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Summary

The full potential of advanced composites can only be achieved by tailoring a laminate to
a specific structural application. In this manner, it is possible to respond more adequately
to planar stress variations and it is possible to divert loads from the most sensitive regions
of a composite structure such as holes and notches. One method for tailoring a composite
laminate is to use non-conventional laminates. The designation non-conventional laminates
refers to two types of configurations: (i), laminates that explore the whole range of possible
ply orientations, and (ii), composite panels with lay-ups that vary orientation angles contin-
uously from point to point. A continuously varying lay-up isachieved using non-traditional
curvilinear fibre paths within the plane of a ply, and, compared to the first option (i), it offers
more freedom in the design of laminates subjected to a non-uniform stress state within each
ply. In such cases, the laminate stiffness also varies with the in-plane coordinates of the
laminate, hence these configurations are termed Variable-Stiffness Panels (VSP).

Fibre-steered laminate designs require an accurate fibre placement system. Hand laying
methods will not provide the required precision for laying the fibres at the correct angles
and keeping these angles during curing. Moreover, variability in the quality of a laminate
resulting from the manual process has to be addressed. Automated fabrication processes
are able to provide repeatable and improved quality component production with a reduced
production cycle time. The Tow-Placement (TP) technology is of particular interest among
the automated fabrication methods available in the aerospace industry. This technology
combines the differential tow payout capability of filamentwinding and the compaction and
cut-restart capabilities of automated tape laying. A TP machine is a high-precision robot,
capable of wide freedom of movement, that is computer controlled to produce a composite
component without human intervention: TP technology allows the design and production
of components that would be extremely difficult or even impossible to produce using other
automated methods.

The potential of fibre-steered laminates led to the birth of anew branch of research in
laminated composite materials aimed at properly modellingand predicting the responses of
such laminates. A VSP has, by definition, a nonuniform in-plane stiffness distribution that
might result in large in-plane stress gradients. Such gradients contribute to the amplification
of the interlaminar stresses, and possibly render delamination the dominant failure mode in
these configurations. Furthermore, the manufacturing of VSP imposes either the overlap-
ping of some fibre tows within a ply or their cutting (dropping). While the tow-overlapping
method results in local increases of the panel thickness, the tow-dropping method generates
fibre-free, resin-rich regions in the laminates. Both methods have negative effects on the
failure response of the structures when compared with idealised designs. This is because
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ii Summary

manufacturing characteristics such as course edges, tow-drops and overlaps may act as dis-
continuities and stress concentration zones that locally excite the interlaminar stresses fur-
ther, similarly to mechanisms triggered close to material discontinuites such as free edges,
e.g. in holes, notches and ply drop-offs. Although many researchers have paid their atten-
tion to the analysis of VSP, the knowledge about the variable-stiffness configurations that
lead to the highest ultimate loads is still rather limited. Furthermore, the full details of the
mechanisms that lead to failure of VSP are not yet fully understood, particularly the influ-
ence of local effects such as tow-drops or tow overlaps. Thisis because these local effects
require an accurate finite element modeling that is not of easy conception using customary
procedures.

Interlaminar stresses are continuous both across and alonglayer interfaces in multilayer
composite laminates. Nonetheless, the continuity of interlaminar stresses is difficult to en-
force inC0 interpolated elements. Nodal values of the stresses are usually retrieved using
extrapolation techniques from Barlow or super-convergentpoints, if known, inside the el-
ement, i.e. Gauss points for Lagrangian class of elements. Stress fields within an element
can be deduced using either constitutive relations or variationally consistent procedures. In
either case, spurious oscillations in stress fields may be encountered leading to a reduced
accuracy of the recovered stresses at nodes. Moreover, inaccuracy in the recovered inter-
laminar stress distributions may be obtained at the interfaces between the layers in the case
of high transverse stress gradients.

The main goal of the research reported in this thesis was to develop a three-dimensional
finite element computational strategy for reliable future stress analyses of variable stiff-
ness panels. The procedure had also to be able to overcome theaforementioned problems
that would be encountered in the modeling and analysis of such laminates using custom-
ary procedures. In particular, the procedure had to be conceived in such a way that areas
where the failure initiation is primarily due to delamination, such as tow-drop resin-rich and
overlapping-tows areas, can be easily modeled and analysedwithout the need to employ
finite element models requiring demanding computational resources.

A sound technique for a proper modeling of such laminates might be to mesh the com-
plete variable stiffness laminate by simulating the procedure followed during the manufac-
turing process by the tow-placement machine’s head. This means that a proper mesh can
be inherently adopted in each course based on the assumed construction method. A finite
element pre-processing procedure was then developed basedon this idea. The starting point
of the procedure is to partition a tow-steered laminate in such a way that every ply can be
considered to be an independent subdomain. In this manner, the user is enabled to decide
the most adequate method to generate the mesh in every singleply. Compatibility between
the subdomains was reestablished using Lagrange multipliers. Then, the final system of
governing equations was solved using a procedure for distributed computing generally em-
ployed in domain decomposition methods, i.e. the finite element tearing and interconnecting
(FETI) method. The simultaneous use of multiple compute resources to solve a computa-
tional problem, i.e. parallel computing, definetely broaden the range of applications of the
proposed procedure. In particular, the choice to implementthe FETI method was do to its
parallel scalability and its ability to outperform severalpopular direct and iterative algo-
rithms on both sequential and parallel computers.

The FETI method was also particularly suitable to be combined with a post-processing
stress recovery procedure developed to retrieve accurate nodal values of the interlaminar
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stresses. The proposed interlaminar stress recovery procedure does not rely on extrapo-
lation techniques from super-convergent or integration points, commonly adopted in cus-
tomary procedures instead. Interlaminar stress values areretrieved directly at nodes and
stress continuity at the inter-element boundary is automatically satisfied. The complete
stress states were obtained by employing a variational consistent recovery procedures for
the recovery of the in-plane stress distributions. The complete procedure was developed
within the MATLAB framework, and validated by analysing moderately-thick/thin conven-
tional straight fibers composite plates of various geometries. The results were compared
with available exact and finite element solutions. Conforming meshes between the plies
were considered. Excellent agreement was obtained with available exact solutions, and
convergence was reached using considerably fewer degrees of freedom compared to other
finite elements procedures. The proposed procedure was ableto generate a minimum per-
centage reduction of 72% in the total number of degrees of freedom required to achieve
accurate interlaminar stress distributions compared to other finite element formulations. It
was also shown that smooth distributions were easily generated without the need to employ
smoothing techniques, as usually required when using customary stress recovery proce-
dures. Moreover, the procedure was shown to be as accurate asassumed stress methods
without the need to include stress degrees of freedoms in thesolution process. The pro-
cedure was also combined with a failure stress criterion available in the open literature to
determine onset of delamination in areas where singular stress states are generated. Special
emphasis was placed on the problem of a loaded plate with an open circular hole. Despite
the presence of oscillations in the interlaminar stress distributions encountered close to the
hole edge, the present procedure could be used to produce convergent averaged interlaminar
stresses over a distance from the hole edge. Then, the procedure could be effectively com-
bined with an average failure stress criterion to predict delamination initiation in presence of
curved free edges and stress concentrations. In this case, the minimum percentage reduction
in the total number of degrees of freedom required to achieveaccurate interlaminar stress
distributions was reduced to around 23% compared to other finite element formulations.

The developed post-processing procedure was also combinedwith the commercial fi-
nite element software ABAQUS 6.8TM with the aim of broadening the applicability of the
method to general 3-D shell type structures. Moderately-thick/thin conventional straight
fibers composite plate and shell laminates of various geometries were analysed. The finite
element model was generated within the ABAQUS framework, and compatibility between
the layers was reestablished using a contact formulation available in ABAQUS instead of
the FETI method. Conforming meshes between the laminates were initially considered.
The finite element model was obtained using ABAQUS’s built-in solidC3D8I element. The
excellent results obtained for plate laminates were also confirmed for shell laminates. In
particular, the proposed procedure was able to improve considerably the accuracy of the
stress distributions obtained using ABAQUS’s built-inC3D8I element. Smooth and accu-
rate interlaminar stress distributions were obtained using a considerable reduced number of
degrees of freedom, especially in the analyses of multilayered shell structures, even com-
pared to ABAQUS’s built-in quadratic formulations. The proposed procedure was able to
generate a minimum percentage reduction of 77% in the total number of degrees of free-
dom required to achieve accurate interlaminar stress distributions compared to ABAQUS’s
formulations that still failed to converge.

The idea of meshing a complete variable stiffness laminate by simulating the procedure
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followed by the tow-placement machine’s head during the manufacturing process inevitably
leads to the generation of non-conforming meshes between the plies. Then, analyses em-
ploying non conforming meshes between the plies were also considered. These analyses
were performed within ABAQUS’s framework. Plies with a regular mesh composed of
C3D8I elements were alternated at plies meshed using a combination of linear brickC3D8I
elements and linear triangular prismC3D6 elements. The triangular prismC3D6 element
was employed because it might be particularly suitable for modeling both the areas close
to the sides of a variable stiffness panel and the resin-richareas generated during the man-
ufacturing procedure of such laminates. Then, theC3D6 element needed to be tested in
combined use with ABAQUS’sC3D8I element, which was shown to be a sound element
for the modeling of composite laminates elsewhere. Oscillatory behaviours were encoun-
tered in the retrieved transverse stress distributions. Thus, inaccurate nodal values of the in-
terlaminar transverse stresses were obtained. However, these oscillations showed the same
trends of the distributions obtained using conforming meshes, that were taken as reference
solutions. An averaging technique was developed to smooth out these distributions. The
developed technique consists of averaging the stress values obtained in each node with the
stress values obtained in the nodes of the surrounding elements sharing the node under con-
sideration. In general, smooth and accurate distributionswere obtained by using the pro-
posed averaging technique within three-four iterations for both plates and shell laminates.
However, much more refined meshes had to be adopted compared to the case employing
conforming meshes between the plies. Moreover, inaccuracies in the retrieved transverse
stress distributions were generated close to the boundaries of the laminates.

Future research should first focus on improving the proposedmethod for analyses em-
ploying non-conforming meshes between the plies of conventional composite laminates.
It is extremely necessary to pay attention to this aspect before moving to the analysis of
VSP. In fact, the demanding computational resources required, and the inaccuracies gen-
erated close to the boundaries of conventional laminates make the proposed procedure not
enough accurate for reliable interlaminar stress analysesof VSP. Moreover, interlaminar
stress analyses of VSP would not bring in at this stage of the work any additional under-
standing concerning the accuracy of the procedure in the analysis of such laminates. This is
also because no comparison with available interlaminar stress data can be made. Attention
should be also paid to non-linear analyses of conventional composite laminates.

Analyses of tow-steered laminate configurations can then beperformed once the re-
quired improvements are introduced in the proposed procedure. Variable stiffness laminates
with tow-drops should first be taken into account. The procedure might also be easily ex-
tendible to the analysis of variable stiffness panels with overlaps. This is because the resin-
rich areas generated by the overlap between two courses can be modeled using the same
triangular prism elements adopted for the analysis of the tow-drop areas. However, addi-
tional validation of the proposed method is required in thisdirection. The proposed proce-
dure combined with integrating geometric design tools suchas CATIA and fiber placement
simulation software might be the right tool for an accurate design of a variable stiffness
laminate.



Samenvatting

Het volledige potentieel van geavanceerde composieten kanalleen worden bereikt door een
laminaat op maat te maken voor een specifieke toepassing. Op deze manier is het mogelijk
om adequater in te spelen op spanningsvariaties in het vlak en is het mogelijk om krachten
om de meest gevoelige gebieden van een composieten constructie heen te leiden, waarbij
te denken valt aan gaten en inkepingen. Een methode voor het op maat maken van een
composiet laminaat is het gebruik van niet-conventionele laminaten. De aanduiding niet-
conventionele laminaten verwijst naar twee soorten configuraties: (i), laminaten die uitgaan
van het hele scala aan mogelijke vezelorientaties, en (ii),composiet panelen met een lay-up
waarvan de vezelhoekorientatie continu veranderd van puntnaar punt. Een continu wis-
selende lay-up wordt gerealiseerd met behulp van niet-traditionele gebogen vezel paden
binnen het vlak van een laag en biedt meer ontwerpvrijheid dan de eerste optie (i), voor het
geval dat de spanningstoestand in elke laag van het laminaatvarieert. In dergelijke gevallen
varieert de stijfheid van het laminaat ook met de coordinaten in het vlak van het laminaat.
Daarom zullen in deze tekst dergelijke laminaten aangeduidworden als variabele stijfheid
panelen (VSP).

Vezelgestuurde laminaatontwerpen stellen hoge eisen aan de nauwkeurigheid van het
vezelplaatsingssysteem. Handmatige productiemethoden zullen niet kunnen voldoen aan
de vereiste nauwkeurigheid bij het leggen van vezels onder de juiste hoeken en het be-
houden van deze hoeken bij het uitharden van het laminaat. Bovendien moet rekening
gehouden worden met de variatie van de kwaliteit van het laminaat, die ten gevolge van het
handmatige productieproces optreedt. Geautomatiseerde productieprocessen zijn in staat
om onderdelen van consistente en betere productiekwaliteit te fabriceren tegen een lagere
productietijd. Tow-Placement (TP) technologie neemt een speciale plaats in onder de geau-
tomatiseerde productiemethoden die beschikbaar zijn in delucht-en ruimtevaartindustrie.
Deze technologie combineert vrijheid in vezelhoevariatievan filamentwikkelen en de com-
pressie en stop-herstart mogelijkheden van geautomatiseerd tape-leggen. Een TP-machine
is een hoge-precisie robot, met een grote bewegingsvrijheid, die in staat is computergestuurd
composieten componenten te produceren zonder menselijke tussenkomst: TP-technologie
stelt ons in staat om componenten te ontwerpen en te produceren die zeer moeilijk of zelfs
onmogelijk te produceren zijn door middel van andere geautomatiseerde productiemetho-
den.

Het potentieel van vezelgestuurde laminaten leidde tot de opkomst van een nieuwe tak
in het onderzoek naar gelaagde composietmaterialen gericht op het goed modelleren en
voorspellen van de respons van dergelijke laminaten. Een VSP heeft, per definitie, een niet-
uniforme stijfheidsverdeling in het vlak die zou kunnen resulteren in grote spanningsvari-
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vi Samenvatting

aties in het vlak. Dergelijke gradienten dragen bij aan de versterking van de interlaminaire
spanningen en zorgen er mogelijk voor dat delaminatie het dominante bezwijkmechanisme
wordt voor dergelijke configuraties. Bovendien is bij de productie van VSP het overlap-
pening van een aantal plies of het beëindigen van tows binneneen laag (afvallen) haast
onontkomelijk. Overlappende tows resulteren in een toename van de laminaatdikte, ter-
wijl het laten afvallen van een tow leidt tot vezelvrije, harsrijke regio’s in het laminaat.
Beide methoden hebben een negatief effect op het bezwijkmechanisme van een constructie
in vergelijking met het ideale geval. Dit komt omdat de productiekenmerken zoals de ran-
den van tow-paden, het afvallen van tows en overlappingen kunnen resulteren in discontin-
ueteiten en spanningsconcentraties die locaal de interlaminaire spanningen doen toenemen,
en voorts op dezelfde manier het bezwijkmechanisme op gang brengen, op een vergelijkbare
wijze als voor vrije randen, zoals bijvoorbeeld bij gaten, inkepingen en het laten afvallen
van tows. Hoewel veel onderzoek geweid is aan de analyse van VSP, is de kennis over
variabele stijfheid configuraties die leiden tot de hoogstebezwijkwaarden is nog tamelijk
beperkt. Bovendien zijn de volledige details van de mechanismen die leiden tot het falen
van VSP nog niet volledig begrepen, met name de invloed van lokale effecten, zoals het
laten afvallen van tows of het overlappen daarvan. Dit komt omdat een passend eindig el-
ementen model van dergelijke panelen dat de genoemde lokalefenomenen in kan vangen
niet gemakkelijk te verkrijgen is met behulp van gebruikelijke methodes, zelfs niet wanneer
een beroep wordt gedaan op rekentechnisch veeleisende eindige elemeten modellen.

Interlaminaire spanningen zijn continu zowel in als langs laaginterfaces in meerlagige
composiet laminaten. Niettemin, is de continueteit van interlaminaire spanningen moeilijk
af te dwingen inC0 geanterpoleerd elementen. Nodale waarden van de spanningen wor-
den doorgaans verkregen met behulp van de extrapolatietechnieken van Barlow of super-
convergente punten, indien bekend, in het element, dat wil zeggen Gauss punten voor
elementen uit de Lagrange klasse. Spanningsvelden binnen een element kunnen worden
afgeleid met behulp van constitutieve relaties of variationeel consistente procedures. In
beide gevallen kunnen valse variaties in de spanningsvelden optreden, hetgeen leidt tot een
verminderde nauwkeurigheid van de verkregen spanningen voor nodes. Als bovendien een
door-de-dikte mesh van het laminaat wordt gebruikt dat nietvoldoende verfijnd is in com-
binatie met hoge transversale spanningsgradienten, kunnen er onnauwkeurigheden in de
verkregen spanningsverdeling op de interface tussen de lagen optreden.

Het belangrijkste doel van het onderzoek beschreven in dit proefschrift was het on-
twikkelen van een drie-dimensionale eindige elementen rekenstrategie die geschikt is om
betrouwbare toekomstige spanningsanalyses van variabelestijfheid panelen uit te voeren,
en die in staat is om de bovengenoemde problemen die zich zouden kunnen voordoen in het
modelleren en analyseren van dergelijke laminaten met behulp van de gebruikelijke pro-
cedures te overwinnen. De procedure moest vooral zodanig worden opgezet dat gebieden
waar het bezwijkmechanisme ingang wordt gebracht door delaminatie te kunnen modeleren
en analyseren, zoals gebieden waar tows afvallen, die harsrijk zijn of waar tows overlap-
pen, zonder daarbij rekentechnisch veeleisende eindige elementen modellen te gebruiken.
Aandacht werd besteed aan de ontwikkeling van de procedure voor de analyse van VSP met
afgevallen tows, maar de procedure is ontworpen op een dusdanige wijze dat het concept
eenvoudig is uit te breiden naar de analyse van VSP met overlappingen.

Een gedegen techniek voor een goede modellering van dergelijke laminaten zou kunnen
zijn om het volledige variabele stijfheids laminaat te meshen op een manier die de afgelegde
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paden van de tow-placementmachine tijdens het productieprocess simuleert. Dit betekent
dat een inherent goede mesh gebruikt kan worden kan worden voor elk towpad gebaseerd op
de veronderstelde bouwmethode. Een eindige elementen pre-processing procedure is ver-
volgens ontwikkeld op basis van dit idee. Het uitgangspunt van de procedure is de partitie
van een tow-gestuurd laminaat op een dusdanige wijze dat elke laag kan worden beschouwd
als een onafhankelijke subdomein. Op deze wijze, de gebruiker voor iedere ply beslissen
wat de beste methode is om het mesh te genereren. Compatibiliteit tussen de subdomeinen
werd hersteld met behulp van Lagrange multipliers. Vervolgens werd de definitieve stelsel
geldende vergelijkingen opgelost met behulp van een procedure voor distributed computing,
normaal gesproken toegepast voor domein decompositie methoden, d.w.z. de eindige ele-
menten scheur- en verbindmethode (FETI). Het gelijktijdiggebruiken van meerdere reken-
methoden om een rekenprobleem op te lossen, d.w.z. parallelcomputing, verbreden hoe
dan ook het scala van toepassingen van de voorgestelde procedure. De keuze om de FETI
methode toe te passen was vooral gebaseerd op de parallelle schaalbaarheid die deze meth-
ode biedt en het feit dat deze methode beter preseteert dan populaire iteratieve algoritmes
zowel sequentiale en parallelle computers.

De FETI methode is ook bijzonder geschikt om te worden gecombineerd met een post-
processing procedure die ontwikkeld is om nauwkeurige nodale waarden van de interlam-
inaire spanningen te kunnen verkrijgen. De voorgestelde interlaminaire het herstelproce-
dure voor de spanningen doet geen beroep op extrapolatietechnieken van super-convergente
of integratie punten, zoals meestal het geval is voor gebruikelijke procedures. Interlam-
inaire spanningswaarden worden direct van de nodes verkregen en aan de spanningscon-
tinueteit opde inter-elementgrens wordt automatisch voldaan. De volledige spanningsstaat
werd verkregen door het ophalen van de spanningsverdeling in het vlak met behulp van
variationele consistente herstelprocedures. De volledige procedure werd ontwikkeld in
MATLAB, en gevalideerd door het analyseren van matig dikke/dunne conventionele com-
posieten platen met rechte vezels van verschillende geometrien. De resultaten werden
vergeleken met de beschikbare exacte en eindige elementen oplossingen. Conforme meshes
tussen lagen verkregen met behulp van een lineaire solid-shell element werden beschouwd.
Goede overeenkomst met exacte oplossingen werd bereikt, enconvergentie werd bereikt
met aanzienlijk minder vrijheidsgraden in vergelijking met andere eindige elementen pro-
cedures, waardoor de procedure meer geschikt is voor ontwerpdoeleinden. Er werd ook
aangetoond dat een geleidelijke verdeling eenvoudig werd gegenereerd, zonder de noodzaak
om smoothing technieken te gebruiken, zoals gewoonlijk vereist is bij gebruik van de ge-
bruikelijke spanningsherstelprocedures. Bovendien werdaangetoond dat de procedure net
zo nauwkeurig is als de veronderstelde spanningsmethoden met behulp van grovere meshes,
en zonder de noodzaak spanningsvrijheidsgraden mee te nemen in de oplossing. De pro-
cedure werd ook gecombineerd met een spaningsbezwijkcriterium, beschikbaar in de open
literatuur, om het begin van delaminatie te bepalen in gebieden waar een enkelvoudige span-
ningstoestand heerst. Bijzondere nadruk werd gelegd op hetprobleem van een belaste plaat
met een open rond gat. Ondanks de aanwezigheid van oscillaties in de interlaminaire span-
ningsverdeling dicht bij de rand van het gat, kon de huidige procedure worden gebruikt om
convergerende gemiddelde interlaminaire spanningen te verkregen op een afstand van het
gat. Vervolgens kon de procedure effectief gecombineerd worden met gemiddelde span-
ingsbezwijkcriteria om het begin van delaminatie in de nabijheid van een vrije gekromde
rand te voorspellen.
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De ontwikkelde post-processing procedure werd ook gecombineerd met het commer-
ciale eindige elementen softwarepakket ABAQUS 6.8TM met als doel de toepasbaarheid
van de methode te verruimen naar generieke 3-D schaalstructuren. Matig dikke/dunne com-
posieten platen en schalen met rechte vezels van verschillende geometrieen werden ge-
analyseerd. In dit geval werd het eindig elementen model gegenereerd in ABAQUS, en
de compatibiliteit tussen de lagen werd verkregen met behulp van een contactformuler-
ing beschikbaar in ABAQUS. Conforme meshes werden aanvankelijk beschouwd tussen
de laminaten. Het eindig elementen model werd verkregen metbehulp van het ingebouwde
vaste ABAQUSC3D8I element. De voordelen van de voorgestelde procedure voor deeerder
genoemde plaatlaminaten werden ook bevestigd voor schaallaminaten. De voorgestelde
procedure was in het bijzonder in staat om een aanzienlijke verbetering van de nauwkeurig-
heid van de respons te bewerkstelligen voor het ABAQUSC3D8I element in vergelijk-
ing tot de in ABAQUS ingebouwde spanningsherstelprocedure. Gladde en nauwkeurige
interlaminaire spanningsverdelingen werden verkregen met een aanzienlijke kleiner aantal
vrijheidsgraden, met name voor meerlaagse schaalconstructies, zelfs in vergelijking met de
in ABAQUS ingebouwde kwadratische formuleringen.

Het meshen van een volledig variabele stijfheidslaminaat door het simmuleren van het
process dat door de kop van een tow-placement machine doorlopen wordt tijdens produc-
tie leidt onvermijdelijk tot niet-conforme meshes tussen de lagen in het laminaat. Niet-
conforme meshes tussen de lagen werden ook onderzocht in de procedure met het gecom-
bineerde gebruik van de eindige elementen commerciale software ABAQUS 6.8TM ge-
bruikt als pre-processor, en de voorgestelde post-processing procedure ontwikkeld in MAT-
LAB. Lagen met een regelmatig mesh bestaand uitC3D8I elementen werden afgewisseld
met lagen met een mesh gecombineerd uit lineaire baksteenC3D8I elementen en lineaire
driehoekige prismaC3D6 elementen. Het driehoekige prismaC3D6 element werd geen-
troduceerd, omdat het bijzonder geschikt is voor het modelleren van gebieden dicht bij
de zijkanten van een variabele stijfheids panel en hars-rijke gebieden die tijdens het fab-
ricageproces van een variabele stijfheids paneel ontstaan. Vervolgens, werd het gebruik
vanC3D6 elementen getest in combinatie met ABAQUS’C3D8I elementen, en het werd
aangetoond dat het toelaatbaar is deze elementen ook eldersin de constructie toe te passen.
Variaties in de verkregen dwarsspanningsverdeling werdenwaargenomen. Hierdoor werden
onnauwkeurige waarden voor de interlaminaire dwarsspanning verkregen. Deze variaties
vertoonden echter dezelfde trends als de verdelingen die worden verkregen door middel van
conforme meshes, die als referentie oplossingen genomen werden. Een middelingstechniek
werd ontwikkeld deze verdelingen geleidelijker te maken. De ontwikkelde techniek mid-
delt de in elke node verkregen spanningswaarden met die van de spannigswaarden van de
nodes van omringende elementen die dezelfde node delen. Over het algemeen werden met
behulp van de voorgestelde middelingstechniek gladde en nauwkeurige verdelingen verkre-
gen binnen drie tot vier iteraties voor zowel plaat- als schaallaminaten. De meshes moesten
echter veel fijner zijn dan het geval was voor conforme meshes, en voor sommige van de
dwarse spanningscomponenten traden er onnauwkeurighedenop in de gegenereerde span-
ningsverdelingen dicht bij de randen van het laminaat. De componenten waarvoor deze
onnauwkeurigheid optreedt verschillen per probleem, dat wil zeggen randvoorwaarden, be-
lastingen, etc.

Toekomstig onderzoek zal zich moeten richten op de verbetering van de methode voor
de niet-conforme meshes, op het uitvoeren van niet-lineaire analyses van conventionele
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rechte vezel composiet laminaten, en op het uitvoeren van analyses van de vezel-gestuurde
laminaatconfiguraties. De ontwikkelde methode in dit proefschrift is rechtstreeks van toepass-
ing voor het analyseren van VSP met afvallende tows, maar de methode kan worden uitge-
breid om variabele-stijfheids panelen met overlappingen te analyseren. Dit komt omdat de
hars-rijke gebieden in het laminaat, vanwege de overlap tussen twee paden, kunnen worden
gemodelleerd met behulp van dezelfde driehoekige prisma elementen als gebruikt voor lam-
inaten met afvallende tows, maar wel anders georienteerd inde globale mesh. Aanvullende
analyses zijn echter nodig om de methode voor de analyse van de VSP te valideren.





Acknowledgements

It was a great opportunity for me to join the group of aerospace structures at TU Delft
in June 2006. In this regard, the financial support for this Ph.D. effort by TU Delft is
gratefully acknowledged. I am thankful to my promoter, Prof.Dr Zafer Gürdal, who offered
to me this opportunity, believed in me, advised me and supported me even in the difficult
moments. I am also very thankful to my daily supervisor, Dr. M.M. Abdalla. During this
incredible experience I was always been very proud to be ableto daily work with him, and
to have the great opportunity to improve my knowledges and technical skills thanks to his
unlimited knowledges and availability. Moreover, with hisnatural behaviour and humour he
was kind enough to nurture a relation beyond strict professional lines. I also acknowledge
my colleagues and friends for the wonderful working environment. In particular, I want to
thank my office mates whom were supportive of me even when I wasstressed out and not
in a good mood.

I address special thanks to Jan Hol, who was involved in the resolution of issues related
to the computational resources required for the numerical simulations, and others. I am very
thankful to Miranda Aldam-Breary for helping me to write this thesis in a proper English,
in particular for her patience and availability. I am also grateful to Eddy Van Den Bos for
the help with Catia’s drawings, and to Julien Van Campen for the Dutch translation of the
summary of this thesis, i.e. Samenvatting. I shall also not forget the help of Annemarie
Van Lienden, Angela De Gier and Laura Chant with all the paperwork required for different
subjects during these years. In particular, I am very thankful to Laura Chant because she
helped me even beyond her duties. Laura’s help had great consequences during the last year
of my experience at TU Delft.

The elaboration of this thesis was helped by the contribution of Prof.Dr. D.J.Rixen from
the Department of Precision and Microsystems Engineering of TU Delft on the development
and coding of the Finite Element Tearing and Interconnecting Method for parallel comput-
ing. I am also very grateful for the advise and help of Christos Kassapoglou, Agnes Blom,
Attila Nagy, Sam Ijsselmuiden and Claudio Lopes in various subjects covered by this thesis.

I am also very grateful to SIMULIA B.V. for covering part of the printing cost of this
thesis and their interest in my work.

Finally, I am grateful to my family which has always believedin me. Without their
support and help since the beginning of my academical path I would not have had the op-
portunity to realize my dream to become an aerospace engineer and, almost, a doctor in
aerospace engineering. My last thanks are for Myriam, who has shared with me the last
nine month of this experience. She has been supportive and patient in the final stages of my
work, and she has motivated me to do better and better. She is the woman that makes me a

xi



xii Acknowledgements

better man. Thank you! I dream of a great future with you.

Christian
Delft, October 2010



Contents

Summary i

Samenvatting v

Acknowledgements xi

Table of Contents xiii

1 Introduction and Objectives 1
1.1 Lightweight Structures . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
1.2 Non-Conventional Laminates . . . . . . . . . . . . . . . . . . . . . . .. . 2
1.3 Tow-Placement Technology . . . . . . . . . . . . . . . . . . . . . . . . .. 3
1.4 Tow-Steered Laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.5 Structural Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.5.1 Stiffness and Buckling Performance . . . . . . . . . . . . . . .. . 9
1.5.2 Failure Performance . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.3 Computational Modeling of Manufacturing Characteristics . . . . . 11

1.6 Thesis Objectives and Outline . . . . . . . . . . . . . . . . . . . . . .. . 12

2 Theories for Multilayered Anisotropic Composite Structures 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Anisotropy’s Effects on Layered Structures . . . . . . . . . .. . . . . . . 18
2.3 Strategies for the Development of Plate/Shell Theories. . . . . . . . . . . 20

2.3.1 Available 2D Approaches . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Displacement and Mixed Formulations: Variational Statements . . . 22
2.3.3 Multilayered Form Description: Classical Equivalent Single Layer

Theories and their Refinements . . . . . . . . . . . . . . . . . . . 23
2.3.4 Layer-Wise Theories . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.5 Zig-Zag Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Stress Recovery Techniques 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Stress Recovery Techniques for Displacement Based Finite Elements . . . . 38
3.3 Mixed Formulations as Stress Recovery Techniques . . . . .. . . . . . . . 46

xiii



xiv Contents

3.3.1 Hellinger-Reissner Functional . . . . . . . . . . . . . . . . . .. . 46
3.3.2 Hu-Washizu Functional . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Enhanced Assumed Strain Method . . . . . . . . . . . . . . . . . . 50

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 A Finite Element Procedure for Interlaminar Stress Analyses 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 FETI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Variationally Consistent Stress Recovery Procedure . .. . . . . . . . . . . 68
4.5 Interlaminar Stress Recovery Procedure . . . . . . . . . . . . .. . . . . . 71
4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Simply Supported Plate Subjected to Bisinusoidal Pressure Load . . 73
4.6.2 Stress Analyses of Laminated Composite Plates with Open Hole

Subjected to Uniaxial Tension . . . . . . . . . . . . . . . . . . . . 87
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Interlaminar Stress Analyses of Multilayered Laminates having Non-Conforming
Meshes between the Plies 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Interlaminar Stress Recovery Procedure . . . . . . . . . . . . .. . . . . . 102
5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Simply Supported Plates Subjected to Bisinusoidal Pressure Load . 105
5.3.2 Varadan and Bhaskar’s Cylindrical Shells . . . . . . . . . .. . . . 113
5.3.3 Spherical Curved Surfaces . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Recommendations and Future Developments 133
6.1 Pre-Processing Procedures . . . . . . . . . . . . . . . . . . . . . . . .. . 133
6.2 Post-Processing Procedure . . . . . . . . . . . . . . . . . . . . . . . .. . 136
6.3 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 139

Curriculum Vitae 153



Chapter 1

Introduction and Objectives

1.1 Lightweight Structures

The unrelenting passion of the aerospace industry and manufacturers to enhance the per-
formance of aircraft is constantly driving the developmentof improved, high performance
structural materials. In particular, with the increasing costs of energy, there is pressure to
produce lighter structures and, in response to this, composite materials have come to play
a significant role in current and future aerospace components. Composite materials are
particularly attractive for aviation and aerospace applications because of their exceptional
strength and stiffness-to-density ratios. Another advantage of composite materials is that
they can be formed into more complex shapes than their metallic counterparts. This reduces
the number of parts needed to make a given component, and reduces the need for fasteners
and joints. There are two main advantages to this: (i), fasteners and joints can be the weak
points of a component due to stress concentration and reducing the need for fasteners and
joints reduces the number of potential crack-initiation sites on a structure, and (ii), fewer
fasteners and joints leads to shorter assembly times and thus cost savings.

A composite material typically consist of relatively strong, stiff fibres in a tough resin
matrix. Wood and bone are natural composite materials. Somewell known man-made com-
posite materials are Fibre Reinforced Plastics (FRP): FRP offer the best values of specific
stiffness (stiffness/density) and specific strength (strength/density) amongst engineering ma-
terials. All FRP are advanced composites where long fibres, e.g. glass - GFRP, carbon -
CFRP, are embedded in a polymer matrix. Characterised by high stiffness and strength, the
role of the fibers is to reinforce the relatively low-strength matrix. Therefore, it is possible to
combine the properties of a lightweight matrix with those ofthe strong fibres. Overall, this
technique results in a lighter material than its monolithiccounterparts, e.g. metal, while still
maintaining high-stiffness and high-strength propertiesalong a predetermined direction, the
direction of the fibers. Fibrous composites are anisotropic, i.e. their properties vary depend-
ing on the direction of the load with respect to the orientation of the fibres. This anisotropy
is overcome by stacking layers, each one often only fractions of a millimeter thick, with
the fibres oriented at different angles to form a laminate. Specific stiffness properties of a
laminate can be achieved by stacking the differently oriented layers in a specific sequence
to tailor the properties of the laminate to withstand the loads optimally, therefore achieving

1
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the best structural performance.
Practical considerations have dictated that the design variables of conventional laminates

are reduced to the number of plies, the fibre angle within eachply and the stacking sequence
in the design of composite laminates. Moreover, the fibre angles are often chosen from a
small number of discrete values: 0◦, 90◦,±45◦. Within this conventional design practice the
design space results rather limited because it only allows for configurations with constant
properties along the laminate planar dimensions. Consequently, it is not possible to tailor a
panel to respond in the most efficient manner to non-uniformly distributed in-plane stresses,
for example those caused by holes and notches.

The full potential of advanced composites can only be achieved by tailoring a laminate to
each specific structural application. In this way, it is possible to respond more adequately to
planar stress variations and it is possible to divert loads from the most sensitive regions of a
composite structure such as holes and notches: e.g. Biggersand Srinivasan (1993) and Big-
gers and Pageau (1994) tailored laminates by positioning unidirectional lamina through the
thickness and over the planform of rectangular plates to create beneficial stiffness patterns
against compression and shear buckling. This solution can lead to stress concentrations and
delaminations. DiNardo and Lagace (1989) achieved in-plane laminate tailoring by drop-
ping off plies. In their work, experimental and analytical investigations have shown that
ply dropoffs have a marked effect on plate buckling and postbuckling behaviour. Another
method of tailoring a composite laminate is to usenon-conventional laminates.

1.2 Non-Conventional Laminates

The designationnon-conventional laminatesrefers to two types of configurations: (i), lam-
inates that explore the whole range of possible ply orientations, and (ii), composite panels
with lay-ups that vary continuously from point to point. A continuously varying lay-up
is achieved using non-traditional curvilinear fiber paths within the plane of a ply. In such
cases, the laminate stiffness also varies with the in-planecoordinates of the laminate, hence
these configurations are termed Variable-Stiffness Panels(VSP). The illustration in Figure
1.1 shows that at each point in the platform of a VSP there is a distinct, non-conventional,
lay-up of type (i). One of the first theoretical investigations on the effects of tailoring elastic
properties of laminates by varying the fibre orientations was carried out by Muser and Hoff
(1982). These authors provide a closed-form solution for the stress concentration around a
hole of an orthotropic plate subjected to uniaxial tension and containing a radial variation
in elastic properties. Their analysis shows that the introduction of a±45◦ fiber arrangement
in the vicinity of the hole, that gradually varies to a quasi-isotropic lay-up at the outer edges
of the plate, is very effective for reducing stress concentrations. Yau and Chou (1988) in-
serted metal pins into woven-fabric composite laminates prior to curing, effectively pushing
the fiber tows apart to create a molded hole. This was designedto reduce the sensitivity to
open holes compared to similar laminates used with drilled holes. The resulting laminates
possessed curvilinear fibers around the hole and exhibited improved open-hole strength.

Hyer and Charette (1991) applied the concept of curvilinearfibers to a plate with a cen-
tral hole. According to them, a gain in structural efficiencycan be achieved by aligning the
fibers in some, or all of the layers, in a laminate with the principal stress directions in those
layers. The stress-based Tsai-Wu failure criterion (Tsai and Wu, 1971) applied on a Finite
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Figure 1.1: Example of a 2-ply VSP.

Element (FE) solution predicted marked improvement of the failure behaviour of these pan-
els over their traditional, straight-fibre counterparts. Although the tension behaviour was
improved with the variable fibre-orientation format, the same tendency was not observed
with respect to the buckling response. In a follow-up work byHyer and Lee (1991), both
a sensitivity analysis and a gradient search technique wereemployed, leading to increased
buckling loads compared to the traditional straight-fiber design. It was shown that it is pos-
sible to place the fibers in such orientations that the loads are transferred away from the
unsupported hole region of the plate to the supported edges,thus increasing the buckling
capacity. It was also shown that combining both straight andcurvilinear fibre plies within a
laminate, resulting inhybrid laminates, produced the best buckling and failure results.

Other examples of fiber orientation angle tailoring includetheoretical and numerical
studies have been done by Banichuk (1995), Pedersen (1991),Duvaut et al. (2000), Crothers
et al. (1997). The motivation of these studies was the optimisation of the spatial variation of
fibre orientation within the domain of a composite panel to improve its stiffness, buckling
or strength characteristics.

1.3 Tow-Placement Technology

The fibre-steered laminate designs discussed in the previous section require an accurate fibre
placement system. Hand laying methods would not provide therequired precision for laying
the fibres at the correct angles and keeping these angles during curing. Moreover, variability
in quality resulting from the manual process has to be addressed. Automated fabrication
processes are able to provide repeatable and improved quality component production with
a reduced production cycle time.

Filament winding is a traditional automated method where a pressure vessel can be
fabricated by winding strands or tows of fibers around a mandrel formed in the shape of
the vessel (Mondo et al., 1997; Pasanen et al., 1997). Filament winding has also been
successfully extended to stiffened structural componentssuch as grid-stiffened panels and
geodetically stiffened shells. Filament winding, however, has limitations in terms of the
shapes that can be produced, which are basically restrictedto convex geometries since a
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concave surface would be bridged over because of the high tension necessary to hold the
fibres in place.

Tow-Placement (TP) is a technology that combines the differential tow payout capabil-
ity of filament winding and the compaction and cut-restart capabilities of automated tape
laying (Gürdal et al., 2005). A TP machine is a high-precision robot, capable of wide free-
dom of movement, and computer controlled to produce a composite component without
human intervention (Bullock et al., April 1990; Enders and Hopkins, 1991): TP technol-
ogy allows the design and production of components that would be extremely difficult or
even impossible with other automated methods. In the TP process, individual prepreg tows
are fed through a fibre delivery system (Figure 1.2(a)) into afibre placement head (Figure
1.2(b)) and grouped together to form a band of parallel fibers. A tow-placement head can

(a) Fibre placement delivery system. (b) Curved tow courses.

Figure 1.2: Fiber Placement (FP) technology: system characteristics (courtesy of Ingersoll
Machine Tools (Ing)).

accommodate up to 32 tows. A typical tow placement head is shown in figure 1.3. When

Figure 1.3: Typical tow-placement head (courtesy of Evans (2001)).

starting a course, the individual tows are fed through the head and compacted onto a surface.
As the course is laid down, the processing head can cut or restart any of the individual tows.
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Hence, the width of the fibre band can be increased or decreased allowing for the elimi-
nation of excessive gaps or overlaps between adjacent courses. At the end of the designed
course, the remaining tows are cut to match the shape of the ply boundary. The range of
motion described by the tow-placement head allows the tows to be aligned in any direction,
therefore enabling the production of double-curved parts.Each tow is dispensed at its own
speed during the placement of a course, allowing it independently to conform to the surface
of the part. This different payout system enables the fibers to be steered in such a way that
specified designs can be met, as shown in Figure 1.2(b), whereas filament winding and au-
tomated tape laying are confined to near geodesic path since they rely on the friction and the
tension of the material to hold individual fibre paths in place. More technical information
on TP technology and fabrication issues encountered duringmanufacture can be found in
the work done by Gürdal et al. (2005) and Lopes (2009).

1.4 Tow-Steered Laminates

The potential of fibre-steered laminates led to the birth of anew branch of research in lam-
inated composite materials aimed at properly modelling andpredicting the responses of
such laminates. A simple method of modelling complete tow paths was developed in the
research initiated by Gürdal and Olmedo (Gürdal and Olmedo,1993; Olmedo and Gürdal,
1992, 1993). The work led by Gürdal resulted in the formulation of a tow steered ply def-
inition with a minimum number of parameters. A simple formulation is necessary for the
attractiveness of the concept, and to allow for fast optimization algorithms to produce the
best manufacturable structural design. Being manufacturable implies that the curvilinear ply
paths can be fabricated using existing fibre placement technology, thus the range of possible
designs is bounded by the constraints of the machine used.

In the formulation proposed by Gürdal and Olmedo (Gürdal andOlmedo, 1993; Olmedo
and Gürdal, 1992, 1993), it is assumed that the fibre angle of areference fibre path varied
linearly from the valueT0 at a fixed position in the panel, typically its geometrical center,
to T1 at a specific distanced, as illustrated in Figure 1.4. This distance is often taken as a
characteristic dimension of the composite panel being designed. Using this formulation the
orientation of a single curvilinear fibre path can be denotedby< T0|T1 >. This curve is the
reference pathfor the course followed by the TP machine head when laying a band of tows.
A more general fibre path definition can be achieved by rotating the axis of variation of the
fibre orientation by an angle,φ, from the geometric axis of the panel. This rotation defines
a new fibre orientation variation axis denoted byx’. According to the formulation, the fibre
path defined byφ < T0|T1 > varies linearly along thex’ direction, rotated from the x-axis
by an angleφ. In order to construct the remainder of the ply, Gürdal and Olmedo (Gürdal
and Olmedo, 1993; Olmedo and Gürdal, 1992, 1993) suggested shifting the reference path
in a direction perpendicular to its axis of fibre variation. This method gives increases of up
to 50% in the axial stiffness and up to 80% in the critical buckling load of TP panels when
compared to traditional straight-fibre laminates.

These theoretical benefits, e.g. those suggested by Gürdal et al. (2008), may be bounded
by the real manufacturing conditions and limitations imposed by the TP machine (Gürdal
et al., 2005). For instance, as a consequence of the discretetow course shifting, the bound-
aries of constant-width neighbouring courses do not match for all locations along thex’-axis
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Figure 1.4: Linear fibre angle variation reference path.

and, consequently, areas having fibre gaps and/or tows overlapping each other are created.
Allowing tows to overlap generates local thickness buildup, and this process is referred to as
the tow-overlap method. This effect may not be desirable, for example, in parts thatact as
control surfaces, yet it can also be advantageous for other parts since these thicker regions
can act as “integral stiffeners”.

Overlapping regions can be eliminated by using the tow-cutting and restarting capability
of the TP machine. The tows are cut individually perpendicular to the fibre direction, result-
ing in a jagged edge. It is possible to determine the degree towhich a smooth boundary is
covered by the discrete tows of the course using a user-defined parameter furnished by the
tow-placement software, referred to as the “coverage parameter”(Gürdal et al., 2005; Tat-
ting and Gürdal, 2003). This process is referred to as thetow-drop method. Three examples
are given in figure 1.5. For 0% coverage, each tow is cut so thatits leading edge does not

Figure 1.5: Tow-dropping with different coverage parameters (courtesy of Gürdal et al.
(2005)).

extend past the limiting curve. This results in a small fibre-free triangular area that is likely
to be filled with resin during curing, therefore creating a “resin rich ”region which may be
termed atow-drop area. A constant thickness fibre-steered laminate can be produced by
applying this technique. This scenario is displayed in Figure 1.6 where a close-up of an
overlap region and the tow-dropping that occurs is highlighted. At 100% coverage, the tow
is cut only when both tow-edges cross the boundary, creatinga small triangular overlap area.
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Figure 1.6: Close-ups of overlap regions using both shiftedmethods (courtesy of Gürdal
et al. (2005)).

Intermediate values contain both gaps and small thickness variations. Examples of panels
manufactured by the tow-drop and tow-overlap methods are shown in figure 1.7.

(a) Tow-drop method. (b) Tow-overlap method.

Figure 1.7: Examples of tow-steered composite panels manufactured according to two fab-
rication methods.

The effects of manufacturing issues on the laminate response, such as tow-drops and tow
overlaps, constraints of fabrication, addressed in detailin the work of Gürdal et al. (2005),
and the residual thermal stresses due to panel curing, are important aspects that need to be
properly addressed in both the design and analysis stages ofa tow-steered laminate. For in-
stance, theply staggeringtechnique (Gürdal et al., 2005) can be adopted in the design stage
of a tow-steered laminate to avoid the collocation of courseedges, tow drops or tow over-
laps, that would occur at the same places through-the-thickness of a laminate in clustered
plies, i.e. adjacent plies with the same fiber angle distribution. Collocation of course edges
has two different effects depending on the manufacturing method. If the tow-drop method
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is used, local resin-rich regions can occur throughout the panel thickness, and this can de-
grade the laminate strength. If the tow-overlaps method is used, coincident course edges
generate the highest thickness buildups which can be smoothed by ply staggering, allowing
the production of smooth thickness laminates with no appreciable decrease in performance
(Jegley et al., 2003). This technique is illustrated in figure 1.8 in which a panel that contains

Figure 1.8: Ply staggering of tow-steered plies using the tow-overlap method construction
(courtesy of Gürdal et al. (2005)).

three ply groups using the tow-overlap construction methodis rapresented. The first ply
group on the left is a0±< 45|60> ply group, where the dark regions denote the thickness
build-up, and the next two ply groups contain the same angle definition, though each is dis-
placed by one-third of the shift distance in the vertical direction. The combination of the
three ply groups leads to a smoother thickness distributioncompared to the one that would
have been obtained if the three ply groups of0± < 45|60> were not staggered. When the
tow-drop construction method is used instead, this technique provides an added bonus of
distributing the gaps more evenly within the structure. Nevertheless, the designer of VSP
should be aware that ply staggering causes the actual lay-upto be locally asymmetric and
unbalanced. Gürdal et al. (2005) have presented several options to achieve the same benefit
of ply staggering with a reduced impact on panel performance. A detailed overview provid-
ing additional considerations on manufacturing and designof VSP is presented by Lopes
(2009).

1.5 Structural Response

The primary objective of varying the orientation of fibres within the plane of laminates is
to increase the structural performance of fibre-reinforcedcomposites in terms of stiffness,
buckling and failure characteristics, when compared to traditional straight-fibre laminates.
Since the creation of the concept, the structural response of variable-stiffness laminates has
been analysed by several authors, whose investigations have been overviewed by Lopes
(2009) and briefly described in the following paragraphs.
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1.5.1 Stiffness and Buckling Performance

Gürdal and Olmedo (Gürdal and Olmedo, 1993; Olmedo and Gürdal, 1992) used a numer-
ical iterative technique to solve the system of coupled elliptic partial differential equations
governing the in-plane response of VSP. The results showed increases in the axial stiffness
of VSP of up to 50% compared to straight-fibre laminates. Further work of the same authors
(Olmedo and Gürdal, 1993) employed the Rayleigh-Ritz Method to find the buckling loads
and modes for two different cases of fibre angles variation. In the first case the fiber orienta-
tion varied in the direction of the applied load and improvements in the buckling load were
obtained compared to the straight-fiber configurations. Higher performance improvements
in the buckling load, up to 80% over straight-fiber configurations, were found in the second
case in which the fiber orientation varied perpendicularly to the loading direction.

In the follow-up work carried out by Waldhart et al. (1996) and Waldhart (1996) the
buckling loads of compression and shear loaded tow-steeredpanels were analysed by solv-
ing the elliptical partial differential equations governing the panel behaviour. Increased
buckling performance, compared to the straight-fibre counterparts, was reported.

Wu et al. (2002) and Wu (2006) conducted experimental and FE studies to characterise
the structural response of two different compression-loaded variable-stiffness composite
panels. The panels were designed and manufactured according to the tow-drop method
and the tow overlap method, respectively. A baseline cross-ply laminate was also anal-
ysed and tested for comparative purposes: VSP, especially the ones with overlapping tows,
showed significantly better structural efficiency than the baseline laminate. Experimental
data showed transitions loads up to 5 times that of the baseline laminate. Differences in
structural response between the two variable-stiffness panels were attribute to the regions of
overlapping tows which act as local stiffeners, hence increasing the load-carrying capability
of the panel manufactured according to the tow-overlap method. The FE predictions far
exceeded the experimental buckling loads. It was determined that the difference between
predicted and actual performance was the result of the residual stresses induced by the
curing process, which, in general, are also responsible forthe superior performance demon-
strated by tow-steered laminates compared with straight-fibre composites. Non-linear FE
analyses with thermal prestresses were performed to correlate better the predictions with
the test results. This analysis resulted in a more consistent correlation with test results.

Tatting and Gürdal (2001) optimised a panel with central hole for compressive buckling
load. First, a panel without a hole was considered for the optimisation study. Then, a hole
was added to the best lay-up and the panel analysed in the FE code STAGS (STructural
Analysis of General Shells) (Rankin et al., June 2000). Compared to the baseline panel,
the best curvilinear-fibre panel achieved an improvement inload-carrying capability of over
60% with no appreciable increase in weight. Then, the chosenconfigurations, and base-
line panel, and a curvilinear-fibre panel without central hole, were manufactured and tested
by Jegley et al. (2003, 2005). Reasonable agreement was observed for the straight-fibre
specimens but buckling and post-buckling behaviour was notas accurately predicted for the
tow-steered specimens.

An overview of the effects of fibre-steering on the in-plane stiffness and buckling re-
sponses of tow-steered panels is presented in Gürdal et al. (2008). These analyses have
been further refined by Abdalla et al. (2009) with the inclusion of residual thermal stresses.
The variable stiffness concept has been extended to structures other than plates. Tatting
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(1998) investigated the application of the variable stiffness concept to thin cylindrical shells
of various length. Conical shells have been studied by Blom et al. (2008a,b).

1.5.2 Failure Performance

First-ply failure analysis and failure test have been the subject of a few works on variable-
stiffness laminates. Waldhart et al. (1996) and Waldhart (1996) considered failure as a
constraint on the production of tow-steered panels. The Tsai-Hill first ply failure criterion
(Rowlands, 1985) was applied to rule out configurations withfirst-ply failure loads lower
than buckling loads. The reason for this is that the potential applications of tow-steered
composite panels are compression-loaded structural partsfor which the buckling loads are
generally the limiting factor. The use of the Tsai-Hill criterion was chosen over other failure
prediction methods, such as the maximum stress and maximum strain theories, because it
offers a more continuous strength variation that accompanies changes in orientation angle
and it incorporates interactions between the failure strengths that some other theories com-
pletely neglect. Although the Tsai-Hill criterion takes into account quadratic interaction
between stress components, its formulation is based on curve-fitting techniques that do not
account for the effect of the ply thickness on the strength. Furthermore, it does not reveal
the mechanism of failure.

Wu et al. (Wu, 2006; Wu et al., 2002) analysed and tested tow steered panels and a
baseline cross-ply plate under compression loads up to failure. The tests performed on the
variable stiffness panels showed a linear pre-buckling load-deflection response, followed by
a non-linear response until failure which occurred at load levels about three times greater
than the buckling loads. The weight-normalised failure loads were found to be approxi-
mately 28% and 8% greater than the baseline panel, respectively for the tow-steered lam-
inates with and without overlapping tows. Attempts to simulate numerically the nonlinear
postbuckling response, relying solely on geometrically nonlinear analysis, resulted in inac-
curate results. The introduction of nonlinear shear behaviour allowed the correct simulation
of the postbuckling path.

Jegley et al. (2003, 2005) tested compression and shear loaded VSP up to global struc-
tural failure, and compared the results with straight-fibreconfigurations. The geometries
included central holes of various sizes. The Tsai-Hill first-ply failure criterion was initially
applied on candidate designs to guarantee that the panels produced would fail at loads much
higher than the buckling loads. The panels manufactured by the tow-overlap method carried
loads more than three times their buckling loads while shearloaded specimens reached at
least twice their buckling load levels before failure. Overall, VSP had a failure performance
up to 60% higher than the constant-stiffness configurations.

More recently, Lopes et al. (2007, 2008) have demonstrated the advantages of variable
stiffness over straight-fibre laminates in terms of compressive buckling and first-ply fail-
ure. A user-developed continuum damage model was employed in the finite element code
ABAQUS for the identification of damage initiation and material stiffness degradation in the
post-buckling regime. Moreover, a physically based set of failure criteria, able to predict
the various modes of failure of composites laminate structure, was also implemented. The
improvements gained using tow-steered laminates over traditional straight-fibre laminates
concerning first-ply failure were remarkable. The improvements achieved by the tow-drop
method (24.8%) were even surpassed by the overlap method (33.9%).
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Alhajahmadetal. (Alhajahmad, 2008; Alhajahmad et al., 2008a,b) designed tow-placed
pressurised fuselage panels with and without cutouts for maximum strength performance.
The Tsai-Wu first ply failure criterion (Tsai and Wu, 1971) was used in the optimization
algorithm. Improvements in panel load carrying capacity of50% and above were achieved
compared to constant-stiffness configurations.

Strength-based criteria are the usual methodology for predicting the onset of failure
events in composite structures due to their ease of use with the finite element method. How-
ever, the mechanism that leads to failure can not be fully understood when using these
approaches Lopes (2009). Physically-based failure criteria have been also developed and
proposed. These represents a step further in the quest to identify the phenomena at the
origin of the failure process. Phenomenological-based criteria are widely applicable, as op-
posed to curve-fitting based criteria whose applicability is restricted to the particular load
cases from which they are derived. In this regard, a detailedliterature overview can be found
in Lopes (2009).

1.5.3 Computational Modeling of Manufacturing Characteristics

In the analyses of the tow-placed structures with constant thickness by Tatting and Gürdal
(2001, 2002, 2003), Blom et al. (2008a,b), Lopes et al. (2007, 2008), the course boundaries
have been assumed to be smooth. In reality, tows are cut perpendicular to the fibre direc-
tions, resulting in small triangular resin-rich areas, as shown in figure 1.6. Only Blom et al.
(2009) have done a theoretical, numerical investigation ofthe influence of these tow-drop
areas on the strength and stiffness of constant thickness variable stiffness laminates. In par-
ticular, the influence of tow-width, laminate thickness andply staggering, in combination
with tow-drop areas, on the in-plane failure performance ofvariable stiffness laminates was
analysed using parametric studies.

The commercially available FE package ABAQUS (ABAQUS, 2005) was used together
with the user-developed continuum damage model (Maimì et al., 2007a,b) to perform pro-
gressive failure analysis. The finite element model consisted of fully integratedS4 shell
elements, and a refined mesh was adopted since the elements have to be small enough to
capture the tow-drop areas. Good agreement with the experimental failure results were
obtained, and the authors concluded that the failure of VSP are inevitably affected by the
presence of tow-drops. It was shown that damage can be triggered by the resin-rich areas,
preferentially in regions where the angle between the loading vector and fiber orientations
is the largest. It could be also stated that ply staggering can mitigate the stress concentra-
tions in the neighbourhood of course edges and fibre-free areas. However, the occurrence
of delaminations, traditionally caused by interlaminar stresses that arise due to differences
in ply compliance and out-of-plane loadings, was neglectedaltogether in the model.

In other loading situations, such as cyclic loading, the failure initiation around tow-
drop regions may primarily be delamination (Lagace and Bonello, 1993; Shim and Lagace,
2004). Hence, the work of Blom et al. (2009) was a preliminaryassessment of tow-steered
configurations, based only on their in-plane behaviour. In this way the analyses were sub-
stantially simplified, the modelling difficulties were keptlow, but a sound basis for the
comparison of VSP with straight-fiber laminats was still achieved. However, care should be
taken in drawing definite conclusions about an obtained failure performance.
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1.6 Thesis Objectives and Outline

Delamination, caused or potentiated by interlaminar stresses (Pagano and Schoeppner, 2000),
is a key failure mode in laminated materials. A VSP has, by definition, a nonuniform in-
plane stiffness distribution that might result in large in-plane stress gradients (Lopes, 2009).
Such gradients contribute to the amplification of the interlaminar stresses, as demonstrated
in Saeger et al. (2002), and possibly to render delaminationthe dominant failure mode in
these configurations. Furthermore, VSP have manufacturingcharacteristics, such as course
edges, tow-drops and overlaps, as described in section 1.4,which may act as discontinuites
and stress concentration zones that locally excite the interlaminar stresses further. Similar
mechanisms develop in material discontinuites (Bath and Lagace, 1994) such as free edges,
e.g. in holes, notches and ply drop-offs (Shim and Lagace, 2006). Although many re-
searchers have paid their attention to the analysis of VSP, the knowledge about the variable-
stiffness configurations that lead to the highest ultimate loads is still rather limited. Fur-
thermore, the full details of the mechanisms that lead to failure of VSP are not yet known,
particularly the influence of local effects such as tow-drops or tow overlaps. This is because
these local effects require an accurate finite element modeling that is not of easy conception
using customary procedures.

An interesting analysis on the mechanisms and structural parameters affecting the inter-
laminar stress field in laminates with ply drop-offs is provided in Mukherjee and Varugh-
ese (2001) and in Shim and Lagace (2004). The overall insights gained from these works
are useful in understanding damage/failure characteristics, and are helpful in preliminary
design stages when it has to be chosen the laminate configurations that alleviate the inter-
laminar stress concentrations, and thus, increase the delamination load. This is because
a sense of the propensity for delamination of a particular laminate configuration can be
obtained. However, a detailed analysis on onset of delamination of such laminates requires
more accurate procedures, such as three-dimensional finiteelement analyses combined with
three-dimensional failure criteria.

Tows have to be cut at the course boundary to manufacture a variable stiffness laminate
with constant thickness, which results in small triangularresin-rich areas without any fiber,
as shown schematically in figure 1.9. Tow-drops are likely tobe in different locations across
the planform of the laminate from ply to ply depending on the stacking sequence. Then, it
becomes extremely difficult to capture the local stress states generated in the final laminate
using conventional two-dimensional finite element procedures, even by resorting to com-
putationally expensive meshes. For instance, a computationally expensive in-plane meshes
is required to model the tow-drop locations of every ply by adopting a two-dimensional
model, as the one used in Blom et al. (2009) generated using fully integratedS4 shell el-
ements. This is because the elements have to be small enough to capture the tow-drop
areas present in the complete laminate. Moreover, even though two-dimensional models
can be adopted for a preliminary assessment, these models are not able to analyse properly
the local three-dimensional stress states generated at thetow-drop locations, hence the on-
set of delamination, due to their intrinsic theoretical assumptions. Then, three-dimensional
displacement-based models represents a sound basis for proper analyses of tow-steered lam-
inates. However, difficulties arise using conventional three-dimensional procedures in the
development of a finite element model that is able to capture properly all the locations of
interest within the complete laminate.
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Figure 1.9: Schematic representation of a variable stiffness laminate, designed according
to the tow-drop method. (Blom et al., 2009).

Although interlaminar stresses have to be continuous both across and along layer in-
terfaces, the continuity of interlaminar stresses is difficult to enforce inC0 interpolated
elements. Accurate stresses are generally retrievable at Gauss points using constitutive
relations or variationally consistent procedures in conventional Lagrangian formulations.
However, interlaminar stress failure is likely to initiateat the interface between layers in
tow-steered laminates, in particular at the tow-drop and overlaps locations, making nec-
essary to have accurate stresses on the interface, as opposed to Gauss points. Accurate
extrapolation techniques from Gauss points are usually required in conventional finite ele-
ment procedures to achieve an appropriate level of accuracyof the interlaminar stress fields
at the element nodes. However, stress distributions evaluated using constitutive relations or
variationally consistent procedures may generate severe oscillations in the transverse stress
distributions when thin laminates are analysed. Moreover,inaccuracy in the recovered in-
terlaminar stress distributions may be obtained at the interfaces between the layers in the
case of high transverse stress gradients.

Based on what is stated above, the main goal of the research reported in this thesis
was to develop a three-dimensional finite element computational strategy for reliable future
stress analyses of variable stiffness panels. Moreover, the procedure had to overcome the
aforementioned problems that would be encountered in the modeling and analysis of such
laminates using customary procedures. In particular, the procedure had to be conceived in
such a way that areas where the failure initiation is primarily due to delamination, such as
tow-drop and overlapping-tows areas, can be easily modeledand analysed without requiring
demanding computational resources. The procedure had alsoto be conceived such that the
stress states generated can be combined with three-dimensional failure criteria commonly
used for delamination initiation in multilayered composite laminates. Attention was paid to
the development of a procedure for the analysis of VSP with tow-drops, but the procedure
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itself was conceived in such a way that the concept is easily extendible to the analysis of
VSP with overlaps.

The starting point of the present procedure is to partition atow-steered laminate in such
a way that every ply can be considered to be an independent subdomain. This means that
the compatibility between the subdomains has to be reestablished subsequently by imposing
adequate interfacial conditions. Then, a mesh based on the combined use of both linear brick
and linear triangular prism elements is adopted for every ply. Thus, the triangular shape of
the tow-drop locations, known from the procedure developedin Blom et al. (2009), can be
modeled properly using triangular elements. Moreover, theuser is enabled to decide the
most adequate method to generate the mesh in every single ply. For instance, the user could
decide to mesh every course independently. Thus, the final mesh of the complete laminate
could be obtained by simulating the procedure followed by the tow-placement machine’s
head during the manufacturing process. This means that a proper mesh can be inherently
adopted in each course based on the assumed construction method. Another possible option
is to directly mesh the complete ply using a reliable mesh generator tool. For instance,
using the commercial finite element software ABAQUS 6.8TM it is possible to import the
geometry of each ply using the partition method (ABAQUS, 2005). Then, it is possible to
control the mesh using the mesh generator of ABAQUS in such a way that brick element are
adopted within the courses, and triangular prism elements are adopted in the triangular resin-
rich areas, i.e. hex-dominated element shape and structured mesh control (ABAQUS, 2005).
However, both the methods would lead to non conforming meshes between the subdomains.
Thus, the procedure needed to be conceived in such a way that non-conforming meshes can
also be taken properly into consideration.

In order to broaden the range of numerical applications of the proposed approach, a pro-
cedure for distributed computing generally employed in domain decomposition methods,
i.e. the finite element tearing and interconnecting methodKruis (2007), was employed to
solve the system of algebraic equations. An efficient interlaminar stress recovery procedure
for three-dimensional finite element formulations was alsodeveloped as a post-processing
procedure. This interlaminar stress recovery procedure was conceived to overcome the
aforementioned problems usually encountered using customary procedures, and is based on
retrieving the interlaminar stress values directly at nodes. Thus transverse stress continu-
ity at the inter-element boundary is automatically satisfied, making the procedure neither
dependent on the knowledge of superconvergent point nor sensitive to the stress recover
method employed to obtain element stress distributions, i.e. constitutive relations or varia-
tionally consistent procedures. The post-processing procedure was completed by employing
a variationally consistent procedure for the recovery of the in-plane stresses.

An adequate modeling strategy for non conventional composite laminates could be de-
veloped only if a proper understanding of the behaviour of conventional laminates was
achieved. The thesis is set out as follows: in chapter 2 attention is paid to providing a
proper understanding of the complicate effects arising in conventional composite layered
constructions due to the typical anisotropic behaviour of these laminates. In this context,
high transverse deformability, zig-zag effects and interlaminar continuity, summarized as
C0

z requirements of multilayered composite structures, are addressed in detail. Variational
principles that have been established in the open literature to derive governing equations of
a structural problem are also discussed. Then, an overview of available two-dimensional ax-
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iomatic theories for analysing multilayer, anisotropic, composite plates and shell structures
is presented to help understand limits and advantages of these theories compared to three-
dimensional approaches. Common finite element procedures used to recover stress field
measurements in displacement based formulations are overviewed in detail in chapter 3.
Then, stress recovery expressions obtained using these procedures are compared with stress
recovery expressions obtained using hybrid formulations.The proposed finite element pro-
cedure is presented in detail in chapter 4. The reliability of the approach is tested analysing
several benchmark problems concerning multilayered platestructures. Comparisons with fi-
nite element software and available solutions in the literature are also reported. Finally, the
proposed procedure is combined with the commercial Finite Element software ABAQUS
in chapter 5, and benchmark problems concerning multilayerplate and shell structures are
analysed. Comparisons with ABAQUS’ built-in stress recovery and available solutions in
the literature are used to confirm the accuracy of the procedure. This thesis is concluded in
chapter 6 with an exposition of the lessons learned from the work reported in the previous
chapters, and a perspective on the research to be carried in the future based on the drawn
conclusions.





Chapter 2

Theories for Multilayered
Anisotropic Composite Structures

2.1 Introduction

Tow steered composite laminates require a comprehensive treatment of regions such as tow-
drop and/or overlapping-tows areas since three-dimensional stress states are common in
these areas. This is similar to what happen near geometric and material discontinuites, i.e.
free edges, cut-outs, which also give rise to stress concentration phenomena and to failure
initiation that is primarily due to delamination. An appropriate analysis of the onset of de-
lamination requires an efficient modeling strategy able to detect the local three-dimensional
stress states, and this can only be developed if it is fully understood how conventional com-
posite laminates function. Compared to isotropic structures, the anisotropic behaviour of
multilayered composite laminates introduces complicate effects, such as high transverse
deformability, zig-zag effects, i.e. rapid change in the slope of displacement fields in the
thickness direction in correspondence with each layer interface, and interlaminar continu-
ity of transverse stresses. These effects have to be carefully taken into account especially
when dealing with stress analyses of such laminates. The chapter begins with a discussion
concerning these complicating effects. Three-dimensional (3D) approaches are the obvious
tool of choice when attempting to reach an appropriate levelof accuracy in the recovered
stress fields, especially in presence of local phenomena such those mentioned above, but
the computational costs of these analyses can be prohibitive for practical problems. A two-
dimensional model can be used to obtain a valuable alternative, and an overview of the
available modeling theories will be given in this chapter sothat the limits and advantages
of these approaches compared to three-dimensional models can be understood. In partic-
ular, due to the impact that the axiomatic approach has had, and continue to have on the
modeling of composite structures, attention will be paid tothe axiomatic type theories and
related finite element implementations. Classical lamination theories and their refinements
are considered first, where an equivalent single layer description is adopted, meaning that
the number of the unknown variables is considered to be independent of the number of con-
stitutive layers. Then, layer-wise variables descriptions, in which each layer is seen as an
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independent plate and compatibility of displacements components is imposed as a constraint
at each interface, are considered. These theories will be addressed in both the framework
of displacement formulations, in which only the displacements are assumed as unknown
variables of the structural problem, and in mixed formulations, in which additional fields
are introduced as unknown variables of the stuctural problem, i.e. strains, stresses. The
chapter ends with a set of conclusions drawn from the forgoing discussion of multilayered
composite laminates analyses.

2.2 Anisotropy’s Effects on Layered Structures

Unlike their homogeneous isotropic counterparts, the heterogeneous anisotropic constitu-
tion of laminated composite structures often results in theappearance of many unique phe-
nomena that can occur on different geometric scales, i.e. atthe global or laminate level, the
ply level, or the fiber/matrix level. For example, global deformation of laminated composite
structures is often characterized by complex coupling between the extension, bending, and
shearing modes, leading to relevant complications in the procedure used to find a solution
to the governing equations of the problem (Jones, 1999; Reddy, 2004).

Advanced composite materials commonly used in aerospace applications may exhibit
in-plane anisotropy (IA), that is, the structure has different mechanical-physical proper-
ties in different in-plane directions: IA is generated by high values of Young’s moduli
orthotropic ratio (EL/ET = 40÷ 5 where L denotes the fiber direction and T denotes the
orthogonal directions to L), coupled with low values for thetransverse shear moduli ratio
(GLT/ET ≈ GTT/ET = 1/10÷1/200). The effect of IA is that higher transverse shear and
normal stress deformability with respect to in-plane deformability is reached compared to
isotropic structures. Moreover, IA introduces an additional relevant consequence: a cou-
pling between in-plane and out-of-plane strains may be introduced as it is the case for un-
symmetrically laminated plates, causing large displacements in the structure even if low
levels of the applied loadings are considered (Carrera, 2002; Jones, 1999; Reddy, 2004).

Further complications arise in laminated composite structures due to the transverse dis-
continuous mechanical properties, i.e. transverse anisotropy (TA) of multilayered construc-
tions leading to displacement fields in the thickness direction that present a rapid change
of their slopes in correspondence with each layer interface. This is known as the Zig-
Zag (ZZ) form of displacement fields in the thickness direction of the laminate (Carrera,
2002). A comparison of the possible scenario between a one-layer composite structure and
a three-layer composite structure of both displacement andstress components distributions
along the thickness direction of the laminate is shown in figure 2.1, as it would appear
from an exact 3D analysis or from experimental data (Carrera, 1997). For the sake of sim-
plicity, reference is made to plate geometries. The stress components are referred to the
global laminate Cartesian coordinates system(x,y,z) shown in figure 2.2, in which the lo-
cal lamina coordinate system(x1,x2,x3) is also reported. In contrast to the in-plane stress
componentsσp = (σ11,σ22,σ12) that can be, in general, discontinuous at each layer inter-
face, the transverse stress componentsσp = (σ13,σ23,σ33), for equilibrium reasons, i.e. the
Cauchy theorem, must be continuous at each layer interface.It is evident from figure 2.1
that both the displacement and transverse stress distributions, for reasons of compatibility
and equilibrium, respectively, areC0-continuous functions in the thickness z direction. It
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Figure 2.1: C0
z Requirements. Comparison concerning possible scenarios of both displace-

ment and stress thickness distributions between a one-layer composite laminate
and a three-layered composite laminate (courtesy of Carrera (1997)).

Figure 2.2: A lamina with local and global coordinate systems.

should also be noted that both the distributions have discontinuous first derivatives corre-
sponding to each interface. The ZZ and the interlaminar continuity, (IC), of the transverse
stresses are referred to asC0

z-Requirements in Carrera (1996a, 1997). The fulfillment of
C0

z-Requirements are crucial to the development of any theory suitable for the analysis of
multilayered structures. It should also be taken into account that laminated composites of-
ten exhibit transverse stress concentrations near material and geometric discontinuities at
the ply level, the free edge effect, that can lead to damage inthe form of delamination
and matrix cracking. At the fiber/matrix level, stress concentrations can cause fiber/matrix
separation, radial matrix cracking, and other forms of cumulative damage that degrade the
stiffness of the individual ply, thus causing a complex loadredistribution.
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2.3 Strategies for the Development of Plate/Shell Theories

The obvious approach to use to analyse multilayered composite plates and shells is to
solve directly, in a strong or in a weak sense, the fundamental differential equations of
three-dimensional 3D elasticity, that are the equilibriumequations, the compatibility equa-
tions, and the physical ’constitutive’ relations or Hooke’s law (Reddy, 2004). Whenever
a plate/shell problem is approached using the direct solution of the fundamental differen-
tial equations of three-dimensional 3D elasticity, a 3D analysis is obtained. In general,
these solutions cannot be given in strong form for most casesof geometry, laminate lay-
out, boundary and loading conditions (Carrera, 1997). A considerable body of literature
exists concerning the development of computational techniques implemented for layered
plates and shell analyses, and among which the Finite Element Method (FEM) plays a pre-
dominant role (Kant and Swaminathan, 2000). The finite element implementation of the
3D approach requires the use of 3D brick elements. Highly accurate, models based on 3D
brick elements are, in general, computationally expensive, which can be prohibitively costly
for practical problems (Reddy and Robbins, 1994). A two-dimensional, 2D, model can be
used to obtain a valuable alternative, and two-dimensionalplate/shell theories for compos-
ite, multilayered structures can be developed by making an appropriate choice for each of
the following points:

• elimination of the thickness coordinate z: available 2D approaches.

• choice of the unknown variables: displacement and mixed formulations.

• choice of the variables, multilayered form description: Equivalent Single Layer or
Layer-Wise models.

These points are addressed in detail in the following subsections.

2.3.1 Available 2D Approaches

Composite laminates have planar dimensions that are one to two orders of magnitude larger
than their thickness due to how they are constructed, and, bymaking suitable assumptions
concerning the kinematics of deformation or the stress state through the thickness of the
laminate, it is possible to reduce the 3D problem to a 2-D problem. This reduction trans-
forms a problem which is defined in each pointPΣ of the 3D continuum body with domain
Σ andx,y,zdefining a system of thriorthogonal coordinates into a problem which is defined
in each pointPΩ(α,β) of a reference shell/plate surfaceΩ, usually the middle surface, see
figure 2.3, withα,β and z defining a thriorthogonal curvilinear system. This reduction can
in practice be made according to several approaches and techniques that have been pro-
posed over the last century, i.e. continuum based models, asymptotic and axiomatic type
approaches. A detailed overview of these approaches and developed finite elements is given
in Carrera (2002).

In continuum based models, a 3D continuum is seen as a surfaceon which correspon-
dence stress resultants are defined making use of the Cosserat surface concept (Cosserat and
Cosserat, 1999). The most remarkable advantage of this approach is that, being based on a
3D continuum, it does not present any difficulties in the formulation of nonlinear theories
in both the case of geometric nonlinear behaviour, large displacements and large rotations,
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Figure 2.3: Geometry and notations used for a multilayered shell (courtesy of Carrera
(2002)).

and physical nonlinear behaviour, plasticity, viscoelasticity. In the framework of asymptotic
approaches for monocoque structures, the 3D governing equations are expanded in terms of
a perturbation parameterδ, usually the shell thickness to length ratio, and theories related
to the same order inδ are derived. For instance, the expanded equilibrium equations could
appear in the following form:

EΣ ≈ E1
Σ
δp1 + E2

Σ
δp2 + . . .+ EN

Σ
δpN (2.1)

wherepi , i = 1,N are the exponents of the perturbation parameterδ (Carrera, 2002). The
expansion is usually derived using a certain variational statements (see next section). The
asymptotic approach furnishes ’consistent’ approximations in the sense that all the terms
which have the same order of magnitude as the introduced perturbation parameterδ are
retained in a given asymptotic theory, however, the convergence rate is poor in the case
of moderately thick-thick laminates. Moreover, further difficulties arise in multilayered
structures since, in addition toδ, a mechanical layer parameter which takes into account the
anisotropy of composite layers needs to be introduced (Carrera, 2002).

Axiomatic type approaches are the most commonly used approaches in composite struc-
ture modeling. Then, the discussion in the rest of this chapter attention will be restricted to
these kind of theories. Using an axiomatic type approach, an’intuitive’ approximation of
the plate/shell behaviour is introduced but nothing can be established as far as the conver-
gence of the model to 3D solutions is concerned. This approximation postulates, usually,
a certain displacement and/or stress field in the thickness direction of the laminate that in
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Cartesian rectangular coordinates assumes the following form:

f(x,y,z) = f1(x,y)F1(z)+ ...+ fN(x,y)FN(z) (2.2)

wheref is the generic component of the unknown field variable,fi are introduced unknowns
defined on the reference plate/shell surface, andFi are the polynomials introduced as base
functions for the expansion along the thickness, and N is thenumber of introduced un-
knowns.

2.3.2 Displacement and Mixed Formulations: Variational Statements

The fundamental differential equations of three-dimensional 3D elasticity, equilibrium equa-
tions, compatibility equations and physical constitutiverelations, are given in terms of dis-
placements, strains and stresses. Approximated 3D or 2D solutions of these equations are
usually derived by choosing the unknown variables. Many variational tools, theorems, equa-
tions or principles, have been established in the open literature to derive governing equations
of a structural problem consistent to the selected unknown variables (Carrera, 2002; Reddy,
2002, 2004). The governing equations of a structural problem are usually obtained by using
the classical, and well known,Principle of Virtual Displacements(PVD) (Reddy, 2004).
The PVD approach is a displacement based approach since it involves only a compatible
displacement field as a variable and it can be stated as:if a continuous body is in equilib-
rium, the virtual work of all actual forces moving through a virtual displacement is zero,
that is

δU + δV ≡ δW = 0 (2.3)

whereδU andδV are, respectively, the internal and external virtual works. For a solid body,
the principle can be expressed as:

∫
Ω

σ : δǫdΩ
︸ ︷︷ ︸

δU

−
∫
Ω

b∗ · δudΩ−
∫
∂tΩ

t∗ ·udΓ
︸ ︷︷ ︸

δV

= 0 (2.4)

whereu is the displacement,dΩ is a differential element of volume,b∗ is the body force
per unit volume,∂tΩ is the part of∂Ω on which the boundary tractiont∗ is specified,ǫ :=
symm(∇u)≡G : ∇u is the strain tensor, with∇(·) := [∂(·)/∂x]T , in whichx := (x1,x2,x3)∈
R

3 is a material point, andDǫ · δu := G : ∇u, and in whichG is a fourth-order tensor such
thatG : A = 1

2(A +AT)≡ symm(A) for any second order tensorA, andσ is the stress tensor.
It is clear that the virtual work statement (2.4) is precisely the weak form of the equilibrium
equations and is valid for linear and non-linear stress-strain relations.

The same functional (2.4) can also be obtained using theprinciple of minimum total
potential energy. It states that ’of all the admissible displacements, those which satisfy the
equilibrium equations make the total potential energy a minimum’ (Reddy, 2002). Then,
the governing equations are obtained by seeking the minimumof the Potential Energy (PE)
functional of a solid body

ΠPE(u) :=
∫
Ω

w(ǫ)dΩ−
∫
Ω

b∗ ·udΩ−
∫
∂tΩ

t∗ ·udΓ (2.5)
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wherew(ǫ) is the stored energy function.
If kinematic compatibility is introduced in the functional(2.5) as a condition of con-

straint through a Lagrange multiplier, which turns out to bethe stress field, the Hu-Washizu
(HW) Variational Principle (Felippa, 1994; Mota and Abel, 2000; Washizu, 1982) is ob-
tained from the PVD variational statement as follows:

ΠHW(u,ǫ,σ) :=
∫
Ω

w(ǫ)dΩ+
∫
Ω

σ : (ǫ− ǫ)dΩ−
∫
Ω

b∗ ·udΩ−
∫
∂tΩ

t∗ ·udΓ (2.6)

whereǫ andσ are the independent strain and stress fields. Hence, one obtains a three-field
functional with displacements, strains an stresses as variables. On the other hand, if the
functional (2.5) is modified by the Legendre transform:

∫
Ω

w(ǫ)dΩ =

∫
Ω

σ : ǫdΩ−
∫
Ω

wc(σ)dΩ (2.7)

which introduces the stressσ as an additional variable, and in whichwc(σ) is the comple-
mentary stored energy function, the well known two-field Hellingher-Reissner (HR) princi-
ple (Brezzi and Fortin, 1991; Mota and Abel, 2000; Washizu, 1982) is obtained:

ΠHR(u,σ) :=
∫
Ω

σ : ǫdΩ−
∫
Ω

wc(σ)dΩ−
∫
Ω

b∗ ·udΩ−
∫
∂tΩ

t∗ ·udΓ (2.8)

where displacements and stresses are independent variables. The HW and the HR princi-
ples are referred to as mixed variational principles since they involve an additional field to
the displacement one in the continuum as a variable. When a mixed variational principle is
employed to derive the governing equations of a structural problem, a mixed formulation is
obtained. Since in mixed formulations the secondary fields are computed explicitly, one can
think of mixed formulations as an alternative method for secondary-field recovery. Then,
a natural manner to fulfill theC0

z-Requirements of multilayered composite structures is to
assume both displacements and stresses as unknown variables. The computational cost in-
volved in using mixed approaches can be prohibitive for practical problems. Fulfillment of
theC0

z-Requirements can also be achieved at a reduced computational cost by employing
the partial mixed variational equation proposed by Reissner (1984, 1986), namely Reiss-
ner’s Mixed Variational Theorem (RMVT). RMVT can be simply interpreted as a particular
case of the HW and HR mixed variational principles in which only compatibility of the
transverse strains is enforced using Lagrange multiplierswhich, in this case, turn out to
be the transverse stresses. For multilayered structure analyses it is sufficient to restrict the
mixed assumptions to transverse stresses since only for such stresses is an independent field
required a priori to completely fulfill theC0

z-Requirements.

2.3.3 Multilayered Form Description: Classical Equivalent Single Layer
Theories and their Refinements

Equivalent Single Layer (ESL) laminated theories are thosein which a heterogeneous lami-
nate is treated as a statically equivalent single layer having complex constitutive behaviour,
reducing the 3D continuum problem to a 2D problem. ESL theories are developed by assum-
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ing that the displacement field is at leastC1-continuous, i.e. the function and its derivative
are continuous, through the thickness of the laminate. In Cartesian rectangular coordinates,
the general form of the assumed displacement field is a linearcombination of unknown
functions and the thickness coordinate

ϕi(x,y,z) =
N

∑
j=0

(z) jϕ
j
i (x,y) (2.9)

whereϕi is theith component of displacements,(x,y) the in-plane coordinates,z the thick-
ness coordinate, andϕ j

i are functions to be determined. The governing equations in two
dimensions are obtained by integrating the virtual work statement, usually the PVD (2.4),
through the laminate thickness. Classifications and reviews concerning ESL theories for
multilayered composite plates and shells are addressed in Whitney (1969),et al. Noor and
Burton (1989, 1990), Jones (1999), Carrera (1999a, 2002), Reddy and Robbins (1994),
Reddy (2004), and will be briefly summarized below.

The simplest ESL laminated theory is theClassical Lamination Theory(CLT). The CLT
is an application, to multilayered structures, of the Kirchhoff-Love theory (Noor and Burton,
1990) developed for single-layer isotropic structures, and, in the case of plate geometries,
i.e. Classical Laminated Plate Theory (CLPT), it is based onthe following displacements
assumptions Carrera (2002); Jones (1999); Reddy (2004):

ui(x,y,z) = u0
i (x,y)− zui,z(x,y) i = 1,2

u3(x,y,z) = u0
3(x,y)

(2.10)

where (x,y) are the in-plane coordinates of the reference plate surface, and commas denotes
partial derivatives while apexes 0 denotes displacement components of a point on the refer-
ence surface of the plate, see figure 2.4. The displacement field (2.10) implies that straight
lines normal to the 12-plane before deformation remain straight and normal to the midsur-
face after deformation. This assumption amounts to neglectof both transverse shear and
transverse normal effects, meaning that deformation is dueentirely to bending and in-plane
stretching. The CLT is intended for use with thin homogeneous plates, however, composite
laminates have relatively low transverse shear stiffnesses compared to in-plane stiffnesses,
and therefore the neglect of transverse shear deformation precludes failures due to trans-
verse stresses (Reddy and Robbins, 1994). Curvatures termsappear in the case of shell
structures (Kraus, 1967).

The kinematic of the CLT is extended in theFirst Order Shear Deformation Theory
(FSDT), where a transverse shear deformation is included inits kinematic assumptions. In
the case of plate geometries, the FSDT is based on the following displacement field Carrera
(2002); Jones (1999); Reddy (2004); Whitney (1969):

ui(x,y,z) = u0
i (x,y)+ zφi(x,y) i = 1,2

u3(x,y,z) = u0
3(x,y)

(2.11)

whereφi denotes the rotation around the in-plane axe orthogonal to the i-esima direction, as
shown in figure 2.5. The FSDT can be written in a similar form for shell geometries (Kraus,
1967; Noor and Burton, 1990). Using these kinematic assumptions, the transverse shear
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Figure 2.4: CLT assumptions in one-dimensional case (courtesy of Carrera (2002)).

Figure 2.5: FSDT assumptions in one-dimensional case (courtesy of Carrera (2002)).

strain is assumed to be constant with respect to the thickness coordinate. This generates
transverse shear stresses that are also constant. It is wellknown from elementary theory
that in composite laminated beams and plates, the transverse shear stresses vary at least
quadratically through layer thickness (Reddy, 2004). The discrepancy between the actual
stress states and the predicted constant one is often corrected by multiplying the transverse
shear force resultants with a parameter K, calledshear correction factor, which is difficult
to determine for arbitrary laminated composite structures(Reddy, 2004). It is important to
emphasize that any refinement of the CLT should take into account Koiter’s recommenda-
tion (Koiter, 1959). Koiter’s recommendation, formulatedfor isotropic structures and based
on energy considerations, states that a refinement of the Kirchoff-Love’s theory, the CLT
in presence of multilayered composite structures, is in general meaningless unless the ef-
fects of transverse shear and normal stresses are simultaneously taken into account. These
recommendation can be fulfilled by including both transverse shear and normal strains in
the FSDT as done in the work of Hildebrand et al. (1938) where the displacement model is
written as follows:

ui(x,y,z) = u0
i (x,y)+ zφi(x,y)

u3(x,y,z) = u0
3(x,y)+ zφ3 + z2ϕ3

(2.12)
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where additional variables with respect to FSDT are introduced in the transverse displace-
ment expansion. Type of refinements of FSDT such as the displacement model (2.12) are
known as Higher Order Theories (HOT) (Reddy, 2004). In general, HOT are based on
displacement models of the following type,

ui(x,y,z) = u0
i (x,y)+ zui1 + z2ui2 + ...+ zNiuiNi , i = 1,2,3 (2.13)

whereNi are the order of the expansions used for the displacement variables. The additional
unknowns in the expansion are often difficult to interpret inphysical terms. In this context,
the third order theory with transverse inextensibility of Reddy (2004) is of particular interest.
This theory is based on a displacement field that provides quadratic variation of transverse
shear strains, and hence stresses, and the disappearance oftransverse shear stresses at the top
and bottom of a general composite laminate. Thus there is no need to use shear correction
factors, however, Koiter’s recommendation is not taken into account since the transverse
normal stresses are not refined compared to CLT.

Two-dimensional plate/shell multilayered elements are usually derived by introducing
finite element approximations which correspond to the reference surface, as showed in fig-
ure 2.6 for a classical two-dimensional quadratic shell element. Detailed overviews con-

Figure 2.6: Classical two-dimensional quadratic shell element: nodes located on the refer-
ence middle surface.

cerning finite elements implementations of the aforementioned ESL theories are given in
the works of Reddy (2004); Reddy and Robbins (1994), Kant andSwaminathan (2000),
and Carrera (2002). It can be concluded from the aforementioned works that although the
CLT yields finite element models that are economical in termsof the number of degrees
of freedom used, these models requireC1 continuity of the transverse displacement, which
complicates the development of conforming elements and inhibits the use of these elements
with other commonly used finite elements. In contrast, FEs based on the FSDT have the ad-
vantage of requiring onlyC0 continuity of all primary variables, however, early FSDT plate
type elements showed severe stiffening for thin laminates.Such a numerical mechanism,
known as shear locking, can be contrasted using reduced/selective integration schemes or by
using higher order elements, but sometimes at the expense ofrate of convergence (Reddy,
2004). Although the reduced/selective integration solution is the most economical alter-
native among the techniques mentioned above to contrast shear locking, the process may
generate hourglass mechanisms from spurious energy modes which can be introduced by
using these sub-integration techniques. The mixed interpolation of tensorial components
technique is usually implemented to alleviate this mechanisms (Carrera, 2002). Locking
phenomena are even more emphatic in shell finite elements dueto the bending-stretching
coupling of such structures, and membrane locking may occurin addition to shear locking
for thin shell structures (Chapelle and Bathe, 2003). Additional difficulties may arise in
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the case of finite rotations in non-linear analyses of shell structures since complex update
algorithms for finite rotations may be required (Vu-Quoc andTan, 2003a). A large variety
of plate/shell finite element implementations of HOT are also proposed in the literature.
A comprehensive discussion of HOT type theories and relatedfinite element suitability is
given in Tessler (1991).

Shell finite elements based on ESL theories can also be developed using the degener-
ated shell concept (Bischoff et al., 2004; Carrera, 2002; McNeal, 1998). In this concept,
the idea of developing shell finite elements via degeneration means switching the sequence
of dimensional reduction and discretization. Thus, the starting point is a finite element
discretization of the three-dimensional continuum. Shellelements based on the degener-
ated solid approach are therefore also denoted continuum-based shell elements (Bischoff
et al., 2004). The continuum based shell element is degenerated from a 3D isoparametric
description element by imposing two-dimensional hypotheses as constraint equations us-
ing Lagrange multiplier. A schematic representation of thedegeneration procedure from
a 20 node solid element to an 8 node shell element is given in figure 2.7. Enforcing the

Figure 2.7: Degeneration of a twenty-node brick element into an eight-node shell element
(McNeal, 1998).

same assumptions made for the FSDT would involve the following three steps: (i), nodes
in the middle plane are removed assuming constant transverse strain, (ii), opposite nodes
are linked by assuming equal displacements and assigning two rotational degrees of free-
dom to each pair of nodes, and (iii), the motion of each straight line is described using five
degrees of freedom in one node, lying in the reference surface. The degeneration approach



28 2 Theories for Multilayered Anisotropic Composite Structures

is appealing since it potentially enhances the capabilities of the resulting shell elements in
the thick shell range and it offers an alternative way for imposing shell assumptions without
having to discretize the governing shell equations as in traditional shell elements. However,
the degenerated approach needs modifications since it can presents two shortcomings: one,
bending cannot be represented properly because of the presence of artificial normal stresses
in the thickness direction, i.e. thickness locking, and two, conditioning of the corresponding
element stiffness matrices is much worse than in conventional 5-parameter shell elements
due to the extremely high stiffness in the transverse normaldirection (Bischoff et al., 2004).

Finite element models based on ESL theories are often able toprovide a sufficiently
accurate description of the global response of thin to moderately thick laminates, e.g. gross
deflections, critical buckling loads, fundamental vibration frequencies and associated mode
shapes. In particular, finite element models based on FSDT appear to provide the best com-
promise of solution accuracy, solution economy, model simplicity and compatibility with
other displacement finite element models (Reddy and Robbins, 1994). However, ESL mod-
els have several limitations that prevent them from being used to solve the whole spectrum
of composite laminate problems. One, the accuracy of the global response deteriorates as
the laminate becomes thicker. Two, ESL theories are often incapable of accurately describ-
ing the state of stress at the ply level near geometric and material discontinuities, where a
three dimensional stress state is generally achieved, or near regions of intense loading. In
these cases, the transverse stresses calculated using the constitutive relations can be inac-
curate (Carrera, 2001; Reddy, 2004). The reason of such inaccuracies is that these theories
are ’kinematically homogeneous’ in the sense that the kinematic is insensitive to individual
layers (Carrera, 2003a). Then, ESL theories lack to fulfill theC0

z-Requirements since ZZ
and IC are not imposed in their theoretical foundations. It has been shown that better trans-
verse stresses can be obtained by integrating three-dimensional 3D equilibrium equations
rather than using Hooke’s law (Jones, 1999; Pagano, 1969), however, this alternative pro-
cedure, which provides reasonably accurate predictions ofthe transverse stresses for closed
form analytic solutions, in finite element procedures require appropriate strain gradients
evaluations whose recovery from the finite element shape functions is known to be inferior
compared to the accuracy reached in the displacement field. In any case the accuracy of the
obtained transverse stress distributions cannot be guaranteed (Carrera, 2002).

An alternative approach to improve the stress field calculations obtained using ESL theo-
ries is to employ full mixed and partially mixed formulations. Compared to the displacement
type of finite element formulations, mixed formulations demand less stringent admissible
requirements on continuity and offer the flexibility to dealwith a greater variety of problems.
One of the aims of mixed finite elements is to relax formulations that otherwise would be
overconstrained giving rise to phenomena such as locking (Reddy, 2002; Zienkiewicz and
Taylor, 2000). Moreover, since the secondary fields are computed explicitly, one can think
of mixed formulations as an alternative method for secondary-field recovery or smoothing.
Then, a natural manner to fulfill theC0

z-Requirements of multilayered composite structures
is to assume both displacements and stresses as unknown variables. Full mixed methods
have been developed which make use of mixed variational statements where all six stress
components and the three displacements are assumed to be unknown variables of the struc-
tural problem (Carrera, 2002; Pagano, 1978). However, the computational cost involved
when using full mixed approaches can be prohibitive for practical problems. An interesting
discussion on possible ways to improve of FSDT type models byusing mixed and partially
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mixed formulation is given in Auricchio and Sacco (2001). The Hellinger-Reissner mixed
principle (2.8) is employed in Auricchio and Sacco’s work, and two FSDT type models,
both describing transverse shear stresses as independent variables, were discussed. Au-
ricchio et al. (2001) have developed mixed finite elements for laminated composite plates
based on Auricchio and Sacco’s work (Auricchio and Sacco, 2001) in subsequent work.

2.3.4 Layer-Wise Theories

When a detailed response of individual layers is required toinclude a highly accurate as-
sessment of the stress state of localized regions, especially if significant variations in dis-
placements gradients between layers exist as in the case of local phenomena descriptions,
a possible manner of including the ZZ effect in the frameworkof ESL models can be ob-
tained by applying CLT, FSDT or HOT at layer level. That is, each layer is seen as an
independent plate and compatibility of displacement components is imposed as a constraint
at each interface. In these cases Layer-Wise, LW, models areobtained (Carrera, 2003a;
Reddy, 2004). In contrast to ESL theories, LW theories are developed by assuming that
the displacement fields exhibits onlyC0 continuity through the laminate thickness. Then,
displacement components are continuous through the laminate thickness, but the derivatives
of the displacements with respect to the thickness coordinate may be discontinuous at vari-
ous points through the thickness, thus allowing for the possibility of continuous transverse
stresses at interfaces separating dissimilar materials. Such theories are also able to represent
the ZZ behaviour of the displacement fields required byC0

z-Requirements by allowing the
displacements to vary in a layerwise manner through the thickness of the laminate.

A detailed overview of available LW theories in the open literature is given in Reddy
(2004). Other relevant examples of these type of theories are those found in the articles by
Srinivas (1973), who uses CLT in each layer, and by Cho et al. (1991), who use the HOT
developed by Lo et al. (1977) where the in-plane and normal displacements are, respectively,
approximated by third and second order functions of the thickness coordinate in each layer.
The aforementioned procedures require the inclusion of constraint conditions to enforce
the compatibility conditions at each interface. Carrera (2000) has shown that a layer-wise
approach employing a third or four order displacement fieldsin each layer can provide
accurate displacements and stresses descriptions, both in-plane and transverse components,
directly by using Hooke’s law. Generalizations on LW types of theories are given in Nosier
et al. (1993) and in Reddy (2004) where the displacement variables of thek-th layer in the
thickness direction are expressed in terms of Lagrange polynomials as follows:

uk(x,y,z) = L1(zk)u
k
i(hk/2)

+ L2(zk)u
k
i(−hk/2)

+ L3(zk)u
k
i2 + . . .+ LN(zk)u

k
iN

i = 1,2,3 k= 1,Nl

(2.14)

where the adopted notation is introduced in figure 2.8,Nl is the number of layers, and in-
terface values of the displacements at the top of the k-th layeruk

i(h/2) and at the bottom of

the k-th layer uk
i(−h/2) are used as unknown variables, thus permitting an easy linkage for

applying compatibility conditions at each interface. Thisis becauseL1, L2 coincide with
linear Lagrangian polynomials whileL3,...,LN should be an independent base of polyno-
mials which start from the parabolicL3. Reddy extended this theory to the finite element
framework by representing the transverse variation of the displacement components in terms
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Figure 2.8: Notation used for multilayered plates/shells (courtesy of Carrera (2002)).

of one-dimensional Lagrangian finite elements (Reddy, 2004). This layer-wise field is very
general in that any desired number of layers, distribution of layers and order of interpolation
can be achieved simply by specifying a particular mesh of one-dimensional finite elements
through the thickness.

The aforementioned LW models based on displacement formulations show acceptable
accuracy with respect to three-dimensional analyses, but these models do not a priori and
completely fulfill theC0

z-Requirements since transverse stress interlaminar continuity is not
accounted for a priori. Applications of LW models based on displacement formulations re-
quire a posteriori recovery of transverse stresses. Carrera (1996a, 1998, 1999c, 2002) have
developed mixed LW theories for laminated plates analysis to a priori fulfill the continu-
ity of transverse shear and normal stress components at the interface between two adjacent
layers. This was achieved by employing the Reissner Mixed Variational Theorem (RMVT)
(Reissner, 1984, 1986) to derive the governing equations interms of introduced transverse
stress and displacement variables. In Carrera’s theories,two independent fields are assumed
in the thickness direction, linear, up-to fourth order, forthe displacements and transverse
stresses unknowns similar to those used in Reddy’s theory (2.14), but Legendre polynomi-
als are used as base functions. Legendre polynomials, like Lagrange polynomials, offer an
easy linkage to impose compatibility of the displacements and equilibrium for the transverse
stress components at each layer interface. However, as opposed to Lagrange polynomials,
the use of Legendre polynomials permits the thickness interpolation to be spanned by a hi-
erarchical basis, where each additional base function is orthogonal to, or at least linearly
independent of, the previous ones. Standard Lagrange polynomials are neither hierarchic
nor orthogonal. Thus, increasing the order of interpolation requires a complete new set of
shape functions (Bischoff et al., 2004). Carrera (1999a,b)uses mixed layerwise shell theo-
ries for analyses of multilayered, double curved shells made of orthotropic laminae in linear
static cases, and he provides a unified compact formulation (UF) that can be used to assess
multilayered ESL/LW plate and shell theories based on displacement and mixed variational
statements (Carrera, 2002). Carrera and Demasi (2002a,b) have developed and compared
multilayered plate elements based upon the PVD and the RMVT,see section 2.3.2 for both
equivalent single-layer, see section 2.3.3, and layer-wise multilayered form descriptions us-
ing Carrera’s UF. In this context, a generalization of Carrera’s UF (GUF) has been developed
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for plate theories by Demasi (2008). In Demasi’s GUF each variable, in the most general
case each displacement and each transverse stress, can be independently expanded along the
thickness leading to a wide variety of new displacement and mixed ESL/LW plate theories.
Now, each variable can be expanded in different forms by simply changing the order of the
polynomial used in the expansion along the thickness of the laminate.

Highly accurate models based on a Layer-Wise laminate theory are computationally ex-
pensive and sometimes impractical to run, especially in geometrically nonlinear cases. To
capture the localized 3-D stress fields in a tractable manner, it is usually necessary to resort
to Multiple Methods (Noor, 1986), i.e. simultaneous and sequential multiple methods tech-
niques, in which different subregions of the structure are described using different types
of mathematical models based on physical characteristics,applied loading, expected be-
haviour and level of solution accuracy desired. For instance, LW models are generally used
in regions of a structure where an accurate description is required, whereas ESL models are
employed in less critical areas of the structure. The actualimplementation of such a tech-
nique is complicated and cumbersome, due mainly to the need to maintain displacement
continuity across subregion boundaries separating incompatible subdomains. Established
methods of achieving displacement continuity between incompatible regions can be found
in the work of Reddy and Robbins (1994).

Compared to 3-D finite element models, layer-wise elements have some analysis ad-
vantages over the conventional 3-D elements. The layer-wise format maintains a 2-D type
data structure similar to finite element models for 2-D ESL theories. This provides several
advantages over conventional 3-D finite element models. One, the volume of the input data
is reduced. Two, the in-plane 2-D mesh and the transverse 1-Dmesh of the discretized
structure can be refined independently without having to reconstruct a 3-D finite element
mesh. The 2-D type data structure also allows efficient formulation of the element stiffness
matrices of the structural problem (Reddy, 2004). However,a 3-D finite element model is
more general than a layer-wise finite element model: the latter represents a special case of
the former. This is because a layer-wise model assumes that the displacements, material
properties and element geometry of the discretized structure can be approximated by a sum
of separable 3-D interpolation functions, where each 3-D interpolation function can be writ-
ten as the product of an in-plane 2-D interpolation functionand a through the thickness 1-D
interpolation function. However, the modeling capabilities of the two methods are essen-
tially the same. In this context, a detailed investigation on the similarities and differences
between layer-wise and 3-D finite element models is given in Reddy (2004).

2.3.5 Zig-Zag Theories

Within both frameworks of the ESL and LW variable descriptions there is a need to try
to develop theories which fulfilla priori the C0

z-Requirements. Due to the form of the
required displacement field in the thickness direction of the laminate, these type of theories
are referred to as Zig-Zag theories. The fundamental idea indeveloping Zig-Zag theories
is an assumption that a certain displacement and/or stress model is available for each layer,
and the number of the unknown variables is reduced using compatibility and equilibrium
conditions at the interfaces between the layers. For the clarity, a one dimensional flat case
is considered as an example, where a piecewise, continuous,linear displacement field is
considered, see figure 2.9. The origin of the thickness coordinates is at the bottom surface
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of the laminate. The displacement fieldu in each layer of the laminate can be first written

Figure 2.9: Geometry and notation employed to introduce Zig-Zag theories (courtesy of
Carrera (2002)).

using displacement values at the interfaces. For instance,for the first and last layers one
gets:

u1(z) = u0 + zψ1, 0≤ z≤ h1

uNl(z) = uNl −1(hNl −1)+ (z− hNl −1)ψNl , hNl −1 ≤ z≤ hNl

(2.15)

whereNl is the number of layers,u0 anduNl are, respectively, the values of the displacement
u at the bottom and top surfaces of the laminate,uk(hk) are the interface value of u with
k= 1,(Nl −1), andψk are the rotations in the layers withk= 1,Nl . The generic displacement
interface value can be re-written as follows:

uk(hk) = u0 +
Nl −1

∑
k=1

(hk − hk−1)ψk, h= 1,Nl (2.16)

Using compatibility and equilibrium conditions at the interfaces, the displacement u can be
written in a form which is formally not affected by k:

u(z) = u0 +
Nl −1

∑
k=1

(z− zk−1)ψkH(z− zk) (2.17)

where H is a Heaveside step function defined as follows:

H(z− zk) =

{
0 z≤ zk

1 z≥ zk
(2.18)

or

u(z) = u0 +
Nl −1

∑
k=1

(z− zk−1)akψ1H(z− zk) (2.19)
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since it is possible to express theNl rotationsψk of each layer of the laminate in terms of one
of them, for instance the rotation in the bottom layerψ1, by imposing theNl −1 interlaminar
continuity conditions for the transverse shear stress, from which the following relation is
obtained:

ψk = akψ1, k= 2,Nl − 1 (2.20)

whereak are layer constants defined by the interlaminar transverse stresses. The complete
procedure retrieving the equation (2.19) can be found in Carrera (2002). The assumed lin-
ear piece-wise form of the displacementu leads to layer continuity stiffnessesak that are
independent of z. In this case, top-bottom homogeneous conditions can not be imposed.
Assumingak as a cubic functions of z, as in the works done by Whitney (1969) and Am-
bartsumian (1969), allows homogeneous transverse shear stress conditions to be imposed
on the top and bottom plate/shell surfaces.

An accurate historical review of Zig-Zag theories for multilayered plates and shells is
given in Carrera (2002, 2003b), where references to complete reviews of several approaches,
computational techniques and numerical assessment are also reported. The Zig-Zag theories
that have provided the most outstanding contributions to FEapplications are summarized
below. The first, and most relevant work, is that of Lekhnitskii (1935), who has devel-
oped an elegant approach for beam geometries which describes interlaminar continuous
transverse shear stress and zigzag effects of the displacement components. Ambartsum-
ian (1962, 1969) further has developed this work and appliedit to plates and shells struc-
tures. Another pioneering analysis is presented in Yu (1959), where zigzag effects of the
in-plane displacement components and transverse continuity of the shear stress components
in correspondence of each layer interface of a sandwich plate were both fulfilled. Particular
mention should be made of the work of Ren (1986a,b), who has extended the early work
of Lekhnitskii on beam geometries to anisotropic plates, and Whitney (1969), who has ex-
tended Ambartsumian’s theory (Ambartsumian, 1962, 1969) to unsymmetric cases, this has
been extended to shell geometries by Rath and Das (1973). Rath and Das’s theory has been
extended further by Cho and Permerter (1993) who have developed a theory for arbitrary
laminated plates including zigzag effects of the in-plane displacement components, and
capable of satisfying the continuity of the transverse shear stress components in correspon-
dence of each layer interface and shear free surface conditions at the top/bottom of the plate.
It should be noted that, because of the intrinsic material couplings between the transverse
normal and in-plane components of the stress field, all the theories discussed above generate
difficulties in dealing with the extension of the zigzag forms to the transverse displacement
component or in accounting for the interlaminar continuityof the transverse normal stress.
As a consequence, all of the related results have shown deficiencies in analysing problems in
which transverse normal stress plays a determinant role, asfor instance in the stress analysis
of thick composite laminates and in areas where a 3-D stress state needs to be determined,
i.e. stresses near holes, cut-outs and traction free edges (Carrera, 1998).

Procedures formulated using only displacement unknowns cannota priori be used to de-
scribe interlaminar equilibrium IC for the transverse stresses, meaning thatC0

z requirements
cannot be completely fulfilled. Zig-Zag theories employingthe RMVT (Reissner, 1984,
1986) have been developed to fulfill theC0

z requirements better (Carrera, 2002, 2003b). Mu-
rakami and Toledano (Murakami, 1986; Toledano and Murakami, 1987a,b) were the first to
develop a plate theory for specially orthotropic laminatedplates on the basis of RMVT in
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the framework of ESL models. Rao and Meyer-Piening (1990) have extended the Toledano-
Murakami’s theory to the case of generally laminated orthotropic plates. Rao and Meyer-
Piening’s theory has been used by the same authors to developplate finite element for the
analysis of laminated plates composed of arbitrary oriented layers. Of particular interest is
the work done by Bhaskar and Varadan (1992) and by Jing and Tzeng (1993) who have ex-
tended a particular case of the Toledano and Murakami type theory to cylindrical shells, and
by Carrera (2002) who has presented a systematic manner of using RMVT to develop ESL
plate and shell theories, including Zig-Zag theories, along with finite elements for statics
and dynamics and linear and nonlinear problems. In this context, Carrera (1996b) has ex-
tended the standard Reissner-Mindlin model to multilayered plate structures in such a way
that, compared to models based on the FSDT (2.11), ZZ effectsand IC for the transverse
shear stresses were also considered. In Carrera’s work (Carrera, 1996b), Murakamy’s theory
(Murakami, 1986) is employed and multilayered plate finite elements are developed. Later
on, Brank and Carrera (2000) have extended Carrera’s work (Carrera, 1996b) to shell ge-
ometries, and they implemented an assumed shear strain concept to eliminate shear locking
mechanisms and to prevent spurious modes which are typical of alternative sub-integration
techniques. Within the RMVT framework, although in most of the references mentioned
above theC0

z-Requirements have been a priori and completely included, the results have
been very poor when it comes to treating arbitrarily laminated plate and shell structures
(Carrera, 1998).

2.4 Conclusions

An appropriate computational strategy for the analysis of variable stiffness panels require an
efficient modeling strategy able to detect the local three-dimensional stress states generated
during the manufacturing process. A strategy can only be developed if it is fully understood
how conventional composite laminates function. In particular, multilayered plate and shell
structures require appropriate models to handle the complicated effects arising from their
intrinsic in-plane and out-of-plane anisotropy. Complicated effects, such as high transverse
deformability, zig-zag effects and interlaminar continuity, have been discussed and sum-
marized by the acronymC0

z-Requirements. It is necessary to handleC0
z requirements well

to obtain accurate descriptions of the stress and strain fields in the analysis of multilay-
ered composite structures. Accurate analyses can be performed by adopting models based
on 3D brick elements, however, three dimensional modeling is generally computationally
expensive, thus often too time consuming and costly for practical use. Two-dimensional,
2D, modeling can be a valuable alternative, and an overview of common two-dimensional
plate/shell axiomatic theories used for composite, multilayered structures is given above.

Axiomatic theories are developed by making an appropriate choice for which unknown
variables to use for a structural problem, whether to use displacement or mixed formulation,
and which multilayer form description to adopt, ESL or LW model. Models based on ESL
theories are often able to provide a sufficiently accurate description of the global response of
thin to moderately thick plate/shell structures. In particular, finite element models based on
FSDT appear to provide the best compromise to obtain solution accuracy, solution economy,
model simplicity and compatibility with other displacement finite element models. How-
ever, ESL models do not permit the description of zig-zag effects of the displacement fields
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and interlaminar continuity of transverse stresses. Although improved transverse stress dis-
tributions can be obtained by integrating the three-dimensional 3D equilibrium equations or
by assuming mixed formulations rather than using Hooke’s law, ESL models generally lead
to unsatisfactory results in the evaluation of the global response of thick plate/shell struc-
tures, and in the evaluation of the state of stress at the ply level near geometric and material
discontinuities.

Complete fulfillment of theC0
z requirements can be achieved by employing Zig-Zag

theories combined with mixed formulations, but these theories give generally inaccurate
results when treating arbitrarily laminated plates and shells. In this case, the use of a Layer-
Wise description becomes mandatory to obtain an accurate evaluation of the stress fields
in plate/shell composite structures. Within a LW multilayered form description, accurate
transverse stresses can be computed directly from Hooke’s law if an adequate expansion
is used in each layer for the displacement components. Compared to 3-D finite element
models, layer-wise elements have some analysis advantagesover the conventional 3-D ele-
ments. The layer-wise format maintains a 2-D type data structure similar to finite element
models of 2-D ESL theories. This provides several advantages over conventional 3-D finite
element models. Although a layer-wise finite element model represents a special case of
a 3-D finite element model, the modeling capabilities of the two methods are essentially
the same. Highly accurate, models based on a Layer-Wise laminate theory are computa-
tionally expensive and sometimes impractical, especiallyin geometrically nonlinear cases.
Multiple Methods can be employed to capture the localized 3-D stress fields in a tractable
manner. However, the actual implementation of such methodsis generally complicated and
cumbersome.





Chapter 3

Stress Recovery Techniques

3.1 Introduction

Beside an appropriate modeling theory, appropriate stressanalyses of variable stiffness
panels also required an appropriate stress recovery procedure. In particular, the three-
dimensional stress states arising at regions such as tow-drop and/or tow-overlaps require
an accurate evaluation of the interlaminar stresses. An appropriate stress recovery proce-
dure can only be developed if a proper overview and understanding of conventional stress
recovery techniques are, respectively, provided and achieved. Moreover, comparisons be-
tween different procedures commonly used to make stress calculations will give a better
understanding of the appropriate technique to use in terms of consistency and accuracy of
the recovered stress fields, and in terms of computational effort involved in using a particular
procedure.

The selection of the best procedure to use to recover accurate stress field measurements
strongly depends on the variational formulation used to obtain the governing equations of
the structural problem. Although the displacement finite element method has generally
been shown to be a very attractive structural analysis method, it is also known to have
certain shortcomings, for instance, its lower accuracy forpredicting strains and stresses
compared to displacements. The reason for this lack of accuracy when predicting stresses
are well understood (Jones, 1999; Reddy, 2004). Since in a displacement based variational
formulation the displacements are assumed as unknowns variables of the problem, the dis-
placements are imposed to be interelement continuous, whereas the stresses are generally
obtained as derivatives of the displacements, resulting ina lower degree of approxima-
tion. This lack of accuracy leads to an additional shortcoming, that displacement based
formulations give a bad approximation of the stresses at nodes which are generally the most
interesting points for stress recovery. For instance,in problems involving determination or
estimation of stresses and high stress gradients at the boundary or a bi-material interface of
an object, nodes are the most useful output locations for stresses.

Enhancement procedures aimed at making the stress fields obtained using displacement
models competitive with refined models, such as those based on mixed approaches which
do not suffer from the above deficiencies, have been exploredfrom the beginning by those
working on the finite element method (Zienkiewicz and Taylor, 2000). A review of com-
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monly used displacement based methods is provided in section 3.2 where the advantages
and shortcomings of these procedures are discussed. Since mixed finite element formu-
lations give rise to improved methods for stress calculation, stress recovery expressions
based on hybrid formulations of the Hellinger-Reissner- and the Hu-Washizu-functional are
derived and compared in section 3.3 with commonly used stress recovery techniques for dis-
placements models. Stress recovery expressions of enhanced hybrid formulations are also
discussed in this section to compare the different methods.The chapter ends with a number
of conclusions.

3.2 Stress Recovery Techniques for Displacement Based
Finite Elements

Finite element models based on displacement approximations are widely used for structural
analyses, and a common deficiency of these models is their lowlevel of accuracy for predict-
ing local quantities in structures such as stresses and strains compared to displacements. An
obvious and consistent approach to calculating the stresses resulting from a displacement
finite element approximation is to differentiate the finite element solution directly and evalu-
ate the stresses at points of interest in a structure using the appropriate constitutive relations.
This direct calculation results in lower order, discontinuous stress measurements with infe-
rior accuracy at the boundary of the elements and at the interelement nodes, places where
accurate values are usually desired such as the tow-drop andtow-overlap regions of tow-
placed layups. This problem has motivated the development of stress recovery techniques
aimed at replacing the stress field results deduced directlyfrom constitutive equations, re-
ferred to as conventional stress field, with a technique thatis more accurate for predicting a
stress field. This field is called a recovered stress field.

There are points within an element, for certain classes of finite elements and interpo-
lation functions, at which the rate of convergence for stresses is exceeded by one order
compared to other locations, i.e. Barlow or superconvergent points (Barlow, 1976). Proof
of superconvergence at Gauss-Legendre points for the gradient of the Dirichlet problem ex-
ists for the Serendipity (Zlamal, 1977) and Lagrangian (Lesaint, 1979) class of elements.
The existence of these optimal sampling points within an element provides a sound basis for
extrapolation techniques from such points to the boundaries of the element domain, result-
ing in improved nodal values. In the past, in the case of discontinuous stress distributions,
it was handled by assigning the conventional stresses from the respective closest supercon-
vergent points to the common node of the two elements. However, these superconvergent
point assigned values could be inaccurate in cases where stress gradients at the bi-material
interface were high. In the case of continuous stress distributions, superconvergent point
conventional stress values were assigned to the common nodeof the two elements and then
averaged. In this case where the superconvergent point stress values were averaged, the
distances of the superconvergent points from the nodes wereoften not taken into account
resulting in inaccurate estimates of stresses (Chen et al.,1996). Later, as an alternative
strategy to that discussed above, conventional least-square smoothing was adopted. In this
procedure, discrete conventional stress data obtained from finite element superconvergent
points are smoothened and extrapolated to the boundaries ofthe element domain. This is
achieved by defining a smooth polynomial from the discrete data distribution. However,



3.2 Stress Recovery Techniques for Displacement Based Finite Elements 39

Hinton and Irons (1968) have indicated that such polynomials tend to behave erratically
near areas where stress concentrations occur.

In virtue of the shortcomings of the above procedures, the conventional stress field is
now generally evaluated at superconvergent points and it isthen assumed that, throughout
the element, the stresses of the recovered stress fieldσ can be obtained by interpolation
in the same manner as the displacements are interpolated throughout the element. The
following equation is used:

σ = ψkσk k= 1,Nk (3.1)

whereσk are the stresses evaluated at superconvergent points,Nk is the number of su-
perconvergent points for the stress field within an element,andψk are theCr -continuous
interpolation functions that have continuous firstr derivatives. This technique can be en-
hanced further by using astress smoothingtechnique such as the one proposed by Hinton
(1974), i.e. the local projection method, where an error function is defined as the difference
between the recovered stress field and a smoothed stress field. The value of this error func-
tion is minimized, usually by using a least-squares approach. The underlying assumption
in these kind of methods is that an average of the conventional stress field is more accurate
than the conventional stress field itself.Stress smoothingmay be local, at the element level,
or global: for local smoothing, the smoothed stress field within an element is also given by
(3.1) whereNk now represents the number of nodes for the recovered stress field. Following
Hinton (1974) the error function can be generalized as:

χ=

∫
Ωe

e : edΩ, e= σ −σ = σ −ψkσk (3.2)

wheredΩ is a differential element of volume andσ are the recovered stresses. The recovery
expression for the smoothed stress field is obtained in the following form by minimizingχ
with respect toσ (Mota and Abel, 2000):

σ =Ψ ·H−1 ·Σ, H :=
∫
Ωe

Ψ⊗ΨdΩ, Σ :=
∫
Ωe

Ψ⊗σdΩ (3.3)

where the vector of interpolation functionsΨ is introduced. Using this technique, the
smoothed stress field is interelement discontinuous. In engineering practice it is custom-
ary to average the contributions of contiguous elements at common nodes in the case of
continuous stress distributions. A continuous smooth stress field can also be obtained in a
more computationally expensive manner by assembling eachH andΣ in (3.3) into corre-
sponding global tensors, in a process analogous to the assembly of the global stiffness. In
this case, sinceC0- continuous interpolation functions are normally used forstress recovery,
variations in global stress smoothing include the introduction of a penalty term in the error
function that enforceC1- continuity of the recovered stress field (Riggs et al., 1997). Hin-
ton and Campbell propose using thestress smoothingtechnique for linear least square fit of
reduced integrated elements. Chen et al. (1996) extended this procedure to quadratic least-
square smoothing for both two- and three-dimensional casesshowing that the quadratic
extrapolation is more effective than the linear extrapolation of reduced integrated elements
for estimating the nodal stress values of composite laminates. An equivalent relation to (3.3)
for the smooth stress field is also obtained by defining an error function as (Mota and Abel,
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2000):

Ψ :=
∫
Ωe

(σ −σ) : (ǫ− ǫ)dΩ (3.4)

where a recovered strain fieldǫ = ψLǫL is introduced, in whichψL are interpolation func-
tions for the recovered strain field related to theL number of interpolation points, and the
strain-displacement operator is:

u = NI uI , ǫ= B
I ·uI , B

I := G ·∇NI (3.5)

whereNI are the interpolation functions for the displacement field,uI is the nodal displace-
ment vector,G is a fourth-order tensor such thatG : A = 1

2(A + AT) ≡ symm(A) for any
second order tensorA, with ∇(·) := [∂(·)/∂x]T , in whichx := (x1,x2,x3) ∈R

3 is a material
point (Mota and Abel, 2000). The stress recovery expression(3.3) is easily derived with the
additional recovery expression for the strain by minimizing Ψ with respect toσ andǫ to
obtain the optimality conditions:

ǫ=Ψ ·H−1 ·E, E :=
∫
Ωe

Ψ⊗ ǫdΩ (3.6)

The L2 global projection method(Oden and Brauchli, 1971) is a considerably more
costly process of recovering accurate nodal values. In thisprocedure it is initially assumed
a C0 continuous interpolation of the recovered stress field values of the same form as that
used for the displacements interpolation, and the nodal values of the global smoothed stress
field are then determined by a least square fit of the recoveredstresses. This is achieved
by assuming the interpolation functions for the smooth stress fields to be biorthogonal with
respect to the interpolation functions of the displacementfield of the entire domain. For
example, theL2 global projection methodapplied to a single element, thus recovering a
local, interelement discontinuous, stress field, allows the strains and the recovered stresses
to be assumed in the following form

ǫ=ΨKǫK , σ =ΦLσL (3.7)

whereΨK andΦL are the interpolation functions, respectively, for the conventional strains
and recovered stresses field. Since stresses and strains arework conjugate, the interpolation
functions are also required to satisfy conjugacy in the sense that

∫
Ωe

Ψ⊗ΦdΩ= I (3.8)

which is achieved by defining

Φ :=Ψ⊗H−1, H :=
∫
Ωe

Ψ⊗ΨdΩ, Σ :=
∫
Ωe

Ψ⊗σdΩ (3.9)

The recovery expression for stresses (3.3) is then obtainedby introducing (3.9) into (3.7).

Zienkiewicz and Zhu (1992a,b) made a significant breakthrough towards an efficient
post-processing technique when they proposed the Superconvergent Patch Recovery (SPR)
procedure. In the SPR technique a single and continuous polynomial expansion of the



3.2 Stress Recovery Techniques for Displacement Based Finite Elements 41

function describing the recovered stresses is used on an element patch surrounding the nodes
at which recovery is desired. The continuous polynomial expansion is assumed to be of
the same orderp as that used for the displacements over the element patch considered.
The patch represents a union of elements having in common an assembly node at which
recovery is desired. For the sake of simplicity, typical patches for one and two dimensional
elements are shown in figure 3.1 and 3.2. The polynomial expansion of each recovered

Figure 3.1: Typical one dimensional element patches showing the least square fit to sam-
pled superconvergent Gauss point values:△ superconvergent Gauss points,�

nodal values determined using the recovery procedure,•© Patch assembly point
(Zienkiewicz and Zhu (1992a,b)).

stress component is assumed in the following form:

σ∗p = Pa (3.10)

whereP contains the appropriate polynomial terms anda is a set of unknown parameters.
For instance, for one dimensional elements of orderp it is possible to assume:

P=
[
1,x,x2, ...,xp] , a= [a1,a2,a3, ...,ap+1]

T (3.11)

The recovery can be continuous or discrete, although only inthe discrete case is the method
known as SPR. The continuous patch recovery technique is a variant of the localL2 pro-
jection method, and hence, of the stress smoothing technique applied on an element patch
Ωs =

⋃m
j=1Ω j , wherem is the number of elements in the patch. Then, (3.2) and (3.3) are

applied by substitutingΩs in place ofΩe.

The determination of the unknown parametersa is made by ensuring a least square fit
of the conventional stress field evaluated at superconvergent points in the case of discrete



42 3 Stress Recovery Techniques

Figure 3.2: Computation of superconvergent nodal values for linear, quadratic and cubic
lagrangian quadrilateral elements:△ superconvergent Gauss points,• nodes
at which stresses are recovered,● Patch assembly point (Zienkiewicz and Zhu
(1992a,b)).

SPR. This is done by minimizing the functional:

F(a) =
n

∑
i=1

(σh(xi ,yi)−σ∗p(xi ,yi))
2 =

n

∑
i=1

(σh(xi ,yi)− P(xi ,yi)a)2
(3.12)

where(xi ,yi) are the coordinates of the superconvergent points,n= mk is the total number
of superconvergent points andk is the number of superconvergent points on each element
mj (mj = 1,2, ...,m) of the element patchΩs =

⋃m
j=1Ω j , see figure 3.1 and 3.2.

Once the parametersa are determined, the stresses are calculated at the nodes inside the
patch by the insertion of appropriate coordinates into the expression (3.10). The procedure
is simply illustrated in figure 3.1 where one dimensional linear and quadratic elements are
considered, and the appropriate fit of linear and quadratic polynomials over an element
patch is indicated. It is clear from the procedure that element patches will overlap for
internal midside nodes and nodes in the element interior. This means that such recovered
nodal values are frequently evaluated from two patches, andfor such nodes, an average
value is used. A more difficult situation arise at the domain boundary where a local patch
may involve only one or two elements, as shown in figure 3.3: for the one element solution
(corner node) the size of the patch is insufficient for the determination of the parameters
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a and the corner node values are determined from an interior patch. The standard manner
is usually adopted for two element patches although all the boundary nodes values can be
determined using interior patches (Zienkiewicz and Zhu, 1992a,b).

Figure 3.3: Boundary nodal recovery. Element patches:△ Sampling point;• Nodal values
determined using the recovery procedure;•© Patch assembly point (Zienkiewicz
and Zhu (1992a,b)).

Many investigators have modified the Zienkiewicz and Zhu’s procedure by increasing
the functional in such a way that the least square fit is performed to include satisfaction of
boundary conditions (Blacker, 1994; Lee et al., 1997; Wiberg et al., 1994). In particular,
Tessler et al. (1998) have developed the Smoothing Element Analysis (SEA) procedure
based on a variational principle which combines the discrete-least-squares and penalty-
constraint functionals in a single variational form. This approach produces smoothC1-
continuous fields from any type of discrete data. Then, strain gradients can be properly
recovered, and the interlaminar stresses in laminated composite plate/shell analysis that are
obtained by integrating the gradients of stress (strain) quantities, as, for instance, when ei-
ther theClassical Lamination Theory(CLT) (2.10) or theFirst Shear Deformation Theory
(FSDT) (2.11) is adopted as the modeling theory, are readilycomputed.

Later, other viable alternatives to SPR have been considered. One of these is the Re-
covery by Equilibrium in Patches (REP) procedure, comparable in performance to SPR
but taking into account a more simple and feasible implementation (Boroomand, 1997a,b).
The REP method is based on recovering stresses by imposing equilibrium in a weak form
over patches of elements. The resultant equations are obtained by projecting the error be-
tween new and original stresses into the finite element strain space over the patch and are
solved using a least-squares scheme. There is also the Recovery of stresses by Compatibil-
ity in Patches (RCP) procedure presented by Ubertini (2004). The basic idea of RCP lies
in observing that the finite element solution of displacement based models is obtained by
imposing the equilibrium equations in a weak form among a setof kinematically admis-
sible displacements. Thus, compatibility is always ensured while equilibrium is generally
not. Then, RCP consists of recovering equilibrated stress fields over each patch by relaxing
compatibility, that is by imposing compatibility in a weak form. To this purpose, the patch
is considered to be a separate system on which finite element displacements are prescribed
along the boundaries. Stresses are then recovered by minimizing the complementary energy
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functional associated with such a separate patch system, over a set of stress fields which
satisfy a priori interior equilibrium within the patch. Theresultant equations are obtained
by projecting the error between the finite element compatible strain and the strain coming
from the equilibrated stresses into the new stress space over the patch. The RCP method
can be viewed as dual to REP but, compared to REP, it gives moreaccurate and effective re-
sults especially in the case of arbitrarily generated meshes or in presence of severe element
distortions. Ubertini concluded that RCP is competitive with the popular SPR procedure.

One desirable feature of all the aforementioned methods is that they can be applicable
regardless of the governing constitutive behaviour, however, these recovery procedures de-
pend crucially on the consistency of the conventional stress field evaluated within elements.
In addition to the poor accuracy of stress measurements at the interelement boundaries and
the consequent need for enhanced nodal stress recovery procedures, stress fields deduced
directly using constitutive relations can show spurious oscillations due to the retention of
higher order (inconsistent) terms which do not contribute to the determination of the dis-
placements and then the strains, but get reflected as extraneous stress oscillations (Prathap
and Naganarayana, 1990, 1995). These oscillations have been found in problems involving
prescribed initial stresses or strains, or varying rigidities over the element domain (De Mi-
randa and Ubertini, 2002). For instance, in thermoelastic analyses, compatible finite ele-
ments may predict oscillating stresses if the temperature distribution is not coherent with
the element strain coming from the assumed displacement approximation. The problem
of generating spurious stress oscillations can be further exacerbated due to element geom-
etry distortions in parametric formulations (De Miranda and Ubertini, 2001). This local
erratic behaviour of the conventional stress distributiongenerally implies that superconver-
gent points are no longer points for optimal stress recoverysince the spurious stress oscilla-
tions do not generally vanish at these points. Then, the standard stress recovery procedures
presented above could be not suitable for eliminating the spurious outcomes due to the lack
of consistency of the recovered stresses. Prathap and Naganarayana (1990, 1995) have out-
lined the origin of such unreliable responses and introduced the notion of consistency within
stress fields evaluations.

In order to recover consistent stress fields within elementsother approaches to the con-
ventional stress recovery have been proposed, and consistent stress distributions can be
obtained in a variationally correct manner by employing integrated procedures (Argyris and
Willam, 1974; Dakshina Moorthy and Reddy, 1999). In this context, De Miranda and Uber-
tini (2002) have proposed an integrated procedure defined atelement level, where Prathap
and Naganarayana’s notion of consistency (Prathap and Naganarayana, 1990, 1995) is for-
malized in a condition involving each stress component being dealt with independently.
This procedure is developed within a general weighted residual approach, and a systematic
and effective procedure for recovering consistent stress distributions has been established.
It should be remarked that variationally consistent stressrecovery procedures are not an al-
ternative for stress recovery but complementary to the standard stress recovery procedures
presented above. In this respect, the consistent stress distribution should be reconstituted
first and subsequently used for a reliable recovery of a smooth stress field.

Numerous approaches have been proposed as a means to obtain accurate analyses of
laminated composite structures. Assessments of the various approaches can be found in
(Kant and Swaminathan, 2000; Noor and Malik, 2000; Reddy andRobbins, 1994) and the
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references contained therein. Economical finite element models as such adopting plate or
shell elements based on either first-order or higher-order shear deformation theories are of-
ten combined for geometrically linear composite structures with post-processing procedures
incorporating the through-the thickness integration of the three dimensional equilibrium
equations performed using consistent in-plane stresses calculations based on superconver-
gent recovery. This procedure, which is not entirely consistent with the assumptions of the
multilayer description form, provides improved stress distributions in the analysis of both
thin and moderately thick structures. However, to evaluateaccurate transverse shear and
normal stresses these procedures require an accurate evaluation of in-plane strain gradients
with respect to the in-plane coordinates, the recovery of which from the finite element shape
functions is known to be inferior. In this context, it is worth mentioning the stress recovery
procedures of (i) Tessler et al. (1998) based on the Smoothing Element Analysis (SEA) pre-
viously presented in the context of superconvergent stressrecovery procedures on patches
of elements, and (ii) the two-phase predictor-corrector postprocessing (PCP) scheme based
on theFirst Shear Deformation Theory(2.11) used by Noor et al. (1994) and Park and Kim
(1999) for geometrically linear composite structures under static loads.

Within the PCP procedure, accurate transverse shear stresses are predicted using thickness-
wise integration of the equilibrium equations performed using in-plane stresses obtained by
the SPR technique proposed by Zienkiewicz and Zhu (1992a). The accuracy of transverse
normal stresses, displacements, and in-plane stresses areenhanced during the corrector
phase by using the results from the finite element analysis and the predictor phase. This
procedure has been enhanced further by Park and Kim (2003) who incorporated a mesh
superposition technique for the local mesh refinement in thein-plane directions in the re-
gion where the evaluation of the stresses is needed. Stress recovery can not be conducted
via direct integration of the equilibrium equations for geometrically nonlinear cases. Ac-
cordingly, non-linear predictor-corrector approaches which accurately computes transverse
stresses for composite and sandwich panels undergoing geometrically non-linear deforma-
tions were introduced by Park and Kim (2003) and Lee and Lee (2003).

Procedures adopting economical finite elements combined with post-processing proce-
dures incorporating the through-the-thickness integration of the three-dimensional equilib-
rium equations have considerable economical merits compared to full three dimensional
finite element analyses or two-dimensional finite element analyses using Layer-Wise multi-
layer form descriptions. These procedures are widely used when the main emphasis of the
analysis is to determine the global response, i.e. gross deflections, critical buckling loads,
fundamental vibrations frequencies, of thin to moderately-thick structures, as for instance
secondary structural components. However, when the emphasis of the analysis is the study
of failure and failure modes or the modeling of delaminationbetween layers of primary crit-
ical structural components these methods are, in general, inaccurate (Reddy, 2004): most
primary structural components are considerably thicker than secondary components. Then,
the assumption that a heterogeneous laminate is treated as astatically equivalent single layer
would not be able to satisfy properly theC0

z requirements of multilayered composite struc-
tures, addressed in section 2.2, leading to inaccurate responses even in the evaluation of the
global response. Moreover, the assessment of localized regions of potential damage initi-
ation begins with an accurate determination of the three-dimensional state of stress at the
ply level. Laminated composites often exhibit interlaminar stress failure due to transverse
stress concentrations near geometric and material discontinuites, i.e. free edges, cut-outs,
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leading to damage in the form of delamination. This also means that accurate evaluations of
transverse stresses are specially required at the interelement nodes as opposed to supercon-
vergent points. Then, the analysis of primary composite structural components generally
require the use of either a Layer-Wise laminate theory that contains full 3-D kinematics
and constitutive relations, or 3-D elasticity theory. Moreover, Laye-Wise and 3-D elasticity
theories can model the kinematics of delamination.

In the context of studying delamination in multilayered composites, the interlaminar
stress recovery procedure developed by Dakshina Moorthy and Reddy (1999) for 3-D finite
element formulations becomes important. In their approach, each ply is modelled as a sep-
arate body and the interlaminar boundary is treated as a contact surface. The interlaminar
forces are obtained using an interface model based on the penalty method. The interlami-
nar stresses are recovered using these contact loads. The recovery procedure partitions the
contact surface into a set of non-overlapping patches corresponding to groups of elements.
The traction distribution is interpolated over each patch in terms of nodal values. Static
equivalence between the tractions and the contact forces isused to calculate the nodal value
of the tractions, hence the interlaminar stresses. The procedure was found in practice to
lead to oscillatory interlaminar stresses. Thus, a final step is to apply a smoothing tech-
nique to obtain more physically meaningful interlaminar stresses. This procedure provides
transverse stress values directly at nodes without relyingon extrapolation techniques from
superconvergent points, thus leading to faster convergence. This suggests that transverse
stresses obtained from interlaminar forces using static equivalence can represent a valuable
method to recover accurate interlaminar stress distributions without requiring demanding
computational resources.

3.3 Mixed Formulations as Stress Recovery Techniques

Compared to displacement type of finite element formulations, mixed formulations demand
less stringent admissible requirements on continuity and offer flexibility to deal with a
greater variety of problems. One of the aims of mixed finite elements is to relax formu-
lations that otherwise would be overconstrained, giving rise to phenomena such as locking.
This is achieved by assuming the independence of one or more secondary fields, e.g. stresses
or strains or both, with respect to the displacement field. Then, mixed formulations com-
pute the displacement field and the secondary fields from the finite element solution. Since
the secondary fields are computed explicitly, one can think of mixed formulations as an
alternative method for secondary-field recovery or smoothing.

3.3.1 Hellinger-Reissner Functional

Mixed finite element equations can be established using the Hellinger-Reissner (HR) func-
tional:

ΠHR(u,σ) :=
∫
Ω

σ : ǫdΩ−
∫
Ω

wc(σ)dΩ + Πext(u) (3.13)

as presented in section (2.3.2), where only the stressσ is introduced as an additional variable
to the displacementu. The optimality conditions for the HR functional are obtained using
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the following two conditions:

DΠHR(u,σ) · δu =

∫
Ω

σ : δǫdΩ+ DΠext(u) · δu = 0

DΠHR(u,σ) : δσ =
∫
Ω

ǫ : δσdΩ−
∫
Ω

∂wc

∂σ
: δσdΩ= 0

(3.14)

whereδu andδσ are, respectively, variations in the displacement and stress fields. A finite-
dimensional discretization for both the displacement and stress tensor fields in the element
domain is introduced as:

δu = NIδuI , u = NJuJ

δσ =ΨKδσK , σ =ΨLσL
(3.15)

whereI ,J ∈ {1, ...,Nu} andK,L ∈ {1, ...,Nσ}, with Nu andNσ the number of interpolation
points for, respectively, the displacement and the stress field within an elementΩe, NI and
NJ are the interpolation functions for the displacement field,ΨK andΨL are the interpolation
functions for the stress field. Using this discretization, the discrete form at the element level
of the variational statement (3.14) is obtained as:

RI
u(u) :=

∫
Ωe

σ : B
I dΩ−

∫
Ωe

NI bdΩ−
∫
∂tΩe

NI tdΓ = 0

RK
σ(σ) :=

∫
Ωe

ΨK(ǫ− ǫ)dΩ= 0
(3.16)

whereRI
u and RK

σ , the residual forces, are zero for an equilibrium configuration, ǫ :=
∂Wc / ∂σ, andǫ is the strain-displacement operator (3.5). Within the context of Newton-
Kantorowitch type numerical solution procedures, the discrete variational statement (3.16)
needs to be linearized with respect to an increment in both the displacement and stress fields
as:

DRI
u(u) : ∆σ = K

IL
uσ : ∆σL

DRK
σ(σ) ·∆u = K

KJ
σu ·∆uJ

DRK
σ(σ) : ∆σ = K

KL
σ : ∆σL

(3.17)

where the nodal stiffness contributions are:

(K LI
σu )

T = K
IL

uσ :=
∫
Ωe

ΨL
B

I dΩ

K
KL
σ := −

∫
Ωe

ΨKΨL
E dΩ

(3.18)

in whichE := ∂2wc/∂σ
2 is the compliance tensor.

A mixed formulation offers several possibilities as far as the treatment of stress variables
is concerned: (i) stress variables can be retained and a fullmixed implementation is then ob-
tained. Thus, a post-processing recovery procedure is not required since stresses are deter-
mined apriori and stress continuity between adjacent elements is guaranteed directly. The
shortcoming is represented by the great added burden of solving the governing equations
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simultaneously for both stress and displacement degrees offreedom; (ii) stress variables
can be expressed in terms of the displacement ones, i.e. thestatic condensation technique
(Zienkiewicz and Taylor, 2000), thus reducing the computational cost involved. Formula-
tions that involve a multi-variable variational principlebut the resulting matrix equations at
global level consist only of the nodal displacement values as unknowns are referred to as
hybrid formulations. From the numerous possibilities to derivehybridstress (HS) elements,
in the context of this thesis HS refer to the version based on the HR functional. If the HS
formulation is adopted, the independent stress tensor at the element level can be retrieved
using the following relation (Mota and Abel, 2000):

∆σ =Ψ ·H−1 ·

∫
Ωe

Ψ⊗∆ǫdΩ (3.19)

where the vector of interpolation functionsΨ is introduced, and with

H :=
∫
Ωe

Ψ⊗E ⊗ΨdΩ (3.20)

Mixed finite element equations can also be established usingthe Reissner’s Mixed Vari-
ational Theorem (RMVT) (Reissner, 1984, 1986) which allowsone to assume two indepen-
dent fields for displacements and the transverse stress variables only. Carrera and Demasi
(2002a,b) have developed and compared multilayered plate elements based upon thePrin-
ciple of Virtual Displacements(PVD), see the relation (2.4), and the RMVT for both equiv-
alent single-layer (see section 2.3.3) and layer-wise (seesection 2.3.4) multilayered form
descriptions. The authors found RMVT formulated finite elements superior to those re-
lated to PVD in fulfilling theC0

z requirements of multilayer composite structures, addressed
in section 2.2. Carrera (2000) has also compared different ways of computing transverse
stresses, that is, stresses from an assumed model,a priori, were compared to those calcu-
lateda posteriori, i.e. from Hooke’s law and by integration of three-dimensional indefinite
equilibrium equations. In further research, an interesting analysis concerning the treatment
of stress variables within the RMVT formulation is addressed by Demasi (2006). In partic-
ular, stress fields obtained using a full RMVT formulation and anhybrid formulation based
on thestatic condensation techniqueare compared. In addition to the classicalstatic con-
densation technique, an hybrid formulation based on the RMVT can also be obtainedusing
the Weak Form of Hooke’s Law (WFHL) proposed by Carrera (1996a). The WFHL, which
was completely inspired by RMVT, permits one to express, in aweak sense, transverse
stress variables in terms of the displacement variables.

3.3.2 Hu-Washizu Functional

The mixed Hu-Washizu (HW) functional as presented in section (2.3.2)

ΠHW(u,ǫ,σ) :=
∫
Ω

w(ǫ)dΩ+
∫
Ω

σ : (ǫ− ǫ)dΩ+Πext(u) (3.21)

can also be employed for deriving mixed finite element equations, where the stressσ and
the strainǫ are introduced as an additional variable to the displacement u. In this case, the
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optimality conditions are:

DΠHW(u,ǫ,σ) · δu =

∫
Ω

σ : Dǫ · δudΩ+ DΠext(u) · δu = 0

DΠHW(u,ǫ,σ) : δǫ=
∫
Ω

(σ −σ) : δǫdΩ= 0

DΠHW(u,ǫ,σ) : δσ =
∫
Ω

(ǫ− ǫ) : δσdΩ= 0

(3.22)

whereσ := ∂w/∂ǫ, andδu, δσ, andδǫ are, respectively, variations in the displacement,
stress, and strain fields. Assuming a finite-dimensional discretization of the displacement
and stress fields as (3.15), and the following one for the strain field:

δǫ=ΨKδǫK , ǫ=ΨLǫL, (3.23)

the discrete form of the variational statement (3.22) is now:

RI
u(u) :=

∫
Ωe

σ : B
I dΩ−

∫
Ωe

NI bdΩ−
∫
∂tΩe

NI tdΓ = 0

RK
ǫ (ǫ) :=

∫
Ωe

ΨK(σ −σ)dΩ= 0

RK
σ (σ) :=

∫
Ωe

ΨK(ǫ− ǫ)dΩ= 0

(3.24)

The linearization of the discrete variational statement (3.24) with respect to increments of
the displacement, stress and strain gives:

DRI
u(u) : ∆σ = K

IL
uσ : ∆σL

DRK
σ (σ) ·∆u = K

KJ
σu ·∆uJ, DRK

σ (σ) : ∆ǫ= K
KL
σǫ : ∆ǫL

DRK
ǫ (ǫ) : ∆ǫ= K

KL
ǫ : ∆ǫL, DRK

ǫ (ǫ) : ∆σ = K
KL
ǫσ : ∆σL

(3.25)

with all the other contributions being zero, and in which thenodal stiffness contributions
are:

(K LI
σu )

T = K
IL

uσ :=
∫
Ωe

ΨL
B

I dΩ

(K LK
σǫ )T = K

KL
ǫσ := −

∫
Ωe

ΨKΨL
FdΩ

K
KL
ǫ :=

∫
Ωe

ΨKΨL
C dΩ

(3.26)

An hybrid formulation based on the HW functional is obtainable using thestatic con-
densationtechnique. In this case, the independent tensor fields at element level can be
written as:

ǫ=Ψ ·H−1 ·E, σ =Ψ ·H−1 ·Σ (3.27)

where
H :=

∫
Ωe

Ψ⊗ΨdΩ, E :=
∫
Ωe

Ψ⊗ ǫdΩ Σ :=
∫
Ωe

Ψ⊗σdΩ (3.28)
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which shows that the recovery expressions for the strain andstress fields are independent
from the constitutive relations, in contrast with the stress field obtained using the HS for-
mulation which involves the compliance tensor (3.19). Thismeans that the HW functional
may be applied for any constitutive relationship that admits a stored energy function.

The relationship between the stresses recovered using various implementations of the
HW formulation and some of the stress recovery techniques presented in section 3.2 is elu-
cidated by Mota and Abel (2000) using the concept of projection operators. At the local
level, the stress recovery expressions for the HW formulation, stress smoothing,L2 projec-
tion are equivalent. Identical stresses are obtained only when the derivatives of displacement
interpolation functions can be represented exactly by the stress and strain interpolation func-
tions selected for the HW formulation. At global level, the recovery expressions for the HW
formulation, stress smoothing, andL2 projection are also equivalent. The SPR expression is
a discrete analogue of the recovery expressions for the HW formulation. At the global level
and at the patch level, although these methods share analogous stress recovery expressions,
the recovered stress fields are different since the stiffnesses are not equivalent. This sug-
gests that the HW formulation with stiffnesses not equivalent with respect to the classical
formulation and with appropriate choices of the secondary fields interpolation may present
the opportunity for still more accurate stress and strains calculations to be made.

3.3.3 Enhanced Assumed Strain Method

Simo and Rifai (1990) have presented a class of mixed assumedstrain methods, called
the Enhanced Assumed Strain (EAS) method, which allows the systematic development
of low order elements with enhanced accuracy for coarse meshes. The EAS method was
originally classified as a hybrid formulation based upon theHW functional, although due to
the structure of the variational problem and its related element matrices, classification as a
modified displacement model is more appropriate. Within theEAS three-field mixed finite
element framework, the classical method of incompatible displacement modes proposed by
Taylor et al. (1976), who also conceived this idea with the purpose to develop low order
elements with enhanced performance in coarse meshes, is obtained as a special case of the
EAS method. The key point of the EAS method lies in the strain field that is composed of
the compatible strain fieldǫc, expressed in relation (3.5), and the enhanced strain fieldǫe:

ǫ= B
I ·uI

︸ ︷︷ ︸
ǫ

c

+ ǫe (3.29)

Including the strain field (3.29) in the HW functional (3.21)gives the following functional:

ΠEAS(u,ǫ,σ) :=
∫
Ω

w(ǫc(u)+ ǫe)dΩ−
∫
Ω

σ : ǫedΩ+Πext(u) (3.30)

In order to reduce the computational cost, Simo and Rifai (1990) have proposed eliminating
the stresses from the variational formulation by choosing the enhanced strain fieldǫe to be
orthogonal to the stress fieldσ: ∫

Ω

σ : ǫedΩ= 0 (3.31)
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Then, the number of independent variables in the functionalΠEAS is reduced to two, respec-
tively, the displacementu and the enhanced strainǫe. For a typical element, the displace-
ment and the enhanced strain field are approximated as:

u = Nue, ǫe = Gαe (3.32)

whereN is the matrix containing the standard isoparametric shape functions,ue is the vector
of the nodal displacements,G an interpolation matrix containing the enhanced modes, and
αe the vector of internal strain parameters. The strain parameters are local for each indi-
vidual element and can be eliminated at the element level from the final algebraic equations
using astatic condensation technique. Hence, due to the structure of the variational prob-
lem and its related element matrices, the EAS formulation can be classified as a modified
displacement model.

It is interesting to note that not all types of elements can beenhanced by using assumed
strains or incompatible modes. Reddy and Simo (1995) have shown that enhancement pro-
cedures do not work for triangles. Thus only quadrilateralscan be enhanced. For obvious
reasons, the question arises whether a similar relation between EAS- and HS-models can
be found. An important relation between the HW principle andthe HR principle has been
established by Stolarsky and Belytschko (1987), i.e. the first limit principle, which states
that the HW principle is equivalent to the HR principle if an inclusion relation between
the spaces of the stresses and the strains is satisfied. When the element Jacobian is con-
stant, this principle can explain the equivalence between the EAS- and the HS-method, but
the equivalence is not justified when the element Jacobian isnot constant. Andelfinger
and Ramm (1993) proposed equivalence between some EAS- and HS-elements, but this
equivalence was proved only by inspection of the numerical results and was generalized for
linear elastic problems. However, they could not based thisequivalence on a theoretical
foundation. While in the work of Andelfinger and Ramm only theequivalence of stiffness
matrices is considered, Yeo and Lee (1996) have also considered the equivalence of the
stresses with a more rigorous theoretical foundation. For aconstant element Jacobian, Yeo
and Lee concluded that the EAS- and the HS-method are equivalent. This means that, in
addition to displacements, the consistent stresses of the EAS-elements are identical to those
of the corresponding HS-elements at every point of the element, provided that the following
orthogonality condition (3.33) and inclusion condition (3.34) are satisfied:

E
σ ∩E

e = 0 (3.33)

E
σ⊕E

e ⊆ E
c (3.34)

whereE c is the compatible strain space derived from the admissible displacement field,E e

is the space of admissible enhanced strain, andE σ is the stress-driven strain space asso-
ciated with the admissible stress field. Thus, theexact equivalenceis constructed. If the
element Jacobian is not constant, aweak equivalencebetween the EAS- and the HS method
is achieved, that is the displacements of the two methods areidentical redundant and the con-
sistent stresses are identical only at integration points provided that the orthogonality condi-
tion (3.33) and an additional condition of invertibility ofthe admissible enhanced strain and
stress-driven strain tensors are satisfied. Using a different concept, Bischoff et al. (1999)
have confirmed the conclusions drawn by Yeo and Lee although the equivalence conditions
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are expressed in terms of stresses instead of strains. Basedon these stress conditions of
equivalence, Bischoff et al. (1999) were able to derive trial functions for equivalent EAS-
and HS-elements in a straightforward manner, and a class of equivalent elements could be
defined with polynomials of arbitrary order. The conditionsof equivalence need to be com-
bined with other conditions for convergence and stability of the EAS-method, this is well
described in Simo and Rifai (1990).

In the EAS-method, the stresses are introduced as primary independent field in the be-
ginning. However, the stresses cannot be retrieved directly by solving the system of gov-
erning equations since the stresses are eliminated from theformulation. Although stress
recovery via the constitutive relation is simple, the stresses of the EAS-elements based on
the strains are inaccurate since, in general, they are not variationally consistent (Yeo and
Lee, 1996). Thus, it is necessary to devise a stress recoveryprocedure that is variationally
consistent and efficient. From the procedure outlined aboveit is clear that the EAS for-
mulation can be classified as a modified displacement model. Then, all the stress recovery
procedures derived and conclusions drawn in section 3.2 arealso valid for stress recovery
of EAS finite element models. For instance, Simo and Rifai (1990) have proposed a least-
squares type stress recovery procedure for the infinitesimal theory, similar to (3.4), based
on the minimization of the following error function:

L(σ,ǫe) =
∫
Ωe

[σ − C(ǫc + ǫe)]T : [ǫσ − (ǫc + ǫe)]dΩ (3.35)

whereC is the elasticity tensor. Based on the enhanced assumed Green-Lagrangian strains,
the recovery procedure proposed by Simo and Rifai has been extended to the geometrically
non-linear case by Klinkel and Wagner (1997). If equivalence between the EAS and the HS
method is achieved, this equivalence can be exploited to develop stress recovery procedures
in which features known from one of both methods can be transferred directly to the other
one, at least in the geometrically linear case. For instance, once the nodal displacements
are known, a sound stress recovery procedure for EAS-elements can be taken directly from
the corresponding HS element (Andelfinger and Ramm, 1993). The procedures of Simo
and Rifai, Klinkel and Wagner and Andelfinger and Ramm require time-consuming matrix
inversion operations. In this context, the equivalence between the EAS and the HS method
has also been exploited by Yeo and Lee (1996) where a computationally efficient calculation
of the stresses for EAS formulations not involving matrix inversion operations is derived.

In order to further improve the basic idea of Simo and Rifai interms of range of appli-
cability and numerical efficiency of enhanced strain elements, many different formulations
have been developed over the past years in both the linear (Andelfinger and Ramm, 1993;
Wriggers and Korelc, 1996) and the non-linear cases (Klinkel and Wagner, 1997; Simo and
Armero, 1992; Slavkovic et al., 1994; Vu-Quoc and Tan, 2003a,b). From these papers, it can
be concluded that EAS formulation present, in general, several remarkable properties. For
instance, these elements do not involve any reduced or selective integration techniques to
avoid locking phenomena. This means that rank deficiency, leading to the presence of zero
energy modes in excess of the three rigid body motions, i.e hourglassing, does not occur.
Moreover, good performances are generally obtained in bending dominated situations and
in the case of incompressibility. Comparisons to other element formulations show a very
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good coarse mesh accuracy and distortion insensitivity properties. It is generally accepted
that an important number of enhanced modes is usually required to have an element free
of locking, especially in three dimensional analysis. Thus, the EAS formulation can be-
come extremely inefficient. In this context, Vu-Quoc and Tan(2003a,b) have developed a
non-linear eight node solid-shell element based on an optimal combination of the Assumed
Natural Strain (ANS) method (Bathe and Dvorkin, 1985; MacNeal, 1978; Simo and Hughes,
1986), and the minimal number of EAS parameters required to pass both the membrane and
the bending patch test. This formulation resulted in seven optimal EAS parameters making
the procedure numerically efficient.

3.4 Conclusions

One common deficiency of the displacement finite element method concerns the lower ac-
curacy in predicting stresses and strains compared to displacements. This lack of accu-
racy directly affects structural design and failure predictions. A review of customary en-
hancement procedures aimed at replacing the consistent stress field by a more accurate one
was presented in this chapter. These procedures are applicable regardless of the governing
constitutive behaviour but depend crucially on the consistency of the stress field initially
evaluated at superconvergent points within elements. Although recovery of stress data via
the constitutive relation is relatively simple and widely adopted to compute the consistent
stress field, this method may lead to the generation of spurious oscillations due to a lack
of consistency. Other techniques were reviewed and a consistent stress field free of spu-
rious oscillations can be obtained using integrated procedures. Economical finite element
models as such adopting plate or shell elements based on either first-order or higher-order
shear deformation theories are often combined with post-processing procedures incorpo-
rating the through-the thickness integration of the three-dimensional equilibrium equations
performed using consistent in-plane stresses based on superconvergent recovery. However,
when the emphasis of the analysis is the assessment of localized regions of potential dam-
age initiation, this class of methods results to be inaccurate since an accurate determination
of the three-dimensional state of stress at the ply level is required. In this case it becomes
necessary to use either a Layer-Wise laminate theory that contains full 3-D kinematics and
constitutive relations or 3-D elasticity theory.

Some of the stress recovery expressions obtained using the reviewed customary en-
hancement procedures have been compared with stress recovery expressions obtained using
more refined methods, such as mixed/hybrid formulations based on the Hellinger-Reissner
(HR)- and the Hu-Washizu (HW)-functional. The hybrid-HW formulation leads to stress
recovery expressions that do not involve the compliance tensor, in contrast with the HS
formulation where the compliance tensor is involved. This means that the HW functional
may be applied for any constitutive relationship that admits a stored energy function, thus
allowing for a direct analogy to stress recovery techniquesof displacement models. Various
implementations of the HW formulation give rise to stress recovery expressions analogous
to customary stress recovery techniques of displacement models, but in most of the cases
the stiffnesses obtained are not equivalent. This suggestes that the HW formulation with
stiffnesses that are not equivalent to the stiffnesses obtained using displacement formula-
tions, and with an appropriate choice of the secondary fieldsinterpolation, may present the
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opportunity for still more accurate stress calculations.
An enhancement of the HW formulation is obtained by adoptingan Enhanced As-

sumed Strain (EAS) formulation: EAS-elements do not generally present any rank defi-
ciency, perform well in bending situations, and show a very good coarse mesh accuracy
and distortion insensitivity properties compared to otherelement formulations. Moreover,
EAS-Lagrangian elements can provide, in addition to equivalent displacements, consistent
stresses that areexactly equivalent, in the case of a constant element Jacobian, orweakly
equivalent, in the case of non-constant element Jacobian, to those of the HS counterparts.
This is achievable if certain conditions between the enhanced assumed strain and assumed
stress fields are satisfied. The EAS-elements are also preferred to HS-elements for non-
linear analysis since EAS-elements do not involve inverse constitutive relations which are
generally not available. Using a combination of the EAS- andANS-method, procedures
based on EAS formulations can also be made numerically efficient compared to displace-
ment finite element formulations.



Chapter 4

A Finite Element Procedure for
Interlaminar Stress Analyses

4.1 Introduction

The prevention of failure in composite material laminates requires an accurate and reliable
procedure for the recovery of stress fields generated in response to operational loads and
boundary conditions that are applied to such structures. Composites are prone to delamina-
tion when subjected to high interlaminar stresses. Commonly once the interlaminar stress
fields are evaluated, the location of cracks and their form are usually assumed in advance in
most theoretical studies on the characterization of delamination onset and growth in com-
posite laminates (Coutellier et al., 2006; O’Brien, 1982).In particular, a variable stiffness
panel has, by definition, a nonuniform in-plane stiffness distribution that might result in
large in-plane stress gradients (Lopes, 2009). Such gradients contribute to the amplification
of the interlaminar stresses, as demonstrated in Saeger et al. (2002), and possibly to ren-
der delamination the dominant failure mode in these configurations. Furthermore, variable
stiffness panels have manufacturing characteristics, such as course edges, tow-drops and
overlaps, as described in section 1.4, which may act as discontinuites and stress concentra-
tion zones that locally excite the interlaminar stresses further. This supports the need for an
appropriate method that can be used to evaluate interlaminar stresses, and it will be crucial
for accurate prediction of failure mechanisms in compositelaminates.

Customary finite element models, such as the ones adopting plate or shell elements
based on either first-order or higher-order shear deformation theories, are often combined
with post-processing procedures incorporating through-the thickness integration of the 3D
equilibrium equations. However, this class of methods gives inaccurate results when the
emphasis of the analysis is the assessment of localized regions of potential damage initia-
tion. This is because an accurate determination of the 3D state of stress at the ply level is
required. Then, it becomes necessary to use either a Layer-Wise laminate theory that con-
tains full 3D kinematics and constitutive relations or 3D elasticity theory, as explained in
detail in chapter 2.

Customary stress recovery procedures are able to generate reliable interlaminar stress
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distributions, i.e. accurate nodal stress values satisfying theC0
z-Requirements, see section

2.2, only by employing refined meshes requiring demanding computational resources. In-
terlaminar stresses are continuous both across and along layer interfaces. Nonetheless, the
continuity of interlaminar stresses is difficult to enforcein C0 interpolated elements. This is
because in customary stress recovery procedures the nodal values of the stresses are usually
retrieved using extrapolation techniques from super-convergent points inside the element,
e.g. Gauss points for Lagrangian class of elements. Thus, refined meshes need to be used to
achieve interlaminar continuity of the transverse stresses, especially in the presence of high
out-of-plane stress gradients.

The Enhanced Assumed Strain (EAS) method can generate consistent stress distribu-
tions that are as much accurate as those produced using stress based hybrid formulations
3.3.3. This is generally achieved at a reduced computational cost, and without the need to
employ inverse constitutive relations. However, difficulties arise using conventional three-
dimensional procedures in the development of a finite element model that is able to capture
properly all the locations of interest within the complete variable stiffness panel, even re-
sorting to refined finite element models. Then, the purpose ofthis chapter is to present a
three-dimensional finite element procedure based on the EASmethod able to perform re-
liable future stress analyses of variable stiffness panels. Moreover, the procedure has to
overcome the problems that would arise in the modeling and analysis of such laminates
using customary procedures.

The starting point of the proposed procedure, explained in detail in section 1.6, is to
partition a variable stiffness laminate in such a way that every ply can be considered to
be an independent subdomain. In this way the user would be able to either mesh prop-
erly each course by simulating the procedure followed during the manufacturing process
by the tow-placement machine’s head, or to mesh the completeply using a reliable mesh
generator tool. However, the compatibility between the plies has to be reestablished sub-
sequently by imposing adequate interfacial conditions between the plies. Once the finite
element model is generated, a procedure for distributed computing generally employed in
domain decomposition methods, i.e. the finite element tearing and interconnecting method,
was employed to solve the system of algebraic equations. A post-processing recovery pro-
cedure able to recover accurate interlaminar stress distributions using less demanding com-
putational resources compared to customary procedures wasalso developed. Moreover, the
post-processing stress recovery procedure had to be conceived such that the stress states
generated can be combined with three-dimensional failure criteria commonly used for de-
lamination initiation. The complete stress states was obtained using a variational consistent
procedure for the recovery of the in-plane stress distributions. The complete procedure
was developed within the MATLABTM framework and it is presented in this chapter. The
reliability of the approach was tested analysing several benchmark problems concerning
multilayered conventional straight-fiber plates of various geometries.

4.2 Finite Element Model

Customary shell element formulations are, in general, developed within the context of the
degenerated shell concept and the classical shell theory, thus based on the common kine-
matic assumption of inextensibility in the thickness direction of the shell and the zero trans-
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verse normal-stress condition, see section 2.3.3 for a detailed overview. Using these approx-
imations several difficulties can arise, and these difficulties are briefly summarized here: (i),
in the case of complex 3-D material models, the zero transverse normal-stress condition
must be imposed, (ii), in finite rotations complex update algorithms for finite rotations may
be required with consequent high computational costs, (iii), the accuracy of the global re-
sponse deteriorates as the laminate becomes thicker, (iv),the description of the state of
stress at the ply level near geometric and material discontinuities is often inaccurate since a
3D stress state is generally achieved or near regions of intense loading, (v), the combination
of these approximations with regular solid elements requires transition elements to connect
rotational and displacement degrees of freedom.

Although finite element models based on a Layer-Wise theories can be suitable for the
purpose of this thesis as shown in Dakshina Moorthy and Reddy(1999), see also section
2.3.4, the procedure developed and discussed in this thesis usesthe simple low-order solid-
shell element formulation presented by Vu-Quoc and Tan (2003a,b) for accurate analyses
of large deformable multilayer shell structures. This is because Vu-Quoc and Tan’s formu-
lation (VTF) is based on the class of mixed assumed strain methods presented by Simo and
Rifai (1990), i.e. the EAS formulation, see section 3.3.3, which allows the systematic de-
velopment of low order elements with enhanced accuracy for coarse meshes. Compared to
the customary shell element formulations mentioned above,VTF does not require complex
finite-rotation updates and transition elements to connectsolid-shell elements to regular
solid elements. In fact, Vu-Quoc and Tan describe the kinematic of deformation using the
position vectors of a pair of material points at the top and atthe bottom of the shell surface
using the same displacement degrees of freedom as found in the regular linear brick solid
element. In their kinematic description, a straight transverse fiber before deformation re-
mains straight after deformation, but it does not need to be normal to the shell mid-surface
before deformation and after deformation. The kinematics of deformation in curvilinear co-
ordinates of VTF is described in detail in (Vu-Quoc and Tan, 2003a). It is worth mentioning
that in VTF all the stress and strain components are accounted for, thus allowing for an im-
plementation of unmodified 3-D non linear constitutive laws, without the need to apply the
plane-stress constraint. Thanks to an optimal combinationof the EAS method and the As-
sumed Natural Strain (ANS) method (Bathe and Dvorkin, 1985;MacNeal, 1978; Simo and
Hughes, 1986), VTF is also computationally efficient, and shows accurate in-plane and out-
of-plane bending behaviour especially in refined analyses of composite structures involving
a large number of high aspect-ratio layers (Vu-Quoc and Tan,2003a).

In this section, attention will be paid to the derivation of the finite element governing
equations based on the VTF. The point of departure is the Fraeijs de Veubeke-Hu-Washizu
three-field functional (Felippa, 2000), that assumes the following form in the case of static
analyses:

Π(u,E,S) :=
∫
Ω0

w(E)dΩ+
∫
Ω0

S : (Ec(u)− E)dΩ+
∫
∂uΩ0

(u∗ − u) · t dΦ−
∫
∂tΩ0

u · t∗dΓ
(4.1)

where the displacement boundary conditions are introducedin the Hu-Washizu variational
functional (3.21) as an additional condition of constraintthrough a Lagrange multiplier,
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which turns out to be the surface traction,∂uΩ is the part of∂Ω on which the bound-
ary displacementu∗ is specified. In the equation abovet is the traction vector,E is the
Green-Lagrange strain tensor,S is the second Piola-Kirchhoff stress tensor, andEc is the
compatible part of the Green-Lagrange strain tensor define as follows:

Ec
i j =

1
2

(
Gi ·

∂u
∂ξi +

∂u
∂ξi ·G j +

∂u
∂ξi ·

∂u
∂ξ j

)
, (4.2)

with

Gi(ξ) =
∂X(ξ)

∂ξi , i = 1,2,3 (4.3)

whereX(ξ) is the mapping from the biunit cube, parameterized by the material convective
coordination(ξ1, ξ2, ξ3), to the initial configuration. All variables are expressed in the initial
configurationΩ0. The extension of the EAS method to geometrically non-linear problems
can also be done by enhancing the deformation gradient, as done by Simo and Armero
(1992). However, Vu-Quoc and Tan (2003a,b) have showed that, from a computational
standpoint, enhancing the Green-Lagrange strain tensor issimpler and more efficient, even
though their numerical analyses indicated that both methods lead to the same numerical
results when the same EAS parameters are used.
The next step in the EAS method is to introduce an enhancementto the compatible part of
the Green-Lagrange strainEc:

E = Ec + Ẽ. (4.4)

By introducing (4.4) in (4.1), the following functional is obtained:

Π(u, Ẽ,S) =
∫
Ω0

w(Ec(u) + Ẽ)dΩ −
∫
Ω0

S : ẼdΩ

+
∫
∂uΩ0

(u∗ − u) · t dΦ −
∫
∂tΩ0

u · t∗dΓ.
(4.5)

Thus, the variation ofΠ in (4.5) with respect to the displacementu is:

DΠ(u, Ẽ,S) · δu =

∫
Ω0

∂w
∂E

:

(
∂Ec(u)
∂u

· δu
)

dΩ−
∫
∂uΩ0

δu · t dΓ−
∫
∂tΩ0

δu · t∗dΓ, (4.6)

the variation ofΠ in (4.5) with respect tõE is:

DΠ(u, Ẽ,S) : δẼ =

∫
Ω0

(
∂w
∂E

− S
)

: δẼdΩ, (4.7)

and the variation ofΠ in (4.5) with respect toS is:

DΠ(u, Ẽ,S) : δS=
∫
Ω0

δS : ẼdΩ+
∫
∂uΩ0

(u∗ − u) · δt dΦ. (4.8)

By designing the approximation for the stress fieldSand the approximation for the enhanc-
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ing strain fieldẼ such that the following orthogonality condition holds
∫
Ω

S : ẼdΩ = 0, (4.9)

the number of independent variables in the functional (4.5)is reduced to two, i.e.,

Π(u, Ẽ) =
∫
Ω0

w(Ec(u) + Ẽ)dΩ+
∫
∂uΩ0

(u∗ − u) · t dΦ −
∫
∂tΩ0

u · t∗dΓ, (4.10)

leading to the following total variation and equilibrium condition:

δΠ(u, Ẽ) = δΠsti f f (u, Ẽ)+ δΠext(u) = 0, (4.11)

where:

δΠsti f f (u, Ẽ) =
∫
Ω0

(δEc(u)+ δẼ) :
∂

∂E
w(Ec(u)+ Ẽ)dΩ

δΠext = −
∫
∂tΩ0

δu · t∗dΓ.
(4.12)

The finite element discretization is then introduced by discretizing the initial configura-

tionΩ0 into a number of non-overlapping elements,nel, such thatΩ≈∪nel
e=1Ω

(e)
0 , where the

displacementu, its variationδu, and increment∆u are interpolated in the element domain
as follows:

u = N(ξ)d(e), δu = N(ξ)δd(e), ∆u = N(ξ)∆d(e) (4.13)

whereN is a matrix containing the basis linear 3D isoparametric shape functions restricted

to elementΩ(e)
0 , andd(e) is a matrix containing the nodal displacements. Within an element

(e), the variation and the increment of the compatible Green-Lagrange strainEc is related
to the variation and the increment of displacement as follows:

{
δEc

i j

}
6×1

= B(d(e))δd(e),
{
∆Ec

i j

}
6×1

= B(d(e))∆d(e), (4.14)

where the components ofEc
i j are arranged into a 6×1 column matrix according to the Voigt

ordering (Vu-Quoc and Tan, 2003a)

{
Ec

i j

}
= {Ec

11,E
c
22,2Ec

12,E
c
33,2Ec

23,2Ec
13}

T , (4.15)

andB is the deformation dependent displacement-to-strain operator, which detailed expres-
sion is given in (Vu-Quoc and Tan, 2003b). As far as the enhanced Green-Lagrange strain
tensor̃E is concerned, Vu-Quoc and Tan (2003a) denote withδα(e) the admissible variation
of the element EAS-parameter column-matrixα(e) ∈ R

neasassociated with the enhancing
strain

{
Ei j

}
, whereneasis the number of EAS parameters. Then, the components of the

enhancing straiñE are expressed as a product of an enhancing strain interpolation matrixℑ
and the element EAS parametersα(e); the same interpolation applies to the variation and
the increment of̃E, i.e.,

{
Ẽi j

}
6×1

= ℑ(ξ)α(e),
{
δẼi j

}
6×1

= ℑ(ξ)δα(e),
{
∆Ẽi j

}
6×1

= ℑ(ξ)∆α(e). (4.16)
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The enhancing strain interpolation matrixℑ is defined in (Vu-Quoc and Tan, 2003a) as
follows:

ℑ =
1
J

T−T
0 M(ξ) (4.17)

whereT0 is a matrix that transform the strain components relative tothe covariant basis cal-
culated in the element center to those components relative to the covariant basis calculated
in a generic point,J is the determinant of the element Jacobian matrix of the mapping from
the iso-parametric space to the initial configuration of theelement, andM is the interpola-
tion matrix that has to be chosen in such a way that the enhanced strain field satisfies the
orthogonality condition (4.9) for a genericα.

Two ANS modifications on the compatible covariant strains are employed by Vu-Quoc
and Tan (2003a) to eliminate the locking effects resulting from the use of the compatible
low-order interpolations (Chapelle and Bathe, 2003). The ANS interpolation is the most
successful tool to use to overcome theshear lockingeffect in the four-node displacement-
based shell elements, even for initially distorted meshes (Bathe and Dvorkin, 1985; Mac-
Neal, 1978; Simo and Hughes, 1986). In this context, Vu-Quocand Tan apply a linear
interpolation of the compatible transverse shear strainEc

13 and Ec
23 evaluated at the four

mid-points A, B, C, D of the element edges, atξ3 = 0, see figure 4.1, as follows:

{
EANS

13
EANS

23

}
=

{
(1− ξ2)Ec

13(ξA)+ (1+ ξ2)Ec
13(ξC)

(1− ξ1)Ec
23(ξD)+ (1+ ξ1)Ec

23(ξB)

}
(4.18)

where the coordinates of points A, B, C, D areξA = (0,−1,0), ξB = (1,0,0), ξC = (0,1,0),

Figure 4.1: Eight-node solid shell element in isoparametric coordinates: sampling points
for ANS interpolations for transverse shear strains (A, B, C, D), and for trans-
verse normal strain (E, F, G, H) (Vu-Quoc and Tan, 2003a).

ξD = (−1,0,0), respectively. The above interpolation on the transverse shear strains elimi-
nates theshear lockingproblem, and allows for pure bending deformation without parasitic
transverse shear strains. In the case of curved thin shell structures or in non-linear analy-
ses, there is another locking effect, i.e.curvature thickness locking(Bischoff and Ramm,
2000), which is also known astrapezoidal locking. To circumvent this locking effect from
parasitic transverse normal strain, Vu-Quoc and Tan employa bilinear interpolation for the
covariant componentEc

33 of the compatible Green-Lagrangian strain tensor, sampledat the
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four corners E, F, G, H of the element midsurface, see figure 4.1, as follows:

EANS
33 =

4

∑
i=1

Ni(ξ
1, ξ2)Ec

33(ξi), (4.19)

with Ni = (1
4)(1+ ξ1

i ξ
1)(1+ ξ2

i ξ
2), ξ1 = ξE = (−1,−1,0), ξ2 = ξF = (1,−1,0), ξ3 = ξG =

(1,1,0), andξ4 = ξH = (−1,1,0).
To incorporate 3-D constitutive laws in shell formulations, the transverse normal strain
must have at least a linear distribution over the shell thickness, otherwise, an additional
locking effect, i.e. thePoisson-thickness locking, will occur (Bischoff and Ramm, 2000;
Zienkiewicz and Taylor, 2000). Two methods have been proposed in the literature to allevi-
ate this effect: one, assums a quadratically distributed dispacement field over the shell thick-
ness (Parish, 1995), and then introduces an additional kinematic parameter; the other, uses
the EAS method to enhance the transverse normal strain (Buchter et al., 1994). Vu-Quoc
and Tan (2003a) enhance the transverse normal strain using the EAS method to include the
bilinear termsξ1ξ3 andξ2ξ3 in terms of material coordinates. Vu-Quoc and Tan also en-
hance the membrane strains to improve the membrane behaviour. These enhancements are
achieved by selecting the following interpolation matrix

M =




ξ1 0 0 0 0 0 0
0 ξ2 0 0 0 0 0
0 0 ξ1 ξ2 0 0 0
0 0 0 0 ξ3 ξ1ξ3 ξ2ξ3


 , (4.20)

enhancing, respectively, the membrane strains[E11,E22,2E12] and the transverse normal
strainE33, leading to an optimal number of EAS paramenters, seven, that in combination
with the ANS method described above make the VTF able to pass both the membrane and
the bending patch test. Thus, a complete free of locking solid-shell element is obtained,
without resorting to reduced or selective integration techniques to avoid locking phenomena.
This means that rank deficiency, leading to hourglass mechanisms from spurious energy
modes, does not occur (Reddy, 2004). Vu-Quoc and Tan (2003a)have justified, through
numerical analyses, the relative importance of the separate use of the EAS method and the
ANS method, compared to the pure displacement formulation,and more importantly, the
combined use of both the EAS method and the ANS method for obtaining accurate results
for plate bending problem over a large range of aspect ratios. It is also worth mentioning
that the strain-driven character of the VTF also makes it easier to implement non-linear
constitutive models, when compared to hybrid finite-element formulation where the stress
field is involved.
The following expression at the element level is obtained byapplying a standard finite-
element procedure to discretize the total variation (4.11):

δΠ(e) = δΠ
(e)
sti f f + δΠ(e)

ext(u) = 0, (4.21)
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with

δΠ
(e)
sti f f =

∫
Ω
(e)
0

δ
{

Ec
i j

}T {
Si j

}
dΩ+

∫
Ω
(e)
0

δ
{

Ẽi j

}T {
Si j

}
dΩ,

δΠext = −
∫
∂tΩ

(e)
0

δu · t∗dΓ,
(4.22)

where the following symbol definition is used to alleviate the notation

S :=
∂w
∂E

, (4.23)

which corresponds to the second Piola-Kirchoff stress, andwhere the column matrix
{

Si j
}

has its coefficients arranged in the same Voigt ordering as in(4.15)

{
Si j}=

[
S11,S22,S12,S33,S23,S13] . (4.24)

The linearization of the discrete weak form (4.21) can be accomplished using the truncated
Taylor series about thekth iterate(u(k), Ẽ(k)):

δΠ(u(k+1), Ẽ(k+1))≈ δΠ(u(k), Ẽ(k))+
∂(δΠ)

∂(u, Ẽ)

∣∣∣∣∣
(u=u(k),Ẽ=Ẽ(k))

· (∆u,∆Ẽ)

= δΠ(u(k), Ẽ(k))+ D(δΠ)(u(k), Ẽ(k)) · (∆u,∆Ẽ),

(4.25)

where∆u = u(k+1) − u(k),∆Ẽ = Ẽ(k+1) − Ẽ(k). Note: to alleviate the notation, henceforward
the subscriptk designating the iterative index will be omitted. Using the approximations
(4.13), (4.14), and (4.16) in (4.25), the increments∆d(e) and∆α(e) can be computed in
the Newton’s solution process by setting the expression (4.25) equal to zero. Thus, the
following relation is obtained:

D(δΠ(e))(d(e),α(e)) · (∆d(e),∆α(e)) =
∂(δΠ

(e)
sti f f + δΠ(e)

ext)

∂(d(e),α(e))
· (∆d(e),∆α(e))

=
∂(δΠ

(e)
sti f f )

∂(d(e),α(e))
· (∆d(e),∆α(e)) = −(δΠ(e)

sti f f + δΠ(e)
ext),

(4.26)

in which the variationδΠ(e)
sti f f andδΠ(e)

ext in (4.22) now take, respectively, the following form:

δΠ
(e)
sti f f (d

(e),α(e)) = δd(e)T f(e)sti f f + δα(e)T f(e)EAS

with f(e)sti f f =

∫
Ω
(e)
0

BT {Si j}dΩ, f(e)EAS=

∫
Ω
(e)
0

ℑT {Si j}dΩ,

δΠ
(e)
ext(d

(e)) = −δd(e)T f(e)ext,

with f(e)ext =

∫
Ω
(e)
0

NT t∗dΩ.

(4.27)
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Thus, the left hand side of (4.26) becomes:

D(δΠ
(e)
sti f f )·(∆d(e),∆α(e)) =

∂(δΠ
(e)
sti f f )

∂d(e)
·∆d(e) +

∂(δΠ
(e)
sti f f )

∂α(e)
·∆α(e)

=
[
δd(e)Tk(e)

uu + δα(e)Tk(e)
αu

]
·∆d(e) +

[
δd(e)Tk(e)

uα + δα(e)Tk(e)
αα

]
·∆α(e)

= δd(e)T
[
k(e)

uu∆d(e) + k(e)
uα∆α(e)

]
+ δα(e)T

[
k(e)
αu∆d(e) + k(e)

αα∆α(e)
]
.

(4.28)

Let the fourth-order constitutive tensor be defined as follows:

C =
[
Ci jkl

]
:=

[
∂Si j

∂Ekl

]
∈ R

6×6, (4.29)

whereCi jkl are the components of the constitutive tensorC in the convected basis arranged
according to the ordering of the strain components in (4.15), and of the stress components
in (4.24). Then, the following expressions are obtained in (4.28):

k(e)
uu =

∂f(e)sti f f

∂d(e)
=

∫
Ω
(e)
0

(GT
S+ BTCB)dΩ,

k(e)
uα =

∂f(e)sti f f

∂α(e)
=

∫
Ω
(e)
0

BTCℑdΩ,

k(e)
αu =

∂f(e)EAS

∂u(e)
=
[
k(e)

uα

]T
=

∫
Ω
(e)
0

ℑTCBdΩ,

k(e)
αα =

∂f(e)EAS

∂α(e)
=

∫
Ω
(e)
0

ℑTCℑdΩ,

(4.30)

where the matrixG

G :=
∂B(d(e))

∂d(e)
, (4.31)

and the stress matrixS, which is related to the matrix
{

Si j
}

in (4.24), have their detailed
expressions given in (Vu-Quoc and Tan, 2003b). It follows from (4.26), (4.27), and (4.28)
that the discrete linearized system of equations to solve for the increments∆d(e) and∆α(e)

is given by the following expressions:

K (e)
uu∆d(e) + K (e)

uα∆α(e) = f(e)ext − f(e)sti f f (4.32)

K (e)
αu∆d(e) + K (e)

αα∆α(e) = −f(e)EAS, (4.33)

or in a matrix form as:
[

K (e)
uu K (e)

uα

K (e)
αu K (e)

αα

]{
∆d(e)

∆α(e)

}
=

{
f(e)ext − f(e)sti f f

−f(e)EAS

}
. (4.34)

Since the enhanced strain field̃E is chosen to be discontinuous across the element bound-
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aries, the EAS parameters increments∆α(e) are eliminated at element level before proceed-
ing to assemble the element matrices into global matrices. Solving equation (4.33) for the
increment∆α(e) as follows

∆α(e) = − [K (e)
αα ]

−1 ( f(e)EAS+ K (e)
αu∆α(e) ), (4.35)

and then substituting (4.35) into (4.32), gives the following condensed symmetric element

stiffness matrixK (e)
T , and the element residual force vectorr (e), respectively (4.36) and

(4.37):
K (e)

T = K (e)
uu − [K (e)

αu ]
T [K (e)

αα ]
−1K (e)

αu , (4.36)

r (e) = f(e)ext − f(e)sti f f + [K (e)
αu ]

T [K (e)
αα ]

−1 f(e)EAS. (4.37)

An assembly of the element matricesK (e)
T andr (e) leads to the global system:

KT ∆d = R (4.38)

with
KT = A

nel
e=1K (e)

T , R = A
nel
e=1r (e) (4.39)

whereA denotes the finite-element assembly operator. Thus, the time required for calcula-
tion is now comparable to models based on displacement formulations. Note: for details of
the iterative procedure used see (Vu-Quoc and Tan, 2003b).

4.3 Parallel Computing

The solution of systems of linear algebraic equations such as (4.38) is one of the basic com-
ponents of the numerical methods used in mathematical physics and it generally represents
the most demanding part of dealing with the algorithms. In particular, the high level of ac-
curacy required for an appropriate modeling of a variable stiffness panel, especially close to
tow-drops and tow/overlaps areas, lead to a finite element model involving a large number
of degrees of freedom. Therefore, appropriate attention should be paid to the development
of solvers.

Sparse direct solvers, which have been for a long time as the main procedure used in
commercial finite element software to solve system of equations, continue to play an impor-
tant role in these numerical simulation codes. However, thepressing need for higher-fidelity
3D finite element structural models with millions of degreesof freedom, and the extreme de-
manding computer resources required by direct solvers for such large problems have leaded
to the employment of supercomputing systems, i.e.parallel computing, such as those that
are obtained by teaming together several computing units toincrease the computing power.
The idea of connecting computers has proved to be less complicated than the development
of faster and more efficient single processors. In particular, the evolution of PC clusters, i.e.
using ordinary PCs connected using a suitable network, is expected to be almost unlimited.

Solving large systems of equations on parallel computers has been, and still is, a chal-
lenging research field since algorithms that are highly efficient for sequential machines usu-
ally perform poorly on parallel computers (Rixen, 2001; Rixen and Magoulès, 2007). Paral-
lel solvers can be constructed in different ways: (i) by re-organizing classical factorization
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methods, i.e. direct solvers, (ii) by applying iterative solvers. Considering the system of
equations (4.38), a direct solver would usually be used to perform the factorization ofKT ,
e.g. Gaussian factorization, and forward/backward substitutions to find∆d. The looping
sequence on rows and columns within the factorization and substitutions can be organized
to maximize the amount of independent, i.e. parallel, tasks. However, as the number of
processors increases, the parallel efficiency becomes verypoor due to the large amount of
communications required by the sequential factorization and substitution algorithm (Rixen,
2001). A better alternative is to first subdivide the probleminto a certain number of con-
nected subparts, i.e.substructuresor subdomainsas in Fig.4.2, by ordering the matrix to
bordered block diagonal form. A direct solver can then be applied in parallel to each of

Figure 4.2: Wheel: mesh of a structure subdivided in different connected subdomains (Kruis
(2007)).

the subdomains since the internal stiffness matrices of every subdomain can be factorized
independently. Once all possible eliminations for the subdomains have been performed,
there remains an interface problem, i.e.condensed interface(CI) problem, which is smaller
than the original system. The interface solution is used to complete the solution of the
subdomains. More details about this procedure can be found in (Rixen, 2001). Although
very robust, this approach is efficient on a small number of processors but it does not scale
up well for massive parallel computers set ups since the CI problem can not be efficiently
factorized in parallel and its size increases as the decomposition is refined.

Factorization schemes are inherently sequential since they are based on Gaussian elim-
ination where the solution is obtained for one variable after the other. For this reason, a
large segment of the computational mechanics community, including software development
houses, is increasingly investigating the adoption of iterative solvers (Farhat et al., 2000b).
Iterative solvers search for approximations of all unknowns simultaneously and involve sim-
ple matrix operations. Thus, they are naturally parallel. Since a large class of structural
and solid mechanics applications generate systems of equations that are symmetric positive
definite or semi-definite, the conjugate gradient method (Hestnes, 1952) has always been
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an iterative method of choice among computational structural mechanicians. In structural
analysis, direct solvers have been favored for their robustness compared to iterative methods
where fast convergence can be difficult to achieve in practice (Rixen, 2001). With the advent
of parallel computing iterative methods have gained a new momentum. Conjugate gradient
based iterative methods applied to a structure subdivided into different connected subdo-
mains as shown in Fig.4.2, also known asdomain decomposition(DD) methods (Kruis,
2007), have emerged as powerful contenders on both sequential and parallel computing
platforms. In particular, most efficient and useful parallel solvers rely on DD methods that
use a blend of direct solvers to solve independent local problems and iterative solvers to
solve the globally coupled CI problem. When equipped with anappropriate subdomain
level preconditioner, a DD method can be numerically scalable with respect to the mesh
size, or number of elements, of the given problem. In order tobe also numerically scalable
with respect to the subdomain size, or number of subdomains,it must be equipped with a
preconditioner whose mathematical foundation is similar to that encountered in multigrid
methods (Farhat et al., 2000b).

4.3.1 FETI Method

The Finite Element Tearing and Interconnecting(FETI) method, introduced in (Farhat,
1991) and (Farhat and Roux, 1991), is among the first non-overlapping DD methods that
have demonstrated numerical scalability with respect to the mesh and subdomain sizes, for
both second-order elasticity and fourth-order plate and shell problems. In particular, the
parallel scalability of the FETI method and its ability to outperform several popular direct
and iterative algorithms on both sequential and parallel computers have been extensively
demonstrated (Farhat et al., 2000b). For the reasons mentioned above, the FETI method
has been employed to solve the system of governing equations(4.38) in the developed finite
element procedure. In order to understand better how the FETI method is conceived, the
following system of linear algebraic equations is considered:

Kd = f. (4.40)

whereK is the stiffness matrix of the structure,d andf are, respectively, the nodal displace-
ment and the nodal load vectors. Once the domain of the structure under consideration is de-
composed into a certain number of subdomains, the initial problem (4.40) can be expressed
in the following equivalent form by introducing the Lagrange multipliersλ to enforce the
compatibility constraints between the subdomains:




K (1) 0 . . . B(1)T

0
. . .

...

K (Ns) B(Ns)
T

B(1) . . . B(Ns) 0







d(1)

...
d(Ns)

λ


 =




f(1)

...
f(Ns)

0


 , (4.41)

whereK (s), B(s), d(s) andf(s) are respectively the stiffness matrix, the Boolean matrices, the
displacements, and load vectors of every subdomain.

In order to find thecondensed interface(CI) problem, the linear system (4.60) is solved
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for the local degrees of freedom

d(s) = K (s)+
(

f(s) − B(s)T λ
)

− R(s)α(s), (4.42)

whereK (s)+
is the inverse ofK (s) for sub-domains with no unconstrained rigid modes, or a

generalized inverse if sub-domain(s) is floating, in which caseR(s) contains in columns the
rigid body motions of the subdomain, andα(s) contains the coefficients of linear combina-
tions (Kruis, 2007; Rixen, 2001). By substituting in the following compatibility conditions

Ns

∑
s=1

B(s)d(s) = 0 (4.43)

the expression (4.42) ofd(s) in terms ofλ, and taking into account that the forces applied to
a floating sub-domain must be in self-equilibrium, namely

R(s)T
(

f(s) − B(s)T λ
)
= 0, (4.44)

we obtain the following CI problem

[
FI GI

GT
I 0

][
λ

α

]
=

[
d
e

]
, (4.45)

with

FI =
Ns

∑
s=1

B(s)K (s)+
B(s)T ,

d =
Ns

∑
s=1

B(s)K (s)+
f(s),

GI =
[

B(1)R(1) . . . B(Ns) R(Ns)
]
,

α =




α(1)

...
α(Ns)


 and e =




R(1)T f(1)

...

R(Ns)
T

f(Ns)


 ,

whereFI is the interface flexibility operator,d is the interface gap created by the applied
loads,GI is the restriction of the rigid modes on the interface,e is the default of equilibrium
of the applied loads, andα collects the modal amplitudes. The CI problem (4.45) expresses
that the connecting forces should be such that they fill the interface gap created by the
external loads, and such that, together with the applied loads, they are in equilibrium with
respect to the local rigid modes (self-equilibrium). The problem (4.45) is also called the
dual interfaceproblem because it is expressed in terms of the dual variablesλ representing
the interface connecting forces. The solution to the systemof equations (4.45) is identical
to the problem of minimising the quadratic form

Φ=
1
2
λTFλ−λTg, (4.46)
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with the additional condition:
GTλ= e. (4.47)

It is appropriate to use the conjugate gradient method (Hestnes, 1952) for the solution of this
problem, however, the classical method can not be used because it is derived for systems
with symmetric positive definite matrices and the matrixF does not fulfill this requirement
since it is symmetric but not positive definite. Then, the system of equations (4.45) is solved
iteratively using a modified conjugate-gradient method (Kruis, 2007). Upon convergence
the interior subdomain states are recovered from (4.42) using direct solvers to solve the
independent local problems.

The behaviour of the iterative methods used for the solutionof reduced problems can be
improved by suitable preconditioning. There are two popular pre-conditioners commonly
adopted: lumped and Dirichlet (Kruis, 2007; Rixen, 2001). For second-order elasticity
and fourth-order plate and shell problems, the Dirichlet preconditioner ensures scalability
with respect to the mesh size. The lumped preconditioner is amore economical version
of the Dirichlet preconditioner that, for many second-order elasticity problems, delivers
superior computational performance since it reduces the overall computing time, although
it yields slower convergence of the iterations on the interface problem. Both the lumped
and Dirichlet preconditioners can be used in the finite element procedure developed in this
thesis.

The FETI method has been applied in many areas; i.e. in applications to non-conforming
interfaces using multi-point constraints (Farhat et al., 1998), geometrically non linear prob-
lems (Farhat et al., 2000a), and to analyses of layered structures (Kruis and Matous, 2002).
The FETI method has also inspired many variants, extensions, and applications, and detailed
overviews of these variations are provided in (Farhat et al., 2000b; Kruis, 2007).

4.4 Variationally Consistent Stress Recovery Procedure

It is apparent from the finite element procedure derived in section 4.2 that the stress field
does not enter explicitly into the determination of the nodal displacementsd, and the en-
hanced strain parametersα. A consistent recovery procedure for the stress field from the
nodal displacementsd is then required. An obvious approach to calculating the stresses
resulting from a displacement finite element approximationis to differentiate the finite ele-
ment solution directly and evaluate the stresses at superconvergent points within an element
using the appropriate constitutive relations. However, stress fields deduced directly using
constitutive relations can show spurious oscillations dueto the retention of higher order
(inconsistent) terms which do not contribute to the determination of the displacements and
then the strains, but get reflected as extraneous stress oscillations, see section 3.2. In or-
der to recover consistent stress fields other approaches to the conventional stress recovery
have been proposed, and consistent stress distributions can be obtained in a variationally
correct manner by employing integrated procedures, see section 3.2. In this regard, an ap-
propriate procedure in the context of a class of assumed strain methods is presented for the
infinitesimal theory in Simo and Rifai (1990). This procedure, which does not involve the
enhanced strain field, has been extended to the geometrical non-linear case using the en-
hanced assumed Green-Lagrangian strains in Klinkel and Wagner (1997), and the complete
procedure is reported below.
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Since the displacement field is retrieved once the system of governing equations (4.38)
is solved, the following least-square functional can be adopted in the procedure with the
intention to minimize the stress error (Klinkel and Wagner,1997; Simo and Rifai, 1990):

L(Ẽ,S) :=
∫
Ω0

[C(Ec + Ẽ)− S] : C−1 : [C(Ec + Ẽ)− S] dΩ, (4.48)

whereΩ0 is the volume of the initial configuration,Ec is the compatible part of the Green-
Lagrange strain tensor defined in (4.2),Ẽ is the stress tensor enhancingEc, S is the second
Piola-Kirchhoff stress tensor, andC is the fourth order constitutive tensor defined in (4.29).
Then, it is assumed that the least-squares minimization problem,

L(Ẽ,S) = MIN[L(δẼ, δS)], (4.49)

defines the correct enhanced strainẼ and stressS fields. Considering that the first varia-
tion of L(Ẽ,S) has to be zero for equilibrium, the following two independent equations are
obtained:

∫
Ω0

δẼ : [C : (Ec + Ẽ)− S]dΩ= 0,
∫
Ω0

δS : [(Ec + Ẽ)− C−1 : S]dΩ= 0.
(4.50)

The stress tensorS defined in (4.23) implies that∂w/∂E is equal toC(Ec + Ẽ). Then, the
equation (4.50)1 in the case of balance is satisfied, meaning that the correct values of the
enhanced strain parametersα(e) are obtained. The second condition (4.50)2 contains new
information, from which the stress field is recovered. First, an interpolation scheme for
the element stressesS(e) has to be chosen. This interpolation scheme is assumed to be the
following:

S(e) = Gsβ
(e), (4.51)

with
Gs = T0G(ξ), (4.52)

whereT0 is the trasformation matrix introduced in the interpolation scheme of the enhanced
strain tensorℑ defined in (4.17),G is the interpolation matrix that needs to be properly
defined,β(e) is the stress-parameters column-matrix, andξ = [ξ1, ξ2, ξ3] is the material
convective coordination parameterizing the element isoparametric space. Due to the or-
thogonality condition (4.9) the stress fieldS(e) has to be orthogonal to the enhanced strain

field Ẽ
(e)

. Then, from the orthogonality condition (4.9), by substituting the interpolation

scheme adopted for the enhanced strain fieldẼ
(e)

(4.16) and the stress fieldS(e) (4.51), the
following expression at element level is obtained:

∫
Ω
(e)
0

δβ(e)T GT
s ℑα(e)detJdξ1dξ2dξ3 = 0, (4.53)

wheredetJ is the determinant of element Jacobian matrix of the mappingfrom the isopara-

metric space to the initial configurationΩ(e)
0 of element(e). Thus, the following condition
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between the enhanced strain and stress interpolation matrices has to be satisfied:
∫
Ω
(e)
0

GT(ξ)M (ξ)dξ1dξ2dξ3 = 0. (4.54)

The interpolation matrixG which is orthogonal toM (4.20) has been investigated in An-
delfinger and Ramm (1993), and assumes the following form:

G =




1 ξ2 ξ3 ξ2ξ3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 ξ1 ξ3 ξ1ξ3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ξ3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 ξ1 ξ2 ξ1ξ2


 . (4.55)

By inserting equation (4.52) in (4.50)2 the following optimal stress field in the sense of
least-squares minimization is obtained:

S(e) = GsH−1
s Γs, (4.56)

with

Hs =

∫
Ω
(e)
0

GT
s C−1GsdetJdξ1dξ2dξ3,

Γs =

∫
Ω
(e)
0

GT
s Ec(ξ1, ξ2, ξ3)detJdξ1dξ2dξ3,

(4.57)

whereEc is the compatible part of the Green-Lagrange strain tensor evaluated for each
Gauss point(ξ1

p, ξ
2
p, ξ

3
p). The compatible strains expression (4.2) can be reformulated as

following:

Ec(ξ1, ξ2, ξ3) =
1
2
[GraduT Gradu+ GraduT + Gradu], (4.58)

where the displacement fieldu is defined in (4.13), and the operatorGradu is then a function
of ξ1, ξ2, ξ3:

Gradu =
Nnodes

∑
I=1




NI ,x 0 0
0 NI ,y 0
0 0 NI ,z

NI ,y NI ,x 0
NI ,z 0 NI ,x

0 NI ,z NI ,y




dI . (4.59)

with Nnodesdefining the number of nodes within an element.

This procedure will be adopted in this thesis to only recoverin-plane stress distribu-
tions. This is because although consistent stress states can be retrieved at superconvergent
points within the elements using this recovery procedure, when the emphasis of the analy-
sis is the prediction of interlaminar stress failure initiation it is necessary to have accurate
interlaminar stresses on these interfaces as opposed to Gauss points. Then, the stresses
evaluated at superconvergent points are usually extrapolated to the boundaries of the ele-
ment domain using sophisticated extrapolation techniques, as explained in detail in section
3.2. However, in presence of high in-plane and out-of-planestress gradients, accurate nodal
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stress values can only be obtained by resorting to meshes requiring demanding compu-
tational resources (Dakshina Moorthy and Reddy, 1999). In particular, the interlaminar
continuity of the transverse stresses required by theC0

z-Requirements, as opposed to the in-
plane stresses as explained in section 2.2, is difficult to achieve without resorting to refined
meshes through-the-thickness of the laminate, especiallyin displacement based formula-
tions in which the order of the polynomial describing the through-the-thickness variation of
the transverse stresses is one order less compared to both the in-plane stress and displace-
ment polynomials. Moreover, a coarse mesh through the thickness of the laminate in 3D
formulations may lead to the possibility of thickness locking if the Poisson effect through
the thickness is not correctly represented. The enhanced strain method used to derive the
finite element model in section 6.1 was conceived to overcomethe thickness locking, thus
allowing the use of coarse meshes through the thickness of the laminate. Then, a recov-
ery procedure able to provide accurate interlaminar stresses and not requiring demanding
computational resources was developed, and is presented inthe next section.

4.5 Interlaminar Stress Recovery Procedure

The present procedure is an extension of the interlaminar stress recovery procedure devel-
oped by Dakshina Moorthy and Reddy (1999) in the context of studying delamination in
multilayered composites. In their approach, each ply is modeled as a separate body, and the
interlaminar forces are obtained using an interface model that involves the selection of an
interface in the laminate a priori and modeling it as an adhesive contact zone between por-
tions of the laminate separated by this interface. The adhesive contact between portions of
the laminate at its interface is enforced by a penalty function method, and the contact load
that satisfies the equilibrium at the interface is used to evaluate the interlaminar stresses.
The recovery procedure partitions the contact surface intoa set of non-overlapping patches
corresponding to groups of elements. The traction distribution is interpolated over each
patch in terms of nodal values. Static equivalence between the tractions and the contact
forces is used to calculate the nodal values of the traction,hence the interlaminar stresses.
Dakshina Moorthy and Reddy showed that the procedure lead inpractice to oscillatory inter-
laminar stress distributions. A final step in their procedure is the application of a smoothing
technique to obtain more physically meaningful interlaminar stress distributions.

The procedure discussed in this thesis extends the procedure of Dakshina Moorthy and
Reddy in two ways. One, each ply is still modeled separately but the compatibility between
the plies is enforced using the FETI domain decomposition method introduced in section
4.3.1. Thus, connecting forces are obtained without resorting to a penalty formulation.
Two, the traction distribution is interpolated over the complete interlaminar surface. Thus,
the full distribution of interlaminar stresses is obtainedsimultaneously. More details of the
proposed formulation are provided below.

Consider a typical interface between two plies as shown in figure 4.3. The system of
linear equilibrium equations and compatibility conditions can be written as (4.40)




K (1) 0 B(1)T

0 K (2) B(2)T

B(1) B(2) 0







d(1)

d(2)

λ


 =




f(1)

f(2)

0


 , (4.60)
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Wf
W

Connecting

forces lf

Figure 4.3: Connecting forcesλ f at the interfacial nodes of each element obtained using
the FETI method.

whereK (1) andK (2) are the stiffness matrices of the two plies,u(1) andu(2) the displace-
ment vectors of the two plies,f(1) andf(2) the load vectors of the two plies,B(1) andB(2) are
the Boolean matrices providing the equality conditions between displacements of the two
plies, andλ are the Lagrange multipliers (interlaminar forces) introduced to enforce the
compatibility constraints between the plies. Solving the system of equations (4.60), the in-
terlaminar forces between the plies are obtained as are the displacements. Then, the traction
distributiontΩ f over the surfaceΩ f is interpolated usingC0 iso-parametric shape functions:

tΩ f = Nt f , (4.61)

wheret f is the vector of the nodal traction values andN is the matrix ofC0 shape functions.
The displacement distributionuΩ f over the surfaceΩ f is interpolated using the sameC0

iso-parametric shape functions used for the traction distribution

uΩ f = Nd f , (4.62)

whered f is the vector of the nodal displacements. Thus, the internalwork Win done by the
tractions over the element surface can be written as:

Win =
∫
Ω f

( t f N)T

︸ ︷︷ ︸
tT
Ω f

Nδd f︸ ︷︷ ︸
uΩ f

dΩ f = tTf M f δd f , (4.63)

whereM f is the matrix of areas:

M f =
∫
Ω f

NT N∂Ω f . (4.64)

Then, the matrices of areas of all the elements on the interlaminar surfaceΩ are assembled
in a matrixM :

M = A
nel
e=1M f , (4.65)

whereA denotes the finite-element assembly operator. The elementsconnectivity on the



4.6 Numerical Results 73

surfaceΩ is directly inherited from the solid element faces. Considering the static equiva-
lence between the tractions and the connecting forces:

tT M δd = λTδd, (4.66)

whered andt are, respectively, the global vector of nodal displacements and nodal tractions
on the surfaceΩ, the following relation is obtained:

Mt = λ => t = M−1λ, (4.67)

which allows to retrieve the interlaminar stress distributions over the surfaceΩ. The process
is repeated for every interlaminar surface of interest.

It is worth mentioning that the present procedure can be easily combined with the Mortar
method for the analysis of plies with non-conforming meshes. The Mortar method was
introduced in the early 1990s (Puso, 2004) to formulate weakcontinuity conditions at the
interfaces of subdomains in which different variational approximations are used. Relaxing
the constraint on the boundaries of the interfaces using Lagrange multipliers provides the
standard framework within which the method is normally used(Hauret and Ortiz, 2006).
Then, in the case of non-conforming meshes between the plies, the Boolean matrices in
equation (4.60) can be simply replaced withB matrices obtained using the Mortar method.
The accuracy of the present approach is demonstrated in the next section.

4.6 Numerical Results

4.6.1 Simply Supported Plate Subjected to Bisinusoidal Pressure Load

The procedure discussed and developed in this thesis was validated considering a bench-
mark problem analysed in Pagano (1970), where 3D exact elasticity solutions of idealised
simply supported cross-ply[0◦/90◦/0◦], square plates under bisinusoidally distributed pres-
sure load of intensitypz, are provided. The length and thickness of the plate is denoted by
a andH respectively. The laminate is made of material plies that are idealized to be homo-
geneous, elastic and orthotropic. The following material properties are used:E11= 25GPa,
E22 = E33 = 1GPa, G12 = G13 = 0.5GPa, G23 = 0.2GPa, andν12 = ν13 = ν23 = 0.25.
Subscripts 1,2 and 3 denote the fibre, transverse and thickness directions, respectively. The
rectangular Cartesian coordinate system used is such that the origin is located in the middle
of the laminate at one of the side corners, see figure 4.4. Stresses are normalized according
to the following formulae,

(τ ′xz, τ
′
yz) =

1
pzS

(τxz, τyz) , σ
′
zz =

1
pz
σzz,

(σ′xx , σ
′
yy, τ

′
xy) =

1
pzS2 (σxx , σyy , τxy)

where theS is the laminate length to thickness ratioS= a/H.

Laminates of length to thickness ratiosS= 20,50,100 were analysed to demonstrate
the accuracy of the present procedure in analysing moderately-thick/thin composite struc-



74 4 A Finite Element Procedure for Interlaminar Stress Analyses

Figure 4.4: Bisinusoidal pressure load

tures. Particular attention was paid to the recovery of the interlaminar stress fields. This is
because an appropriate level of accuracy of the transverse stress fields that is able to ful-
fill the C0

z-Requirements, see section 2.2, usually represents the aspect, the achievement of,
which demands accurate and computationally expensive finite element models. One solid-
shell element was adopted in the through-the-thickness mesh of each ply in the laminate.
Convergence analyses of the interlaminar transverse stresses evaluated at the[0◦/90◦] in-
terface between the top and middle plies, i.e. z/H=0.1666, were performed using different
in-plane meshes. This interface is the one with maximum interlaminar stresses due to the
mismatch of the material properties (0◦ and 90◦ plies). The results for the performed con-
vergence analyses are presented in figures 4.5 and 4.6 for, respectively, values of length to
thickness ratiosS= 20 andS= 100. Referring to the scheme reported in figure 4.3, in-
terlaminar transverse stress distributions were obtainedusing a linear interpolation for the
traction distribution over the surfaceΩ f . This was achieved by adopting the same classical
linear isoparametric shape functions assumed for the displacement field. Excellent agree-
ment with Pagano’s exact solution and fast convergence wereobtained for both moderately
thick laminates, i.e.S= 20, and thin laminates, i.e.S= 100. This fast convergence is due
to the fact that the present procedure provides the transverse stresses directly at nodes using
equilibrium considerations, thus interlaminar continuity of the transverse stresses was easily
satisfied, and accurate interlaminar transverse stress distributions with respect to the exact
solutions could be obtained using an in-plane coarse mesh of12×12 elements. However,
in figure 4.51 it can be seen that the value of the transverse normal stressσ′zzat the boundary
of the laminate, i.e.y/a= 0, does not converge exactly to zero by refining the mesh, as it
should be, but a stress state of compression or tension is generated depending on the sign
of the pressure load considered. Boundary stress states were generated at the boundaries of
the laminate where idealised simply supported boundary conditions were applied in the 3D
finite element model.

The appropriate level of accuracy reached in the evaluationof the interlaminar stress
fields is further shown in table 4.2, where transverse stressvalues evaluated at the(0◦/90◦)
interface at points of major interest, labeled as EQUILIBRIUM, are reported for different
values of length to thickness ratioSof the laminate. The percentage errors with respect to
Pagano’s exact solutions, labeled as EXACT, are also reported in brackets. The percentage
errors obtained were always less than 1.3%, confirming that accurate evaluations of the
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interlaminar stresses were obtained in these locations forboth moderately-thick and thin
laminates by adopting an in-plane mesh of 12×12 elements.

Table 4.1: Comparison between interlaminar transverse stress values evaluated at points
of major interest on the(0◦/90◦) interface of a[0◦/90◦/0◦] laminate using the
proposed procedure and Pagano’s exact solution (Pagano, 1970).

S τ ′xz(0,
a
2,

1
6) τ ′yz(

a
2,0,

1
6) σ′zz(

a
2,

a
2,

1
6)

20 EXACT 0.3804 0.0374 0.7398
EQUILIBRIUM 0.3825 (0.55%) 0.0375 (0.27%) 0.7483 (1.15%)

50 EXACT 0.3892 0.0341 0.7406
EQUILIBRIUM 0.3914 (0.57%) 0.0342 (0.29%) 0.7496 (1.22%)

100 EXACT 0.3905 0.0336 0.7407
EQUILIBRIUM 0.3926 (0.54%) 0.0337 (0.3%) 0.7498 (1.23%)

The excellent level of smoothness reached in the recovered interlaminar transverse stress
distributions is shown in figures 4.7 and 4.8 which show, respectively, the surface plots at the
(0◦/90◦) interface of the interlaminar transverse shear stressτ ′yz and normal stressσ′zz for
S= 20, and the surface plot of the interlaminar transverse shear stressτ ′xz for S= 100. The
maximum value and the location where the maximum value is reached is also highlighted
for each surface plot. The boundary stress states mentionedabove, and generated at the
locations where the idealised simply supported boundary conditions were imposed, are also
evident in the surface plot of the transverse shear stressτ ′yz in figure 4.52 at the locations
x/a= 0 andx/a= 1.

Based on the considerations formulated above, henceforth the in-plane mesh in the finite
element model will consist of 12× 12 elements unless differently stated. As fas as the
through-the-thickness mesh is concerned, from figure 4.9(a) one can see the surface plot
of the interlaminar shear stressτ ′xz distribution at the(0◦/90◦) interface for a laminate of
length to thickness ratiosS= 50 obtained considering no fictitious interfaces within the
plies, while in figure 4.9(b) it is shown the same surface plotobtained when one fictitious
interface located in the middle of every ply is considered. The difference between the two
analyses in the maximum value of the transverse shear stressτ ′xz obtained, and highlighted in
the plots, is 0.0357%. Moreover, in both the analyses the difference with respect to the exact
solution is less than 0.5%. Similar results were obtained considering laminates of length to
thickness ratiosS= 20 andS= 100. Then, the minimum required number of elements in the
thickness direction was three. While this is sufficient for accurate interlaminar stresses, it
does not allow the detailed evaluation of the through the thickness variation of the transverse
stresses. To also provide transverse stress distributionsin the middle of every layer, three
more mathematical interfaces are required in these locations to give a total number of six
elements through the thickness.

The same laminate is analysed in Dakshina Moorthy and Reddy (1999) where two dif-
ferent values of length to thickness ratiosS= 10,100 are considered. The rectangular Carte-
sian coordinate system used in their work is such that the origin is located at the center of
the bottom surface of the plate. Regarding the structural symmetry, only a quarter of the
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Figure 4.5: Convergence analyses concerning the transverse normal stressσ′zz and the
transverse shear stressτ ′yz at the(0◦/90◦) interface of a[0◦/90◦/0◦] laminate
considering different in-plane meshes; x/a= 0.5, S= 20.
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Figure 4.6: Convergence analysis concerning the transverse shear stressτ ′xz at the(0◦/90◦)
interface of a [0◦/90◦/0◦] laminate considering different in-plane meshes;
y/a= 0.5, S= 100.

plate is taken into account. Then, the computational domainof the quarter plate model is
0 ≤ x ≤ a/2;0≤ y ≤ a/2;0≤ z≤ H. An in-plane mesh of[8× 8] nine-node quadratic
elements and a mesh of linear Lagrange elements through the thickness of the laminate is
considered. For their study of interlaminar stresses, Dakshina-Moorthy and Reddy selected
the(0◦/90◦) interface between the top and middle plies. The interlaminar stresses are cal-
culated and compared using three different approaches:(1) their equilibrium based stress
recovery procedure, at nodes;(2) from constitutive relations, at integration points; and(3)
variationally optimal stress recovery procedure, at integration points. Dakshina-Moorthy
and Reddy’s interlaminar stress distributions for the transverse normal stressesσ′zz andτ ′xz
are reported in figure 4.10. The stresses computed using the last two approaches were not
single valued at the interface. These approaches were then used by Dakshina-Moorthy and
Reddy to evaluate interlaminar stresses at the integrationGauss points within each element.
Their equilibrium based stress recovery procedure could beused to compute interlaminar
stresses at the nodes on the interface.

The distribution of the interlaminar normal stressσ′zz for a laminate with thickness to
length ratioS= 10 is shown in figure 4.101. It can be noted thatσ′zz obtained from the
equilibrium is very close to the exact solution. The approach based on the constitutive
relations overpredicts the transverse normal stresses, and the variationally optimal stress
recovery procedure produces a distribution of stress that is constant within an element and
not much different from that obtained using constitutive relations. Although less accurate
compared to equilibrium, transverse normal stress distributions recovered using constitutive
relations show qualitatively the correct distribution. However, for very thin plates, i.e.S=
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(a) Surface plot concerning the interlaminar transverse normal stressσ′
zz.

0.037551

−0
.0

31
77

4

−0.0
25

99
7

−0.025997 −0.0
20

22

−0.02022

−0.02022

−0.014443−0.014443

−0.014443

−0
.0

08
66

57

−0.0086657
−0.0086657

−
0.0086657

−
0.

00
28

88
6−

0.0028886

−
0.

00
28

88
6

−0.0028886
−0.0028886

−0.0028886

−
0.0028886

0.00288860.
00

28
88

6

0.0028886

0.0028886
0.0028886

0.0028886

0.
00

28
88

6

0.0086657

0.0086657
0.0086657

0.
00

86
65

7

0.0144430.014443

0.
01

44
43

0.02022

0.02022

0.
02

02
2

0.0259970.025997

0.031774

0.
03

17
74

x/a

y/
a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Surface plot concerning the interlaminar transverse normal stressτ ′yz.

Figure 4.7: Surface plots concerning the recovered interlaminar transverse stresses at the
(0◦/90◦) interface of a[0◦/90◦/0◦] laminate,S= 20.
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Figure 4.8: Surface plot concerning the recovered interlaminar transverse shear stressτ ′xz
at the(0◦/90◦) interface of a[0◦/90◦/0◦] laminate,S= 100.

100, Dakshina-Moorthy and Reddy have shown that constitutive relation-based transverse
normal stresses were very inaccurate near the edges of the plate.

The distribution ofτ ′xz for S= 100 is reported in figure 4.102. The stresses from the
constitutive relations and that from variationally recovery procedures are less accurate when
compared to the equilibrium-based stress recovery procedure. It can also be noted that the
variationally optimal stress distribution is extremely close to that obtained from constitutive
relations both in terms of distribution and value.

One undesirable feature of the stress recovery procedures mentioned above is the pres-
ence of oscillations in the transverse stress distributions, especially for thin plates. These
oscillations were found to be severe in transverse shear stresses. The amplitudes of os-
cillations for equilibrium-based stresses were found to becomparable to that in constitutive
relation-based stresses. Further, it was noted that these oscillations tend to increase in ampli-
tude as the laminate gets thinner. Then, either a refinement of the mesh or the employment
of smoothing techniques is usually required, however, the computational cost involved in-
creases significantly. Comparing these distributions withthe ones obtained using the present
procedure and shown in figure 4.5, it can be stated that the present procedure is able to cir-
cumvent the shortcomings of the recovery procedures developed by Dakshina-Moorthy and
Reddy by employing much coarser meshes compared to their model, and without the need
to resort to the use of smoothing techniques to obtain accurate and smooth interlaminar
stress fields.

The same laminate was also analysed using the layer-wise mixed theories proposed by
Carrera and Demasi (2002a,b). In their work, quadrilateralmultilayered four-, eight-, and
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(a) Surface plot obtained without the introduction of mathematical interfaces.
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(b) Surface plot obtained introducing one mathematical interface in the middle of each ply.

Figure 4.9: Surface plots concerning the recovered interlaminar transverse shear stressτ ′xz
at the(0◦/90◦) interface of a[0◦/90◦/0◦] laminate,S= 50.
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Figure 4.10: Transverse normal stressσzz (σ′zz in the present convention) and transverse
shear stressσxz (τ ′xz) distributions obtained in Dakshina Moorthy and Reddy
(1999) at the interlaminar surface(0◦/90◦) of a [0◦/90◦/0◦] laminate using
different approaches, and different length to thickness ratiosS; y/a= 0.5 with
reference to the present cartesian coordinate system.
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nine-noded plate elements are developed based upon the Reissner’s Mixed Variational Theo-
rem (RMVT) (Reissner, 1984, 1986), which allows one to assume two independent fields for
displacements and the transverse stress variables. Layer-wise modeling, see section 2.3.4,
and equivalent single-layer modeling, see section 2.3.3, are considered on the framework
of the RMVT. Linear and higher-order, up to forth order, expansion in the through-the-
thickness direction of the laminate are implemented for both displacements and transverse
stresses. In this thesis, attention will be restricted to those elements assuming a layer-wise
multilayered form description through-the-thickness of the laminate. These elements are
denoted using the acronym LMn, where n is the order of expansion assumed for both the
displacements and transverse stresses polynomials along the thickness direction of every
ply. The LMn’s distributions showed below were obtained without the introduction of ficti-
tious interfaces within the plies, and the final system of algebraic equations was solved for
both displacements and transverse stress variables. Thus,the transverse stresses were ob-
tained directly at nodes, and accurate and continuous interlaminar stress distributions could
be generated without the employment of a post-processing recovery procedure, as opposed
to conventional displacement based formulations.

Through-the-thickness distributions of the transverse stresses were obtained at locations
in thex− y plane of major interest using the multilayered nine-noded plate elements devel-
oped in Carrera and Demasi (2002a,b). These distributions are shown in figure 4.11 for,
respectively, the transverse shear stressesτ ′xz andτ ′yz, and in figure 4.12 for the transverse
normal stressσ′zz. In these plots, Carrera and Demasi’s distributions are compared with the
ones obtained using the procedure presented in this thesis,and Pagano’s exact solutions.
A laminate with a value of length to thickness ratiosS= 20 is considered to highlight the
accuracy obtained by the present procedure in the analisys of moderately-thick composite
laminates. An in-plane mesh of 12×12 elements was adopted in all the cases. Among the
considered Carrera and Demasi’s multilayered nine-noded plate elements, accurate trans-
verse stress distributions with respect to the exact solutions were obtained by assuming at
least a third order polynomial through-the-thickness of each ply, i.e. LM3, for the transverse
stress approximations. A third order of approximation is particularly required by the trans-
verse shear stress distributions due to the presence of higher through-the-thickness gradients
compared to the transverse normal stressσ′zzdistribution. In fact, by analysing more in detail
the transverse shear stressτ ′yz distribution in figure 4.11, a quadratic order of interpolation
for the assumed transverse stresses, i.e. LM2, generates a percentage error with respect to
the exact solution of 3.76% at the point of maximum value, i.e. z/H=0, and at the(0◦/90◦)
interface, i.e. z/H= 0.1666, a percentage error of 25.13%. Moreover, inaccurate values are
obtained at the boundaries, i.e. top and bottom of the laminate. The percentage errors in
these locations is reduced to less than 1.5% using LM3. A similar response is obtained for
the transverse shear stressτ ′xz, whereas a quadratic order of interpolation is enough to gener-
ate an accurate distribution for the assumed transverse normal stressσ′zz, as shown in figure
4.12. Thus, a system of algebraic equations with 37500 unknowns needs to be solved using
Carrera and Demasi’s formulation for appropriate evaluations of the interlaminar stresses.

The percentage error with respect to the exact solution generated using the present pro-
cedure for the evaluation of the transverse shear stressτ ′yz at the point of maximum value,
i.e. z/H=0, is of 0.53%, and at the(0◦/90◦) interface, i.e. z/H= 0.1666, the percentage error
is of 0.27%. A similar response is obtained for both the transverse shear stressτ ′xz and the
transverse normal stressσ′zz. This means that the present procedure obtains accurate values
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Figure 4.11: Comparisons between the through-the-thickness distributions of the transverse
shear stresses obtained at locations in the x− y plane of major interest using
different approaches, S=20.
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Figure 4.12: Comparisons between the through-the-thickness distributions of the transverse
normal stressσ′zz obtained in the middle of the laminate using different ap-
proaches, S=20.

of the transverse stresses by solving a system of algebraic equations with 8619 unknowns,
although a fictitious interface was introduced in the middleof each ply to recover intralam-
inar values of the transverse stresses. This means that the present procedure is able to
generate a percentage reduction of 72% in the total number ofdegrees of freedom required
to achieve accurate distributions of the interlaminar stresses compared to Carrera and De-
masi’s formulation. For the sake of completeness, it is worth remarking that in analyses
requiring accurate evaluation of the intralaminar transverse stresses, as for instance in cases
where intralaminar failure initiation is more likely to occur than interlaminar failure, the
present procedure may be as much computationally expensiveas stress-based formulations
since additional fictitious interfaces would be required inthe locations of interest.

Comparisons between the through-the-thickness distributions of the in-plane stresses at
points of major interest are shown in figure 4.13. In this casethe comparisons are between
the plots obtained using the proposed variational consistent procedure, labeled as VARI-
ATIONAL, the ones obtained using Carrera and Demasi’s multilayered nine-noded plate
elements and based on the constitutive relations, and Pagano’s exact solutions. Accurate
distributions were obtained in all the cases. By using the proposed variational consistent
recovery procedure, in plane stresses are evaluated at the integration points within each
element, and the retrieved values are extrapolated to the element nodes using the shape
functions. Then, the values at the common nodes between the elements are obtained av-
eraging all the contributions. Additional in-plane stressvalues obtained at points of major
interest using the present procedure are reported in table 4.2 for different values of length to
thickness ratiosS. In this case, the percentage error of the recovered in-plane stress values
with respect to the exact solutions is always less than 1.6%.

A comparison between convergence analyses of the interlaminar transverse stressτ ′yz
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Figure 4.13: Comparisons between the through-the-thickness distributions of the in-plane
normal stresses obtained in the middle of the laminate usingdifferent ap-
proaches, S=20.
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Table 4.2: Comparison between in-plane stress values evaluated at points of major interest
using the proposed procedure and Pagano’s exact solution (Pagano, 1970).

S σ′xx(
a
2,

a
2,±

1
2) σ′yy(

a
2,

a
2,±

1
6) τ ′xy(0,0,±

1
2)

20 EXACT ±0.5524 ±0.2092 ∓0.0234
VARIATIONAL ±0.5450(1.34%) ±0.2062(1.45%) ∓0.0230 (1.52%)

50 EXACT ±0.5409 ±0.1845 ∓0.0216
VARIATIONAL ±0.5338(1.33%) ±0.1820(1.37%) ∓0.0213(1.41%)

100 EXACT ±0.5393 ±0.1808 ∓0.0213
VARIATIONAL ±0.5326(1.26%) ±0.1786(1.23%) ∓0.02102(1.33%)
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Figure 4.14: Comparisons between the through-the-thickness distributions of the in-plane
shear stressτ ′xy obtained at the in-plane location x= 0,y = 0 using different
approaches, S=20.
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performed considering different in-plane meshes, and obtained at the point of maximum
value is shown in figure 4.15(a). These analyses were carriedon using the proposed pro-
cedure, and Carrera and Demasi’s multilayered four- and nine-nodedLM3 plate elements,
respectively labeled Q4 and Q9, and shown in figure 4.15(a). In these plotsNe represents
the number of elements along each side of the plate. A laminate of thickness to length
ratio S= 20 was considered. The proposed procedure produces a slope similar to the one
obtained using theLM3Q9 plate element, but a faster convergence to the exact solution is
achieved. Similar slopes were obtained for the interlaminar transverse shear stressτ ′xz and
transverse normal stressσ′zz. These plots again confirm the excellent level of accuracy and
efficiency of the proposed procedure since these results were obtained using a significant
reduction in the number of degrees of freedom involved compared to other approaches. A
similar analysis, but concerning the in-plane stressσ′xx, is shown in figure 4.15(b). In this
case, the slope followed by the proposed procedure is similar to the one obtained using the
LM3Q4 plate element, but with a slightly slower convergence due to the different order of
interpolation adopted through the thickness of the laminate. This similarity was expected
since variationally consistent recovery procedures usually provides distributions that are ex-
tremely close to that obtained from constitutive relationsboth in terms of distribution and
value, as shown in figure 4.10, provided that the stress distributions obtained from the con-
stitutive relations are consistent with the finite element model. Similar trends were obtained
for the in-plane stressesσ′yy andτ ′xy.

From the comparisons made above it is clear that the procedure presented in this thesis
is able to provide data on stress fields as accurate as Carreraand Demasi’s stress based
formulation, even in the range from thick to moderately-thick laminates, i.e.S=20, but with
a significant reduction in the computational cost involved and faster overall performances.
This is particularly remarkable in the recovery of the interlaminar stress fields, although in
Carrera and Demasi’s procedure a post-processing stress recovery technique is not required.
For the sake of completeness, it is worth to say that the computational cost involved in
Carrera and Demasi’s stress based formulation can be reduced using a generalization of
this approach proposed by Demasi (2008), where each variable, in the most general case
each displacement and each transverse stress, can be independently expanded along the
thickness of the laminate based on the order of approximation required. For instance, in
the case under consideration the through-the-thickness distribution of theσ′zz would require
a quadratic order of interpolation and not a third order as for the transverse shear stress
distributions.

4.6.2 Stress Analyses of Laminated Composite Plates with Open Hole
Subjected to Uniaxial Tension

Stress concentration phenomena play an important role in the design of layered structures.
A well known stress concentration problem is the problem of aplate loaded in-plane and
containing a circular open hole. This problem combines strong in-plane stress gradients
with free edge effects and is characterized by the occurrence of strongly 3D singular stress
fields at the free edges in the interface between two layers ofcomposite laminates. As a
consequence, stress calculation at the interlaminar surfaces in the vicinity of the hole edge
is a difficult problem.
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The accuracy of the recovery procedure presented in this thesis was tested examining a
square[45◦/− 45◦]s plate with a circular hole as shown in figure 4.16. The laminate con-

a

H u₀

r

O~

x

z

Figure 4.16: Laminate plate with hole.

sist of the planar dimensionsa = 508mm, diameter of the holeD = 50.8mm, coordinate
of the hole centerxc = yc = a/2, ply thicknessh= 2.54mm. Each ply is treated as an ho-
mogeneous, elastic and orthotropic material with the following properties:E11 = 138GPa,
E22= E33= 14.5GPa, G12= G13= G23= 5.86GPa, andν12= ν13= ν23= 0.21. The uni-
axial loadingu0/a = 0.001 is applied via displacement boundary conditions at the lateral
sides(x= 0,a),

− ux(0,y,z) = ux(a,y,z) = u0 , uy(0,y,z) = uy(a,y,z) = 0. (4.68)

The averaged applied stress is calculated as:

σ0 =
1

aH

∫ a

0

∫ H

0
σxx(a,y,z)dydz (4.69)

where H is the complete laminate thickness.
This problem is analysed in Iarve (1996) where an independent polynomial spline ap-

proximation of displacement and interlaminar tractions isproposed for accurate stress anal-
ysis of multilayer composite laminates with open hole, and athree-dimensional full field
solution is obtained. Spline approximation is able to eliminate the inter-element compati-
bility problems leading to unsatisfactory finite element results in the presence of field sin-
gularities. Moreover, spline approximation offers continuity of displacement, strain and
stress fields within homogeneous domains simultaneously preserving the advantages of lo-
cal approximation, such as sparsity of the resulting systemof equations. In the work of
Iarve (1996) the system of equations allowing for the calculation of the displacement spline
approximation coefficients under given surface tractions is obtained using the minimum po-
tential energy principle. A closed form asymptotic solution, valid in the vicinity of the hole
edge at the interface of two orthotropic plies of arbitrary thickness, is also developed in
Iarve (1996) to verify the spline approximation. Good agreement was observed between the
asymptotic solution and Iarve’s spline approximation for distances up toH/4 from the hole
edge for all stress components. However, the procedure was shown to be detrimental for ac-
curate interlaminar stress calculation within approximately one half-ply thickness from the
singular point. In order to provide accurate stress fields also in the singular neighborhood of
the ply interface and the hole edge, the procedure is improved in Iarve and Pagano (2001)
using a superposition approach of an hybrid and displacement approximation based on the
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Reissner’s variational principle Reissner (1984, 1986). The approximation of displacement
is still based on the polynomial B-spline functions, but thehybrid stress functions are de-
rived using the asymptotic solution carried on in Iarve (1996). Iarve and Pagano (2001)
show converged interlaminar stress components, includingtheir singularities, as a function
of the distance from the hole edge. Then, the interlaminar stress distributions obtained in
Iarve and Pagano (2001) were taken as benchmark solutions tovalidate the recovery proce-
dure presented in this thesis.

In the present analysis, given the symmetry of loading and lay-up, only half of the total
thickness of the laminate was modelled. An example of the in-plane mesh adopted is shown
in figure 4.17. Henceforth, the designation[ner/rsr − net] denotes a mesh where:ner is the
number of elements extending in the radial direction from the hole edge to the end of the
circular region, i.e.r = 80mm, rsr is the radial spacing ratio of the elements in the refined
circular region in which the interval size increases in geometric progression beginning at
the hole edge, andnet is the number of elements through the half thickness of the complete
laminate. For instance, the mesh denoted as 24/30− 2 adopts two elements in the thickness
direction, that is one solid-shell element is assumed through-the-thickness of each ply. In
the present analysis a refinement of the mesh in the thicknessdirection was obtained by
introducing the necessary fictitious interfaces in each ply. Thus, the final number of plies
increased, and the interlaminar stress recovery procedurepresented in section 4.5 could
also be adopted at every fictitious interface to provide intralaminar transverse stress values.
When introduced, the fictitious interfaces were equally spaced within each ply, and one
solid-shell element was still considered through-the-thickness of each ply. The number of
solid-shell elements adopted around a quarter of the hole edge was 36.

X

Y

Figure 4.17: Example of the adopted mesh

Interlaminar transverse normal stressσzz distributions along the radialr coordinate at
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θ = 90◦, evaluated in a cylindrical coordinate system r,θ, z with the origin in the cen-
ter of the plate, are shown in figure 4.18 considering different meshes. These distribu-
tions are plotted starting from the hole edge up to one laminate thicknessr = H + D/2, at
the [45◦/−45◦] interface, and compared with the stress fields provided in Iarve and Pagano
(2001) (not reported) in the singular neighborhood of the ply interface and the hole edge.
The present procedure shows excellent agreement with Iarveand Pagano’s distributions for
distances up to approximately one half-ply thickness from the singular point for all the mesh
considered. The mesh denoted as 24/30− 2 does not employ fictitious interfaces, and in-
volves 51840 degrees of freedom in the circular refined region. However, a mesh-dependent
influence of the stress singularity was encountered insteadwithin approximately one half-
ply thickness from the singular point. This behaviour is shown in figure 4.181 where dif-
ferent through-the-thickness meshes are considered, and an in-plane mesh of 24/30− n is
assumed. A better agreement is obtained compared to the 24/30− 2 mesh with Iarve and
Pagano’s distribution by introducing fictitious interfaces in the laminate, e.g. the mesh de-
noted as 24/30− 4 introduce one fictitious interface in the middle of every layer. However,
the influence of the stress singularity is not reduced further by introducing additional fic-
titious interfaces. An analysis of the influence of different in-plane meshes on the stress
singularity is shown in figure 4.181. A fictitious interface is adopted in the middle of every
layer. The influence of the stress singularity is reduced, and a smooth distribution in excel-
lent agreement with the one shown in Iarve and Pagano (2001) is obtained by refining the
mesh close to the hole edge, i.e. using the mesh 30/120− 4.

Interlaminar transverse shear stressτθz distributions are reported in figure 4.19. A simi-
lar behaviour to the interlaminar transverse normal stressσzz is encountered within approxi-
mately one half-ply thickness from the singular point. However, a refinement of the in-plane
mesh close to the hole edge in this case only reduced the influence of the stress singularity
but did not completely smoothed out the distribution obtained. This is because a even more
refined mesh is required in this area due to the high in-plane gradient encountered. The in-
plane mesh could be refined further but attention has to be paid to both the aspect ratio and
distortion level that would be achieved in the solid-shell elements close to the singularity
point. Interlaminar transverse shear stressτrz distributions obtained considering different
through-the-thickness meshes are shown in figure 4.20. In this case a smooth and accurate
distribution is obtained close to the singularity point by introducing two fictitious interfaces
equally spaced within each ply. However, a good distribution is also obtained using the
mesh 24/30− 4.

In order to understand the mesh-dependent behaviour of the stress singularities encoun-
tered close to the hole edge in the previous analysis better,a further analysis was also carried
out. A symmetric cross ply[90◦/0◦]s laminate similar to the previous one and subjected to
an uniaxial tensile loadσ0 was considered. This laminate has been analysed by Hu et al.
(1997) using a 3D finite-element (FE) analysis based on a displacement formulation em-
ploying a curved isoparametric 20-node element. The total length of the panel is 60 mm,
the total width 30 mm, the hole radius R is 2.5 mm, and the ply thickness h is equal to 0.125
mm. The material properties are the same as those used for the[45◦/−45◦]s square laminate
previously analysed.

Given the symmetry of loading, hole location and lay-up, only one-eight of the laminate
was modeled. The in-plane mesh structure was the same as the one used in the[45◦/−45◦]s



92 4 A Finite Element Procedure for Interlaminar Stress Analyses

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(r−D/2)/H

σ zz
/σ

0

24/30−2
24/30−4
24/30−6
24/30−8

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(r−D/2)/H

σ zz
/σ

0

18/30−4

24/30−4

30/30−4

30/120−4

Figure 4.18: Interlaminar transverse normal stressσzz distributions from the hole edge up
to one laminate thickness at the(45◦/− 45◦) interface of a[45◦/− 45◦]s lami-
nate considering different meshes,θ = 90◦.
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Figure 4.19: Interlaminar transverse shear stressτθz distributions from the hole edge up to
one laminate thickness at the(45◦/−45◦) interface of a[45◦/−45◦]s laminate
considering different meshes,θ = 90◦.
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Figure 4.20: Interlaminar transverse shear stressτrz distributions from the hole edge up to
one laminate thickness at the(45◦/−45◦) interface of a[45◦/−45◦]s laminate
considering different meshes,θ = 90◦.

square laminate previously analysed, with the addition of acoarse part extended in the x
direction since the laminate is not anymore square. The through-the-thickness mesh adopted
was similar to the one adopted in Hu et al. (1997), see figure 4.21. Thus, the interlaminar
stress recovery procedure presented in section 4.5 could only be applied at the(90◦/0◦)
interface of the laminate. The selected mesh gives 43200 unknowns in the final system of
governing equations, with approximately a second order difference between the sizes of the
elements along the in-plane directions and the bigger ones in the thickness direction. This
mesh was selected in the present analysis because it allows acomparison in point of interest
with the distributions reported in Hu et al. (1997), and it isalso the minimum required to
generate appropriate values of both aspect ratio and distortion level of the elements close to
the hole edge. In their work, Huet al. adopt a FE model that consists of 4000 elements,
and leading to 56000 unknowns in the final system of governingequations. This means
that their procedure employ a percentage increment of 23% inthe total number of degrees
of freedom compared to the proposed procedure. They providestress distributions along
radial lines away from the hole and around the hole at the 90◦/0◦ interface, obtained by
averaging the 90◦ and 0◦ ply values at the interface, a customary finite element practice.
These distributions are obtained near but not at the hole edge because of the mathematical
interlaminar stress singularity. Hu et al. (1997) obtainedgood agreement with respect to
other finite element approaches, then their distributions are taken as benchmark solutions in
the present analysis.

Normalized radial distributions of the transverse normal stressσzzaway from the hole at
three angular positionsθ = 0◦, 45◦, 90◦ obtained using the present procedure are presented
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Figure 4.21: Three-dimensional finite element mesh for one-eighth of the laminate (Hu
et al., 1997).

in figure 4.22(a). Theσzz distributions have step gradients near the hole edge and approach
to zero within a ply thickness from the hole. Smooth distributions were generated close to
the hole edge due to the refined mesh adopted in this area. However, a behaviour similar
to the one encountered in the square[45◦/− 45◦]s plate previously analysed was also en-
countered in this case. These distributions are in excellent agreement with the results (not
reported) of Hu et al. (1997). Normalized interlaminar normal stress distributions at the
(90◦/0◦) ply interface around the hole at different radial distancesfrom the hole edge are
shown in figure 4.22(b). As a mathematical interlaminar stress singularity exists at the free
edge between the 90◦ and 0◦ plies, the computed stresses are presented near but not at the
hole boundary. As the distance from the edge(r − R) increases, the interlaminar stressσzz

rapidly decreases. When(r − R) = 0.1R, i.e. two-ply thickness away from the hole bound-
ary,σzzbecomes almost zero.σzz is compressive for most of the region around the hole with
a small tensile region nearθ = 90◦. The largest compressiveσzz occurs at about 60◦ from
the loading axis. The distribution obtained by Huetal. at(r −R)/R= 0.0001 is also plotted
for comparison. The maximum difference between the two distributions is less than 3% at
the point of maximum value, i.e.θ = 60◦.

Normalized radial variations of the transverse shear stress τθz at θ = 10◦, 45◦, 75◦ are
shown in figure 4.23(a). The decay ratio to zero varies withθ; the maximum decay ra-
tio is at θ = 75◦, and, despite the refined mesh adopted, oscillations are still present very
close to the hole edge for all the distributions, although more negligible compared to the
[45◦/− 45◦]s plate priviously analysed. This means that a further refinement of the mesh
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is required to smooth the distributions out completely. A further refinement of the mesh
in the through-the-thickness direction of the laminate, upto the point where the size of
the element in the through-the-thickness direction is of the same order as the size in the
plane of the laminate, leaded to smoother distributions having negligible oscillations. How-
ever, these distributions are in very good agreement with the ones obtained by Huet al.
Normalized circumferential interlaminar shear stress distributionsτθz at various distances,
(r − R)/R, from the hole boundary are shown in figure 4.23(b). Similar to the normal stress,
σzz, the interlaminar shear stressτθz decreases as the distance (r-R) from the hole bound-
ary increases and becomes small within two-ply thickness(0.25mm) from the hole. The
maximum value is obtained at approximatelyθ = 75◦ from the loading axes and is 1.75σ0

which is about seven times as large as the largestσzz value computed for the same distance
r/R= 0.000082 from the hole. This comparison indicates that, in this case, the interlaminar
shear stressτθz is mainly responsible for the onset of delamination in the laminate. The
distribution obtained by Huet al. at(r − R)/R= 0.0001 is also plotted for comparison. The
maximum difference between the two distributions is within4% at the point of maximum
value, i.e.θ = 75◦. Distributions concerning the shear stress componentτrz are not reported
sinceτrz is very small compared toτθz and thus can be neglected. The minimum distance
r/R= 0.000082 from the hole to report the circumferential interlaminar stress distributions
was selected based on the consideration that stress oscillations begin after the considered
point and a certain error in the distributions can be introduced. To verify if these oscillations
effect the prediction of delamination initiation, a stressfailure criteria needs to be selected.

From the literature (Brewer and Lagace, 1988) it can be seen that the approach for
predicting failure in such laminates has been that of averaging the interlaminar stresses
over a distance from the hole edge, suggesting that the exactvalues of the stresses at the
free edge are not too important. Since it is assumed that the delamination initiation is
mainly attributed to interlaminar stress effects, the Chang and Springer (1986) criterion was
assumed as a failure stress criterion, in which only the interaction between the three out-
of-plane stress components is considered. Moreover, sincethe interlaminar shear stressτrz

can be neglected compared toτθz, the Chang-Springer criterion in a cylindrical coordinate
system can be simplified as:

(σzz

Z

)2
+
(τθz

S

)2
= e2

{
e< 1no failure
e> 1failure

(4.70)

whereZ is the interlaminar normal strength andS is the interlaminar shear strength. For
positive interlaminar normal stressσz the uniaxial tensile strengthZt should be used while
for negativeσz the compressive strengthZc should be employed.

The average stress failure criteria assumes that delamination initiates when the stresses
at a characteristic distancea0 from the discontinuity meet the failure criteria (4.70). The
characteristic distancea0 is experimentally determined and can vary with lay-up and hole
size. The average of a stress component is defined as:

σi j =
1
a0

∫ R+a0

R
σi j dr. (4.71)

The following strength properties,Zt = 50.6MPa, Zc = 200MPa andS= 103MPa, were
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(a) Normalized interlaminar shear stress distributions atdifferent angular positions.
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used for the carbon fiber-epoxy laminates.e-index distributions obtained around the hole
assuming different values ofa0 are shown in figure 4.24. The maximum value ofe varies
with a0 and occurs in the regionθ = 67.5◦ − 75◦ to the loading direction, indicating that
these are the critical locations for delamination growth.e-indexes distributions obtained by
Hu et al. are also reported for comparison. Slightly different values of the failure index
e are obtained assuminga0 = 0.0005 between 70◦ and 80◦, but the percentage difference
is always within 3%. Then, the oscillations of the interlaminar shear stressτθz close to the
hole edge do not seems to influence the failure index distribution. A refinement of the global
mesh produces negligible variations on the results, indicating that convergence has already
been reached. Convergence of every single transverse stress component was also checked
and achieved. Then, the proposed procedure seems to be adequate to be combined with fail-
ure stress criteria commonly used in the open literature to predict onset of delamination in
presence of curved free edges and stress concentrations (Brewer and Lagace, 1988; Coutel-
lier et al., 2006; O’Brien, 1982). Additional analyses should be done in the future to validate
the proposed procedure for laminated composite plates withopen hole subjected to different
loading cases, and employing different failure criteria available in the open literature.

The above analysis does not take into account matrix cracking, which may influence
the delamination onset load, and does not attempt to relate the adjustable characteristic
length used in the quadratic failure criterion to any micromechanical feature. Moreover, it
is worth to mention that average stress failure criteria areappropriate for predicting onset of
delamination, but they are not suitable for failure analysis of composites for which fracture
mechanics based methods are required such as the one proposed in Kashtalyan (2001, 2002).
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Figure 4.24: e-index distributions at the(90◦/0◦) interface of a[90◦/0◦]s laminate obtained
near the hole edge, and determined using an average stress criterion.



100 4 A Finite Element Procedure for Interlaminar Stress Analyses

4.7 Conclusions

An efficient three-dimensional finite element procedure conceived to be suitable to perform
reliable future stress analyses of variable stiffness panels was presented in this chapter. Al-
though the finite element model was generated using a simple low-order solid-shell element,
the procedure was conceived to be applicable to general 3D finite element formulations. In
order to broaden the range of applications of the present procedure, the Finite Element
Tearing and Interconnecting method, conceived for parallel computing, was employed to
solve the system of governing equations obtained from the finite element model. A post-
processing procedure for appropriate recovery of stress distributions was also developed. In
particular, an interlaminar stress recovery procedure conceived for 3D finite element formu-
lations was proposed. The complete stress states were obtained by employing a variational
consistent recovery procedures for the recovery of the in-plane stress distributions. The pro-
posed stress recovery procedure can be applied independently at every interlaminar surface
of interest. It is based on equilibrium considerations, andinterlaminar stress values are re-
trieved directly at the element’s nodes. Thus, stress continuity at the inter-element boundary
is automatically satisfied. Moreover, the accuracy of the recovered interlaminar stresses is
neither dependent on the knowledge of superconvergent point nor it is sensitive to the stress
recover method employed to obtain element stress distributions, as opposed to commonly
used stress recovery procedures.

The accuracy of the present procedure was validated by analysing moderately-thick/thin
composite plates of various geometries. The results were compared with available exact
and finite element solutions. These comparisons indicated that excellent agreement was
obtained with exact solutions, and that convergence was reached using considerably fewer
degrees of freedom compared to other finite elements procedures, thus making the procedure
more suitable for design purposes. The proposed procedure was able to generate a minimum
percentage reduction of 72% in the total number of degrees offreedom required to achieve
accurate interlaminar stress distributions compared to other finite element formulations. In
particular, the procedure was also as much accurate as assumed stress methods without the
need to include stress degrees of freedoms in the solution process. It was also shown that
smooth distributions are easily generated without the needto employ smoothing techniques,
as usually required instead using customary stress recovery procedures. Thus, the proposed
procedure was able to overcome the problem of severe oscillations of stress distributions,
especially for thin laminates, usually encountered using customary procedures.

Special emphasis was placed on the problem of a loaded plate with an open circular hole.
Despite the presence of oscillations encountered close to the hole edge in the interlaminar
stress distributions, the present procedure could be used to produce convergent averaged
interlaminar stresses over a distance from the hole edge. Then, the procedure could be ef-
fectively combined with an average failure stress criterion available in the open literature to
predict delamination initiation in presence of curved freeedges and stress concentrations.
In this case, the minimum percentage reduction in the total number of degrees of freedom
required to achieve accurate interlaminar stress distributions was reduced to around 23%
compared to other finite element formulations. However, this analysis did not look at ma-
trix cracking, which may influence the delamination onset load, and no attempt was made
to relate the adjustable characteristic length used in the quadratic failure criterion to any
micromechanical feature.



Chapter 5

Interlaminar Stress Analyses of
Multilayered Laminates having
Non-Conforming Meshes between
the Plies

5.1 Introduction

An efficient three-dimensional finite element procedure conceived to be suitable to perform
reliable future stress analyses of variable stiffness panels was presented in the previous
chapter. Keeping in mind that the aim of the present thesis isto develop a procedure that is
suitable for appropriate analysis of variable stiffness panels having various geometries, the
applicability of the method also had to be validated for general 3-D shell type structures.
Moreover, by restricting attention to variable stiffness panels with tow-drops, failure initi-
ation may be primarily due to delamination at the tow-drop resin-rich areas, meaning that
this locations need to be modeled accurately.

The triangular shape of the tow-drop locations, known from the procedure developed in
Blom et al. (2009), can be modeled properly using triangularprism elements. Assuming
that brick elements are the best option for modeling the courses of a variable stiffness panel,
the procedure presented in the previous chapter needed to betested while considering types
of mesh in the plies obtained as a combination of both brick and triangular prism elements.
The fact that when using the proposed procedure every ply is considered to be an indepen-
dent subdomain gives the user more freedom in their selection of the proper mesh to be
adopted in each ply. This means, for instance, that the final mesh of the complete lami-
nate for a variable stiffness panel may be obtainable by simulating the procedure followed
during the manufacturing process by the tow-placement machine’s head, as explained in
detail in section 1.6. However, the approach of having an independent mesh in every ply
leads inevitably to have non conforming meshes between the subdomains, i.e. the plies. A
schematic example of non-conforming meshes between the courses of two different plies
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of a variable stiffness panel with tow-drops is shown in figure 5.1. For the sake of clar-
ity, a mesh composed of triangular prism elements is not reported in the tow-drops areas.
Non-matching node locations at the interface of two adjacent plies might lead to interfacial
data distributions, i.e. connecting force distributions,presenting oscillatory behaviours, and
thus providing inaccurate nodal input for the developed post-processing procedure. Then,
an averaging technique able to smooth out the obtained distributions needed to be provided.

Figure 5.1: Schematic example of non-conforming meshes between the courses of two dif-
ferent plies of a variable stiffness panel with tow-drops.

In this chapter, the proposed post-processing procedure iscombined with the commer-
cial finite element software ABAQUS 6.8TM with the aim of broadening the applicability of
the method to general 3-D shell type structures. Moreover, the user would be also enabled
to use tools and features already developed within ABAQUS framework. Non conforming
meshes between the layers, obtained as a combination of bothbrick elements and trian-
gular prism elements, are also considered. Benchmark problems concerning conventional
straight fibers multilayered composite plates and shell structures are analysed, and compar-
isons with ABAQUS’ built-in recovery procedures and available solutions in the literature
are also reported.

5.2 Interlaminar Stress Recovery Procedure

The post-processing stress recovery technique developed in the previous chapter was com-
bined with the commercial finite element software ABAQUS 6.8TM. A flow chart of the
procedure is given in figure 5.2. A summary of the different steps of the flow chart is pro-
vided below.
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The first step is to implement a discrete model in ABAQUS/Standard. Within multilay-
ered laminates, each ply is modelled as a separate body usinglinear brick elements and/or
linear triangular prism elements, and the interlaminar boundary is treated as a contact sur-
face. The interlaminar boundary is modelled as a contact zone because the connecting forces
required by the developed interlaminar stress recovery procedure, see section 4.5, can only
be obtained from a contact formulation, and not for instance, using a tie constraints formula-
tion, which ties two surfaces together for the duration of the simulation, and the nodes in the
pair are constrained to have the same motion. Once the analysis is performed, the interlam-
inar contact forces are retrievable as part of ABAQUS’s nodal variables output, as opposed
to the connecting tie-constrain forces that are not retrievable as part of ABAQUS 6.8TM ’s
nodal variables output. Abaqus/Standard offers several contact formulations (ABAQUS,
2005). Discretization of the contact pair is of primary importance once the master surface
and the slave surface are assigned in the contact pair, because conditional constraints at
various locations on each surface are applied to simulate contact conditions. A surface-
to-surface contact discretization is used because the contact conditions are enforced in an
average sense over the slave surface, rather than at discrete points, such as at slave nodes, as
in the case of node-to-surface discretization. This gives amore accurate contact pressure ac-
curacy. The mechanical contact properties are defined usinga tied contact formulation, i.e.
tied contact. The tied contact formulation ties two surfaces forming a contact pair together
for the duration of a simulation, and constrains only translational degrees of freedom in
mechanical simulations. This mechanical constraint enforcement is obtained using a direct
Lagrange multiplier method.

The second step is the recovery, from the ABAQUS’s output database file, of the input
variables required by the variational consistent stress recovery procedure for the in-plane
stresses presented in section 4.4, and the interlaminar stress recovery procedure presented
in section 4.5, i.e. nodal contact loads, element connectivity, nodal coordinates, and nodal
displacements. These parameters are retrieved using the Abaqus Scripting Interface, an
application programming interface to the models and data used by ABAQUS, based on the
Python object-oriented programming language ABAQUS (2005).

In the third step, using the retrieved data, interlaminar stresses are recovered from the
contact loads that satisfy force equilibrium at the interface between two adjacent plies. In-
plane stress distributions are retrieved using the developed variational stress recovery pro-
cedure. The complete procedure is implemented within the MATLAB framework.

In the fourth step, once the interlaminar and in-plane stress fields are obtained, the data
are sent back to the Output Database File of ABAQUS using the Abaqus Scripting Inter-
face. As a final step, the retrieved stress distributions arevisualized in the updated Output
Database File.

To speed up the complete process, the procedure can be completely implemented within
ABAQUS environment using the Abaqus Scripting Interface. This can be achieved using
NumPy, a package of numerical extensions for Python that introduces a multidimensional
array type and a rich set of matrix operations and mathematical functions. If the user wishes
to take advantage of some MATLAB’s additional functions, i.e. plotting interface, the Py-
Mat package can be incorporated. The PyMat module acts as an interface between NumPy
arrays in Python and a MATLAB engine session, allowing arrays to be passed back and
forth, and arbitrary commands to be executed in the MATLAB workspace (Python, 2006).
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Figure 5.2: Flow chart of the complete process.
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5.3 Numerical Results

5.3.1 Simply Supported Plates Subjected to Bisinusoidal Pressure Load

The present procedure was validated using the benchmark problem analysed by Pagano
(Pagano, 1970), where three dimensional exact elasticity solutions of idealised simply sup-
ported cross-ply[0◦/90◦/0◦] square laminates under bisinusoidally distributed pressure load
of intensitypz are provided. This problem was also analysed in section 4.6.1 using the pro-
posed procedure developed completely within the MATLAB framework. The length and
thickness of the plate is denoted bya andH respectively. The laminate is made of ma-
terial plies that are idealized to be homogeneous, elastic and orthotropic. The following
material properties are used:E11 = 25GPa, E22 = E33 = 1GPa, G12 = G13 = 0.5GPa,
G23 = 0.2GPa, andν12 = ν13 = ν23 = 0.25. Subscripts 1,2 and 3 denote the fibre, trans-
verse and thickness directions, respectively. The rectangular Cartesian coordinate system
used is the same assumed in section 4.6.1, see figure 4.4. Stresses are normalized according
to the following formulae,

(τ ′xz, τ
′
yz) =

1
pzS

(τxz, τyz) , σ
′
zz =

1
pz
σzz,

(σ′xx , σ
′
yy, τ

′
xy) =

1
pzS2 (σxx , σyy , τxy)

where theS is the laminate length to thickness ratio,S= a/H.

The discrete model is obtained using an 8-node linear brick incompatible modes ele-
ment, i.e. (C3D8I). Within the built-in elements of ABAQUS this element was chosen
because it possesses good coarse mesh and distortion insensitivity properties for a large
range of length to thickness ratios of the laminate. Moreover, this element has very similar
properties to the solid-shell element developed in section6.1. This is because the class of
mixed assumed strain methods encompass, as a particular case, the classical method of in-
compatible modes. Unless differently stated, the in-planemesh consists of 12×12 elements
for each ply. Conforming meshes are initially considered. The minimum required number of
elements in the thickness direction of the laminate is three. While this is sufficient for accu-
rate interlaminar stresses, it does not allow detailed evaluation of their through-the-thickness
variation, as shown in section 4.6.1. The values of transverse stresses in the middle of every
layer are also reported in the case under consideration and,as a consequence, three more
mathematical interfaces are required in these locations togive a total number of six elements
through-the-thickness of the laminate.

Laminates of length to thickness ratiosS= 20,50,100 were analysed and the results
calculated at several points of interest are reported in table 5.1. Compared to Pagano’s exact
solutions, excellent agreement was obtained for all the considered cases. The percentage
error of the recovered stress values with respect to the exact solution is always less than
1.3%. Convergence analyses of the interlaminar stressesσ′zz andτ ′yz at the[0◦/90◦] inter-
face obtained considering laminates of length to thicknessratio S= 20 and 100 are shown
in figure 5.3. Excellent agreement with Pagano’s exact solution, smoothness and fast con-
vergence were obtained. A laminate of length to thickness ratio S= 50 was also considered
to demonstrate the accuracy of the proposed procedure for analyzing moderately thick lam-
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Figure 5.3: Convergence analyses of the recovered interlaminar transverse stresses at the
[0◦/90◦] interface of a[0◦/90◦/0◦] laminate obtained considering different
length to thickness ratio S.
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Table 5.1: Recovered stress fields considering different values of length to thickness ratio S.

S τ ′xz(0,
a
2,0) τ ′yz(

a
2,0,0) σ′zz(

a
2,

a
2,H/6)

20 EXACT 0.3846 0.0938 0.7398
EQUILIBRIUM 0.3844 0.0937 0.7488

50 EXACT 0.3934 0.0842 0.7406
EQUILIBRIUM 0.3930 0.0841 0.7491

100 EXACT 0.3946 0.0828 0.7407
EQUILIBRIUM 0.3931 0.0822 0.7481

inates. Through-the-thickness distributions of the interlaminar transverse shear and normal
stresses obtained using the proposed method, labelled as EQUILIBRIUM, were compared
with Pagano’s exact solution at points of major interest, see respectively figures 5.4 and 5.5.
Excellent agreement and fast convergence were achieved in all the distributions. Through-
the-thickness distributions obtained using different ABAQUS’s built-in solid elements and
associate post-processing procedures are also reported for comparison. The adopted ele-
ments were respectively, the 8-node linear brick incompatible modesC3D8I , that is the
same adopted in the proposed procedure, the 20-node quadratic brick C3D20R, and the
linear 8-nodeC3D8R. Stresses are recovered at integration points using constructive mod-
els derived from either variational principles or other energy laws in the post-processing
procedures of ABAQUS associated with each element (ABAQUS,2005). Then, stresses
evaluated at the integration points are extrapolated at theelement’s nodes using the shape
functions. Neither the linearC3D8R nor theC3D8I elements provided single valued re-
sults at the interfaces, meaning that a through-the-thickness refinement of the mesh was
required. It is worth pointing out that the proposed procedure was able to improve consid-
erably the accuracy of the response obtained using the built-in C3D8I element compared to
ABAQUS’s built in stress recovery procedure. The distributions obtained using theC3D8I
element also explains the reason why the variational consistent stress recovery procedure
developed in section 4.4 was only adopted for the recovery ofthe in-plane stress distribu-
tions. This is because the recovery of the transverse stressdistributions in low-order for-
mulations based on mixed assumed strain methods obtained using customary procedures,
i.e. constitutive relations or variational procedures, can lead to inaccurate distributions,
as shown clearly in figure 5.5, i.e. ABAQUS / C3D8I. It is also worth to highlight that
the stress recovery procedure associated with the 8-node linear brick incompatible modes
C3D8I element in the ABAQUS framework is the approach successfully used by Simo and
Armero (1992) in which an enhanced displacement gradient isassumed, as opposed to the
variational procedure adopted in the present thesis which is based on the enhanced assumed
Green-Lagrangian strains. This means that for linear analyses, such as the present one, both
procedures are exactly equivalent. Since in this chapter only linear analyses are considered,
henceforth the in-plane stress distributions are retrieved in the proposed procedure using
the built-in post-processing procedure of ABAQUS associated with the adoptedC3D8I el-
ement to reduce the computational time. The quadraticC3D20R element did not produce
an accurate estimation of the transverse shear stressτ ′yz. The percentage error at the point
of maximum values, i.e.z= 0, compared to the exact solution was 9.46%. An appropriate
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ent ABAQUS’s built-in elements and associate post-processing procedures, and
Pagano’s exact solution, S= 50.

response was obtained instead for the interlaminar shearτ ′xz and normalσ′zz stresses. Iden-
tical in plane stress distributions to the ones shown in section where obtained. Hence, these
distributions are not shown in the present analysis.

The aforementioned results were obtained by adopting one additional mathematical in-
terface in the middle of every ply to also provide intralaminar stress values at these points.
However, these mathematical interfaces were not required to achieve convergence in the
retrieved interlaminar stress distributions, as already shown in section 4.6.1. The proposed
procedure uses a model with 4050 degrees of freedom and attains converged results, whereas
the ABAQUS model, using quadratic elements, has 17595 degrees of freedom but still ob-
tains inaccurate interlaminar stress distributions. Thismeans that the proposed procedure
was able to generate a percentage reduction of 77% in the total number of degrees of free-
dom required to achieve accurate interlaminar stress distributions compared to ABAQUS’s
quadratic formulation that still fails to converge.

Analysis considering Non-Conforming Meshes between the Plies

Non-conforming meshes were also considered for a[0◦/90◦/0◦] square laminate of length
to thickness ratioS= 50. One fictitious interface was considered in the middle of every
ply, thus giving a total number of six plies. An example of themeshes adopted in two
adjacent plies is shown in figure 5.6. Assuming that the countof the layers starts from the
bottom of the laminate, a regular mesh composed of rectangularC3D8I elements is adopted
in layers 2, 4 and 6. A mesh obtained as a combination of linearbrick C3D8I elements
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Figure 5.6: An example of non-conforming meshes adopted in two adjacent plies.

and linear triangular prismC3D6 elements is assumed in layers 1, 3 and 5. This kind of
mesh was selected to simulate the tow-cut in the areas close to the sides and corners of a
variable stiffness panel, which makes triangular prism elements suitable for a reliable finite
element model. Moreover, the adopted mesh schematically represents, without considering
tow-drops or tow-overlaps regions, possible courses in a variable stiffness ply oriented at
90, or 0= , i.e. layers 2, 4 and 6, in contact with courses oriented at 45, i.e. layers 1, 3 and
5. However, in layers 1, 3 and 5, although the courses can be thought to be oriented at 45
with respect to layers 2, 4 and 6, the material properties considered were still the ones with
fiber orientation of 90 to compared the results with the available exact solutions. This does
not affect the reliability of the approach since the only differences with respect to future
variable stiffness panels analyses are the material properties at the integration points. In
a real variable stiffness panel, plies having the same orientation will also have conforming
meshes at their interface. However, to validate the method,stress distributions will be shown
at z= 0, that is the location where maximum values of the interlaminar shear stresses are
achieved. In order to show that the proposed procedure worksproperly at the location of
major interest, i.e.z= 0, non-conforming meshes were adopted in layer 3 and 4, regardless
of the material orientation. Resin-rich areas in tow-steered laminates have to be modeled
using triangular shape elements, as explained in section 1.6. The selected meshes also
help us to understand if ABAQUS’s triangular prismC3D6 element is suitable for being
combined with ABAQUS’s linear brickC3D8I element, in particular close to areas where
the boundary conditions are applied.

Distribution concerning the transverse shear stressτ ′xz and the transverse normal stress
σ′zzobtained atz= 0 andx/a= 0.5 are shown in figure 5.7. Different meshes are considered
in the plots: e.g the labelENC− 20/28 denotes non conforming meshes between the plies,
where 20 indicates the number of triangular prismC3D6 elements adopted in each side of
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the layers 1,3 and 5, and 28 indicates the number of linear brick C3D8I elements adopted
in each side of the layers 2,4 and 6. The labelEC− 40X40 denotes conforming meshes
between the plies where 40 linear brickC3D8I elements are assumed on each side of all the
six plies. In all the contact pairs it is assumed that the master surface adopts the mesh with
all brick elements. Then, layers 2, 4 and 6 have to adopt a coarser mesh compared to the
other layers for accurate contact simulations (ABAQUS, 2005).
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Figure 5.7: Transverse stress distributions obtained considering both conforming and non-
conforming meshes between the plies.
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From the plots reported in figure 5.7 it is clear that oscillatory behaviours were encoun-
tered in the retrieved transverse stress distributions when non-conforming meshes between
the plies were adopted, thus leading to inaccurate results.However, these oscillations seem
to have the same trends as the distributions obtained using the conforming meshes, used
as reference solutions. Then, an averaging technique was developed to smooth out these
distributions. The developed technique consists of averaging the stress values obtained in
each node with the stress values obtained in the nodes of the surrounding elements sharing
the node under consideration. The stress averaging is described in the following paragraph.

Consider a corner section of the layer where a mix of rectangular and triangular elements
are used, see fig. 5.8. By assuming thatf9 is the nodal component of the stress that has to
be averaged, the averaged stress componentf9avg is obtained as follows:

f9avg=
f2A2wt + f8A2wt + f9A2wt + f2A3wt + f4A3wt + f9A3wt + f4A5ws+ f5A5ws

Atot
+

+
f6A5ws+ f9A5ws+ f6A6ws+ f7A6ws+ f8A6ws+ f9A6ws

Atot
,

(5.1)

wherewt is the weight of the nodal components on the triangular element areas, equal to13,
ws is the weight of the nodal components on the square element areas, obtained as

∫
Ai

NidAi

whereNi is the isoparametric shape function associated with the node under consideration
andAi is the element area, andAtot is the total area of the elements surrounding the node in
which the averaging procedure is applied. This procedure can be iteratively used until the
level that proper distributions are achieved.

f1

f2

f3

f4

f6 f5f7

f8

A1

A2 A3

A4

A5A6 f9

Figure 5.8: Convention used in the adopted averaging technique.

The validity of the developed averaging procedure is shown in figure 5.9, where the dis-
tributions shown in figure 5.7 are now averaged using the proposed technique. These inter-
laminar transverse stress distributions were obtained using a linear interpolation for the trac-
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tion distribution over the surface under consideration forboth triangular and quad elements.
This was achieved by adopting the classical linear isoparametric shape functions assumed
for the displacement field on the triangular areas and quadrilateral areas. In these plots the
labelENC− 20/28− nl still denotes the case in which non-conforming meshes between the
plies are adopted, with the additional parameternl denoting the number of iterations per-
formed using the proposed averaging technique. The proposed averaging technique was able
to generate smooth distributions in excellent agreement with the ones obtained in the case of
conforming meshes, i.e.EC−40X40 within three/four iterations, depending on the mesh as-
sumed. For instance, the percentage difference at points ofmajor interest with respect to the
distributionsEC− 40X40 obtained using the meshENC− 20/28− n3 or ENC− 20/24− n4
was always within 3%. The percentage difference was reducedwhen refined meshes were
considered, and dropped to less than 0.5% using the meshENC− 40/56− n3. However,
much more refined meshes had to be adopted compared to conforming meshes between the
plies, and inaccurate stress values were generated in the case of high gradients close to the
boundaries of the laminate due to the iterations performed,as shown in figure 5.91. An
improvement close to the boundary was obtained using the refined meshENC− 40/56− n3
compared to both the meshesENC− 20/28− n3 andENC− 20/24− n4, but the percentage
difference aty/a= 0 was still not negligible. Then, more refined meshes were required to
obtain appropriate values of the transverse normal stressσ′zz also close to the boundaries of
the laminate.

Similar trends in the transverse stress distributions wereobtained using the ABAQUS’
built-in variational recovery post-processing procedure, combined with the developed av-
eraging technique, as shown in figure 5.10, i.e.ENC− 40/56− n3− ABAQUS. Although
the trends of these distributions were similar to the distributions reported in figure 5.9, a
refinement of the mesh was still required to achieve convergence of the retrieved transverse
stress values. These distributions were not as much accurate as the ones obtained using
the proposed interlaminar stress recovery procedure, and this is because stress recovery
procedures adopting extrapolation techniques from superconvergent points required much
more refined meshes through-the-thickness of the laminate to provide accurate interlaminar
stresses (Dakshina Moorthy and Reddy, 1999).

The in-plane stressσ′yy distribution obtained at the(0◦/90◦) interface, i.e. z/H= 0.1666,
using the proposed procedure combined with the developed averaging technique is shown in
figure 5.11. In this case a good distribution was obtained using the meshENC− 20/28− n0
that does not employ the developed averaging technique. Thepercentage difference with
respect toEC− 40X40 at points of major interest was always less than 2%.

5.3.2 Varadan and Bhaskar’s Cylindrical Shells

Three dimensional elasticity solutions for finite length cross-ply laminated cylindrical shells
have been considered by Varadan and Bhaskar (1991), see figure 5.12, with simply sup-
ported ends subjected to transverse sinusoidal pressure atthe internal surface:

P∗
zb1 = Pzb1 sin

mπz
L

cosnθ, (5.2)

wherem= 1 andn= 4. Varadan and Bhaskar’s solutions were taken as benchmark solu-
tions to validate the proposed procedure for cylindrical shell geometries. In this regard, the
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Figure 5.9: Transverse stress distributions obtained using the developed averaging tech-
nique.
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116
5 Interlaminar Stress Analyses of Multilayered Laminates having Non-Conforming

Meshes between the Plies

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

y/a

σ’
yy

 (
x/

a=
0.

5,
 y

/a
, z

/H
=

0.
16

66
)

ENC−20/28−n0
ENC−20/28−n1
EC−40X40

Figure 5.11: In-plane stressσ′yy distribution obtained at the(0◦/90◦) interface, i.e. z/H=
0.1666, using the developed averaging technique.

following lamination schemes are considered in detail below: a two-layered[90/0] shell,
90◦ for the outer layer and 0◦ for the inner layer, and a three-layered[90/0/90] shell. The
individual plies are taken to be of equal thickness. Length to mean radius of the cylindrical
shell isL/R0 = 4. The mechanical data areEL/ET = 25, GLT/ET = 0.5, GTT/ET = 0.2,
νLT = νTT = 0.25. A non-dimensional transverse coordinateξ varying from−0.5 at the
inner surface to 0.5 at the outer surface is defined for convenience. The valueξ = 0 refers
to the geometric middle surface.

Regarding the structural symmetry only an octant of the cylindrical shell was modeled
in the finite element analysis. The discrete model was obtained using the 8-node linear brick
incompatible modes element, i.e.(C3D8I). The deformed and undeformed configurations
of the adopted model are reported in figure 5.13. The in-planemesh consists of 30 elements
along the cylindrical coordinateθ and of 20 elements along the longitudinal coordinatez
for each ply. Conforming meshes between the plies were considered initially. The mesh
in the through-the-thickness direction of the laminate is the minimum required to apply the
procedure at the points of interest. As for the simply supported plate previously analyzed,
one mathematical interface was introduced in the middle of every layer to provide measures
of intralaminar transverse stresses, thus leading to four layers of mesh for the first layup and
six for the second.

Stress distributions are presented for values ofS= R0/h= 50 and 100 according to the
following formulae,

σ′r = σr/Pzb1, (τ ′rz, τ
′
rθ) = (10/Pzb1S)(τrz, τrθ),
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Figure 5.12: Varadan and Bhaskar’s circular cylindrical shell.

Figure 5.13: Adopted model: an octant of the cylindrical shell.
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τ ′θz = (10/Pzb1S2)τθz, (σ′θ ,σ
′
z) = (10/Pzb1S2)(σθ ,σz).

A three-layered[90/0/90] shell of valueS= 100 is first taken into consideration. Compar-
isons between the through-the-thickness variation of the transverse shear and normal stress
fields and the exact solution obtained at points of major interest are shown, respectively, in
figure 5.14 and 5.15. Through-the-thickness distributionsobtained using different built-in
solid elements of ABAQUS with associated post-processing procedures are also reported
for comparison. As for the simply supported plate analysed in section 5.3.1, the adopted
elements were the 8-node linear brick incompatible modesC3D8I , the 20-node quadratic
brickC3D20R, and the linear 8-nodeC3D8R. Neither the linearC3D8Rnor theC3D8I ele-
ments provided single valued results at the interfaces, meaning that a through-the-thickness
refinement of the mesh was required. It is clear from these plots that the proposed procedure
was able to improve considerably the accuracy of the transverse stress states obtained using
the ABAQUS’ built-inC3D8I element. The percentage difference between the stress states
obtained using the proposed procedure, i.e. EQUILIBRIUM, and the exact solution at the
points reported on the plots of figure 5.14 and 5.15 was alwaysless than 1%.

The ABAQUS’s quadraticC3D20Relement produced a good overall response, but it was
less accurate compared to the response obtained using the proposed procedure combined
with the built-inC3D8I element. This is because an overestimation of the transverse normal
stressσ′r was encountered, meaning that a refinement of the mesh through-the-thickness of
the laminate was still required. Moreover, oscillations leading to inaccurate results were
encountered in areas where boundary conditions are applied. This is shown in figure 5.16
which shows the circumferential plot of the transverse normal stressσ′r starting fromθ= 0◦

up toθ = 45◦ at the[90/0] interface andz= L/2 of the cylindrical shell.

The accuracy of the interlaminar stress fields obtained using the built-in formulations
and stress recovery procedures of ABAQUS was reduced significantly when a two-layered
[90/0] shell of valueS= 100 was considered, see figures 5.17 and 5.18. The quadratic
C3D20R element produced a distribution of the transverse shear stressτ ′rθ that was not as
accurate as that for the three-layered cylindrical shell previously analyzed, and in particular
highly inaccurate results were obtained for the transversenormal stressσ′r . This means
that a more refined mesh had to be adopted in the present analysis to achieve numerical
convergence of the recovered stress fields compared to the three-layered cylindrical shell
previously analysed. This is due to the higher transverse stress gradients achieved along the
through-the-thickness direction of the laminate in the present analysis. More demanding
computational resources were required, as opposed to the proposed procedure which was
able to generate excellent results compared to the exact solution, completely overlapping
with the exact solution at most of the points shown in figure 5.17 and 5.18, using the same
mesh adopted for the three-layered cylindrical shell.

Additional results obtained at points of maximum value using the proposed procedure
are reported in table 5.2, where results for cylindrical shells of valueS= 50 are also shown.
Excellent agreement with available exact solutions were obtained indicating that an appro-
priate response is also generated in the case of moderately-thick structures. The aforemen-
tioned results were obtained by adopting one additional mathematical interface in the middle
of every ply. However, as for the simply supported plates analysed in section 5.3.1, these
mathematical interfaces were not required to have accurateinterlaminar stress distributions.
In-plane stress values for cylindrical shells of valueS= 50 andS= 100 are reported in
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Figure 5.14: Comparison between the through-the-thickness distributions of the transverse
shear stresses obtained using different approaches and theexact solution,
three-layered[90/0/90] shell, S= 100.
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Figure 5.15: Comparison between the through-the-thickness distributions of the transverse
stressσ′r obtained using different approaches and the exact solution, three-
layered[90/0/90] shell, S= 100.
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Figure 5.17: Comparison between the through-the-thickness distributions of the transverse
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Figure 5.18: Comparison between the through-the-thickness distributions of the transverse
normal stressσ′r obtained using different approaches and the exact solution,
two-layered[90/0] shell, S= 100.

table 5.3. These results also confirmed the accuracy achieved by the proposed procedure in
recovery appropriate stress states in multilayer composite laminates.

Table 5.2: Recovered transverse stress fields using different lamination schemes and values
of mean radius to thickness ratio S.

S τ ′rz τ ′rθ σ′
r

(ξ = − 1
6 ,45◦ ,0) (ξ = 0,22.5◦ ,L/2) (ξ = 0,45◦,L/2)

50 [90/0/90]
EXACT 0.0894 -3.491 -4.85

EQUILIBRIUM 0.0897 -3.466 -4.88
100

EXACT 0.1223 -3.127 -8.30
EQUILIBRIUM 0.1220 -3.102 -8.35

50 [90/0]
EXACT 0.0448 -4.785 -6.29

EQUILIBRIUM 0.0449 -4.736 -6.32
100

EXACT -0.1512 -2.972 -7.71
EQUILIBRIUM - 0.1496 -2.937 -7.74

Three-layered[90/0/90] cylindrical shells were also analysed using non conforming
meshes between the plies created in the same manner as done for the simply supported
plate, see figure 5.6, analysed in the previous section. Transverse stress distributions along
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Table 5.3: Recovered in-plane stress fields using differentlamination schemes and values of
mean radius to thickness ratio S.

S σ′
θ

σ′
z τ ′

θz
(ξ =∓ 1

2 ,45◦,L/2) (ξ =∓ 1
2 ,45◦,L/2) (ξ =∓ 1

2 ,22.5◦,0)
50 [90/0/90]

EXACT -3.987 -0.0225 -0.0760
-3.930 0.0712 -0.0118

EQUILIBRIUM -3.940 -0.0229 -0.0754
-3.892 0.0705 -0.0117

100
EXACT -3.507 0.0018 -0.1038

3.507 0.0838 -0.0478
EQUILIBRIUM -3.478 0.00187 -0.1030

3.478 0.0832 -0.0472
50 [90/0]

EXACT -0.9670 1.610 -0.3449
8.937 0.2189 -0.0784

EQUILIBRIUM -0.9583 1.6125 -0.339
8.856 0.2145 -0.0773

100
EXACT -0.5759 2.30 -0.3452

5.560 0.1871 -0.1819
EQUILIBRIUM -0.572 2.298 -0.340

5.497 0.185 -0.179

the tangential direction atξ = 0 andz= L/2 are shown in figure 5.19. The same kind of
non-conforming meshes between the plies used for the simplysupported plate analysed in
the previous section were adopted, i.e. figure 5.6. Assumingthat the count of the layers
starts from the bottom of the cylindrical shell, a regular mesh composed ofC3D8I elements
is adopted in layers 2, 4 and 6, and a mesh obtained as a combination of linear brickC3D8I
elements and linear triangular prismC3D6 elements is assumed in layers 1, 3 and 5. The
plots in the figure are labeled using the same convention introduced in section 5.3.1 to
denote conforming and non-conforming meshes.

As for the simply supported plate analyses reported in the previous section, oscilla-
tory behaviours were encountered in the retrieved transverse stress distributions when non-
conforming meshes were adopted, thus leading to inaccurateresults. Then, the averaging
technique introduced in the previous section was applied tothe retrieved distributions. A
smooth distribution for the transverse normal stressσ′r , almost coincident with the one ob-
tained using conforming meshes, is obtained using the mesh ENC-40/56-n2, i.e. figure
5.191. In the plot concerning the transverse shear stressτ ′rθ, i.e. figure 5.192, a smooth
distribution in excellent agreement with the one obtained using a conformed mesh was ob-
tained without the use of the averaging technique, i.e.ENC− 40/56− n0. However, if
the averaging technique, that needs to be adopted for smoothing out the transverse normal
stressσ′r distributions, is applied to all the transverse stress components, an error would
be introduced in the transverse shear stressτ ′rθ distributionENC− 40/56− n0 close to the
boundaries of the laminate, i.e.θ = 0 andθ = 90, due to the high stress gradients achieved
in these areas.

Transverse normal stressσ′r distributions along the longitudinal direction atξ = 0 and
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θ = 45 are shown in figure 5.20. In this case the developed averaging technique has to
be adopted, and a smooth distribution is obtained using two iterations of the averaging
technique, i.e. n2. However, the distribution obtained using the meshENC− 40/56− n2 has
in some of the points shown a percentage differences of 3.5% compared to the distribution
obtained using the conforming meshEC− 20×30. Then, a refinement of the mesh should
be considered to reduce the percentage difference between the two distributions.

5.3.3 Spherical Curved Surfaces

Analyses concerning the recovery of interlaminar stress distributions in double curved lam-
inates subjected to mechanical loadings are not quite addressed in the open literature due
to the intrinsic difficulty associated with producing analytical solutions for such structures.
Simply supported square spherical curved surfaces are considered in this section to provide
reference solutions for future analyses of such laminates.An example of spherical curved
surface and the adopted spherical coordinate system are shown in figure 5.21. The length to
thickness and shell radii to thickness ratios evaluated on the mean reference surface of the
spherical panel are denoted, respectively, bya0/h andR0/h.

The mechanical data areEL/ET = 25, GLT/ET = 0.5, GTT/ET = 0.2, νLT = νTT =
0.25. A three-layered[0/90/0] lamination scheme is considered. The 0◦ fiber orientation
is aligned with the spherical coordinate “Th”. The individual plies are assumed to be of
equal thickness. These panels are subjected to a harmonic distribution of pressure applied
in correspondence of the external surface, having the following equation:

P∗
zb1 = Pzb1 sin

πTh
atop

sin
πP
atop

. (5.3)

The discrete model is obtained using the 8-node linear brickincompatible modesC3D8I
element of ABAQUS. Unless differently stated, the in-planemesh consists of 30× 30 el-
ements for each ply. Conforming meshes between the plies areconsidered. As for both
the plates and cylinders analysed in the previous sections,one mathematical interface was
introduced in the middle of every ply to provide also intralaminar transverse stresses, thus
leading to six layers of mesh.

The results are presented for values ofS= a0/h = 50 in terms of the following non-
dimensional parameters:

(τ ′rθ , τ
′
rp) =

1
Pzb1 S

(τrθ , τrp) , σ
′
r =

σr

Pzb1
, σ′θ =

σθ
Pzb1S2 .

For the reader’s benefit, a non-dimensional through-the-thickness coordinateξ varying from
−0.5 at the inner surface to 0.5 at the outer surface is introduced to show through-the-
thickness transverse stress distributions. The length andradii shell of the generic interface
under consideration are defined, respectively, asaξ andRξ. Since the most severe effects
due to shell curvature are encountered for the transverse shear stressτ ′rp, particular attention
was paid to this component.

Plots ofτ ′rp evaluated at points of major interest on different interfaces are presented in
figure 5.22. Values ofR0/a0 = 20 and 2 are taken into consideration. Similar transverse
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shear stress distributions to the ones obtained in section 5.3.1 for the simply supported
plate were obtained forR0/a0 = 20. These distributions are shown in figure 5.221, where
a similar behaviour between the interfaces without the occurrence of severe in-plane stress
gradients is encountered. These distributions were clearly affected by the shell curvature
when a value ofR0/a0 = 2 is considered. In this case, different behaviours and stress
states were obtained on the different interfaces. The occurrence of higher in-plane stress
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Figure 5.22: Transverse shear stressτ ′rp distributions obtained on different interfaces at
points of major interest for R0/a0 = 2 and R0/a0 = 20.

gradients especially close to boundaries, as shown in figure5.23 where the contour plot of
the in-plane stressσ′θ is reported, leads to severe gradients for the transverse stresses in both
in-plane and out-of-plane directions. The effects of thesesevere in-plane stress gradients
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Figure 5.23: Contour plot of the in-plane stressσ′θ at ξ = 0, R0/a0 = 2.

are considered in figure 5.24 where the through-the-thickness variation of the interlaminar
shear stressτ ′rp is shown at section A, defined previously in figure 5.222. It can be seen from
figure 5.24 that the accuracy of the distributions along the thickness of the spherical shell
is not affected when additional mathematical interfaces are introduced. In this case three
fictitious interfaces for every layer were introduced for a total number of 12 layers of mesh.
This means that the present procedure does not require refined meshes along the thickness
direction of the spherical shell to reach convergence, evenin presence of severe gradients,
as instead required using customary stress recovery procedures.

A convergence analysis of the transverse stressτ ′rp at ξ = 0 andTh= a0/2R0, that is
the location where the most severe in-plane gradient is encountered, was also done and the
results are shown in figure 5.25. It can be stated that a smoothdistribution is obtained using
an-in plane mesh of 28×28, although a converging distribution can be reached only using an
in-plane mesh of 30×30, i.e.PR/a= 0. Through-the-thickness variations of the transverse
shear stressesτ ′rθ andτ ′rp and the transverse normal stressσ′r taking into account different
values ofR0/a0, are shown,respectively, in figures 5.26 and 5.27 at points of major interest.
Confirmation of the accuracy of the model is obtained by increasing the value ofR0/a0.
This is because the distributions obtained in figures 5.4 and5.5 for the simply supported
plate are retrieved also in this case by decreasing, using the parameterR0/a0, the curvature
of the laminate.

Non conforming meshes were taken in consideration also in this case. The same kind
of non-conforming meshes between the plies used for the simply supported plate and cylin-
drical shell analysed in the previous sections were adopted, i.e. figure 5.6. Compared to
the transverse stress distributions shown in figure 5.9 for the simply supported plate case,
the same conclusions can be drawn also in this case concerning the transverse normal stress
distributionσ′r . As opposed to the simply supported plate case, the increment in the value of
R0/a0, i.e. the curvature of the spherical curved surface, introduce in-plane transverse shear
stress distributions that present higher gradients close to the boundaries of the laminate,
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Figure 5.24: Through-the-thickness plot and convergence analysis for the transverse shear
stressτ ′rp evaluated in section A, i.e. figure 5.222.

as shown in figure 5.22. This means that, although smooth distributions are obtained also
in this case using the proposed averaging technique within three-four iterations, depending
on the mesh adopted, compared to the simply supported plate case, inaccuracy was encoun-
tered also for the transverse shear stress components closeto the boundary of the cylindrical
shells, similarly to what happen for the transverse normal stress componentσ′r , see figure
5.91.
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Figure 5.25: Convergence analysis of the transverse shear stressτ ′rp.
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Figure 5.27: Through-the-thickness distributions of the recovered transverse normal stress
σ′r obtained at points of major interest considering differentvalues of R0/a0.

5.4 Conclusions

The efficient three-dimensional finite element procedure presented in chapter 4 was com-
bined with the commercial Finite Element software ABAQUS 6.8TM with the aim of broad-
ening the applicability of the method to general 3-D shell type structures. Particular atten-
tion was paid to the recovery of the interlaminar stresses. Benchmark problems concerning
conventional straight fibers multilayered composite plates and shell laminates were anal-
ysed. In the finite element model each ply was modeled as a separate layer of elements,
and the interlaminar boundary was treated as a contact surface. The interlaminar boundary
was modelled as a contact zone because the connecting forcesrequired by the developed
interlaminar stress recovery procedure can only be obtained in ABAQUS 6.8TM using a con-
tact formulation, and not, for instance, using tie constraints. Conforming meshes between
the plies were initially considered, and the finite element model was obtained using the
ABAQUS’s built-in solidC3D8I element. The results were compared with ABAQUS’s built
in solid elements and associate post-processing procedures. ABAQUS’s post-processing
procedures are based either on stress recovery from the constitutive relations or on varia-
tional consistent recovery. This depends on the element’s formulation. The proposed pro-
cedure was able to improve considerably the accuracy of the response obtained using the
ABAQUS’s built-inC3D8I element compared to ABAQUS’s built-in stress recovery proce-
dure. Smooth and accurate interlaminar stress distributions were obtained using a consid-
erable reduced number of degrees of freedom, especially formultilayered shell structures,
even compared to quadratic formulations. The proposed procedure was able to generate a
minimum percentage reduction of 77% in the total number of degrees of freedom required
to achieve accurate interlaminar stress distributions compared to ABAQUS’s formulations
that still failed to converge. Moreover, interlaminar continuity of the interlaminar stresses
was directly satisfied without the need to employ a refined mesh through-the-thickness of
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the laminate, as usually required using customary procedures. The reliability of the proce-
dure was also validated by comparing the results with exact solutions available in the open
literature.

Non conforming meshes between the plies were also considered. Plies with a regu-
lar mesh composed ofC3D8I elements were alternated at plies having a mesh obtained
as a combination of linear brickC3D8I elements and linear triangular prismC3D6 ele-
ments. The triangular prismC3D6 element was employed because it might be suitable for
modeling both the areas close to the sides of a variable stiffness panel and the resin-rich
areas generated during the manufacturing procedure of a variable stiffness panel. Then, the
C3D6 element needed to be tested in combination with ABAQUS’sC3D8I element, that
was shown to be a sound element for modeling composite laminates elsewhere. Oscillatory
behaviours were encountered in the retrieved transverse stress distributions for both plate
and shell laminates. Thus, inaccurate nodal values of the interlaminar transverse stresses
were obtained. However, these oscillations showed the sametrends of the distributions ob-
tained using conforming meshes, that were taken as reference solutions. Then, an iterative
averaging technique was developed to smooth out the distributions obtained.

The developed averaging technique consists in averaging the stress values obtained in
each node with the stress values obtained in the nodes of the surrounding elements shar-
ing the node under consideration. In general, smooth and accurate distributions were ob-
tained using the proposed averaging technique within three-four iterations for both plates
and shell laminates. However, much more refined meshes had tobe adopted compared
to the cases having conforming meshes between the plies. Moreover, inaccuracies in the
retrieved transverse stress distributions were generatedclose to the boundaries of the lami-
nates. This means that the proposed procedure needs to be improved for analyses employ-
ing non-conforming meshes between the plies of conventional composite laminates. It is
extremely necessary to pay attention to this aspect before moving to the analysis of variable
stiffness panels. In fact, the demanding computational resources required, and the inac-
curacies generated close to the boundaries of conventionallaminates make the proposed
procedure not enough accurate for reliable interlaminar stress analyses of variable stiffness
panels. Moreover, the number of iterations that would be required to smooth out the inter-
laminar stress distributions obtained in the analyses of variable stiffness panels can not be
directly deduced from the analyses reported in this chapter. Then, interlaminar stress anal-
yses of variable stiffness panels would not bring in at this stage of the work any additional
understanding concerning the accuracy of the procedure in the analysis of such laminates.
This is also because no comparison with available interlaminar stress data can be made.



Chapter 6

Recommendations and Future
Developments

This thesis covers the structural analysis of conventionalstraight-fiber plate and shell lam-
inates performed using a three-dimensional finite element computational procedure devel-
oped to perform reliable future stress analyses of variablestiffness panels. This is because
an accurate finite element modeling that supports appropriate analyses of such laminates
would be extremely difficult to obtain using customary procedures. In particular, variable
stiffness panels have manufacturing characteristics, such as course edges, tow-drops and
overlaps, that lead to amplification of the interlaminar stresses at the interface between
the plies, and that possibly causes delamination to be the dominant failure mode in these
configurations. Particular attention was paid to accurate interlaminar stress recovery of con-
ventional composite laminates. Although a direct analysisof a variable stiffness panel was
not performed during the research reported in the present thesis, several aspects concerning
conventional composite laminates were considered to validate the procedure. Additional
aspects arising for a proper modeling of variable stiffnesslaminates were also taken into ac-
count. The lessons learned, recommendations, and future challenges in this line of research
are presented in the following paragraphs.

6.1 Pre-Processing Procedures

Two finite element pre-processing procedures were developed based on the idea of model-
ing a variable stiffness laminate by simulating the procedure followed during the manufac-
turing process by the tow-placement machine’s head. The first procedure was developed
within the MATLAB framework and was validated by analysing multilayered composite
plate laminates. The second was developed within the ABAQUSframework with the aim of
broadening the applicability of the method to general 3-D shell type structures. The second
procedure was conceived such that it also enables the user touse tools and features already
developed within the ABAQUS framework. Both the procedureswhere based on finite el-
ement models adopting linear solid elements. In particular, a simple low-order solid-shell
element formulation based on the class of mixed assumed strain methods presented by Simo
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and Rifai (1990), i.e. EAS formulation, was used in the pre-processing procedure developed
within the MATLAB framework. This element was selected because it has an enhanced ac-
curacy for coarse meshes and distortion insensitivity properties for a large range of length
to thickness ratios of the laminate. Moreover, locking phenomena are solved without the
employment of reduced or selective integration techniques. This is remarkable because low
order reduced-integration elements may show hourglass mechanisms from spurious energy
modes due to rank deficiency, thus leading to inaccurate results. This kind of element was
not available in the library of ABAQUS’s built-in elements.In the ABAQUS’s framework
the discrete model was obtained using an 8-node linear brickincompatible modes element,
i.e. (C3D8I). This element was chosen because the class of mixed assumed strain meth-
ods encompass, as a particular case, the classical method ofincompatible modes. However,
enhanced assumed strain methods are recommended for a larger variety of problems com-
pared to elements based on the method of incompatible modes.Future developments in this
area might be addressed towards the implementation of the element based on the assumed
enhanced strain method and presented in section in the library of ABAQUS’s built-in ele-
ments.

Both the procedures were developed in such a way that any three-dimensional formu-
lation for the through-the-thickness form description canbe adopted in the finite element
model. This means that models based on more advanced theories, i.e. the Layer-Wise the-
ories or quadratic three-dimensional formulations, can also be adopted. For instance, in the
research reported in this thesis particular attention was paid to develop models for accurate
interlaminar stress recovery. Intralaminar stress valueswere also retrieved by introducing
fictitious interfaces in the locations of interest. However, higher order solid elements or
Layer-Wise formulations may be adopted in analyses of multilayer composite laminates
requiring more accurate estimations of intralaminar stress distributions.

Non-conforming meshes between the plies were also considered in the ABAQUS’s pre-
processing procedure. Plies with a regular mesh composed ofC3D8I elements were alter-
nated at plies with a mesh obtained as a combination of linearbrick C3D8I elements and
linear triangular prismC3D6 elements. It is worth to underline that theC3D8I element and
theC3D6 element are based on different formulations. This is because theC3D6 element is
not based on the classical method of incompatible modes, andthe reduced integration tech-
nique is adopted to eliminate locking. Although the combined used of these elements leaded
to accurate results in the mechanical analyses performed insection 5.3, it is recommended
to validate the procedure further considering different kinds of analyses. For instance, dif-
ferent loadings, i.e. thermal loadings, and different combination of non-conforming meshes
may be considered for additional verification. Non-linear analyses should also be addressed
in the future.

The compatibility between the plies of the composite plies analysed were imposed using
different methods in the two pre-processing procedures. Inthe procedure developed within
the MATLAB framework, compatibility between the subdomains was reestablished using
Lagrange multipliers. Then, the final system of governing equations was solved using a pro-
cedure for distributed computing generally employed in domain decomposition methods,
i.e. the finite element tearing and interconnecting (FETI) method. The simultaneous use of
multiple compute resources to solve a computational problem, i.e. parallel computing, defi-
nitely broaden the range of applications of the proposed procedure in numerical simulations.
In particular, the choice to implement the FETI method was due to its parallel scalability and
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its ability to outperform several popular direct and iterative algorithms on both sequential
and parallel computers. This method was tested by analysingplate laminates with different
geometries and conforming meshes between the plies. Smoothand accurate stress fields
were obtained. This procedure is also easily extendible to non-conforming meshes by re-
placing the Boolean matrices appearing in the final system ofgoverning equations (4.60)
with, for instance, matrices obtained using the Mortar finite element method (Puso, 2004).
Further research on this aspect is highly recommended for future developments in the field
of non-conforming meshes between the plies of multilayer composite laminates.

An alternative procedure to the previous one was developed within the ABAQUS frame-
work. In this case compatibility was enforced using a contact formulation between the plies.
Excellent stress fields were obtained for both plates, thesewere almost identical to the re-
sults obtained using the first pre-processing procedure, and shell laminates in the case of
conforming meshes between the plies. However, oscillatorybehaviours were encountered
in the retrieved stress distributions, in particular the transverse stress distributions, in the
case of non-conforming meshes between the plies. Thus, inaccurate nodal values of the
stresses fields were obtained. An averaging technique was developed to smooth out the
stress fields distributions. In general, smooth and accurate distributions were obtained by
using the proposed averaging technique within three-four iterations for both plates and shell
laminates. However, much more refined meshes had to be adopted in the finite element
model compared to the conforming meshes between the plies, and inaccuracies in the re-
trieved transverse stress distributions were generated close to the boundaries of the lami-
nates for some of the transverse stress components. This means that further research should
be addressed towards improving ABAQUS’s contact formulation. An improvement may
be obtained, for instance, by using a Mortar’s contact formulation (Laursen, 2003). An-
other option would be to also implement the complete first pre-processing procedure within
ABAQUS framework. In this case a tie-constrain formulationcan be adopted ABAQUS
(2005), and the FETI method could also be implemented withinABAQUS to perform par-
allel computing. Moreover, parallel computing is stronglyrecommended in the analyses of
variable stiffness panels since appropriate stress analyses of such laminates require accurate
modeling. This leads to finite element models having a large number of degrees of freedom.
Both the procedures outlined in this thesis could then be tested and compared for different
kind of laminate configurations, loadings, etc.

The idea of meshing in a variable stiffness laminate every single course using solid-brick
elements, and both the tow-drop/tow-overlaps locations and the final part of the courses
close to the edges of the laminate using triangular prism elements requires a reliable mesh
generator to be developed. The mesh generator has to providethe required mesh for any
kind of configuration. Then, a mesh can be inherently adoptedin each course lied-down by
the tow-placement machine’s head based on the assumed construction method. Thus, the
mesh of the complete laminate can be obtained by simulating the procedure followed by
the tow-placement machine’s head during the manufacturingprocess. Within the ABAQUS
framework it is possible to import the geometry of each ply using the partition method
(ABAQUS, 2005). Then, it is possible to control the mesh in the desired manner by using
ABAQUS’s mesh generator, i.e. hex-dominated element shapeand structured mesh control
(ABAQUS, 2005). However, ABAQUS’s mesh generator has to be tested with different
variable stiffness panel configurations since numerical issues could arise. Future research
should be also addressed at the development of a reliable mesh generator, designed specifi-
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cally for the procedure proposed in this thesis.

6.2 Post-Processing Procedure

In this thesis attention was also paid to develop an accuratepost-processing procedure for
accurate interlaminar stress recovery. The proposed interlaminar stress recovery procedure
has shown several advantages compared to customary procedures. For instance, this proce-
dure does not rely on extrapolation techniques from super-convergent or integration points,
as usually done using customary procedures. Interlaminar stress values are retrieved directly
at nodes and stress continuity at the inter-element boundary is automatically satisfied. Ex-
cellent agreements were obtained in the retrieved interlaminar stress distributions with exact
solutions for both plate and shell structures. Convergencewas reached using considerably
fewer degrees of freedom compared to other finite elements procedures, thus making the
procedure more suitable for the design of such laminates. Itwas also shown that smooth in-
terlaminar stress distributions were easily generated without the need to employ smoothing
techniques, as usually required when using customary stress recovery procedures. More-
over, the procedure was shown to be as accurate as commonly used assumed stress methods
using coarser meshes, and without the need to include stressdegrees of freedoms in the
solution process. This is definitely a plus compared to stress based formulations which
involve inverse constitutive relations that are generallynot available in the case of non-
linear analyses. The procedure could be also effectively combined with an average failure
stress criterion to predict delamination initiation in presence of curved free edges and stress
concentrations, i.e. laminated composite plates with openhole subjected to uniaxial ten-
sion. However, it is recommended to run additional analysesin the future to validate the
proposed procedure for laminated composite plates with open hole subjected to different
loading cases, and employing different failure criteria available in the open literature.

Oscillatory behaviours were encountered in the retrieved transverse stress distributions
using the pre-processing procedure developed within the ABAQUS framework in the case
of non-conforming meshes between the plies. The developed averaging technique was able
to smooth out the distributions obtained. However, much more refined meshes had to be
adopted compared to the ones employed in the case of conforming meshes between the
plies. Moreover, inaccuracies in the retrieved transversestress distributions were generated
close to the boundaries of the laminates. This technique might be improved in the future by
considering in the averaging procedure not only the nodes ofthe surrounding elements shar-
ing the node under consideration, but also the nodes of the elements sharing the surrounding
nodes of the node under consideration. This would allow a better estimation of the averaged
nodal value to be obtained since more nodes would be involvedin the averaging procedure.
Other possible options are (i) to implement a different averaging technique, for instance one
among the procedures presented in section 3.2, (ii) to improve ABAQUS’s contact formu-
lation, as mentioned in the previous section, (iii) to implement within ABAQUS the FETI
method in combination with the Mortar method, and enforce the compatibility between the
plies using tied constraints. These are three suggestions that have to be considered before
moving to perform analyses of variable stiffness panels.

The pre-processing procedure developed within the ABAQUS framework was combined
with the post-processing procedure developed within the MATLAB framework. This proce-
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dure could be also implemented entirely within the ABAQUS environment using the Abaqus
Scripting Interface to speed up the process. This can be achieved using NumPy, a package of
numerical extensions for Python that introduces a multidimensional array type and a rich set
of matrix operations and mathematical functions. In case the user wishes to take advantage
of some MATLAB’s additional functions, i.e. plotting interface, the PyMat package can
be incorporated. The PyMat module acts as an interface between NumPy arrays in Python
and a MATLAB engine session, allowing arrays to be passed back and forth, and arbitrary
commands to be executed in the MATLAB workspace (Python, 2006).

6.3 Future Challenges

The three-dimensional finite element computational strategy developed in this thesis was
validated for conventional composite laminates. However,this procedure can be also used
in the analysis of variable stiffness panels with tow-drops, although certain features in the
procedure have to be further validated and improved, as suggested in the previous sections.
Regarding the analysis of variable stiffness panels with tow-drops, the results reported in the
work of Blom et al. (2009) can be taken as reference solutionsfor additional validation of
the procedure. Both linear and non-linear analyses of such laminates should be considered
for different kind of loads. For instance, thermal loadingsmay be taken into consideration
to simulate the curing process of variable stiffness panels. In this manner it would be pos-
sible to evaluate the impact of the residual stresses in the structural performances of such
laminates.

The proposed procedure might also be easily extendible to the analysis of variable stiff-
ness panels with overlaps. This is because the tow-overlapsareas can be meshed using trian-
gular prism elements, but oriented differently compared tothe orientation that the triangular
prism elements assume in the model of the tow-drops areas. A typical ply drop-off is shown
in figure 6.1. However, the method should be validated first considering benchmark prob-

Figure 6.1: A typical ply drop-off (Mukherjee and Varughese(2001)).

lems concerning ply drop-off areas of laminated composite laminates subjected to different
loads. Then, the results should be compared with available solutions in the open literature
(Harrison and Johnson, 1996; Mukherjee and Varughese, 2001). The proposed procedure
combined with integrating geometric design tools such as CATIA and fiber placement simu-
lation software might be the right tool for an accurate design of a variable stiffness laminate.
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