
Therefore, as mentioned in section 3.5, the FCR is suitable for charging stations which has a few
chargers. On the contrary, the OLCC suitable for largescale charging stations.

4.3.2. System Cost
In this section, the system cost will be discussed and evaluated. As discussed in section 1.2.1, the data
traffic could be the major cost of the system. The cost schematic diagram is displayed in fig 4.8.

Azure App Service Plan

Cosmos DB
Storage & Throughput

Azure IoT Hub

Application Insights app

Azure App Service Plan

Cosmos DB
Storage & Throughput

Azure IoT Hub

Application Insights app

Inverter

Bob Azure App Service Plan

Cosmos DB
Storage & Throughput

Azure IoT Hub

Application Insights app

Inverter

Bob

Figure 4.8: The cost from the Microsoft Azure services

There are four main costs from the Azure cloud. Detailed costs are listed in list below:

48 4. Experiment validation & evaluation

1. Azure IoT Hub: The inverter to cloud service is supported by the Azure IoT Hub service, Microsoft
provides multiple tiers with different pricing for different using cases. The detailed tier can be
found in [26] and table 4.6. In this thesis, the default standard tier S1 edition is chosen. The
pricing details of this plan is: Maximum 400, 000 messages per day for an IoT unit, message
meter size up to 4kB. The server is located at western Europe, and therefore the basic cost for
this IoT service per month is 21.417€. Therefore, the cost from Azure IoT Hub is 21.417€ per
month.

Table 4.6: The pricing of Azure IoT Hub

Edition Type Price per IoT Hub unit
(per month)

Total number of messages/day
per IoT Hub unit Message meter size

Free Free 8,000 0.5KB
S1 21.417€ 400,000 4KB
S2 214.161€ 6,000,000 4KB
S3 2141.603€ 300,000,000 4KB

In addition, to further reduce the system cost, another device can be attached to this plan without
generating additional cost. The inverter data update interval is set to 5 seconds in this thesis.
The messaged send from this inverter per day would be 60 ÷ 5 ⋅ 60 ⋅ 24 = 17280. Therefore, an
additional inverter can be attached into this unit to serve another ESSCharger system. By doing
so the cost can be reduced by half. If more devices is required, the plan can be swap to S2 or
even S3, which the cost can be further reduced.

2. CosmosDB: As introduced in previous chapters, the Cosmos Db is the database of the ”Bob”
which plays a decisive role in the entire platform, but it comes at a price. The pricing scheme
can be divided into two parts in equation 4.2: The first part is the storage cost, and the second
part is the data transaction cost.

𝐶𝑐𝑜𝑠𝑚𝑜𝑠𝐷𝑏 = 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐶𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (4.2)

The cost for storage is 0.18€/𝐺𝐵 per month, the cost for transaction is minimum 400 RU/s
(Minimum provisioned throughput) and therefore the cost would be 0.0276€/ℎ𝑜𝑢𝑟. Where the
RU is the request unit defined by Microsoft, different operations to the database will consume
different amount of RU. Hence, the total cost in CosmosDB service will be around 20€/𝑚𝑜𝑛𝑡ℎ.
Since there is only one ESScharger system have been developed. The operation to the database
will not exceed 400RU/s, the cost from the CosmosDB will keeps minimum. However, if more
system is put into use, more RU is required for different containers which will leads to more total
costs to the system.

3. Application insights app: This service will help the system developer to monitor the performance
of the whole system, it is necessary to subscribe this service in case there are any unpredictable
fault occurs while the whole system is ruining. The pricing is based on how much data is ingested
by this app. For this thesis, the insights app pricing method is Pay as you go which will cost 2.562€
per GB, and the data ingested by this App from the ”Bob” is around 12GB per month. Thus, the
cost from this App is about 30.744€.

4. Azure App Service Plan: This service plan will provide a remote virtual machine to support the
website or any web API that need to be deployed on cloud. Multiple Apps such as website can
be attached to this service plan until the storage of the virtual machine is run out.

Table 4.7: The pricing of Azure service APP

Instance Core Ram Storage Pay as you go
B1 1 1.75GB 10GB 0.065€/ℎ𝑜𝑢𝑟
B2 2 3.5GB 10GB 0.129€/ℎ𝑜𝑢𝑟
B3 4 7GB 10GB 0.257€/ℎ𝑜𝑢𝑟

4.3. Discussion & evaluation 49

In this thesis, the basic plan B1 is selected since the size of the cloud platform is only about 50MB.
The pricing scheme is shown in table 4.7. For B1 plan the cost will be around46.8€ per month.
Although the cost is relatively higher than the other services, the cost can be further reduced
by attaching other Apps to this service until the storage of this virtual machine is full or the CPU
percentage reaches upper limit.

In the above analysis, it can be found that the cloud cost is expensive for a single system. The cost
fee for a single system is around 120€ However, if multiple systems is attached to the cloud, although
the total cost will be increased, the cost for each system can be further reduced compared with a single
system on cloud. For instance, if two systems are using the cloud services, the cost for a single system
will be reduced by half.

4.3.3. The analysis of communication time delay
Different from the wired signal, the message exchange between the devices and the cloud are wireless.
Therefore, the signal transmission speed is lower than the wired transmission. Hence, this section will
discuss the influence to the whole system which is caused by the communication delay. Take fig 3.12b
as an example, the figure with analysis of the communication delay is drawn in fig 4.9.

0 20 40 60 80 100 120 140 160 180 200

Time(s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Real Charger

Charger emulator1

Charger emulator2

above charging demand

C
h

a
rg

in
g

 D
em

a
n

d
 (

k
W

h
)

0 20 40 60 80 100 120 140 160 180 200

Time(s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Real Charger

Charger emulator1

Charger emulator2

above charging demand

C
h

a
rg

in
g

 D
em

a
n

d
 (

k
W

h
)

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
e
r
(k

W
)

Real Charger

Charger emulator1

Charger emulator2

0 20 40 60 80 100 120 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
e
r
(k

W
)

Real Charger

Charger emulator1

Charger emulator2

0 20 40 60 80 100 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

0 20 40 60 80 100 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

t5
t2

t1 t3 t40 20 40 60 80 100 140 160 180 200

Time(s)

0

2

4

6

8

10

12

P
o

w
er

(k
W

)

Real Charger

Charger emulator1

Charger emulator2

Emulator2 has
been plugged

4-8s response time
To do the calculation

and send command to
charger

Start button is pressed
on Emulator2

Around 3s delay
between charger and

Tom

The real charging end
point of real charger

The data from Tom

Finishing signal is sent
from charger

The command is sent to
emulator 2

The command is sent to
emulator 1

t5
t2

t1 t3 t4

Figure 4.9: The OLCC response analysis

According to fig 4.9, after the charger is plugged into an EV, there is a 48 seconds delay until the
charger received the power set command from the ”Bob”, which is t1 to t3 in fig 4.9. Similarly, once
an EV has finished the charging process, and emit the ”Finishing” signal to ”Bob”, there also will be
a small delay until the ”Bob” gives further instruction to the other chargers. The length of this delay
is mainly determined by the complexity of the optimization algorithm (0.56 seconds). The low data
access speed of the CosmosDb also has to be taken into account, the delay is about 50ms. The delay
from the calculation can be reduced by using a more powerful server as the base. The delay from the
database can be reduced by adding more throughout (RU). However, by doing so, the cost from using
the CosmosDb will be increased.

Moreover, the API from ”Tom” only provides the method that change the amount of power for a
single charger. Hence, after the calculation, the result for each charger has to be sent one by one, not
simultaneously. The results can be seen in colored text The command is sent to emulator 2 and The
command is sent to emulator 1 in fig 4.9.

In addition, there is an another delay caused by the refresh rate on the charger platform ”Tom”,
this can be seen in green circle in fig 4.9. At time 𝑡4 the charger stops the charging, but the data
collected from ”Tom” remains unchanged until reach the time 𝑡5. The delay time is around 3 seconds.
This delay time is depends on the data refresh rate on ”Tom” and data update rate from charger. Fig
4.10 shows more details about this delay from the charger platform. From the fig 4.10, Gap 1 and Gap
2 shows the message delay from ”Tom”.

In more details, at time 𝑡1 the user plug the charger into the EV, and the charger will emit this
signal to ”Tom”, the time interval between 𝑡1 and 𝑡2 is around 20ms. Then, the user press the start
button and the charger starts charging at 𝑡3, but at the meanwhile, the charger status ”Tom” such as
charging power is still 0, because the data refresh rate on ”Tom” is 3 second. After 3 seconds at 𝑡4,
the ”Tom” update the charger data. Similarly, at 𝑡5 the EV finished the charging and at 𝑡6 the finishing
signal has been emitted. 𝑡9 the data is updated on ”Tom”.

50 4. Experiment validation & evaluation

Charger1
plugged

Gap1

Gap2

Timeline
t1 t2

Emit signal

t3

Charging1
Starts

t4

Data
Update
on Tom

t5

Charging1
Finished

t6

Emit signal

t9 t

t5 data Update
on Tom

t8t7 t7 data Update on
Tom

t10

Charger 2 status
changed

Charger1
plugged

Gap1

Gap2

Timeline
t1 t2

Emit signal

t3

Charging1
Starts

t4

Data
Update
on Tom

t5

Charging1
Finished

t6

Emit signal

t9 t

t5 data Update
on Tom

t8t7 t7 data Update on
Tom

t10

Charger 2 status
changed

Figure 4.10: The delay from charger platform

This delay will cause miss calculation of the optimization algorithms on ”Bob”. As introduced in 3.3,
once the signal is emitted at 𝑡2 or 𝑡6, the interface ”PowerConfig” on ”Bob” will starts the optimization
procedure. As shown in fig 3.4 in section 3.3, the first step is to collect the real time data from the
other unchanged chargers on ”Tom”, if the status of the two chargers changes within a short time
interval, the wrong real time data will be collected and therefore result in a miss calculation on ”Bob”.
For instance, if 3 chargers are in charging, charger 1 stops charging at 𝑡5, then the charger 2 stops
charging at 𝑡7, another signal is emitted to ”Bob” at 𝑡8.While ”Bob” processing this second request sent
at 𝑡8, the status of charger 1 recorded on ”Tom” will not be updated until time 𝑡9. So, the fake real
time data collected by ”Bob” at 𝑡8 for charger 1 is still in charging, which is wrong.

Therefore, to let the optimization algorithms on ”Bob” running correctly, the impact due to this
delay has to be reduced. There are two directions to solve this issue:

1. Set a proper delay on ”Bob”: As for Gap 1, the influence caused by data delay at the beginning
is minimum, since the past condition is the initial condition of the charger (charging starts at 0
power). However, as for the Gap 2, to over come this effect, a proper delay has to be set on
”Bob”. Once the ”Finishing” status is received on ”Bob”, the interface on ”Bob” will delay for 3
second and then collect the real time data on ”Tom”.

2. Increase the data refresh rate on ”Tom”: Increasing the refresh rate on ”Tom” or update the
charger data in a flexible rate: ”Tom” not only refreshes the data at a fixed rate, but also refreshes
the data once the charger status change signal is received from the charger.

4.3.4. Suggestions
By referring to above discussion results, some suggestions can be made.

1. From algorithm aspect: This thesis has proved that the algorithm can be put on cloud platform.
Therefore, if the performance of server is powerful enough, more advanced algorithms can be
implemented on cloud platform to further optimize the charging behavior on EVs.

2. From the system cost: Two cloud solutions are introduced in section 1.2, based on the cost
analysis, these two solutions are suitable for different scenarios.

• Scenario 1: ChargerESSPV system for home use. This scenario is more suitable for MES to
cloud method, because the scalability is not necessary under this condition, and the system
maintenance fee from cloud for cloud interconnection method is high for a single system.

• Scenario 2: ChargerESSPV system for company use. This scenario is more suitable for
cloud interconnection method, because the company may have multiple charging stations,
and therefore the scalability is necessary. Moreover, the maintenance fee from cloud for
cloud interconnection method can be reduced by supporting multiple cloud platforms.

3. From the time delay: The signal processing order has to be considered carefully when designing
such a cloud based charging management system.

5
Conclusion & Future work

5.1. Conclusion
In this thesis, a cloudbased charging management platform is proposed. This platform is able to mon
itor the status of the chargers and control the charging behavior of different chargers in the charging
station. The ESS and its control also have been integrated into this system.

The development of the cloud platform is divided into 3 parts: Website ”Bob” design , algorithm
design and experimental validation. The conclusions can be made:

1. From the content introduced in Chapter 2, the design of ”Bob” can be emphasized as follows:

• The charger monitoring, charger grouping and charger power controlling functions are im
plemented by using the interfaces provided by ”Tom”.

• The MVC framework is selected to be the basic framework of the ”Bob”. The database is set
to record the past data from the chargers and the charging algorithm settings for different
charger groups.

• The IoT of ESS devices have been done based on Microsoft Azure services.

2. From the algorithm design illustrated in the chapter 3, a quick review can be draw:

• Two charging algorithms ”FCR”, OLCC have been developed in this chapter, and the simula
tion results of these two algorithms are given at the end of the chapter 3.

• A simple ESS management peak shaving method was implemented.

• The theory of how algorithm computation is running on cloud was explained by introducing
the interface ”PowerConfig” and its operation principle.

3. From experimental results showed in Chapter 4, it can be seen that:

• The cloud is able to manage the charger behavior remotely with an acceptable delay. The
developed charging algorithms and peak shaving method functions well during the test.

• The cost generated from the cloud side has to be considered carefully. The cost can be
reduced by developing more cloud platforms to more customer. The cost also can be reduced
by reducing the data transmission rate or the size of the data. Nevertheless, the lower
transmission rate may longer the system delay.

• The time delay of the cloud communication may bring some issues to the system, such as
miss calculation. However, this influence can be minimized by improving the data transmis
sion rate, and using a better server. However, the system cost will be increased.

• The tradeoff between the costeffective and high performance has to be considered carefully
based on different application conditions.

51

52 5. Conclusion & Future work

5.2. Future work
Since this system is still in early stages, there are many aspects that can be improved in future, which
are:

• Develop more advanced charging algorithms based on this platform: In this thesis, only two
charging algorithms have been developed, and both of them are lowlevel algorithms. Currently,
many uptodate algorithms which combines the future forecasting or deep learning are proposed
by other papers such as [27, 28].

• Add photovoltaic into the system: Due to the consideration of the workload and the time, this
thesis only discussed the condition that the chargers only combined with ESS. However, in practical
the customers wants to buy ESSPV system together. Hence, the PV system and its control method
need to be developed in future. The final view of the whole system is shown in fig 5.1

Power

management

Platform

Power

management

Platform

Power

management

Platform

PV

Power

management

Platform

PV

DATADATA

4G/ Ethernet/

Bluetooth / Wifi

Customer

Charger Info DisplayCharger Info Display
Charger

platform

Charger

platform

Charger

platform

Charger

platform
C

h
arge

r D
ata

C
h

arge
r D

ata

P
o

w
er

 M
an

ag
em

e
n

t
P

o
w

er
 M

an
ag

em
e

n
t

Web

 API

Inverter ESS

DATADATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

EMS

R
S4

8
5

R
S4

8
5

Integrated Info DisplayIntegrated Info Display

Station operator

DCDC with

MPPT

Power

management

Platform

PV

DATA

4G/ Ethernet/

Bluetooth / Wifi

Customer

Charger Info Display
Charger

platform
C

h
arge

r D
ata

P
o

w
er

 M
an

ag
em

e
n

t
Web

 API

Inverter ESS

DATA

4G/ Ethernet/

Bluetooth / Wifi

EV Chargers

EMS

R
S4

8
5

Integrated Info Display

Station operator

DCDC with

MPPT

Figure 5.1: The preview of the complete system

• Refine the UI design on ”Bob”: The UI on ”Bob” can be further developed, such as adding more
figures to make the data look more intuitive. In addition, the robustness of the platform also has
to be reinforced, for instance, by adding role management system to the platform.

• After welldeveloped and tested of this cloud platform, it can be used for commercial purpose.

A
EMS design

In the body of the thesis, only the JAVA program of the industrial computer for inverter was introduced.
therefore, this chapter will show how the message is collected from the inverter and been sent to JAVA
through the Qt program.

As mentioned in section 2.2.3, Modbus RTU protocol is applied to exchange the data between EMS
(industrial computer) and the inverter. A complete Modbus message will contains following information
in table A.1, the definition of each register is defined by the manufacture of the inverter.

Table A.1: Modbus RTU format

𝑁𝑎𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑡𝑠) 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Address 8 Slave address
Function 8 Function code
Data n× 8 Data + length will be filled depending on the message type
CRC 16 Cyclic redundancy check

For example, if the EMS want to read the battery voltage, the EMS will send command ”01 03 31
40 00 01 8B 22”. Where 01 is the address of the inverter, 03 is the function code that represent this
action is a read action, 31 and 40 respectively represent the high and low bits of the register address,
00 and 01 respectively represent the high and low bits of the amount of the register that going to be
read, 8B and 22 are the CRC low and high bits respectively.

The flow chart of the Qt program is shown in fig A.1. This program will run multiple threads together
to ensure that the collected data can be displayed on the screen and sent to java in a short interval.
Finally, the designed UI for the industrial computer is shown in fig A.2. The user is able to view the
inverter data through the screen of the industrial computer and the settings of the inverter can be
modified through the screen as well.

53

54 A. EMS design

Qt program

Send write action to

specified registers

Input from the

screen

Thread 1 for data

reading

JAVA program

Inverter

Rs485

Inverter Processor

Write

action=true?

NoYes

Read all registers Display the read data on screen

The data update

interval is 4s

Send the data to JAVA program

through namepipe

Create two named pipes for data

sending and receiving from JAVA

Wait for input

from pipe
Thread 2 for pipe

transmission

Qt program

Send write action to

specified registers

Input from the

screen

Thread 1 for data

reading

JAVA program

Inverter

Rs485

Inverter Processor

Write

action=true?

NoYes

Read all registers Display the read data on screen

The data update

interval is 4s

Send the data to JAVA program

through namepipe

Create two named pipes for data

sending and receiving from JAVA

Wait for input

from pipe
Thread 2 for pipe

transmission

Figure A.1: The flow chart of Qt program

Figure A.2: The UI of industrial computer

B
Part of source codes of Bob

55

56 B. Part of source codes of Bob

1 module.exports = function (context, IoTHubMessages) {
2 var id = ””;
3 var invId = ””;
4 var batV = ””;
5 var batC = ””;
6 var line1V = ””;
7 var line2V = ””;
8 var line3V = ””;
9 var line1A = ””;

10 var line2A = ””;
11 var line3A = ””;
12 var timeStamp = ””;
13 var workMode = ””;
14 var batChargingC= ””;
15 var invOutP = ””;
16 var batOutP = ””;
17 var batType = ””;
18 var batChargingV = ””;
19 var batOVP= ””;
20

21 IoTHubMessages.forEach(message => {
22

23 if(message.InverterId !== ”” \&\& message.Id !== ””)
24 {
25 var output = {
26 ”id”: message.Id,
27 ”invId”: message.InverterId,
28 ”batV”: message.BatteryVoltage,
29 ”batC”: message.BatteryCurrent,
30 ”line1V”: message.Line1V,
31 ”line2V”: message.Line2V,
32 ”line3V”: message.Line3V,
33 ”line1A”: message.Line1A,
34 ”line2A”: message.Line2A,
35 ”line3A”: message.Line3A,
36 ”timeStamp”: message.TimeStamp,
37 ”workMode”: message.WorkMode,
38 ”batChargingC”: message.BatteryChargingCurrent,
39 ”invOutP”: message.InverterOutputPower,
40 ”batOutP”: message.BatteryOutputPower,
41 ”batType”: message.BatteryType,
42 ”batChargingV”: message.BatteryChargingVoltage,
43 ”batOVP”: message.BatteryOvervoltageProtection
44 }
45 context.bindings.testMeterDB = output;
46 var date = Date.now();
47 var tableMsg = {
48 ”partitionKey”: message.InverterId,
49 ”rowKey”: date+'',
50 ”MsgCount”: message.length,
51 ”data”: JSON.stringify(message)
52 }
53 context.bindings.outputBlob = tableMsg;
54 }
55 });
56

57

58 context.done();
59 };

Listing 7: The srouce code of Azure function for ”Bob”

57

A standard message format that the ”Tom” POST to interface ”PowerConfig” on ”Bob” should be:

1 {
2 ”ChargerId”:”QixiangTest001”,
3 ”SystemStatus”: ”2021/09/21 17:00:30”,
4 ”ChargingDemand”:”3.5”,
5 //ChargingDemand by Qixiang
6 ”LeavingTime”:”2021/09/21 17:30:30”,
7 //LeavingTime by Qixiang
8 ”TimeStamp”: ”2021/09/21 17:05:30”,
9 ”Plugs”:[

10 {
11 ”PlugId”: ”PlugA”,
12 ”Status”: ”Preparing”,
13 ”ErrorCode”:”No Error”,
14 ”MaxActivePower”:”13kW”,
15 ”MeterValue”:[
16 { ”value”:”4.9”,
17 ”format”:”raw”,
18 ”measurand”:”ActivePower”,
19 ”unit”:”kW”},
20 { ”value”:”0”,
21 ”format”:”raw”,
22 ”measurand”:”ReactivePower”,
23 ”unit”:”kVar”},
24 {”value”:”452”,
25 ”format”:”raw”,
26 ”measurand”:”ActiveConsumptionEnergy”,
27 ”unit”:”kWh”},
28 {”value”:”360”,
29 ”format”:”raw”,
30 ”measurand”:”DCVoltage”,
31 ”unit”:”V”},
32 {”value”:”13.61”,
33 ”format”:”raw”,
34 ”measurand”:”DCCurrent”,
35 ”unit”:”A”},
36 {”value”:”60”,
37 ”format”:”raw”,
38 ”measurand”:”SoC”,
39 ”unit”:””}
40]
41 }
42

43 }

Listing 8: The srouce code of Azure function for ”Bob”

C
Simulation data

The simulation results for heavy traffic condition can be found in fig C.1 and fig C.2

0 5 10 15 20

Time(h)

0

20

40

60

80

100

P
o
w

er
(k

W
)

OFCC

OLCC

AVG

FCR

0 5 10 15 20

Time(h)

0

20

40

60

80

100

P
o
w

er
(k

W
)

OFCC

OLCC

AVG

FCR

Figure C.1: The total charging power with different methods for a day under heavy traffic

Figure C.2: The total cost of different methods for heavyterm simulation

59

Bibliography

[1] Global electric passenger car stock, IEA, Paris (2010).

[2] S. Deb, K. Tammi, K. Kalita, and P. Mahanta, Impact of electric vehicle charging station load on
distribution network, Energies 11, 178 (2018).

[3] L. Wang, Z. Qin, T. Slangen, P. Bauer, and T. Van Wijk, Grid impact of electric vehicle fast charging
stations: Trends, standards, issues and mitigation measuresan overview, IEEE Open Journal of
Power Electronics (2021).

[4] S. M. Alshareef and W. G. Morsi, Impact of fast charging stations on the voltage flicker in the
electric power distribution systems, in 2017 IEEE Electrical Power and Energy Conference (EPEC)
(IEEE, 2017) pp. 1–6.

[5] C. Jiang, R. Torquato, D. Salles, and W. Xu, Method to assess the powerquality impact of plugin
electric vehicles, IEEE Transactions on Power Delivery 29, 958 (2013).

[6] A. UlHaq, C. Cecati, K. Strunz, and E. Abbasi, Impact of electric vehicle charging on voltage
unbalance in an urban distribution network, Intelligent Industrial Systems 1, 51 (2015).

[7] K. ClementNyns, E. Haesen, and J. Driesen, The impact of charging plugin hybrid electric
vehicles on a residential distribution grid, IEEE Transactions on power systems 25, 371 (2009).

[8] A. Amin, W. U. K. Tareen, M. Usman, H. Ali, I. Bari, B. Horan, S. Mekhilef, M. Asif, S. Ahmed, and
A. Mahmood, A review of optimal charging strategy for electric vehicles under dynamic pricing
schemes in the distribution charging network, Sustainability 12, 10160 (2020).

[9] K. Chaudhari, A. Ukil, K. N. Kumar, U. Manandhar, and S. K. Kollimalla, Hybrid optimization for
economic deployment of ess in pvintegrated ev charging stations, IEEE Transactions on Industrial
Informatics 14, 106 (2017).

[10] T. S. Bryden, G. Hilton, B. Dimitrov, C. P. de León, and A. Cruden, Rating a stationary energy
storage system within a fast electric vehicle charging station considering user waiting times, IEEE
Transactions on Transportation Electrification 5, 879 (2019).

[11] S. Negarestani, M. FotuhiFiruzabad, M. Rastegar, and A. RajabiGhahnavieh, Optimal sizing of
storage system in a fast charging station for plugin hybrid electric vehicles, IEEE transactions on
transportation electrification 2, 443 (2016).

[12] What is azure iot hub, (), accessed: 16082021.

[13] Third place energy, Accessed: 16082021.

[14] Azure iot samples for c sharp (.net), Accessed: 20082021.

[15] M. Jailia, A. Kumar, M. Agarwal, and I. Sinha, Behavior of mvc (model view controller) based
web application developed in php and. net framework, in 2016 International Conference on ICT
in Business Industry & Government (ICTBIG) (IEEE, 2016) pp. 1–5.

[16] L. To and F. T. Reenskaug, Thingmodelvieweditor an example from a planningsystem, (1979).

[17] Iothubeventcallback interface, Accessed: 25082021.

[18] Interface runnable, Accessed: 25082021.

[19] iotusingcosmosdb, (), accessed: 31082021.

61

http://dx.doi.org/ https://www.iea.org/data-and-statistics/charts/global-electric-passenger-car-stock-2010-2020
https://docs.microsoft.com/en-us/azure/iot-hub/about-iot-hub
http://www.3placee.com/
https://docs.microsoft.com/en-us/samples/azure-samples/azure-iot-samples-csharp/azure-iot-samples-for-csharp-net/
https://docs.microsoft.com/en-us/java/api/com.microsoft.azure.sdk.iot.device.iothubeventcallback?view=azure-java-stable
https://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/iot-using-cosmos-db

62 Bibliography

[20] W. Tang, S. Bi, and Y. J. Zhang, Online coordinated charging decision algorithm for electric vehicles
without future information, IEEE Transactions on Smart Grid 5, 2810 (2014).

[21] Z. Ma, D. S. Callaway, and I. A. Hiskens, Decentralized charging control of large populations of
plugin electric vehicles, IEEE Transactions on control systems technology 21, 67 (2011).

[22] Y. He, B. Venkatesh, and L. Guan, Optimal scheduling for charging and discharging of electric
vehicles, IEEE transactions on smart grid 3, 1095 (2012).

[23] M. G. Flammini, G. Prettico, A. Julea, G. Fulli, A. Mazza, and G. Chicco, Statistical characterisa
tion of the real transaction data gathered from electric vehicle charging stations, Electric Power
Systems Research 166, 136 (2019).

[24] S. Chen and L. Tong, iems for large scale charging of electric vehicles: Architecture and optimal
online scheduling, in 2012 IEEE Third International Conference on Smart Grid Communications
(SmartGridComm) (IEEE, 2012) pp. 629–634.

[25] Open energy managment system, Accessed: 31092021.

[26] Azure iot hub pricing, Accessed: 05102021.

[27] F. Hafiz, M. Awal, A. R. de Queiroz, and I. Husain, Realtime stochastic optimization of energy
storage management using deep learningbased forecasts for residential pv applications, IEEE
Transactions on Industry Applications 56, 2216 (2020).

[28] G. F. Savari, V. Krishnasamy, J. Sathik, Z. M. Ali, and S. H. A. Aleem, Internet of things based
realtime electric vehicle load forecasting and charging station recommendation, ISA transactions
97, 431 (2020).

https://openems.github.io/openems.io/openems/latest/introduction.html
https://azure.microsoft.com/en-us/pricing/calculator/

	List of Figures
	List of Tables
	Introduction
	Background
	General background
	Chargers with ESS

	Motivation and Objectives
	Motivation
	Objectives

	Project overview and approaches
	Project contribution
	Structure of the work

	Design & implementation of cloud platform
	Charger management platform Tom
	The introduction of Tom
	Tom APIs

	The design and implementation of Bob
	The structure overview of Bob
	Charger management
	Cloud-based inverter management
	Database of Bob

	Summary

	Charging algorithm theory & design
	Fast charging by ratio (FCR) Method
	FCR algorithm Design
	FCR algorithm implementation

	Coordinated Charging algorithms
	Problem formulation
	Offline Charging algorithm (OFFCC)
	Online Charging algorithm (OLCC)

	"PowerConfig" API on Bob
	ESS management
	Simulation
	Simulation parameters
	Simulation results

	Summary

	Experiment validation & evaluation
	Experiment devices
	Chargers
	ESS

	Experiment results
	Discussion & evaluation
	Performance evaluation of algorithms
	System Cost
	The analysis of communication time delay
	Suggestions

	Conclusion & Future work
	Conclusion
	Future work

	EMS design
	Part of source codes of Bob
	Simulation data
	Bibliography

