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Summary

The full potential of advanced composites can only be aehidoy tailoring a laminate to
a specific structural application. In this manner, it is jlgesto respond more adequately
to planar stress variations and it is possible to divert$dadm the most sensitive regions
of a composite structure such as holes and notches. One drfethtailoring a composite
laminate is to use non-conventional laminates. The de@mnaon-conventional laminates
refers to two types of configurations: (i), laminates thatlere the whole range of possible
ply orientations, and (ii), composite panels with lay-umattvary orientation angles contin-
uously from point to point. A continuously varying lay-upashieved using non-traditional
curvilinear fibre paths within the plane of a ply, and, conagkto the first option (i), it offers
more freedom in the design of laminates subjected to a niforumstress state within each
ply. In such cases, the laminate stiffness also varies wiithini-plane coordinates of the
laminate, hence these configurations are termed Variatfifaess Panels (VSP).

Fibre-steered laminate designs require an accurate fiaceplent system. Hand laying
methods will not provide the required precision for layihg fibres at the correct angles
and keeping these angles during curing. Moreover, vaitplyi the quality of a laminate
resulting from the manual process has to be addressed. Atgdnfabrication processes
are able to provide repeatable and improved quality comptgpr@duction with a reduced
production cycle time. The Tow-Placement (TP) technol@gyfiparticular interest among
the automated fabrication methods available in the aeoespaiustry. This technology
combines the differential tow payout capability of filamemhding and the compaction and
cut-restart capabilities of automated tape laying. A TPmreeis a high-precision robot,
capable of wide freedom of movement, that is computer ctiattéo produce a composite
component without human intervention: TP technology afldiae design and production
of components that would be extremely difficult or even ingilole to produce using other
automated methods.

The potential of fibre-steered laminates led to the birth oéa branch of research in
laminated composite materials aimed at properly modedimd)predicting the responses of
such laminates. A VSP has, by definition, a nonuniform imelatiffness distribution that
might result in large in-plane stress gradients. Such gradicontribute to the amplification
of the interlaminar stresses, and possibly render deladimmthe dominant failure mode in
these configurations. Furthermore, the manufacturing d? W§poses either the overlap-
ping of some fibre tows within a ply or their cutting (droppjn@vhile the tow-overlapping
method results in local increases of the panel thicknesgptl-dropping method generates
fibre-free, resin-rich regions in the laminates. Both mdthbave negative effects on the
failure response of the structures when compared with igkghldesigns. This is because
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manufacturing characteristics such as course edges, iopsdnd overlaps may act as dis-
continuities and stress concentration zones that locatiiteethe interlaminar stresses fur-
ther, similarly to mechanisms triggered close to matetisd@htinuites such as free edges,
e.g. in holes, notches and ply drop-offs. Although manyaedeers have paid their atten-
tion to the analysis of VSP, the knowledge about the variahffness configurations that
lead to the highest ultimate loads is still rather limitedurthermore, the full details of the
mechanisms that lead to failure of VSP are not yet fully ustderd, particularly the influ-
ence of local effects such as tow-drops or tow overlaps. iBHigecause these local effects
require an accurate finite element modeling that is not of eaaception using customary
procedures.

Interlaminar stresses are continuous both across and &peginterfaces in multilayer
composite laminates. Nonetheless, the continuity of liameinar stresses is difficult to en-
force inC? interpolated elements. Nodal values of the stresses aedlyisetrieved using
extrapolation techniques from Barlow or super-convergeits, if known, inside the el-
ement, i.e. Gauss points for Lagrangian class of elememitsssSfields within an element
can be deduced using either constitutive relations or tranially consistent procedures. In
either case, spurious oscillations in stress fields may belertered leading to a reduced
accuracy of the recovered stresses at hodes. Moreovecuirsy in the recovered inter-
laminar stress distributions may be obtained at the integfdoetween the layers in the case
of high transverse stress gradients.

The main goal of the research reported in this thesis wasu#elole a three-dimensional
finite element computational strategy for reliable fututess analyses of variable stiff-
ness panels. The procedure had also to be able to overcoratotieenentioned problems
that would be encountered in the modeling and analysis df &aminates using custom-
ary procedures. In particular, the procedure had to be dagtén such a way that areas
where the failure initiation is primarily due to delamiratj such as tow-drop resin-rich and
overlapping-tows areas, can be easily modeled and analyitedut the need to employ
finite element models requiring demanding computatiorsdueces.

A sound technique for a proper modeling of such laminatestiig to mesh the com-
plete variable stiffness laminate by simulating the pracedollowed during the manufac-
turing process by the tow-placement machine’s head. Thansthat a proper mesh can
be inherently adopted in each course based on the assumstduotion method. A finite
element pre-processing procedure was then developed basbis idea. The starting point
of the procedure is to partition a tow-steered laminate shsuway that every ply can be
considered to be an independent subdomain. In this mateeuser is enabled to decide
the most adequate method to generate the mesh in every plggl@ompatibility between
the subdomains was reestablished using Lagrange mulsipliehen, the final system of
governing equations was solved using a procedure forbliggd computing generally em-
ployed in domain decomposition methods, i.e. the finite elertearing and interconnecting
(FETI) method. The simultaneous use of multiple computeuses to solve a computa-
tional problem, i.e. parallel computing, definetely braadee range of applications of the
proposed procedure. In particular, the choice to implerttenEETI method was do to its
parallel scalability and its ability to outperform sevepapular direct and iterative algo-
rithms on both sequential and parallel computers.

The FETI method was also particularly suitable to be contbimigh a post-processing
stress recovery procedure developed to retrieve accucatal nalues of the interlaminar
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stresses. The proposed interlaminar stress recoveryguoeeoes not rely on extrapo-
lation techniques from super-convergent or integratioimgsp commonly adopted in cus-
tomary procedures instead. Interlaminar stress valuesettieved directly at nodes and
stress continuity at the inter-element boundary is autmalfyt satisfied. The complete
stress states were obtained by employing a variationalistens recovery procedures for
the recovery of the in-plane stress distributions. The deteprocedure was developed
within the MATLAB framework, and validated by analysing nevdtely-thick/thin conven-
tional straight fibers composite plates of various georestriThe results were compared
with available exact and finite element solutions. Confoignineshes between the plies
were considered. Excellent agreement was obtained wittabla exact solutions, and
convergence was reached using considerably fewer degiréeedom compared to other
finite elements procedures. The proposed procedure wascagnerate a minimum per-
centage reduction of 72% in the total number of degrees efdfsen required to achieve
accurate interlaminar stress distributions comparedherdinite element formulations. It
was also shown that smooth distributions were easily géebrithout the need to employ
smoothing techniques, as usually required when using ostp stress recovery proce-
dures. Moreover, the procedure was shown to be as accuratsasied stress methods
without the need to include stress degrees of freedoms isdhgion process. The pro-
cedure was also combined with a failure stress criteriotiiala in the open literature to
determine onset of delamination in areas where singulessstates are generated. Special
emphasis was placed on the problem of a loaded plate with @m cipcular hole. Despite
the presence of oscillations in the interlaminar stressiligions encountered close to the
hole edge, the present procedure could be used to produeergent averaged interlaminar
stresses over a distance from the hole edge. Then, the precenuld be effectively com-
bined with an average failure stress criterion to predi@méation initiation in presence of
curved free edges and stress concentrations. In this t&ssinimum percentage reduction
in the total number of degrees of freedom required to achéecairate interlaminar stress
distributions was reduced to around 23% compared to othiez Blement formulations.

The developed post-processing procedure was also combiittedhe commercial fi-
nite element software ABAQUS 6'8 with the aim of broadening the applicability of the
method to general 3-D shell type structures. Moderatdlyktthin conventional straight
fibers composite plate and shell laminates of various geesetere analysed. The finite
element model was generated within the ABAQUS frameworl, @mpatibility between
the layers was reestablished using a contact formulatiaitedole in ABAQUS instead of
the FETI method. Conforming meshes between the laminates invdially considered.
The finite element model was obtained using ABAQUS's builsalidC3D8I element. The
excellent results obtained for plate laminates were alsditoed for shell laminates. In
particular, the proposed procedure was able to improveiderably the accuracy of the
stress distributions obtained using ABAQUS's builtgB8D8I element. Smooth and accu-
rate interlaminar stress distributions were obtainedgiainonsiderable reduced number of
degrees of freedom, especially in the analyses of multieyshell structures, even com-
pared to ABAQUS's built-in quadratic formulations. The posed procedure was able to
generate a minimum percentage reduction of 77% in the tot@ber of degrees of free-
dom required to achieve accurate interlaminar stresslistvns compared to ABAQUS’s
formulations that still failed to converge.

The idea of meshing a complete variable stiffness laminatgrhulating the procedure
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followed by the tow-placement machine’s head during theufesturing process inevitably
leads to the generation of non-conforming meshes betweeplils. Then, analyses em-
ploying non conforming meshes between the plies were alasidered. These analyses
were performed within ABAQUS's framework. Plies with a réggjumesh composed of
C3D8I elements were alternated at plies meshed using a combiradtimear brickC3D8I
elements and linear triangular pri<t3D6 elements. The triangular prisB8D6 element
was employed because it might be particularly suitable fodeting both the areas close
to the sides of a variable stiffness panel and the resinaiiehs generated during the man-
ufacturing procedure of such laminates. Then,@3®6 element needed to be tested in
combined use with ABAQUS'S€3D8I element, which was shown to be a sound element
for the modeling of composite laminates elsewhere. Osgiljabehaviours were encoun-
tered in the retrieved transverse stress distributionas;Tinaccurate nodal values of the in-
terlaminar transverse stresses were obtained. Howeese thscillations showed the same
trends of the distributions obtained using conforming nesskhat were taken as reference
solutions. An averaging technique was developed to smaatithese distributions. The
developed technigue consists of averaging the stresssvahtained in each node with the
stress values obtained in the nodes of the surrounding alsrakaring the node under con-
sideration. In general, smooth and accurate distributves® obtained by using the pro-
posed averaging technique within three-four iteratiomdbfith plates and shell laminates.
However, much more refined meshes had to be adopted compatieel tase employing
conforming meshes between the plies. Moreover, inacoesanithe retrieved transverse
stress distributions were generated close to the boursdafrtee laminates.

Future research should first focus on improving the propaseithod for analyses em-
ploying non-conforming meshes between the plies of comweal composite laminates.
It is extremely necessary to pay attention to this aspearbehoving to the analysis of
VSP. In fact, the demanding computational resources reduand the inaccuracies gen-
erated close to the boundaries of conventional laminaté® e proposed procedure not
enough accurate for reliable interlaminar stress analgé&6P. Moreover, interlaminar
stress analyses of VSP would not bring in at this stage of thexany additional under-
standing concerning the accuracy of the procedure in thiggiaaf such laminates. This is
also because no comparison with available interlaminasstdata can be made. Attention
should be also paid to non-linear analyses of conventi@mraposite laminates.

Analyses of tow-steered laminate configurations can thepdstormed once the re-
quired improvements are introduced in the proposed praeedariable stiffness laminates
with tow-drops should first be taken into account. The procednight also be easily ex-
tendible to the analysis of variable stiffness panels withrtaps. This is because the resin-
rich areas generated by the overlap between two coursesecaroteled using the same
triangular prism elements adopted for the analysis of thedmp areas. However, addi-
tional validation of the proposed method is required in thisction. The proposed proce-
dure combined with integrating geometric design tools @a&lEATIA and fiber placement
simulation software might be the right tool for an accuragsidn of a variable stiffness
laminate.



Samenvatting

Het volledige potentieel van geavanceerde composieteallesn worden bereikt door een
laminaat op maat te maken voor een specifieke toepassingez2maanier is het mogelijk
om adequater in te spelen op spanningsvariaties in het nlék et mogelijk om krachten
om de meest gevoelige gebieden van een composieten cdigstraen te leiden, waarbij
te denken valt aan gaten en inkepingen. Een methode voomphetaat maken van een
composiet laminaat is het gebruik van niet-conventiorateihaten. De aanduiding niet-
conventionele laminaten verwijst naar twee soorten cordiigs: (i), laminaten die uitgaan
van het hele scala aan mogelijke vezelorientaties, ercéijiposiet panelen met een lay-up
waarvan de vezelhoekorientatie continu veranderd van pagt punt. Een continu wis-
selende lay-up wordt gerealiseerd met behulp van niettivadle gebogen vezel paden
binnen het vlak van een laag en biedt meer ontwerpvrijheidddeeerste optie (i), voor het
geval dat de spanningstoestand in elke laag van het lamiagaert. In dergelijke gevallen
varieert de stijfheid van het laminaat ook met de coordméatehet viak van het laminaat.
Daarom zullen in deze tekst dergelijke laminaten aangeduoiden als variabele stijfheid
panelen (VSP).

Vezelgestuurde laminaatontwerpen stellen hoge eisen earaawkeurigheid van het
vezelplaatsingssysteem. Handmatige productiemethadEmmiet kunnen voldoen aan
de vereiste nauwkeurigheid bij het leggen van vezels ondguidte hoeken en het be-
houden van deze hoeken bij het uitharden van het laminaaveriglien moet rekening
gehouden worden met de variatie van de kwaliteit van hetlaatj die ten gevolge van het
handmatige productieproces optreedt. Geautomatiseeodegtieprocessen zijn in staat
om onderdelen van consistente en betere productiekvtaétéabriceren tegen een lagere
productietijd. Tow-Placement (TP) technologie neemt gmtisle plaats in onder de geau-
tomatiseerde productiemethoden die beschikbaar zijn iluatg-en ruimtevaartindustrie.
Deze technologie combineert vrijheid in vezelhoevariadie filamentwikkelen en de com-
pressie en stop-herstart mogelijkheden van geautomatismee-leggen. Een TP-machine
is een hoge-precisie robot, met een grote bewegingswlijba in staat is computergestuurd
composieten componenten te produceren zonder menseigkertkomst: TP-technologie
stelt ons in staat om componenten te ontwerpen en te pragtuder zeer moeilijk of zelfs
onmogelijk te produceren zijn door middel van andere geaatiseerde productiemetho-
den.

Het potentieel van vezelgestuurde laminaten leidde tofpttemst van een nieuwe tak
in het onderzoek naar gelaagde composietmaterialen genchet goed modelleren en
voorspellen van de respons van dergelijke laminaten. Edhh&Rft, per definitie, een niet-
uniforme stijfheidsverdeling in het vlak die zou kunnenulésren in grote spanningsvari-

\"
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aties in het vlak. Dergelijke gradienten dragen bij aan dsteeking van de interlaminaire
spanningen en zorgen er mogelijk voor dat delaminatie haiirmEnte bezwijkmechanisme
wordt voor dergelijke configuraties. Bovendien is bij deguotie van VSP het overlap-
pening van een aantal plies of het beéindigen van tows bieeanaag (afvallen) haast
onontkomelijk. Overlappende tows resulteren in een toeneam de laminaatdikte, ter-
wijl het laten afvallen van een tow leidt tot vezelvrije, bdjke regio’s in het laminaat.
Beide methoden hebben een negatief effect op het bezwifkamézme van een constructie
in vergelijking met het ideale geval. Dit komt omdat de protikkenmerken zoals de ran-
den van tow-paden, het afvallen van tows en overlappingandwresulteren in discontin-
ueteiten en spanningsconcentraties die locaal de interédira spanningen doen toenemen,
en voorts op dezelfde manier het bezwijkmechanisme op gamgbn, op een vergelijkbare
wijze als voor vrije randen, zoals bijvoorbeeld bij gaterkapingen en het laten afvallen
van tows. Hoewel veel onderzoek geweid is aan de analyse & ¢ de kennis over
variabele stijfheid configuraties die leiden tot de hoodmewijkwaarden is nog tamelijk
beperkt. Bovendien zijn de volledige details van de medman die leiden tot het falen
van VSP nog niet volledig begrepen, met name de invlioed Vealdoeffecten, zoals het
laten afvallen van tows of het overlappen daarvan. Dit komtlat een passend eindig el-
ementen model van dergelijke panelen dat de genoemde lfetadenenen in kan vangen
niet gemakkelijk te verkrijgen is met behulp van gebruikelmethodes, zelfs niet wanneer
een beroep wordt gedaan op rekentechnisch veeleisendgeegidmeten modellen.

Interlaminaire spanningen zijn continu zowel in als laramginterfaces in meerlagige
composiet laminaten. Niettemin, is de continueteit vaariatminaire spanningen moeilijk
af te dwingen inC° geanterpoleerd elementen. Nodale waarden van de spanniaye
den doorgaans verkregen met behulp van de extrapolatiégd&m van Barlow of super-
convergente punten, indien bekend, in het element, dat @ghen Gauss punten voor
elementen uit de Lagrange klasse. Spanningsvelden birereelement kunnen worden
afgeleid met behulp van constitutieve relaties of variaiel consistente procedures. In
beide gevallen kunnen valse variaties in de spanningsv@pieden, hetgeen leidt tot een
verminderde nauwkeurigheid van de verkregen spanningennaxes. Als bovendien een
door-de-dikte mesh van het laminaat wordt gebruikt datwvaétoende verfijnd is in com-
binatie met hoge transversale spanningsgradienten, kuemennauwkeurigheden in de
verkregen spanningsverdeling op de interface tussen de lagtreden.

Het belangrijkste doel van het onderzoek beschreven inrdiefpchrift was het on-
twikkelen van een drie-dimensionale eindige elementernstkategie die geschikt is om
betrouwbare toekomstige spanningsanalyses van variatifteid panelen uit te voeren,
en die in staat is om de bovengenoemde problemen die ziclendwshnen voordoen in het
modelleren en analyseren van dergelijke laminaten metlpefan de gebruikelijke pro-
cedures te overwinnen. De procedure moest vooral zodanigenmpgezet dat gebieden
waar het bezwijkmechanisme ingang wordt gebracht doontgaktie te kunnen modeleren
en analyseren, zoals gebieden waar tows afvallen, dieijkaz§n of waar tows overlap-
pen, zonder daarbij rekentechnisch veeleisende eindageegliten modellen te gebruiken.
Aandacht werd besteed aan de ontwikkeling van de procedworele analyse van VSP met
afgevallen tows, maar de procedure is ontworpen op een dig&wijze dat het concept
eenvoudig is uit te breiden naar de analyse van VSP met @génigen.

Een gedegen techniek voor een goede modellering van dkegalininaten zou kunnen
zijn om het volledige variabele stijfheids laminaat te mezsbp een manier die de afgelegde
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paden van de tow-placementmachine tijdens het produotieps simuleert. Dit betekent
dat een inherent goede mesh gebruikt kan worden kan worderellotowpad gebaseerd op
de veronderstelde bouwmethode. Een eindige elementeprpcessing procedure is ver-
volgens ontwikkeld op basis van dit idee. Het uitgangspantde procedure is de partitie
van een tow-gestuurd laminaat op een dusdanige wijze datadk kan worden beschouwd
als een onafhankelijke subdomein. Op deze wijze, de gedaruibor iedere ply beslissen

wat de beste methode is om het mesh te genereren. Compeititiissen de subdomeinen
werd hersteld met behulp van Lagrange multipliers. Verenfgwerd de definitieve stelsel
geldende vergelijkingen opgelost met behulp van een proeador distributed computing,

normaal gesproken toegepast voor domein decompositieoeheth d.w.z. de eindige ele-

menten scheur- en verbindmethode (FETI). Het gelijktigkdpruiken van meerdere reken-
methoden om een rekenprobleem op te lossen, d.w.z. pacahgbuting, verbreden hoe

dan ook het scala van toepassingen van de voorgesteldedprecde keuze om de FETI

methode toe te passen was vooral gebaseerd op de paralei@isaarheid die deze meth-
ode biedt en het feit dat deze methode beter preseteert ganare iteratieve algoritmes

zowel sequentiale en parallelle computers.

De FETI methode is ook bijzonder geschikt om te worden gedoeelnd met een post-
processing procedure die ontwikkeld is om nauwkeurige leodaarden van de interlam-
inaire spanningen te kunnen verkrijgen. De voorgesteltilaminaire het herstelproce-
dure voor de spanningen doet geen beroep op extrapoldtieéden van super-convergente
of integratie punten, zoals meestal het geval is voor gkblijke procedures. Interlam-
inaire spanningswaarden worden direct van de nodes verkreg aan de spanningscon-
tinueteit opde inter-elementgrens wordt automatischaatd De volledige spanningsstaat
werd verkregen door het ophalen van de spanningsverdelihgti viak met behulp van
variationele consistente herstelprocedures. De volegigpcedure werd ontwikkeld in
MATLAB, en gevalideerd door het analyseren van matig didkehe conventionele com-
posieten platen met rechte vezels van verschillende ge@metDe resultaten werden
vergeleken met de beschikbare exacte en eindige elemgpitsssimgen. Conforme meshes
tussen lagen verkregen met behulp van een lineaire sodifledament werden beschouwd.
Goede overeenkomst met exacte oplossingen werd bereikiprarergentie werd bereikt
met aanzienlijk minder vrijheidsgraden in vergelijkingtna@dere eindige elementen pro-
cedures, waardoor de procedure meer geschikt is voor gndlweteinden. Er werd ook
aangetoond dat een geleidelijke verdeling eenvoudig wegegereerd, zonder de noodzaak
om smoothing technieken te gebruiken, zoals gewoonlijkigeis bij gebruik van de ge-
bruikelijke spanningsherstelprocedures. Bovendien warthetoond dat de procedure net
z0 nauwkeurig is als de veronderstelde spanningsmethodemehulp van grovere meshes,
en zonder de noodzaak spanningsvrijheidsgraden mee tenriarde oplossing. De pro-
cedure werd ook gecombineerd met een spaningsbezwijkaritebeschikbaar in de open
literatuur, om het begin van delaminatie te bepalen in gisievaar een enkelvoudige span-
ningstoestand heerst. Bijzondere nadruk werd gelegd oprbbteem van een belaste plaat
met een open rond gat. Ondanks de aanwezigheid van osdliatide interlaminaire span-
ningsverdeling dicht bij de rand van het gat, kon de huidigeg@dure worden gebruikt om
convergerende gemiddelde interlaminaire spanningenrteegen op een afstand van het
gat. Vervolgens kon de procedure effectief gecombineendi@romet gemiddelde span-
ingsbezwijkcriteria om het begin van delaminatie in de jeidl van een vrije gekromde
rand te voorspellen.
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De ontwikkelde post-processing procedure werd ook gecoesnd met het commer-
ciale eindige elementen softwarepakket ABAQUS BY8met als doel de toepasbaarheid
van de methode te verruimen naar generieke 3-D schaalstenctMatig dikke/dunne com-
posieten platen en schalen met rechte vezels van versateéllgeometrieen werden ge-
analyseerd. In dit geval werd het eindig elementen mode¢mgegerd in ABAQUS, en
de compatibiliteit tussen de lagen werd verkregen met Ipetiah een contactformuler-
ing beschikbaar in ABAQUS. Conforme meshes werden aanlignkeschouwd tussen
de laminaten. Het eindig elementen model werd verkregerbetatlp van het ingebouwde
vaste ABAQUSC3D8I element. De voordelen van de voorgestelde procedure vamarder
genoemde plaatlaminaten werden ook bevestigd voor sensiathten. De voorgestelde
procedure was in het bijzonder in staat om een aanzienlgkeetering van de nauwkeurig-
heid van de respons te bewerkstelligen voor het ABAQLBDS8I element in vergelijk-
ing tot de in ABAQUS ingebouwde spanningsherstelproced@kadde en nauwkeurige
interlaminaire spanningsverdelingen werden verkregeteme aanzienlijke kleiner aantal
vrijheidsgraden, met name voor meerlaagse schaalcotissuzelfs in vergelijking met de
in ABAQUS ingebouwde kwadratische formuleringen.

Het meshen van een volledig variabele stijfheidslaminaat thet simmuleren van het
process dat door de kop van een tow-placement machine georloordt tijdens produc-
tie leidt onvermijdelijk tot niet-conforme meshes tussenlagen in het laminaat. Niet-
conforme meshes tussen de lagen werden ook onderzocht imciedpire met het gecom-
bineerde gebruik van de eindige elementen commercialeaatABAQUS 6.8™ ge-
bruikt als pre-processor, en de voorgestelde post-primgggsocedure ontwikkeld in MAT-
LAB. Lagen met een regelmatig mesh bestaanB8D8l elementen werden afgewisseld
met lagen met een mesh gecombineerd uit lineaire bak§8BBl elementen en lineaire
driehoekige prism&3D6 elementen. Het driehoekige prist88D6 element werd geen-
troduceerd, omdat het bijzonder geschikt is voor het medastl van gebieden dicht bij
de zijkanten van een variabele stijfheids panel en hake-ggbieden die tijdens het fab-
ricageproces van een variabele stijfheids paneel ontstsanvolgens, werd het gebruik
vanC3D6 elementen getest in combinatie met ABAQUWIBD8I elementen, en het werd
aangetoond dat het toelaatbaar is deze elementen ook eldiersonstructie toe te passen.
Variaties in de verkregen dwarsspanningsverdeling wendamgenomen. Hierdoor werden
onnauwkeurige waarden voor de interlaminaire dwarsspagnwverkregen. Deze variaties
vertoonden echter dezelfde trends als de verdelingen digenwerkregen door middel van
conforme meshes, die als referentie oplossingen genonrelemeEen middelingstechniek
werd ontwikkeld deze verdelingen geleidelijker te maker dhtwikkelde techniek mid-
delt de in elke node verkregen spanningswaarden met dieevapahnigswaarden van de
nodes van omringende elementen die dezelfde node delem h@valgemeen werden met
behulp van de voorgestelde middelingstechniek gladde ewkeurige verdelingen verkre-
gen binnen drie tot vier iteraties voor zowel plaat- als stlaminaten. De meshes moesten
echter veel fijner zijn dan het geval was voor conforme mestreyoor sommige van de
dwarse spanningscomponenten traden er onnauwkeurigbpdarde gegenereerde span-
ningsverdelingen dicht bij de randen van het laminaat. Dapmnenten waarvoor deze
onnauwkeurigheid optreedt verschillen per probleem, dlateggen randvoorwaarden, be-
lastingen, etc.

Toekomstig onderzoek zal zich moeten richten op de veringtean de methode voor
de niet-conforme meshes, op het uitvoeren van niet-lireairalyses van conventionele
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rechte vezel composiet laminaten, en op het uitvoeren valyses van de vezel-gestuurde
laminaatconfiguraties. De ontwikkelde methode in dit psobfift is rechtstreeks van toepass-
ing voor het analyseren van VSP met afvallende tows, maaredbade kan worden uitge-
breid om variabele-stijfheids panelen met overlappingesmialyseren. Dit komt omdat de
hars-rijke gebieden in het laminaat, vanwege de overlaggetutvee paden, kunnen worden
gemodelleerd met behulp van dezelfde driehoekige prisemaeziten als gebruikt voor lam-
inaten met afvallende tows, maar wel anders georienteatd giobale mesh. Aanvullende
analyses zijn echter nodig om de methode voor de analysee/sliSE te valideren.
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Chapter 1

Introduction and Objectives

1.1 Lightweight Structures

The unrelenting passion of the aerospace industry and raetuuérs to enhance the per-
formance of aircraft is constantly driving the developmaiimproved, high performance
structural materials. In particular, with the increasimgts of energy, there is pressure to
produce lighter structures and, in response to this, coitgosterials have come to play
a significant role in current and future aerospace compsne@bmposite materials are
particularly attractive for aviation and aerospace apgpions because of their exceptional
strength and stiffness-to-density ratios. Another acagmtof composite materials is that
they can be formed into more complex shapes than their rivetallinterparts. This reduces
the number of parts needed to make a given component, andagthe need for fasteners
and joints. There are two main advantages to this: (i), festeand joints can be the weak
points of a component due to stress concentration and megitivé need for fasteners and
joints reduces the number of potential crack-initiaticlesion a structure, and (ii), fewer
fasteners and joints leads to shorter assembly times asdtst savings.

A composite material typically consist of relatively stggrstiff fibres in a tough resin
matrix. Wood and bone are natural composite materials. Seglid&known man-made com-
posite materials are Fibre Reinforced Plastics (FRP): FiR®? the best values of specific
stiffness (stiffness/density) and specific strength (gftie/density) amongst engineering ma-
terials. All FRP are advanced composites where long fibrgs, glass - GFRP, carbon -
CFRP, are embedded in a polymer matrix. Characterised lhydtiiness and strength, the
role of the fibers is to reinforce the relatively low-stremgtatrix. Therefore, itis possible to
combine the properties of a lightweight matrix with thoseha strong fibres. Overall, this
technique results in a lighter material than its monolitdanterparts, e.g. metal, while still
maintaining high-stiffness and high-strength properiesg a predetermined direction, the
direction of the fibers. Fibrous composites are anisotrogictheir properties vary depend-
ing on the direction of the load with respect to the orientatf the fibres. This anisotropy
is overcome by stacking layers, each one often only frastmfra millimeter thick, with
the fibres oriented at different angles to form a laminateec8je stiffness properties of a
laminate can be achieved by stacking the differently oedhdyers in a specific sequence
to tailor the properties of the laminate to withstand thellbaptimally, therefore achieving

1
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the best structural performance.

Practical considerations have dictated that the desigablas of conventional laminates
are reduced to the number of plies, the fibre angle within pachnd the stacking sequence
in the design of composite laminates. Moreover, the fibrdeangre often chosen from a
small number of discrete values’,®0°, +45°. Within this conventional design practice the
design space results rather limited because it only all@vsdnfigurations with constant
properties along the laminate planar dimensions. Consglgui is not possible to tailor a
panel to respond in the most efficient manner to non-unifpdigtributed in-plane stresses,
for example those caused by holes and notches.

The full potential of advanced composites can only be aeudy tailoring a laminate to
each specific structural application. In this way, it is plolesto respond more adequately to
planar stress variations and it is possible to divert loani®fthe most sensitive regions of a
composite structure such as holes and notches: e.qa. BianéiSrinivasan (1993) and Big-
gers and Pageau (1994) tailored laminates by positionifdjrectional lamina through the
thickness and over the planform of rectangular plates tatereeneficial stiffness patterns
against compression and shear buckling. This solutionezhto stress concentrations and
delaminations!_DiNardo and Lagace (1989) achieved ingolaminate tailoring by drop-
ping off plies. In their work, experimental and analyticavéstigations have shown that
ply dropoffs have a marked effect on plate buckling and padtling behaviour. Another
method of tailoring a composite laminate is to usa-conventional laminates

1.2 Non-Conventional Laminates

The designatiomon-conventional laminategfers to two types of configurations: (i), lam-
inates that explore the whole range of possible ply oriétat and (ii), composite panels
with lay-ups that vary continuously from point to point. Argmuously varying lay-up
is achieved using non-traditional curvilinear fiber paththim the plane of a ply. In such
cases, the laminate stiffness also varies with the in-ptanedinates of the laminate, hence
these configurations are termed Variable-Stiffness PgW&PR). The illustration in Figure
[L.1 shows that at each point in the platform of a VSP there istindt, non-conventional,
lay-up of type (i). One of the first theoretical investigaismn the effects of tailoring elastic
properties of laminates by varying the fibre orientations waried out by Muser and Hoff
(1982). These authors provide a closed-form solution ferstiness concentration around a
hole of an orthotropic plate subjected to uniaxial tensiod eontaining a radial variation
in elastic properties. Their analysis shows that the intotidn of a+-45° fiber arrangement
in the vicinity of the hole, that gradually varies to a quisitropic lay-up at the outer edges
of the plate, is very effective for reducing stress conaitns.| Yau and Chou (1988) in-
serted metal pins into woven-fabric composite laminates po curing, effectively pushing
the fiber tows apart to create a molded hole. This was designegiuce the sensitivity to
open holes compared to similar laminates used with dril@dsr The resulting laminates
possessed curvilinear fibers around the hole and exhilitptbived open-hole strength.
Hyer and Charette (1991) applied the concept of curvilifibars to a plate with a cen-
tral hole. According to them, a gain in structural efficiemeyn be achieved by aligning the
fibers in some, or all of the layers, in a laminate with the gipal stress directions in those
layers. The stress-based Tsai-Wu failure criterion (Tedi\Wu, 1971) applied on a Finite
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Figure 1.1: Example of a 2-ply VSP.

Element (FE) solution predicted marked improvement of Hileiffe behaviour of these pan-
els over their traditional, straight-fibre counterpartdthdugh the tension behaviour was
improved with the variable fibre-orientation format, thengatendency was not observed
with respect to the buckling response. In a follow-up workther and Leel(1991), both
a sensitivity analysis and a gradient search technique re@oyed, leading to increased
buckling loads compared to the traditional straight-fibesign. It was shown that it is pos-
sible to place the fibers in such orientations that the loaddransferred away from the
unsupported hole region of the plate to the supported edges,increasing the buckling
capacity. It was also shown that combining both straightandilinear fibre plies within a
laminate, resulting imybrid laminatesproduced the best buckling and failure results.

Other examples of fiber orientation angle tailoring inclubleoretical and numerical
studies have been donelby Banichuk (1995), Pedersen (Id®4aut et al.|(2000), Crothers
et al. (1997). The motivation of these studies was the opttion of the spatial variation of
fibre orientation within the domain of a composite panel tpiiave its stiffness, buckling
or strength characteristics.

1.3 Tow-Placement Technology

The fibre-steered laminate designs discussed in the pres@miion require an accurate fibre
placement system. Hand laying methods would not providesttpeired precision for laying
the fibres at the correct angles and keeping these anglesyawniing. Moreover, variability
in quality resulting from the manual process has to be addtesAutomated fabrication
processes are able to provide repeatable and improvedyqcathponent production with
a reduced production cycle time.

Filament winding is a traditional automated method wheraesgure vessel can be
fabricated by winding strands or tows of fibers around a malrfdrmed in the shape of
the vessel (Mondo et al., 1997; Pasanen et al.,|1997). Rilammding has also been
successfully extended to stiffened structural compongnth as grid-stiffened panels and
geodetically stiffened shells. Filament winding, howevas limitations in terms of the
shapes that can be produced, which are basically restitictednvex geometries since a
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concave surface would be bridged over because of the higiotenecessary to hold the
fibres in place.

Tow-Placement (TP) is a technology that combines the difféal tow payout capabil-
ity of filament winding and the compaction and cut-restagadalities of automated tape
laying MI 5). A TP machine is a high-precisiobot, capable of wide free-
dom of movement, and computer controlled to produce a coitgposmponent without
human intervention (Bullock et al., April 1990; Enders andpiins, 1991): TP technol-
ogy allows the design and production of components that dvbel extremely difficult or
even impossible with other automated methods. In the TPasmdndividual prepreg tows
are fed through a fibre delivery system (Figure 1]2(a)) infibie placement head (Figure
[I:2(Bb)) and grouped together to form a band of parallel fibArgow-placement head can

(a) Fibre placement delivery system. (b) Curved tow courses.

Figure 1.2: Fiber Placement (FP) technology: system cheegstics (courtesy of Ingersoll
Machine Tools|(Ing)).

accommodate up to 32 tows. A typical tow placement head ia/shio figure[1.8. When

Redirect
roller

Individual tow payout
- with controlled tension

Figure 1.3: Typical tow-placement head (couﬂesmm».

starting a course, the individual tows are fed through trellend compacted onto a surface.
As the course is laid down, the processing head can cut @rtesty of the individual tows.
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Hence, the width of the fibre band can be increased or dectedi®sving for the elimi-
nation of excessive gaps or overlaps between adjacenteautd the end of the designed
course, the remaining tows are cut to match the shape of yhiequindary. The range of
motion described by the tow-placement head allows the towee taligned in any direction,
therefore enabling the production of double-curved p&eh tow is dispensed at its own
speed during the placement of a course, allowing it indepethglto conform to the surface
of the part. This different payout system enables the filelgtsteered in such a way that
specified designs can be met, as shown in Figure 1.2(b), @hétament winding and au-
tomated tape laying are confined to near geodesic path $iagedly on the friction and the
tension of the material to hold individual fibre paths in gadlore technical information
on TP technology and fabrication issues encountered dumigngufacture can be found in
the work done by Giirdal et al. (2005) and Lopes (2009).

1.4 Tow-Steered Laminates

The potential of fibre-steered laminates led to the birth oéa branch of research in lam-
inated composite materials aimed at properly modelling prdlicting the responses of
such laminates. A simple method of modelling complete tothpavas developed in the
research initiated by Girdal and Olmedo (Gurdal and Olm€63; Olmedo and Girdal,
1992, 1993). The work led by Gurdal resulted in the formolatf a tow steered ply def-
inition with a minimum number of parameters. A simple foratidn is necessary for the
attractiveness of the concept, and to allow for fast optéin algorithms to produce the
best manufacturable structural design. Being manufaokeinaplies that the curvilinear ply
paths can be fabricated using existing fibre placement tdogy, thus the range of possible
designs is bounded by the constraints of the machine used.

In the formulation proposed by Girdal and Olmedo (Girdal@mledo| 1993; Olmedo
and Gurdal, 1992, 1993), it is assumed that the fibre angleefeaence fibre path varied
linearly from the valu€ly at a fixed position in the panel, typically its geometricahtes,
to Ty at a specific distanca, as illustrated in Figure 1.4. This distance is often takea a
characteristic dimension of the composite panel beingydesi. Using this formulation the
orientation of a single curvilinear fibre path can be denbtee To|T1 >. This curve is the
reference patffior the course followed by the TP machine head when layingha lo&tows.
A more general fibre path definition can be achieved by ragatie axis of variation of the
fibre orientation by an angl®, from the geometric axis of the panel. This rotation defines
a new fibre orientation variation axis denoteddyAccording to the formulation, the fibre
path defined by < To|T1 > varies linearly along th&' direction, rotated from the x-axis
by an anglep. In order to construct the remainder of the ply, Gurdal anchédo (Girdal
and Olmeda, 1993; Olmedo and Gurdal, 1992, 1993) suggeiiititng the reference path
in a direction perpendicular to its axis of fibre variationi§ method gives increases of up
to 50% in the axial stiffness and up to 80% in the critical Hinckload of TP panels when
compared to traditional straight-fibre laminates.

These theoretical benefits, e.g. those suggested by Gifiala(2008), may be bounded
by the real manufacturing conditions and limitations ingebgy the TP machine (Gurdal
et al., 2005). For instance, as a consequence of the digoretmurse shifting, the bound-
aries of constant-width neighbouring courses do not matchlflocations along thg’-axis
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Figure 1.4: Linear fibre angle variation reference path.

and, consequently, areas having fibre gaps and/or towsapyenig each other are created.
Allowing tows to overlap generates local thickness buildar this process is referred to as
thetow-overlap methadThis effect may not be desirable, for example, in parts élcais
control surfaces, yet it can also be advantageous for otimés pince these thicker regions
can act asihtegral stiffeners

Overlapping regions can be eliminated by using the towioytind restarting capability
of the TP machine. The tows are cut individually perpendictd the fibre direction, result-
ing in a jagged edge. It is possible to determine the degreditch a smooth boundary is
covered by the discrete tows of the course using a user-dgfim@meter furnished by the
tow-placement software, referred to as tikeverage parametefGirdal et al.. 2005; Tat-
ting and Gurdal, 2003). This process is referred to asdtvedrop methodThree examples
are given in figur€_1]5. For 0% coverage, each tow is cut soitthiading edge does not

Boundary curve Boundary curve Boundary curve

(a) 0% coverage (b) 50% coverage (¢) 100% coverage

Figure 1.5: Tow-dropping with different coverage paramstécourtesy ot Girdal et al.
(2005)).

extend past the limiting curve. This results in a small fifseee triangular area that is likely
to be filled with resin during curing, therefore creatingresin rich"region which may be
termed atow-drop area A constant thickness fibre-steered laminate can be pradoge
applying this technique. This scenario is displayed in Ffi.6 where a close-up of an
overlap region and the tow-dropping that occurs is highédgh At 100% coverage, the tow
is cut only when both tow-edges cross the boundary, creatémgall triangular overlap area.
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Figure 1.6: Close-ups of overlap regions using both shifteethods (courtesy of Girdal
et al. (2005)).

Intermediate values contain both gaps and small thicknasations. Examples of panels
manufactured by the tow-drop and tow-overlap methods ayesin figure 1.7.

Tow drop areas

(a) Tow-drop method. (b) Tow-overlap method.

Figure 1.7: Examples of tow-steered composite panels naatwred according to two fab-
rication methods.

The effects of manufacturing issues on the laminate regpeunsh as tow-drops and tow
overlaps, constraints of fabrication, addressed in dietdiie work of Giirdal et al. (2005),
and the residual thermal stresses due to panel curing, artamt aspects that need to be
properly addressed in both the design and analysis stagetowofsteered laminate. For in-
stance, thely staggeringechniquel(Giirdal et al., 2005) can be adopted in the detige s
of a tow-steered laminate to avoid the collocation of cowdges, tow drops or tow over-
laps, that would occur at the same places through-thesibgkof a laminate in clustered
plies, i.e. adjacent plies with the same fiber angle distidgiou Collocation of course edges
has two different effects depending on the manufacturinthote If the tow-drop method




8 1 Introduction and Objectives

is used, local resin-rich regions can occur throughout treepthickness, and this can de-
grade the laminate strength. If the tow-overlaps methog&lucoincident course edges
generate the highest thickness buildups which can be smobthply staggering, allowing

the production of smooth thickness laminates with no apabde decrease in performance
(Jegley et all, 2003). This technique is illustrated in f&ii@ in which a panel that contains

Figure 1.8: Ply staggering of tow-steered plies using the-toverlap method construction
(courtesy of Gurdal et all (2005)).

three ply groups using the tow-overlap construction metisagpresented. The first ply
group on the leftis &+ < 45|60 > ply group, where the dark regions denote the thickness
build-up, and the next two ply groups contain the same argfi@ition, though each is dis-
placed by one-third of the shift distance in the verticakdiron. The combination of the
three ply groups leads to a smoother thickness distribwiionpared to the one that would
have been obtained if the three ply group9af < 4560 > were not staggered. When the
tow-drop construction method is used instead, this teclenjorovides an added bonus of
distributing the gaps more evenly within the structure. éttweless, the designer of VSP
should be aware that ply staggering causes the actual lay-og@ locally asymmetric and
unbalanced. Girdal etlal. (2005) have presented severahspib achieve the same benefit
of ply staggering with a reduced impact on panel performaAatetailed overview provid-
ing additional considerations on manufacturing and deefgviSP is presented by Lopes
(2009).

1.5 Structural Response

The primary objective of varying the orientation of fibredhim the plane of laminates is
to increase the structural performance of fibre-reinform@adposites in terms of stiffness,
buckling and failure characteristics, when compared tditieal straight-fibre laminates.
Since the creation of the concept, the structural respongriable-stiffness laminates has
been analysed by several authors, whose investigatiores lieen overviewed by Lopes
(2009) and briefly described in the following paragraphs.
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1.5.1 Stiffness and Buckling Performance

Gurdal and Olmedo (Girdal and Olmedo, 1993; Olmedo and Gik882) used a numer-
ical iterative technique to solve the system of couplegtdipartial differential equations
governing the in-plane response of VSP. The results showmzdases in the axial stiffness
of VSP of up to 50% compared to straight-fibre laminates.tamvork of the same authors
(Olmedo and Giirdal, 1993) employed the Rayleigh-Ritz Métiodfind the buckling loads
and modes for two different cases of fibre angles variatiothé first case the fiber orienta-
tion varied in the direction of the applied load and improeens in the buckling load were
obtained compared to the straight-fiber configurations heligperformance improvements
in the buckling load, up to 80% over straight-fiber configimas, were found in the second
case in which the fiber orientation varied perpendicularlihe loading direction.

In the follow-up work carried out by Waldhart et/al. (1996)dawaldhart [(1996) the
buckling loads of compression and shear loaded tow-stexneels were analysed by solv-
ing the elliptical partial differential equations govergithe panel behaviour. Increased
buckling performance, compared to the straight-fibre cenpatrts, was reported.

Wau et al. (2002) and Wu (2006) conducted experimental andtldies to characterise
the structural response of two different compressionddadariable-stiffness composite
panels. The panels were designed and manufactured acgdadthe tow-drop method
and the tow overlap method, respectively. A baseline cpbgdaminate was also anal-
ysed and tested for comparative purposes: VSP, espediallyrtes with overlapping tows,
showed significantly better structural efficiency than thedline laminate. Experimental
data showed transitions loads up to 5 times that of the bes&iminate. Differences in
structural response between the two variable-stiffnesslpavere attribute to the regions of
overlapping tows which act as local stiffeners, hence msirey the load-carrying capability
of the panel manufactured according to the tow-overlap otwkethThe FE predictions far
exceeded the experimental buckling loads. It was detewtinat the difference between
predicted and actual performance was the result of the uakgtresses induced by the
curing process, which, in general, are also responsiblhé&superior performance demon-
strated by tow-steered laminates compared with straigh¢-tomposites. Non-linear FE
analyses with thermal prestresses were performed to aterbetter the predictions with
the test results. This analysis resulted in a more consisterelation with test results.

Tatting and Girdal (2001) optimised a panel with centraétiot compressive buckling
load. First, a panel without a hole was considered for tharopation study. Then, a hole
was added to the best lay-up and the panel analysed in the dfESPAGS (STructural
Analysis of General Shells) (Rankin et al., June 2000). Camexqbto the baseline panel,
the best curvilinear-fibre panel achieved an improvemelod-carrying capability of over
60% with no appreciable increase in weight. Then, the chosafigurations, and base-
line panel, and a curvilinear-fibre panel without centrdehaere manufactured and tested
by |Jegley et &l. (2003, 2005). Reasonable agreement wasveldder the straight-fibre
specimens but buckling and post-buckling behaviour wagsaiccurately predicted for the
tow-steered specimens.

An overview of the effects of fibre-steering on the in-platiffreess and buckling re-
sponses of tow-steered panels is presented in Girdal €2Qfl8). These analyses have
been further refined hy Abdalla et al. (2009) with the inabmsodf residual thermal stresses.
The variable stiffness concept has been extended to stescuiher than plates. Tatting
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(1998) investigated the application of the variable séffs concept to thin cylindrical shells
of various length. Conical shells have been studied by Blball ¢2008a,b).

1.5.2 Failure Performance

First-ply failure analysis and failure test have been thgestt of a few works on variable-
stiffness laminates| Waldhart et/ al. (1996) and Waldha®86) considered failure as a
constraint on the production of tow-steered panels. ThéHifirst ply failure criterion
(Rowlands| 19€5) was applied to rule out configurations \iit-ply failure loads lower
than buckling loads. The reason for this is that the poteapalications of tow-steered
composite panels are compression-loaded structural feantghich the buckling loads are
generally the limiting factor. The use of the Tsai-Hill erilon was chosen over other failure
prediction methods, such as the maximum stress and maxinram theories, because it
offers a more continuous strength variation that accongsaciianges in orientation angle
and it incorporates interactions between the failure gitenthat some other theories com-
pletely neglect. Although the Tsai-Hill criterion takegdraccount quadratic interaction
between stress components, its formulation is based or4iitivng techniques that do not
account for the effect of the ply thickness on the strengtirtHermore, it does not reveal
the mechanism of failure.

Wu etal. (Wu,[2006; Wu et all, 2002) analysed and tested tow silgemeels and a
baseline cross-ply plate under compression loads up wréailThe tests performed on the
variable stiffness panels showed a linear pre-bucklindHdeflection response, followed by
a non-linear response until failure which occurred at laaakls about three times greater
than the buckling loads. The weight-normalised failuredeavere found to be approxi-
mately 28% and 8% greater than the baseline panel, resplgctir the tow-steered lam-
inates with and without overlapping tows. Attempts to siatelnumerically the nonlinear
postbuckling response, relying solely on geometricallglim@ar analysis, resulted in inac-
curate results. The introduction of nonlinear shear behaallowed the correct simulation
of the postbuckling path.

Jegley et al. (2003, 2005) tested compression and sheadd&8P up to global struc-
tural failure, and compared the results with straight-fibmefigurations. The geometries
included central holes of various sizes. The Tsai-Hill fplst failure criterion was initially
applied on candidate designs to guarantee that the paelsqged would fail at loads much
higher than the buckling loads. The panels manufacturelddtoiv-overlap method carried
loads more than three times their buckling loads while shesded specimens reached at
least twice their buckling load levels before failure. GaleVSP had a failure performance
up to 60% higher than the constant-stiffness configurations

More recently, Lopes et al. (2007, 2008) have demonstraeddvantages of variable
stiffness over straight-fibre laminates in terms of comgixesbuckling and first-ply fail-
ure. A user-developed continuum damage model was employietifinite element code
ABAQUS for the identification of damage initiation and maastiffness degradation in the
post-buckling regime. Moreover, a physically based setifife criteria, able to predict
the various modes of failure of composites laminate strnectwas also implemented. The
improvements gained using tow-steered laminates ovettitradl straight-fibre laminates
concerning first-ply failure were remarkable. The improeeits achieved by the tow-drop
method (248%) were even surpassed by the overlap metho®{3R
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Alhajahmacetal. (Alhajahmad, 2008; Alhajahmad et al., 2003a,b) desigoe-placed
pressurised fuselage panels with and without cutouts foirmam strength performance.
The Tsai-Wu first ply failure criterior (Tsai and Wu, 1971)smased in the optimization
algorithm. Improvements in panel load carrying capacitp@¥ and above were achieved
compared to constant-stiffness configurations.

Strength-based criteria are the usual methodology forigiing the onset of failure
events in composite structures due to their ease of use atfirtite element method. How-
ever, the mechanism that leads to failure can not be fullyetstdod when using these
approaches Lopes (2009). Physically-based failure @iteaive been also developed and
proposed. These represents a step further in the questntifydhe phenomena at the
origin of the failure process. Phenomenological-baseddriaiare widely applicable, as op-
posed to curve-fitting based criteria whose applicabibtyeistricted to the particular load
cases from which they are derived. In this regard, a dethitgdture overview can be found
inlLopes (2009).

1.5.3 Computational Modeling of Manufacturing Characteristics

In the analyses of the tow-placed structures with constackness by Tatting and Gurdal
(2001, 2002, 2003), Blom etlal. (2008a\b), Lopes et al. (2R088), the course boundaries
have been assumed to be smooth. In reality, tows are cutnicodar to the fibre direc-
tions, resulting in small triangular resin-rich areas, @ in figurd 1.6. Only Blom et al.
(2009) have done a theoretical, numerical investigatiothefinfluence of these tow-drop
areas on the strength and stiffness of constant thicknestbiastiffness laminates. In par-
ticular, the influence of tow-width, laminate thickness autyl staggering, in combination
with tow-drop areas, on the in-plane failure performanceapiable stiffness laminates was
analysed using parametric studies.

The commercially available FE package ABAQUS (ABAQUS, 20#&s used together
with the user-developed continuum damage madel (MaimilgP@074,b) to perform pro-
gressive failure analysis. The finite element model coadisf fully integrated4 shell
elements, and a refined mesh was adopted since the elemeattohze small enough to
capture the tow-drop areas. Good agreement with the expetahfailure results were
obtained, and the authors concluded that the failure of M@Rnevitably affected by the
presence of tow-drops. It was shown that damage can be teiddpy the resin-rich areas,
preferentially in regions where the angle between the tggdector and fiber orientations
is the largest. It could be also stated that ply staggerimgne#igate the stress concentra-
tions in the neighbourhood of course edges and fibre-fressaddowever, the occurrence
of delaminations, traditionally caused by interlaminaesses that arise due to differences
in ply compliance and out-of-plane loadings, was negleatextjether in the model.

In other loading situations, such as cyclic loading, théufai initiation around tow-
drop regions may primarily be delamination (Lagace and Bon&993; Shim and Lagace,
2004). Hence, the work of Blom et/al. (2009) was a prelimiresyessment of tow-steered
configurations, based only on their in-plane behaviourhis way the analyses were sub-
stantially simplified, the modelling difficulties were kelotv, but a sound basis for the
comparison of VSP with straight-fiber laminats was stilliagkd. However, care should be
taken in drawing definite conclusions about an obtainedtaiperformance.
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1.6 Thesis Objectives and Outline

Delamination, caused or potentiated by interlaminar seeéPagano and Schoeppner, 2000),
is a key failure mode in laminated materials. A VSP has, bynitedn, a nonuniform in-
plane stiffness distribution that might result in largepilane stress gradients (Lopes, 2009).
Such gradients contribute to the amplification of the imterihar stresses, as demonstrated
in [Saeger et all (2002), and possibly to render delaminatierdominant failure mode in
these configurations. Furthermore, VSP have manufactahatacteristics, such as course
edges, tow-drops and overlaps, as described in sdcfibwhidh may act as discontinuites
and stress concentration zones that locally excite thelambénar stresses further. Similar
mechanisms develop in material discontinuites (Bath anghta, 1994) such as free edges,
e.g. in holes, notches and ply drop-oifs (Shim and Lagac86R0Although many re-
searchers have paid their attention to the analysis of \@Rrnowledge about the variable-
stiffness configurations that lead to the highest ultimatal$ is still rather limited. Fur-
thermore, the full details of the mechanisms that lead tariof VSP are not yet known,
particularly the influence of local effects such as tow-droptow overlaps. This is because
these local effects require an accurate finite element nragittlat is not of easy conception
using customary procedures.

An interesting analysis on the mechanisms and structurahpeters affecting the inter-
laminar stress field in laminates with ply drop-offs is paed in Mukherjee and Varugh-
ese((2001) and in_Shim and Lagace (2004). The overall irsigdihed from these works
are useful in understanding damage/failure charactesistind are helpful in preliminary
design stages when it has to be chosen the laminate confang&hat alleviate the inter-
laminar stress concentrations, and thus, increase thenttedtion load. This is because
a sense of the propensity for delamination of a particularidate configuration can be
obtained. However, a detailed analysis on onset of delaimmaf such laminates requires
more accurate procedures, such as three-dimensionaHieiteent analyses combined with
three-dimensional failure criteria.

Tows have to be cut at the course boundary to manufactura@abiastiffness laminate
with constant thickness, which results in small trianguégin-rich areas without any fiber,
as shown schematically in figure 11.9. Tow-drops are likelyedn different locations across
the planform of the laminate from ply to ply depending on tteeking sequence. Then, it
becomes extremely difficult to capture the local stresgstgénerated in the final laminate
using conventional two-dimensional finite element procedueven by resorting to com-
putationally expensive meshes. For instance, a compuotdlycexpensive in-plane meshes
is required to model the tow-drop locations of every ply byptihg a two-dimensional
model, as the one used|in Blom et al. (2009) generated usliygirfitegrated4 shell el-
ements. This is because the elements have to be small enowgipture the tow-drop
areas present in the complete laminate. Moreover, evergthtwo-dimensional models
can be adopted for a preliminary assessment, these modeisiable to analyse properly
the local three-dimensional stress states generated tivtherop locations, hence the on-
set of delamination, due to their intrinsic theoreticalasptions. Then, three-dimensional
displacement-based models represents a sound basis ferairalyses of tow-steered lam-
inates. However, difficulties arise using conventionagéidimensional procedures in the
development of a finite element model that is able to captuwperly all the locations of
interest within the complete laminate.
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Figure 1.9: Schematic representation of a variable sté&aminate, designed according
to the tow-drop method. (Blom etlal., 2009).

Although interlaminar stresses have to be continuous bathsa and along layer in-
terfaces, the continuity of interlaminar stresses is diffito enforce inC° interpolated
elements. Accurate stresses are generally retrievableaas<Gpoints using constitutive
relations or variationally consistent procedures in cotiemal Lagrangian formulations.
However, interlaminar stress failure is likely to initizdié the interface between layers in
tow-steered laminates, in particular at the tow-drop anerlaps locations, making nec-
essary to have accurate stresses on the interface, as dppoSauss points. Accurate
extrapolation techniques from Gauss points are usuallyiredin conventional finite ele-
ment procedures to achieve an appropriate level of accafabg interlaminar stress fields
at the element nodes. However, stress distributions elalusing constitutive relations or
variationally consistent procedures may generate seseitadions in the transverse stress
distributions when thin laminates are analysed. Moreamagccuracy in the recovered in-
terlaminar stress distributions may be obtained at thefates between the layers in the
case of high transverse stress gradients.

Based on what is stated above, the main goal of the reseguonted in this thesis
was to develop a three-dimensional finite element compmutatistrategy for reliable future
stress analyses of variable stiffness panels. Moreovemptbcedure had to overcome the
aforementioned problems that would be encountered in theefimy and analysis of such
laminates using customary procedures. In particular, thequlure had to be conceived in
such a way that areas where the failure initiation is prilpatie to delamination, such as
tow-drop and overlapping-tows areas, can be easily moaglédnalysed without requiring
demanding computational resources. The procedure hadoasoconceived such that the
stress states generated can be combined with three-dionah&ilure criteria commonly
used for delamination initiation in multilayered compedaminates. Attention was paid to
the development of a procedure for the analysis of VSP withdoops, but the procedure
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itself was conceived in such a way that the concept is eastgndible to the analysis of
VSP with overlaps.

The starting point of the present procedure is to partititowasteered laminate in such
a way that every ply can be considered to be an independedoswin. This means that
the compatibility between the subdomains has to be reéstialol subsequently by imposing
adequate interfacial conditions. Then, a mesh based owthkined use of both linear brick
and linear triangular prism elements is adopted for eveyy phus, the triangular shape of
the tow-drop locations, known from the procedure develapd&lom et al. (2009), can be
modeled properly using triangular elements. Moreover,uber is enabled to decide the
most adequate method to generate the mesh in every singlegulinstance, the user could
decide to mesh every course independently. Thus, the finsth miethe complete laminate
could be obtained by simulating the procedure followed ke tdw-placement machine’s
head during the manufacturing process. This means thatpepmesh can be inherently
adopted in each course based on the assumed constructiommanother possible option
is to directly mesh the complete ply using a reliable meshegaor tool. For instance,
using the commercial finite element software ABAQUS'8'8t is possible to import the
geometry of each ply using the partition method (ABAQUS, 200 hen, it is possible to
control the mesh using the mesh generator of ABAQUS in suchyethat brick element are
adopted within the courses, and triangular prism elemeatsdopted in the triangular resin-
rich areas, i.e. hex-dominated element shape and strdangsh control (ABAQUS;, 2005).
However, both the methods would lead to non conforming mnebb&veen the subdomains.
Thus, the procedure needed to be conceived in such a wayahatanforming meshes can
also be taken properly into consideration.

In order to broaden the range of numerical applicationseptloposed approach, a pro-
cedure for distributed computing generally employed in donmdecomposition methods,
i.e. the finite element tearing and interconnecting metKedis (2007), was employed to
solve the system of algebraic equations. An efficient intemhar stress recovery procedure
for three-dimensional finite element formulations was alewveloped as a post-processing
procedure. This interlaminar stress recovery procedui® asoaceived to overcome the
aforementioned problems usually encountered using castopnocedures, and is based on
retrieving the interlaminar stress values directly at reodEhus transverse stress continu-
ity at the inter-element boundary is automatically satikfimaking the procedure neither
dependent on the knowledge of superconvergent point naitsento the stress recover
method employed to obtain element stress distributioes constitutive relations or varia-
tionally consistent procedures. The post-processinggohae was completed by employing
a variationally consistent procedure for the recovery efithplane stresses.

An adequate modeling strategy for non conventional conipdemninates could be de-
veloped only if a proper understanding of the behaviour afveational laminates was
achieved. The thesis is set out as follows: in chapter 2 tters paid to providing a
proper understanding of the complicate effects arisingoimventional composite layered
constructions due to the typical anisotropic behaviouheke laminates. In this context,
high transverse deformability, zig-zag effects and iat@ihar continuity, summarized as
C? requirements of multilayered composite structures, adeemsed in detail. Variational
principles that have been established in the open litezdtuderive governing equations of
a structural problem are also discussed. Then, an overfiavailable two-dimensional ax-
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iomatic theories for analysing multilayer, anisotropioiposite plates and shell structures
is presented to help understand limits and advantages s theories compared to three-
dimensional approaches. Common finite element procedsess to recover stress field
measurements in displacement based formulations areiewed in detail in chapter 3.
Then, stress recovery expressions obtained using thesedanees are compared with stress
recovery expressions obtained using hybrid formulatidimg proposed finite element pro-
cedure is presented in detail in chapter 4. The reliabilithe approach is tested analysing
several benchmark problems concerning multilayered glatetures. Comparisons with fi-
nite element software and available solutions in the liteaare also reported. Finally, the
proposed procedure is combined with the commercial FinigenEnt software ABAQUS
in chapter 5, and benchmark problems concerning multilpiage and shell structures are
analysed. Comparisons with ABAQUS’ built-in stress reggwnd available solutions in
the literature are used to confirm the accuracy of the praeedihis thesis is concluded in
chapter 6 with an exposition of the lessons learned from thik weported in the previous
chapters, and a perspective on the research to be carribd future based on the drawn
conclusions.






Chapter 2

Theories for Multilayered
Anisotropic Composite Structures

2.1 Introduction

Tow steered composite laminates require a comprehensatrtent of regions such as tow-
drop and/or overlapping-tows areas since three-dimeabgiress states are common in
these areas. This is similar to what happen near geomettimarterial discontinuites, i.e.
free edges, cut-outs, which also give rise to stress corat@mt phenomena and to failure
initiation that is primarily due to delamination. An apprae analysis of the onset of de-
lamination requires an efficient modeling strategy ablegict the local three-dimensional
stress states, and this can only be developed if it is fuleustood how conventional com-
posite laminates function. Compared to isotropic strieguthe anisotropic behaviour of
multilayered composite laminates introduces complicéfiects, such as high transverse
deformability, zig-zag effects, i.e. rapid change in thapsl of displacement fields in the
thickness direction in correspondence with each layerfete, and interlaminar continu-
ity of transverse stresses. These effects have to be dgrflkén into account especially
when dealing with stress analyses of such laminates. Thaehlaegins with a discussion
concerning these complicating effects. Three-dimens$i@iy) approaches are the obvious
tool of choice when attempting to reach an appropriate lef/elccuracy in the recovered
stress fields, especially in presence of local phenomenratbhese mentioned above, but
the computational costs of these analyses can be prolailfdtivpractical problems. A two-
dimensional model can be used to obtain a valuable altemaind an overview of the
available modeling theories will be given in this chaptetisat the limits and advantages
of these approaches compared to three-dimensional moaelsecunderstood. In partic-
ular, due to the impact that the axiomatic approach has haticantinue to have on the
modeling of composite structures, attention will be paithi® axiomatic type theories and
related finite element implementations. Classical lanmatheories and their refinements
are considered first, where an equivalent single layer gesunr is adopted, meaning that
the number of the unknown variables is considered to be mwdgnt of the number of con-
stitutive layers. Then, layer-wise variables descriptidn which each layer is seen as an
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independent plate and compatibility of displacements aomepts is imposed as a constraint
at each interface, are considered. These theories will Beeased in both the framework
of displacement formulations, in which only the displacetseare assumed as unknown
variables of the structural problem, and in mixed formwlag, in which additional fields
are introduced as unknown variables of the stuctural proplee. strains, stresses. The
chapter ends with a set of conclusions drawn from the foiggdiacussion of multilayered
composite laminates analyses.

2.2 Anisotropy’s Effects on Layered Structures

Unlike their homogeneous isotropic counterparts, therbgeneous anisotropic constitu-
tion of laminated composite structures often results iraghygearance of many unique phe-
nomena that can occur on different geometric scales, itbeajlobal or laminate level, the
ply level, or the fiber/matrix level. For example, globalalehation of laminated composite
structures is often characterized by complex coupling betwthe extension, bending, and
shearing modes, leading to relevant complications in teegaure used to find a solution
to the governing equations of the problem (Jones, 1999; R0 4).

Advanced composite materials commonly used in aerospgieations may exhibit
in-plane anisotropy (IA), that is, the structure has dédfgrmechanical-physical proper-
ties in different in-plane directions: IA is generated bgtivalues of Young's moduli
orthotropic ratio E /Er = 40+ 5 where L denotes the fiber direction and T denotes the
orthogonal directions to L), coupled with low values for th@nsverse shear moduli ratio
(GLt/ET =~ G771/ET =1/10+1/200). The effect of IA is that higher transverse shear and
normal stress deformability with respect to in-plane defability is reached compared to
isotropic structures. Moreover, IA introduces an addgiorelevant consequence: a cou-
pling between in-plane and out-of-plane strains may b@dhtced as it is the case for un-
symmetrically laminated plates, causing large displacegmim the structure even if low
levels of the applied loadings are considered (CerreraZ 20thes, 1999; Redaoy, 2004).

Further complications arise in laminated composite stmest due to the transverse dis-
continuous mechanical properties, i.e. transverse anmp{TA) of multilayered construc-
tions leading to displacement fields in the thickness dimacthat present a rapid change
of their slopes in correspondence with each layer interfathis is known as the Zig-
Zag (ZZ) form of displacement fields in the thickness direttof the laminatel (Carrera,
2002). A comparison of the possible scenario between aaye-tomposite structure and
a three-layer composite structure of both displacemenstieds components distributions
along the thickness direction of the laminate is shown inré@.1, as it would appear
from an exact 3D analysis or from experimental data (Carfi387). For the sake of sim-
plicity, reference is made to plate geometries. The streagponents are referred to the
global laminate Cartesian coordinates systeny,z) shown in figuré_ 22, in which the lo-
cal lamina coordinate syste(®, x2,x3) is also reported. In contrast to the in-plane stress
components , = (011,022,012) that can be, in general, discontinuous at each layer inter-
face, the transverse stress components- (013,023,033), for equilibrium reasons, i.e. the
Cauchy theorem, must be continuous at each layer interfaie evident from figuré 2]1
that both the displacement and transverse stress distriis,ifor reasons of compatibility
and equilibrium, respectively, af@®-continuous functions in the thickness z direction. It
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In-plane Displacements Transverse
stresses stresses

Figure 2.1: @ Requirements. Comparison concerning possible scenafiosth displace-
ment and stress thickness distributions between a one-tayeposite laminate
and a three-layered composite laminate (courtesy of Car(@97)).

Figure 2.2: A lamina with local and global coordinate sysem

should also be noted that both the distributions have digsweous first derivatives corre-
sponding to each interface. The ZZ and the interlaminaricoity, (IC), of the transverse
stresses are referred to @%-Requirements in_Carrera (1996a, 1997). The fulfillment of
C9-Requirements are crucial to the development of any theaitglsle for the analysis of
multilayered structures. It should also be taken into antthat laminated composites of-
ten exhibit transverse stress concentrations near miadggageometric discontinuities at
the ply level, the free edge effect, that can lead to damaghdrform of delamination
and matrix cracking. At the fiber/matrix level, stress concations can cause fiber/matrix
separation, radial matrix cracking, and other forms of clative damage that degrade the
stiffness of the individual ply, thus causing a complex loadistribution.
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2.3 Strategies for the Development of Plate/Shell Theories

The obvious approach to use to analyse multilayered corngpptates and shells is to
solve directly, in a strong or in a weak sense, the fundarheliffarential equations of

three-dimensional 3D elasticity, that are the equilibriequations, the compatibility equa-
tions, and the physical 'constitutive’ relations or Hoak&w (Reddy, 2004). Whenever
a plate/shell problem is approached using the direct solwf the fundamental differen-
tial equations of three-dimensional 3D elasticity, a 3Dlgsia is obtained. In general,
these solutions cannot be given in strong form for most cabgeometry, laminate lay-

out, boundary and loading conditions (Carrera, 1997). Asmarable body of literature
exists concerning the development of computational tepgres implemented for layered
plates and shell analyses, and among which the Finite Eleletnod (FEM) plays a pre-

dominant role/(Kant and Swaminathan, 2000). The finite efgrimeplementation of the

3D approach requires the use of 3D brick elements. Highlyte, models based on 3D
brick elements are, in general, computationally expensiéch can be prohibitively costly

for practical problems (Reddy and Robbins, 1994). A twoahisional, 2D, model can be
used to obtain a valuable alternative, and two-dimensipla&/shell theories for compos-
ite, multilayered structures can be developed by makingpgmaogriate choice for each of
the following points:

e elimination of the thickness coordinate z: available 2Drapphes.
e choice of the unknown variables: displacement and mixem fibeitions.

e choice of the variables, multilayered form description:ulzglent Single Layer or
Layer-Wise models.

These points are addressed in detail in the following sulmsec

2.3.1 Available 2D Approaches

Composite laminates have planar dimensions that are om®torters of magnitude larger
than their thickness due to how they are constructed, anthdking suitable assumptions
concerning the kinematics of deformation or the stres® stabugh the thickness of the
laminate, it is possible to reduce the 3D problem to a 2-D lerob This reduction trans-
forms a problem which is defined in each pdhatof the 3D continuum body with domain
¥ andx, Y,z defining a system of thriorthogonal coordinates into a prwhivhich is defined
in each poinPq(«, 8) of a reference shell/plate surfa@e usually the middle surface, see
figure[Z.3, witha, 5 and z defining a thriorthogonal curvilinear system. Thisucibn can
in practice be made according to several approaches andidqees that have been pro-
posed over the last century, i.e. continuum based modsisy@stic and axiomatic type
approaches. A detailed overview of these approaches aretbped finite elements is given
in|Carrera|(2002).

In continuum based models, a 3D continuum is seen as a suifasdich correspon-
dence stress resultants are defined making use of the Cossdaae concept (Cosserat and
Cosserat, 1999). The most remarkable advantage of thisagipis that, being based on a
3D continuum, it does not present any difficulties in the fokation of nonlinear theories
in both the case of geometric nonlinear behaviour, largglatements and large rotations,
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Figure 2.3: Geometry and notations used for a multilayerbélls(courtesy of Carrera
(2002)).

and physical nonlinear behaviour, plasticity, viscoétist In the framework of asymptotic
approaches for monocoque structures, the 3D governindieqaare expanded in terms of
a perturbation parametér usually the shell thickness to length ratio, and theoridsted
to the same order ifi are derived. For instance, the expanded equilibrium egstould

appear in the following form:

Ex ~ ELoP1+E25P%+. . +ENGPN (2.1)
wherep;,i = 1,N are the exponents of the perturbation paramét@arreral 2002). The
expansion is usually derived using a certain variatioreteshents (see next section). The
asymptotic approach furnishes 'consistent’ approxinmetim the sense that all the terms
which have the same order of magnitude as the introducedrpation parametes are
retained in a given asymptotic theory, however, the coremeg rate is poor in the case
of moderately thick-thick laminates. Moreover, furtheffidulties arise in multilayered
structures since, in addition & a mechanical layer parameter which takes into account the
anisotropy of composite layers needs to be introduced é&ar2002).

Axiomatic type approaches are the most commonly used appesan composite struc-
ture modeling. Then, the discussion in the rest of this aragitention will be restricted to
these kind of theories. Using an axiomatic type approactinautive’ approximation of
the plate/shell behaviour is introduced but nothing candtaldished as far as the conver-
gence of the model to 3D solutions is concerned. This appration postulates, usually,
a certain displacement and/or stress field in the thicknisstibn of the laminate that in
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Cartesian rectangular coordinates assumes the followimg: f

fxy,2) = fi(xy)F1(2) +... +f\ (% y)Fn(2) (2.2)

wheref is the generic component of the unknown field variaflare introduced unknowns
defined on the reference plate/shell surface, grate the polynomials introduced as base
functions for the expansion along the thickness, and N isntivaber of introduced un-
knowns.

2.3.2 Displacement and Mixed Formulations: Variational Satements

The fundamental differential equations of three-dimemai8D elasticity, equilibrium equa-
tions, compatibility equations and physical constitutiglations, are given in terms of dis-
placements, strains and stresses. Approximated 3D or 2Di@oé of these equations are
usually derived by choosing the unknown variables. Maniati@nal tools, theorems, equa-
tions or principles, have been established in the opemtitee to derive governing equations
of a structural problem consistent to the selected unknawialles|(Carrera, 2002; Reddy,
2002, 2004). The governing equations of a structural prolalee usually obtained by using
the classical, and well knowrRrinciple of Virtual Displacement&VD) (Reddy, 2004).
The PVD approach is a displacement based approach sinomlvés only a compatible
displacement field as a variable and it can be statedf ascontinuous body is in equilib-
rium, the virtual work of all actual forces moving through &twval displacement is zero
that is

U+V=MW=0 (2.3)
wheredU andéV are, respectively, the internal and external virtual woRa@ a solid body,
the principle can be expressed as:

/a:aedﬂ—/ b*-sudQ- [ t*-udr=0 (2.4)
Q Q XQ

oU oV

whereu is the displacement(? is a differential element of volumdy* is the body force
per unit volume a2 is the part ofo2 on which the boundary tractiari is specifiede :=
symnidu) =% : Ou is the strain tensor, withl(-) := [(-)/0x]T, inwhichx := (x,x%,x3) €
RR3 is a material point, an®e - fu := ¢ : Ou, and in which¥ is a fourth-order tensor such
that? : A = %(A +AT) = symnfA) for any second order tensAt ando is the stress tensor.
Itis clear that the virtual work statemeht (2.4) is pregigbe weak form of the equilibrium
equations and is valid for linear and non-linear stressstielations.

The same functional (2.4) can also be obtained usingotheiple of minimum total
potential energy It states thatof all the admissible displacements, those which satigy th
equilibrium equations make the total potential energy aimimi (Reddy, 2002). Then,
the governing equations are obtained by seeking the miniofutre Potential Energy (PE)
functional of a solid body

Tpe(u) ::/Qw(e)dQ—/Qb*-udQ— [ U-udr (2.5)
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wherew(e) is the stored energy function.

If kinematic compatibility is introduced in the function@.5) as a condition of con-
straint through a Lagrange multiplier, which turns out tdtestress field, the Hu-Washizu
(HW) Variational Principle|(Felippa, 1994; Mota and AbeQd®; Washizu, 1982) is ob-
tained from the PVD variational statement as follows:

Mhw (U,€,5) = /QW(E)dSH/

E:(e—z)dg—/b*-udﬂ—/ t.udl  (2.6)
Q Q X0

wheree anda are the independent strain and stress fields. Hence, oniehtthree-field
functional with displacements, strains an stresses aablas. On the other hand, if the
functional [2.5) is modified by the Legendre transform:

/Qw(e)dQ:/QE:edQ—/QWC(E)dQ 2.7)

which introduces the streggas an additional variable, and in whieh (&) is the comple-
mentary stored energy function, the well known two-fieldlldgher-Reissner (HR) princi-
ple (Brezzi and Fortin, 1991; Mota and Abel, 2000; Washi®A82) is obtained:

Mur(U,7) = / edQ- /wc )dQ - /b* we- [ voudr(28)

where displacements and stresses are independent varidthle HW and the HR princi-
ples are referred to as mixed variational principles sihey involve an additional field to
the displacement one in the continuum as a variable. Whenxedwariational principle is
employed to derive the governing equations of a structudlpm, a mixed formulation is
obtained. Since in mixed formulations the secondary fieldeamputed explicitly, one can
think of mixed formulations as an alternative method forosetary-field recovery. Then,
a natural manner to fulfill th€9-Requirements of multilayered composite structures is to
assume both displacements and stresses as unknown varidbecomputational cost in-
volved in using mixed approaches can be prohibitive for fizatproblems. Fulfillment of
the C9-Requirements can also be achieved at a reduced compuatatiost by employing
the partial mixed variational equation proposed by Reis$h@84, 1986), namely Reiss-
ner's Mixed Variational Theorem (RMVT). RMVT can be simphtérpreted as a particular
case of the HW and HR mixed variational principles in whichyotompatibility of the
transverse strains is enforced using Lagrange multiplidrigh, in this case, turn out to
be the transverse stresses. For multilayered structuhgsasat is sufficient to restrict the
mixed assumptions to transverse stresses since only fosstigsses is an independent field
required a priori to completely fulfill th€9-Requirements.

2.3.3 Multilayered Form Description: Classical Equivalen Single Layer
Theories and their Refinements

Equivalent Single Layer (ESL) laminated theories are thiwseéhich a heterogeneous lami-
nate is treated as a statically equivalent single layemfgaeomplex constitutive behaviour,
reducing the 3D continuum problemto a 2D problem. ESL thesoaire developed by assum-
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ing that the displacement field is at le@tcontinuous, i.e. the function and its derivative
are continuous, through the thickness of the laminate. hteSimn rectangular coordinates,
the general form of the assumed displacement field is a lioeabination of unknown
functions and the thickness coordinate

N

i (%Y,2) = ;(z)iwﬁ' (%,y) (2.9)

J:

wherey; is theith component of displacements, y) the in-plane coordinatezthe thick-
ness coordinate, an,qJ are functions to be determined. The governing equation®dn t
dimensions are obtained by integrating the virtual workesteent, usually the PV (2.4),
through the laminate thickness. Classifications and reviemncerning ESL theories for
multilayered composite plates and shells are addresseditn®y (1969)etal. Noor and
Burton {1980] 1990), Jones (1999), Carrera (1999a,/2002ddR and Robbins (1994),
Reddy (2004), and will be briefly summarized below.

The simplest ESL laminated theory is tB&assical Lamination TheorfCLT). The CLT
is an application, to multilayered structures, of the Kiroff-Love theoryl(Noor and Burton,
1990) developed for single-layer isotropic structuresl, am the case of plate geometries,
i.e. Classical Laminated Plate Theory (CLPT), it is basedhenfollowing displacements
assumptions Carrera (2002); Jones (1999); Reddy (2004):

Ui(xy,2) =u(xy)-zua(xy) =12

0

(2.10)
uz(x,Y,2) = Uz(X,y)

where (x,y) are the in-plane coordinates of the refereraegurface, and commas denotes
partial derivatives while apexes 0 denotes displacemenpooents of a point on the refer-
ence surface of the plate, see figurd 2.4. The displacem&h{2idQd) implies that straight
lines normal to the 12-plane before deformation remaingitaand normal to the midsur-
face after deformation. This assumption amounts to negliebbth transverse shear and
transverse normal effects, meaning that deformation isedtiecly to bending and in-plane
stretching. The CLT is intended for use with thin homogemsgaates, however, composite
laminates have relatively low transverse shear stiffressepared to in-plane stiffnesses,
and therefore the neglect of transverse shear deformatemiygles failures due to trans-
verse stresses_(Reddy and Robbins, 1994). Curvatures sgypesr in the case of shell
structures.(Kraus, 1967).

The kinematic of the CLT is extended in tiérst Order Shear Deformation Theory
(FSDT), where a transverse shear deformation is includéd kinematic assumptions. In
the case of plate geometries, the FSDT is based on the folipgisplacement field Carrera
(2002); Jones (1999); Reddy (2004); Whitney (1969):

Ui(%y.2) = Wxy) +z0i(xy) =12

2.11
us (X7 Ys Z) = Ug (Xa y) ( )

whereg¢; denotes the rotation around the in-plane axe orthogonhéteésima direction, as
shown in figuré 2)5. The FSDT can be written in a similar formsioell geometries (Kraus,
1967;INoor and Burton, 1990). Using these kinematic assiomptthe transverse shear
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3.z

3z

Figure 2.5: FSDT assumptions in one-dimensional case fesyrof Carreral(2002)).

strain is assumed to be constant with respect to the thiskeesrdinate. This generates
transverse shear stresses that are also constant. It ikmeoslin from elementary theory
that in composite laminated beams and plates, the traressebesar stresses vary at least
quadratically through layer thickness (Reddy, 2004). Tiserdpancy between the actual
stress states and the predicted constant one is often tatt@g multiplying the transverse
shear force resultants with a parameter K, cadledar correction factqrwhich is difficult

to determine for arbitrary laminated composite structReddy| 2004). It is important to
emphasize that any refinement of the CLT should take intowatd€oiter's recommenda-
tion (Koiter, 1959). Koiter’'s recommendation, formulafedisotropic structures and based
on energy considerations, states that a refinement of ttehéfirLove’s theory, the CLT
in presence of multilayered composite structures, is ireggmmeaningless unless the ef-
fects of transverse shear and normal stresses are simultsligeaken into account. These
recommendation can be fulfilled by including both transeesisear and normal strains in
the FSDT as done in the work lof Hildebrand et al. (1938) whieeedisplacement model is
written as follows:

Ui(X,Y,2) = U(x,y) +28i(X,y)

0

2.12
U3(X, Y, Z) =U3 (Xa y) + Z¢)3 + 22903 ( )



26 2 Theories for Multilayered Anisotropic Composite Stuues

where additional variables with respect to FSDT are intosdiin the transverse displace-
ment expansion. Type of refinements of FSDT such as the dieplant mode[{2.12) are

known as Higher Order Theories (HOT) (Reddy, 2004). In ganédiOT are based on

displacement models of the following type,

Ui(xY,2) = 0(xy) +zur + Zup+... +DNuy, =123 (2.13)

whereN; are the order of the expansions used for the displacemdables. The additional
unknowns in the expansion are often difficult to interpreplitysical terms. In this context,
the third order theory with transverse inextensibility @dgly (2004) is of particular interest.
This theory is based on a displacement field that providedratia variation of transverse
shear strains, and hence stresses, and the disappeartraoseérse shear stresses at the top
and bottom of a general composite laminate. Thus there isead to use shear correction
factors, however, Koiter's recommendation is not takeo gxtcount since the transverse
normal stresses are not refined compared to CLT.

Two-dimensional plate/shell multilayered elements angallg derived by introducing
finite element approximations which correspond to the ezfee surface, as showed in fig-
ure[Z2.6 for a classical two-dimensional quadratic shelinelat. Detailed overviews con-

<

Figure 2.6: Classical two-dimensional quadratic shellraknt: nodes located on the refer-
ence middle surface.

cerning finite elements implementations of the aforemeetbESL theories are given in
the works of Reddyl (2004); Reddy and Robbins (1994), Kant Swedminathan (2000),
and_Carrera (2002). It can be concluded from the aforemesdiovorks that although the
CLT yields finite element models that are economical in teofnithe number of degrees
of freedom used, these models requ@fecontinuity of the transverse displacement, which
complicates the development of conforming elements anBiilsiihe use of these elements
with other commonly used finite elements. In contrast, FEgban the FSDT have the ad-
vantage of requiring onlg® continuity of all primary variables, however, early FSDhigl
type elements showed severe stiffening for thin laminagsch a numerical mechanism,
known as shear locking, can be contrasted using reducedtiselintegration schemes or by
using higher order elements, but sometimes at the experrs¢eodf convergence (Reddy,
2004). Although the reduced/selective integration sofufs the most economical alter-
native among the techniques mentioned above to contraat &eking, the process may
generate hourglass mechanisms from spurious energy mddek van be introduced by
using these sub-integration techniques. The mixed intatipo of tensorial components
technique is usually implemented to alleviate this mectrasi(Carrerz, 2002). Locking
phenomena are even more emphatic in shell finite elementsodiie bending-stretching
coupling of such structures, and membrane locking may docaddition to shear locking
for thin shell structures (Chapelle and Bathe, 2003). Addél difficulties may arise in
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the case of finite rotations in non-linear analyses of shelictures since complex update
algorithms for finite rotations may be required (Vu-Quoc dad, 2003a). A large variety
of plate/shell finite element implementations of HOT aregisoposed in the literature.
A comprehensive discussion of HOT type theories and relééd element suitability is
given in Tessler (1991).

Shell finite elements based on ESL theories can also be gmeblasing the degener-
ated shell concept (Bischoff etlal., 2004; Cairera, 2002Nk4l, 1998). In this concept,
the idea of developing shell finite elements via degenaratieans switching the sequence
of dimensional reduction and discretization. Thus, thetisig point is a finite element
discretization of the three-dimensional continuum. Skiments based on the degener-
ated solid approach are therefore also denoted continiaseebshell elements (Bischoff
et al.,[2004). The continuum based shell element is degekefimm a 3D isoparametric
description element by imposing two-dimensional hypotlsess constraint equations us-
ing Lagrange multiplier. A schematic representation of degeneration procedure from
a 20 node solid element to an 8 node shell element is given umefig.7. Enforcing the

Figure 2.7: Degeneration of a twenty-node brick elemert e eight-node shell element
(McNeal, 1998).

same assumptions made for the FSDT would involve the foligutihree steps: (i), nodes
in the middle plane are removed assuming constant traresgénan, (ii), opposite nodes
are linked by assuming equal displacements and assignimgdiational degrees of free-
dom to each pair of nodes, and (iii), the motion of each dlirtdige is described using five
degrees of freedom in one node, lying in the reference sewrfeloe degeneration approach
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is appealing since it potentially enhances the capalsilitfethe resulting shell elements in
the thick shell range and it offers an alternative way forasipg shell assumptions without
having to discretize the governing shell equations as tittomal shell elements. However,
the degenerated approach needs modifications since it eaars two shortcomings: one,
bending cannot be represented properly because of thengeestartificial normal stresses
in the thickness direction, i.e. thickness locking, and,teamditioning of the corresponding
element stiffness matrices is much worse than in conveatt®mparameter shell elements
due to the extremely high stiffness in the transverse nodinattion (Bischoff et all, 2004).

Finite element models based on ESL theories are often alpeotade a sufficiently
accurate description of the global response of thin to metésrthick laminates, e.g. gross
deflections, critical buckling loads, fundamental vibwatfrequencies and associated mode
shapes. In particular, finite element models based on FSPp&aapto provide the best com-
promise of solution accuracy, solution economy, model §igitp and compatibility with
other displacement finite element models (Reddy and Rohb@%st). However, ESL mod-
els have several limitations that prevent them from beireglus solve the whole spectrum
of composite laminate problems. One, the accuracy of theajl@esponse deteriorates as
the laminate becomes thicker. Two, ESL theories are oftesyiable of accurately describ-
ing the state of stress at the ply level near geometric andnmbtiscontinuities, where a
three dimensional stress state is generally achieved,arragions of intense loading. In
these cases, the transverse stresses calculated usingngtéutive relations can be inac-
curate|(Carrera, 2001 ; Reddy, 2004). The reason of suchunacies is that these theories
are 'kinematically homogeneous’ in the sense that the katens insensitive to individual
layers (Carrera, 2003a). Then, ESL theories lack to fuliti €2-Requirements since ZZ
and IC are notimposed in their theoretical foundationsat been shown that better trans-
verse stresses can be obtained by integrating three-diomah8D equilibrium equations
rather than using Hooke’s law (Jones, 1999; Pagano, 196@ever, this alternative pro-
cedure, which provides reasonably accurate predictiotiteedfansverse stresses for closed
form analytic solutions, in finite element procedures regj@ippropriate strain gradients
evaluations whose recovery from the finite element shapetifums is known to be inferior
compared to the accuracy reached in the displacement fielthyl case the accuracy of the
obtained transverse stress distributions cannot be giem@Carrera, 2002).

An alternative approach to improve the stress field calmnatobtained using ESL theo-
ries is to employ full mixed and partially mixed formulat&rCompared to the displacement
type of finite element formulations, mixed formulations derd less stringent admissible
requirements on continuity and offer the flexibility to dedth a greater variety of problems.
One of the aims of mixed finite elements is to relax formulagithat otherwise would be
overconstrained giving rise to phenomena such as lockieddiR| 2002; Zienkiewicz and
Taylor,12000). Moreover, since the secondary fields are emetpexplicitly, one can think
of mixed formulations as an alternative method for secopdietd recovery or smoothing.
Then, a natural manner to fulfill th&9-Requirements of multilayered composite structures
is to assume both displacements and stresses as unknowhlgari Full mixed methods
have been developed which make use of mixed variationamtaits where all six stress
components and the three displacements are assumed tof@am¥ariables of the struc-
tural problem|(Carrera, 2002; Paganho, 1978). However, tlmepatational cost involved
when using full mixed approaches can be prohibitive for ficatproblems. An interesting
discussion on possible ways to improve of FSDT type modelssiryg mixed and partially
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mixed formulation is given in_Auricchio and Sacco (2001).eTHellinger-Reissner mixed

principle [2.8) is employed in Auricchio and Sacco’s workdawo FSDT type models,

both describing transverse shear stresses as indeperatétiles, were discussed. Au-
ricchio et al. [(2001) have developed mixed finite elementsgminated composite plates
based on Auricchio and Sacco’s work (Auricchio and Sacc12th subsequent work.

2.3.4 Layer-Wise Theories

When a detailed response of individual layers is requireiddtude a highly accurate as-
sessment of the stress state of localized regions, espyéa€isignificant variations in dis-
placements gradients between layers exist as in the casealfdhenomena descriptions,
a possible manner of including the ZZ effect in the framewairfESL models can be ob-
tained by applying CLT, FSDT or HOT at layer level. That iscledayer is seen as an
independent plate and compatibility of displacement comeipts is imposed as a constraint
at each interface. In these cases Layer-Wise, LW, modelslateéned [(Carrera, 2003a;
Reddy,/2004). In contrast to ESL theories, LW theories akeldped by assuming that
the displacement fields exhibits orBf continuity through the laminate thickness. Then,
displacement components are continuous through the laertimakness, but the derivatives
of the displacements with respect to the thickness cootelimay be discontinuous at vari-
ous points through the thickness, thus allowing for the ibdig of continuous transverse
stresses at interfaces separating dissimilar materiath theories are also able to represent
the ZZ behaviour of the displacement fields requiredC8yRequirements by allowing the
displacements to vary in a layerwise manner through théleiss of the laminate.

A detailed overview of available LW theories in the openrhtere is given in_Reddy
(2004). Other relevant examples of these type of theorieshase found in the articles by
Srinivas (1973), who uses CLT in each layer, and by Choletl8B1), who use the HOT
developed by Lo et al. (19/77) where the in-plane and nornsaldcements are, respectively,
approximated by third and second order functions of thektléss coordinate in each layer.
The aforementioned procedures require the inclusion o$tcaimt conditions to enforce
the compatibility conditions at each interface. Carref@0(P has shown that a layer-wise
approach employing a third or four order displacement figddeach layer can provide
accurate displacements and stresses descriptions, bpllia and transverse components,
directly by using Hooke’s law. Generalizations on LW typésheories are given in Nosier
et al. [1998) and in_Reddy (2004) where the displacemenabkes of thek-th layer in the
thickness direction are expressed in terms of Lagrangenpahyjals as follows:

u(x,y,2) = Ll(zk)uik(hk/z) + LZ(Zk)uik(—hk/Z) +La(Z)us + ..+ L (2 ull

(2.14)
i=123 k=1N

where the adopted notation is introduced in fidureé R8s the number of layers, and in-
terface values of the displacements at the top of tlﬂelhyeru:}h/z) and at the bottom of

the kth Iayeruik(_h » are used as unknown variables, thus permitting an easygenf@
applying compatiéiiity conditions at each interface. Tisidbecauséd. 1, L, coincide with
linear Lagrangian polynomials whiles,...Ln should be an independent base of polyno-
mials which start from the paraboli. Reddy extended this theory to the finite element
framework by representing the transverse variation of ibyigl@icement componentsin terms
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Figure 2.8: Notation used for multilayered plates/shetlsyrtesy of Carrera (2002)).

of one-dimensional Lagrangian finite elements (Reddy, PODHis layer-wise field is very
general in that any desired number of layers, distributfdayers and order of interpolation
can be achieved simply by specifying a particular mesh ofdimeensional finite elements
through the thickness.

The aforementioned LW models based on displacement fotiontashow acceptable
accuracy with respect to three-dimensional analyses hesetmodels do not a priori and
completely fulfill theC2-Requirements since transverse stress interlaminamaotytis not
accounted for a priori. Applications of LW models based asptiicement formulations re-
quire a posteriori recovery of transverse stresses. Gaft&06a, 1998, 1999c, 2002) have
developed mixed LW theories for laminated plates analysis priori fulfill the continu-
ity of transverse shear and normal stress components aittiréaice between two adjacent
layers. This was achieved by employing the Reissner Mixedhtianal Theorem (RMVT)
(Reissner, 1984, 1986) to derive the governing equatiokterims of introduced transverse
stress and displacement variables. In Carrera’s thetniesndependent fields are assumed
in the thickness direction, linear, up-to fourth order, floe displacements and transverse
stresses unknowns similar to those used in Reddy’s thegtdl\2ut Legendre polynomi-
als are used as base functions. Legendre polynomials, $igeange polynomials, offer an
easy linkage to impose compatibility of the displacementsegjuilibrium for the transverse
stress components at each layer interface. However, asegpo Lagrange polynomials,
the use of Legendre polynomials permits the thicknesspotation to be spanned by a hi-
erarchical basis, where each additional base functiontimgonal to, or at least linearly
independent of, the previous ones. Standard Lagrange @uiiats are neither hierarchic
nor orthogonal. Thus, increasing the order of interpofatequires a complete new set of
shape functions (Bischoff etlal., 2004). Carrera (1999ask¥y mixed layerwise shell theo-
ries for analyses of multilayered, double curved shellsen@arthotropic laminae in linear
static cases, and he provides a unified compact formulatl&i that can be used to assess
multilayered ESL/LW plate and shell theories based on diggghent and mixed variational
statements (Carreria, 2002). Carrera and Demasi (2002a/b)developed and compared
multilayered plate elements based upon the PVD and the Ri& section 2.3].2 for both
equivalent single-layer, see section 21.3.3, and layee-wisltilayered form descriptions us-
ing Carrera’s UF. In this context, a generalization of Ca'seUF (GUF) has been developed
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for plate theories by Demasi (2008). In Demasi's GUF eachabée, in the most general
case each displacement and each transverse stress, cdejperidently expanded along the
thickness leading to a wide variety of new displacement aixednESL/LW plate theories.
Now, each variable can be expanded in different forms by lsicipanging the order of the
polynomial used in the expansion along the thickness ofahrlate.

Highly accurate models based on a Layer-Wise laminate yteeercomputationally ex-
pensive and sometimes impractical to run, especially inrgetacally nonlinear cases. To
capture the localized 3-D stress fields in a tractable maitigmusually necessary to resort
to Multiple Methodsl|(Noor, 1986), i.e. simultaneous andusgdial multiple methods tech-
niques, in which different subregions of the structure a¥scdbed using different types
of mathematical models based on physical characteristfmslied loading, expected be-
haviour and level of solution accuracy desired. For ingtaheV models are generally used
in regions of a structure where an accurate descriptiorgisired, whereas ESL models are
employed in less critical areas of the structure. The adtoplementation of such a tech-
nique is complicated and cumbersome, due mainly to the reeeshintain displacement
continuity across subregion boundaries separating inetilsip subdomains. Established
methods of achieving displacement continuity betweenrimgatible regions can be found
in the work of Reddy and Robbins (1994).

Compared to 3-D finite element models, layer-wise elemeat® Isome analysis ad-
vantages over the conventional 3-D elements. The layez-f@isnat maintains a 2-D type
data structure similar to finite element models for 2-D EStotties. This provides several
advantages over conventional 3-D finite element models, tbeevolume of the input data
is reduced. Two, the in-plane 2-D mesh and the transversariegh of the discretized
structure can be refined independently without having tomstuct a 3-D finite element
mesh. The 2-D type data structure also allows efficient féatran of the element stiffness
matrices of the structural problem (Reddy, 2004). Howea&-D finite element model is
more general than a layer-wise finite element model: therlagipresents a special case of
the former. This is because a layer-wise model assumeshéatisplacements, material
properties and element geometry of the discretized streictan be approximated by a sum
of separable 3-D interpolation functions, where each 3tBrpolation function can be writ-
ten as the product of an in-plane 2-D interpolation functiod a through the thickness 1-D
interpolation function. However, the modeling capakaktiof the two methods are essen-
tially the same. In this context, a detailed investigationioe similarities and differences
between layer-wise and 3-D finite element models is givendddy (2004).

2.3.5 Zig-Zag Theories

Within both frameworks of the ESL and LW variable descripdhere is a need to try
to develop theories which fulfila priori the C9-Requirements. Due to the form of the
required displacement field in the thickness direction eflédminate, these type of theories
are referred to as Zig-Zag theories. The fundamental idekeweloping Zig-Zag theories
is an assumption that a certain displacement and/or stredslns available for each layer,
and the number of the unknown variables is reduced using abthility and equilibrium
conditions at the interfaces between the layers. For théyla one dimensional flat case
is considered as an example, where a piecewise, continlioear displacement field is
considered, see figure 2.9. The origin of the thickness dpatek is at the bottom surface
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of the laminate. The displacement fieldn each layer of the laminate can be first written
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Figure 2.9: Geometry and notation employed to introduce Zag theories (courtesy of
Carrera (2002)).

using displacement values at the interfaces. For instdocéhe first and last layers one
gets:

Yz) = WP +zyn, 0<z<h
|

2.15
N (Z) = l"INl_l(hN| —1) + (Z_hN|—1)?/JN| 3 hN|—l <z< hN| ( )

u

u
whereN, is the number of layersP anduM are, respectively, the values of the displacement
u at the bottom and top surfaces of the Iaminaﬁéhk) are the interface value of u with

k=1, (N, —1), andyx are the rotations in the layers with= 1, N;. The generic displacement
interface value can be re-written as follows:

N -1
u(h) =+ Y (he=hic)i,  h=1,N (2.16)
k=1

Using compatibility and equilibrium conditions at the irfeees, the displacement u can be
written in a form which is formally not affected by k:

N -1
U2 =+ S (z-2c1)dxH (2= %) (2.17)
k=1

where H is a Heaveside step function defined as follows:

0 z<x

M (2.18)

H(Z_Zk)_{

or
N -1

u@ ="+ Y (z-zc1)ayiH (2~ ) (2.19)
k=1
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since itis possible to express tNerotationsyk of each layer of the laminate in terms of one
of them, for instance the rotation in the bottom laygr by imposing theN, — 1 interlaminar
continuity conditions for the transverse shear stressn fidhich the following relation is
obtained:

Yk =akh, k=2,N-1 (2.20)

whereay are layer constants defined by the interlaminar transvérssses. The complete
procedure retrieving the equatidn (2.19) can be found imeZai2002). The assumed lin-
ear piece-wise form of the displacementeads to layer continuity stiffnesse that are
independent of z. In this case, top-bottom homogeneousittmmslcan not be imposed.
Assuminga¥ as a cubic functions of z, as in the works done by Whitney (196@ Am-
bartsumian|((1969), allows homogeneous transverse shreas stonditions to be imposed
on the top and bottom plate/shell surfaces.

An accurate historical review of Zig-Zag theories for malfered plates and shells is
givenin Carrera (2002, 2003b), where references to compdetews of several approaches,
computational techniques and numerical assessment aneplsrted. The Zig-Zag theories
that have provided the most outstanding contributions t@pglications are summarized
below. The first, and most relevant work, is that of Lekhnit§k935), who has devel-
oped an elegant approach for beam geometries which desdntezlaminar continuous
transverse shear stress and zigzag effects of the dispdeteromponents. Ambartsum-
ian (1962| 1969) further has developed this work and applieriplates and shells struc-
tures. Another pioneering analysis is presented inl Yu (L 9%5Bere zigzag effects of the
in-plane displacement components and transverse cotytofithe shear stress components
in correspondence of each layer interface of a sandwichk plate both fulfilled. Particular
mention should be made of the worklof Ren (1986a,b), who hesndrd the early work
of Lekhnitskii on beam geometries to anisotropic platesl/fnitney (1969), who has ex-
tended Ambartsumian’s theory (Ambartsumian, 1962, 1969nsymmetric cases, this has
been extended to shell geometries by Rath and|Das|(1973) aRdtDas’s theory has been
extended further by Cho and Permerier (1993) who have deséla theory for arbitrary
laminated plates including zigzag effects of the in-plaispldcement components, and
capable of satisfying the continuity of the transverse shass components in correspon-
dence of each layer interface and shear free surface congldi the top/bottom of the plate.
It should be noted that, because of the intrinsic materiaptings between the transverse
normal and in-plane components of the stress field, all thertbs discussed above generate
difficulties in dealing with the extension of the zigzag farto the transverse displacement
component or in accounting for the interlaminar continwityhe transverse normal stress.
As a consequence, all of the related results have shownelefies in analysing problems in
which transverse normal stress plays a determinant rofer asstance in the stress analysis
of thick composite laminates and in areas where a 3-D sttatsgeeds to be determined,
i.e. stresses near holes, cut-outs and traction free edaeeta, 1998).

Procedures formulated using only displacement unknowmsata priori be used to de-
scribe interlaminar equilibrium IC for the transverse sses, meaning thef requirements
cannot be completely fulfilled. Zig-Zag theories employthe RMVT (Reissnel, 1984,
1986) have been developed to fulfill tB& requirements better (Carrara, 2002, 2003b). Mu-
rakami and Toledano (Murakami, 1986; Toledano and Muraka@@87&,b) were the first to
develop a plate theory for specially orthotropic lamingtdates on the basis of RMVT in
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the framework of ESL models. Rao and Meyer-Piening (1990 lextended the Toledano-
Murakami’s theory to the case of generally laminated ortht plates. Rao and Meyer-
Piening’s theory has been used by the same authors to desel@pfinite element for the
analysis of laminated plates composed of arbitrary orgelatgers. Of particular interest is
the work done by Bhaskar and Varadan (1992) and by Jing antgTia®93) who have ex-
tended a particular case of the Toledano and Murakami tygz@ytto cylindrical shells, and
by|Carreral(2002) who has presented a systematic manneingfRMVT to develop ESL
plate and shell theories, including Zig-Zag theories, glaith finite elements for statics
and dynamics and linear and nonlinear problems. In thisestn€Carreral (1996b) has ex-
tended the standard Reissner-Mindlin model to multilagigriate structures in such a way
that, compared to models based on the FSDT {2.11), ZZ eféaxtdC for the transverse
shear stresses were also considered. In Carrera’s workef@at 996b), Murakamy'’s theory
(Murakami, 1986) is employed and multilayered plate finlesents are developed. Later
on,|Brank and Carrera (2000) have extended Carrera’s waké€a/ 1996€b) to shell ge-
ometries, and they implemented an assumed shear straiagtdoeliminate shear locking
mechanisms and to prevent spurious modes which are tydiedteonative sub-integration
techniques. Within the RMVT framework, although in most loé treferences mentioned
above theC?-Requirements have been a priori and completely includeslrésults have
been very poor when it comes to treating arbitrarily lamaxaplate and shell structures
(Carreral 1998).

2.4 Conclusions

An appropriate computational strategy for the analysisaoiable stiffness panels require an
efficient modeling strategy able to detect the local thrimeetisional stress states generated
during the manufacturing process. A strategy can only beldeed if it is fully understood
how conventional composite laminates function. In paticunultilayered plate and shell
structures require appropriate models to handle the coatplil effects arising from their
intrinsic in-plane and out-of-plane anisotropy. Compicheffects, such as high transverse
deformability, zig-zag effects and interlaminar contiguhave been discussed and sum-
marized by the acronyi@9-Requirements. It is necessary to har@erequirements well
to obtain accurate descriptions of the stress and straidsfiel the analysis of multilay-
ered composite structures. Accurate analyses can be parddoy adopting models based
on 3D brick elements, however, three dimensional modeBrgenerally computationally
expensive, thus often too time consuming and costly fortfr@cuse. Two-dimensional,
2D, modeling can be a valuable alternative, and an overviemommon two-dimensional
plate/shell axiomatic theories used for composite, nayléled structures is given above.
Axiomatic theories are developed by making an appropriatéce for which unknown
variables to use for a structural problem, whether to ugdatiement or mixed formulation,
and which multilayer form description to adopt, ESL or LW netdViodels based on ESL
theories are often able to provide a sufficiently accurasedgtion of the global response of
thin to moderately thick plate/shell structures. In patae, finite element models based on
FSDT appear to provide the best compromise to obtain salatiouracy, solution economy,
model simplicity and compatibility with other displacendimite element models. How-
ever, ESL models do not permit the description of zig-zagaff of the displacement fields
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and interlaminar continuity of transverse stresses. Altffioimproved transverse stress dis-
tributions can be obtained by integrating the three-dirmerad 3D equilibrium equations or
by assuming mixed formulations rather than using Hookes ESL models generally lead
to unsatisfactory results in the evaluation of the globapomse of thick plate/shell struc-
tures, and in the evaluation of the state of stress at theepl hear geometric and material
discontinuities.

Complete fulfilment of theC? requirements can be achieved by employing Zig-Zag
theories combined with mixed formulations, but these tlesogive generally inaccurate
results when treating arbitrarily laminated plates andishim this case, the use of a Layer-
Wise description becomes mandatory to obtain an accurateation of the stress fields
in plate/shell composite structures. Within a LW multilesg form description, accurate
transverse stresses can be computed directly from Hooke'sflan adequate expansion
is used in each layer for the displacement components. Cauga 3-D finite element
models, layer-wise elements have some analysis advardagethe conventional 3-D ele-
ments. The layer-wise format maintains a 2-D type data strasimilar to finite element
models of 2-D ESL theories. This provides several advastager conventional 3-D finite
element models. Although a layer-wise finite element modptesents a special case of
a 3-D finite element model, the modeling capabilities of tlve tnethods are essentially
the same. Highly accurate, models based on a Layer-Wise#aentheory are computa-
tionally expensive and sometimes impractical, especialyeometrically nonlinear cases.
Multiple Methods can be employed to capture the localiz€d Sress fields in a tractable
manner. However, the actual implementation of such mettsogisnerally complicated and
cumbersome.






Chapter 3

Stress Recovery Technigues

3.1 Introduction

Beside an appropriate modeling theory, appropriate s@eatyses of variable stiffness
panels also required an appropriate stress recovery proeedn particular, the three-
dimensional stress states arising at regions such as topvaird/or tow-overlaps require
an accurate evaluation of the interlaminar stresses. Anogpiate stress recovery proce-
dure can only be developed if a proper overview and undedstgrof conventional stress
recovery techniques are, respectively, provided and aetlieMoreover, comparisons be-
tween different procedures commonly used to make stressiladibns will give a better
understanding of the appropriate technique to use in tefraersistency and accuracy of
the recovered stress fields, and in terms of computatioftat @éfvolved in using a particular
procedure.

The selection of the best procedure to use to recover aecstrass field measurements
strongly depends on the variational formulation used t@iokthe governing equations of
the structural problem. Although the displacement finitenednt method has generally
been shown to be a very attractive structural analysis ndettias also known to have
certain shortcomings, for instance, its lower accuracypi@dicting strains and stresses
compared to displacements. The reason for this lack of acgwhen predicting stresses
are well understood (Jones, 1999; Reddy, 2004). Since ispatiement based variational
formulation the displacements are assumed as unknowrablesiof the problem, the dis-
placements are imposed to be interelement continuous eabehe stresses are generally
obtained as derivatives of the displacements, resulting iower degree of approxima-
tion. This lack of accuracy leads to an additional shortemmthat displacement based
formulations give a bad approximation of the stresses atsiadhich are generally the most
interesting points for stress recovery. For instance abl@ms involving determination or
estimation of stresses and high stress gradients at thelbouar a bi-material interface of
an object, nodes are the most useful output locations fesss.

Enhancement procedures aimed at making the stress fiehisethusing displacement
models competitive with refined models, such as those basedixed approaches which
do not suffer from the above deficiencies, have been explooedthe beginning by those
working on the finite element method (Zienkiewicz and TeyRH00). A review of com-
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monly used displacement based methods is provided in s¢€gfibwhere the advantages
and shortcomings of these procedures are discussed. Sired finite element formu-
lations give rise to improved methods for stress calcutatgiress recovery expressions
based on hybrid formulations of the Hellinger-Reissned e Hu-Washizu-functional are
derived and compared in sectionl3.3 with commonly usedsstezpvery techniques for dis-
placements models. Stress recovery expressions of erthagbad formulations are also
discussed in this section to compare the different methblos.chapter ends with a number
of conclusions.

3.2 Stress Recovery Techniques for Displacement Based
Finite Elements

Finite element models based on displacement approxinsagienwidely used for structural
analyses, and a common deficiency of these models is thelel@hof accuracy for predict-
ing local quantities in structures such as stresses aridstrampared to displacements. An
obvious and consistent approach to calculating the sseasseilting from a displacement
finite element approximation is to differentiate the finikereent solution directly and evalu-
ate the stresses at points of interest in a structure usingghropriate constitutive relations.
This direct calculation results in lower order, disconting stress measurements with infe-
rior accuracy at the boundary of the elements and at theelet®ent nodes, places where
accurate values are usually desired such as the tow-drofoandverlap regions of tow-
placed layups. This problem has motivated the developnfesitess recovery techniques
aimed at replacing the stress field results deduced dirfothy constitutive equations, re-
ferred to as conventional stress field, with a techniqueithatore accurate for predicting a
stress field. This field is called a recovered stress field.

There are points within an element, for certain classes @éfaglements and interpo-
lation functions, at which the rate of convergence for skssis exceeded by one order
compared to other locations, i.e. Barlow or superconvdrgeimts (Barlow| 1976). Proof
of superconvergence at Gauss-Legendre points for theayraafi the Dirichlet problem ex-
ists for the Serendipity (Zlamal, 1977) and Lagrangian dies/1979) class of elements.
The existence of these optimal sampling points within amel& provides a sound basis for
extrapolation techniques from such points to the boundafi¢he element domain, result-
ing in improved nodal values. In the past, in the case of disoaous stress distributions,
it was handled by assigning the conventional stresses themeispective closest supercon-
vergent points to the common node of the two elements. How#wese superconvergent
point assigned values could be inaccurate in cases whessgradients at the bi-material
interface were high. In the case of continuous stress bligtans, superconvergent point
conventional stress values were assigned to the commonafitile two elements and then
averaged. In this case where the superconvergent poisssteues were averaged, the
distances of the superconvergent points from the nodes eftme not taken into account
resulting in inaccurate estimates of stresses (Chenl e1@96). Later, as an alternative
strategy to that discussed above, conventional leastsgnaoothing was adopted. In this
procedure, discrete conventional stress data obtained firote element superconvergent
points are smoothened and extrapolated to the boundarieg @ement domain. This is
achieved by defining a smooth polynomial from the discreta déstribution. However,



3.2 Stress Recovery Techniques for Displacement Basetd lHiéments 39

Hinton and Irons|(1968) have indicated that such polynosriahd to behave erratically
near areas where stress concentrations occur.

In virtue of the shortcomings of the above procedures, thweational stress field is
now generally evaluated at superconvergent points andheis assumed that, throughout
the element, the stresses of the recovered stressdielan be obtained by interpolation
in the same manner as the displacements are interpolateagtiout the element. The
following equation is used:

o=k k=1,N (3.1)

where@* are the stresses evaluated at superconvergent pbiats, the number of su-
perconvergent points for the stress field within an elememd,’X are theC'-continuous
interpolation functions that have continuous firdlerivatives. This technique can be en-
hanced further by using stress smoothintechnique such as the one proposed by Hinton
(1974), i.e. the local projection method, where an errocfiom is defined as the difference
between the recovered stress field and a smoothed stressTfieldialue of this error func-
tion is minimized, usually by using a least-squares apgrodte underlying assumption
in these kind of methods is that an average of the conventstress field is more accurate
than the conventional stress field itsétress smoothingpay be local, at the element level,
or global: for local smoothing, the smoothed stress fieldthimian element is also given by
(3.T) whereNy now represents the number of nodes for the recovered steésRbllowing
Hinton (1974) the error function can be generalized as:

x=[ e:redQ, e=oc-o=0-9" (3.2)
Qe
whered(2 is a differential element of volume amdare the recovered stresses. The recovery
expression for the smoothed stress field is obtained in th@vimg form by minimizingx
with respect t&r (Mota and Abel, 2000):

F=w.HL.3, H::/ vude, 2= [ vood 3.3)
Qe Qe

where the vector of interpolation functions is introduced. Using this technique, the
smoothed stress field is interelement discontinuous. lineegng practice it is custom-
ary to average the contributions of contiguous element®@ineon nodes in the case of
continuous stress distributions. A continuous smoottsstfield can also be obtained in a
more computationally expensive manner by assembling eaahdX in 3.3) into corre-
sponding global tensors, in a process analogous to the bfsefrthe global stiffness. In
this case, sinc€®- continuous interpolation functions are normally usedstoess recovery,
variations in global stress smoothing include the intrdiduncof a penalty term in the error
function that enforc€!- continuity of the recovered stress field (Riggs et al., J9%#n-
ton and Campbell propose using t#teess smoothintgchnique for linear least square fit of
reduced integrated elements. Chen et al. (1996) extendeprticedure to quadratic least-
square smoothing for both two- and three-dimensional casewing that the quadratic
extrapolation is more effective than the linear extrapotabf reduced integrated elements
for estimating the nodal stress values of composite lama@main equivalent relation tb (3.3)
for the smooth stress field is also obtained by defining arr &urection asl(Mota and Abel,
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2000):
V.= [ (o0-7):(e-€)dQ (3.4)
Qe
where a recovered strain fietd= ¢)“€" is introduced, in which/! are interpolation func-
tions for the recovered strain field related to thaumber of interpolation points, and the
strain-displacement operator is:

u=Nu, e=4"u, £ =9.0N (3.5)

whereN' are the interpolation functions for the displacement fialds the nodal displace-
ment vector? is a fourth-order tensor such thet: A = 3(A +AT) = symnfA) for any
second order tenséx, with 0(-) := [3(-) /0], in whichx := (x!,x?,x%) € R3is a material
point (Mota and Abel, 2000). The stress recovery expred@d) is easily derived with the
additional recovery expression for the strain by minimigih with respect toe ande to
obtain the optimality conditions:

e=U.-HLE E:=] ¥re (3.6)
Qe

The L, global projection methodOden and Brauchll, 1971) is a considerably more
costly process of recovering accurate nodal values. Irpttisedure it is initially assumed
aCy continuous interpolation of the recovered stress fieldealf the same form as that
used for the displacements interpolation, and the nodakgadf the global smoothed stress
field are then determined by a least square fit of the recowaredses. This is achieved
by assuming the interpolation functions for the smoottsstfeelds to be biorthogonal with
respect to the interpolation functions of the displacenfietd of the entire domain. For
example, the_, global projection methodpplied to a single element, thus recovering a
local, interelement discontinuous, stress field, allovesdinains and the recovered stresses
to be assumed in the following form

e=UKeK, o =0t (3.7)

where¥K and®' are the interpolation functions, respectively, for thevantional strains
and recovered stresses field. Since stresses and straimsréareonjugate, the interpolation
functions are also required to satisfy conjugacy in the eséimast

. TRed = (3.8)
which is achieved by defining
= UoHT |-|::/Q vovde v [ ¥ood (3.9)
The recovery expression for stresdes](3.3) is then obtéipattroducing[(3.B) into[(317).
Zienkiewicz and Zhul (199%a,b) made a significant breakihinciowards an efficient

post-processing technique when they proposed the Supengmnt Patch Recovery (SPR)
procedure. In the SPR technique a single and continuouspuolial expansion of the



3.2 Stress Recovery Techniques for Displacement Basetd lHiéments 41

function describing the recovered stresses is used on areetgatch surrounding the nodes
at which recovery is desired. The continuous polynomialaggon is assumed to be of
the same ordep as that used for the displacements over the element patdidevad.
The patch represents a union of elements having in commossemdly node at which
recovery is desired. For the sake of simplicity, typicalcpas for one and two dimensional
elements are shown in figure B.1 dnd|3.2. The polynomial esiparof each recovered

“Element patch
h 1 L

2 Node {Linear) elements
Pa

ey E] e
= T I ——superconvergent

i ST R R I St ARt Value
tlement patch

PR TR BN

3 Node [Quadratic} elements

Figure 3.1: Typical one dimensional element patches shgwie least square fit to sam-
pled superconvergent Gauss point valugssuperconvergent Gauss poinis,
nodal values determined using the recovery proceder®atch assembly point
(Zienkiewicz and Zhu (19924a,b)).

stress component is assumed in the following form:
op=Pa (3.10)

whereP contains the appropriate polynomial terms and a set of unknown parameters.
For instance, for one dimensional elements of ofiers possible to assume:

P=[1x)X%....xP], a=|ai,a,a;,..,apu]" (3.11)

The recovery can be continuous or discrete, although ortlyarliscrete case is the method
known as SPR. The continuous patch recovery technique isianvaf the locallL, pro-
jection method, and hence, of the stress smoothing tecar@gplied on an element patch
Qs = Uj":le, wherem is the number of elements in the patch. Thén,](3.2) (33) a
applied by substitutin)s in place of(2e.

The determination of the unknown parametaiis made by ensuring a least square fit
of the conventional stress field evaluated at superconaements in the case of discrete
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N
4 Node elements Eiemenl'/ 8 Node elements

9 Node elemenfs 12 and 16 Node elements

Figure 3.2: Computation of superconvergent nodal valuedifiear, quadratic and cubic
lagrangian quadrilateral elements2\ superconvergent Gauss poinsnodes
at which stresses are recoverad,Patch assembly point (Zienkiewicz and Zhu
(1992a,b)).

SPR. This is done by minimizing the functional:

Fla) = 3 (om0 -
= (3.12)

n

;(O—h(xiayi) _P(Xiayi)a)z

where(x;,y;) are the coordinates of the superconvergent pointsmkis the total number
of superconvergent points atds the number of superconvergent points on each element
m; (mj = 1,2,...,m) of the element patcfs = U[L; Q;j, see figur&3l1 arid 3.2.

Once the parametessare determined, the stresses are calculated at the nodkstims
patch by the insertion of appropriate coordinates into #pression[(3.10). The procedure
is simply illustrated in figuré-3]1 where one dimensionatéinand quadratic elements are
considered, and the appropriate fit of linear and quadratignomials over an element
patch is indicated. It is clear from the procedure that el@npatches will overlap for
internal midside nodes and nodes in the element interiois Mieans that such recovered
nodal values are frequently evaluated from two patches,fanduch nodes, an average
value is used. A more difficult situation arise at the domaardary where a local patch
may involve only one or two elements, as shown in figuré 3.B8tHfe one element solution
(corner node) the size of the patch is insufficient for theedaination of the parameters



3.2 Stress Recovery Techniques for Displacement Basetd lHiéments 43

a and the corner node values are determined from an intertohp@he standard manner
is usually adopted for two element patches although all thentary nodes values can be
determined using interior patches (Zienkiewicz and Zh®2Eb).

Figure 3.3: Boundary nodal recovery. Element patch&@sSampling points Nodal values
determined using the recovery procedu Patch assembly point (Zienkiewicz
and Zhu|(1992a,b)).

Many investigators have modified the Zienkiewicz and Zhutcpdure by increasing
the functional in such a way that the least square fit is peréakrto include satisfaction of
boundary conditions (Blacker, 1994; Lee et al., 1997; Wibetral., 1994). In particular,
Tessler et al.| (1998) have developed the Smoothing Elemaatysis (SEA) procedure
based on a variational principle which combines the diselesist-squares and penalty-
constraint functionals in a single variational form. Thjspeoach produces smoo@t-
continuous fields from any type of discrete data. Then, rstgaadients can be properly
recovered, and the interlaminar stresses in laminated ositgplate/shell analysis that are
obtained by integrating the gradients of stress (strai@ntjties, as, for instance, when ei-
ther theClassical Lamination Theor§CLT) (2.10) or theFirst Shear Deformation Theory
(FSDT) [2.11) is adopted as the modeling theory, are readitgputed.

Later, other viable alternatives to SPR have been considédae of these is the Re-
covery by Equilibrium in Patches (REP) procedure, comparabperformance to SPR
but taking into account a more simple and feasible impleat@nt (Boroomand, 199//a,b).
The REP method is based on recovering stresses by impogiiigpegm in a weak form
over patches of elements. The resultant equations arenebtaly projecting the error be-
tween new and original stresses into the finite elementsspace over the patch and are
solved using a least-squares scheme. There is also the &gaf\stresses by Compatibil-
ity in Patches (RCP) procedure presented by Ubetrtini (2004 basic idea of RCP lies
in observing that the finite element solution of displacettmsed models is obtained by
imposing the equilibrium equations in a weak form among ao$éinematically admis-
sible displacements. Thus, compatibility is always ensguvhile equilibrium is generally
not. Then, RCP consists of recovering equilibrated stretdsfiover each patch by relaxing
compatibility, that is by imposing compatibility in a weasrfn. To this purpose, the patch
is considered to be a separate system on which finite elensadements are prescribed
along the boundaries. Stresses are then recovered by mingnihe complementary energy
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functional associated with such a separate patch systeen,aoset of stress fields which
satisfy a priori interior equilibrium within the patch. Thesultant equations are obtained
by projecting the error between the finite element compasiiain and the strain coming
from the equilibrated stresses into the new stress spacettew@atch. The RCP method
can be viewed as dual to REP but, compared to REP, it gives awoteate and effective re-
sults especially in the case of arbitrarily generated meshé presence of severe element
distortions. Ubertini concluded that RCP is competitivéhwthe popular SPR procedure.

One desirable feature of all the aforementioned methodsaisthey can be applicable
regardless of the governing constitutive behaviour, h@reahese recovery procedures de-
pend crucially on the consistency of the conventional stfietd evaluated within elements.
In addition to the poor accuracy of stress measurementg @tirelement boundaries and
the consequent need for enhanced nodal stress recovemsdpires, stress fields deduced
directly using constitutive relations can show spuriousilizgions due to the retention of
higher order (inconsistent) terms which do not contribotéhie determination of the dis-
placements and then the strains, but get reflected as eatrastress oscillations (Prathap
and Naganarayana, 1990, 1995). These oscillations haveftyed in problems involving
prescribed initial stresses or strains, or varying rigédiover the element domain (De Mi-
randa and Ubertini,_ 2002). For instance, in thermoelastadyses, compatible finite ele-
ments may predict oscillating stresses if the temperatistelalition is not coherent with
the element strain coming from the assumed displacemembxipgation. The problem
of generating spurious stress oscillations can be furtkecerbated due to element geom-
etry distortions in parametric formulations (De Mirandalddbertini, | 2001). This local
erratic behaviour of the conventional stress distribugienerally implies that superconver-
gent points are no longer points for optimal stress recosige the spurious stress oscilla-
tions do not generally vanish at these points. Then, thelatarstress recovery procedures
presented above could be not suitable for eliminating theisps outcomes due to the lack
of consistency of the recovered stresses. Prathap and Biayama (1990, 1995) have out-
lined the origin of such unreliable responses and introdtite notion of consistency within
stress fields evaluations.

In order to recover consistent stress fields within elemethtsr approaches to the con-
ventional stress recovery have been proposed, and carissstess distributions can be
obtained in a variationally correct manner by employinedgmnated procedures (Argyris and
Willam, 1974 Dakshina Moorthy and Reddy, 1999). In thisteaty De Miranda and Uber-
tini (2002) have proposed an integrated procedure definekbatent level, where Prathap
and Naganarayana’s notion of consistency (Prathap andridaayans, 1990, 1995) is for-
malized in a condition involving each stress componentdeiealt with independently.
This procedure is developed within a general weighted vesidpproach, and a systematic
and effective procedure for recovering consistent stregsalilitions has been established.
It should be remarked that variationally consistent stressvery procedures are not an al-
ternative for stress recovery but complementary to thedstahstress recovery procedures
presented above. In this respect, the consistent stresbulimn should be reconstituted
first and subsequently used for a reliable recovery of a shmstogss field.

Numerous approaches have been proposed as a means to abtaiate analyses of
laminated composite structures. Assessments of the wapproaches can be found in
(Kant and Swaminathan, 2000; Noor and Malik, 2000; ReddyRaiobins| 1994) and the
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references contained therein. Economical finite elememtetscas such adopting plate or
shell elements based on either first-order or higher-ofuegisdeformation theories are of-
ten combined for geometrically linear composite structuvigh post-processing procedures
incorporating the through-the thickness integration @& three dimensional equilibrium
equations performed using consistent in-plane stresseglatgons based on superconver-
gent recovery. This procedure, which is not entirely cdesiswith the assumptions of the
multilayer description form, provides improved stresdribsitions in the analysis of both
thin and moderately thick structures. However, to evalaaturate transverse shear and
normal stresses these procedures require an accuratativalof in-plane strain gradients
with respect to the in-plane coordinates, the recovery a€lvfrom the finite element shape
functions is known to be inferior. In this context, it is wlernentioning the stress recovery
procedures of (i) Tessler et al. (1998) based on the SmapHEiement Analysis (SEA) pre-
viously presented in the context of superconvergent stexss/ery procedures on patches
of elements, and (ii) the two-phase predictor-correctatpmcessing (PCP) scheme based
on theFirst Shear Deformation Theoi2.11) used by Noor et al. (1994) and Park and|Kim
(1999) for geometrically linear composite structures ursdiatic loads.

Within the PCP procedure, accurate transverse shearedrasspredicted using thickness-
wise integration of the equilibrium equations performeithgsn-plane stresses obtained by
the SPR technique proposed by Zienkiewicz and Zhu (1992=@g.atcuracy of transverse
normal stresses, displacements, and in-plane stressesbamced during the corrector
phase by using the results from the finite element analysisttaa predictor phase. This
procedure has been enhanced further by Park and Kim [(2008)ivdorporated a mesh
superposition technique for the local mesh refinement irirtkane directions in the re-
gion where the evaluation of the stresses is needed. Sw#esgary can not be conducted
via direct integration of the equilibrium equations for gestrically nonlinear cases. Ac-
cordingly, non-linear predictor-corrector approachegcWiaccurately computes transverse
stresses for composite and sandwich panels undergoingaggcatly non-linear deforma-
tions were introduced by Park and Kim (2003) and Lee and |Leeip

Procedures adopting economical finite elements combinddpeist-processing proce-
dures incorporating the through-the-thickness integradif the three-dimensional equilib-
rium equations have considerable economical merits comapiar full three dimensional
finite element analyses or two-dimensional finite elemeatyaes using Layer-Wise multi-
layer form descriptions. These procedures are widely ugezhwhe main emphasis of the
analysis is to determine the global response, i.e. grossdfiefhs, critical buckling loads,
fundamental vibrations frequencies, of thin to moderatbigk structures, as for instance
secondary structural components. However, when the erigpbfatie analysis is the study
of failure and failure modes or the modeling of delaminatietween layers of primary crit-
ical structural components these methods are, in genaealcurate (Reddy, 2004): most
primary structural components are considerably thicken ttecondary components. Then,
the assumption that a heterogeneous laminate is treatestatcally equivalent single layer
would not be able to satisfy properly t@¥ requirements of multilayered composite struc-
tures, addressed in sectionl2.2, leading to inaccuratemssp even in the evaluation of the
global response. Moreover, the assessment of localizédn®of potential damage initi-
ation begins with an accurate determination of the threeedsional state of stress at the
ply level. Laminated composites often exhibit interlammiettess failure due to transverse
stress concentrations near geometric and material discitess, i.e. free edges, cut-outs,
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leading to damage in the form of delamination. This also raélaat accurate evaluations of
transverse stresses are specially required at the imeeaknodes as opposed to supercon
vergent points. Then, the analysis of primary compositecttiral components generally
require the use of either a Layer-Wise laminate theory tbatains full 3-D kinematics
and constitutive relations, or 3-D elasticity theory. Movrer, Laye-Wise and 3-D elasticity
theories can model the kinematics of delamination.

In the context of studying delamination in multilayered qmsites, the interlaminar
stress recovery procedure developed by Dakshina MoortthRaxddy (1999) for 3-D finite
element formulations becomes important. In their apprpeabh ply is modelled as a sep-
arate body and the interlaminar boundary is treated as actosrface. The interlaminar
forces are obtained using an interface model based on tratpenethod. The interlami-
nar stresses are recovered using these contact loads. cdweng procedure partitions the
contact surface into a set of non-overlapping patches sporaling to groups of elements.
The traction distribution is interpolated over each patchierms of nodal values. Static
equivalence between the tractions and the contact foresebto calculate the nodal value
of the tractions, hence the interlaminar stresses. Theepoe was found in practice to
lead to oscillatory interlaminar stresses. Thus, a fing) &€o apply a smoothing tech-
nique to obtain more physically meaningful interlaminaesses. This procedure provides
transverse stress values directly at nodes without relyimgxtrapolation techniques from
superconvergent points, thus leading to faster conveggemhis suggests that transverse
stresses obtained from interlaminar forces using statievatgnce can represent a valuable
method to recover accurate interlaminar stress distohstivithout requiring demanding
computational resources.

3.3 Mixed Formulations as Stress Recovery Techniques

Compared to displacement type of finite element formulatiomnixed formulations demand
less stringent admissible requirements on continuity affiek dlexibility to deal with a
greater variety of problems. One of the aims of mixed finienents is to relax formu-
lations that otherwise would be overconstrained, givisg tbo phenomena such as locking.
This is achieved by assuming the independence of one or rmcoadary fields, e.g. stresses
or strains or both, with respect to the displacement fieldenTimixed formulations com-
pute the displacement field and the secondary fields fromrite 8lement solution. Since
the secondary fields are computed explicitly, one can thinkiged formulations as an
alternative method for secondary-field recovery or smagthi

3.3.1 Hellinger-Reissner Functional

Mixed finite element equations can be established using ginger-Reissner (HR) func-
tional:

Thr(U,5) ::/

Q

as presented in sectidn (2.8.2), where only the stfasintroduced as an additional variable
to the displacement. The optimality conditions for the HR functional are ob&dihusing

& ed - /Q We(@)dQ + TTew(U) (3.13)
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the following two conditions:

DIIRr(U,T) - 0u = / 7 : 9edQ +DIlexi(u) - 0u=0
« (3.14)

N e _ owe .
DIlpr(u, o) :50:/ e:6adQ—/ Me . sed = 0
Q o 0o

wheredu andda are, respectively, variations in the displacement andsfields. A finite-
dimensional discretization for both the displacement areks tensor fields in the element
domain is introduced as:

su=N'su', u=Nu’ (3.15)
oo = UKsgX, T =ulst '
wherel,J € {1,...,Ny} andK,L € {1,...,N, }, with N, andN,, the number of interpolation
points for, respectively, the displacement and the stress\iithin an elemenfe, N' and
N are the interpolation functions for the displacement fi#li and¥'" are the interpolation
functions for the stress field. Using this discretizatidw, discrete form at the element level
of the variational statemerni(3]14) is obtained as:

R (u) ::/ E:%'dQ—/ N'bd2- [ N'tdT =0

e e He (3.16)

RK@):= [ ¥K(e-€)dQ=0
Qe

whereR), and RK, the residual forces, are zero for an equilibrium configarate :=
OW; / 97, ande is the strain-displacement operatior {3.5). Within the ernbf Newton-
Kantorowitch type numerical solution procedures, the digcvariational statemernii (3]16)
needs to be linearized with respect to an increment in betdigplacement and stress fields
as:

DRL(u): Ao = 7" : At
DRK(7)- Au= 7] - Au’ (3.17)
DRX(7): Az = 7KL : AGt

where the nodal stiffness contributions are:

(Hg)" = Hyr = |V A'dQ
e (3.18)
H XL =— [ wkutgdo
Qe

in which & := 9?w./9a2 is the compliance tensor.

A mixed formulation offers several possibilities as fartas treatment of stress variables
is concerned: (i) stress variables can be retained andmix#ld implementation is then ob-
tained. Thus, a post-processing recovery procedure issnoined since stresses are deter-
mined apriori and stress continuity between adjacent elements is geacudirectly. The
shortcoming is represented by the great added burden ahgalve governing equations
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simultaneously for both stress and displacement degre&eedom; (ii) stress variables
can be expressed in terms of the displacement ones, i.statie condensation technique
(Zienkiewicz and Taylor, 2000), thus reducing the compatet! cost involved. Formula-
tions that involve a multi-variable variational princigdat the resulting matrix equations at
global level consist only of the nodal displacement valuesigknowns are referred to as
hybrid formulations. From the numerous possibilities to dehybrid stress (HS) elements,
in the context of this thesis HS refer to the version basecherHR functional. If the HS
formulation is adopted, the independent stress tensoeatldment level can be retrieved
using the following relation (Mota and Abel, 2000):

AE:\I:-H'l-/ U © Aed)) (3.19)
0e
where the vector of interpolation functiofisis introduced, and with

H o= / U © & wdQ (3.20)
Qe

Mixed finite element equations can also be established tisenBeissner’s Mixed Vari-
ational Theorem (RMVT) (Reissner, 1984, 1086) which allons to assume two indepen-
dent fields for displacements and the transverse stressblesionly. Carrera and Demasi
(2002&,b) have developed and compared multilayered plateceits based upon tirrin-
ciple of Virtual Displacement®VD), see the relatiof (2.4), and the RMVT for both equiv-
alent single-layer (see sectipn 213.3) and layer-wise ¢sedon 2.34) multilayered form
descriptions. The authors found RMVT formulated finite edets superior to those re-
lated to PVD in fulfilling theC? requirements of multilayer composite structures, adess
in sectio 2.2/ Carrera (2000) has also compared differeysvef computing transverse
stresses, that is, stresses from an assumed nmegeibri, were compared to those calcu-
lateda posteriorj i.e. from Hooke’s law and by integration of three-dimemsibindefinite
equilibrium equations. In further research, an intergséinalysis concerning the treatment
of stress variables within the RMVT formulation is addrekbg Demasil(2006). In partic-
ular, stress fields obtained using a full RMVT formulatioml@mhybrid formulation based
on thestatic condensation techniqaee compared. In addition to the classistdtic con-
densation techniqy&n hybrid formulation based on the RMVT can also be obtairsiog
the Weak Form of Hooke’s Law (WFHL) proposediby Carrera (¥99%he WFHL, which
was completely inspired by RMVT, permits one to express, imeak sense, transverse
stress variables in terms of the displacement variables.

3.3.2 Hu-Washizu Functional
The mixed Hu-Washizu (HW) functional as presented in sadfi3.2)
Mhw (U,&,5) = / W(E)dQ + / & (e-€)dQ+TTex(U) (3.21)
Q Q

can also be employed for deriving mixed finite element eguatiwhere the stregs and
the straine are introduced as an additional variable to the displacémelm this case, the



3.3 Mixed Formulations as Stress Recovery Techniques 49

optimality conditions are:
DIThw (U,€,7) - du = / 7 :De-6udQ +DIley(u) - 6u=0
Q

DIy (U,€,7) :5@:/(0—5)  5edQ = 0 (3.22)
Q

DIThw (U,&,5) : 65 = / (e-€): 65d2 =0
Q

whereo := 0w/J€, anddu, d&, andde are, respectively, variations in the displacement,
stress, and strain fields. Assuming a finite-dimensionarefiation of the displacement
and stress fields as (3]15), and the following one for thénstield:

de=wKoek, €= wle, (3.23)

the discrete form of the variational statemént (8.22) is now

RL(u)::/ 5:%7'(19—/ N'bd2- [ N'tdr =0

Qe Qe Ot Qe

RK(@) := [ X(e-7)d2=0 (3.24)
Qe

RK@):= | TK(e-e)d2=0
Qe

The linearization of the discrete variational stateme4Bwith respect to increments of
the displacement, stress and strain gives:
DR.(u): AT = %] : AG-
DRK(@)-Au=7K)-Au’, DRK(@):Ae=7K": A& (3.25)
DRK(e): Ae= 7K. A", DRK(e): A7 =Kt AGH

with all the other contributions being zero, and in which tiuelal stiffness contributions
are:

()" = Hyy = | W-#'dQ
Qe
(Al =A== | TEUEFAD (3.26)
XK= [ vfutedo
Qe

An hybrid formulation based on the HW functional is obtaileabsing thestatic con-
densationtechnique. In this case, the independent tensor fields ateglelevel can be
written as:

e=¢.H'E #=0.Hl3® (3.27)

where

H:=/ ¥dQ, E:= IRed X:.= ¥ ®od2 (3.28)
Qe Qe Qe
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which shows that the recovery expressions for the strainstneds fields are independent
from the constitutive relations, in contrast with the séréeld obtained using the HS for-
mulation which involves the compliance tendor (3.19). Thisans that the HW functional
may be applied for any constitutive relationship that adraistored energy function.

The relationship between the stresses recovered usingugarmplementations of the
HW formulation and some of the stress recovery techniguesgmted in sectidn 3.2 is elu-
cidated by Mota and Abel (2000) using the concept of prapectiperators. At the local
level, the stress recovery expressions for the HW formutattress smoothindy, projec-
tion are equivalent. Identical stresses are obtained ohgmvhe derivatives of displacement
interpolation functions can be represented exactly bytilessand strain interpolation func-
tions selected for the HW formulation. At global level, teeovery expressions for the HW
formulation, stress smoothing, ahg projection are also equivalent. The SPR expression is
a discrete analogue of the recovery expressions for the Hiviflation. At the global level
and at the patch level, although these methods share an@lggyess recovery expressions,
the recovered stress fields are different since the stgtweare not equivalent. This sug-
gests that the HW formulation with stiffnesses not equivaleith respect to the classical
formulation and with appropriate choices of the secondafgdiinterpolation may present
the opportunity for still more accurate stress and strasthsutations to be made.

3.3.3 Enhanced Assumed Strain Method

Simo and Rifai [(1990) have presented a class of mixed assstnaid methods, called
the Enhanced Assumed Strain (EAS) method, which allows yetematic development
of low order elements with enhanced accuracy for coarse @seshhe EAS method was
originally classified as a hybrid formulation based uponHivé functional, although due to
the structure of the variational problem and its relatedhelet matrices, classification as a
modified displacement model is more appropriate. WithinBAS three-field mixed finite
element framework, the classical method of incompatitdeldicement modes proposed by
Taylor et al. (1976), who also conceived this idea with theppge to develop low order
elements with enhanced performance in coarse meshesais@ifs a special case of the
EAS method. The key point of the EAS method lies in the straild fihat is composed of
the compatible strain fielé®, expressed in relation (3.5), and the enhanced straindfeld

e=%A u+¢e (3.29)

Y

Including the strain field(3.29) in the HW functionB[ (3l 2fiyes the following functional:
Teag(U,E,7) = / W(ES(U) +€%)d0 - / & €°d0 + ey (U) (3.30)
Q Q

In order to reduce the computational cost, Simo and |Rifs®()®ave proposed eliminating
the stresses from the variational formulation by choodirgenhanced strain fiekf to be
orthogonal to the stress fiett

/ & e =0 (3.31)
Q
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Then, the number of independent variables in the functiigakis reduced to two, respec-
tively, the displacement and the enhanced straéfi. For a typical element, the displace-
ment and the enhanced strain field are approximated as:

u= NUe, Ee = Gae (332)

whereN is the matrix containing the standard isoparametric shapetions e is the vector

of the nodal displacement§, an interpolation matrix containing the enhanced modes, and
ae the vector of internal strain parameters. The strain pararseare local for each indi-
vidual element and can be eliminated at the element level the final algebraic equations
using astatic condensation techniquelence, due to the structure of the variational prob-
lem and its related element matrices, the EAS formulationlmaclassified as a modified
displacement model.

It is interesting to note that not all types of elements caetieanced by using assumed
strains or incompatible modes. Reddy and Simo (1995) hamerskthat enhancement pro-
cedures do not work for triangles. Thus only quadrilatecals be enhanced. For obvious
reasons, the question arises whether a similar relatiomdset EAS- and HS-models can
be found. An important relation between the HW principle émelHR principle has been
established by Stolarsky and Belytschko (1987), i.e. ttst liimit principle, which states
that the HW principle is equivalent to the HR principle if arclusion relation between
the spaces of the stresses and the strains is satisfied. \Wa@&hetment Jacobian is con-
stant, this principle can explain the equivalence betwbherEAS- and the HS-method, but
the equivalence is not justified when the element Jacobiamtisonstant. Andelfinger
and Ramm|(1993) proposed equivalence between some EAS- @ralerhents, but this
equivalence was proved only by inspection of the numerg&sllts and was generalized for
linear elastic problems. However, they could not baseddhisivalence on a theoretical
foundation. While in the work of Andelfinger and Ramm only #wivalence of stiffness
matrices is considered, Yeo and L ee (1996) have also caesidbe equivalence of the
stresses with a more rigorous theoretical foundation. Fmmstant element Jacobian, Yeo
and Lee concluded that the EAS- and the HS-method are egnivalhis means that, in
addition to displacements, the consistent stresses ofAlsedtements are identical to those
of the corresponding HS-elements at every point of the ei¢rpeovided that the following
orthogonality condition(3.33) and inclusion condition33) are satisfied:

E7NES=0 (3.33)

ETHEC E° (3.34)

where&® is the compatible strain space derived from the admissisf@atement fieldg®

is the space of admissible enhanced strain, &fids the stress-driven strain space asso-
ciated with the admissible stress field. Thus, éxact equivalencis constructed. If the
element Jacobian is not constantyeak equivalencketween the EAS- and the HS method
is achieved, thatis the displacements of the two methoddanéical redundant and the con-
sistent stresses are identical only at integration poirt¢iged that the orthogonality condi-
tion (3.33) and an additional condition of invertibility tife admissible enhanced strain and
stress-driven strain tensors are satisfied. Using a diffexencept, Bischoff et all (1999)
have confirmed the conclusions drawn by Yeo and Lee althchgybquivalence conditions
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are expressed in terms of stresses instead of strains. Bas#ekse stress conditions of
equivalence, Bischoff et al. (1999) were able to derivd friactions for equivalent EAS-
and HS-elements in a straightforward manner, and a clasgudfadent elements could be
defined with polynomials of arbitrary order. The conditi@igquivalence need to be com-
bined with other conditions for convergence and stabilitthe EAS-method, this is well
described in Simo and Rifei (1990).

In the EAS-method, the stresses are introduced as primdepandent field in the be-
ginning. However, the stresses cannot be retrieved djregtlsolving the system of gov-
erning equations since the stresses are eliminated frorfotheulation. Although stress
recovery via the constitutive relation is simple, the stessof the EAS-elements based on
the strains are inaccurate since, in general, they are miattiegally consistent (Yeo and
Lee,1996). Thus, it is necessary to devise a stress recpvecgdure that is variationally
consistent and efficient. From the procedure outlined alitoigeclear that the EAS for-
mulation can be classified as a modified displacement modhen,Tall the stress recovery
procedures derived and conclusions drawn in se€fidn 3.3lscevalid for stress recovery
of EAS finite element models. For instance, Simo and RifaB(@%have proposed a least-
squares type stress recovery procedure for the infinitégheary, similar to[(3.4), based
on the minimization of the following error function:

L(e,e®) = /Q - C(e+e)|T : [€° - (€ +€°)]d (3.35)

whereC is the elasticity tensor. Based on the enhanced assumed-Gaggangian strains,
the recovery procedure proposed by Simo and Rifai has beéended to the geometrically
non-linear case hy Klinkel and Wagher (1997). If equivakebetween the EAS and the HS
method is achieved, this equivalence can be exploited teldpwstress recovery procedures
in which features known from one of both methods can be tearesl directly to the other
one, at least in the geometrically linear case. For instaocee the nodal displacements
are known, a sound stress recovery procedure for EAS-eksman be taken directly from
the corresponding HS element (Andelfinger and Ramm, 1998 procedures of Simo
and Rifai, Klinkel and Wagner and Andelfinger and Ramm regjtime-consuming matrix
inversion operations. In this context, the equivalencesbenh the EAS and the HS method
has also been exploited by Yeo andilLiee (1996) where a conymady efficient calculation
of the stresses for EAS formulations not involving matrixdrsion operations is derived.

In order to further improve the basic idea of Simo and Rifaieirms of range of appli-
cability and numerical efficiency of enhanced strain eletsiemany different formulations
have been developed over the past years in both the lineale{fsimer and Ramim, 1993;
Wriggers and Korelc, 1996) and the non-linear cases (Kliakd Waanet, 1997; Simo and
Armero,1992; Slavkovic et al., 1994; Vu-Quoc and Tan, 20iBdrom these papers, it can
be concluded that EAS formulation present, in general,reévemarkable properties. For
instance, these elements do not involve any reduced ortisel@ategration techniques to
avoid locking phenomena. This means that rank deficienagjitg to the presence of zero
energy modes in excess of the three rigid body motions, ivedlassing, does not occur.
Moreover, good performances are generally obtained inihgrabminated situations and
in the case of incompressibility. Comparisons to other eleniormulations show a very
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good coarse mesh accuracy and distortion insensitivitpgntees. It is generally accepted
that an important number of enhanced modes is usually redjtir have an element free
of locking, especially in three dimensional analysis. Thhe EAS formulation can be-

come extremely inefficient. In this context, Vu-Quoc and 12003&.b) have developed a
non-linear eight node solid-shell element based on an @btombination of the Assumed

Natural Strain (ANS) method (Bathe and Dvorkin, 1985; MaaN&978; Simo and Hughes,

1986), and the minimal number of EAS parameters requiredss poth the membrane and
the bending patch test. This formulation resulted in sey#iml EAS parameters making
the procedure numerically efficient.

3.4 Conclusions

One common deficiency of the displacement finite element atetioncerns the lower ac-
curacy in predicting stresses and strains compared toagispients. This lack of accu-
racy directly affects structural design and failure prédits. A review of customary en-
hancement procedures aimed at replacing the consisteas teld by a more accurate one
was presented in this chapter. These procedures are dgplregardless of the governing
constitutive behaviour but depend crucially on the comrsisy of the stress field initially
evaluated at superconvergent points within elements.ofitjh recovery of stress data via
the constitutive relation is relatively simple and wideljopted to compute the consistent
stress field, this method may lead to the generation of spsirigcillations due to a lack
of consistency. Other techniques were reviewed and a densistress field free of spu-
rious oscillations can be obtained using integrated proesd Economical finite element
models as such adopting plate or shell elements based @m &i8t-order or higher-order
shear deformation theories are often combined with pastgssing procedures incorpo-
rating the through-the thickness integration of the thageensional equilibrium equations
performed using consistent in-plane stresses based orcemgergent recovery. However,
when the emphasis of the analysis is the assessment ofZedatgions of potential dam-
age initiation, this class of methods results to be inadewsimce an accurate determination
of the three-dimensional state of stress at the ply levaddgiired. In this case it becomes
necessary to use either a Layer-Wise laminate theory tmaices full 3-D kinematics and
constitutive relations or 3-D elasticity theory.

Some of the stress recovery expressions obtained usingetemed customary en-
hancement procedures have been compared with stress ngegpeessions obtained using
more refined methods, such as mixed/hybrid formulationsdas the Hellinger-Reissner
(HR)- and the Hu-Washizu (HW)-functional. The hybrid-HWfaulation leads to stress
recovery expressions that do not involve the complianceaenn contrast with the HS
formulation where the compliance tensor is involved. Thisams that the HW functional
may be applied for any constitutive relationship that adraistored energy function, thus
allowing for a direct analogy to stress recovery technigpfeisplacement models. Various
implementations of the HW formulation give rise to stressokery expressions analogous
to customary stress recovery techniques of displacemedelsobut in most of the cases
the stiffnesses obtained are not equivalent. This suggéséd the HW formulation with
stiffnesses that are not equivalent to the stiffnessesraataising displacement formula-
tions, and with an appropriate choice of the secondary fialgspolation, may present the
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opportunity for still more accurate stress calculations.

An enhancement of the HW formulation is obtained by adopngEnhanced As-
sumed Strain (EAS) formulation: EAS-elements do not gdlyepsiesent any rank defi-
ciency, perform well in bending situations, and show a veygdjcoarse mesh accuracy
and distortion insensitivity properties compared to otlement formulations. Moreover,
EAS-Lagrangian elements can provide, in addition to edeitalisplacements, consistent
stresses that aexactly equivalentin the case of a constant element Jacobiamnweakly
equivalentin the case of non-constant element Jacobian, to thosedi$hcounterparts.
This is achievable if certain conditions between the enbd@ssumed strain and assumed
stress fields are satisfied. The EAS-elements are also préfer HS-elements for non-
linear analysis since EAS-elements do not involve invemestitutive relations which are
generally not available. Using a combination of the EAS- alS-method, procedures
based on EAS formulations can also be made numerically esfticiompared to displace-
ment finite element formulations.



Chapter 4

A Finite Element Procedure for
Interlaminar Stress Analyses

4.1 Introduction

The prevention of failure in composite material laminaeguires an accurate and reliable
procedure for the recovery of stress fields generated irorespto operational loads and
boundary conditions that are applied to such structurempgosites are prone to delamina-
tion when subjected to high interlaminar stresses. Comynamte the interlaminar stress
fields are evaluated, the location of cracks and their forugually assumed in advance in
most theoretical studies on the characterization of delatign onset and growth in com-
posite laminates (Coutellier etlal., 2006; O'Brien, 1982) particular, a variable stiffness
panel has, by definition, a nonuniform in-plane stiffnesstrdiution that might result in
large in-plane stress gradients (Lopes, 2009). Such gredientribute to the amplification
of the interlaminar stresses, as demonstrated in Saegér(@082), and possibly to ren-
der delamination the dominant failure mode in these cordioms. Furthermore, variable
stiffness panels have manufacturing characteristicd) ssccourse edges, tow-drops and
overlaps, as described in section]1.4, which may act asmliscites and stress concentra-
tion zones that locally excite the interlaminar stressethér. This supports the need for an
appropriate method that can be used to evaluate interlastiresses, and it will be crucial
for accurate prediction of failure mechanisms in compdaitgnates.

Customary finite element models, such as the ones adoptatg pt shell elements
based on either first-order or higher-order shear defoondkieories, are often combined
with post-processing procedures incorporating throughthickness integration of the 3D
equilibrium equations. However, this class of methods gjivaccurate results when the
emphasis of the analysis is the assessment of localizedn®gf potential damage initia-
tion. This is because an accurate determination of the 3B efestress at the ply level is
required. Then, it becomes necessary to use either a Laigr{dminate theory that con-
tains full 3D kinematics and constitutive relations or 3R@sticity theory, as explained in
detail in chaptel2.

Customary stress recovery procedures are able to genetatele interlaminar stress

55



56 4 A Finite Element Procedure for Interlaminar Stress peed

distributions, i.e. accurate nodal stress values satigffieC2-Requirements, see section
2.4, only by employing refined meshes requiring demandimypedational resources. In-
terlaminar stresses are continuous both across and alpewgifderfaces. Nonetheless, the
continuity of interlaminar stresses is difficult to enfon&® interpolated elements. This is
because in customary stress recovery procedures the raddab\wf the stresses are usually
retrieved using extrapolation techniques from super-eayent points inside the element,
e.g. Gauss points for Lagrangian class of elements. Thiirsedemeshes need to be used to
achieve interlaminar continuity of the transverse stressgpecially in the presence of high
out-of-plane stress gradients.

The Enhanced Assumed Strain (EAS) method can generatestamtsstress distribu-
tions that are as much accurate as those produced using bassd hybrid formulations
[333. This is generally achieved at a reduced computdtemsd, and without the need to
employ inverse constitutive relations. However, diffi@gtarise using conventional three-
dimensional procedures in the development of a finite elémenlel that is able to capture
properly all the locations of interest within the completgigble stiffness panel, even re-
sorting to refined finite element models. Then, the purpogbisfchapter is to present a
three-dimensional finite element procedure based on thelBétBod able to perform re-
liable future stress analyses of variable stiffness panklsreover, the procedure has to
overcome the problems that would arise in the modeling aradyais of such laminates
using customary procedures.

The starting point of the proposed procedure, explainecetaidin sectiori 16, is to
partition a variable stiffness laminate in such a way tharg\ply can be considered to
be an independent subdomain. In this way the user would ketaldither mesh prop-
erly each course by simulating the procedure followed dutire manufacturing process
by the tow-placement machine’s head, or to mesh the complgtasing a reliable mesh
generator tool. However, the compatibility between theghas to be reestablished sub-
sequently by imposing adequate interfacial conditionsvben the plies. Once the finite
element model is generated, a procedure for distributecpating generally employed in
domain decomposition methods, i.e. the finite elementrigand interconnecting method,
was employed to solve the system of algebraic equations.s&kocessing recovery pro-
cedure able to recover accurate interlaminar stresshlisivns using less demanding com-
putational resources compared to customary procedureals@developed. Moreover, the
post-processing stress recovery procedure had to be gedcgich that the stress states
generated can be combined with three-dimensional failtiteria commonly used for de-
lamination initiation. The complete stress states wasinbtbusing a variational consistent
procedure for the recovery of the in-plane stress distobgt The complete procedure
was developed within the MATLAB" framework and it is presented in this chapter. The
reliability of the approach was tested analysing severathmark problems concerning
multilayered conventional straight-fiber plates of vasgeometries.

4.2 Finite Element Model

Customary shell element formulations are, in general, ldpeel within the context of the
degenerated shell concept and the classical shell théwry,ldased on the common kine-
matic assumption of inextensibility in the thickness dii@t of the shell and the zero trans-
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verse normal-stress condition, see sedfion P.3.3 for ded@erview. Using these approx-
imations several difficulties can arise, and these diffieslare briefly summarized here: (i),
in the case of complex 3-D material models, the zero trassveormal-stress condition
must be imposed, (i), in finite rotations complex updateethms for finite rotations may
be required with consequent high computational cost$, {iie accuracy of the global re-
sponse deteriorates as the laminate becomes thickerti{&)lescription of the state of
stress at the ply level near geometric and material discoitigs is often inaccurate since a
3D stress state is generally achieved or near regions afdat®ading, (v), the combination
of these approximations with regular solid elements rexguiransition elements to connect
rotational and displacement degrees of freedom.

Although finite element models based on a Layer-Wise thea@éd® be suitable for the
purpose of this thesis as shown_in_ Dakshina Moorthy and R¢H@l99), see also section
2.3.4, the procedure developed and discussed in this thesishesesnple low-order solid-
shell element formulation presented by Vu-Quoc and Tan 320§ for accurate analyses
of large deformable multilayer shell structures. This isdese Vu-Quoc and Tan’s formu-
lation (VTF) is based on the class of mixed assumed straihoastpresented by Simo and
Rifai (1990), i.e. the EAS formulation, see section 3.3.Bjolu allows the systematic de-
velopment of low order elements with enhanced accuracydarse meshes. Compared to
the customary shell element formulations mentioned abéVE, does not require complex
finite-rotation updates and transition elements to congeliti-shell elements to regular
solid elements. In fact, Vu-Quoc and Tan describe the kitienod deformation using the
position vectors of a pair of material points at the top anthatoottom of the shell surface
using the same displacement degrees of freedom as found neglular linear brick solid
element. In their kinematic description, a straight tramse fiber before deformation re-
mains straight after deformation, but it does not need todsenal to the shell mid-surface
before deformation and after deformation. The kinematickeformation in curvilinear co-
ordinates of VTF is described in detail [n (Vu-Quoc and Tél02a). It is worth mentioning
that in VTF all the stress and strain components are accddiotethus allowing for an im-
plementation of unmodified 3-D non linear constitutive lawghout the need to apply the
plane-stress constraint. Thanks to an optimal combinaticghe EAS method and the As-
sumed Natural Strain (ANS) methad (Bathe and Dvorkin, 138&cNe&l! 1978; Simo and
Hughes, 1986), VTF is also computationally efficient, anovehaccurate in-plane and out-
of-plane bending behaviour especially in refined analy$esmposite structures involving
a large number of high aspect-ratio layers (Vu-Quoc and|Zaé3a).

In this section, attention will be paid to the derivation béftfinite element governing
equations based on the VTF. The point of departure is thdj&de Veubeke-Hu-Washizu
three-field functional (Felippa, 2000), that assumes tHeviing form in the case of static
analyses:

II(y,E,S) := . w(E)dQ + ; S: (ES(u)-E)dQ+
0 0 (4.1)

/ (U -u)-tdd- u-t*drl
0uf20 a0

where the displacement boundary conditions are introdircte Hu-Washizu variational
functional [3.21) as an additional condition of constralimbugh a Lagrange multiplier,
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which turns out to be the surface tractian,(? is the part ofoQ2 on which the bound-
ary displacementi* is specified. In the equation abotés the traction vectork is the
Green-Lagrange strain tens&ijs the second Piola-Kirchhoff stress tensor, &fds the
compatible part of the Green-Lagrange strain tensor defifiellaws:

Cc . . S+ . 2
with
GI fi ) () .

whereX(¢) is the mapping from the biunit cube, parameterized by theri@@tconvective
coordination(¢1,£2,€3), to the initial configuration. All variables are expressethie initial
configurationQ2g. The extension of the EAS method to geometrically non-lingablems
can also be done by enhancing the deformation gradient, s iy Simo and Armero
(1992). However, Vu-Quoc and Tan (2003a,b) have showed tiah a computational
standpoint, enhancing the Green-Lagrange strain tensanjger and more efficient, even
though their numerical analyses indicated that both methead to the same numerical
results when the same EAS parameters are used.
The next step in the EAS method is to introduce an enhancaiméme compatible part of
the Green-Lagrange stralif: B

E=E°+E. (4.4)

By introducing [4.4) in[(4.11), the following functional idtained:

II(u,E,S)= [ WES(u)+E)dQ- [ S:EdQ
Qo Qo

(4.5)
+/ (U*-u)-td® - u-t*dr.
0uf20 a0

Thus, the variation ofl in (@.5) with respect to the displacemenits:

ow [ OE®(u)
< ou

DH(u,E,S)~5u:/

ow . -5u)d9—/ su-tdr- [ u-t*dr, (4.6)
Qo OE W Q0

the variation ofll in @8) with respect td is:
~ ~ ow ~
DII(u,E,S): 6E = —— -3 :6EdS, 4.7)
o \OE
and the variation ofI in (4.3) with respect t&is:
DI(u,E,S):65= [ sS: Edm/ (U*-u)-5td®. (4.8)
A

Qo

By designing the approximation for the stress figland the approximation for the enhanc-
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ing strain fieldE such that the following orthogonality condition holds
/ S:EdQ =0, (4.9)
Q
the number of independent variables in the functidnal (4.58duced to two, i.e.,

T (u,E) = w(EC(u)+E)dQ+/ (U -u)-tdd- [ u.tdl,  (4.10)
Qo 8UQO alQO

leading to the following total variation and equilibriumratition:
STI(u, E) = 61lgtif £ (U, E) +0Tlext(U) = O, (4.11)

where:

Sgtif 1 (U,E) = / (6E°(u) +6E) : C(;iEW(EC(uHE)dQ
o (4.12)
6Hext:—/ Su-t*dT.
Q0

The finite element discretization is then introduced bymiszing the initial configura-
tion Qg into a number of non-overlapping elements|, such thaf? ~ Ugg'lﬂée), where the
displacement, its variationdu, and incremenf\u are interpolated in the element domain
as follows:

u=N(&)d®, su=N(£)sd®, Au=N(£)Ad® (4.13)

whereN is a matrix containing the basis linear 3D isoparametripstfanctions restricted
to elemenﬂée), andd® is a matrix containing the nodal displacements. Within amalnt
(e), the variation and the increment of the compatible Greegrarage strairk® is related
to the variation and the increment of displacement as falow

{0ES )., , =B(d®)ad®, {AES}, | =B(d®)Ad®, (4.14)

where the components Eﬁ- are arranged into a:61 column matrix according to the Voigt
ordering (Vu-Quoc and Tan, 2003a)

{Ef )= {ES$), ESy, 26y, ESs, 2655, 2655} T (4.15)

andB is the deformation dependent displacement-to-strainadpemwhich detailed expres-
sion is given inl(Vu-Quoc and Tan, 2003b). As far as the enbdi@reen-Lagrange strain
tensolE is concerned, Vu-Quoc and Tan (2003a) denote witff) the admissible variation

of the element EAS-parameter column-mauis) € RS associated with the enhancing
strain{Eij } whereneasis the number of EAS parameters. Then, the components of the
enhancing straift are expressed as a product of an enhancing strain inteigrotaatrix

and the element EAS parameter$): the same interpolation applies to the variation and
the increment oE, i.e.,

(B}, ,=0@aC, {6} =0esae (a2} =0¢arat. @16

6x1
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The enhancing strain interpolation matfixis defined in |(Vu-Quoc and Tah, 2003a) as

follows: 1
0= jTaT M (&) (4.17)

whereT g is a matrix that transform the strain components relatitbéacovariant basis cal-
culated in the element center to those components relatitreetcovariant basis calculated
in a generic point) is the determinant of the element Jacobian matrix of the ringfpom
the iso-parametric space to the initial configuration ofdéleament, andM is the interpola-
tion matrix that has to be chosen in such a way that the enldastcain field satisfies the
orthogonality condition(419) for a generic.

Two ANS modifications on the compatible covariant strairessemployed by Vu-Quoc
and Tan|(2003a) to eliminate the locking effects resultirmgrf the use of the compatible
low-order interpolations (Chapelle and Bathe, 2003). TiNSAnNterpolation is the most
successful tool to use to overcome 8teear lockingeffect in the four-node displacement-
based shell elements, even for initially distorted mesBeghle and Dvorkin, 1985; Mac-
Neal,1978| Simo and Hughes, 1986). In this context, Vu-Qard Tan apply a linear
interpolation of the compatible transverse shear stiginand ES; evaluated at the four
mid-points A, B, C, D of the element edges£at= 0, see figur&4]1, as follows:

EANS B (1_§2)EC (gA)_,_(l_’_gZ)Ec (fC)
{ e } _{ (1-€1ES (o) + (1+E)EE(ép) } (4.18)

where the coordinates of points A, B, C, D gre= (0,-1,0), &g = (1,0,0), & = (0,1,0),

Figure 4.1: Eight-node solid shell element in isoparanetordinates: sampling points
for ANS interpolations for transverse shear strains (A, BP{, and for trans-
verse normal strain (E, F, G, H)_(Vu-Quoc and Tan, 2003a).

ép = (-1,0,0), respectively. The above interpolation on the transvesarsstrains elimi-
nates theshear lockingoroblem, and allows for pure bending deformation withoutpdic
transverse shear strains. In the case of curved thin shetitstes or in non-linear analy-
ses, there is another locking effect, i@urvature thickness lockin@Bischoff and Ramm,
2000), which is also known d@sapezoidal locking To circumvent this locking effect from
parasitic transverse normal strain, Vu-Quoc and Tan enmlailinear interpolation for the
covariant componeris, of the compatible Green-Lagrangian strain tensor, sangtléue
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four corners E, F, G, H of the element midsurface, see figdieas. follows:
4
E5 °= SN (€1,6%)ES(6), (4.19)
=

with N = (%)(14_5}51)(1*—&252)1 gl = gE = (_1,_1,0), 52 = gF = (1,_1,0), 53 = gG =

(17 17 0)! and§4 = gH = (_1a 1; O)

To incorporate 3-D constitutive laws in shell formulatiotise transverse normal strain
must have at least a linear distribution over the shell téds, otherwise, an additional
locking effect, i.e. thdPoisson-thickness lockingvill occur (Bischoff and Ramim, 2000;
Zienkiewicz and Taylor, 2000). Two methods have been pregasthe literature to allevi-
ate this effect: one, assums a quadratically distributegatiement field over the shell thick-
ness|(Parish, 1995), and then introduces an additionalridtie parameter; the other, uses
the EAS method to enhance the transverse normal strain t&uehal., 1994). Vu-Quoc
and Tan|(2003a) enhance the transverse normal strain isreS method to include the
bilinear terms¢1¢3 and¢2¢3 in terms of material coordinates. Vu-Quoc and Tan also en-
hance the membrane strains to improve the membrane behaVlmse enhancements are
achieved by selecting the following interpolation matrix

¢ 0 0 00 0 O
o & 0 00 0 o

M=10 o g e 0 o0 o |’ (4.20)
0 0 0 0 53 5153 5253

enhancing, respectively, the membrane stréfg, E>o, 2E12] and the transverse normal
strainEss, leading to an optimal number of EAS paramenters, sevehjrit@mbination
with the ANS method described above make the VTF able to patstbe membrane and
the bending patch test. Thus, a complete free of lockinglssiiell element is obtained,
without resorting to reduced or selective integration teghes to avoid locking phenomena.
This means that rank deficiency, leading to hourglass meésmmanfrom spurious energy
modes, does not occur (Reddy, 2004). Vu-Quoc and Tan (20G8e) justified, through
numerical analyses, the relative importance of the sepaisd of the EAS method and the
ANS method, compared to the pure displacement formulatiad, more importantly, the
combined use of both the EAS method and the ANS method foirabtpaccurate results
for plate bending problem over a large range of aspect rattds also worth mentioning
that the strain-driven character of the VTF also makes iteeds implement non-linear
constitutive models, when compared to hybrid finite-elenfiermulation where the stress
field is involved.
The following expression at the element level is obtainedapplying a standard finite-
element procedure to discretize the total variation (4.11)

oT1® = 6119,  + 6T (u) = O, (4.21)

S|
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with

~ T
51_[;?“:/Q(e)(S{Eﬁ}T{Sj}dQ+/Q<e)5{Eij} {S;}d,
0 0

(4.22)
STy = — / o du-tedr,
a9y
where the following symbol definition is used to alleviate tiotation
. ow
S:= e (4.23)

which corresponds to the second Piola-Kirchoff stress,vemere the column matri*s'j }
has its coefficients arranged in the same Voigt ordering &.18)

{91} = [s1,5%2,8'2 §%3 3 519, (4.24)
The linearization of the discrete weak forin (4.21) can beagaished using the truncated

Taylor series about thith iterate(u k), E x)):

~ ~ O(611 ~
S (Uke), Eqken)) = S1L(U k), Ei) + o] -(Au,AE)

8(u, E) (u:u(k>,E:E(k)) (4.25)
= 61Uk, Eqi) +D(STT) (U, Eqq) - (Au, AE),

WhereAu = U1y U, AE = Eka1) —E- Note: to alleviate the notation, henceforward
the subscripk designating the iterative index will be omitted. Using thppeoximations
(@13), [@1h), and(4.16) in(4P5), the incremenis® and Aa(® can be computed in
the Newton’s solution process by setting the expressid?Bjdequal to zero. Thus, the
following relation is obtained:

O(STIS). . +5TTLS))
8(d(e> ,a®)
O(TI )

= gy (A4l = IS,

D(611®)(d®,a(®) . (Ad®, Aa®) = -(Ad® Aa'®)

(4.26)

in which the variatiora$H§:‘i)ff andsTIL) in (@22) now take, respectively, the following form:

5Hé‘tai)f f (d(e) ’ a(e)) = 5d(e>ngtai)ff +5a(e)Tf(Ee,)AS

with 1~ [ BT {S") o0, fhem [ 07 S}
0 0

STISH(d®) = —5d@TF,

with 5= [  NTrdo.
2

(4.27)
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Thus, the left hand side df{426) becomes:

O(STIgg ) oo, )
D(aTgy)-(Ad®, Aa®) = — = Ad®+ — 7

= [ @k +60@TKIL] - Ad® + [5dOTKE +5a@TKE | Aal® 428)

Aa'®

— 6d©@T [k&?}Ad@ + kf}zAa(e)} +6a®T [k‘j&Ad@) + kgegAa<e>} .

Let the fourth-order constitutive tensor be defined as vadto

- 99|

C=|CM| .= | =| eREE 4.29
{ } OEy € ’ ( )

whereCi¥ are the components of the constitutive ten@an the convected basis arranged

according to the ordering of the strain component§in (4.48) of the stress components
in (4.24). Then, the following expressions are obtaine@ig§):

(e) af(‘f’)ff
e  stiff T T
== /Qée)(e s+BTCB)dQ,
e)
of
2 = S0 = / ., BTCOdo,
‘(3‘) o (4.30)
e _ afEeAs_ ©17 _ T
Kot = Fie) = {"“a} _/Qge> 0’ CBd,
©
k(o — Jeas _ [ o 07t
aq aa(e) Qé)e)
where the matrixG ©
._ 0B(d"?)
Gi=—@ (4.31)

and the stress matri&, which is related to the matri*S'j} in (4.24), have their detailed
expressions given in (Vu-Quoc and fan, 2003b). It follovesrfr(4.26), [([4.2]7), and (4.28)
that the discrete linearized system of equations to solvthoincrementad®© andAa(®

is given by the following expressions:

K Ad® + K Aa® =18 -1 (4.32)
KEAD® +KE Aa® = ) (4.33)
or in a matrix form as:
K KE T ad® [ 1918, (4.34)
K& KE 1 Aal s ) |

Since the enhanced strain fididis chosen to be discontinuous across the element bound-
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aries, the EAS parameters incremetis(® are eliminated at element level before proceed-
ing to assemble the element matrices into global matricekir® equation[(4.33) for the
incrementAa(® as follows

Aa® = -KE (18 + K Aa®), (4.35)

[e%e%

and then substituting (4.85) intib (4]132), gives the follogvcondensed symmetric element
stiffness matrixK<Te), and the element residual force vectd?, respectively[(4.36) and

@.31):
KO = K& - [KET[KE K E, (4.36)

r® = 15~ 15 + KT [KE M s (4.37)
An assembly of the element matridéée) andr(© leads to the global system:
KrAd =R (4.38)

with
Ky = AP KLY, R=AF© (4.39)

whereA denotes the finite-element assembly operator. Thus, theertiuired for calcula-
tion is now comparable to models based on displacement fations. Note: for details of
the iterative procedure used see (Vu-Quoc and|Tan, 2003b).

4.3 Parallel Computing

The solution of systems of linear algebraic equations sedd.88) is one of the basic com-
ponents of the numerical methods used in mathematical ghgsid it generally represents
the most demanding part of dealing with the algorithms. Irtipalar, the high level of ac-
curacy required for an appropriate modeling of a varialifinsess panel, especially close to
tow-drops and tow/overlaps areas, lead to a finite elemedehiovolving a large number
of degrees of freedom. Therefore, appropriate attentionlstbe paid to the development
of solvers.

Sparse direct solvers, which have been for a long time as Hie procedure used in
commercial finite element software to solve system of equaticontinue to play an impor-
tant role in these numerical simulation codes. Howevemtkssing need for higher-fidelity
3D finite element structural models with millions of degreégeedom, and the extreme de-
manding computer resources required by direct solversiidr Earge problems have leaded
to the employment of supercomputing systems, parallel computing such as those that
are obtained by teaming together several computing unitetease the computing power.
The idea of connecting computers has proved to be less coegadi than the development
of faster and more efficient single processors. In partictha evolution of PC clusters, i.e.
using ordinary PCs connected using a suitable network ge@ed to be almost unlimited.

Solving large systems of equations on parallel computesdkean, and still is, a chal-
lenging research field since algorithms that are highlyiefficfor sequential machines usu-
ally perform poorly on parallel computers (Rixen, 2001;&ixand Magoulées, 2007). Paral-
lel solvers can be constructed in different ways: (i) by rgamizing classical factorization
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methods, i.e. direct solvers, (ii) by applying iterativdvens. Considering the system of
equations[(4.38), a direct solver would usually be used ttopa the factorization oK T,
e.g. Gaussian factorization, and forward/backward suiists to findAd. The looping
sequence on rows and columns within the factorization abdtgutions can be organized
to maximize the amount of independent, i.e. parallel, tasgkswever, as the number of
processors increases, the parallel efficiency becomespeenydue to the large amount of
communications required by the sequential factorizatiwhsubstitution algorithn,
). A better alternative is to first subdivide the probieto a certain number of con-
nected subparts, i.esubstructure®r subdomainss in Fig.4.2, by ordering the matrix to
bordered block diagonal form. A direct solver can then bdiagpn parallel to each of

Figure 4.2: Wheel: mesh of a structure subdivided in difitcconnected subdomaimms
(2007)).

the subdomains since the internal stiffness matrices afyestdodomain can be factorized
independently. Once all possible eliminations for the subdins have been performed,
there remains an interface problem, cendensed interfadgCl) problem, which is smaller
than the original system. The interface solution is usedommmete the solution of the
subdomains. More details about this procedure can be fau ,@1). Although
very robust, this approach is efficient on a small number otessors but it does not scale
up well for massive parallel computers set ups since the @lpm can not be efficiently
factorized in parallel and its size increases as the decsitipois refined.

Factorization schemes are inherently sequential singeateebased on Gaussian elim-
ination where the solution is obtained for one variableratte other. For this reason, a
large segment of the computational mechanics commundlyding software development
houses, is increasingly investigating the adoption ofiiee solversLLEa.LhaI_e_tJdL._ZO_(bOb).
Iterative solvers search for approximations of all unknssimultaneously and involve sim-
ple matrix operations. Thus, they are naturally parallehc& a large class of structural
and solid mechanics applications generate systems ofiegadhat are symmetric positive
definite or semi-definite, the conjugate gradient metmz) has always been
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an iterative method of choice among computational strattmechanicians. In structural
analysis, direct solvers have been favored for their rotmsst compared to iterative methods
where fast convergence can be difficult to achieve in pra¢iixen| 2001). With the advent
of parallel computing iterative methods have gained a nemerdum. Conjugate gradient
based iterative methods applied to a structure subdivididdifferent connected subdo-
mains as shown in F{g.4.2, also known damain decompositiotDD) methods|(Kruis,
2007), have emerged as powerful contenders on both seguantl parallel computing
platforms. In particular, most efficient and useful paiat@vers rely on DD methods that
use a blend of direct solvers to solve independent locallpnod and iterative solvers to
solve the globally coupled CI problem. When equipped withappropriate subdomain
level preconditioner, a DD method can be numerically sdalath respect to the mesh
size, or number of elements, of the given problem. In ordéetalso numerically scalable
with respect to the subdomain size, or number of subdomiingyst be equipped with a
preconditioner whose mathematical foundation is simitethiat encountered in multigrid
methodsi(Farhat et al., 2000b).

4.3.1 FETI Method

The Finite Element Tearing and Interconnectifg§ETI) method, introduced in_(Farhat,
1991) and|(Farhat and Roux, 1991), is among the first nonlagyging DD methods that
have demonstrated numerical scalability with respecteatiesh and subdomain sizes, for
both second-order elasticity and fourth-order plate arall gftoblems. In particular, the
parallel scalability of the FETI method and its ability totparform several popular direct
and iterative algorithms on both sequential and paralleipaters have been extensively
demonstrated (Farhat et al., 2000b). For the reasons mexutiabove, the FETI method
has been employed to solve the system of governing equdi@®) in the developed finite
element procedure. In order to understand better how thd Ftethod is conceived, the
following system of linear algebraic equations is consder

Kd =f. (4.40)

whereK is the stiffness matrix of the structurtandf are, respectively, the nodal displace-
ment and the nodal load vectors. Once the domain of the steighder consideration is de-
composed into a certain number of subdomains, the init@blem [4.40) can be expressed
in the following equivalent form by introducing the LagrangnultipliersA to enforce the
compatibility constraints between the subdomains:

K® o .. BW d® £(2)
o . — 4.41
KMNs)  g(Ns)" ds) fN) |7 (4-41)

BY ... B™ 0 A 0

whereK ¥, B, d® andf® are respectively the stiffness matrix, the Boolean madrities
displacements, and load vectors of every subdomain.
In order to find thecondensed interfadeCl) problem, the linear systerin (4]60) is solved
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for the local degrees of freedom

d® = KO (f<s> _go’ ,\) ~RO ), (4.42)
whereK ®" is the inverse oK (9 for sub-domains with no unconstrained rigid modes, or a
generalized inverse if sub-domd) is floating, in which cas&® contains in columns the

rigid body motions of the subdomain, and® contains the coefficients of linear combina-
tions (Kruis, 200/7; Rixen, 2001). By substituting in theléaling compatibility conditions

BO S — 0 (4.43)

the expression (4.42) of® in terms ofA, and taking into account that the forces applied to
a floating sub-domain must be in self-equilibrium, namely

RO (f<5> -Bo' A) =0, (4.44)

we obtain the following CI problem

FG [A] [d
o Slla]-le) @49
with
Ns
Fl = ZB(S)K(S)+ B
£
S BOKE 9
d=S BOKO§9,
2
G = BORW . BN RN ],
a® RO §1)
o= : and e= : ;
a®s) R(Ns)T £(Ns)

whereF, is the interface flexibility operatod is the interface gap created by the applied
loads,G is the restriction of the rigid modes on the interfagis the default of equilibrium
of the applied loads, and collects the modal amplitudes. The CI problém (4.45) exq@es
that the connecting forces should be such that they fill therfisce gap created by the
external loads, and such that, together with the appliedsiothey are in equilibrium with
respect to the local rigid modes (self-equilibrium). Thelgem [4.45) is also called the
dual interfaceproblem because it is expressed in terms of the dual vasablepresenting
the interface connecting forces. The solution to the systeaquations[(4.45) is identical
to the problem of minimising the quadratic form

o= %)\TF)\—ATQ, (4.46)
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with the additional condition:
G'a=e (4.47)

Itis appropriate to use the conjugate gradient method (tdas1952) for the solution of this
problem, however, the classical method can not be used bediis derived for systems
with symmetric positive definite matrices and the maKkigdoes not fulfill this requirement
since it is symmetric but not positive definite. Then, theeysof equation$ (4.45) is solved
iteratively using a modified conjugate-gradient methodufir2007). Upon convergence
the interior subdomain states are recovered friom {4.42)gudirect solvers to solve the
independent local problems.

The behaviour of the iterative methods used for the solufoeduced problems can be
improved by suitable preconditioning. There are two poppta-conditioners commonly
adopted: lumped and Dirichlet (Kruis, 2007; Rixen, 2001pr Becond-order elasticity
and fourth-order plate and shell problems, the Dirichletcpnditioner ensures scalability
with respect to the mesh size. The lumped preconditionemmee economical version
of the Dirichlet preconditioner that, for many second-ardkasticity problems, delivers
superior computational performance since it reduces tleeaticomputing time, although
it yields slower convergence of the iterations on the imtesfproblem. Both the lumped
and Dirichlet preconditioners can be used in the finite elgmeocedure developed in this
thesis.

The FETI method has been applied in many areas; i.e. in atiglits to non-conforming
interfaces using multi-point constraints (Farhat et &98), geometrically non linear prob-
lems (Farhat et al., 2000a), and to analyses of layeredtstesi(Kruis and Matous, 2002).
The FETI method has also inspired many variants, extensamasapplications, and detailed
overviews of these variations are provided.in (Farhat e2800b| Kruis, 2007).

4.4 Variationally Consistent Stress Recovery Procedure

It is apparent from the finite element procedure derived atige 4.2 that the stress field
does not enter explicitly into the determination of the ratisplacementsl, and the en-
hanced strain parametesis A consistent recovery procedure for the stress field froen th
nodal displacementd is then required. An obvious approach to calculating thessts
resulting from a displacement finite element approximaisao differentiate the finite ele-
ment solution directly and evaluate the stresses at supezogent points within an element
using the appropriate constitutive relations. Howeveesst fields deduced directly using
constitutive relations can show spurious oscillations tu¢he retention of higher order
(inconsistent) terms which do not contribute to the detaatidon of the displacements and
then the strains, but get reflected as extraneous stredkatises, see section 3.2. In or-
der to recover consistent stress fields other approachée twonventional stress recovery
have been proposed, and consistent stress distributionbecabtained in a variationally
correct manner by employing integrated procedures, sé¢i®s&2. In this regard, an ap-
propriate procedure in the context of a class of assumei strethods is presented for the
infinitesimal theory in_Simo and Rifai (1990). This procegluvhich does not involve the
enhanced strain field, has been extended to the geometagdinear case using the en-
hanced assumed Green-Lagrangian strains in Klinkel anche/gd997), and the complete
procedure is reported below.
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Since the displacement field is retrieved once the systenowdrging equation$ (4.88)
is solved, the following least-square functional can bepaeid in the procedure with the
intention to minimize the stress error (Klinkel and Wa@id&97; Simo and Rifai, 1990):

L(E,S) ::/ [C(ES+E)-9]:C™ : [C(EC+E)-9 dQ, (4.48)
Qo

whereQg is the volume of the initial cgnfiguratioE,C is the compatible part of the Green-

Lagrange strain tensor defined [n_(4.B)is the stress tensor enhancigg Sis the second

Piola-Kirchhoff stress tensor, afzlis the fourth order constitutive tensor definedin (4.29).

Then, it is assumed that the least-squares minimizatiolgno,

L(E,S) = MIN[L(JE, 69)], (4.49)

defines the correct enhanced strEimnd stress fields. Considering that the first varia-
tion of L(E, S) has to be zero for equilibrium, the following two indepentequations are
obtained:

SE:[C: (E°+E)-SdQ =0,
Qo

§S:[(EC+E)-C™:Sld =0.
Qo

(4.50)

The stress tens@® defined in [4.2B) implies thalw/JE is equal toC(EC+E). Then, the
equation[(4.50) in the case of balance is satisfied, meaning that the coradees of the
enhanced strain parameter) are obtained. The second conditién (4 H6)ntains new
information, from which the stress field is recovered. Fiest interpolation scheme for
the element stress&® has to be chosen. This interpolation scheme is assumed tebe t
following:

S® = G3©, (4.51)
with

Gs=ToG(§), (4.52)
whereTy is the trasformation matrix introduced in the interpolatszheme of the enhanced
strain tensoi] defined in [4.1l7)G is the interpolation matrix that needs to be properly
defined,3® is the stress-parameters column-matrix, gne [¢1,£2,¢3] is the material

convective coordination parameterizing the element ispatric space. Due to the or-
thogonality condition[{4]9) the stress fie®f has to be orthogonal to the enhanced strain

field E(e). Then, from the orthogonality condition (4.9), by subdtitg the interpolation

scheme adopted for the enhanced strain ﬁe(% (@18) and the stress fie®l® @51), the
following expression at element level is obtained:

/ 687 GI Dol dewde'de?de® =0, (4.53)
Q

wheredet] is the determinant of element Jacobian matrix of the mapfporg the isopara-
metric space to the initial configuratmﬁe) of element(e). Thus, the following condition
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between the enhanced strain and stress interpolationa@stras to be satisfied:
[ o GT€)M(€)de’de?de ~o. (4.5
2

The interpolation matrixG which is orthogonal tdvl (4.20) has been investigated in An-
delfinger and Ramm_(1993), and assumes the following form:

1 ¢2 ¢ ¢ 0 0 0 0 0 0O O O O O
o0 0 0 1¢& & ¢ 0000 0 O

=100 0 0 00 0 o0 1 € 0 0 0 0 (4.55)
0 00O 0O 0O O O 0 0 1 g g¢

By inserting equation{4.52) in_(4.b0}he following optimal stress field in the sense of
least-squares minimization is obtained:

S® = GgH'Ts, (4.56)
with

He = o G! CGsdetddetde?de®,
0

Ts= | o GeE(¢h,€%,€7) detddgide™de?,
0

(4.57)

whereE® is the compatible part of the Green-Lagrange strain tensaluated for each
Gauss poin{(¢s,£3,£3). The compatible strains expressign{4.2) can be reforredilas
following:

E°(¢h, 62,63 = %[GraduT Gradu +Gradu" +Gradul, (4.58)

where the displacement fields defined in[(4.113), and the operaradu is then a function
of ¢,¢2,¢3:
Nix 0 0
g Nnodes 0 O N, q 9
Gradu = ’ . 4.5
I; Niy Nix O I (4.59)
NI,z 0 Nl,x
O Nl,Z N|’y

with Nnodedglefining the number of nodes within an element.

This procedure will be adopted in this thesis to only recamgplane stress distribu-
tions. This is because although consistent stress statesecgetrieved at superconvergent
points within the elements using this recovery proceduteemthe emphasis of the analy-
sis is the prediction of interlaminar stress failure irtiba it is necessary to have accurate
interlaminar stresses on these interfaces as opposed t&s @aints. Then, the stresses
evaluated at superconvergent points are usually extrigabta the boundaries of the ele-
ment domain using sophisticated extrapolation technicagesxplained in detail in section
[3.2. However, in presence of high in-plane and out-of-pkress gradients, accurate nodal
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stress values can only be obtained by resorting to meshesirggdemanding compu-
tational resources (Dakshina Moorthy and Reddy, 1999). ariqular, the interlaminar
continuity of the transverse stresses required byCthRequirements, as opposed to the in-
plane stresses as explained in sedfioh 2.2, is difficult iese without resorting to refined
meshes through-the-thickness of the laminate, espedialiiysplacement based formula-
tions in which the order of the polynomial describing theotigh-the-thickness variation of
the transverse stresses is one order less compared to kdthpglane stress and displace-
ment polynomials. Moreover, a coarse mesh through the ek of the laminate in 3D
formulations may lead to the possibility of thickness lagkif the Poisson effect through
the thickness is not correctly represented. The enhancaid shethod used to derive the
finite element model in sectidn 6.1 was conceived to overciié¢hickness locking, thus
allowing the use of coarse meshes through the thicknessedithinate. Then, a recov-
ery procedure able to provide accurate interlaminar stseasd not requiring demanding
computational resources was developed, and is presentieel imext section.

4.5 Interlaminar Stress Recovery Procedure

The present procedure is an extension of the interlaminesstecovery procedure devel-
oped by Dakshina Moorthy and Reddy (1999) in the contextwdyshg delamination in
multilayered composites. In their approach, each ply isetextlas a separate body, and the
interlaminar forces are obtained using an interface mduslihvolves the selection of an
interface in the laminate a priori and modeling it as an aBentact zone between por-
tions of the laminate separated by this interface. The adhesntact between portions of
the laminate at its interface is enforced by a penalty famcthethod, and the contact load
that satisfies the equilibrium at the interface is used tduata the interlaminar stresses.
The recovery procedure partitions the contact surfacedrset of non-overlapping patches
corresponding to groups of elements. The traction didiobuis interpolated over each
patch in terms of nodal values. Static equivalence betweerractions and the contact
forces is used to calculate the nodal values of the tractience the interlaminar stresses.
Dakshina Moorthy and Reddy showed that the procedure lgamdatice to oscillatory inter-
laminar stress distributions. A final step in their procedsrthe application of a smoothing
technique to obtain more physically meaningful interlaanistress distributions.

The procedure discussed in this thesis extends the prazeflixakshina Moorthy and
Reddy in two ways. One, each ply is still modeled separateiyte compatibility between
the plies is enforced using the FETI domain decompositiothoteintroduced in section
[4.31. Thus, connecting forces are obtained without rempib a penalty formulation.
Two, the traction distribution is interpolated over the gdete interlaminar surface. Thus,
the full distribution of interlaminar stresses is obtaisgdultaneously. More details of the
proposed formulation are provided below.

Consider a typical interface between two plies as shown urdig.3. The system of
linear equilibrium equations and compatibility conditsoran be written ag (4.40)

KO o BOT d@ £(1)
k2 @™ || 4@ | = | @
BL p® 0 A 0

, (4.60)
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forces 2,
A v e
Figure 4.3: Connecting forcea; at the interfacial nodes of each element obtained using
the FETI method.

whereK M andK (@ are the stiffness matrices of the two plies? andu(® the displace-
ment vectors of the two plie§!) andf® the load vectors of the two plieB(Y) andB®? are
the Boolean matrices providing the equality conditionsMeetn displacements of the two
plies, and\ are the Lagrange multipliers (interlaminar forces) introeld to enforce the
compatibility constraints between the plies. Solving thetem of equation§ (4.60), the in-
terlaminar forces between the plies are obtained as arégpladements. Then, the traction
distributiontg,, over the surfac@s is interpolated using? iso-parametric shape functions:

to, = Nty, (4.61)

wheret; is the vector of the nodal traction values axés the matrix ofC° shape functions.
The displacement distribution,, over the surfacé is interpolated using the san@
iso-parametric shape functions used for the tractionibligion

ug, = Nds, (4.62)

whered; is the vector of the nodal displacements. Thus, the intevogk W, done by the
tractions over the element surface can be written as:

V\/m:/ (trN)T Nédf dQs = t] Mg ods, (4.63)
Qf N —r ——
tg' Uoy

whereM ¢ is the matrix of areas:

Mi= [ NTNOQ;s. (4.64)
Qf

Then, the matrices of areas of all the elements on the imémkr surface? are assembled
in a matrixM:
M =AMy, (4.65)

where A denotes the finite-element assembly operator. The elersenteectivity on the
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surfacef) is directly inherited from the solid element faces. Consitgthe static equiva-
lence between the tractions and the connecting forces:

t'Mdod=ATdd, (4.66)

whered andt are, respectively, the global vector of nodal displacesantl nodal tractions
on the surfacé), the following relation is obtained:

Mt =X =>t=M"1), (4.67)

which allows to retrieve the interlaminar stress distritwi$ over the surfac®. The process
is repeated for every interlaminar surface of interest.

It is worth mentioning that the present procedure can béysaminbined with the Mortar
method for the analysis of plies with non-conforming mesh&ke Mortar method was
introduced in the early 1990s (Puso, 2004) to formulate weakinuity conditions at the
interfaces of subdomains in which different variationgbegximations are used. Relaxing
the constraint on the boundaries of the interfaces usingdrege multipliers provides the
standard framework within which the method is normally u@dduret and Ort|z, 2006).
Then, in the case of non-conforming meshes between the piesBoolean matrices in
equation[(4.60) can be simply replaced wiimatrices obtained using the Mortar method.
The accuracy of the present approach is demonstrated iretesection.

4.6 Numerical Results

4.6.1 Simply Supported Plate Subjected to Bisinusoidal Pesure Load

The procedure discussed and developed in this thesis wiaateal considering a bench-
mark problem analysed in_ Pagano (1970), where 3D exactatasolutions of idealised
simply supported cross-p[@°/90° /0°], square plates under bisinusoidally distributed pres-
sure load of intensity,, are provided. The length and thickness of the plate is @ehioy

a andH respectively. The laminate is made of material plies thati@ealized to be homo-
geneous, elastic and orthotropic. The following mateniaperties are usedt;1 = 25GPa,
Eoy» = B33 = 1GPa, G12 = G13 = 0.5GPa, Gy3 = 0.2GPa, andvy2 = v13 = vo3 = 0.25.
Subscripts 1,2 and 3 denote the fibre, transverse and ttusklieections, respectively. The
rectangular Cartesian coordinate system used is suchthatigin is located in the middle
of the laminate at one of the side corners, see figuie 4.4ss&tseare normalized according
to the following formulae,

1

(T>,<za T)l/z) = ——= (Txz, Ty2), Ulzz: — 07z,
PzS Pz

(J)l(xa oy 7T>/( ) = i (JXX, Oyy, TX)’)
yy» 'Xy pZSZ

where theSis the laminate length to thickness raSe- a/H.

Laminates of length to thickness rati8s= 20,50,100 were analysed to demonstrate
the accuracy of the present procedure in analysing modgithaiek/thin composite struc-
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Figure 4.4: Bisinusoidal pressure load

tures. Particular attention was paid to the recovery of theriaminar stress fields. This is
because an appropriate level of accuracy of the transveess dields that is able to ful-
fill the C2-Requirements, see sectionl2.2, usually represents teetatipe achievement of,
which demands accurate and computationally expensive fhgment models. One solid-
shell element was adopted in the through-the-thicknes& mesach ply in the laminate.
Convergence analyses of the interlaminar transverseseses/aluated at tHe°/90°] in-
terface between the top and middle plies, i.e. z/H=0.16@&8ewwerformed using different
in-plane meshes. This interface is the one with maximunrlent@nar stresses due to the
mismatch of the material properties’(@nd 90 plies). The results for the performed con-
vergence analyses are presented in figurds 4.5 ahd 4.64peatively, values of length to
thickness ratioS= 20 andS= 100. Referring to the scheme reported in figurd 4.3, in-
terlaminar transverse stress distributions were obtairsgty a linear interpolation for the
traction distribution over the surfaé&;. This was achieved by adopting the same classical
linear isoparametric shape functions assumed for theatispient field. Excellent agree-
ment with Pagano’s exact solution and fast convergence al@eened for both moderately
thick laminates, i.eS= 20, and thin laminates, i.&= 100. This fast convergence is due
to the fact that the present procedure provides the trasswatresses directly at nodes using
equilibrium considerations, thus interlaminar contigai the transverse stresses was easily
satisfied, and accurate interlaminar transverse stregghdifons with respect to the exact
solutions could be obtained using an in-plane coarse me%B »fl2 elements. However,
in figure[4.5 it can be seen that the value of the transverse normal stfgasthe boundary

of the laminate, i.ey/a= 0, does not converge exactly to zero by refining the mesh, as it
should be, but a stress state of compression or tension erafed depending on the sign
of the pressure load considered. Boundary stress statexy@aerated at the boundaries of
the laminate where idealised simply supported boundargitions were applied in the 3D
finite element model.

The appropriate level of accuracy reached in the evaluatfdhe interlaminar stress
fields is further shown in table 4.2, where transverse stralses evaluated at tHe° /90°)
interface at points of major interest, labeled as EQUILIBRI, are reported for different
values of length to thickness rat®of the laminate. The percentage errors with respect to
Pagano’s exact solutions, labeled as EXACT, are also repamtbrackets. The percentage
errors obtained were always less than 1.3%, confirming tbedrate evaluations of the
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interlaminar stresses were obtained in these locationbdtr moderately-thick and thin
laminates by adopting an in-plane mesh ofxL22 elements.

Table 4.1: Comparison between interlaminar transversesstivalues evaluated at points
of major interest on thé0°/90°) interface of aj0°/90°/0°] laminate using the
proposed procedure and Pagano’s exact solution (PagangQiL9

S T;Z(Oﬂgvé) T)/IZ(%ﬂOa%) O—éz(%v%a%)

20 EXACT 0.3804 0.0374 0.7398
EQUILIBRIUM 0.3825 (0.55%) 0.0375(0.27%) 0.7483 (1.15%)

50 EXACT 0.3892 0.0341 0.7406
EQUILIBRIUM 0.3914 (0.57%) 0.0342 (0.29%) 0.7496 (1.22%)

100 EXACT 0.3905 0.0336 0.7407

EQUILIBRIUM 0.3926 (0.54%) 0.0337 (0.3%) 0.7498 (1.23%)

The excellentlevel of smoothness reached in the recoveteddaminar transverse stress
distributions is shown in figuré€s 4.7 dnd4.8 which show, eetipely, the surface plots at the
(0°/90°) interface of the interlaminar transverse shear strgsand normal stress;, for
S= 20, and the surface plot of the interlaminar transverserstezssry, for S= 100. The
maximum value and the location where the maximum value isheghis also highlighted
for each surface plot. The boundary stress states ment@neee, and generated at the
locations where the idealised simply supported boundangditions were imposed, are also
evident in the surface plot of the transverse shear sbr)’gs'.a figure[4.% at the locations
x/a=0andx/a=1.

Based on the considerations formulated above, hencef@ihiplane mesh in the finite
element model will consist of 12 12 elements unless differently stated. As fas as the
through-the-thickness mesh is concerned, from fiure }@®fa can see the surface plot
of the interlaminar shear stres§, distribution at the(0°/90°) interface for a laminate of
length to thickness ratioS = 50 obtained considering no fictitious interfaces within the
plies, while in figurg 4.9(B) it is shown the same surface platained when one fictitious
interface located in the middle of every ply is considerelde @ifference between the two
analyses in the maximum value of the transverse shear sfredstained, and highlighted in
the plots, is 0.0357%. Moreover, in both the analyses tHeréifice with respect to the exact
solution is less than 0.5%. Similar results were obtainetsickering laminates of length to
thickness ratio§= 20 andS= 100. Then, the minimum required number of elements in the
thickness direction was three. While this is sufficient focarate interlaminar stresses, it
does not allow the detailed evaluation of the through thektiess variation of the transverse
stresses. To also provide transverse stress distributicth® middle of every layer, three
more mathematical interfaces are required in these latatio give a total number of six
elements through the thickness.

The same laminate is analysed in Dakshina Moorthy and Ret@BY) where two dif-
ferent values of length to thickness rat®s 10,100 are considered. The rectangular Carte-
sian coordinate system used in their work is such that thggrois located at the center of
the bottom surface of the plate. Regarding the structunalnsgtry, only a quarter of the
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Figure 4.5: Convergence analyses concerning the transvarmal stresss,, and the
transverse shear stresg, at the(0°/90°) interface of a[0° /90°/0°] laminate
considering different in-plane meshegax= 0.5, S = 20.
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0.05 b

x/a

Figure 4.6: Convergence analysis concerning the tran®/ehear stress;, at the(0° /90°)
interface of a[0°/90°/0°] laminate considering different in-plane meshes;
y/a=0.5,S= 100,

plate is taken into account. Then, the computational dorofthe quarter plate model is
0<x<a/2;0<y<a/2;0<z<H. Anin-plane mesh 0f8 x 8] nine-node quadratic
elements and a mesh of linear Lagrange elements throughitkaéss of the laminate is
considered. For their study of interlaminar stresses, DiaksMoorthy and Reddy selected
the (0°/90°) interface between the top and middle plies. The interlanstresses are cal-
culated and compared using three different approadtigsheir equilibrium based stress
recovery procedure, at nod€g) from constitutive relations, at integration points; &i3J
variationally optimal stress recovery procedure, at irgégn points. Dakshina-Moorthy
and Reddy'’s interlaminar stress distributions for the sv@nse normal stresse$, andry,
are reported in figurle 4.10. The stresses computed usingsheénNo approaches were not
single valued at the interface. These approaches were Hashlyy Dakshina-Moorthy and
Reddy to evaluate interlaminar stresses at the integr@#rss points within each element.
Their equilibrium based stress recovery procedure coulddeel to compute interlaminar
stresses at the nodes on the interface.

The distribution of the interlaminar normal stress for a laminate with thickness to
length ratioS= 10 is shown in figur€ 430 It can be noted thadt/, obtained from the
equilibrium is very close to the exact solution. The applobased on the constitutive
relations overpredicts the transverse normal stresselsthenvariationally optimal stress
recovery procedure produces a distribution of stress shabvmstant within an element and
not much different from that obtained using constitutiviatiens. Although less accurate
compared to equilibrium, transverse normal stress digidhs recovered using constitutive
relations show qualitatively the correct distribution. isever, for very thin plates, i.e5=
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(a) Surface plot concerning the interlaminar transversenabstressr,.
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(b) Surface plot concerning the interlaminar transversmabstressjz.

Figure 4.7: Surface plots concerning the recovered int@ilzar transverse stresses at the
(0°/90°) interface of g0°/90°/0°] laminate,S = 20.
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Figure 4.8: Surface plot concerning the recovered inteilzam transverse shear stress,
at the(0°/90°) interface of 80°/90°/0°] laminate,S= 100.

100, Dakshina-Moorthy and Reddy have shown that constituglation-based transverse
normal stresses were very inaccurate near the edges ofatee pl

The distribution ofry, for S= 100 is reported in figure_4.%0 The stresses from the
constitutive relations and that from variationally recouverocedures are less accurate when
compared to the equilibrium-based stress recovery praoeedican also be noted that the
variationally optimal stress distribution is extremelgs# to that obtained from constitutive
relations both in terms of distribution and value.

One undesirable feature of the stress recovery procedwasaned above is the pres-
ence of oscillations in the transverse stress distribstiespecially for thin plates. These
oscillations were found to be severe in transverse sheessats. The amplitudes of os-
cillations for equilibrium-based stresses were found todraparable to that in constitutive
relation-based stresses. Further, it was noted that tlse#ations tend to increase in ampli-
tude as the laminate gets thinner. Then, either a refinenfi¢éiné anesh or the employment
of smoothing techniques is usually required, however, tiraputational cost involved in-
creases significantly. Comparing these distributions thidones obtained using the present
procedure and shown in figure #.5, it can be stated that theept@rocedure is able to cir-
cumvent the shortcomings of the recovery procedures degdlby Dakshina-Moorthy and
Reddy by employing much coarser meshes compared to theielireottl without the need
to resort to the use of smoothing techniques to obtain atew@d smooth interlaminar
stress fields.

The same laminate was also analysed using the layer-wissdrtiveories proposed by

Carrera and Demasi (2002a,b). In their work, quadrilatenaltilayered four-, eight-, and
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Figure 4.9: Surface plots concerning the recovered intmitzar transverse shear stresg,
atthe(0°/90) interface of g0°/90°/0°] laminate,S = 50.
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Figure 4.10: Transverse normal stress; (o,, in the present convention) and transverse
shear stres&y; (ry,) distributions obtained in_Dakshina Moorthy and Reddy
(1999) at the interlaminar surfacg®/90°) of a [0°/90°/0°] laminate using
different approaches, and different length to thickne$®ss; y/a = 0.5 with
reference to the present cartesian coordinate system.
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nine-noded plate elements are developed based upon ttenBesdMixed Variational Theo-
rem (RMVT) (Reissnér, 1984, 1986), which allows one to asstwo independent fields for
displacements and the transverse stress variables. hagemodeling, see sectign 2.8.4,
and equivalent single-layer modeling, see sedfion P.3e3cansidered on the framework
of the RMVT. Linear and higher-order, up to forth order, exgian in the through-the-
thickness direction of the laminate are implemented fohlti$placements and transverse
stresses. In this thesis, attention will be restricted ts¢helements assuming a layer-wise
multilayered form description through-the-thicknessloé taminate. These elements are
denoted using the acronym LMn, where n is the order of exparessumed for both the
displacements and transverse stresses polynomials dlentjitkness direction of every
ply. The LMn’s distributions showed below were obtainechwitt the introduction of ficti-
tious interfaces within the plies, and the final system oéhlgic equations was solved for
both displacements and transverse stress variables. ffleusansverse stresses were ob-
tained directly at nodes, and accurate and continuoudan@rar stress distributions could
be generated without the employment of a post-processouyeey procedure, as opposed
to conventional displacement based formulations.

Through-the-thickness distributions of the transvenssses were obtained at locations
in thex—y plane of major interest using the multilayered nine-nodatepelements devel-
oped in_Carrera and Demasi (2002a,b). These distributionstzown in figuré_4.11 for,
respectively, the transverse shear stresgeandry,, and in figurd 4.12 for the transverse
normal stress,. In these plots, Carrera and Demasi’s distributions arepewed with the
ones obtained using the procedure presented in this tregisPagano’s exact solutions.
A laminate with a value of length to thickness rat®s- 20 is considered to highlight the
accuracy obtained by the present procedure in the analfsy@derately-thick composite
laminates. An in-plane mesh of ¥212 elements was adopted in all the cases. Among the
considered Carrera and Demasi’'s multilayered nine-nodkgte plements, accurate trans-
verse stress distributions with respect to the exact swigtivere obtained by assuming at
least a third order polynomial through-the-thickness ahaaly, i.e. LM3, for the transverse
stress approximations. A third order of approximation idipalarly required by the trans-
verse shear stress distributions due to the presence d@ittiglough-the-thickness gradients
compared to the transverse normal stegsslistribution. In fact, by analysing more in detail
the transverse shear stre§§distribution in figurd 4.1, a quadratic order of interpiat
for the assumed transverse stresses, i.e. LM2, generawsengage error with respect to
the exact solution of 3.76% at the point of maximum value,4/el=0, and at th¢0°/90°)
interface, i.e. z/H=0.1666, a percentage error of 25.13%teldver, inaccurate values are
obtained at the boundaries, i.e. top and bottom of the latminBhe percentage errors in
these locations is reduced to less than 1.5% using LM3. Alaimésponse is obtained for
the transverse shear stress whereas a quadratic order of interpolation is enough tegen
ate an accurate distribution for the assumed transverseatstressr,, as shown in figure
[4.12. Thus, a system of algebraic equations with 37500 umkameeds to be solved using
Carrera and Demasi’s formulation for appropriate evaturegtiof the interlaminar stresses.

The percentage error with respect to the exact solutionrgétbusing the present pro-
cedure for the evaluation of the transverse shear s{-ljgss the point of maximum value,
i.e. z/H=0, is of 0.53%, and at tH{6°/90°) interface, i.e. z/H=0.1666, the percentage error
is of 0.27%. A similar response is obtained for both the tvarse shear stress, and the
transverse normal stres$,. This means that the present procedure obtains accuraigsval
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Figure 4.11: Comparisons between the through-the-thiskikéstributions of the transverse
shear stresses obtained at locations in theyxplane of major interest using
different approaches, S=20.
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Figure 4.12: Comparisons between the through-the-thiskikéstributions of the transverse
normal stresss;, obtained in the middle of the laminate using different ap-
proaches, S=20.

of the transverse stresses by solving a system of algelgaations with 8619 unknowns,
although a fictitious interface was introduced in the midtfleach ply to recover intralam-
inar values of the transverse stresses. This means thateékend procedure is able to
generate a percentage reduction of 72% in the total numlsegrees of freedom required
to achieve accurate distributions of the interlaminarsstes compared to Carrera and De-
masi's formulation. For the sake of completeness, it is woeimarking that in analyses
requiring accurate evaluation of the intralaminar transsstresses, as for instance in cases
where intralaminar failure initiation is more likely to agacthan interlaminar failure, the
present procedure may be as much computationally expeasisgess-based formulations
since additional fictitious interfaces would be requirethia locations of interest.

Comparisons between the through-the-thickness distoifisibf the in-plane stresses at
points of major interest are shown in figlire 4.13. In this ¢hsecomparisons are between
the plots obtained using the proposed variational comdigtecedure, labeled as VARI-
ATIONAL, the ones obtained using Carrera and Demasi’s taykired nine-noded plate
elements and based on the constitutive relations, and Bagexact solutions. Accurate
distributions were obtained in all the cases. By using tltoppsed variational consistent
recovery procedure, in plane stresses are evaluated antdgration points within each
element, and the retrieved values are extrapolated to #rmeegit nodes using the shape
functions. Then, the values at the common nodes betweendheets are obtained av-
eraging all the contributions. Additional in-plane strgatues obtained at points of major
interest using the present procedure are reported in[tableddifferent values of length to
thickness ratio$. In this case, the percentage error of the recovered iregamess values
with respect to the exact solutions is always less than 1.6%.

A comparison between convergence analyses of the interaniansverse stre3$Z
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Table 4.2: Comparison between in-plane stress values atedlat points of major interest
using the proposed procedure and Pagano’s exact solutiagdRo| 1970).

S O—;(X(%agvi%) ngy(%v%ai%) T;(y(ovovi%)
20 EXACT +0.5524 +0.2092 F0.0234
VARIATIONAL  +0.545Q1.34%) +0.20621.45%) F0.0230 (1.52%)
50 EXACT +0.5409 +0.1845 F0.0216
VARIATIONAL  +0.5338§1.33%) +0.18201.37%) F0.02131.41%)
100 EXACT +0.5393 +0.1808 F0.0213

VARIATIONAL ~ +0.53261.26%) +0.17861.23%) +0.021021.33%)
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Figure 4.14: Comparisons between the through-the-thiskrtistributions of the in-plane
shear stresg)’(y obtained at the in-plane location=¢ 0,y = 0 using different
approaches, S=20.
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performed considering different in-plane meshes, andimddaat the point of maximum
value is shown in figurg 4.15(a). These analyses were casriagsing the proposed pro-
cedure, and Carrera and Demasi’s multilayered four- ané-noded_M3 plate elements,
respectively labeled Q4 and Q9, and shown in figure 4.]1.5(e)hdse plotdNe represents
the number of elements along each side of the plate. A lamiofthickness to length
ratio S= 20 was considered. The proposed procedure produces a ot o the one
obtained using theM3Q9 plate element, but a faster convergence to the exact @oligti
achieved. Similar slopes were obtained for the interlamirzmsverse shear stregs and
transverse normal stres$,. These plots again confirm the excellent level of accuracy an
efficiency of the proposed procedure since these results algiained using a significant
reduction in the number of degrees of freedom involved caetghto other approaches. A
similar analysis, but concerning the in-plane stress is shown in figur¢ 4.15(b). In this
case, the slope followed by the proposed procedure is sitoilde one obtained using the
LM3Q4 plate element, but with a slightly slower convergence dube¢ different order of
interpolation adopted through the thickness of the laneindthis similarity was expected
since variationally consistent recovery procedures Wgpabvides distributions that are ex-
tremely close to that obtained from constitutive relatibnth in terms of distribution and
value, as shown in figufe 4.0, provided that the stresshlisions obtained from the con-
stitutive relations are consistent with the finite elemeatsi. Similar trends were obtained
for the in-plane stresses, andry.

From the comparisons made above it is clear that the proegutasented in this thesis
is able to provide data on stress fields as accurate as Camdr®emasi’s stress based
formulation, even in the range from thick to moderatelyckiaminates, i.eS= 20, but with
a significant reduction in the computational cost involvad aster overall performances.
This is particularly remarkable in the recovery of the itaarinar stress fields, although in
Carrera and Demasi’s procedure a post-processing stasgerg technique is not required.
For the sake of completeness, it is worth to say that the ctatipnal cost involved in
Carrera and Demasi’s stress based formulation can be reédisieg a generalization of
this approach proposed by Demasi (2008), where each varimbthe most general case
each displacement and each transverse stress, can beriddafg expanded along the
thickness of the laminate based on the order of approxima&quired. For instance, in
the case under consideration the through-the-thicknegdition of thes,,, would require
a quadratic order of interpolation and not a third order astlie transverse shear stress
distributions.

4.6.2 Stress Analyses of Laminated Composite Plates with @p Hole
Subjected to Uniaxial Tension

Stress concentration phenomena play an important rolesidéign of layered structures.
A well known stress concentration problem is the problem pfate loaded in-plane and
containing a circular open hole. This problem combinesngtrim-plane stress gradients
with free edge effects and is characterized by the occuerefistrongly 3D singular stress
fields at the free edges in the interface between two layecowiposite laminates. As a
consequence, stress calculation at the interlaminarcsfia the vicinity of the hole edge
is a difficult problem.
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The accuracy of the recovery procedure presented in thisstivas tested examining a
square/45°/ — 45°] plate with a circular hole as shown in figlre 4.16. The lan@ren-

55
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- >
o
-
X B

Figure 4.16: Laminate plate with hole.

sist of the planar dimensiorss= 508mm diameter of the hol® = 50.8mm coordinate
of the hole centex; = y. = a/2, ply thicknessh = 2.54mm Each ply is treated as an ho-
mogeneous, elastic and orthotropic material with the ¥alhy propertiesE;1 = 138GPa,
Eoy = E33=145GPa G12 = G13= Go3 = 5.86GPa, andr12 = 13 = 103 =0.21. The uni-
axial loadingup/a = 0.001 is applied via displacement boundary conditions at akteral
sides(x=0,a),

_UX(Oa Y, Z) = Ux(a, Y, Z) = Uo, Uy(oa Y, Z) = Uy(a7 Y, Z) =0. (468)

The averaged applied stress is calculated as:

l a H
Uozﬁ/o/o oxx(a,y,2)dydz (4.69)

where H is the complete laminate thickness.

This problem is analysed In_larve (1996) where an indepera@gnomial spline ap-
proximation of displacement and interlaminar tractionsrigposed for accurate stress anal-
ysis of multilayer composite laminates with open hole, artrae-dimensional full field
solution is obtained. Spline approximation is able to eliaté the inter-element compati-
bility problems leading to unsatisfactory finite elemerdulés in the presence of field sin-
gularities. Moreover, spline approximation offers contiy of displacement, strain and
stress fields within homogeneous domains simultaneoushepving the advantages of lo-
cal approximation, such as sparsity of the resulting systéequations. In the work of
larve (1996) the system of equations allowing for the calttah of the displacement spline
approximation coefficients under given surface tractisrabitained using the minimum po-
tential energy principle. A closed form asymptotic solatigalid in the vicinity of the hole
edge at the interface of two orthotropic plies of arbitrdrickness, is also developed in
larve (1995) to verify the spline approximation. Good agneat was observed between the
asymptotic solution and larve’s spline approximation fistahces up té /4 from the hole
edge for all stress components. However, the procedurelveaasto be detrimental for ac-
curate interlaminar stress calculation within approxihatne half-ply thickness from the
singular point. In order to provide accurate stress fields &l the singular neighborhood of
the ply interface and the hole edge, the procedure is imgrovéarve and Pagaho (2001)
using a superposition approach of an hybrid and displaceapmoximation based on the



90 4 A Finite Element Procedure for Interlaminar Stress peed

Reissner’s variational principle Reissner (1984, 1986k @pproximation of displacement
is still based on the polynomial B-spline functions, but bydbrid stress functions are de-
rived using the asymptotic solution carried on_in larve @R%9arve and Pagano (2001)
show converged interlaminar stress components, inclutieig singularities, as a function
of the distance from the hole edge. Then, the interlamirrasstdistributions obtained in
larve and Pagano (2001) were taken as benchmark solutieadidate the recovery proce-
dure presented in this thesis.

In the present analysis, given the symmetry of loading apdifg only half of the total
thickness of the laminate was modelled. An example of thalame mesh adopted is shown
in figure[4.1Y. Henceforth, the designatioer/rsr —net] denotes a mesh wheneeris the
number of elements extending in the radial direction fromhiole edge to the end of the
circular region, i.er =80mm rsr is the radial spacing ratio of the elements in the refined
circular region in which the interval size increases in getiin progression beginning at
the hole edge, andetis the number of elements through the half thickness of tinepdete
laminate. For instance, the mesh denoted &8@4 2 adopts two elements in the thickness
direction, that is one solid-shell element is assumed tinethe-thickness of each ply. In
the present analysis a refinement of the mesh in the thicldiesstion was obtained by
introducing the necessary fictitious interfaces in each Phus, the final number of plies
increased, and the interlaminar stress recovery procemesented in sectidn 4.5 could
also be adopted at every fictitious interface to providealatninar transverse stress values.
When introduced, the fictitious interfaces were equallycsplawithin each ply, and one
solid-shell element was still considered through-thekhess of each ply. The number of
solid-shell elements adopted around a quarter of the hge eds 36.
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Figure 4.17: Example of the adopted mesh

Interlaminar transverse normal stress distributions along the radial coordinate at
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0 = 9(r, evaluated in a cylindrical coordinate systen®t,z with the origin in the cen-
ter of the plate, are shown in figure 4118 considering dififemeshes. These distribu-
tions are plotted starting from the hole edge up to one lateittackness = H +D/2, at
the [45°/-45°] interface, and compared with the stress fields providedrireland Pagano
(2001) (not reported) in the singular neighborhood of theipterface and the hole edge.
The present procedure shows excellent agreement with éaav€agano’s distributions for
distances up to approximately one half-ply thickness fro@singular point for all the mesh
considered. The mesh denoted ag3%- 2 does not employ fictitious interfaces, and in-
volves 51840 degrees of freedom in the circular refined reditowever, a mesh-dependent
influence of the stress singularity was encountered instéthdn approximately one half-
ply thickness from the singular point. This behaviour iswhaon figure[4.18 where dif-
ferent through-the-thickness meshes are considered,raimd@ane mesh of 280-nis
assumed. A better agreement is obtained compared to #8922 mesh with larve and
Pagano’s distribution by introducing fictitious interfade the laminate, e.g. the mesh de-
noted as 2430-4 introduce one fictitious interface in the middle of everyela However,
the influence of the stress singularity is not reduced furtlyeintroducing additional fic-
titious interfaces. An analysis of the influence of diffarenplane meshes on the stress
singularity is shown in figure 4.38 A fictitious interface is adopted in the middle of every
layer. The influence of the stress singularity is reduced,aasmooth distribution in excel-
lent agreement with the one showr in larve and Pagano (26@htained by refining the
mesh close to the hole edge, i.e. using the mesgi 30-4.

Interlaminar transverse shear stregsdistributions are reported in figure 4]119. A simi-
lar behaviour to the interlaminar transverse normal siress encountered within approxi-
mately one half-ply thickness from the singular point. Hearea refinement of the in-plane
mesh close to the hole edge in this case only reduced thernc#uaf the stress singularity
but did not completely smoothed out the distribution oledinThis is because a even more
refined mesh is required in this area due to the high in-plaagignt encountered. The in-
plane mesh could be refined further but attention has to libtpdioth the aspect ratio and
distortion level that would be achieved in the solid-shéheents close to the singularity
point. Interlaminar transverse shear strgggistributions obtained considering different
through-the-thickness meshes are shown in figurd 4.20.idrcése a smooth and accurate
distribution is obtained close to the singularity point hyroducing two fictitious interfaces
equally spaced within each ply. However, a good distribuigalso obtained using the
mesh 2430-4.

In order to understand the mesh-dependent behaviour ofrésssingularities encoun-
tered close to the hole edge in the previous analysis batfgrther analysis was also carried
out. A symmetric cross plj90° /0°]s laminate similar to the previous one and subjected to
an uniaxial tensile loadg was considered. This laminate has been analysed by Hu et al.
(1997) using a 3D finite-element (FE) analysis based on datispent formulation em-
ploying a curved isoparametric 20-node element. The tetajth of the panel is 60 mm,
the total width 30 mm, the hole radius R i$2nm, and the ply thickness h is equal ta25
mm. The material properties are the same as those used fd5the-45°]s square laminate
previously analysed.

Given the symmetry of loading, hole location and lay-upyanie-eight of the laminate
was modeled. The in-plane mesh structure was the same asghesed in th¢45°/ -45°)s
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Figure 4.18: Interlaminar transverse normal strasg distributions from the hole edge up
to one laminate thickness at t(45° / —45°) interface of a/45°/ - 45°]s lami-
nate considering different meshés- 90°.
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Figure 4.20: Interlaminar transverse shear stregsdistributions from the hole edge up to
one laminate thickness at tié5° / - 45°) interface of g45°/ -45°]s laminate
considering different meshes= 90°.

square laminate previously analysed, with the addition cbarse part extended in the x
direction since the laminate is not anymore square. Thaigirdahe-thickness mesh adopted
was similar to the one adoptedlin Hu et al. (1997), see fig®t#. 4Thus, the interlaminar
stress recovery procedure presented in se€fidn 4.5 colydbenapplied at the€90°/0°)
interface of the laminate. The selected mesh gives 43200awnhs in the final system of
governing equations, with approximately a second ordéemifice between the sizes of the
elements along the in-plane directions and the bigger an#fwithickness direction. This
mesh was selected in the present analysis because it allmvsarison in point of interest
with the distributions reported in Hu etlal. (1997), and igliso the minimum required to
generate appropriate values of both aspect ratio and tiisidevel of the elements close to
the hole edge. In their work, Het al. adopt a FE model that consists of 4000 elements,
and leading to 56000 unknowns in the final system of govereipgations. This means
that their procedure employ a percentage increment of 23Meitotal number of degrees
of freedom compared to the proposed procedure. They pretidss distributions along
radial lines away from the hole and around the hole at tHg ®0interface, obtained by
averaging the 90and O ply values at the interface, a customary finite element mact
These distributions are obtained near but not at the hole bdgause of the mathematical
interlaminar stress singularity. Hu et al. (1997) obtaigedd agreement with respect to
other finite element approaches, then their distributioadaken as benchmark solutions in
the present analysis.

Normalized radial distributions of the transverse nornrasss,, away from the hole at
three angular positions= 0°, 45°, 90° obtained using the present procedure are presented
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Figure 4.21: Three-dimensional finite element mesh for egéth of the laminate (Hu
etal., [ 1997).

in figure[4.22(d). The, distributions have step gradients near the hole edge andagip

to zero within a ply thickness from the hole. Smooth distiitaus were generated close to
the hole edge due to the refined mesh adopted in this area. vdgveebehaviour similar

to the one encountered in the squit® / —45°]s plate previously analysed was also en-
countered in this case. These distributions are in exdedigreement with the results (not
reported) of Hu et al. (1997). Normalized interlaminar natmstress distributions at the
(90°/0°) ply interface around the hole at different radial distarites the hole edge are
shown in figur¢ 4.22(b). As a mathematical interlaminarssti@ngularity exists at the free
edge between the 9@nd O plies, the computed stresses are presented near but net at th
hole boundary. As the distance from the edge R) increases, the interlaminar stress
rapidly decreases. When—R) = 0.1R, i.e. two-ply thickness away from the hole bound-
ary,ozzbecomes almost zerez;is compressive for most of the region around the hole with
a small tensile region neér= 90°. The largest compressive; occurs at about 60from

the loading axis. The distribution obtained by Bfal. at(r —R)/R = 0.0001 is also plotted
for comparison. The maximum difference between the twaitigions is less than 3% at
the point of maximum value, i.€.= 60°.

Normalized radial variations of the transverse shearstigsat 0 = 10°, 45°, 75° are
shown in figurd 4.23(@). The decay ratio to zero varies Wijtithe maximum decay ra-
tio is atd = 75°, and, despite the refined mesh adopted, oscillations dirpr&tsent very
close to the hole edge for all the distributions, althoughrenegligible compared to the
[45°/ - 45°)s plate priviously analysed. This means that a further refgmnof the mesh
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is required to smooth the distributions out completely. AHar refinement of the mesh
in the through-the-thickness direction of the laminate taphe point where the size of
the element in the through-the-thickness direction is efshme order as the size in the
plane of the laminate, leaded to smoother distributionéigavegligible oscillations. How-
ever, these distributions are in very good agreement wighotiies obtained by Hat al.
Normalized circumferential interlaminar shear stres#rithistionsry, at various distances,
(r—-R)/R, from the hole boundary are shown in figlire 4.2B(b). Simiahe normal stress,
072 the interlaminar shear stresg decreases as the distance (r-R) from the hole bound-
ary increases and becomes small within two-ply thickr{@s25mm) from the hole. The
maximum value is obtained at approximatély- 75° from the loading axes and is7bog
which is about seven times as large as the larggstalue computed for the same distance
r/R=0.000082 from the hole. This comparison indicates that, m¢hse, the interlaminar
shear stressy; is mainly responsible for the onset of delamination in theifteate. The
distribution obtained by Hetal. at(r —R)/R= 0.0001 is also plotted for comparison. The
maximum difference between the two distributions is with# at the point of maximum
value, i.e.d = 75°. Distributions concerning the shear stress compongate not reported
sincer; is very small compared tay, and thus can be neglected. The minimum distance
r/R=0.000082 from the hole to report the circumferential inteiitzan stress distributions
was selected based on the consideration that stress tisni#ldegin after the considered
point and a certain error in the distributions can be intasdl To verify if these oscillations
effect the prediction of delamination initiation, a strémsiture criteria needs to be selected.

From the literature (Brewer and Lagace, 1988) it can be seanthe approach for
predicting failure in such laminates has been that of avegathe interlaminar stresses
over a distance from the hole edge, suggesting that the gahas of the stresses at the
free edge are not too important. Since it is assumed that efeihation initiation is
mainly attributed to interlaminar stress effects,/the @hamd Springer (1986) criterion was
assumed as a failure stress criterion, in which only theractéon between the three out-
of-plane stress components is considered. Moreover, giecaterlaminar shear stress
can be neglected compareddg, the Chang-Springer criterion in a cylindrical coordinate
system can be simplified as:

S (4.70)

(Uzz)2+(7'92)2: { e < 1no failure

z e> 1failure

whereZ is the interlaminar normal strength afds the interlaminar shear strength. For
positive interlaminar normal stress the uniaxial tensile strengt#h should be used while
for negatives, the compressive strengia should be employed.

The average stress failure criteria assumes that delaovinattiates when the stresses
at a characteristic distaneg from the discontinuity meet the failure criter@a{4l.70). €Th
characteristic distanca, is experimentally determined and can vary with lay-up anié ho
size. The average of a stress component is defined as:

1 R+ag d
o= — ij dr. 4.71
Jij ao/R Jij ( )

The following strength propertieg; = 50.6MPa, Z. = 200MPa and S= 103MPa, were



98 4 A Finite Element Procedure for Interlaminar Stress peed

-05 i i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

r— R (mm)

(a) Normalized interlaminar shear stress distributiordifégrent angular positions.

—8#— (r-R)R=0.1

—v— (r-R)/R=0.01

15} —<O— (r- R)/R =0.001

—&— (r— R)/R =0.0001

—>— (r - R)/R = 0.00008

= = = Huetal(r - R)/R =0.0001

TSZIOO

0.5

319'Q
RQ
8

(b) Normalized interlaminar shear stress distributiormiad the hole.

Figure 4.23: Normalized interlaminar shear stress digttibns 7,/ o9 at the (90°/0°) in-
terface of 8/90°/0°]s symmetric laminate.



4.6 Numerical Results 99

used for the carbon fiber-epoxy laminatesindex distributions obtained around the hole
assuming different values af are shown in figure 4.24. The maximum valueeofaries
with ag and occurs in the regiofi= 67.5° - 75° to the loading direction, indicating that
these are the critical locations for delamination grovetmdexes distributions obtained by
Hu et al. are also reported for comparison. Slightly differentuea of the failure index
e are obtained assumiray = 0.0005 between 70and 80, but the percentage difference
is always within 3%. Then, the oscillations of the interlaari shear stress, close to the
hole edge do not seems to influence the failure index distoibuA refinement of the global
mesh produces negligible variations on the results, itidigdhat convergence has already
been reached. Convergence of every single transverse stsegponent was also checked
and achieved. Then, the proposed procedure seems to beatelemhe combined with fail-
ure stress criteria commonly used in the open literaturgedipt onset of delamination in
presence of curved free edges and stress concentratiasdBand L agace, 1988; Coutel-
lier etal.|2006; O'Brien, 1982). Additional analyses shihe done in the future to validate
the proposed procedure for laminated composite platesopith hole subjected to different
loading cases, and employing different failure criteriaikable in the open literature.

The above analysis does not take into account matrix crgckiich may influence
the delamination onset load, and does not attempt to rel@teadjustable characteristic
length used in the quadratic failure criterion to any miceatmanical feature. Moreover, it
is worth to mention that average stress failure critericapgropriate for predicting onset of
delamination, but they are not suitable for failure analygicomposites for which fracture
mechanics based methods are required such as the one gtapKsshtalyan (2001, 2002).

002 T T T T T T T T
ool | == = Hu etal.a0=0.0005 mm i
‘‘‘‘‘ Hu et al. a, = 0.005 mm
0.016 b

Hu et al. a,= 0.05 mm
0.014} | —0—2a,= 0.0005 mm

—4—2,=0.005mm
—o—3a,= 0.05 mm

0.012

0.01

e/crO

Figure 4.24: e-index distributions at t{80° /0°) interface of §90° /0°]s laminate obtained
near the hole edge, and determined using an average strisgan.
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4.7 Conclusions

An efficient three-dimensional finite element procedurecedred to be suitable to perform
reliable future stress analyses of variable stiffness Isamas presented in this chapter. Al-
though the finite element model was generated using a simpletder solid-shell element,
the procedure was conceived to be applicable to general 8B élement formulations. In
order to broaden the range of applications of the presertepliare, the Finite Element
Tearing and Interconnecting method, conceived for pdratieputing, was employed to
solve the system of governing equations obtained from thie faelement model. A post-
processing procedure for appropriate recovery of stresghalitions was also developed. In
particular, an interlaminar stress recovery procedureeived for 3D finite element formu-
lations was proposed. The complete stress states wer@ethtay employing a variational
consistent recovery procedures for the recovery of théanepstress distributions. The pro-
posed stress recovery procedure can be applied indepgndeetery interlaminar surface
of interest. It is based on equilibrium considerations, iwerlaminar stress values are re-
trieved directly at the element’s nodes. Thus, stress coityiat the inter-element boundary
is automatically satisfied. Moreover, the accuracy of tleevered interlaminar stresses is
neither dependent on the knowledge of superconvergentipoiit is sensitive to the stress
recover method employed to obtain element stress disoifgitas opposed to commonly
used stress recovery procedures.

The accuracy of the present procedure was validated by singlynoderately-thick/thin
composite plates of various geometries. The results wargaoced with available exact
and finite element solutions. These comparisons indicdtadexcellent agreement was
obtained with exact solutions, and that convergence washegbusing considerably fewer
degrees of freedom compared to other finite elements proesdhus making the procedure
more suitable for design purposes. The proposed procedigralle to generate a minimum
percentage reduction of 72% in the total number of degreégeflom required to achieve
accurate interlaminar stress distributions comparedterdtnite element formulations. In
particular, the procedure was also as much accurate as edsirass methods without the
need to include stress degrees of freedoms in the solutmreps. It was also shown that
smooth distributions are easily generated without the teedhploy smoothing techniques,
as usually required instead using customary stress regcpvecedures. Thus, the proposed
procedure was able to overcome the problem of severe dsmilaof stress distributions,
especially for thin laminates, usually encountered usimgjamary procedures.

Special emphasis was placed on the problem of a loaded plitamopen circular hole.
Despite the presence of oscillations encountered clodeetbdle edge in the interlaminar
stress distributions, the present procedure could be wspdotluce convergent averaged
interlaminar stresses over a distance from the hole edgen,The procedure could be ef-
fectively combined with an average failure stress critedwgailable in the open literature to
predict delamination initiation in presence of curved feglges and stress concentrations.
In this case, the minimum percentage reduction in the tatailver of degrees of freedom
required to achieve accurate interlaminar stress distobs was reduced to around 23%
compared to other finite element formulations. Howeves #rialysis did not look at ma-
trix cracking, which may influence the delamination onsedlcand no attempt was made
to relate the adjustable characteristic length used in tlaltic failure criterion to any
micromechanical feature.



Chapter 5

Interlaminar Stress Analyses of
Multilayered Laminates having
Non-Conforming Meshes between
the Plies

5.1 Introduction

An efficient three-dimensional finite element procedureceived to be suitable to perform
reliable future stress analyses of variable stiffness lsawas presented in the previous
chapter. Keeping in mind that the aim of the present theds develop a procedure that is
suitable for appropriate analysis of variable stiffnessgis having various geometries, the
applicability of the method also had to be validated for gah8-D shell type structures.
Moreover, by restricting attention to variable stiffnesspls with tow-drops, failure initi-
ation may be primarily due to delamination at the tow-dragrrgich areas, meaning that
this locations need to be modeled accurately.

The triangular shape of the tow-drop locations, known frampgrocedure developed in
Blom et al. (2009), can be modeled properly using triangptésm elements. Assuming
that brick elements are the best option for modeling thesemiof a variable stiffness panel,
the procedure presented in the previous chapter neededéested while considering types
of mesh in the plies obtained as a combination of both bricktedangular prism elements.
The fact that when using the proposed procedure every plyrisidered to be an indepen-
dent subdomain gives the user more freedom in their setectidhe proper mesh to be
adopted in each ply. This means, for instance, that the firshnof the complete lami-
nate for a variable stiffness panel may be obtainable bylsiting the procedure followed
during the manufacturing process by the tow-placement matshhead, as explained in
detail in sectiom 1J6. However, the approach of having aepedident mesh in every ply
leads inevitably to have non conforming meshes betweenutb@émsnains, i.e. the plies. A
schematic example of non-conforming meshes between thseoof two different plies

101
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of a variable stiffness panel with tow-drops is shown in fegBrl. For the sake of clar-
ity, a mesh composed of triangular prism elements is notrtedon the tow-drops areas.
Non-matching node locations at the interface of two adjapbes might lead to interfacial
data distributions, i.e. connecting force distributigm®senting oscillatory behaviours, and
thus providing inaccurate nodal input for the developed-poscessing procedure. Then,
an averaging technique able to smooth out the obtainedkdisons needed to be provided.

Figure 5.1: Schematic example of non-conforming meshegdeet the courses of two dif-
ferent plies of a variable stiffness panel with tow-drops.

In this chapter, the proposed post-processing procedwanibined with the commer-
cial finite element software ABAQUS 6'8 with the aim of broadening the applicability of
the method to general 3-D shell type structures. Moreokeruser would be also enabled
to use tools and features already developed within ABAQ@&awork. Non conforming
meshes between the layers, obtained as a combination ofbbicthelements and trian-
gular prism elements, are also considered. Benchmarkemsbtoncerning conventional
straight fibers multilayered composite plates and sheltstires are analysed, and compar-
isons with ABAQUS'’ built-in recovery procedures and avhigasolutions in the literature
are also reported.

5.2 Interlaminar Stress Recovery Procedure

The post-processing stress recovery technique developbe previous chapter was com-
bined with the commercial finite element software ABAQUS'8'8 A flow chart of the
procedure is given in figufe 3.2. A summary of the differeapstof the flow chart is pro-
vided below.
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The first step is to implement a discrete model in ABAQUS/8tad. Within multilay-
ered laminates, each ply is modelled as a separate body lusiag brick elements and/or
linear triangular prism elements, and the interlaminamutauy is treated as a contact sur-
face. The interlaminar boundary is modelled as a contaa benause the connecting forces
required by the developed interlaminar stress recoverggahore, see sections} can only
be obtained from a contact formulation, and not for instansig a tie constraints formula-
tion, which ties two surfaces together for the duration ef¢hmulation, and the nodes in the
pair are constrained to have the same motion. Once the aeyerformed, the interlam-
inar contact forces are retrievable as part of ABAQUS'’s heeeables output, as opposed
to the connecting tie-constrain forces that are not reabéyas part of ABAQUS 68"'s
nodal variables output. Abaqus/Standard offers sevenatiaco formulations (ABAQUS,
2005). Discretization of the contact pair is of primary imiamce once the master surface
and the slave surface are assigned in the contact pair, fecanditional constraints at
various locations on each surface are applied to simulatéacbconditions. A surface-
to-surface contact discretization is used because thecbobnditions are enforced in an
average sense over the slave surface, rather than at dipoiats, such as at slave nodes, as
in the case of node-to-surface discretization. This give®ee accurate contact pressure ac-
curacy. The mechanical contact properties are defined asfiegl contact formulation, i.e.
tied contact. The tied contact formulation ties two surfafmeming a contact pair together
for the duration of a simulation, and constrains only tratishal degrees of freedom in
mechanical simulations. This mechanical constraint esfment is obtained using a direct
Lagrange multiplier method.

The second step is the recovery, from the ABAQUS's outpudlutae file, of the input
variables required by the variational consistent stressuwery procedure for the in-plane
stresses presented in secfion 4.4, and the interlamiresstecovery procedure presented
in section 45, i.e. nodal contact loads, element connectivity, nodatdimates, and nodal
displacements. These parameters are retrieved using taquaiScripting Interface, an
application programming interface to the models and dat¢d by ABAQUS, based on the
Python object-oriented programming language ABAQUS (2005

In the third step, using the retrieved data, interlamineessies are recovered from the
contact loads that satisfy force equilibrium at the integfaetween two adjacent plies. In-
plane stress distributions are retrieved using the deeelopriational stress recovery pro-
cedure. The complete procedure is implemented within th& M¥B framework.

In the fourth step, once the interlaminar and in-plane stfietds are obtained, the data
are sent back to the Output Database File of ABAQUS using th&gfs Scripting Inter-
face. As a final step, the retrieved stress distributionwvetealized in the updated Output
Database File.

To speed up the complete process, the procedure can be telyptglemented within
ABAQUS environment using the Abaqus Scripting InterfacéisTcan be achieved using
NumPy, a package of numerical extensions for Python theddnices a multidimensional
array type and a rich set of matrix operations and mathealdtinctions. If the user wishes
to take advantage of some MATLAB’s additional functions, iplotting interface, the Py-
Mat package can be incorporated. The PyMat module acts adeafaice between NumPy
arrays in Python and a MATLAB engine session, allowing asrtybe passed back and
forth, and arbitrary commands to be executed in the MATLABkgpacel(Python, 2006).
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Figure 5.2: Flow chart of the complete process.



5.3 Numerical Results 105

5.3 Numerical Results

5.3.1 Simply Supported Plates Subjected to Bisinusoidal Bssure Load

The present procedure was validated using the benchmabiepnoanalysed by Pagano
(Paganda, 1970), where three dimensional exact elastigititisns of idealised simply sup-
ported cross-ply0° /90° /0°] square laminates under bisinusoidally distributed pressad

of intensity p; are provided. This problem was also analysed in sectiér 4ising the pro-
posed procedure developed completely within the MATLABYfeavork. The length and
thickness of the plate is denoted hyandH respectively. The laminate is made of ma-
terial plies that are idealized to be homogeneous, elaaticoathotropic. The following
material properties are used;; = 25GPa, Ez» = Ez3 = 1GPa G12 = Gi3 = 0.5GPg,

Gz3 = 0.2GPa, andvy2 = 113 = 13 = 0.25. Subscripts 1,2 and 3 denote the fibre, trans-
verse and thickness directions, respectively. The recalangartesian coordinate system
used is the same assumed in sectidl4 see figure 4]4. Stresses are normalized according
to the following formulae,

1

(T>/<za T)l/z) = —= (T2, Tyz)7 Ulzz: — 07z,
pzS Pz

(O—;(xa oy 77—)/( ) = i (JXX, Oyy7TXY)
P P&

where theSis the laminate length to thickness rat®x a/H.

The discrete model is obtained using an 8-node linear brickmpatible modes ele-
ment, i.e. (C3D8I). Within the built-in elements of ABAQUS this element was sén
because it possesses good coarse mesh and distortionitinggnsroperties for a large
range of length to thickness ratios of the laminate. Morediés element has very similar
properties to the solid-shell element developed in seidn This is because the class of
mixed assumed strain methods encompass, as a particubaticaglassical method of in-
compatible modes. Unless differently stated, the in-ptaesh consists of 12 12 elements
for each ply. Conforming meshes are initially considerdue minimum required number of
elements in the thickness direction of the laminate is thvdeile this is sufficient for accu-
rate interlaminar stresses, it does not allow detailecesan of their through-the-thickness
variation, as shown in section6!1. The values of transverse stresses in the middle of every
layer are also reported in the case under considerationsana ,consequence, three more
mathematical interfaces are required in these locatiogiséoa total number of six elements
through-the-thickness of the laminate.

Laminates of length to thickness rati§s= 20,50,100 were analysed and the results
calculated at several points of interest are reported ief@all. Compared to Pagano’s exact
solutions, excellent agreement was obtained for all thesidemed cases. The percentage
error of the recovered stress values with respect to thet ecdution is always less than
1.3%. Convergence analyses of the interlaminar stregsemdr, at the[0°/90°] inter-
face obtained considering laminates of length to thickmais S= 20 and 100 are shown
in figure[5.3. Excellent agreement with Pagano’s exact mmlusmoothness and fast con-
vergence were obtained. A laminate of length to thicknetss &= 50 was also considered
to demonstrate the accuracy of the proposed proceduredtyzing moderately thick lam-
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(a) Convergence of the interlaminar normal stre§swith different in-plane meshe§=
20.

0.1667)

(0,y/a,z/H

T
yz

-0.035 i i i i

0.5 0.6 0.7 0.8 0.9 1
yla

(b) Convergence of the interlaminar shear stn§§with different in-plane mesheS~= 100.

Figure 5.3: Convergence analyses of the recovered inténantransverse stresses at the

[0°/90C°] interface of a[0°/90°/0°] laminate obtained considering different
length to thickness ratio S.
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Table 5.1: Recovered stress fields considering differdoiegof length to thickness ratio S.

S 7—)/(2(07 %a 0) T)//z(%a 0,0) U/zz(%a %a H/6)
20 EXACT 0.3846 0.0938 0.7398
EQUILIBRIUM 0.3844 0.0937 0.7488

50 EXACT 0.3934 0.0842 0.7406
EQUILIBRIUM 0.3930 0.0841 0.7491

100 EXACT 0.3946 0.0828 0.7407
EQUILIBRIUM 0.3931 0.0822 0.7481

inates. Through-the-thickness distributions of the lat@inar transverse shear and normal
stresses obtained using the proposed method, labelled dd_EBRIUM, were compared
with Pagano’s exact solution at points of major interes,respectively figurds 5.4 apnd b.5.
Excellent agreement and fast convergence were achievédidiire aistributions. Through-
the-thickness distributions obtained using different ABAS’s built-in solid elements and
associate post-processing procedures are also reportedrfparison. The adopted ele-
ments were respectively, the 8-node linear brick inconppatnmodesC3D8I, that is the
same adopted in the proposed procedure, the 20-node goauhiak C3D20R, and the
linear 8-nodeC3D8R. Stresses are recovered at integration points using catist mod-
els derived from either variational principles or other rgyelaws in the post-processing
procedures of ABAQUS associated with each element (ABAQRI®5). Then, stresses
evaluated at the integration points are extrapolated a¢lgmaent’s nodes using the shape
functions. Neither the lineda€3D8R nor theC3D8I elements provided single valued re-
sults at the interfaces, meaning that a through-the-tleiskmefinement of the mesh was
required. It is worth pointing out that the proposed proceduas able to improve consid-
erably the accuracy of the response obtained using theib@BD8I element compared to
ABAQUS's built in stress recovery procedure. The distritns obtained using the3D8I
element also explains the reason why the variational ctamgistress recovery procedure
developed in sectidn 4.4 was only adopted for the recovetiiefn-plane stress distribu-
tions. This is because the recovery of the transverse disisgutions in low-order for-
mulations based on mixed assumed strain methods obtaiiegl aisstomary procedures,
i.e. constitutive relations or variational procedures) &zad to inaccurate distributions,
as shown clearly in figure 3.5, i.e. ABAQUS / C3D8I. It is alsontin to highlight that
the stress recovery procedure associated with the 8-nioglarlbrick incompatible modes
C3D8I element in the ABAQUS framework is the approach successfiséd by Simo and
Armero {1992) in which an enhanced displacement gradieadsamed, as opposed to the
variational procedure adopted in the present thesis wkibased on the enhanced assumed
Green-Lagrangian strains. This means that for linear aealysuch as the present one, both
procedures are exactly equivalent. Since in this chaptgrimear analyses are considered,
henceforth the in-plane stress distributions are retdexethe proposed procedure using
the built-in post-processing procedure of ABAQUS assedatith the adopte@3D8I el-
ement to reduce the computational time. The quad@R2B20R element did not produce
an accurate estimation of the transverse shear s;r;ﬁgﬁhe percentage error at the point
of maximum values, i.ez= 0, compared to the exact solution wad®%. An appropriate
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Figure 5.4: Comparisons of the through-the-thicknessrithistions between the interlam-
inar shear stresses obtained using the proposed procedwsiag different
ABAQUS'’s built-in elements and associate post-procesgmgedures, and
Pagano’s exact solution, S 50.
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Figure 5.5: Comparisons of the through-the-thicknessrithistions between the interlam-
inar normal stresso’,, obtained using the proposed procedure, using differ-
ent ABAQUS's built-in elements and associate post-pranggsocedures, and
Pagano’s exact solution, S 50.

response was obtained instead for the interlaminar stjeand normab?’, stresses. Iden-
tical in plane stress distributions to the ones shown in@eethere obtained. Hence, these
distributions are not shown in the present analysis.

The aforementioned results were obtained by adopting odidi@aal mathematical in-
terface in the middle of every ply to also provide intralaaristress values at these points.
However, these mathematical interfaces were not requoeathieve convergence in the
retrieved interlaminar stress distributions, as alreddywvh in sectiof 4.6]1. The proposed
procedure uses a model with 4050 degrees of freedom andsstt@iverged results, whereas
the ABAQUS model, using quadratic elements, has 17595 degrfreedom but still ob-
tains inaccurate interlaminar stress distributions. Théans that the proposed procedure
was able to generate a percentage reduction of 77% in tHentoteber of degrees of free-
dom required to achieve accurate interlaminar stresshuitions compared to ABAQUS's
quadratic formulation that still fails to converge.

Analysis considering Non-Conforming Meshes between the iek

Non-conforming meshes were also considered ff* 890° /0°] square laminate of length
to thickness ratics = 50. One fictitious interface was considered in the middlevafrg
ply, thus giving a total number of six plies. An example of theshes adopted in two
adjacent plies is shown in figure 5.6. Assuming that the cofitite layers starts from the
bottom of the laminate, a regular mesh composed of rectan@8D8I elements is adopted
in layers 2, 4 and 6. A mesh obtained as a combination of libeak C3D8I elements
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Figure 5.6: An example of non-conforming meshes adoptedaratijacent plies.

and linear triangular prist@3D6 elements is assumed in layers 1, 3 and 5. This kind of
mesh was selected to simulate the tow-cut in the areas aabe tsides and corners of a
variable stiffness panel, which makes triangular prismmelets suitable for a reliable finite
element model. Moreover, the adopted mesh schematicaltgsents, without considering
tow-drops or tow-overlaps regions, possible courses inrabig stiffness ply oriented at
90, or 0=, i.e. layers 2, 4 and 6, in contact with courses oriented atd5layers 1, 3 and
5. However, in layers 1, 3 and 5, although the courses candugtth to be oriented at 45
with respect to layers 2, 4 and 6, the material propertiesidened were still the ones with
fiber orientation of 90 to compared the results with the add exact solutions. This does
not affect the reliability of the approach since the onlyfetiénces with respect to future
variable stiffness panels analyses are the material piiepeat the integration points. In
a real variable stiffness panel, plies having the same tadiem will also have conforming
meshes at their interface. However, to validate the mettoglss distributions will be shown
atz= 0, that is the location where maximum values of the intenteanshear stresses are
achieved. In order to show that the proposed procedure wirdgerly at the location of
major interest, i.ez= 0, non-conforming meshes were adopted in layer 3 and 4,dkgsr
of the material orientation. Resin-rich areas in tow-stddaminates have to be modeled
using triangular shape elements, as explained in seCii@n The selected meshes also
help us to understand if ABAQUS'’s triangular prisb3D6 element is suitable for being
combined with ABAQUS's linear brickC3D8I element, in particular close to areas where
the boundary conditions are applied.

Distribution concerning the transverse shear strésand the transverse normal stress
o4,0btained az = 0 andx/a = 0.5 are shown in figurle 5. 7. Different meshes are considered
in the plots: e.g the lab& NC-20/28 denotes non conforming meshes between the plies,
where 20 indicates the number of triangular prie8D6 elements adopted in each side of
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the layers 1,3 and 5, and 28 indicates the number of lineak @3D8I elements adopted

in each side of the layers 2,4 and 6. The laB€l-40X40 denotes conforming meshes
between the plies where 40 linear bricRD8I elements are assumed on each side of all the
six plies. In all the contact pairs it is assumed that the eramtrface adopts the mesh with
all brick elements. Then, layers 2, 4 and 6 have to adopt essepanesh compared to the

other layers for accurate contact simulatidns (ABAQUS,5)00
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Figure 5.7: Transverse stress distributions obtained ateréng both conforming and non-
conforming meshes between the plies.
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From the plots reported in figuke .7 it is clear that osaltgatbehaviours were encoun-
tered in the retrieved transverse stress distributionswrloe-conforming meshes between
the plies were adopted, thus leading to inaccurate regtdiaever, these oscillations seem
to have the same trends as the distributions obtained usengdnforming meshes, used
as reference solutions. Then, an averaging technique weasoged to smooth out these
distributions. The developed technique consists of awegatpe stress values obtained in
each node with the stress values obtained in the nodes ofitheusding elements sharing
the node under consideration. The stress averaging isideddn the following paragraph.

Consider a corner section of the layer where a mix of rect@mgnd triangular elements
are used, see fi§._5.8. By assuming thais the nodal component of the stress that has to
be averaged, the averaged stress compofagptis obtained as follows:

¢ f2AoW + fgPoWg + foAoW + T2 AW + F4AW + foAgw + f4AsSWs + f5Asws N
9avg —
Aot

N feAsWs + foAsws + feAsWs + F7AsWs + faAgWs + foAgWs

Aot ’

(5.1)

wherew; is the weight of the nodal components on the triangular eftgmesas, equal té,

Ws is the weight of the nodal components on the square elemeas apbtained aﬁV Nid A
whereN; is the isoparametric shape function associated with the moder consideration
andA is the element area, aigy is the total area of the elements surrounding the node in
which the averaging procedure is applied. This procedunebesiteratively used until the
level that proper distributions are achieved.

Figure 5.8: Convention used in the adopted averaging teqmi

The validity of the developed averaging procedure is shawfigure5.9, where the dis-
tributions shown in figure 517 are now averaged using thegeeg technique. These inter-
laminar transverse stress distributions were obtainedyssiinear interpolation for the trac-
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tion distribution over the surface under consideratiorbfath triangular and quad elements.
This was achieved by adopting the classical linear isopatarrshape functions assumed
for the displacement field on the triangular areas and glaaeiral areas. In these plots the
labelENC-20/28-nl still denotes the case in which non-conforming meshes letile
plies are adopted, with the additional parametedenoting the number of iterations per-
formed using the proposed averaging technique. The prd@esgaging technique was able
to generate smooth distributions in excellent agreemethttvé ones obtained in the case of
conforming meshes, i.&C-40X40 within three/four iterations, depending on the mesh as-
sumed. For instance, the percentage difference at poimsjoir interest with respect to the
distributionsEC-40X40 obtained using the me&NC-20/28-n3 or ENC-20/24-n4
was always within 3%. The percentage difference was redwbesh refined meshes were
considered, and dropped to less than 0.5% using the B&KD-40/56—n3. However,
much more refined meshes had to be adopted compared to camjamashes between the
plies, and inaccurate stress values were generated in$keothigh gradients close to the
boundaries of the laminate due to the iterations perforrasdshown in figur@€ 59 An
improvement close to the boundary was obtained using theeefnestENC-40/56—-n3
compared to both the meshE8IC-20/28-n3 andENC-20/24-n4, but the percentage
difference aty/a = 0 was still not negligible. Then, more refined meshes weraired to
obtain appropriate values of the transverse normal stfesdso close to the boundaries of
the laminate.

Similar trends in the transverse stress distributions wetained using the ABAQUS’
built-in variational recovery post-processing procedamnbined with the developed av-
eraging technique, as shown in figlire 5.10, ENC-40/56—n3-ABAQUS Although
the trends of these distributions were similar to the distions reported in figure 5.9, a
refinement of the mesh was still required to achieve convergef the retrieved transverse
stress values. These distributions were not as much aecasathe ones obtained using
the proposed interlaminar stress recovery procedure, lEadst because stress recovery
procedures adopting extrapolation techniques from sopesrgent points required much
more refined meshes through-the-thickness of the lamingtevide accurate interlaminar
stresses (Dakshina Moorthy and Reddy, 1999).

The in-plane stress), distribution obtained at thgd° /90°) interface, i.e. z/H= 0.1666,
using the proposed procedure combined with the developdging technique is shown in
figure[5.11. In this case a good distribution was obtainedg.igie meste NC-20/28-n0
that does not employ the developed averaging technique.p@&teentage difference with
respect t&=C-40X40 at points of major interest was always less than 2%.

5.3.2 Varadan and Bhaskar’s Cylindrical Shells

Three dimensional elasticity solutions for finite lengtbss-ply laminated cylindrical shells
have been considered by Varadan and Bhaskar (1991), see[fgi#, with simply sup-
ported ends subjected to transverse sinusoidal pressilre iaternal surface:

zZ

. mmrz
P =Pt smT cosnd, (5.2)

wherem= 1 andn = 4. Varadan and Bhaskar’s solutions were taken as benchrolurk s
tions to validate the proposed procedure for cylindricallsieometries. In this regard, the



5 Interlaminar Stress Analyses of Multilayered Laminatagiing Non-Conforming
114 Meshes between the Plies

0.5

0.4

:O)

0.3

0.2

—&— ENC-20/24-n4|
—<O)— ENC-20/28-n3
—— ENC-40/56-n3 4
—O— EC-40X40

(x/a=0.5, y/a, z/H

o

yla

0.07

:O)

0.06

0.05

0.04
—&— ENC-20/24-n4

—<O)— ENC-20/28-n3
—— ENC-40/56-n3
—O— EC-40X40

(x/a=0.5, y/a, z/H

0.03

yz

T

0.02

0.01

0 Il Il Il \)
0 0.1 0.2 0.3 0.4 0.5

yla

Figure 5.9: Transverse stress distributions obtained gdime developed averaging tech-
nique.
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Figure 5.11: In-plane stressy, distribution obtained at th€0°/90°) interface, i.e. z/H=
0.1666, using the developed averaging technique.

following lamination schemes are considered in detail wela two-layered90/0] shell,
90 for the outer layer and°Ofor the inner layer, and a three-layer@®/0/90] shell. The
individual plies are taken to be of equal thickness. Lengtméan radius of the cylindrical
shell isL/Ryp = 4. The mechanical data ak /Et = 25, G, 1/Etr = 0.5, Gr7/ET = 0.2,
vt = vrt = 0.25. A non-dimensional transverse coordinatearying from-0.5 at the
inner surface to ® at the outer surface is defined for convenience. The \alu® refers
to the geometric middle surface.

Regarding the structural symmetry only an octant of thendylcal shell was modeled
in the finite element analysis. The discrete model was obthirsing the 8-node linear brick
incompatible modes element, i.€C3D8I). The deformed and undeformed configurations
of the adopted model are reported in figure 5.13. The in-plaesh consists of 30 elements
along the cylindrical coordinate and of 20 elements along the longitudinal coordinate
for each ply. Conforming meshes between the plies were derei initially. The mesh
in the through-the-thickness direction of the laminatdesminimum required to apply the
procedure at the points of interest. As for the simply sufgubplate previously analyzed,
one mathematical interface was introduced in the middleefyelayer to provide measures
of intralaminar transverse stresses, thus leading to &yark of mesh for the first layup and
six for the second.

Stress distributions are presented for valueS ©fRy/h = 50 and 100 according to the
following formulae,

0'|{ = UT/PZb17 (TI’/Z7TI’/0) - (lO/PZ&S)(TrLTrQ)a
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Figure 5.12: Varadan and Bhaskar’s circular cylindricalesh

Figure 5.13: Adopted model: an octant of the cylindricallshe
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To2 = (10/Pa )12, (0,07) = (10/PS’) (00, 02).

A three-layered90/0/90] shell of valueS= 100 is first taken into consideration. Compar-
isons between the through-the-thickness variation ofrdmesverse shear and normal stress
fields and the exact solution obtained at points of majorésteare shown, respectively, in
figure[5.14 an@5.15. Through-the-thickness distributimntsined using different built-in
solid elements of ABAQUS with associated post-processhoggriures are also reported
for comparison. As for the simply supported plate analyseseictio 5,311, the adopted
elements were the 8-node linear brick incompatible m&Ri38l, the 20-node quadratic
brick C3D20R, and the linear 8-nod&3D8R. Neither the linea€3D8R nor theC3D8I ele-
ments provided single valued results at the interfacesnmgahat a through-the-thickness
refinement of the mesh was required. Itis clear from thess that the proposed procedure
was able to improve considerably the accuracy of the trasewaress states obtained using
the ABAQUS' built-inC3D8I element. The percentage difference between the stress stat
obtained using the proposed procedure, i.e. EQUILIBRIUM] the exact solution at the
points reported on the plots of figure 5114 &nd .15 was alemsgsthan 1%.

The ABAQUS's quadrati€3D20R element produced a good overall response, but it was
less accurate compared to the response obtained usingdpesed procedure combined
with the built-inC3D8I element. This is because an overestimation of the trarswersnal
stresso; was encountered, meaning that a refinement of the mesh titbegthickness of
the laminate was still required. Moreover, oscillationading to inaccurate results were
encountered in areas where boundary conditions are apfligd is shown in figure 5.16
which shows the circumferential plot of the transverse ralstresss; starting fromd = 0°
up tod = 45° at the[90/0] interface and = L/2 of the cylindrical shell.

The accuracy of the interlaminar stress fields obtainedguisia built-in formulations
and stress recovery procedures of ABAQUS was reduced signify when a two-layered
[90/0] shell of valueS= 100 was considered, see figufes 5.17 [and]5.18. The quadratic
C3D20R element produced a distribution of the transverse sheessstf, that was not as
accurate as that for the three-layered cylindrical sheNjously analyzed, and in particular
highly inaccurate results were obtained for the transvamenal stresw;. This means
that a more refined mesh had to be adopted in the present sniayechieve numerical
convergence of the recovered stress fields compared to tbe-dyered cylindrical shell
previously analysed. This is due to the higher transversesgradients achieved along the
through-the-thickness direction of the laminate in thespre analysis. More demanding
computational resources were required, as opposed to tpoged procedure which was
able to generate excellent results compared to the exadimul completely overlapping
with the exact solution at most of the points shown in figudedsnd 5.1B, using the same
mesh adopted for the three-layered cylindrical shell.

Additional results obtained at points of maximum value gdime proposed procedure
are reported in tab[e 5.2, where results for cylindricallste valueS= 50 are also shown.
Excellent agreement with available exact solutions wetainbd indicating that an appro-
priate response is also generated in the case of modethiekystructures. The aforemen-
tioned results were obtained by adopting one additionaheraatical interface in the middle
of every ply. However, as for the simply supported platedyeseal in section 5.311, these
mathematical interfaces were not required to have accumaidaminar stress distributions.
In-plane stress values for cylindrical shells of valsie- 50 andS= 100 are reported in
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Figure 5.18: Comparison between the through-the-thickmkstributions of the transverse
normal stresss; obtained using different approaches and the exact solution

two-layered90/0] shell, S= 100.

table[5.8. These results also confirmed the accuracy achigvthe proposed procedure in
recovery appropriate stress states in multilayer compteminates.

Table 5.2: Recovered transverse stress fields using diffeamination schemes and values

of mean radius to thickness ratio S.

!

S 7'r/z Tro o-;
(5:—%,45070) (£=0,225°L/2) (£=0,45,L/2)
50 [90/0/90]
EXACT 0.0894 -3.491 -4.85
EQUILIBRIUM 0.0897 -3.466 -4.88
100
EXACT 0.1223 -3.127 -8.30
EQUILIBRIUM 0.1220 -3.102 -8.35
50 [90/0]
EXACT 0.0448 -4.785 -6.29
EQUILIBRIUM 0.0449 -4.736 -6.32
100
EXACT -0.1512 -2.972 -7.71
EQUILIBRIUM -0.1496 -2.937 -7.74

Three-layered90/0/90] cylindrical shells were also analysed using non conforming
meshes between the plies created in the same manner as dahe &mply supported
plate, see figure 5.6, analysed in the previous section.sVease stress distributions along
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Table 5.3: Recovered in-plane stress fields using difféegnination schemes and values of
mean radius to thickness ratio S.

S o) o, T,
(E=F345,1/2) (£=7F3,45,L/2) (£=%3,225°,0)
50 [90/0/90]
EXACT -3.987 -0.0225 -0.0760
-3.930 0.0712 -0.0118
EQUILIBRIUM -3.940 -0.0229 -0.0754
-3.892 0.0705 -0.0117
100
EXACT -3.507 0.0018 -0.1038
3.507 0.0838 -0.0478
EQUILIBRIUM -3.478 0.00187 -0.1030
3.478 0.0832 -0.0472
50 [90/0]
EXACT -0.9670 1.610 -0.3449
8.937 0.2189 -0.0784
EQUILIBRIUM -0.9583 1.6125 -0.339
8.856 0.2145 -0.0773
100
EXACT -0.5759 2.30 -0.3452
5.560 0.1871 -0.1819
EQUILIBRIUM -0.572 2.298 -0.340
5.497 0.185 -0.179

the tangential direction & = 0 andz= L/2 are shown in figure’5.19. The same kind of
non-conforming meshes between the plies used for the sisygported plate analysed in
the previous section were adopted, i.e. figuré 5.6. Assutfiagthe count of the layers
starts from the bottom of the cylindrical shell, a regulasitneomposed dE3D8I elements

is adopted in layers 2, 4 and 6, and a mesh obtained as a cdihioglinear brickC3D8I
elements and linear triangular pris<B3D6 elements is assumed in layers 1, 3 and 5. The
plots in the figure are labeled using the same conventiondntred in sectioh 5.3.1 to
denote conforming and non-conforming meshes.

As for the simply supported plate analyses reported in tle@ipus section, oscilla-
tory behaviours were encountered in the retrieved tragsvaress distributions when non-
conforming meshes were adopted, thus leading to inaccreatdts. Then, the averaging
technique introduced in the previous section was appligtiéaetrieved distributions. A
smooth distribution for the transverse normal strg'ssalmost coincident with the one ob-
tained using conforming meshes, is obtained using the mékE-40/56-n2, i.e. figure
£.13. In the plot concerning the transverse shear strgssi.e. figure[5.1D, a smooth
distribution in excellent agreement with the one obtaingidgia conformed mesh was ob-
tained without the use of the averaging technique, ENC-40/56-n0. However, if
the averaging technique, that needs to be adopted for smgaiht the transverse normal
stresso; distributions, is applied to all the transverse stress camepts, an error would
be introduced in the transverse shear strggslistributionENC-40/56-n0 close to the
boundaries of the laminate, i.8 = 0 andd = 90, due to the high stress gradients achieved
in these areas.

Transverse normal stres$ distributions along the longitudinal direction &t= 0 and
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0 = 45 are shown in figure_5.20. In this case the developed averdgchnique has to
be adopted, and a smooth distribution is obtained using tarations of the averaging
technique, i.e. n2. However, the distribution obtainedig$he mestE NC-40/56—-n2 has

in some of the points shown a percentage differences of 3@#pared to the distribution
obtained using the conforming meBIC-20x 30. Then, a refinement of the mesh should
be considered to reduce the percentage difference betivedwa distributions.

5.3.3 Spherical Curved Surfaces

Analyses concerning the recovery of interlaminar stressitutions in double curved lam-
inates subjected to mechanical loadings are not quite asleldein the open literature due
to the intrinsic difficulty associated with producing artadgl solutions for such structures.
Simply supported square spherical curved surfaces arédawed in this section to provide
reference solutions for future analyses of such lamina@sexample of spherical curved
surface and the adopted spherical coordinate system amnshdigurd5.21. The length to
thickness and shell radii to thickness ratios evaluatechemiean reference surface of the
spherical panel are denoted, respectivelyagih andRy/h.

The mechanical data ai& /Er = 25, G 1/Er = 0.5, Gr1/Er = 0.2, yt =vr7 =
0.25. A three-layered0/90/0] lamination scheme is considered. Ttefiber orientation
is aligned with the spherical coordinat&€li’. The individual plies are assumed to be of
equal thickness. These panels are subjected to a harmatritafion of pressure applied
in correspondence of the external surface, having theviiolig equation:

WL (5.3)
Stop Stop

P§b1 =P,asin

The discrete model is obtained using the 8-node linear Immimpatible mode&3D8I
element of ABAQUS. Unless differently stated, the in-plamesh consists of 38 30 el-
ements for each ply. Conforming meshes between the pliescergidered. As for both
the plates and cylinders analysed in the previous sect@mresmathematical interface was
introduced in the middle of every ply to provide also intralaar transverse stresses, thus
leading to six layers of mesh.

The results are presented for valuesSef ap/h = 50 in terms of the following non-
dimensional parameters:

(7}/9,7}/): L (TI’OvTI’P)vJI{:iaOJO: % :
P P S Pyt sz152

For the reader’s benefit, a non-dimensional through-tiedtiess coordinatevarying from
—-0.5 at the inner surface to.® at the outer surface is introduced to show through-the-
thickness transverse stress distributions. The lengttradiidshell of the generic interface
under consideration are defined, respectivelygaandR:. Since the most severe effects
due to shell curvature are encountered for the transveese siressy,, particular attention
was paid to this component.

Plots OfTr/p evaluated at points of major interest on different integfaare presented in
figure[5.22. Values oRy/ag = 20 and 2 are taken into consideration. Similar transverse
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shear stress distributions to the ones obtained in selcti®d for the simply supported
plate were obtained fdRy/ap = 20. These distributions are shown in figlire %,22here

a similar behaviour between the interfaces without the metiee of severe in-plane stress
gradients is encountered. These distributions were gleditcted by the shell curvature
when a value ofRp/ag = 2 is considered. In this case, different behaviours angstre
states were obtained on the different interfaces. The oecoe of higher in-plane stress
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Figure 5.22: Transverse shear stres,’% distributions obtained on different interfaces at
points of major interest for fyap = 2 and Ry/ap = 20.

gradients especially close to boundaries, as shown in fig@®where the contour plot of
the in-plane stress), is reported, leads to severe gradients for the transveesesss in both
in-plane and out-of-plane directions. The effects of themeere in-plane stress gradients
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Figure 5.23: Contour plot of the in-plane stres§ at£ =0, Ry/ap = 2.

are considered in figuie 524 where the through-the-thiskmariation of the interlaminar
shear stress{p is shown at section A, defined previously in figlire B.22can be seen from
figure[5.24 that the accuracy of the distributions along tiekhess of the spherical shell
is not affected when additional mathematical interfacesiatroduced. In this case three
fictitious interfaces for every layer were introduced footat number of 12 layers of mesh.
This means that the present procedure does not requiredefiashes along the thickness
direction of the spherical shell to reach convergence, @v@nesence of severe gradients,
as instead required using customary stress recovery proeed

A convergence analysis of the transverse stné&atg =0 andTh= ag/2Ry, that is
the location where the most severe in-plane gradient isterteced, was also done and the
results are shown in figuke 5125. It can be stated that a snaigttibution is obtained using
an-in plane mesh of 2828, although a converging distribution can be reached asihyguan
in-plane mesh of 3& 30, i.e.PR/a= 0. Through-the-thickness variations of the transverse
shear stresses, andr;, and the transverse normal streggtaking into account different
values ofRy/ag, are shown,respectively, in figufes 5.26 Andb.27 at pofmsagor interest.
Confirmation of the accuracy of the model is obtained by iasirg the value oRy/ap.
This is because the distributions obtained in figlires 5.4m8dor the simply supported
plate are retrieved also in this case by decreasing, usengarameteRy/ag, the curvature
of the laminate.

Non conforming meshes were taken in consideration alsoisnctise. The same kind
of non-conforming meshes between the plies used for thelgisopported plate and cylin-
drical shell analysed in the previous sections were adopdfigurd 5.6. Compared to
the transverse stress distributions shown in fiflure 5.9heIstmply supported plate case,
the same conclusions can be drawn also in this case congehatransverse normal stress
distributions;. As opposed to the simply supported plate case, the increémére value of
Ro/ag, i.e. the curvature of the spherical curved surface, inteedn-plane transverse shear
stress distributions that present higher gradients clogbe boundaries of the laminate,
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StreSSrr'p evaluated in section A, i.e. figure 522

as shown in figure5.22. This means that, although

smoothhiifbns are obtained also

in this case using the proposed averaging technique witheetfour iterations, depending
on the mesh adopted, compared to the simply supported @laée inaccuracy was encoun-
tered also for the transverse shear stress componentse@kbssboundary of the cylindrical
shells, similarly to what happen for the transverse norriraks component/, see figure

x10°
20 T
O ~
Z‘é;‘ﬁl &=0
5! R /a_=2
150 =4 070 J
i o
/,//// \ﬁv
G) 1 s
g 10t /’7/ RS 1
> ~ 0 - 20x20 e
g — 6 - 22x22 e
e | |- v —24x24] ﬂ's\t‘k |
e 28x28
= y ~ o -30x30 s S
/////’ ~ @ —32x32 Ra
Ol : : : R ]
i
Z/
_Gé I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
P*R/a

Figure 5.25: Convergence analysis of the transverse srtemsa—r’p.



5 Interlaminar Stress Analyses of Multilayered Laminatagiing Non-Conforming

130 Meshes between the Plies
0.56=—
NN
N\ -~ T == -
041~ R i
\ = T -I ==
Q A AN 1
0.3F \ ~ e i
\ = ~ - ~ = = <
o2r " R /a =2 Na T T TR
Do R8T / v T
0.1 - B
|- a-Ryass / ! ‘
W 0F ® - v - ROIaOZlO A v * %
| _ / /
—0.1} // + ~Rfa;=20 /! / ,’ J
o |-»-Rja=100| 4 o . 5
-0.2f s 7 PP St i
/ e - -
~0.3}F / P ~.7 - -7 i
(%) / e A vaSY =>4
, S
-0.4F 7 - = T b
/T
_05.////—’/ i I I I I i L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
T (E,O,aEIZRE)
0.5 B ‘
, ‘\\\ ~ o -Rya=2
041 / NN
, | \ N ~ A -R/a=5
I O 00
03f i i N - v -Ryfa,=10 []
/ ! \ N
0.2F / \ N ¢+ Rja =20 |4
(6} A _ V- > N .
oab . Sl TmellTs - > -Ra,=100 | |
N T~ o - T - — T~
w  of ‘e A T EEN 1
RN / PR
—0.1F RS / //,/: - i
~ 7/ -
» ASy~
-0.2}+ // . //)?:/ (od 4
z
/ 2
-0.3F / v B
[ _bw
—04} / S - ]
1z -
-0.5 $ I I I I
-0.02 0 0.02 0.04 0.06 0.08 0.1
T ® (E,aE/ZRE,O)
Figure 5.26: Through-the-thickness distributions of theavered transverse shear stresses

Tl andrr’IO obtained at points of major interest considering differealues of

Ro/ap.



5.4 Conclusions 131

05 >
_ =z
0.4 SoeTET =
AT e . 3
0.3} B it E
-7 P s
_ - _Z v
0.2 - _Z P |
A v & . I
B -
~ -~ 7 -
0.1 /// ///// /// 4
> -7 _
wooF AT v . e g
e
L7 0 e _e_-R/a=2
-0.1f , o - oo 1
, v _
A/ Y(( . )>/ — A 7R0/a0—5
-0.2 N h . 7 = 7
S ) - v -Rya =10
\ 7
-0.3} » ! p ¢ R /a =20 i
AV O ¢ > 0o
N ~p»-R/a =1
04l VRN >-R/a,=100| |
NN
X
N
-0.5 I \a I I I
-0.5 -0.25 0 0.25 0.5 0.75 1

0’r (E’aZ/ZRE’aK/ZRZ)

Figure 5.27: Through-the-thickness distributions of teeavered transverse normal stress
o} obtained at points of major interest considering differealues of B/ ap.

5.4 Conclusions

The efficient three-dimensional finite element proceduss@nted in chapter 4 was com-
bined with the commercial Finite Element software ABAQUS'8! with the aim of broad-
ening the applicability of the method to general 3-D shgbetystructures. Particular atten-
tion was paid to the recovery of the interlaminar stressesicBmark problems concerning
conventional straight fibers multilayered composite @aad shell laminates were anal-
ysed. In the finite element model each ply was modeled as aatedayer of elements,
and the interlaminar boundary was treated as a contaciceurfde interlaminar boundary
was modelled as a contact zone because the connecting femésed by the developed
interlaminar stress recovery procedure can only be oldam@BAQUS 6.8 using a con-
tact formulation, and not, for instance, using tie conatiai Conforming meshes between
the plies were initially considered, and the finite elemewidei was obtained using the
ABAQUS’s built-in solidC3D8I element. The results were compared with ABAQUS'’s built
in solid elements and associate post-processing proced@BAQUS’s post-processing
procedures are based either on stress recovery from thétatime relations or on varia-
tional consistent recovery. This depends on the elememt'ailation. The proposed pro-
cedure was able to improve considerably the accuracy ofefgonse obtained using the
ABAQUS's built-in C3D8I element compared to ABAQUS's built-in stress recovery proc
dure. Smooth and accurate interlaminar stress distribsiticere obtained using a consid-
erable reduced number of degrees of freedom, especialipdidtilayered shell structures,
even compared to quadratic formulations. The proposecepioe was able to generate a
minimum percentage reduction of 77% in the total number gfeles of freedom required
to achieve accurate interlaminar stress distributionspayed to ABAQUS's formulations
that still failed to converge. Moreover, interlaminar donity of the interlaminar stresses
was directly satisfied without the need to employ a refinedmtiesough-the-thickness of
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the laminate, as usually required using customary proesddrhe reliability of the proce-
dure was also validated by comparing the results with ex@atiens available in the open
literature.

Non conforming meshes between the plies were also considd?bes with a regu-
lar mesh composed @3D8I elements were alternated at plies having a mesh obtained
as a combination of linear brick3D8I| elements and linear triangular prisg8D6 ele-
ments. The triangular pris@3D6 element was employed because it might be suitable for
modeling both the areas close to the sides of a variableasiff panel and the resin-rich
areas generated during the manufacturing procedure ofablastiffness panel. Then, the
C3D6 element needed to be tested in combination with ABAQUISE8I element, that
was shown to be a sound element for modeling composite ldesirégsewhere. Oscillatory
behaviours were encountered in the retrieved transvemsssstlistributions for both plate
and shell laminates. Thus, inaccurate nodal values of tiegl@aminar transverse stresses
were obtained. However, these oscillations showed the sameds of the distributions ob-
tained using conforming meshes, that were taken as refemiations. Then, an iterative
averaging technique was developed to smooth out the disityits obtained.

The developed averaging technique consists in averagangttess values obtained in
each node with the stress values obtained in the nodes ofitheusding elements shar-
ing the node under consideration. In general, smooth andgratecdistributions were ob-
tained using the proposed averaging technique within tfoeeiterations for both plates
and shell laminates. However, much more refined meshes hhd &wlopted compared
to the cases having conforming meshes between the pliesedMer, inaccuracies in the
retrieved transverse stress distributions were genecétsd to the boundaries of the lami-
nates. This means that the proposed procedure needs to tmvedgor analyses employ-
ing non-conforming meshes between the plies of conventimoraposite laminates. It is
extremely necessary to pay attention to this aspect befowingto the analysis of variable
stiffness panels. In fact, the demanding computationale®s required, and the inac-
curacies generated close to the boundaries of conventimmahates make the proposed
procedure not enough accurate for reliable interlamimasstanalyses of variable stiffness
panels. Moreover, the number of iterations that would beired to smooth out the inter-
laminar stress distributions obtained in the analyses nébke stiffness panels can not be
directly deduced from the analyses reported in this chaptegn, interlaminar stress anal-
yses of variable stiffness panels would not bring in at ttags of the work any additional
understanding concerning the accuracy of the proceduteeianalysis of such laminates.
This is also because no comparison with available interlanstress data can be made.



Chapter 6

Recommendations and Future
Developments

This thesis covers the structural analysis of conventistralght-fiber plate and shell lam-
inates performed using a three-dimensional finite elememiputational procedure devel-
oped to perform reliable future stress analyses of varistiffeess panels. This is because
an accurate finite element modeling that supports apptepaizalyses of such laminates
would be extremely difficult to obtain using customary prwes. In particular, variable
stiffness panels have manufacturing characteristicd) agccourse edges, tow-drops and
overlaps, that lead to amplification of the interlaminaesses at the interface between
the plies, and that possibly causes delamination to be theéndmt failure mode in these
configurations. Particular attention was paid to accurdegliaminar stress recovery of con-
ventional composite laminates. Although a direct analgEs variable stiffness panel was
not performed during the research reported in the presesigthseveral aspects concerning
conventional composite laminates were considered to atithe procedure. Additional
aspects arising for a proper modeling of variable stiffi@ssnates were also taken into ac-
count. The lessons learned, recommendations, and futatieces in this line of research
are presented in the following paragraphs.

6.1 Pre-Processing Procedures

Two finite element pre-processing procedures were devdlbpsed on the idea of model-
ing a variable stiffness laminate by simulating the procedallowed during the manufac-
turing process by the tow-placement machine’s head. Thiepiiccedure was developed
within the MATLAB framework and was validated by analysingiltiiayered composite
plate laminates. The second was developed within the ABAQat8ework with the aim of
broadening the applicability of the method to general 3-Bliglipe structures. The second
procedure was conceived such that it also enables the ussetimols and features already
developed within the ABAQUS framework. Both the procedwere based on finite el-
ement models adopting linear solid elements. In particalaimple low-order solid-shell
element formulation based on the class of mixed assumed stethods presented by Simo

133
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and Rifai (1990), i.e. EAS formulation, was used in the preepssing procedure developed
within the MATLAB framework. This element was selected hesmit has an enhanced ac-
curacy for coarse meshes and distortion insensitivity @rtigs for a large range of length
to thickness ratios of the laminate. Moreover, locking pireana are solved without the
employment of reduced or selective integration technigibs is remarkable because low
order reduced-integration elements may show hourglashamésms from spurious energy
modes due to rank deficiency, thus leading to inaccuratdtsesthis kind of element was
not available in the library of ABAQUS's built-in elementk the ABAQUS's framework
the discrete model was obtained using an 8-node linear miackmpatible modes element,
i.e. (C3D8I). This element was chosen because the class of mixed asstraiedhseth-
ods encompass, as a particular case, the classical metirambaodpatible modes. However,
enhanced assumed strain methods are recommended for mMarigéy of problems com-
pared to elements based on the method of incompatible mbdas:e developments in this
area might be addressed towards the implementation of ¢meegit based on the assumed
enhanced strain method and presented in section in theyibfaABAQUS’s built-in ele-
ments.

Both the procedures were developed in such a way that ang-tlineensional formu-
lation for the through-the-thickness form description t@nadopted in the finite element
model. This means that models based on more advanced theaiethe Layer-Wise the-
ories or quadratic three-dimensional formulations, can Ak adopted. For instance, in the
research reported in this thesis particular attention veés o develop models for accurate
interlaminar stress recovery. Intralaminar stress valua® also retrieved by introducing
fictitious interfaces in the locations of interest. Howewdgher order solid elements or
Layer-Wise formulations may be adopted in analyses of taykr composite laminates
requiring more accurate estimations of intralaminar stoéstributions.

Non-conforming meshes between the plies were also corsldethe ABAQUS's pre-
processing procedure. Plies with a regular mesh composedal elements were alter-
nated at plies with a mesh obtained as a combination of lingek C3D8I elements and
linear triangular prisn€3D6 elements. It is worth to underline that t68D8I element and
theC3D6 element are based on different formulations. This is bee#uweC3D6 element is
not based on the classical method of incompatible modeghameduced integration tech-
nigue is adopted to eliminate locking. Although the comHinsed of these elements leaded
to accurate results in the mechanical analyses performeetitior{ 5.8, it is recommended
to validate the procedure further considering differentlsi of analyses. For instance, dif-
ferent loadings, i.e. thermal loadings, and different coration of non-conforming meshes
may be considered for additional verification. Non-line@algises should also be addressed
in the future.

The compatibility between the plies of the composite pliesgsed were imposed using
different methods in the two pre-processing procedurethdmprocedure developed within
the MATLAB framework, compatibility between the subdonminas reestablished using
Lagrange multipliers. Then, the final system of governingggipns was solved using a pro-
cedure for distributed computing generally employed in dondecomposition methods,
i.e. the finite element tearing and interconnecting (FETéfhod. The simultaneous use of
multiple compute resources to solve a computational probile. parallel computing, defi-
nitely broaden the range of applications of the proposedgmtore in numerical simulations.
In particular, the choice to implement the FETI method wasstdlits parallel scalability and
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its ability to outperform several popular direct and itemtalgorithms on both sequential
and parallel computers. This method was tested by analysatg laminates with different

geometries and conforming meshes between the plies. Sraodtlccurate stress fields
were obtained. This procedure is also easily extendibletegsonforming meshes by re-
placing the Boolean matrices appearing in the final systegowérning equation$ (4.50)

with, for instance, matrices obtained using the Mortar ditement method (Puso, 2004).
Further research on this aspect is highly recommended forddevelopments in the field

of non-conforming meshes between the plies of multilayenpasite laminates.

An alternative procedure to the previous one was develojtbitvthe ABAQUS frame-
work. In this case compatibility was enforced using a carftarenulation between the plies.
Excellent stress fields were obtained for both plates, tivese almost identical to the re-
sults obtained using the first pre-processing procedurt shell laminates in the case of
conforming meshes between the plies. However, oscillatehaviours were encountered
in the retrieved stress distributions, in particular trensiverse stress distributions, in the
case of non-conforming meshes between the plies. Thus;urate nodal values of the
stresses fields were obtained. An averaging technique wadoged to smooth out the
stress fields distributions. In general, smooth and aceutiatributions were obtained by
using the proposed averaging technique within three-tewations for both plates and shell
laminates. However, much more refined meshes had to be adioptee finite element
model compared to the conforming meshes between the phidsnaccuracies in the re-
trieved transverse stress distributions were generates ¢b the boundaries of the lami-
nates for some of the transverse stress components. Thisried further research should
be addressed towards improving ABAQUS's contact formatatiAn improvement may
be obtained, for instance, by using a Mortar's contact fdaton (Laursenl, 2003). An-
other option would be to also implement the complete firstgraeessing procedure within
ABAQUS framework. In this case a tie-constrain formulatmam be adopted ABAQUS
(2005%), and the FETI method could also be implemented wf8BAQUS to perform par-
allel computing. Moreover, parallel computing is strongdgommended in the analyses of
variable stiffness panels since appropriate stress agmbfsuch laminates require accurate
modeling. This leads to finite element models having a latgeber of degrees of freedom.
Both the procedures outlined in this thesis could then ledemnd compared for different
kind of laminate configurations, loadings, etc.

The idea of meshing in a variable stiffness laminate everylsicourse using solid-brick
elements, and both the tow-drop/tow-overlaps locatiortstae final part of the courses
close to the edges of the laminate using triangular prisrmetes requires a reliable mesh
generator to be developed. The mesh generator has to priindequired mesh for any
kind of configuration. Then, a mesh can be inherently adoiptedch course lied-down by
the tow-placement machine’s head based on the assumedusmiost method. Thus, the
mesh of the complete laminate can be obtained by simulatiegptocedure followed by
the tow-placement machine’s head during the manufactyriogess. Within the ABAQUS
framework it is possible to import the geometry of each plingghe partition method
(ABAQUS,|2005). Then, it is possible to control the mesh ia tkesired manner by using
ABAQUS'’s mesh generator, i.e. hex-dominated element shagestructured mesh control
(ABAQUS, [2005). However, ABAQUS’s mesh generator has todsted with different
variable stiffness panel configurations since numericalas could arise. Future research
should be also addressed at the development of a reliable geeerator, designed specifi-
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cally for the procedure proposed in this thesis.

6.2 Post-Processing Procedure

In this thesis attention was also paid to develop an accp@deprocessing procedure for
accurate interlaminar stress recovery. The proposedam@rar stress recovery procedure
has shown several advantages compared to customary presefor instance, this proce-
dure does not rely on extrapolation techniques from supevergent or integration points,
as usually done using customary procedures. Interlamiresssvalues are retrieved directly
at nodes and stress continuity at the inter-element boynsl@automatically satisfied. Ex-
cellent agreements were obtained in the retrieved inténianstress distributions with exact
solutions for both plate and shell structures. Convergarasereached using considerably
fewer degrees of freedom compared to other finite elemeoisepures, thus making the
procedure more suitable for the design of such laminategadtalso shown that smooth in-
terlaminar stress distributions were easily generateldowitthe need to employ smoothing
techniques, as usually required when using customarysstegsvery procedures. More-
over, the procedure was shown to be as accurate as commeulpassumed stress methods
using coarser meshes, and without the need to include steggses of freedoms in the
solution process. This is definitely a plus compared to sthesed formulations which
involve inverse constitutive relations that are generally available in the case of non-
linear analyses. The procedure could be also effectivaiyined with an average failure
stress criterion to predict delamination initiation in geace of curved free edges and stress
concentrations, i.e. laminated composite plates with dp#e subjected to uniaxial ten-
sion. However, it is recommended to run additional analysdbe future to validate the
proposed procedure for laminated composite plates witim dyoée subjected to different
loading cases, and employing different failure criteriaiable in the open literature.

Oscillatory behaviours were encountered in the retrievaast/erse stress distributions
using the pre-processing procedure developed within tha@BS framework in the case
of non-conforming meshes between the plies. The develogadging technique was able
to smooth out the distributions obtained. However, muchewefined meshes had to be
adopted compared to the ones employed in the case of comfgpmméshes between the
plies. Moreover, inaccuracies in the retrieved transvstsess distributions were generated
close to the boundaries of the laminates. This techniquétbigimproved in the future by
considering in the averaging procedure not only the nod#sasdurrounding elements shar-
ing the node under consideration, but also the nodes of émeegits sharing the surrounding
nodes of the node under consideration. This would allow tebestimation of the averaged
nodal value to be obtained since more nodes would be invatveree averaging procedure.
Other possible options are (i) to implement a different agerg technique, for instance one
among the procedures presented in se¢fioh 3.2, (ii) to imgpABAQUS’s contact formu-
lation, as mentioned in the previous section, (iii) to impént within ABAQUS the FETI
method in combination with the Mortar method, and enforeedbmpatibility between the
plies using tied constraints. These are three suggestiabsiave to be considered before
moving to perform analyses of variable stiffness panels.

The pre-processing procedure developed within the ABAQd®éwork was combined
with the post-processing procedure developed within thd M#B framework. This proce-
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dure could be also implemented entirely within the ABAQU 8immment using the Abaqus
Scripting Interface to speed up the process. This can bewahusing NumPy, a package of
numerical extensions for Python that introduces a multigigional array type and a rich set
of matrix operations and mathematical functions. In casaiier wishes to take advantage
of some MATLAB'’s additional functions, i.e. plotting inteice, the PyMat package can
be incorporated. The PyMat module acts as an interface baetNemPy arrays in Python
and a MATLAB engine session, allowing arrays to be passell aad forth, and arbitrary
commands to be executed in the MATLAB workspace (Pvthong200

6.3 Future Challenges

The three-dimensional finite element computational sgsatieveloped in this thesis was
validated for conventional composite laminates. Howetlas, procedure can be also used
in the analysis of variable stiffness panels with tow-di@though certain features in the
procedure have to be further validated and improved, asestigd in the previous sections.
Regarding the analysis of variable stiffness panels withdoops, the results reported in the
work ofBlom et al. [(2009) can be taken as reference solufionadditional validation of
the procedure. Both linear and non-linear analyses of suminites should be considered
for different kind of loads. For instance, thermal loadimggy be taken into consideration
to simulate the curing process of variable stiffness parielthis manner it would be pos-
sible to evaluate the impact of the residual stresses intthetsral performances of such
laminates.

The proposed procedure might also be easily extendiblestanhlysis of variable stiff-
ness panels with overlaps. This is because the tow-oveataps can be meshed using trian-
gular prism elements, but oriented differently comparetti¢oorientation that the triangular
prism elements assume in the model of the tow-drops areasiéat ply drop-off is shown
in figure[6.1. However, the method should be validated firasm®ering benchmark prob-

Stagger
distance
dropped — &
"N .

Figure 6.1: A typical ply drop-oft (Mukherjee and Varugh¢2e01)).

lems concerning ply drop-off areas of laminated compoaitgihates subjected to different
loads. Then, the results should be compared with availailgigns in the open literature
(Harrison and Johnson, 1996; Mukherjee and Varughese))2abi proposed procedure
combined with integrating geometric design tools such asl8And fiber placement simu-
lation software might be the right tool for an accurate desifg variable stiffness laminate.
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