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Summary 
New and existing bridges in the Netherlands must abide by structural safety codes, such as the 
Eurocode. In this code, structural safety is expressed through the reliability index 𝛽. For certain 
reference periods a threshold value for 𝛽 exists. When applying prescribed load models given in the 
Eurocode, the structure is guaranteed to at least fulfil to this threshold value. However, these 
prescribed load models are deterministic in nature and can be rather conservative for bridges in urban 
areas. 

This thesis focusses on creating a probabilistic load model based on actual traffic loading by making 
use of a camera system that registers license plates to check whether the vehicle is allowed to enter 
the inner city of Rotterdam due to environmental zones. From this camera system data, technical 
information such as wheelbase, legally allowed axle loads, gross vehicle weight and such can be 
extracted since they are coupled to license plates. This technical information is then used to create 
load models based on actual registered traffic. This load model represents trucks as point loads with 
interspatial axle distances. In total, one year of collected data by the camera system is stored, called 
the LP data. This load model is then used in a probabilistic reliability analysis as a load variable input. 

When comparing the LP data with available weigh-in-motion (WIM) data from two measurement 
locations in Rotterdam, it turned out that the LP data does not incorporate under- and overloaded 
axles and was overestimating the accompanying reliability index. Hence to account for this, an axle 
load factor 𝜂  is introduced to simulate under- and overloaded axles. This factor 𝜂  is based on the 
WIM data and is different for each vehicle type. With the use of this factor, a second, improved load 
model is constructed. This is referred to as the modified LP data.  

A third and final load model was constructed from the available WIM data, called the WIM model. For 
each of these three load models the load effects were calculated, and distributions were fitted 
accordingly for simulating several 25 year periods of traffic. The output of these load models is a load-
effect maxima distribution that can serve as a direct input in a probabilistic reliability analysis.  

With these three load models, a hypothetical slab with a span length of 10 m was probabilistically 
analysed where the LP model, the modified LP model and the WIM model resulted in reliability indexes 
of 4.8, 4.1 and 3.7 respectively. When compared to the requirement in the Eurocode, all load models 
comply. Concluding from this, the modified LP model suggested in this thesis can be used as a load 
input in a probabilistic verification for this very considered bridge location. For this load model to be 
applicable to multiple bridges, more research must be done since only one location was considered in 
this thesis. However, the suggested approach to construct load models based on license plates can be 
used verify the applicability to multiple bridges. 
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2 Introduction 
2.1 Introduction to the problem 
The Netherlands contains a lot of existing bridges which are built in the 1960s and 1970s. At the age 
of 50 years, some of these bridges need maintenance. Whenever maintenance is needed, the owner 
of these bridges must prove that they are still safe and have a remaining safe service lifetime. To prove 
this, the design has to be verified using the current load models. However, these current load models 
are representative for loads on highway bridges and are therefore likely unrealistic for more local  
bridges. Hence these current load models may result in economically unrealistic measures. Currently, 
there are exceptional rules for loads on existing bridges in the Netherlands. These exceptions are 
described in several national applied documents and they incorporate some load reducing factors for 
existing bridges. The current approach to evaluate an existing bridge is deterministic of nature, which 
implies that the output of the evaluation is fully determined by the input. 
 
Recently, driven by environmental reasons, several cities throughout the Netherlands have set a so-
called environmental zone. The aim of setting these environmental zones is to greatly reduce the air 
pollution and to improve general air quality. Hence cars with a diesel engine and a manufacturing date 
older than 01-01-2001 are not allowed to enter the inner city. Throughout the city of Rotterdam there 
are cameras installed that check license plates of vehicles to validate whether they are allowed to enter 
the inner city or not. This is done by checking the manufacturing date of the vehicles in a vehicle 
registration database owned by the Rijkdienst Wegverkeer (RDW), which contains 
technical, environmental, counter reading and much more information. Among this information is also 
the maximum allowed weight of a vehicle. 
 
Hence, indirectly, this fine system is collecting a lot of data regarding cars using the infrastructure of 
the inner city of Rotterdam. This means that a great amount of data is obtained, which isn’t yet utilized 
to its full potential. Here lies a great opportunity to get detailed insight into the actual traffic intensity 
and therefore, the actual traffic load on these local bridges. Using this data, it is possible to create a 
more realistic representation of the traffic loads for existing bridges based on traffic measurements 
and thus, a more economical measure can be taken. 
 

2.2 Problem description 
The main reason to evaluate existing structures within the municipality of Rotterdam is due to the 
increase in traffic loading as stated in the current norms, namely the Eurocodes. The owner of an 
existing structure, in this case the municipality of Rotterdam, has to prove that a specific structure is 
still safe and that it remains safe for its remaining service lifetime. For engineers, the most common 
way to evaluate an existing structure is to consult existing codes, apply reduced loading- and 
combination factors, apply increased resistance factors of applied materials and check whether the 
resistance of the structure exceeds the imposed load on the structure, i.e.: 𝑅 > 𝐸  

Where 𝑅  is the design value of the resistance and 𝐸  is the design value of the load. 

This current approach is deterministic, which implies that the output of such a calculation method is 
solely based on the input. The input for this calculation method is prescribed in the Eurocodes and has 
always to be applicable to all cases in the Netherlands. This directly implies the deterministic approach 
is conservative of nature since it is not bound to one specific structure. Due to the conservative nature 
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of this approach, the strengthening measures, when needed, are also likely to be conservative and 
unproportionally.  

2.3 Problem statement 
This raises the question whether it is possible to replace the current conservative approach, although 
relatively fast and easy to apply, with a more advanced approach that incorporates site-specific traffic 
loading. It is therefore of interest to investigate whether a probabilistic approach to determine the 
structural safety of an existing structure can provide a reliable basis to evaluate its structural safety. 
This leads to the following problem statement. 

In the coming years, several existing bridges in the city of Rotterdam have to be evaluated regarding 
their structural safety and their remaining structural safety during their service lifetime. It is expected 
that a majority of these structures will not comply with the deterministic approach as prescribed in the 
Eurocode. However, the conservative nature of the deterministic approach leaves an opportunity to 
optimize the structure to its full potential. Other, more sophisticated methods, such as a probabilistic 
approach, are yet fully researched to their potential. 

2.4 Goal and objectives 
The goal of this research is to gain more insight in actual traffic loads occurring on existing bridges in 
the inner city of Rotterdam. The overall aim of this research is whether the obtained data can be used 
as a solid and substantiated basis to differentiate from the regular load models as written in the codes 
and provide a more realistic and site-specific distribution for traffic loads through live measurements, 
using car license plate registrations. With this aim the following goals and tasks are defined. 
 

1) Objective 1: Understand the mechanism of current load models. 
a. Which special measures can be taken for existing structures and how does this affect 

the current load models? 
b. Has any research been done to determine the actual live load on existing bridges using 

on-site measurements? 
 

2) Objective 2: Achieve a detailed insight in current traffic loadings on bridges throughout the 
inner city of Rotterdam. 

a. Convert car license data to load models. 
b. Obtain most severe loading scenarios using Monte Carlo simulations. 
c. Redefine values for existing load models based on b). 

 
3) Objective 3: Case study – Application of the defined load model to an existing bridge in 

Rotterdam and compare the results. 
a. Calculation of an existing bridge in Rotterdam according to the following calculation 

methods: 
i. Based on Eurocodes (assuming a hypothetical new design) 

ii. Based on Dutch national documents NEN8700 / NEN8701. 
iii. Based on previous research methods, preferably based on WIM data. 
iv. Based on probabilistic design using the car license data. 
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2.5 Traffic loading 
A key advantage of this approach is that it uses site specific data to provide a more realistic loading on 
an existing bridge. In a previous research done by Hellebrandt [1], locally weigh-in-motion data has 
been obtained. In this study, a more general approach using the registration of car license plates will 
be applied.  

2.6 Methodology 
2.6.1 Literature study 
The first step is to understand what the current design codes prescribe for loads models for new and 
existing bridges. The literature study is ought to make clear how these load models are constructed 
and on which data they are based. This also includes the reduction factors written in mainly national 
annexes or national applied documents. For the second part, also research will be done to in which 
way the data will be obtained. Previous studies to this subject will also be consulted. This literature 
study will not be explicitly written out in the thesis, however. 
 
2.6.2 Field research 
For the second part of the research, the field research, it is necessary to have the data well-ordered. 
At this point in time1, it is unclear how the raw data will be represented. It is clear that the mass of 
passing vehicles is the most important parameter, but also the lane on which the vehicle was driving 
is of high interest as well as the number of axles. When the raw data is transformed into more usable 
information, it is possible to create histograms and distributions and accordingly mass probability 
functions and cumulative distribution functions in order to classify the probability of masses to occur. 
These functions serve as input for the traffic load. Then finally, using Monte Carlo simulations, the 
reliability analysis of an existing bridge can be determined. 
 
2.6.3 Case study 
For the case study, the data from the field research is applied correctly and a representative load model 
has been constructed. From that point onwards, the calculation procedure of an existing bridge will be 
pretty much straight forward. The intention is to make four, different calculations. First one 
considering the current, unreduced design values for a hypothetical new bridge. Secondly one that 
incorporates reduced partial factors, as stated in Dutch national applied documents. Thirdly one that 
incorporates a calculation method as prescribed in previous research, preferably based on WIM data. 
Finally, a probabilistic approach using car license plate registration which is further to be explained in 
this report.  
  

  

 
1 Within the first weeks of starting this thesis. 
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3 Background and pre-processing 
This research is completely based on how the data is represented and which parameters are available 
in the data. In previous researches usually WIM data was used, which is more specified. In this research 
however, the acquired data is a much more global representation of the load traffic on the bridge since 
it uses legally allowed masses for the gross vehicle weight as well as the individual axle loads. In this 
chapter it is tried to gain more insight in how the data is presented, and how to account for certain 
uncertainties, defects of the current system and other points of attention. In this part of the research 
it is tried to transform the raw data into useable information.   

3.1 RDW Database 
As stated before, the RDW registers all motorised vehicles sold or imported in the Netherlands in one, 
freely accessible database. This includes all motorised vehicles, ranging from a 2-axled moped to an 8-
axled self-driving mobile crane. On the website ovi.rdw.nl, one can enter a license plate and find all 
information coupled to that particular vehicle. This database only contains vehicles with a Dutch 
license plate. Imported vehicles with a foreign license plates are not registered in this database. 

3.1.1 Vehicle category 
The Dutch Vehicle Authority (RDW) registers vehicles in the Netherlands based on the European 
Vehicle Category. This classification is normalized throughout members of the European Union. The 
table below briefly describes all occurring vehicle categories. 

Category Vehicle(s) Description 
M Passenger cars,buses and 

coaches 
Motor vehicles with at least four tires designed and 
constructed for the carriage of passengers. 

N Commercial vehicles Motor vehicles with at least four wheels designed and 
constructed for the carriage of goods 

O Trailers Trailers (including semi-trailers) 
L 2- and 3-wheeled vehicles Mopeds, motorcycles, trikes and quads. 
T Wheeled tractors Wheeled tractors 
C Track-laying tractors Track-laying tractors 
R Agricultural trailers Agricultural trailers 
S Interchangeable towed 

machinery 
Interchangeable towed machinery 

Table 1 - Description of vehicle categories2.   

For urban areas it seems trivial to consider vehicle categories T, C, R and S. Also, vehicles in category L 
have a very low impact on traffic loading for bridges. As stated in TNO [13], only trucks or vehicles with 
a GVW > 3.5t are expected to have a great load impact. Hence vehicles falling in these categories are 
further explained. These are vehicle categories M, N and O. The description follows from the Directive 
2007/46/EC of the European guideline3. 

  

 
2 Source: https://www.rdw.nl/zakelijk/branches/fabrikanten-en-importeurs/typegoedkeuring-
aanvragen/typegoedkeuren-voertuigen/voertuigcategorieen 
3 Source: https://eur-lex.europa.eu/legal-content/NL/TXT/HTML/?uri=CELEX:32007L0046&from=EN 
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Category Vehicle(s) Description 
M1 Passenger cars Vehicles designed and constructed for the carriage of 

passengers and comprising no more than eight seats in 
addition to the driver’s seat. 

M2 Buses Vehicles designed and constructed for the carriage of 
passengers, comprising more than eight seats in 
addition to the driver’s seat, and having a maximum 
mass not exceeding 5 tonnes. 

M3 Buses Vehicles designed and constructed for the carriage of 
passengers, comprising more than eight seats in 
addition to the driver’s seat, and having a maximum 
mass exceeding 5 tonnes. 

N1 Light commercial trucks Vehicles designed and constructed for the carriage of 
goods and having a maximum mass not exceeding 3,5 
tonnes. 

N2 Commercial trucks Vehicles designed and constructed for the carriage of 
goods and having a maximum mass exceeding 3,5 
tonnes but not exceeding 12 tonnes. 

N3 Heavy commercial trucks Vehicles designed and constructed for the carriage of 
goods and having a maximum mass exceeding 12 
tonnes. 

O1 Light trailers Trailers with a maximum mass not exceeding 0,75 
tonnes 

O2 Light trailers Trailers with a maximum mass exceeding 0,75 tonnes 
but not exceeding 3,5 tonnes. 

O3 Trailers Trailers with a maximum mass exceeding 3,5 tonnes 
but not exceeding 10 tonnes. 

O4 Heavy trailers Trailers with a maximum mass exceeding 10 tonnes. 
Table 2 - Description of vehicle types, taken from the European guideline. 

Since trucks of category N3 and trailers of O3 and O4 can be heavily loaded, measurements considering 
any of these vehicles are of interest. As shown by Hellebrandt [1] and TNO [12], the number of axles 
of a category N3 truck can span from 3 to 8. Thus, a more distinct categorization in the N3, O3 and O4 
vehicle-types must be done. TNO [12] categorized heavy vehicles by the number of axles. 

3.1.2 Points of attention 
In appendix A an excerpt of the available data given by the RDW is elaborated. Due to the way this 
information is presented, a few points of attention arise. These points do not have to pose a great 
threat; however, they should be treated carefully.  

 Whenever a vehicle is registered, the actual weight is not known. It can potentially range from 
the kerb mass to the maximum allowed. This can even be higher if vehicles are overloaded. 
Consequently, the actual axle loads are also not known. For the individual axle loads, no 
information is found about the range of allowed axle loads. Hence, only the static value for the 
axle loads is used. 
 

 The total wheelbase of a vehicle is given, but whenever the vehicle has more than 2 axles, the 
spatial distances between axes is not. This means that solely from this information, it is not 
possible to reconstruct a load model purely based on the information given by the RDW. Hence 
measures need to be taken to account for this. 
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 There is no information about contact areas of the tires. This means that it is not possible to 
construct a load model (LM2) directly from the given information. In other words, only a global 
load model (LM1) can be constructed. 
 

 There is no information given about the configuration of each individual axle, other than the 
track width of the axle. So, the axle can exist of 2 tires (single tires configuration) or 4 tires 
(double tire configuration).   As shown by TNO [12], many different axle configurations are 
possible.  
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4 Measurements 
As stated before, this research is completely based on how the data is represented and whether it is 
possible to transform the data into useable information. In the following paragraphs the source of data 
is presented as well as how the data is presented. According to paragraph 3.1.2, several measures are 
taken to make the data more usable. 

4.1 Background 
4.1.1 Origin of data 
Throughout the entire city of Rotterdam several cameras with different functions register vehicles that 
are passing by. In principle only the license plates, the manufacturing date and the type of combustion 
engine are registered. This information is directly taken from the database of the RDW, in which all 
motorized vehicles in the Netherlands are registered. This current system functions properly and is 
used by the municipality of Rotterdam. 

However, the database of the RDW contains a lot more information considering technical aspects of a 
vehicle. These additional technical aspects of a vehicle are now added as additional information to the 
current system. This now somewhat modified system is used to gain more insight about traffic 
crossings, and in particular the rate of heavy vehicles at certain points in Rotterdam.  

4.1.2 Location of measurements 
Basically, every location where a camera system is operating in the city of Rotterdam can be selected 
for measurements. In this study, a cluster of three camera systems closely located to the main highway 
A13 are considered. In the picture below these are shown in detail. 

 
Figure 1 - Location of measurements4. 

Every location can be opted for to do this kind of research. In this study however, a traffic analysis is 
used to gain more detailed insight in traffic loading on existing bridges. Camera 4400-C, as depicted 
above, is located a few meters from an existing bridge in the N209. In the picture below, the red circle 
indicates the operating camera system 4400-C. 

 
4 Source: municipality of Rotterdam. 
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Figure 2 - Indicated location of measurement systems5 

4.1.3 Raw data 
The raw data is presented in a csv-file. CSV-files are files that are in a tabulated form, separated by 
commas and are only used to transfer text-only data from one system to another. Because the csv-
files become large and will contain more than 1 million rows, the csv-files are being read using the 
programming language Python rather than using Microsoft Excel. All acts, modifications and 
calculations are being scripted in Python. Smaller, more convenient modifications to the dataset are 
done in Excel. The reader is assumed to have basic knowledge of programming. In the picture below, 
an example of a few entries is shown. Each column is briefly elaborated in the table given below. 

 
Figure 3 - Excerpt of raw data as given by the camera system 

  

 
5 Source: Google Maps. 
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Column entry Explanation 
ID This column shows the index of the measurement. This is 

automatically done by Python Pandas. 
First(EuropeanVehiceCategory) This column shows the European Vehicle Category in which the 

passing vehicle is categorized. The European categorization of 
vehicles is discussed on the next page. 

First(EuropeanVehicleType) This column shows the vehicle type of the passing vehicle (in 
Dutch). This is closely related to the European Vehicle 
Categorization and is also explained on the next page. 

First(KerbMass) This column shows the kerb mass in kilograms of the passing 
vehicle. The kerb mass is defined 6as the mass of an empty 
vehicle, plus the mass of a fuel tank filled for 90% (25 kg) and 
the mass of the driver (75 kg). 

First(MaxAuthMassOfVehicle) This column shows the maximum allowed mass of the vehicle 
in kilograms as stated by the Dutch legislation.  

First(TechnicalMaxMassVehicle) This column shows the maximum allowed mass of the vehicle 
in kilograms as stated by the manufacturer of the vehicle. This 
value can be higher than the value stated by law. 

First(WheelBase) This column shows the total wheelbase of a vehicle in 
centimeters. For 2-axled this is trivial. For 3+ - axled vehicles, 
this value represents the distance between the two most outer 
axles. 

First(CamId) This column shows the camera ID that registered the passing 
vehicle. The value 2 is given for a vehicle driving on the slow 
lane. The value 1 is given for a vehicle driving on the fast lane. 

First(LocationCode) This column shows the location code used by the municipality 
of Rotterdam. This is of no further interest for the study in 
itself.  

First(LocationName) This column shows the location name that is coupled with the 
location code in the previous column. This value also isn’t of 
real interest for the study in itself.  

First*(VehicleLength) This column shows the total vehicle length of the passing 
vehicle in centimeters. 

Date This column shows the date of the registered vehicle as 
MM/DD/YYYY. 

Time This column shows the time of the registered vehicle in a 12-
hour convention. 

Table 3 - Explanation of column entries in RAW data given by camera system. 

The obtained information is stored in an CSV file. Due to the restricted workability of MS Excel, the 
programming will take place in Python. Since a lot of visual aspects are expected to be shown and used, 
the user-friendly Jupyter Notebook will be opted for to program in. All codes are given in appendix H. 

4.2 Data of interest 
4.2.1 Filtering criteria 
In previously done studies by Hellebrandt [1], TNO [13], it turned out that it is very important to have 
axle loads taken from WIM data to gain more insight in recreating traffic loads. Also, it turned out that 

 
6 https://www.rdw.nl/particulier/voertuigen/auto/het-kentekenbewijs/over-het-
kentekenbewijsdocument/gegeven-massa-rijklaar 
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passenger vehicles are not of interest when assessing an existing bridge, hence all passenger vehicles 
are filtered out. 

In studies where WIM data is the source, the axle loads were known, but the type of vehicle was 
unknown. Therefore, based on these axle loads, it was guessed which type of vehicle was passing 
through. In this case it is the other way around; the type of vehicle is known (presumably with the 
number of axles), but the actual axle loads itself are unknown. Hence, a similar approach is used as 
shown in TNO [11]. Only N3- and O4-vehicles are filtered. Vehicles falling in the M2/M3- category are 
not well represented in the data. In the following paragraph the classification system of N3-vehicles 
will be discussed. 

4.2.2 Number of axles 
As is shown in fig 3, the system does not give the number of axles that a passing vehicle has. As stated 
in [1], and shown by previous studies, the specific axle load is of interest for recreating traffic loading 
based on WIM measurements. However, in this case there is no specified axle load, but rather a 
theoretical maximum allowed axle load.  

For M1 -vehicles, usually the number of axles is 2. For M2- or M3-vehicles (buses and coaches), the 
number of axles can range from 2 to 4. For N2- and N3-vehicles, the number of axles can range from 2 
to 5. For O4-vehicles the number of axles can range from 1 up to more than 5.  

4.2.3 Vehicle type and classification 
As shown in fig 3, currently the system does not give the property vehicle type to the current measured 
entry. As was shown by TNO [13] and Hellebrandt [1], the vehicle type of N3-vehicles is rather 
important for constructing traffic load models. Another study done by TNO [12] with the main goal to 
recalibrate traffic loading based on WIM data, shows that the population of heavy vehicles (including 
M2- and M3-vehicles) can be divided up in 59 sub-classes. This is shown in appendix B.   

It must be noted that these vehicle classes are based on WIM data, and not necessarily the data used 
in this research. Firstly, the five-vehicle classification done by TNO [13] is applied in this research. 
Whenever it turns out that a more comprehensive classification is needed, this will be adopted in the 
approaching methods. 

So, the following classes within N3-vehicles are adopted: 

 Semi-truck: 2 axles 
 Semi-truck: 3 axles 
 Trucks: 2 axles 
 Trucks: 3 axles 
 Tipper trucks / cement trucks etc. 

The system also does not give information about the vehicle type for O4-vehicles. For O4-vehicles there 
are also a few classifications to be done. As shown by the publicly accessible database by RDW. In total 
three main vehicle types of O4-vehicles exist: 

 Semi-trailers  
 A-frame drawbar trailer  
 Close-coupled trailer  

Since the aim of this research is to try and develop traffic load models based on car license 
registrations, the number of axles, the individual axle load and the gross vehicle weight of vehicles 
must be known. To calculate load effects caused by vehicles, these three properties are important, as 
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well as the interspatial axle distancing. Therefore, the vehicle type for N3- and O4-vehicles must be 
known. In the following subparagraphs a strategy to classify N3- and O4- vehicles is shown. 

4.2.3.1 Classification of N3-vehicles  
As stated before, due to privacy reasons, the automated registering system does not directly give a 
license plate as output. However, certain vehicle characteristics are registered, shown in paragraph 
4.1.3, making it possible to retroactively couple registered vehicles to a known existing vehicle. This 
requires two databases: one with measurements characteristics (MEA), and one with existing 
characteristics (RDW).  The database containing known characteristics of vehicles is freely accessible 
through the website of the RDW. When removing some unnecessary columns, the following RDW-
database is created, containing all registered N3-vehicles in the Netherlands as of January 2020.  

 
Figure 4 - Excerpt of RDW database. Weights in kg, distances in cm.7 

Now it is possible to classify each measured vehicle, based on the following four mutual known 
conditions. For each measured vehicle, if all four characteristics match with one of the vehicles in the 
RDW-database a match is made, and a license plate is given as output. The characteristics are shown 
below. 

Characteristic MEA RDW 
Gross vehicle 
weight 

First(MaxAuthMassOfVehicle) GVW 

Kerb Mass First(KerbMass) KERB MASS 
Wheelbase  First(WheelBase) WHEELBASE 
Length First*(VehicleLenght) LENGTH 

Table 4 - Explanation of parameters and characteristics 

For understanding purposes, in the picture below a flow-chart is shown to clarify the piece of code 
shown next to it. 

 
7 Source: https://opendata.rdw.nl/browse 
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Figure 5 - Flow chart for coupling license plates and excerpt of script 

 This procedure was applied for measurements regarding location 4400-C. In total 35.236 entries could 
be coupled license plates. 997 entries were not able to be coupled to an existing vehicle. The piechart 
below shows the occurring vehicle classes as used by the RDW-database.  

 
Figure 6 - Pie chart of registered N3 vehicles classes for location 4400-C. 

As can be seen from the pie-chart, the majority of the passing trucks were able to be classified. The 
accompanying license plates of the entries are now coupled to their data regarding the measurement, 
resulting in the following database, shown in Figure. The added column TRAILER shows if a truck is 
allowed to carry additional weight through any kind of trailer. 
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Figure 6 - Database for location 4400-C with only N3 vehicles classified. Weights in kg, distances in cm. 

4.2.3.2 Classification of O4-vehicles 
The same procedure for N3-vehicles can also be applied for O4-vehicles. A similar RDW-database for 
trailers can be constructed from the RDW-website as well. This results in the following RDW-database, 
shown below. 

 
Figure 7 - Excerpt of RDW database for all registered trailers (O4). 

In this RDW-database all trailers registered in the Netherlands as of January 2020 are given. It must be 
noted that some trailers have a total length of 0 cm. The explanation for this is that some trailers (or 
vehicles in general) have information stored in separated columns, not directly available through the 
RDW website, in which particularities are given. For example, the first trailer can be part of a larger 
truck-trailer combination and thus no length is given. The wheelbase however is usually given.  

For the O4-vehicles, the exact same procedure as for N3-vehicles is followed. However, only value for 
kerb mass is not checked since the current system does not register kerb masses of O4-vehicles. For 
location 4400-C, in 2019 a total of 54.210 O4-vehicles were registered, of which 48.244 could be 
recognized and coupled to an existing vehicle. The trailer population is shown in the pie chart below.  
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Figure 8 - Pie chart of registered O4 vehicle classes for location 4400-C. 

As can be clearly seen, the overall majority (>95 %) of the O4-vehicles can be classified as semi-trailers. 
Finally, the license plates are coupled to the measured entries in the MEA-database. This results in the 
following MEA-database for O4-Vehicles. 

 
Figure 9 - Database for location 4400-C with only O4 vehicles classified. Weights in kg, distances in cm. 
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5 Processing data 
5.1 Creating load samples 
5.1.1 Fundamental assumptions 
To create load samples and to arrange certain load samples, a few fundamental assumptions and rules 
must be made at first hand. These assumptions are shown below. 

 Any registered vehicle is assumed to be fully loaded, i.e. the maximum allowed axle load is 
always present.8 

 If any N3-vehicle is allowed to carry a trailer of any kind, it is assumed it is always carrying a 
trailer.9 

 It is assumed that the initial value of the individual axle loads remains constant while causing 
a load effect. No dynamic amplification factor is considered. 

 Whenever the axle configuration of any type of vehicle is not known, an assumption is made. 
Each vehicle type is further elaborated in paragraph 5.1.3. 

 Based on the previous point, whenever an axle of a vehicle is not present on the bridge 
anymore, it immediately does not cause any load effect on the bridge deck. 

5.1.2 Adopted strategy 
Considering the fundamental assumptions stated in the previous paragraph, the following strategy is 
adopted: 

 The registered N3 vehicles act as the starting input. 
 The information given by the RDW system is automatically coupled to the registered vehicle. 
 If a N3 vehicle is allowed to carry a trailer, it will be assumed that it carries a trailer. The method 

for this is further elaborated in paragraph 5.1.3. If it carries a trailer, the N3-O4 combination is 
taken as one single load sample. The values for the axle loads are given by the RDW data. 

 For interspatial axle distances, per vehicle type an assumption is made. This is further 
elaborated in paragraph 5.1.3 

5.1.3 Coupling N3-O4 vehicles 
One could easily imagine that whenever a truck-trailer combination is measured, both the truck and 
the trailer should be registered.  However, as it turned out, the MEA-database does not show any 
chronologic correlation between registered N3- and O4 vehicles. To account for this a new method is 
adopted, where a theoretical N3-O4 combination is made based on data registered by the camera 
system. Both N3- and O4-vehicles are registered and logically the recorded amount of both categories 
should be the same. However, apparently more O4-vehicles (54.210) have been registered than N3-
vehicles (36.390) in the year of 2019. So, the minimum amount of N3-O4 combinations that have 
passed should be at least 54.210.  

So, to simulate a N3-O4 combination, whenever the gross vehicle combination (depicted as GVW 
COMB in the figure below), is greater than the kerb mass itself, a theoretical O4-vehicle is attached of 
the resulting GVW. So, in the figure below, entry 52 would be coupled to an O4-vehicle with a GVW of 
13.000 kg at most. 

 
8 This assumption is conservative, since the cargo of trucks differ throughout their sort. Tipper trucks carrying 
concrete are heavier than tipper trucks carrying styrofoam. 
9 This is a conservative assumption since trucks do not always carry trailers, especially semi-trucks. 
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Figure 10 - Database of registered N3-vehicles for location 4400-C. 

As stated in 8.2.3, only 5 classes of N3-vehicle types are adopted. For each of these different vehicle 
types a different approach must be used to transform the registered vehicle(s) to a representative load 
model.  In the following subparagraphs this is done for each load model. For some vehicle types, certain 
parameters considering technical information about the vehicle is used. These are listed below. 

Notation Explanation Unit 𝑤  Randomized interspatial axle distance drawn from a normal 
distribution with the values given for each vehicle type individually.  

m 𝑙  Total vehicle length of the trailer m 𝑤  Total wheelbase of the trailer m 𝑤  The 𝑖-th interspatial axle distance. m 𝑤  The total wheelbase of the vehicle (combination) m 
Table 5 - Clarification of used parameters 

5.1.3.1 Axial distances 
Interspatial axle distances have a large contribution in the occurring load effect from any vehicle. 
Hence it is important to note that for 3- or more axled vehicles these interspatial distances are assumed 
per vehicle type. This is individually described in each subparagraph. To be clear: the numbering of the 
axles is done based on the direction of travel. So, the first axle is the axle that comes first. 

5.1.3.2 Semi-trucks 
For all semi-trucks, basically the same method is assumed. However, there are some slight differences 
between the 2- and 3-axled semi-trucks. Considering the semi-trailers, they are assumed all to be the 
same type: a group of axles located at the back of the trailer. The number of axles can span from 1 to 
4. The figure below shows an example of a semi-trailer. 

 
Figure 11 - Example of a 2-axled semi-trailer.10 

5.1.3.2.1 2-axled  
For 2-axled semi-trucks the wheelbase of the truck itself is known. The individual axle weights are also 
known. Whenever a 2-axled semi-truck is registered, it is coupled to a semi-trailer with the condition 
stated in 5.1.3. For the semi-trailer, the following assumptions are made: 

 
10 Source: https://www.shutterstock.com/g/contributor/554422?searchterm=semi-trailer 
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 The wheelbase of the O4-vehicle is the distance between the last axle of the O4-vehicle and 
the last axle of the N3-vehicle. 

 Any other interspatial axle distances 𝑤  are generated randomly between the range of 1,25 
and 1,35 m.  

5.1.3.2.2 3-axled 
For 3-axled semi-trucks the same principal applies as for the 2-axled semi-trucks. However, the 
following assumptions are made: 

 The wheelbase of the N3-vehicle is the distance between the last axle of the N3-vehicle and 
the first axle. 

 The interspatial axle distance 𝑤  between the last and the second axle is a number 
generated between 1,25m and 1,35m. 

For semi-trailers, the same assumptions are used as for the 2-axled semi-trucks.  

5.1.3.3 Full trucks 
For full trucks, a similar approach is used for the semi-trucks. In terms of a load model, a full truck is 
basically a semi-truck with a larger interspatial axle distance. This is true for both 2-axled and 3-axled 
full trucks. Considering the trailers however, a noticeable difference occurs, since full trucks can carry 
both close-coupled trailers (CCT) and A-frame-drawbar trailers (AFDT). Both these trailers have quite 
a different axial spacing. CCT have a group of closely spaced axles, usually around halfway the vehicle. 
AFDT have (a group of) axles located at both ends of the trailer. This is shown in the figure below. 

 
Figure 12 - Pictures of different trailer types which can be carried by full trucks. Left: ADFT. Right: CCT.11 

5.1.3.3.1 2-axled 
For 2-axled full trucks, both the wheelbase and the individual axle loads are known. If a registered full-
truck is allowed to carry a trailer, a distinction is made between CCT- and ADFT-trailers, as described 
in 5.1.3.3. The following assumptions for CCT-trailers are made: 

 The interspatial axle distance of the CCT is randomly taken between 1,25m and 1,35m for all 
axles. 

 The distance between the first axle of the O4-vehicle and the last axle of the N3-vehicle is 
taken as ( )  + 𝑤  where 𝑤  is randomly taken between 1,25m and 1,35m. 

For ADFT-trailers the following assumptions are made: 

 The interspatial axle distance of the ADFT is randomly taken between 1,25m and 1,35m for all 
axles. 

 
11 Sources: https://bit.ly/3huQJwP, https://bit.ly/3fru1nE 
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 The distance between the first axle of the O4-vehicle and the last axle of the N3-vehicle is 
taken as ( )  + 𝑤  where 𝑤  is randomly taken between 1,25m and 1,35m. 

5.1.3.3.2 3-axled 
For 3-axled full trucks, the interspatial axle distance is not known between the last and the second axle. 
Hence, the same assumptions are adopted as stated in paragraph 5.1.3.3. Just like their 2-axled 
counterpart, 3-axled full trucks can carry either CCT-or ADFT-trailers. The following assumptions are 
made: 

 The wheelbase of the N3-vehicle is the distance between the last axle of the N3-vehicle and 
the first axle. 

 The interspatial axle distance 𝑤  between the last and the second axle is a number 
generated between 1,25m and 1,35m. 

For CCT- and ADFT-trailers the same assumptions are made for 2-axled full trucks carrying trailers. 

5.1.3.4 Tipper trucks  
Whenever a tipper truck is registered, the composition of the axle loads is very dependent on the 
number of axles the corresponding truck has. The number of axles for a tipper truck can range from 2 
to 5. For each individual axle, the accompanying axle loads are known. For each number of axles, the 
following assumptions are made: 

 For 2-axled trucks: the wheelbase is the distance between the first and the last axle. 
 For 3-axled trucks: the wheelbase is the distance between the first and the last axle. For the 

distance between the last and the second axle a randomly number generated between 1,25m 
and 1,35m is applied. 

 For 4- or more axled trucks: all interspatial axle distances are assumed to be the total 
wheelbase divided by the number of axles n minus one, i.e. 𝑤 = . 

It must be noted that most tipper trucks are not allowed to carry any trailers. Hence, in this method a 
tipper truck will not carry any trailer. 

5.1.3.5 Mobile cranes 
A great portion of the heaviest recorded vehicles are mobile cranes; hence they are classified 
individually. The axle loads can go as high as 12.000 kg with a GVW COMB of 85t with a relatively small 
total length, and thus relatively small interspatial axle distances as well. The number of axles for mobile 
cranes can range from 2 to 6. For each axle, the individual axle loads are known. For the interspatial 
axle distances the following assumptions are made: 

 For 2-axled cranes: the wheelbase is the distance between the first and the last axle. 
 For 3-axled cranes: the same assumption as for 3-axled semi-trucks is made, however the 

variable 𝑤  can range from 1,65m to 1,75m. 
 For 4- or more axled cranes, it is assumed that the axles are evenly distributed along the total 

wheelbase, i.e. 𝑤 =  

In some cases, a mobile crane is allowed to carry a trailer containing its contra weight. For the heaviest 
cranes, the gross vehicle weight of this trailer can be as high as 27t. To account for this, a theoretical 
(existing) trailer is constructed considering the following assumptions: 

 A trailer of three axles is attached to the mobile crane 
 Each individual axle load is 8.000 kg 
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 The interspatial axle distance between the first axle of the trailer and the last axle of the mobile 
crane is taken as 2.8 m. 

 The interspatial axle distance between the other axles of the trailers is assumed to be 1.95m. 

5.1.3.6 Extreme heavy combinations 
For this category, the registered O4-vehicles are governing. Some registered O4-vehicles can have a 
GVW COMB of more than 100t and thus become governing for constructing load models. An extreme 
heavy combination (EHC) is classified as whenever a O4-vehicle with a GVW > 70t is registered. For the 
constructing of the load models, the following assumptions are made:  

 The N3-vehicle in an EHC is always a 4-axled semi-truck, with known individual axle loads. The 
total wheelbase is the wheelbase between the first and the last axle of the truck. For the 
fourth-third and third-second axles the interspatial axle distances 𝑤  can range from 1,25m 
to 1,35m. 

 For 5-axled trailers: it is assumed that the axles are evenly distributed along the total 
wheelbase, i.e. 𝑤 =  

 For 6-axled trailers: it is assumed that 6 axles are divided among two groups of three closely 
spaced axles. Where the total wheelbase is the distance between the last axle and the first 
axle. All other interspatial axle distances 𝑤  can range from 1,25m to 1,35m. 

 For 7-axled trailers: the same assumption is adopted for 5-axled trailers. 
 For 8-axled trailers: it is assumed that the axles are divided among two groups of axles. One 

group considering three closely spaced axles at the front of the trailer. The second group 
considering five closely spaced axles at the back of the trailer. The total wheelbase is the 
distance between the last axle and the first axle. For all interspatial axle distances 𝑤  can 
range from 1,25m to 1,35m. 

 For 9-axled trailers: the same assumption as for 8-axled trailers is adopted, however the 
second group of axles at the back consist of 6 axles instead of 5. 

5.2 Calculating load effects 
5.2.1 Approach 
For simplicity, a bridge is modelled as a simply supported beam. For now, only the bending moments 
are calculated. To calculate the bending moments, the total length of the bridge as well as the total 
length of the passing vehicle is of importance, since it is possible that all axles of a single vehicle don’t 
cause a load effect at the same time.  

To account for this, a simple but rather effective algorithm is written, shown in figure 14. Y(L) is 
written, where the variable L is used for bridge length input. The basic principle of this function Y(L) 
is to determine the location of each individual axle on the bridge relative to the first axle of the vehicle(-
combination). In simple terms, the movement of a vehicle across a bridge is simulated. 

 
Figure 13 - Excerpt of python code of writing function 𝑌(𝐿) 
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A bridge length L is divided into 1 + ((L + 25) ∙ 10) segments of equal length, resulting in a segment 
length of 0,10 m. After debugging the algorithm, it turned out that additional lengths of L + 25 m 
were needed at both the beginning and at the end of the bridge to accommodate all registered 
vehicles, otherwise it turned out that only parts of vehicles were implemented in the algorithm.  

 Then, the first axle of the vehicle(-combination) is then placed at 𝑥 = 0, where the other axles are 
placed behind the first axle, based on their interspatial axle distances as described in paragraph 9.1.3. 
To account, for the additional lengths, all negative values for 𝑦 and all values 𝑦 > 𝐿 are set to 0 in the 
matrix. This results in a matrix y with 18 rows and m columns, where m  depends on the length of 
bridge input L. 18 rows correspond to 18 possible interspatial axle distances. The columns m 
correspond to the number of individual segments. 

So, for example, a 2-axled semi-truck, with interspatial axle distance w = 3,70 m, carrying a single-
axled trailer with interspatial axle distance w = 7,15 m crossing a bridge of L = 5 m results in the 
following y-matrix for axles 1,2 and 3. 

 
Figure 14 - y matrices for 3-axled N3-O4 combinations 

Now the y matrix is known, the actual load effects can be calculated. This is done in another algorithm, 
shown in the figure below. 
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Figure 15 - Excerpt of python code to determine maximum load effect 

In this method, each axle is assumed to load the bridge individually and that each axle is a point load. 
For each passing vehicle, for each individual axle, for each individual segment the bending moments 
are calculated are for all segments along the bridge and are stored in a separate matrix. Then, hogging 
bending moments are set to 0, as they cannot occur in simply supported bridges. For the 2-axled semi-
truck carrying a single-axled trailer, the following results are obtained. 

  

 
Figure 16 - Matrices containing calculated load effects 

Finally, for all segments the bending moments are summed column wise, resulting in a single, maximal 
value for each segment. This is shown in the figure below. It can be clearly seen that firstly, only the 
first axle of the semi-truck loads the structure. Then, at segment x + w  the second axle starts to load 
the structure as well. Then, due to the long interspatial distance between the second axle of the semi-
truck and the first axle of the trailer, the bridge is not loaded at all. This is depicted by the 0’s in the 
vector. Finally, the only axle of the trailer starts to load the structure again, but now solely the trailer.  

The maximal value in this vector is the maximum occurring bending moment corresponding with the 
registered vehicle and is added to the database.  
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Figure 17 - Matrix containing all maximum occurring load effect for each location. The 0's indicate the supports. 

5.2.2 Processing 
The approach described in the previous paragraph is now adopted for all registered vehicles. The 
strength of this method is, is that for each arbitrary vehicle combination bending moments can be 
calculated. During processing and debugging of the algorithm, certain tricks were implemented in this 
system resulting in a much faster code. At this point, it is very likely that the code is not yet optimized, 
but with a mid-range laptop with a i5-4310 2.00 GHz quadcore CPU and 8,00 GB RAM running the 
entire algorithm, from coupling license plates to calculating bending moments, takes about 15 
minutes. 

5.2.3 Results 
5.2.3.1 Load effect 
For this specific location in Rotterdam, a total of 31438 heavy vehicles were recorded and loaded the 
bridge in the following manner. Considering all approaches and assumptions made above, the 
following intermediate results are obtained, shown in the scatterplot below. 

 
Figure 18 - Bending moment vs GVW for a simply supported bridge with a span length of 10 m. 

Figure 19 shows a scatterplot of the occurring bending moments plotted against the GVW. The 
category mobile cranes exert the highest bending moments in general. LM1 of Eurocode 2 is indicated 
with the red cross. This value only considers the tandem load model of LM1, and not the uniformly 
distributed load. As can be seen, the majority of the occurring load effects does not exceed the value 
of 800 kNm. This is shown in detail in the histogram plot below. 
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Figure 19 - Frequency histogram of occurring bending moments. 

5.2.3.2 Location of maximum load effect 
The figures above do not give information about the location of the maximum occurring load effect. 
The maximum occurring load effect however does not necessarily need to be at midspan, since the 
span is loaded by multiple axles at the same. The figure below shows the distribution for the location 
of the maximum load effect, denoted with x ,  for the recorded vehicles crossing a simply 
supported bridge with a span length of 10 m.   

 

 

 

 

 

 

 

The distribution clearly shows that for most vehicles x ,  occurs at midspan, despite the different 
axle configurations for vehicles. 

5.2.3.3 Contribution of number of axles to maximum load effect 
Figure 19 showed that for the LP data the GVW solely is not governing for determining the highest load 
effect. Hence, the presumption raises that for each vehicle rather a group of (overloaded) axles 
contribute to the highest occurring load effect, rather than the GVW itself, as well as the total length 
of a vehicle, or rather the total wheelbase 𝑤 .This is investigated for the LP data, where for each 
vehicle the contribution of groups of axles is determined. This is based on the following principle: 

1. For each vehicle, the maximum load effect M  is determined according to the approach 
written in paragraph 5.2 and the total number of axles are determined. 

2. Then, all relative coordinates of the axles with respect to M  are determined. 
3. The contribution of each axle i.e. M ,  with respect to M  is determined and is stored as 

the ratio η , . 

Unity Value 
Mean 5,01 
Median 5,0 
Minimum 3,24 
Maximum 6,91 

Table 6 - Statistical values for frequency histogram for location of 
maximum occuring load effect. 

Figure 20 - Frequency histogram for location of maximum occurring load effect 
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4. For any n − axled vehicle, the threshold value is assumed to be   per axle;12 

5. If the contribution of an axle is below its assumed  contribution, the axle does not count 
towards the total amount of axles contributing to the maximum load effect. 

6. Finally, for each vehicle the number of axles that is responsible for the highest load effect and 
the contribution of each axle η ,  to the maximum load effect are determined.  

These steps give insight in how the different axles of a vehicle load exert load effect on a simply 
supported bridge. The results for a simply supported bridge with a span of 10 m loaded by the given 
LP data are shown below. As can be seen, the highest load effect per vehicle is primarily caused by 1 
or 2 axles. For vehicles with more than 4 axles, the contribution of axles seems to shift more towards 2 and 3 axles exerting the load effect. These results show that not primarily the GVW or vehicles with 
a high number of axles result. Moreover, these results show that a relation exists between the 
maximum load effect, the individual axle load(s), and the interspatial axle distance. 
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Figure 21 - Compilation of 3 figures. Top left: relation between number of axles contributing to the maximum load effect and 
the total number of axles. Top right: Contribution of axles to the maximum load effect with added colour scale. Table: 
numerical values. 

The composition of figures above shows the results. The top left figure indicates how many axles of a 
vehicle caused the highest load effect. The top right figure shows the caused load effect by a vehicle 
and how many axles contributed to this load effect. The table is a numerical representation of the top 
left figure. The sum of each column in the table is the number of vehicles recorded with those specific 
number of axles. 

So, 13.792 2-axled vehicles, 3.519 3-axled vehicles, 6.451 4-axled vehicles and so on. The individual 
values in the table show how the maximum load effect per vehicle is constructed. For example, 

 
12 So, for 2-axled vehicles, each axle should contribute 50% to the total load effect. For 3-axled vehicle, each 
axle should contribute 33% etc. 
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considering the category of 3-axled vehicles. In this category, the maximum load effect was generated 
1.007 times by only one axle, and 2.512 times by two axles.  

The top right figure is basically the same figure as the top left one, only a colour scale was added to 
indicate the value of the load effect. This visualizes the range of load effect per recorded vehicle type, 
or rather n-axled vehicle type. The highest load effect, indicated with blue, is caused by a 6-axled 
vehicle. 

5.3 Comparison with other data 
5.3.1 WIM data 
As described before, for load effects caused by traffic loading, the two most influential parameters are 
the interspatial axle distance and the individual axle loads. The approach used in this study, assumes 
certain interspatial axle distances and axle configurations. It is therefore of interest to compare the 
assumptions made with real obtained values done by a WIM-system. In a study done by Hellebrandt 
[1] several years ago, the municipality of Rotterdam used WIM data to determine bridge loading due 
to traffic for the Beukelsbrug and Oost-Abtsbrug. This study used WIM data and interspatial axle 
distance data given by the WIM system. To validate the obtained results based on the license plates, a 
comparison has to be made to see whether similar results are obtained. If any deviations in the results 
are obtained, an explanation has to be found why.  

To achieve this, the same algorithm as described in paragraph 5.2 is used but with input data from 
WIM for both bridges. The results are plotted in figures 23 and 24. Load effects based on license plates 
are indicated with LP. In both figures, the highest occurring load effect for LP-vehicles are due to the 
tandem load model from LM1. This value serves as a threshold. 

 
Figure 22 - Comparison between WIM data and LP data for measurement location Beukelsebrug. 
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Figure 23 - Comparison between WIM data and LP data for measurement location Oost-Abtsbrug. 

Both scatter plots clearly show a similar spread of the occurring load effects, especially for vehicles 
with a GVW up to 60t. For heavier vehicles, the spread becomes larger and the LP data is not 
representative anymore. Since heavier vehicles generate higher load effects, they are more of interest 
to compare.  

When looked closer at the scatter plot for the Beukelsebrug, an interesting occurrence is found. A 
vehicle with 75t GVW from the WIM data exerts a load effect which is almost 1.5 times as high as the 
accompanying LP data vehicle of 75t. This is shown in the figure below. 

 
Figure 24 – Caused load effect by vehicles with a GVW higher than 50t  
All this depends on the interspatial axle distances and the individual axle loads. The WIM data classifies 
vehicles in 20 different axle configurations, as shown in appendix B. To gain insight in the individual 
axle loads and the interspatial axle distances, for all 20 axle configurations a visualisation was made to 
gain insight in what ‘type’ of vehicle was crossing the bridge.   

In the figure shown left below, the vehicle causing the highest load effect is shown schematically. The 
first axle of the vehicle is located at the far right. The legend shows the interspatial axle distances, 
where the first value is the distance between the first and second axle and so on. Clearly, the latter 
three axles of this vehicle are exceedingly high loaded, all greater 150 kN.  
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Figure 25 – Comparison between axle loads for tipper trucks in the WIM data (left) and LP data (right). 

Based on the interspatial axle distances, this vehicle is most likely a 5-axled tipper truck or a 5-axled 
mobile crane.  Since the WIM data does not clearly distinguish mobile cranes, as shown in appendix B, 
therefore it is assumed that this is a 5-axled tipper truck. 

When compared to tipper trucks in the LP data, shown in the right figure, it becomes clear that the 
individual axle loads are underestimated, for the latter three axles at least with a factor of 1.5. For the 
axle spacings it seems that the assumptions made in paragraph 5.1.3 are a pretty good estimate, only 
the last axle is closely spaced to the fourth than in the assumed load model. In terms of GVW, it is likely 
that this particular vehicle is overloaded, considering the high individual axle loads for the latter three 
axles. 

However, the figures above consider the highest occurring load effect caused by vehicle class 221. For 
the same class, now the lowest occurring load effect is shown in the figure below and immediately it 
shows that the individual axle loads are lower. In fact, the lowest recorded load effect for vehicle class 221 causes very much the same load effect as the assumed load model used in the LP data.  

 
Figure 26 - Configuration of axles for tipper truck from WIM data. 

So based on this comparison, it becomes clear that the LP data is a good estimate but needs more 
tweaking to look more adequately like the WIM data. The calculated load effect caused by a vehicle is 
constructed by two components: the axle distance and the axle load. Hence, for both components a 
comparison is made with the WIM data to check whether the initial assumptions were right. This is 
thoroughly done for each vehicle type in appendix C. At first it must be stated that the considered WIM 
data registered vehicles with a GVW > 3.5t, where the vehicles in the LP model only have a GVW >12t. So initially the WIM data will be filtered to fulfil to this condition. Whenever it turns out that either 
one of the components is wrongly assumed, measures can be taken to correct for this. This can either 
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be done by changing the initial assumptions and rerunning the process, or by finding a factor to tweak 
either one, or both, component. The paragraph below shows a summary of the drawn conclusions.  

5.3.2 Results of comparison between LP- and WIM data. 
In this paragraph all obtained information regarding the comparison between WIM data and LP data 
will be evaluated and some intermediate conclusions will be drawn. Considering the entire dataset, 
the adopted strategy to use car license plate registrations as an input to calculate load effects seem to 
be reasonably close to the WIM data. This is shown in figure 22 and 23. However, these figures show 
that the WIM data contains outliers, which are not well represented by the LP data. Especially for 
vehicles with a GVW > 60t. As shown extensively shown in appendix C, this is a combination of 
overloaded axles and closely spaced axles. Based on this, for both these parameters the following 
conclusions are drawn. 

Axle loads 
The table below is a summary of the results given in appendix C. The comparison is made from the 
perspective of the WIM data.  
 

N3-Vehicle class O4-vehicle class Conclusion 
2-axled semi-trucks Any semi-trailer Both axles are overloaded. 
3-axled semi-trucks Any semi-trailer First two axles are overloaded. 
4-axled tipper trucks None Primarily underloaded axles. 
5-axled tipper trucks None Most axles are overloaded in most cases. 
4- and 5-axled mobile cranes 3-axled trailer All axles are overloaded. 
2-axled full trucks None Both axles are underloaded. 
2-axled full trucks Any non-semi-trailer First axle is primarily overloaded. 
3-axled full trucks None First and third axle are overloaded. 
3-axled full trucks Any non-semi-trailer All axles are primarily overloaded. 
4-axled full trucks None First axle is overloaded. 
4-axled full trucks Any non-semi-trailer Most axles are overloaded.  
Extreme heavy combination 6+ axles. No relation is found about axle distances; 

hence the underestimated load effect 
must come from overloaded axles. 

Table 7 - Summary of conclusions for comparison of axle loads between LP data and WIM data. 

As can be seen, for almost all vehicle classes the conclusion can be drawn that at least one axle is 
overloaded. There where this did not was the case, the majority of the axles were underloaded. This 
stresses that axle loads are best to be defined as a range of values, rather than a static value, which 
has been the case so far. Therefore, it is suggested to simulate this under- and overloading behaviour 
of axles by an axle load factor.  
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Interspatial axle distance 

N3-Vehicle class O4-vehicle class Conclusion 
2-axled semi-trucks Any semi-trailer Initial assumptions were a good estimate. 
3-axled semi-trucks Any semi-trailer For 5-axled combinations, distance DT34 

will be adjusted. 
4-axled tipper trucks None Assumed axle configuration made in 

paragraph 5.1.3 is wrong and needs to be 
adjusted to approximate a more evenly 
spaced axle configuration. 

5-axled tipper trucks None Initial assumptions were a good estimate. 
4-axled mobile cranes 3-axled trailer Distance DT34 is slightly overestimated. 
5-axled mobile cranes 3-axled trailer Distance DT12 is slightly underestimated. 

Distance DT23 and DT45 are slightly 
overestimated. 

2-axled full trucks None Initial assumptions were a good estimate. 
2-axled full trucks Any non-semi-trailer Distances DT23 and DT34 are unrealistic. 
3-axled full trucks None Distance DT23 is relatively short and 

needs to be reviewed. 
3-axled full trucks Any non-semi-trailer Minimum values for distances DT23, DT34 

and DT45 are unrealistically low. 
4-axled full trucks None Initial assumptions were wrong and need 

to be adjusted. 
4-axled full trucks Any non-semi-trailer All values for distances DT45 and DT56 are 

unrealistic. 
Extreme heavy combination 6+ axles. No comparison was made since no such 

vehicle type exists in the WIM data. 
Hence, the conclusion can be drawn that 
in the WIM data overloaded axles cause 
maximum load effect. For LP data, the 
initial assumptions lead to comparable 
load effects. 

Table 8 - Summary of conclusions for comparison of interspatial axle distances between LP data and WIM data. 

The table above shows a summary of conclusions obtained for comparing the interspatial axle 
distances of the LP data with the WIM data. For some vehicle classes, the assumed axle configuration 
was wrong and will be adjusted accordingly. For other vehicle classes, certain axle distances were 
either unrealistically low or wrongly assumed. These will be reviewed again and are changed if deemed 
necessary.  

5.4 Adjustments of approach 
According to the conclusions drawn in the previous paragraph, certain measures have to be taken for 
both the axle loads and the interspatial axle distances. For both components, certain measures are 
opted to tweak the LP data to looking more like the WIM data.  

5.4.1 Interspatial axle distances 
Firstly, the interspatial axle distances that seem to be unrealistic or corrupt will be reviewed upon and 
are changed accordingly. Furthermore, about 40 entries had unrealistic interspatial distances and are 
removed from the dataset. 



 30 

5.4.2 Axle load factors 𝜂 
Secondly the axle loads will be adjusted. Following from the conclusions in paragraph 5.3, it turned out 
that for each axle of each vehicle type a range of axle loads exists, rather than the given static value by 
the RDW. The range of axle loads is likely caused by under- and overloaded vehicles in the WIM data. 
To simulate this in the LP data, an axle load factor 𝜂  will be introduced. This factor 𝜂  is determined 
by comparing the axle loads of the vehicle in the LP data with the axle loads of similar vehicles in the 
WIM data. This process is done for every recorded vehicle and for each 𝑖-th axle of that vehicle. The 
process below shows how values for 𝜂  are determined. 

1. For each recorded vehicle in the LP data, similar vehicle types with the same number of axles 
are selected in the WIM data. 

2. Start with the first axle and calculate all possible values for 𝜂  by  ,, . The value of 𝐴𝑋 ,  

follows from the load of the 1st axle in the WIM data. The value of 𝐴𝑋 ,  is static and follows 
directly from the LP data. This results in a range, or distribution, of 𝜂 . 

3. Step 2 is repeated for each axle of that vehicle.  
4. Finally, for each axle, a range of values for 𝜂  exists. These are stored in separated vectors. 
5. When the load effect is calculated, for each axle a random value for 𝜂  is drawn from the 

separated vectors, as determined in step 4, properly simulating under- and overloaded axles. 
6. Steps 2 to 5 are repeated for all recorded vehicles in the LP data. 

In the figure below, an example is given for a 2-axled semi-truck carrying a single axle trailer. The red 
lines indicate the axle load as given by the LP data, i.e. 𝜂 = 1.0. 

 
Figure 27 - Distribution of 𝜂  for a 2-axled semi-truck carrying a single axle trailer. 

It must be noted that the distribution of 𝜂  for each vehicle and each vehicle type differs, since it is 
based on the axle loads of the given system. If, for example, the axle load of the first axle was 90 kN 
instead of 75 kN, the distribution would shift to the left side of the red line. For each vehicle type an 
example is given in appendix H. 

5.5 Post-processing 
The approach stated in paragraph 5.1.2 is adjusted according to the measures suggested in paragraphs 
5.4.1 and 5.4.2. The two figures below show the results for the occurring load effect 𝑀  based on 
the initial approach, the adjusted approach, and the WIM data.  The top figure compares the initial 
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model using the initial LP data with the WIM data. The bottom figure compares the modified LP data 
with the WIM data. 

 

 
Figure 28 - Bending moments vs GVW for both the LP data and the WIM data. 

 

 
Figure 29 - Bending moments vs GVW for the modified LP data and the WIM data. 

The adjusted approach now shows a more spread out behaviour and approximates the load effect 
caused by the WIM data better.  When looked at vehicles with a GVW > 70t the differences between 
the two approaches become even more clear. As said before, the two factors for determining load 
effect are axle loads and interspatial axle distances. Since no excessive outliers are shown in the 
bottom figure, the conclusion can be drawn that the assumptions made in paragraph 5.1 regarding 
these distances are valid. 

Combined with the axle load factors 𝜂  based on the WIM data, the conclusion can be drawn that the 
adjusted approach constructs realistic load models. Figure 27 shows the difference between the raw 
LP data and the modified LP data, properly simulating under- and overloaded vehicles as they are 
recorded in the WIM data. 
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Figure 30 - Comparison between the 3 load models. The black circle indicates vehicles falling in the extreme heavy 
combinations (EHC). 

Since the WIM data is measured in the city of Rotterdam [12], it is likely that these vehicles are driving 
throughout the main roads of the city of Rotterdam and thus also crossing the bridge reviewed in this 
thesis. 

Note that for the category extreme heavy vehicles no adaptations were made since no comparable 
vehicles in the WIM data were found, and that they remain relatively the same for LP data and WIM-
influenced LP data. This is indicated with the black circle. The differences that are noticeable however, 
are due to the assumption of the interspatial axle distances as stated in paragraph 5.1 

5.6 Influence of span length 
One of the motivations for this study to be done, was to investigate whether the tandem model from LM1 from the Eurocode was an overconservative load model for relatively short span bridges. A span 
length of 1 m < l < 20 m can be categorized as a ‘short span bridge’. Figure 18 and 86 already 
show that solely the tandem load from LM1 is rather conservative. However, this can only be said for l = 10 m. For other spans, this statement cannot be made, yet. To investigate this, the same 
procedure for constructing load models is used as before, but now the span length varies from 1 m to 20 m. In the figures below, the results are plotted for span lengths of 5,10,15 and 20 m respectively.

 
Figure 31 - Figures for bending moment vs GVW for a span length of 10 m for the modified LP data, containing axle load factor 𝜂. Results are compared to the tandem load from 𝐿𝑀1. 
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Note that for a span length of 15 m the results of applying the adopted approach almost exceed the 
load effect caused by the tandem load of LM1. For span lengths of 20 m however, 10 % of the highest 
load effects exceed the threshold value of LM1. The calculated bending moment by LM1 is only due 
to the tandem load. Now the question rises what the influence of the uniformly distributed load, 𝑞 , 
is on the bending moment due to traffic loading. Hence, the same plots are made as in figure 31, but 
the uniformly distributed load is added to the value corresponding to LM1. The value of the uniformly 
distributed load is 𝑞 = 9 kN/m , according to NEN-EN 1991-2. Only strips with a width of 1 m are 
considered. The results are shown in the figure below. 

The results clearly show that the bending moment caused by LM1 is never exceeded for all span 
lengths. For span lengths of 5 m and 10 m the highest exerted bending moment does not come close 
to the value of LM1. For these span lengths, most vehicles with a GVW ranging from 35t to 100t exert 
the same amount of load effect on the span. Since the span is rather short, this is caused by overloaded 
axles rather than overloaded vehicles. 

For span lengths of 15 m and 20 m a similar pattern is shown. Namely that the bending moment 
according to LM1 is never exceeded by the simulated vehicles. However, the highest bending moments 
are caused by the heaviest vehicles as shown in the figure. For longer span lengths, the load effect is 
caused by overloaded vehicles rather than by overloaded axles. 

 
Figure 32 - Figures for bending moment vs GVW for a span length of 10 m for the modified LP data, containing axle load factor 
η. Results are compared to the full load model 𝐿𝑀1. 

Based on the obtained results, the conclusion can be drawn that for short spans, i.e. 5 m and 10 m, 
overloaded axles are causing the highest load effects rather than overloaded vehicles. For longer spans, 
i.e. 15 m and 20 m, the highest load effects are caused by the heaviest vehicles rather than overloaded 
axles. 
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6 Monte Carlo Simulation 
6.1 Introduction 
In this chapter, the approach to apply a Monte Carlo simulation to the limit state function is given. 
Firstly, the definition of the limit state function, in combination with a Monte Carlo simulation is given. 
Secondly, the necessary components for the limit state function, load distribution S(x) and resistance 
distribution R(x) are explained. The results from the previous chapter can be used as an input for S(x). 
The input for R(x) has yet to be determined. Finally, a piece of code to run a Monte Carlo simulation 
is given to simulate the return period of 1000 years and to determine the probability of failure. 

6.1.1 Basic principle 
The concept of a Monte Carlo simulation is to use a probabilistic approach to solve problems that might 
be deterministic in nature. Monte Carlo simulations are specifically used when the initial conditions, 
or the starting values of certain parameters, are not deterministic. Thus, the parameters can have a 
range of values. So basically, a Monte Carlo is a deterministic process, done an 𝑁 amount of times. In 
this study, the hypothesis is whether the structure fails due to the occurring load or not. These results 
can be described by making use of the limit state function, shown below.  𝑍(𝑥) = 𝑅(𝑥) − 𝑆(𝑥) 

Since an 𝑁 amount of simulations is done, also an 𝑁 amount of results is obtained. In this case, the 
parameters resistance 𝑅 and the imposed load 𝑆 have their own distribution functions. During a Monte 
Carlo simulation, a random value is generated from these distribution functions, and the limit state 𝑍(𝑥) is then calculated for that specific set of parameters. These random values are generated from a 
cumulative distribution function. This distribution function can have any shape. In the picture below, 
a non-linear distribution function is given. 

 
Figure 33 - Example of a non-linear cumulative distribution function13. 

This process is repeated until all combinations of parameters have been considered. So, the outcome 
of a Monte Carlo simulation are values for the limit state 𝑍(𝑥) with a statistical distribution function. 
To illustrate what that looks like, in the picture below the results of a Monte Carlo simulation is shown 
with 200 samples, i.e. 𝑁 = 200. 

 
13 Source: Probabilistic Design: Risk and Reliability Analysis in Civil Engineering. Lecture notes CIE4130. 
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Figure 34 - Example of the limit state function using a Monte Carlo simulation.14 

6.1.2 Reliability index 
The main goal of probabilistic design is to design and maintain structures or structural elements with 
an acceptable risk level in an optimal way. One way to express this risk level is to derive the level of 
failure, or the relative failure probability 𝑃 . For 𝑁 → ∞ simulations, 𝑃  can be described as: 𝑃 = 𝑁𝑁  

Where 𝑁 is the number of simulations and 𝑁 is the number of simulations where 𝑍(𝑥) < 0.  

At first, one must determine what an acceptable level of risk is, often called the target value for 
reliability. The target value for reliability is often expressed by means of a reliability index 𝛽. The 
reliability index is directly related to the probability of failure, as can be seen from the following 
equation. 𝛽 = −Φ (𝑃 ) 

 The reliability index also depends on the reference period to which reference period they are applied. 
In case the yearly maxima are independent, the following relationship can be used to convert 𝛽 values 
in relation to different reference periods. Φ(β ) = [Φ(β )]  

6.2 Approach 
6.2.1 Determining load distribution S(x)  
To determine the load distribution S(x), the calculated load effects from the previous chapters are 
used as a base input for 1 year of load effects. Then using extreme value analysis, several maxima 
distributions are fitted, resulting in a load distribution S(x). The steps are given below: 

1. Calculate load effects for 1 year of daily data and store daily maxima 
2. Fit a distribution to the daily maxima, called 𝑓  
3. Use distribution 𝑓  to simulate a return period of 𝑡 years and store the monthly maxima 
4. Fit a distribution to the monthly maxima, called 𝑓  
5. Use distribution 𝑓  to simulate the return period 1000 times and store the yearly maxima 
6.  Finally, fit a distribution called 𝑓  to the yearly maxima. This distribution function is the 

fitted load distribution S(x). 

 
14 Source: Probabilistic Design: Risk and Reliability Analysis in Civil Engineering. Lecture notes CIE4130. 
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To illustrate the steps stated above, figure 34 shows 3 various load distributions S(x) for the 
unmodified LP data, the WIM-influenced LP data and the unmodified WIM data. These 3 models are 
fitted to a Gumbel-distribution, with parameters accordingly. Chapter 7 will describe this process more 
in detail. 

 
Figure 35 - Example of results obtained by following suggested approach. Left: icdf's for different load models. Right: pfd's 
for different load models. 

6.2.1.1 Curve fitting 
Any probability function can be fitted to every dataset. However, how well the fitting is done is highly 
important. For similar data as used in this thesis, TNO [12, p23] showed that a multimodal distribution 
was to be preferred over a single Weibull distribution15. Hellebrandt [1, p95] showed that for load 
effect distributions multiple distributions were approximating the distribution, but that a single 
Gumbel distribution fitted the data best. Figure 20 already shows that the distribution for the load 
effect is not described by a single distribution, but rather a mixture of multiple distributions, possibly 
a mixture Gaussian distribution. Hellebrandt [1] and TNO [12] showed that properly fitting distribution 
to the data is of most importance and thus these steps must be taken care of accordingly.   

6.2.2 Determining resistance distribution R(x) 
A similar approach as used by Hellebrandt [1] will be applied in this thesis, where the JCSS PMC 
functions as a guideline to determine the resistance distribution R(x). A similar procedure was used in 
[13] and will act like a guideline. This code prescribes distributions for concrete material properties. 
With these material properties the flexural bending resistance of a concrete cross-section can be 
determined following these steps: 

1. Determine distributions for concrete parameters 
2. Determine distributions for reinforcement steel parameters 
3. Determine geometrical parameters 
4. Calculate resistance 𝑀  using concrete mechanics 

The following paragraphs describe how to determine the distributions for step 1 and 2. Steps 3 and 4 
however are highly depending on parameter input and are not described in further detail. In chapter 
7 the necessary parameters are given to complete steps 3 and 4.   

 
15 This section was about fitting a curve to individual axle loads.  
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6.2.2.1 Concrete properties 
6.2.2.1.1 Compressive strength 
According to JCSS PMC Part 3, all basic concrete parameters are based on the compressive strength, 
modified with (distribution) parameters. The general compressive strength of a concrete element can 
be expressed as: 

f , = exp (m + t ∙ s ∙ 1 + 1n ) 

Where m , s  and n are all parameters with respect to the initial concrete grade. The initial concrete 
grade is manually chosen at first. And the parameter t  is the Student-distribution for 𝑣  degrees of 
freedom. The values for these parameters are given in a table, shown below. With these parameters a 
distribution for f ,  can be determined. 

 
Figure 36 - Figure of different parameters for different concrete grades.16 

6.2.2.1.2 Tensile strength, modulus of elasticity and ultimate strain 
As said before, the other concrete parameters are directly derived from the compressive strength. The 
tensile strength, modulus of elasticity and the ultimate strain are determined as follows respectively: 𝑓 = 0.3 ∙ 𝑓 , ∙ Y ,  𝐸 , = 10.5 ∙ 𝑓 , ∙ 𝑌 , ∙ (1 + 𝛽 ∙ 𝜑(𝑡, 𝜏))  

𝜀 , = (6 ∙ 10 ) ∙ 𝑓 , ∙ 𝑌 , ∙ (1 + 𝛽 ∙ 𝜑(𝑡, 𝜏))  

The variables Y ,  contain parameters according to the log-normal distribution with predetermined 
mean and covariance parameters as shown in the table below. 

 
16 Source: JCSS Probabilistic Model Code Part 3: Table 3.1.2. 
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Figure 37 - Distribution types and parameters for different concrete parameters.17 

Parameter 𝛽  is the ratio of the permanent load to the total load and depends on the type of the 
structure is between 0.6 ≤  𝛽 ≤ 1.0.  [JCSS PMC3 Part 3, p2]. Parameter 𝜑(𝑡, 𝜏) is the creep 
coefficient according to the Eurocode and is deterministic [JCSS PMC3 Part 3, p2]. 

6.2.2.2 Reinforcement steel properties 
6.2.2.2.1 Steel yield strength 
JCSS PMC3 Part 3 also prescribes properties for the reinforcement steel since these properties become 
probabilistic as well. Paragraph 3.2 prescribes how these properties are determined. Firstly, the yield 
stress 𝑋  can be taken as the sum of three independent Gaussian variables [JCSS PMC part 3, p26]. 𝑋 (𝑑) = 𝑋 + 𝑋 + 𝑋  

Where 𝑋  represent variations in the global mean of different mills, 𝑋  represents the variations in 
a mill from batch(melt) to bath and 𝑋  represents the variations within a melt. All 𝑋  variables have 
a normal distribution with the following parameters: 

Property Distribution 𝑋  𝒩(𝜇 (𝑑), 19) 𝑋  𝒩(0,22) 𝑋  𝒩(0,8) 
Table 9 - Distribution parameters for different steel parameters. 

Variable 𝑋  is influenced by the bar diameter 𝑑 and initial yield stress 𝑓  and thus becomes 
parametric, since parameter 𝜇 (𝑑) can be expressed as: μ = μ (d) = (f + 2 ∙ 30) ∙ 0.87 + 0.13 ∙ e( . )   

6.2.2.2.2 Bar area 
JCSS PMC Part 3 also prescribes the statistical parameters for the total bar area of a cross section, given 
in table [JCSS PMC Part 3, table 3.1.5] with the following distribution properties: 

Property Distribution 𝐴  𝒩(𝐴 , 0.06 ∙ 𝐴 ) 
Table 10 - Distribution parameters for steel area. 

6.2.2.3 Concrete and steel force 
6.2.2.3.1 Steel force 
The force in the steel is expressed as: 𝐹 = 𝐴 ∙ 𝑓  

 
17 Source: JCSS Probabilistic Model Code Part 3: Table 3.1.1. 
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Where both 𝐴  and 𝑓  are described by their distributions according to the previous paragraphs. The 
picture below shows how the force in the steel is calculated in the script. The parameters 𝑆𝑥𝑥, 𝑛 and 𝑑 are all input based. 𝑆𝑥𝑥 is the initial steel yield stress [N/mm ], 𝑛 is the number of rebars and 𝑑 is 
their respective bar diameter [mm]. The script returns a singular value, expressed in [kN]. 

 
Figure 38 - Excerpt of python code to determine force in steel 𝐹 . 

6.2.2.3.2 Concrete force 
If all concrete parameters are known, the force in the concrete 𝐹  can be calculated to the figure 
below accordingly. The figure below shows the acting forces in a concrete cross-section. The force in 
the concrete, i.e. 𝐹 , is calculated as  𝐹 = 0.85 ∙ 𝑓 ∙ 𝑥 .  

 

 
Figure 39 - Schematically representation of acting forces in a concrete cross-section.18 

However, the compressive height 𝑥  must be determined first, which can be through: 𝑥 = 𝐴 ∙ 𝑓0.85 ∙ 𝑓  

Obviously 𝐹  depends on the steel parameters, and thus also on 𝐹  which is described in the 
previous paragraph. The figure below shows the script calculating 𝐹 . The input parameters are the 
same and should read the same as for 𝐹 . The script also returns a single value, expressed in [kN].

 
Figure 40 - Excerpt of python code to determine force in the concrete 𝐹 . 

 
18 Source: https://civilengineer.webinfolist.com/design/rcsingle.png 
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6.2.2.4 Flexural bending resistance 𝑀  
Now all parameters for both the concrete and the reinforcing steel are known, and thus the resistance 
can be calculated. To do this, simple concrete mechanics are applied, see the figure below. 

Since the 𝑀  is highly dependent on steel yield stress, internal lever arm, bar diameter and bar area, 
concrete grade and much more, a general method is opted where these parameters can be used as an 
input to determine 𝑀 . Using concrete mechanics, the bending resistance can be calculated as 𝑀 =𝐹 ∙ 𝑧, where 𝑧 is the internal lever arm and 𝐹 is the lowest value of 𝐹  and 𝐹 , which are both 
described in the previous paragraph. The figure of the script below shows how 𝑀  is calculated. 

 
Figure 41 - Excerpt of python code to calculate bending moment resistance 𝑀 . 

 The script uses as the same input as the scripts for calculating 𝐹  and 𝐹  and now also requires 
an additional parameter 𝑧. Twice, the forces 𝐹  and 𝐹  are calculated and the minimum occurring 
force is then selected. Ultimately the script returns a bending moment in [kNm]. 
6.2.2.5 Model uncertainties 
According to JCSS PMC part 3 chapter 3.9, two final variables 𝜃  and 𝜃  for resistance and load 
respectively will be introduced. These variables account for random effects that are neglected in the 
models and simplifications in mathematical relations19. These variables have their recommended 
probabilistic models which are described in table 3.9.1 in JCSS PMC Part 3 chapter 3.9. Since this thesis 
focusses on bending moments in plates, modelled as frames, the following distributions are applied. 

Property Distribution 𝜃  LN(1,0.1) 𝜃  LN(1.2,0.15) 
Table 11 - Distribution parameters for model uncertainties 𝜃  and 𝜃 . 

6.2.3 Method of simulating 
The previous paragraphs described all the required parameter inputs needed to be able to determine 
forces and resistances. The part that is left is how the Monte-Carlo simulation will be performed. Such 
a simulation however is basically the same calculation done N times. The figure below shows an 
excerpt of the script of the simulation. The function MCsim requires the same input parameters as the 
function M , but also an additional parameter e. This parameter is simply the number of times the 
simulation must be done, i.e. N as used earlier. The script then plots a limit state function like figure 
33 and calculates the probability of failure P . This is shown in the figure below. 

 

 
19 JCSS Probabilistic Model Code Part 3: paragraph 3.9. 
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Figure 42 - Excerpt of python code of running a Monte Carlo simulation. 

6.3 Simulation 
The previous paragraphs described all required parameter input and described the general approach 
needed to simulate traffic. The number of times a simulation has to be done, N or e in the code, has 
still to be determined, however. A study done by Lerche [13] shows that  N is relevant when 
computation time is governing. Hellebrandt [1, p133] showed that the number of simulations must be 
within the range of 10 − 10 . For Python, the number of entries a vector can have depends on 
hardware and not on software. Thus, in theory infinite entries can be added to a vector. This is an 
advantage of Python over Microsoft Excel, where a worksheet is limited by 1,048,576 rows and 16,384 
columns. For a mid-range laptop with a i5-4310 2.00 GHz quadcore CPU and 8,00 GB RAM the 
calculating time for 10  simulations is currently averaged at 5.5 minutes at 300 iterations per second. 

6.4 Post processing 
To validate whether the obtained results are reasonable, all intermediate steps such as constructing 
distributions S(x) and R(x) should be researched a posteriori. For distributions S(x) and R(x) this 
mainly done by comparing the results with other results in literature.   



 42 

7 Case study 
7.1 Introduction 
The previous chapters have shown that the LP data, although modified, accurately describes the WIM 
data. Since LM1 from NEN-EN 1991-2 is based on WIM data [15] and the constructed load model in 
this thesis is a combination of theoretical axle loads and WIM data, it is of interest to compare both 
load models and explain any differences. To compare both load models, a theoretical case study will 
be done. For simplicity reasons, this will be a simply supported RC bridge with a span length of 10 m 
in an urban area. The bridge will consist of multiple girders, but only one girder will be reviewed and 
will be modelled as a 1D line girder. This is done because the main reason of this study is to compare 
the load effect caused by different load models on bridges (girders).  

7.2 Case 
7.2.1 Approach 
The bridge girder will initially be designed according to LM1 from NEN-EN 1991-2. Using LM1, the 
reinforcement for ULS will be determined. This initial design, i.e. concrete – and steel parameters, will 
act as a starting point for the resistance distribution R(x), explained in paragraph 6.2.2. Then in 
paragraph 7.3 the load distribution S(x) will be determined and finally a Monte-Carlo simulation will 
be used to probabilistically verify the initial structure.  

7.2.2 Initial design 
7.2.2.1 Starting parameters 
To properly determine load effects caused by LM1, the following starting parameters are assumed: 

 Only one span of 10 m is considered. 
 Only one theoretical lane of 3.0 m is considered. 
 The number of heavy trucks is assumed to be  N  ≥ 2 ∙ 10   
 The geometry of the girder is assumed to be considered as a plate, i.e. lane widths of 1.0 m 

are considered. 
 The height of the girder is initially set to be 500 mm and may change during calculating. 
 Concrete grade C35/45 is used 
 Steel grade FeB500 is used 

7.2.2.2 Load effect caused by LM1 
This hypothetical bridge girder is simply supported and spans 10 m. According to NEN-EN 1991-2 
paragraph 4.3, the structure is loaded by: 

 
Figure 43 - Load scheme of LM1 from NEN-EN 1991-220.  

  

 
20 Source: https://www.sciencedirect.com/science/article/pii/S1687404814000194 
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Where the total width of the lane is 1.0 m and the assumption is made that the entire vehicle is present 
on a single lane. q =  α ∙ q = 9 ∙ 1,0 = 9 kN/m  Q =  α ∙ Q = 1 ∙ 300 = 300 kN 

The design bending moment caused by these two loads is then: 𝑀 = 18 ∙ 𝑞 ∙ 𝑙 = 18 ∙ 9 ∙ 10 = 112.5 kNm/m 

The value for 𝑀  follows from the approach to calculate bending moments as stated in paragraph 5.2. M , =  1.5 ∙ M + M = 1.5 ∙ (112.5 + 1320) = 2148.75 kNm/m 

 

7.2.2.3 Load effect caused by own weight 
According to NEN-EN 1990 table A2.4, the occurring load effect caused by own weight of the structure 
is determined by: M , = 1.35 ∙ M ,  

Using the geometry stated in paragraph 7.2.2.1 and a concrete density of 25 kN/m  the following 
design bending moment occurs: M ,  = 1.35 ∙ 156.25 = 210.94  kNm/m 

7.2.2.4 Resistance 
In the previous paragraphs both the load effect due to own weight and LM1 are calculated. When 
combined, these result in a total design bending moment of M = 2360 kNm/m in ULS for which the 
girder will be designed.  

7.2.2.4.1 Concrete 
Assuming concrete grade C35/45 and according to NEN-EN 1992-1-1 paragraph 3.1.6 the design 
compressive stress f  is set to be: f =  α ∙ fγ = 19.83 N/mm  

7.2.2.4.2 Reinforcement steel 
Assuming steel grade FeB500, the yield stress f  according to NEN-EN 1992-1-1 paragraph 3.2 the 
design yield stress f  is set to be: 

f = fγ = 435 N/mm  

7.2.2.4.3 Resistance 
Assuming the same concrete mechanics shown in paragraph 6.2.2.3.2, the steel in the force and 
concrete are determined as follows: F , =   n ∙ A ∙ f  F , = x ∙ 0.85 ∙ f  

Where x  can be described as: 
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x = F ,0.85 ∙ f = n ∙ A ∙ f0.85 ∙ f  

And the bending moment resistance M  as: M = F , ∙ z 

And the internal lever arm z as: z = h − c − 0.5 ∙ ∅ − 0.5 ∙ x  

Where z is the internal lever arm. As can be seen, the flexural bending moment resistance depends on 
the internal lever arm. Since this expression depends on multiple variables, the following assumption 
is made z = 0.81 ∙ h, such that z = 405 mm. Accordingly, the minimum value for F , , = 5826 kN 
which is obtained by A , = 13.4 ∙ 10  mm  which corresponds to a tightly spaced reinforcement of 
rebars 17 − ∅32, resulting in A , = 13.67 ∙ 10  mm  and a final resistance of M = 2409 kNm.  
This results in a final unity check of uc =  = 0.98. 

7.3 Probabilistic verification modified LP model 
The results obtained in the previous paragraph will act as a starting point for the probabilistic 
verification of this hypothetical girder bridge. For the resistance distribution R(x), the proposed 
reinforcement of 17∅32 will act as input.  

7.3.1 Load distribution S(x) 
To determine load distribution S(x) the approach as stated in paragraph 6.2 will be used. The initial 
source of data, needed for step 1, will be the LP data with the adjustments as described in paragraph 
5.4, referred to as the modified LP model.  This input is given in appendix E. Obviously, the curve fitting 
done in step 1 is most crucial for other steps. The figure below shows the daily maxima obtained for 1 
year of data, i.e. step 1. 

 
Figure 44 - Relative frequency histograms and fitted distributions for daily maxima for the modified LP load model. 

The data does not show clear resemblance of a single GEV-type distribution, nor a unimodal normal 
distribution. The curve fit shown in figure 43 is done through a Python package called distfit. The 
background to this package, along with an extensive study to curve fitting is shown in Appendix E. For 
extreme value analysis, the tail of the distribution carries the weight to determine which distribution 
fits the data properly. Visually, the fitted Gumbel distribution is overestimating the tail and the Weibull 
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distribution is underestimating the tail. The fitted lognormal distribution using the distfit package has 
a better way of describing the curve. This is strengthened by the figure below.  

 
Figure 45 - Fitted inverted cumulative distribution functions for daily maxima for the modified LP load model. 

The fitted Gumbel distribution clearly shows an overestimation of the tail of the distribution as 
opposed to the lognormal distribution. The ‘single’ Weibull distribution shows an underestimation for 
the tail of the data, especially the 3 values exceeding 1100 kNm. Hence, the fitted lognormal 
distribution is used as the distribution for the daily maxima. The parameters are shown in Appendix E.  

For the monthly maxima, 25 years are simulated by means of drawing samples from the daily maxima 
distribution. Similarly, as for the daily maxima, several curve fittings have been done. The results are 
shown below. 

 
Figure 46 - Relative frequency histograms and fitted distributions for monthly maxima for the modified LP load model. 

Visually, the fitted Weibull distribution does not properly fit the data. The distfit package determined 
that a Mielke distribution fitted the data best21. However, when inspected, it turned out that the 
Mielke- and the Gumbel distribution were almost identical. The Mielke distribution however 
overestimates the tail of the distribution. The Gumbel distribution only slightly overestimates the tail 

 
21 Extensively described in appendix E. 



 46 

of the distribution, as shown in figure 45. Hence a Gumbel distribution is used to the fit the data to the 
monthly maxima. This is further strengthened by the figure below. 

 
Figure 47 - Fitted inverted cumulative distribution functions for monthly maxima for the modified LP load model. 

To determine the yearly maxima distribution, 1000 years of sampling monthly maxima has been done, 
storing each yearly maximum. Similarly, as for the monthly maxima, the distfit package has been used 
to determine the best fitting distribution to the obtained data. The results are shown below. 

 
Figure 48 - Relative frequency histograms and fitted distributions for yearly maxima for the modified LP load model. 

Visually, the fitted Weibull distribution does not properly fit the data. The distfit package determined 
that a lognormal distribution fitted the data best. However, when inspected, it turned out that the 
lognormal- and the Gumbel distribution were almost identical. Hence a Gumbel distribution is used to 
the fit the data to the monthly maxima. This is further strengthened by the figure below. 
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Figure 49 - Fitted inverted cumulative distribution functions for yearly maxima for the modified LP load model. 

Based on the facts that the difference between both distributions is negligible and that the monthly 
maxima distribution is also a Gumbel distribution, the fitted distribution for the yearly maxima is set 
to be a Gumbel distribution with the following parameters22. This function will act as the input for the 
Monte-Carlo simulation in chapter 7.3.3. 

Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1227.9312247878345 
Scale  𝑠𝑐𝑎𝑙𝑒 𝛽 28.938224976728158 

Table 12 - Parameters for yearly maxima distribution. 

7.3.2 Resistance distribution R(x) 
Paragraph 6.2.2 described how the resistance distribution R(x) was determined. Following from the 
initial design stated in paragraph 7.2.2, the following input parameters for the function MCsim will be 
selected. These input parameters result in the following resistance distribution R(x). Note that this 
distribution does not include the uncertainty parameter θ . 

 

Parameter Code Value Units f  Sxx 500 N/mm  n n 17 − ∅  d 32 Mm z z 405 N/mm  N e 1 ∙ 10  − 
Table 13 - Input parameters for MCsim function 

  

 

 
22 This probability density function does not include the model uncertainty 𝜃 . 

Figure 50 - Relative frequency histogram of distribution of 
resistance 𝑀  
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7.3.3 Simulation 
The Monte-Carlo simulation will be done by drawing random samples from the load distribution S(x) 
and the resistance distribution R(x). This will be done 10  times, which takes about 1 hour of 
calculation time. During the simulation, the model uncertainty factors θ  and θ  are considered. 

7.3.4  Results 
The figures below show the result of a Monte Carlo simulation for a bridge with a span length of 10 m. 

 
Figure 51 – Results obtained from Monte Carlo simulation using the modified LP model as a load model input. 

In total one million simulations were done. As can be seen, the spread of the occurring bending 
moments is rather small since the distribution of S(x) is also rather small. R(x) however, has a rather 
wide spread, which is mainly due to the model uncertainty factor 𝜃 . This is shown in the figure below.  

 
Figure 52 - Distributions for 𝑆(𝑥) and 𝑅(𝑥) with uncertainty factors 𝜃  and 𝜃  incorporated. 
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In total, 18 failures were recorded. Hence the probability of failure is 𝑃 = 1.8 ∙ 10  corresponding 
to a reliability index β = 4.13. 

 
Figure 53 - Inverted cumulative distribution function for results obtained from Monte Carlo simulation using modified LP 
model as a load model input. 

7.4 Probabilistic verification of various load models 
7.4.1 LP data 
The dataset used in the previous paragraph comes from the modified LP data model, which 
incorporated the load factor 𝜂  to simulate under- and overloaded trucks. It is interesting to see what 
the impact of this load factor is on the probabilistic verification of a similar case study suggested in 
paragraph 7.3. The same initial design values and the same procedure are used. Since no overloaded 
axles are simulated, the expectation is that the probability of failure will decrease. The procedure to 
determine the load distribution S(x) is elaborated in appendix F. The figure below shows the final load- 
and resistance distributions S(x) and R(x). 

 
Figure 54 - Probability density functions for 𝑆(𝑥) and 𝑅(𝑥) used in the Monte Carlo simulation. 

A Monte-Carlo simulation is done using these two distributions as an input. In total, 10  simulations 
were done. The figure below shows the results of the Monte-Carlo simulation. As can be seen, the 
spread of the resistance is large, and the spread of the load is rather tight. In total, the system only 
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failed once, i.e. P = 10 . According to NEN-EN 1990 Annex C, this results in a reliability index β =4.75. 

 
Figure 55 - Results obtained from Monte Carlo simulation using the LP model as a load model input. 

 
Figure 56 - Inverted cumulative distribution function for results obtained from Monte Carlo simulation using LP model as a 
load model input. 

The bottom figure shows the course of the inverted cumulative distribution for the obtained Monte 
Carlo results. It is possible to fit a curve to this distribution similarly as done in paragraph 7.3 for bridges 
with the same span and same traffic load to skip calculation time.  

7.4.2 WIM data 
The modified LP data model is a combination of both the LP data and the WIM data. It is therefore of 
interest see whether different load models lead to different probability of failures, and thus different 
reliability indices. In this paragraph, the WIM data is used as a load model input for the probabilistic 
verification of the same case study as stated in paragraph 7.3. Only the load distribution S(x) will 
change accordingly. This process is captured and explained in appendix G. The resulting distributions S(x) and R(x) are shown below. 
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Figure 57 - Probability density functions for 𝑆(𝑥) and 𝑅(𝑥) using the WIM model as a load model input. 

A Monte Carlo simulation is done using these two distributions as an input. In total, 10  simulations 
were done. The figure below shows the results of the Monte-Carlo simulation. As can be seen, the 
spread of the resistance is large, and the spread of the load is rather tight, but less tight than for the 
LP-model. In total, the system failed 129 times, i.e. P = 1.29 ∙ 10 . According to NEN-EN 1990 Annex 
C, this results in a reliability index of β = 3.65. 
 

 
Figure 58 - Results obtained from Monte Carlo simulation using the WIM model as a load model input. 
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Figure 59 - Inverted cumulative distribution function for results obtained from Monte Carlo simulation using WIM model as 
a load model input. 

7.5 Dutch National Annex – Reliability index 
Whenever a probabilistic verification of an existing structure is not possible for whatever reason, there 
exists a deterministic way to determine whether an existing structure still fulfils the safety required for 
a predetermined remaining design working life. This approach is stated in structural codes NEN8700 
and NEN8701. In this approach, additional partial factors are applied to increase the design resistance 
values and to decrease the design load values. The values of these partial factors are based on a certain 
reliability level. For structures falling in the CC3 category with a reference period of 15 years, a 
threshold value for the reliability index must be β = 3.323, according to NEN8700 B3.2 table B.2. When 
structures fulfil this requirement, structural measurement do not have to be taken during the 
remaining working life. 

7.6 Different span lengths  
Until now, the only considered span length was 10 m. Paragraph 5.6 has shown that the cause for the 
highest load effect shifts from overloaded axles to heavier vehicles. The question rises whether there 
is a relation between span length and reliability index. Therefore, different single span lengths will be 
considered in this paragraph. Only the span length changes. The same recorded vehicles, including 
their respective 𝜂 factors, are applied to the structure. The same procedure as stated in paragraph 7.3 
will be used. 

7.6.1 Initial design 
In this paragraph different span lengths will be evaluated using the same approach as in paragraph 7.3. 
The initial design for the multiple span lengths will be kept the same as much as possible. Table 14 
shows the starting parameter input. All other parameters are kept the same as described in paragraph 7.2.2. 

  

 
23 For existing structures built before 2003, where wind loading is not dominant. 
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Span Length [m] Rebars  Thickness concrete ℎ [mm] Lever arm 𝑧 [mm] 𝑀  [kNm] 𝑀  [kNm] 
L = 5 7∅32 500 405 950 991 
L = 10 17∅32 500 405 2360 2409 
L = 15 21∅32 700 567 4150 4165 
L = 20 32∅32 700 567 6069 6347 

Table 14 - Parameter input for different span lengths 

7.6.2 Load distributions S(x) 
The same procedure described in paragraphs 7.3.1 and 7.3.2 will be adopted, although not as 
thoroughly. The same modified LP data model is used to calculate load effects for the different span 
lengths, also briefly shown in paragraph 5.6. For each span length, to determine S(x), the suggested 
best fitted distribution by the distfit package will be selected and the parameters will be determined 
accordingly. For R(x), the exact same procedure will be applied, however with the parameter input 
shown in table 15. The table below shows the relevant parameter input for S(x). 
 𝐒(𝐱) 
Span length  Distribution Parameters 5 m Gumbel 𝜇 = 523.200 𝛽 = 26.708 15 m Generalised 

logistic 
𝑠ℎ𝑎𝑝𝑒 = 6.386453 𝑙𝑜𝑐 = 2129.676299 𝑠𝑐𝑎𝑙𝑒 = 34.0627 20 m Gumbel 𝜇 = 3365.841449 𝛽 = 63.268484 

Table 15 - Distribution parameters for different span lengths 

The figure below shows all load distributions for the different span lengths. As the span length 
increases, so does the spread of the load. The distribution for span length L = 5 m is rather tight, which 
is obvious since the span is likely to be loaded by only one or two (overloaded) axles. As the span length 
increases, so does the number of axles that load the structure. Hence, more spread in the load effect 
is observed. 
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Figure 60 - Overview of probability density functions for 𝑆(𝑥) for different span lengths. 

7.6.3 Simulation 
The Monte-Carlo simulation will be done by drawing random samples from the load distribution S(x) 
and the resistance distribution R(x). This will be done 10  times, which takes about 1 hour of 
calculation time for a mid-range laptop. During the simulation, the model uncertainty factors θ  and θ  are considered. 

7.6.4 Results 
The figure below shows the Monte-Carlo simulation results for all four span lengths. In total, 10  
simulations were done per span length. The results are shown in the figure below. 

 
Figure 61 - Inverted cumulative distribution function for results obtained from Monte Carlo simulation using modified LP 
model as a load model input for different span lengths. 



 55 

The figure shows the exceedance frequency for the probability of the different span lengths. 
Remarkably, the span length of 10 m has a lower probability of failure than span length of 5 m. Each 
span shows a similar pattern for the exceedance frequency up to failure i.e, (Z(x) = 0). Based on this 
figure, one can expect that intermediate span lengths follow the same course as shown in the figure. 

The table below shows for each span length 𝑃  and 𝛽. All reviewed span lengths fulfil the requirement 
regarding the reliability index.  

Span length 𝑃  𝛽 L = 5m 2.90 ∙ 10  4.0 L = 10m 1.90 ∙ 10  4.1 L = 15m 5.80 ∙ 10  3.8 L = 20m 9.60 ∙ 10  3.7 
Table 16 - Probability of failure and reliability index for different span lengths. 

7.7 Summary of results 
This paragraph captures the most essential obtained results from the different studies. In total, six 
different studies have been done, ranging from different load model input to different span lengths. 
The resistance distribution is based on the JCSS Probabilistic Model Code with parameters based on an 
initial design based on the NEN-EN 1992. The key outcome of these studies is the obtained reliability 
index β, which is used to determine the safety of a structure for the (remaining) design working life. 
The table below shows the results obtained for the different studies. 

Span length Load input 𝐏𝐟 [𝟏𝟎 𝟓] 𝛃 10 m LP model 0.1 4.8 10 m WIM model 12.9 3.7 10 m Modified LP model 1.90 4.1 5 m Modified LP model 2.90 4.0 15 m Modified LP model 5.80 3.8 20 m Modified LP model 9.60 3.7 
Table 17 – Overview of results  

All different studies show that a reliability index of at least 𝛽 = 3.7 is obtained. As the span increases, 
so does the distribution of the load input, as shown in figure 57. When applying the LP model, the 
highest reliability index is achieved. The modified LP-model and the WIM-model generate the same 
reliability index. When considering different span lengths, a similar course for the probability of failure 
is shown. 

7.8 Intermediate conclusion 
The results in this chapter have shown that the modified LP model, which is based on WIM data, result 
in a slightly more favourable reliability index than the WIM model. The difference however is 11%. 
This difference can be explained by not accurately describing the WIM model well enough through the 
modified LP model. This can be obtained by either adjusting the load factor 𝜂 ,  or the interspatial axle 
distances 𝑤 . 

The unmodified LP model, based on solely the legally allowed axle loads, results in an unrealistically 
high reliability index. This is due to not incorporating overloaded axles. Also, the relative static value 
of the axle loads results in a very tight spread of generated load effect, thus decreasing the probability 
of an exceedingly high occurring load effect. These two factors massively influence the load 
distribution and as the resistance distribution remains the same, the probability of failure drastically 
decreases, resulting in an unrealistically high reliability index. 
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 Although briefly shown in chapter 5, but profoundly proved in this chapter, the addition of the load 
factor 𝜂 ,  in the regular LP model results in a realistic spread of the generated load effect. Altogether, 
the adopted strategy resulted in comparable results with the WIM model. 
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8 Conclusion 
In this thesis the applicability of using a load model based on license plates as a load model input for 
probabilistic analysis was investigated. The results obtained throughout this thesis are used to draw 
conclusions for the stated objectives and goals. These will be answered in their stated chronology. 

Objective 1 – Understand mechanism of current load models. 

The current prescribed load models in the Eurocode are deterministic in nature. The Eurocode does 
prescribe the use of a probabilistic load model, but requires relevant site-specific data, such as WIM 
data. If the structural safety of an existing bridge needs to be verified, additional documents such as 
the NEN8700 and the NEN8701 to the Eurocode are available. An example of the difference between 
the results using the different prescribed load models are shown in paragraph 7.7 

Objective 2 – Achieve a detailed insight in current traffic loadings on bridges throughout the inner city 
of Rotterdam. 

Firstly, only one camera location was considered in this thesis. However, a detailed approach is given 
which can be easily be applied to investigate multiple camera locations. Secondly, the system that 
initially provides legal and technical information about passing vehicles for this thesis cannot directly 
be used as an input for constructing load models, since actual license plates are not registered as 
shown in paragraphs 3.1.2 and 4.2. However, by making use of reversed engineering it was possible to 
couple license plates based on the following set of criteria: vehicle length, gross vehicle weight, 
wheelbase, and kerb mass. Accompanying axle loads were found. For interspatial axle distances no 
information was found and thus several assumptions were made. This resulted in the draft load model, 
called LP model.  

When comparing to available WIM data from nearby locations, it turned out that static values of the 
axle loads as given by the RDW were not properly describing the observed range of values as given by 
the WIM data. Adaptations were made as shown in paragraph 5.3 and 5.4. Moreover, an axle load 
factor 𝜂, as shown in paragraph 5.4, was used to introduce under- and overloading in the draft load 
model, resulting in the modified LP model. This model was ultimately used in a probabilistic analysis 
of a hypothetical single slab span bridge as shown in chapter 7. The other load models, LP model and 
WIM model were also used as a load model input. The results were 4.1, 4.8 and 3.7 respectively. 

Objective 3 - Case study – Application of the defined load model to an existing bridge in Rotterdam and 
compare the results 

This objective was achieved in chapter 7, where the modified LP model was successfully used as a load 
model input for a reliability assessment of a hypothetical single span bridge. Resulting in a reliability 
index of 4.1. The WIM load model and the LP load model were also used as a load model input, 
resulting in reliability indexes of 4.8 and 3.7 respectively. When compared to the required reliability 
index of 3.7 complying with reference period of 25 years, all three load models can be used as a load 
model input. The modified LP model results in a slightly more favourable reliability index than the WIM 
load model. 
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As discussed, all three objectives are successfully researched and are answered accordingly. The initial 
load model, the LP model, turned out to result in far too optimistic reliability results. When adapted 
the load model using the axle load factor 𝜂  , it turned out that a less optimistic result was obtained 
regarding the structural reliability and drifted more towards results obtained solely by using the load 
model based on WIM data. Hence, for camera location 4400-C it was possible to determine a load 
model based on camera registrations and available WIM data. It must be stated that this was only 
possible by applying WIM data. Therefore, the strategy shown in this thesis can be applied to construct 
a load model based on LP- and WIM data for this specific location. For other locations however, this 
conclusion cannot be drawn since there was no adequate comparison done of the qualitative effect of 
the used WIM data for other (nearby) locations. This will be further elaborated in the chapter 
Discussion and Recommendations. Furthermore, there are few points of discussion regarding this 
strategy, which will also be discussed in the chapter Discussion. 

Furthermore, the results have also led to the following conclusion, which was initially not part of the 
research goal or objectives. For short bridges, overloaded axles influence the load effect greatly as 
opposed to the GVW for longer span bridges. When solely using the LP load model as a load model 
input, overloaded axles are not properly accounted for and thus the presumed load effects is 
underestimated. This prompts the need of applying the axle load factor 𝜂  for short span bridges. This 
effect is already stated in the Eurocode by applying LM2, where a single axle with a total of 400 kN 
can be applied anywhere on the bridge deck24. 

 

 

  

 
24 Source: http://bridgedesign.org.uk/tutorial/eu-load-models.php 
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9 Discussion 
During this research, several assumptions were made that can be regarded as controversial if not 
addressed properly. For each subsection, several points of discussion are made. 

9.1 Source of data 
In this subsection points of discussion are made regarding the source of the data. At first the camera 
data will be discussed. It must be noted that over in 30% , the camera system could not recognize the 
license plate of the vehicle, but it did register passing vehicle. Two main reasons for this are foreign 
license plates, which are not provided in the RDW database, and bad weather conditions. Paragraph 
4.2.3 shows that more trailers than tractors were recorded, which can be explained by the fact that 
Dutch trailers were towed by foreign tractors.  

Furthermore, due to privacy reasons, the actual recorded license plates were not stored and therefore 
were not used. Recorded information coupled with license plates were obtained through a bypass-
system, which is thoroughly explained in 4.2.3. A consequence of this is that perhaps falsely registered 
axle loads are put in the LP load model. However, the range of axle loads is rather narrow, as shown in 
paragraph 7.4.1 and appendix F. 

For both the WIM- and LP data it must be noted that in reality sometimes trucks have one of their axles 
lifted to prevent unnecessary wearing of the tires if the vehicle is not fully loaded. For the WIM this 
might result in wrongly classified vehicle types25. For the LP data this results in an overconservative 
assumption that a vehicle always has fully loaded axles. 

As mentioned in the conclusion, the source of the WIM data especially is governing for the applicability 
of the suggested approach mentioned in this thesis. In this particular case, the load effects caused by 
the WIM data as well as the LP data minorly differ. Hence, the axle load factor 𝜂  was introduced. 
However, at this point it is unknown whether similar results were obtained when using a different set 
of WIM data. The comparison between WIM data and LP data therefore is qualitative and the 
considered camera location should be comparable to the location where the WIM data was recorded 
and vice versa. This is a flaw at adopting the approach in this thesis to multiple locations throughout 
the city of Rotterdam. The results obtained in this thesis might be coincidentally optimistic and 
therefore multiple locations should be considered. This is further described in the chapter 
Recommendations. 

9.2 Coupling license plates and transforming data to load models 
In this subsection points of discussions are considered regarding the step of coupling license plates and 
transforming the data to load models. As already stated in paragraph 4.2 and 5.1, the actual recorded 
license plates were not available and thus a bypass system was used, shown in paragraph 4.2.3. A 
minor flaw of this bypass system is that the criteria used in paragraph 4.2.3 sometimes resulted in 
multiple hits for one registered vehicle, hence also resulting in a possible range of values for the 
individual axle loads. Anecdotally these ranges were checked, and in no case very different results were 
found. The impact of this on the calculated load effect and furthermore on the results shown in 
paragraph 7.7 is assumed to be minor. 

The next point regards the interspatial axle distances for 2+ axled vehicles. As already mentioned in 
paragraph 4.2.3, no interspatial axle distances were given by the RDW database and thus an 
assumption for the axle configuration, and thus the interspatial axle distances, was made. These initial 
assumptions were based on intuition and common sense and were not based on a scientific way of 

 
25For example, if a 4-axled vehicle has one axle lifted, it is registered as a 3-axled vehicle. 
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determining axle distances. A more scientific way to determine a range of possible axle distances is to 
compare similar vehicle types within the WIM data, then compute the distribution for all axle distances 
and then use this distribution to randomly draw axle distances for the registered vehicles accordingly. 
This would probably result in more realistic distribution for the axle distances; however the increase 
of practical significance is assumed to be low. 

The final point regards the values of the used axle loads in the WIM-, LP- and modified LP model. The 
values of the applied axle loads are assumed to be static and therefore do not deviate whilst a vehicle 
travels across a bridge span. In NEN-EN 1992-1 the use of a deterministic dynamic amplification factor, DAF, is suggested to account for this scenario. This DAF factor was not applied throughout this thesis. 
When do considered, the exerted load effect will logically increase, and therefore the assumed load 
distributions in the Monte-Carlo simulations will change as well. For the resistance distributions R(x) 
in the Monte-Carlo simulations nothing changes, hence the prediction will be that the reliability index 
will decrease. In case the reliability index does not reach the threshold value β = 3.7 as stated in 
paragraph 7.5, a new qualitative comparison must be done whether the use of the WIM data is 
applicable in this case. 

9.3 Generated load model and application 
This subsection handles points of discussion regarding the load model and the application of the 
obtained load model. The most important part of this thesis is the practicality of the suggested method. 
As it turned out, for location 4400-C, the suggested method was applicable. However, this was mainly 
due to the use of the available WIM data and the assumption that the vehicles registered for location 
4400-C and the vehicles registered in the WIM data were comparable. 

If applying the method suggested in this thesis, which implies incorporating 𝜂  based on WIM data, the 
case should always be that the WIM data is representative for the considered camera location. In this 
case, location 4400-C is close to the highway A13. One could imagine that if WIM data from a suburban 
area is used, a totally different result will be obtained. This results in that this strategy is only applicable 
if WIM data from comparable locations, i.e. roads are available.  

Furthermore, general remarks must be made about the generated load model. As can be seen 
throughout chapters 5 and 6, all generated bending moments are caused by only one vehicle. During 
the Monte-Carlo simulations only one value is extracted from the load distributions S(x) derived in 
paragraph 7.3.  This is a minor flaw in the suggested approach, since in reality multiple vehicles can 
simultaneously cross a bridge, driving in the same or opposite directions. Also, traffic congestions are 
not taken into account. However, as stated in TNO [12], traffic congestion would only be normative 
larger span bridges. This thesis focusses more on the load effect on smaller span bridges. 
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10 Recommendations 
This final chapter of this thesis will be about recommendations for further studies regarding this 
subject. In this study, a load model was constructed based on data coupled to license plates and on a 
combination of license plate data and WIM data. The study that this study is based on26, did not contain 
that information and so more knowledge is gained about this subject. 

As mentioned before, the approach suggested in this study could use some improvements regarding 
the applicability to multiple bridge locations. As already mentioned, only the data of one camera 
location was used to construct the LP model and the WIM data of two other locations were used to 
construct the modified LP model. The drawn conclusion shows that qualitatively the results between 
the LP model and the WIM model were comparable, as illustrated in figure 27, and thus the modified 
LP could be constructed for this specific location, i.e. location 4400-C.  

However, to construct a load model that is applicable to multiple bridges, further research must be 
done. At least the following parts of this further research should be covered. Firstly, compare 
generated load effects for multiple camera locations to have a better understanding of traffic loads 
within different areas of the city of Rotterdam. Secondly, a qualitative comparison between each 
camera location and the WIM data should be done, i.e. make similar figures like figure 27 for all 
considered camera locations and verify whether the results are comparable, i.e. verify whether the 
use of WIM data as input is reasonable.  

Based on the outcome of this further research, possibly certain areas or roads in the city of Rotterdam 
could be categorized based on load effects. The WIM data can then be used accordingly as a parameter 
input to determine axle load factors 𝜂  for certain areas or roads. 

Another point of improvement can be made in the Monte-Carlo simulation regarding the resistance 
distribution R(x). In this study, R(x) is constructed by following the suggestions stated in the JCSS 
Probabilistic Model Code. This indicates that R(x) is a theoretical distribution that is not representative 
for any considered location, in this case location 4400-C. As the reliability index 𝛽 is based on the input 
for R(x), whenever a different input is used, 𝛽 will change as well. Hence, if concrete and 
reinforcement parameters for any specific bridge is known, the results for 𝛽 are more accurately 
described and site-specific load distribution R (x) can be constructed. Previously done research has 
already been done to the actual strength of the concrete, and it has been shown that f  is higher than 
expected27 which strengthens hypothesis that this is a viable strategy. This can be further researched 
by taking samples of existing bridges to determine concrete and reinforcement steel parameters and 
verify whether site-specific load distributions R (x) can be constructed.  

A third recommendation is to consider other generated load effects by traffic loads. This study only 
considered load effects in the form of bending moments. However, some bridges might be prone to 
shear failure and thus need to be considered separately. This is especially the case for existing bridges 
in highways in the Netherlands28. With minor modifications, the method to calculate bending moments 
can be adapted to calculate shear forces generated by traffic loads, thus resulting in load distribution S(x) for shear force, indicated with S (x).   

 

 
26 Study done by Hellebrandt [1]. 
27 https://www.betoniek.nl/betonsterkte-bestaande-bruggen-blijkt-veel-hoger 
28 https://www.cementonline.nl/artikel/aanpak-dwarskrachtproblematiek 
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To finalize, a study to the use of the suggested load model regarding asset management could be done. 
As mentioned in paragraph 2.2 and 2.3, where certain bridges in the city of Rotterdam might need 
structural reinforcement, others do not. If solely following the suggested approach in the Eurocode, a 
structure does either comply or not. This will sometimes result in unnecessary structural 
reinforcements, that might also have been able to be postponed. However, the load model suggested 
in this thesis, at least for location 4400-C, gives slightly more realistic results, thus the need of structural 
reinforcement could be postponed.  This is especially viable for municipalities with many structures in 
their asset management, where the need for economical decisions regarding optimal timing of 
applying structural reinforcements is dependent on a cost effective analysis. 
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Appendix A – RDW excerpt 
In the figures below, information of a 5-axled tipper truck is given. The tipper truck is a GINAF X6 5250 
CSE. For privacy reasons, the license plate is crossed out. Only relevant information will be discussed. 

 
Figure 62 - Excerpt of available information through RDW 

The sheets Basis (General) and Technisch (Technical) contain relevant information. For sheet Basis, the 
paragraphs Algemeen (General) contains general information about the vehicle itself (brand name, 
vehicle type etc.) and Gewichten (Weights) contains all information about masses. The figures below 
show the paragraphs Algemeen and Gewichten. The page is automatically translated by Google 
Translate. 

 
Figure 63 - Excerpt of section "Algemeen".  General information of a 5-axled tipper truck 

 

Figure 64 - Excerpt of section "Gewichten". Information about masses of a 5-axled tipper truck 
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The sheet Technisch contains technical information about the vehicle. The paragraph Eigenschappen 
(Properties) gives general technical information about length, wheelbase and other technical 
properties. The paragraph Assen (Assen) gives technical information about the maximum axle load, 
stated by law. The figures below show these two paragraphs.  

 
Figure 65 - Excerpt of section "Technisch". Technical information of a 5-axled tipper truck. 

 
Figure 66  - Excerpt of section "Assen".  Technical information of a 5-axled tipper truck. 
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Appendix B - Subclassification of vehicles 

 
Figure 67 -Subclassification of vehicles in the WIM data29. 

 
29 Source: Vervuurt, AHJM., Pruiksma, JP., Steenbergen, RDJM., Courage, WMG., Miraglia, S., & Morales Napoles, O. (2015). Statische 
belastingen Herijking verkeersbelastingen voor brugconstructies op basis van WIM analyses van april 2013. InfraQuest. 
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Appendix C – Comparison between different vehicle types between LP 
data and WIM data 
Semi-trucks  
In this paragraph, both the 2- and the 3-axled semi-trucks carrying semi-trailers will be discussed. The 
2- and 3-axled semi-trucks carrying semi-trailers are categorised in subclasses TT11Oxx, TT12Oxx and 
TT21Oxx. In a study done by TNO [12, p.24], it was shown that different axle configurations such as 
tandems, tridems or quads usually one axle is overloaded, and the accompanying axle(s) is 
underloaded. In the LP data, the values of axle loads are deterministic, whilst in reality they variate in 
value. This is shown in the figures below. 

 
Figure 68 - Frequency distribution of axle loads for 2- and 3-axled semi-trucks for LP and WIM data. 

2-axled semi-trucks 
For 2-axled semi-trucks, the first axle load theoretically can span from 60 kN to  90 kN. The second 
axle load is theoretically always 115 kN. As can be seen from the graph however, the WIM- axle load 
distribution is much more comprehensive than the LP-distribution. With most of the axles being 
underloaded, and only a small portion of both axles being overloaded (not simultaneously). The table 
below shows a comparison for both the LP- and WIM data regarding 2-axled semi-trucks carrying 
trailers. 
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N3 vehicle O4 
axles 

LP WIM 
 

Threshold 
[kN] 

Underloade
d 

Overloade
d 

2-axled 1 1137 66 Axle 1 76,15 87,77% 12,23% 
Axle 2 114,92 89,32% 10,68% 
Axle 3 100 95,6% 4,4% 

2-axled 2 1045 389 Axle 1 75,71 70,96% 29,04% 
Axle 2 115 88,43% 11,57% 
Axle 3 92,84 98,2% 1,8% 
Axle 4 92,84 97,94% 2,06% 

2-axled 3 1236 1980 Axle 1 77,03 68,84% 31,16% 
Axle 2 115 85,45% 14,55% 
Axle 3 89,38 93,39% 6,61% 
Axle 4 89,38 95% 5% 
Axle 5 89,38 95,51% 4,49% 

Table 18 - Overview of axle loads for 2-axled semi-trucks carrying 1-,2-, or 3-axled trailers for both LP data and WIM data. 

Most of the axles are not overloaded, with a few exceptions for 4- and 5-axled combinations. 
Noticeably in these cases, the first axle is overloaded most of the time as opposed to the other axles.  

The WIM data also recorded 2-axled semi-trucks carrying 4-axled trailers, classified as vehicle class T11O4 or T11O1111. Although the LP data did not record any vehicles of this kind, it is still useful to 
review the data. The data is shown in the table below. Instead of the Treshold [kN] value, the average 
weight of each axle is calculated and based on that the ratio under- overloaded is determined. 

N3 
vehicle 

O4 
axles 

Number 
 

AVG 
[kN] 

Underloaded Overloaded 

2-axled 4 13 Axle 1 68,85 38,46% 61,54% 
Axle 2 52,15 53,85% 46,15% 
Axle 3 32,85 69,23% 30,77% 
Axle 4 23,69 61,54% 38,46% 
Axle 5 23,62 69,23% 30,77% 
Axle 6 23,23 61,54% 38,46% 

Table 19 - Overview of axle loads for 2-axled semi-trucks carrying 4-axled trailers for WIM data only. 

 
Figure 69 - Frequency distribution of axle loads for 2-axled semi-trucks carrying 4-axled trailers. 

In this vehicle category, a lot of axles seem to be overloaded, especially the first two axles. The 
histogram shows that the 2nd axle once is relatively high loaded as opposed to the other five axles.  
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The table and graph below show the distribution for interspatial axle distances for 2-axled semi-trucks 
carrying any kind of trailers. Since table 20 shows that 4- and 5-axled combinations are often occurring, 
only those vehicle combinations will be evaluated and especially the interspatial axle distances that 
differ the most. 
   

LP WIM LP/WIM 
N3 O4 

AX 
IAD AVG 

[m] 
Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

2-axled 1 DT12 3,77 3,53 3,9 3,58 1,3 12,77 105% 272% 31% 
DT23 7,1 4,8 9 5,7 1,02 15,69 125% 471% 57% 

2-axled 2 DT12 3,79 3,5 4,12 4,19 2,11 6,98 90% 166% 59% 
DT23 6,76 3,07 8,93 5,62 2,01 12,15 120% 153% 73% 
DT34 1,3 1,25 1,35 3,62 1,3 7,41 36% 96% 18% 

2-axled 3 DT12 3,78 3,5 5,6 3,8 2 7,51 99% 175% 75% 
DT23 6,35 3,39 8,43 5,56 0,99 9,71 114% 342% 87% 
DT34 1,3 1,25 1,35 1,46 0,75 7,15 89% 167% 19% 
DT45 1,3 1,25 1,35 1,44 0,75 7,1 90% 167% 19% 

2-axled 4 DT12 NAN 3,88 3,12 4,1 NAN 
DT23 5,83 5,42 6,86 
DT34 1,31 1,27 1,35 
DT45 1,32 1,28 1,36 

DT56 1,32 1,28 1,36 
Table 20 - Overview of interspatial axle distances for 2-axled semi-trucks carrying trailers for both LP data and WIM data. 

 For 3-axled LP combinations: the minimum and maximum values for DT12 and DT23 differ 
quite a lot. However, it is quite likely that different vehicle types are compared. 

 For 4-axled LP combinations: the mean value for DT34 differs quite a lot. This is also likely due 
to the comparison between wrong vehicle classes. 

 For 5-axled LP combinations: the minimum value for DT23 seem to be overestimated quite a 
lot. However, this is also likely due to the comparison between wrong vehicle classes. 

3-axled semi-trucks 
For 3-axled semi-trucks a similar pattern is shown. However, because the LP data considering 3-axled 
semi-trucks greatly outnumbers the WIM data for 3-axled semi-trucks, a very skewed distribution is 
obtained. Hence in the figure below, the y-axis is cut-off at 100, which clearly shows how the ratio 
between all axles for the WIM- and LP data differ. Just as for the 2-axled semi-trucks, most axles are 
underloaded, and only a small portion of the axles is overloaded. However, the overloaded axles can 
be as high as 193 kN, greatly exceeding the legally allowed axle load.   
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Figure 70 - Frequency distribution of axle loads for 3-axled semi-trucks for both LP data and WIM data. 

N3 
vehicle 

 O4 
axles 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

3-axled 1 37 22 Axle 1 79,46 59,09% 40,91% 
Axle 2 77,32 77,27% 22,73% 
Axle 3 110,134 90,9% 9,1% 
Axle 4 100 81,81% 18,19% 

3-axled 2 455 25 Axle 1 78,63 72% 28% 
Axle 2 76,54 52% 48% 
Axle 3 111,34 100% 0% 
Axle 4 92,79 96% 4% 
Axle 5 92,79 100% 0% 

3-axled 3 739 6 Axle 1 77,79 83,33% 16,67% 
Axle 2 73,93 66,66% 33,34% 
Axle 3 113,79 50% 50% 
Axle 4 89,34 50% 50% 
Axle 5 89,37 50% 50% 
Axle 6 89,35 50% 50% 

Table 21 - Overview of axle loads for 3-axled semi-trucks carrying 1-, 2-, or 3-axled trailers for both LP data and WIM data. 

The table and graph below show the distribution for interspatial axle distances for 3-axled semi-trucks 
carrying any kind of trailers. 
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LP WIM LP/WIM 

N3 O4 
AX 

IAD AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

3-
axled 

1 DT12 2,75 2,3 3,97 3,46 2,19 5,59 79% 105% 71% 
DT23 1,31 1,25 1,35 3,1 1,29 8,07 42% 97% 17% 
DT34 6,49 3,04 8,5 3,61 1,28 11,9 180% 238% 71% 

3-
axled 

2 DT12 2,79 2,4 3,97 3,81 3,55 4,32 73% 68% 92% 
DT23 1,3 1,25 1,35 5,05 4,34 8,08 26% 29% 17% 
DT34 6,73 3,04 8,5 1,59 1,28 1,99 423% 238% 427% 
DT45 1,3 1,25 1,35 2,27 2 7,77 57% 63% 17% 

3-
axled 

3 DT12 2,73 2,51 3,55 2,53 2,19 2,82 108% 115% 126% 
DT23 1,3 1,25 1,35 1,42 1,29 1,58 92% 97% 85% 
DT34 6,3 3,4 8,29 3,97 1,53 5,81 159% 222% 143% 
DT45 1,3 1,25 1,35 1,81 1,59 1,99 72% 79% 68% 
DT56 1,3 1,25 1,35 2,22 2 2,48 59% 63% 54% 

Table 22 - Overview of interspatial axle distances for 3-axled semi-trucks carrying 1-, 2- or 3-axled trailers for both LP data 
and WIM data. 

 For 4-axled LP combinations: the mean values for DT23 and DT34 differ quite a lot. This is likely 
due to the comparison between wrong vehicle classes. 

 For 5-axled LP combinations: the mean value for DT23 and DT34 also differ quite a lot. This is 
also likely due to the comparison between wrong vehicle classes. The minimum value for DT34 
however can be the result of wrongly interpreting the axle configuration for a semi-trailer. 

A few entries seem to deviate entirely from the WIM data. In particular DT34 for a 4-axled combination, 
DT34 for a 5-axled combination and DT34 for a 6-axled combination. Property DT34 describes the 
length between the last axle of the N3-vehicle and the first axle of the O4-vehicle, thus explaining at 
least for the LP data, why DT34 is rather high. 

For the WIM data however, the data shown in this table is based on vehicle class solely. So quite likely, 
the shown data also contains vehicles that aren’t semi-trucks carrying semi-trailers, but rather a 
relatively ‘long’ tipper truck or a 4-axled N3-vehicle carrying a 2-axled trailer. This difference is shown 
by the figure below, where it becomes clear that the vehicle type of which the comparison is made, is 
likely not the same for the WIM data and the LP data. 

 
Figure 71 - Frequency distribution of interspatial axle distance DT34. Left: 3-axled semi-truck carrying 2-axled semi-trailer. 
Right: 3-axled semi-truck carrying 3-axled semi-trailer. 
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Tipper trucks 
In this paragraph the vehicle category tipper trucks will be evaluated. To distinguish tipper trucks from 
the WIM data, similar assumptions as stated in previous paragraph are used. 

 Only 4- and 5-axled tipper trucks are considered 
 All interspatial axle distances 𝑤 < 200 cm 
 For LP data, the vehicle type must read ‘tipper truck’ (kipper in the code). 

The WIM data recorded 88 vehicles matching these criteria. 68 were 5-axled tipper trucks, and 28 
were 4-axled tipper trucks.  The LP data recorded 942 4-axled tipper trucks and 1209 5-axled tipper 
trucks. 

4-axled tipper trucks 
For the LP data, none of the 4-axled tipper trucks apply to these criteria. This is a direct influence of 
the assumptions made in paragraph 5.1.3, where it is assumed that 4-axled tipper trucks have two 
groups of closely spaced axles as opposed to four more-or-less equally spaced axles. In total 1209 5-
axled tipper trucks, of which 1176 match the criteria stated above. Both tipper trucks categories 
greatly outclass the registered WIM data. The figure below shows the results for 4-axled tipper trucks.  

 
Figure 72 - Frequency distribution for axle loads for 4-axled tipper trucks for both LP data and WIM data. Right figure is 
zoomed in to properly display WIM data. 

The left figure shows the true distribution of all four axle loads for both the WIM- and LP data. The 
right figure shows a less skewed distribution. Once again, the majority of the recorded WIM data seem 
to be underloaded than the allowed maximum allowed axle loads, whereas a small portion is exceeding 
the maximum allowed axle loads. The table below show numerical results regarding under- and 
overloaded axles. Note that in this case only 4-axled tipper trucks carrying no trailers are considered. 

N3 
vehicle 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

4-axled 924 20 Axle 1 102,71 95% 5% 
Axle 2 103,7 95% 5% 
Axle 3 108,86 95% 5% 
Axle 4 102,04 95% 5% 

Table 23 - Overview of axle loads for 4-axled tipper trucks for both LP data and WIM data. 

As shown above, a relatively small portion of the recorded axles are overloaded. All four axles are 
equally overloaded. The approach used in the LP data is a viable approach. 
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The table below shows the interspatial axle distances for 4-axled tipper trucks. As can be seen, the 
assumed axle configuration in the LP data is wrong, as the mean of DT23 differ by a factor of 2,22. 
When looking at the WIM data, all axles of the 4-axled tipper truck are approximately evenly 
distributed. When adjusting the assumptions for the LP data, this will be taken into account. 
  

LP WIM LP/WIM 
N3 IAD AVG 

[m] 
Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

4-
axled 

DT12 1,12 0,9 1,35 1,91 1,63 1,94 59% 55% 70% 
DT23 3,97 2,77 5,7 1,79 1,77 1,81 222% 156% 315% 
DT34 1,13 0,9 1,35 1,82 1,8 1,85 62% 50% 73% 

Table 24 - Overview of interspatial axle distances for 4-axled tipper trucks for both LP data and WIM data. 

5-axled tipper trucks 
In the figure below the results are shown for 5-axled tipper trucks. 

 
Figure 73 - Frequency distribution for axle loads for 5-axled tipper trucks for both LP data and WIM data. Right figure is zoomed 
in to properly display WIM data. 

The left figure shows the distribution for all fixe axle loads for the WIM data. Once more, most of the 
recorded WIM data seems to be underloaded. A small portion is overloaded, primarily axles 4 and 5. 
The table below show the numerical results. 

N3 
vehicle 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

5-axled 1209 68 Axle 1 100,08 54,41% 45,59% 
Axle 2 100,08 61,76% 38,24% 
Axle 3 96,57 45,59% 54,41% 
Axle 4 99,49 30,89% 69,11% 
Axle 5 96,31 30,89% 69,11% 

Table 25  - Overview of axle loads for 5-axled tipper trucks for both LP data and WIM data. 

 Immediately it shows that the 5-axled tipper trucks are quite likely to be overloaded. Especially the 
latter two axles seem to be overloaded many times. However, when looking to the histograms, it seems 
that the amount of overloading is not that high. The numerical results shown in the table might 
therefore give a skewed representation of the data.  
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The table below shows the interspatial axle distance distribution for 5-axled tipper trucks. As can be 
seen, the assumed axle configuration for the LP data is approaching the axle configuration in the WIM 
data very well. Thus, for 5-axled tipper trucks the assumed axle configuration is correct. 
  

LP WIM LP/WIM 
N3 IAD AVG 

[m] 
Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

5-
axled 

DT12 1,76 1,68 2,2 1,79 1,4 1,99 98% 120% 111% 
DT23 1,76 1,68 2,2 1,81 1,76 1,98 97% 95% 111% 
DT34 1,76 1,68 2,2 1,55 1,29 1,86 114% 130% 118% 
DT45 1,76 1,68 2,2 1,59 1,29 1,88 111% 130% 117% 

Table 26 - Overview of interspatial axle distances for 4-axled tipper trucks for both LP data and WIM data. 

Mobile cranes 
In the LP data, the vehicle category mobile cranes is explicitly stated in the LP data, whereas it is not 
directly recognisable in the WIM data. Moreover, due to the axle positions, number of axles and legally 
allowed axle loads, the mobile crane category shows high similarities with tipper trucks. To account 
for this, now a comparison is made between the length of the mobile cranes and the tipper trucks. This 
is shown in the figure below. 

 
Figure 74 - Frequency distributions for 4-axled mobile cranes and tipper trucks for both LP data and WIM data. Left: total 
vehicle length. Right: total wheelbase. 

This graph shows a clear distribution of the separate vehicle lengths and wheelbases for both vehicle 
classes.  From these graphs, the following conclusion can be drawn: 

 The total length of a tipper truck is limited to 𝑙 ≤ 12 m 
 The total length of a mobile crane is for most part 𝑙 ≥ 12 m 
 The total wheelbase of a tipper truck ranges from 5.5  m ≤ 𝑤 , < 7 m, except for an 

incidental outlier. 
 The total wheelbase of a mobile cranes is either 𝑤 ,  ≤ 5.5 m or 𝑤 , ~7 m. 

Based on these interim conclusions, the following assumptions can be made to compare WIM data 
and LP data for mobile cranes. 

 

 Only 4- and 5-axled mobile cranes are considered 
 All interspatial axle distances 𝑤 < 3 m. Slightly increased to widen the bandwidth. 
 The total length 𝑙 > 12 m  
 The sum of the intermediate axle distances must be 𝑤 > 6.5 m 
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Using the criteria above, the following results are obtained for 4-axled and 5-axled mobile cranes.  

 
Figure 75 - Frequency distribution for axle loads of 4- and 5-axled mobile cranes for both LP data and WIM data. 

 
Figure 76 - Bending moment vs GVW for 4- and 5-axled mobile cranes acting on a span length of 10 𝑚. 

N3 
vehicle 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

4-axled 3 55 Axle 1 118,55 33,33% 66,67% 
Axle 2 118,55 33,33% 66,67% 
Axle 3 120 33,33% 66,67% 
Axle 4 120 33,33% 66,67% 

5-axled 8 24 Axle 1 117,5 37,5% 62,5% 
Axle 2 117,5 37,5% 62,5% 
Axle 3 120 0% 100% 
Axle 4 120 0% 100% 
Axle 5 120 0% 100% 

Table 27 - Overview of axle loads for 4- and 5-axled mobile cranes for both LP data and WIM data. 

As can be seen from the graphs and the table, a lot of axles that are recorded are overloaded. When 
considering 𝑀  it seems that for 4-axled mobile cranes the highest occurring bending moment 
seems to be reasonably approximated by the LP data. For 5-axled mobile cranes however, it seems 
that the LP data is underestimating the true occurring 𝑀 .  A likely explanation for this is that 5-
axled mobile cranes seem to have a higher GVW and likely thus a higher axle load.   

The table below shows the interspatial axle distances for 4- and 5-axled mobile cranes. For both vehicle 
types, all axles are assumed to be evenly distributed along the total wheelbase. For 4-axled mobile 
cranes, both distances DT12 and DT23 are well assumed. Distance DT34 however is underestimated. 
This shows the initial assumption made in paragraph 5.1.3 is false and needs to be adjusted. 
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For 5 -axled mobile cranes, distance DT12 is underestimated and distances DT23 and DT45 are 
overestimated. For these all these distances the deviation is small. When adjusting the model for the 
LP data, this will be taken into account by shifting the axle configuration a bit.  

 

 

Full Trucks 
The final vehicle group that has to be evaluated are the full trucks, possibly carrying trailers. In the 
WIM data, they are represented by vehicle the classes as shown in appendix B. In the LP data, the full 
trucks carrying trailers are depicted with a vehicle type other than tipper truck, mobile crane or semi-
truck. These vehicle types are (in Dutch) gesloten opbouw, geconditioneerd met temperatuurregeling, 
geconditioneerd voertuig, afneembare bovenbouw, open wagen, huifopbouw, voor vervoer voertuigen.  

2-axled full trucks 
First, only the 2-axled full trucks are considered. A distinction is made whether the trucks carry a trailer 
or not. In the WIM data, the vehicle class 11 represents this data. In the LP data, the vehicle type must 
be one of the vehicle types shown above.  The graphs below show the recorded axle loads for 2-axled 
full trucks, carrying no trailers. 

 
Figure 77 - Frequency distribution for axle loads for 2-axled full trucks for both LP data and WIM data. Right figure is zoomed 
in to properly distribution WIM data. 

The graphs show the ongoing trend with other vehicle classes as well, namely the fact that the majority 
of the recorded axle loads are underloaded and only a small portion is overloaded. The table below 
shows the percentage of overloaded and underloaded axles. This threshold value is calculated as the 
mean value of recorded axle loads, based on the LP data, for both axles individually. 

  
LP WIM LP/WIM 

N3 IAD AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

4-
axled 

DT12 2,16 1,75 2,35 2,12 2,11 2,13 102% 83% 110% 
DT23 2,16 1,75 2,35 2,02 2,01 2,04 107% 87% 115% 
DT34 2,16 1,75 2,35 2,72 2,69 2,75 79% 65% 85% 

5 -
axled 

DT12 1,88 1,77 2,29 2,37 2,05 2,59 79% 86% 88% 
DT23 1,88 1,77 2,29 1,68 1,62 1,87 112% 109% 122% 
DT34 1,88 1,77 2,29 1,79 1,57 1,98 105% 113% 116% 
DT45 1,88 1,77 2,29 1,68 1,31 1,93 112% 135% 119% 

Table 28 - Overview of interspatial axle distances for 4- and 5-axled mobile cranes. 
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N3 vehicle LP WIM O4 
axles 

 
Threshold 
[kN] 

Underloaded 
(%) 

Overloaded 
(%) 

2-axled full-
truck 

13302 13475 0 Axle 1 72,52 93,74 6,26 
Axle 2 112,7 97,31 2,69 

Table 29 - Overview of axle loads for 2-axled full trucks for both LP data and WIM data. 

Now the 2-axled full trucks carrying trailers will be considered. As shown in appendix B, 2-axled full 
trucks carrying trailers are classified as 111,211,1111,2111 30 which refers to 1-, 2- and 3-axled trailers 
respectively. The graphs and tables below show the results.  

 
Figure 78 - Frequency distributions of axle loads for 2-axled full trucks carrying 1-, 2-, or 3-axled trailers. 

  

 
30  Vehicle categories 111, 211 and 1111  are analysed before in paragraph 5.3.1.1, corresponding to 2- and 3-
axled semi-trucks. At this point it is assumed that within the WIM data, also 2-axled full trucks carrying 1- and 
2-axled trailers are registered. 
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N3 
vehicle 

O4 
axles 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

2-axled 0 13302 13475 Axle 1 72,52 93,74% 6,26% 
Axle 2 112,7 97,31% 2,69% 

2-axled 1 387 1137 Axle 1 74,43 85,4% 14,6% 
Axle 2 113,18 98,32% 1,68% 
Axle 3 84,23 88,13% 11,87% 

2-axled 2 3264 2956 Axle 1 73,15 69,48% 30,52% 
Axle 2 112,94 94,21% 5,79% 
Axle 3 74,55 95,08% 4,92% 
Axle 4 74,55 95,6% 4,4% 

2-axled 3 337 186 Axle 1 74,63 64,98% 35,02% 
Axle 2 113,8 84,57% 15,43% 
Axle 3 77,58 89,31% 10,69% 
Axle 4 74,23 88,72% 11,28% 
Axle 5 73,68 88,72% 11,28% 

Table 30 - Overview of axle loads for 2-axled full trucks carrying 1-, 2,- or 3-axled trailers. 

As can be seen, most of the recorded vehicles in the WIM data fall in the category of 2-axled carrying 
no trailers. For this category, the number of overloaded axles is little. Trucks carrying trailers however 
show some significant overloading, especially those carrying 2-axled trailers. It is remarkable that for 
both the 2- and 3-axled truck-trailer combination, the number of overloaded axles is quite high, i.e. 
over 30 percent. 

The table below shows the distribution of the interspatial axle distances for both the LP- and the WIM 
data. A few odd entries are found, especially for the LP data. These are summed and explained below: 
   

LP WIM LP/WIM 
N3 O4 

AX 
IAD AVG 

[m] 
Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

2-
axled 

0 DT12 5,41 3,55 7 4,55 1,73 13,15 119% 205% 53% 

2-
axled 

1 DT12 5,24 3,3 7 3,58 1,3 12,77 146% 254% 55% 
DT23 1,13 0,9 1,35 5,7 1,02 15,69 20% 88% 9% 

2-
axled 

2 DT12 5,28 3 7 3,81 2 7,86 139% 150% 89% 
DT23 2,5 0,11 7,46 5,7 1,52 12,15 44% 7% 61% 
DT34 4,95 0 9,79 1,75 0,75 7,41 283% 0% 132% 

2-
axled 

3 DT12 5,15 3,55 6,7 3,72 2,02 5,19 138% 176% 129% 
DT23 1,29 0,9 5,19 5,04 2,01 10,88 26% 45% 48% 
DT34 4,59 2,52 7,96 1,82 0,75 7,16 252% 336% 111% 
DT45 1,17 0,9 2,64 1,73 0,75 1,98 68% 120% 133% 

Table 31 - Overview of interspatial axle distances for 2-axled full trucks carrying 1-, 2-, or 3-axled trailers. 

 3-axled LP combinations: the mean value for DT23 seem to unreasonably small. When looking 
at the script, it seems that a small error was made. This will be patched. 

 4-axled LP combinations: the mean value for DT34 seem to be unreasonably high. However, 
this is likely caused by the same error made when comparing semi-trucks; a comparison is 
made between different vehicle classes. However, the minimum value of 0 is obviously 
unrealistic and needs to be reviewed upon. 
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 5-axled LP combinations: the mean values for DT23 and DT34 differ quite a lot from the WIM 
data and need to be reviewed upon.  

Apparently, a small error was made when writing the script to construct the load models. This will be 
reviewed and adjusted accordingly. 

3-axled full trucks 
This paragraph contains 3-axled full trucks carrying both trailers of any kind and no trailers at all. First, 
only 3-axled full trucks will be considered. They are represented in the WIM data by vehicle class 12 
and 21. 

 
Figure 79 - Frequency distributions of axle loads for 3-axled full trucks for both LP data and WIM data. Right figure is zoomed 
in to properly display WIM data. 

N3 
vehicle 

 O4 
axles 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

3-axled 0 1692 2208 Axle 1 88,29 71,88% 28,12% 
Axle 2 113,3 87,64% 12,36% 
Axle 3 76,77 74,78% 25,22% 

Table 32 - Overview of axle loads for 3-axled full trucks for both LP data and WIM data. 

The 3-axled full trucks carrying no trailers show a significant number of overloaded axles, and in 
particular the first and last axle. Although the vast majority is underloaded, the portion that is overload, 
is usually exceedingly overloaded as can be seen in the histograms.   

Secondly, the 3-axled full trucks carrying trailers of any kind will be shown. These vehicles are 
represented in the WIM data by vehicle classes 221, 1121, 212131. In the WIM data, no single axled 
trailers are recorded. In the LP data however, 594 entries were recorded. Since there is nothing to 
comparable material, the single axled trailers in the LP data are not considered. The graphs and table 
below show the result. 

 
31 Vehicle categories 221, 1121 and 2121 are analysed in paragraph 5.3.1.1, corresponding to 2- and 3-axled 
semi-trucks. At this point, it is assumed that within these categories both full-trucks and semi-trucks are 
recorded. 
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Figure 80 - Frequency distributions of axle loads for 3-axled full trucks carrying 2- or 3-axled trailers for both LP data and WIM 
data. 

N3 vehicle  O4 
axles 

LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

3-axled 2 367 2483 Axle 1 85,2 64,57% 35,43% 
Axle 2 11,54 87,47% 12,53% 
Axle 3 75,52 71,39% 28,61% 
Axle 4 83,04 73,57% 26,43% 
Axle 5 83,04 75,48% 24,52% 

3-axled 3 38 136 Axle 1 81,74 31,62% 68,38% 
Axle 2 113,84 44,12% 55,88% 
Axle 3 76,66 28,68% 71,32% 
Axle 4 47,45 19,11% 80,89% 
Axle 5 43,61 22,05% 77,95% 
Axle 6 43,61 22,05% 77,95% 

Table 33 - Overview of axle loads for 3-axled full trucks carrying 2- or 3-axled trailers for both LP data and WIM data. 

It becomes immediately visible that within these vehicle classes a lot of overloaded axles are noted. 
Especially for 6-axled combinations, where for the majority of registered vehicles overloaded axles are 
seen. Once again, for the 5-axled combinations the first axle seems to be overloaded most of the times.  

The table below show the interspatial axle distances for 3-axled full trucks carrying a trailer of any kind. 
Just like their 2-axled predecessors a lot of odd results are shown. These are summed and explained 
accordingly. 
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LP WIM LP/WIM 

N3 O4 
AX 

IAD AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

3-
axled 

0 DT12 5,53 2,96 6,6 4,15 1,32 10,49 133% 224% 63% 
DT23 1,12 0,9 1,35 1,39 0,75 4,01 81% 120% 34% 

3-
axled 

2 DT12 5,22 2,97 6,58 3,37 1,4 5,82 155% 212% 113% 
DT23 1,12 0,9 1,35 1,44 0,82 1,99 78% 110% 68% 
DT34 2,66 0,06 6,02 4,66 1,29 12,55 57% 5% 48% 
DT45 4,49 0 9,3 2,08 0,99 7,1 216% 0% 131% 

3-
axled 

3 DT12 5,07 2,95 6,43 3,83 2,52 5,57 132% 117% 115% 
DT23 1,14 0,9 1,35 1,35 1,25 1,46 84% 72% 92% 
DT34 1,45 0,9 5,17 4,75 2,92 6,51 31% 31% 79% 
DT45 5,04 1,26 8,46 3,32 1,27 4,85 152% 99% 174% 
DT56 1,14 0,92 1,33 1,44 1,27 1,98 79% 72% 67% 

Table 34 - Overview of interspatial axle distances for 3-axled full trucks carrying no, 2- or 3-axled trailers for both LP data and 
WIM data. 

 For all LP vehicle combinations: DT23 seem to be slightly underestimated. This will be adjusted 
in the new model by slightly increasing the value. 

 For 5-axled LP vehicle combinations: the minimum value for DT23, DT34 and DT45 are 
unrealistic and need to be reviewed upon. 

 For 6-axled LP vehicle combinations; the minimum value for DT23, DT34 and DT56 are 
somewhat low and need to be reviewed upon. 

4-axled full trucks 
In this paragraph, 4-axled full trucks will be evaluated. 4-axled full trucks carrying no trailers are 
classified in vehicle class 31, 22, 211  and 112, as shown in appendix B. However, classes 112 and 211 
are already analyzed, which leave classes 31 and 22 yet to be analyzed. The graphs and table below 
show the obtained result. 

 
Figure 81 - Frequency distribution of axle loads for 4-axled full trucks for both LP data and WIM data. 
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N3 
vehicle 

 O4 axles LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

4-axled 0 17 427 Axle 1 86,59 83,61% 16,39% 
Axle 2 88,35 89,46% 10,54% 
Axle 3 115 91,57% 8,43% 
Axle 4 93,83 90,63% 9,37% 

Table 35 - Overview of axle loads for 4-axled full trucks for both LP data and WIM data. 

4-axled full-trucks carrying no trailers are not well represented by the LP data, as only 17 vehicles were 
recorded. Only the first two axles show relatively overloading as opposed to the latter axles. However, 
the graph shows that for primarily the latter axles, the ratio of overloading is quite high. 

Secondly, all 4-axled full trucks carrying 2- and 3-axled trailers will be analyzed. These are classified in 
classes 222, 1122, 2122 as shown in appendix B. The graphs and table below show the result.  

 
Figure 82 - Frequency distributions for axle loads of 4-axled full trucks. Top left: No trailer. Top right: 2-axled trailer. Bottom 
left: 3-axled trailer. 

  



 83 

N3 
vehicle 

 O4 axles LP WIM 
 

Threshold 
[kN] 

Underloaded Overloaded 

4-axled 0 427 17 Axle 1 86,59 83,61% 16,39% 
Axle 2 88,35 89,46% 10,54% 
Axle 3 115 91,57% 8,43% 
Axle 4 93,83 90,63% 9,37% 

4-axled 2 13 686 Axle 1 89,02 30,77% 69,23% 
Axle 2 85,32 23,08% 76,92% 
Axle 3 109,77 61,54% 38,46% 
Axle 4 79,93 53,85% 46,15% 
Axle 5 56,64 53,85% 46,15% 
Axle 6 56,64 53,85% 46,15% 

4-axled 3 51 12 Axle 1 88,53 66,6% 33,4% 
Axle 2 85,18 66,6% 33,4% 
Axle 3 109,45 91,6% 8,4% 
Axle 4 79,47 91,6% 8,4% 
Axle 5 41,59 58,3% 41,7% 
Axle 6 37,35 66,6% 33,4% 
Axle 7 37,35 66,6% 33,4% 

Table 36 - Overview of axle loads for 4-axled full trucks carrying no, 2- or 3-axled trailers for both LP data and WIM data. 

In this category, it seems that only 6- and 7-axled combinations have an exceedingly number of 
overloaded axles. Especially 6-axled combinations, where a significant number of axles are also 
exceedingly overloaded (> 150 kN). Especially the first two axles are overloaded in most cases. 

The table below show the differences between interspatial axle distances for LP- and WIM data. 
Irregularities or odd results are discussed below. 

 
 

LP WIM LP/WIM 
N3 O4 

AX 
IAD AVG 

[m] 
Min. 
[m] 

Max. 
[m] 

AVG 
[m] 

Min. 
[m] 

Max. 
[m] 

AVG 
[%] 

Min. 
[%] 

Max. 
[%] 

4-
axled 

0 DT12 1,11 0,93 1,34 2,02 1,44 7,54 55% 65% 18% 
DT23 4,87 3,69 5,99 2,97 0,93 4,45 164% 397% 135% 
DT34 1,11 0,93 1,34 1,51 0,82 1,85 74% 113% 72% 

4-
axled 

2 DT12 2,29 1,9 2,5 1,75 1,64 1,94 131% 116% 129% 
DT23 2,28 1,9 2,6 3,11 2,13 4,46 73% 89% 58% 
DT34 2,29 1,9 2,6 1,44 1,33 1,66 159% 143% 157% 
DT45 0,33 0 1,35 5,75 2,2 7,88 6% 0% 17% 
DT56 2,79 1,02 9,1 2,22 1,57 5,02 126% 65% 181% 

4-
axled 

3 DT12 2,32 2,02 2,5 1,87 1,79 1,99 124% 113% 126% 
DT23 2,32 2,02 2,5 2,71 2,16 4,23 86% 94% 59% 
DT34 2,32 2,02 2,5 1,37 1,32 1,44 169% 153% 174% 
DT45 1,1 0,9 1,34 4,82 3,73 7,47 23% 24% 18% 
DT56 0 0 0 3,44 1,77 4,54 0% 0% 0% 
DT67 1,15 0,9 1,35 1,52 0,32 1,86 76% 281% 73% 

Table 37 - Overview of interspatial axle distances for 4-axled full trucks carrying no, 2- or 3-axled trailers for both LP data and 
WIM data. 
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 For all 4-axled N3-vehicles: it seems that the assumed axle configuration used in paragraph 
5.1.3 is not true, since the WIM data shows that the axles are more likely to be evenly 
distributed along the vehicle length. 

 For 6-axled LP combinations: all values for DT45 seem to be false and need to be reviewed. 
 For 7-axled LP combinations: all values for DT45 and DT56 need to be reviewed, as they are 

unrealistically low.  

Extremely Heavy Combinations (EHC) 
Due to the approach stated in paragraph 5.1.3, the remaining category EHC should contain all vehicles 
that exceed a certain threshold value for either the number of axles or the GVW. As of now, for the 
WIM data, a maximum of 7 axles have been evaluated. For the LP data, a maximum GVW of 84t has 
been evaluated, leaving a small number of vehicles yet to be analyzed. Hence, to make a comparison 
for this vehicle category, the following criteria will be adopted: 

 For WIM data, vehicles with 7+ axles or with a GVW > 84t will be evaluated 
 For LP data, vehicles classified as Extreme will be evaluated. 

For the WIM data, a total of 21 vehicles were recorded falling in a variety of vehicle classes, ranging 
from 5 axles to 10 axles and from 82,4t to 98,2t. The LP data contains 14 recorded vehicles, with the 
properties stated in paragraph 5.1.3. Since there is no criterium based on number of axles or 
interspatial axle distances, the occurring bending moments 𝑀  are evaluated. 

 
Figure 83 - Bending moment vs GVW for vehicle category EHC. WIM results grouped by denoted criteria. LP data not grouped. 
  𝑀  [kNm] GVW [t] 
EHC # Mean Maximum Minimum Mean Maximum Minimum 
WIM >7 axles 13 336 687 188 36 61 21 
WIM >82t 4 1137 1179 1106 87 92 82 
WIM (>82t & >7 ax) 3 866 1016 736 92 98 86 
LP 14 727 827 672 90 101 78 

Table 38 - Overview of statistical values for bending moments for vehicle category EHC. 

The figure above shows a great spread in occurring bending moments for vehicles in the WIM data.  

 Blue entries denote WIM data with more than 7 axles 
 Green entries denote WIM data with GVW > 82t 
 Black entries denote WIM data that meets both criteria 
 Orange entries denote the LP data 
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The way this data is presented, shows that also for WIM data, the more axles does not necessarily 
result in higher load effect. This is shown by the blue and green entries in figure 80. Moreover, this 
strengthens the presumption that the occurring load effect is rather a result of closely spaced, 
overloaded axles rather than solely a function of maximum GVW.  

When comparing the LP data to the WIM data, it seems that the LP data is somewhat of a category on 
its own and does not accurately represent the EHC category with the assumed criteria stated before. 
However, the adopted strategy for EHC in LP data seem to give a range of threshold values for vehicles 
with > 7 axles. For WIM-vehicles with a GVW > 82t , the LP data is underestimating the occurring 
mean load effect by more than 50%. For adaptations regarding the approach, this must be taken into 
account, since simply adding more axles to the EHC apparently does not accurately describe EHC in the 
WIM data.  

Intermediate conclusions 
Axle loads 

 For 2-axled semi-trucks carrying semi-trailers: primarily the first two axles of semi-trucks are 
overloaded. The ratio of overloading is not quite high however, so no adjustments will be 
made. 

 For 3-axled semi-trucks carrying semi-trailers: primarily the first two axles of semi-trucks are 
overloaded. Figure 68 shows that the ratio of overloading can be quite high, and thus an 
adjustment will be made to simulate overloaded axles. 

 For 4-axled tipper trucks carrying no trailers: all four axles are primarily not overloaded. 
However, the ratio of underloaded axles is quite high. Accordingly, a factor will be introduced 
to simulate underloaded axles.  

 For 5-axled tipper trucks carrying no trailers:  a fair share of all axles seems to be overloaded. 
Accordingly, a factor will be introduced to simulate overloaded axles. 

 For 4- and 5-axled mobile cranes: all axle loads are primarily underestimated by the approach 
used in 5.1.3. To simulate the overloaded axles as observed in the WIM data, a factor will be 
introduced to simulate overloaded axles. 

 For 2-axled full trucks carrying no trailers: both axles are primarily not overloaded, and the 
ratio of overloading is not high as shown in figure 74. Both axles can be quite underloaded 
however, and thus a factor will be introduced to simulate under- and overloading. 

 For 2-axled full trucks carrying 1-axled trailers: the first and third axle seem to be overloaded 
primarily. As shown in figure 75, the ratio of overloading can be as high as 2 times. Thus 
accordingly, a factor will be introduced to simulate under- and overloading.  

 For 2-axled full trucks carrying 2-axled trailers: the first axle is overloaded primarily and 
accordingly a factor will be introduced to simulate under- and overloading. 

 For 2-axled full trucks carrying 3-axled trailers: the first axle is primarily overloaded and 
accordingly a factor will be introduced to simulate under- and overloading. 

 For 3-axled full trucks carrying no trailers: the first and third axles are primarily overloaded and 
accordingly a factor will be introduced to simulate under- and overloading. 

 For 3-axled full trucks carrying 2-axled trailers: all axles seem to be overloaded and accordingly 
a factor will be introduced to simulate under- and overloading. 

 For 3-axled full trucks carrying 3-axled trailers: all axles seem to be primarily overloaded and 
accordingly a factor will be introduced to simulate under- and overloading. 

 For 4-axled full trucks carrying no trailers: primarily the first axle seems to be overloaded and 
accordingly a factor will be introduced to simulate under- and overloading. 
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 For 4-axled full trucks carrying 2-axled trailers: primarily all axles seem to be overloaded an 
accordingly a factor will be introduced to simulate under-and overloading. 

 For 4-axled full trucks carrying 3-axled trailers: primarily the 5th axle seems to be overloaded 
and accordingly a factor will be introduced to simulate overloading.  

 For EHC: As shown by figures 28 and 80 the combination of overloaded axles and closely 
spaced axles are determining for causing the maximum load effect. Since in this category no 
real relation is found between axle distances, overloaded axles must be the driving factor 
behind these load effects. Hence, for all axles a factor will be introduced to simulate 
overloading. 

Interspatial axle distances 

 For 2-axled semi-trucks carrying semi-trailers: the assumptions made in paragraph 5.1.3 are 
validated and no adjustments have to be made. 

 For 3-axled semi-trucks carrying semi-trailers: the assumptions made in paragraph 5.1.3 are 
roughly validated. However, for 5-axled combinations the distance DT34 will be reviewed. 

 For 4-axled tipper trucks carrying no trailers: the assumed axle configuration made in 
paragraph 5.1.3 is wrong and needs to be adjusted to approximate a more evenly spaced axle 
configuration. 

 For 5-axled tipper trucks carrying no trailers: the assumed axle configuration is validated. 
 For 4-axled mobile cranes carrying no trailers: the distance DT34 is slightly overestimated and 

will be adjusted accordingly.  
 For 5-axled mobile cranes carrying no trailers: the distance DT12 is slightly underestimated 

and distances DT23 and DT45 are slightly overestimated. Both will be adjusted accordingly. 
 For 2-axled full trucks carrying no trailers: the distance DT12 is properly assumed. However, 

due to the nature the WIM data recorded vehicles ( GVW > 35t), a skewed distribution is 
shown. 

 For 2-axled full trucks carrying 1-axled trailers: the assumed distance DT23 is wrong and needs 
to be adjusted. 

 For 2-axled full trucks carrying 2-axled trailers: distances DT23 and DT34 are unrealistic and 
need to be reviewed. 

 For 2-axled full trucks carrying 3-axled trailers:  distances DT23 and DT34 need to be reviewed. 
 For all 3-axled full trucks: the distance DT23 is relatively low and needs to be reviewed. 
 For 3-axled full trucks carrying 2-axled trailers: the minimum values for DT23, DT34 and DT45 

are unrealistically low and need to be reviewed. 
 For 3-axled full trucks carrying 3-axled trailers: the minimum values for DT23, DT34 and DT56 

are unrealistically low and need to be reviewed.  
 For 4-axled full trucks: the assumed axle configuration in paragraph 5.1.3 is wrong and needs 

to be adjusted. 
 For 4-axled full trucks carrying 2-axled trailers: all values for DT45 seem unrealistic and need 

to be reviewed. 
 For 4-axled full trucks carrying 3-axled trailers: all values for DT45 and DT56 seem unrealistic 

and need to be reviewed.  
 For EHC: no comparison is made since the vehicle types in the WIM data are not of one type. 

Combined with the results for axle loads, the conclusion can be drawn that EHC in the WIM 
data are caused by (an) overloaded axle(s) and are not a result of very closely spaced axles. For 
the LP data however, the conclusion can be drawn that the assumed approach approximates 
the calculated load effect caused by overloaded vehicle properly.  
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Contribution of groups of axles to maximum load effect 
Paragraph 5.2.3.3 showed that the maximum load effect generated by a vehicle is usually due to 2,3 
or 4 axles. The approach stated in this paragraph is also used for the WIM data to look at possible 
differences. The results are shown below. 

 
Figure 84 - Relation between number of axles contributing to the maximum load effect and the total number of axles 

 

 

 

 

 

 

Table 39 - Numerical overview of number of axles contribution to maximum load effect. 

Remarkably, for a bridge length of 10 m , only four axles simultaneously exert load effect on the span 
for a 10-axled vehicle combination. Even more striking is that in this case, the maximum load effect 
generated by a vehicle is in 57% of the cases due to a single axle, which stresses even more the 
influence of overloaded axles for relatively short span bridges. The expectation is that for shorter span 
bridges, the number of axles that contribute to the maximum load effect will go down. Likewise, for 
longer span bridges this number will increase. In appendix C this is described in detail. 

Location of maximum load effect 
Also, for the WIM data the location of maximum occurring load effect has been determined. This is 
shown in the graphs and tables below. 
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Figure 85 - Frequency distributions for location of maximum load effect. Left: LP data. Right: WIM data. 

  LP WIM 
Unity Value Value 
Mean 5,01 4,96 
Median 5 5 
Minimum 3,24 2,79 

Maximum 6,91 8,2 

Table 40 - Statistical values for locations of maximum load effects for both LP data and WIM data. 

As can be seen, both the LP data and the WIM data give similar results with respect to the location of 
the maximum load effect as both are centred around midspan, i.e. 𝑥 , = 5 m.   
LM1  
Also, figure 83 shows that in general a linear relation can be seen between the occurring bending 
moment and the gross vehicle weight. This is true especially for the majority of vehicles with a GVW 
smaller than 60t. For vehicles with a GVW greater than 60t, such a correlation is not clearly visible. The 
vehicles belonging to category EHC, do not exert a high load effect despite their high gross vehicle 
weight. This is since the entire combination exerts its weight only partially in time, which is due to the 
interspatial axle distances. When the bridge length exceeds a certain threshold, logically the category 
EHC will cause the highest load effect. This is shown in the figure below. 

 
Figure 86 - Bending moment vs span length for 3 load models: mobile cranes, EHC, tandem load of 𝐿𝑀1. 
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In the figure above, an arbitrary vehicle in both categories has been chosen to demonstrate. For mobile 
cranes, for bridges with a span larger than 16 m the increment in load effect suddenly increases. For 
EHC this is the case at 18 m bridge span. For single bridge spans greater than 40 m the tandem load 
model from LM1 represents the registered live load. This is further evidence that load model LM1 is 
overly conservative for small span bridges.  
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Appendix D – Overloaded axles in WIM data 
This appendix is a continuation appendix C where the influence of number of axles contributing to the 
maximum load effect is investigated. The figure below shows an example of a 3-axled vehicle. Columns 
DT12 and DT23 are the interspatial axle distances, respectively. Column nF1 is the indicated ratio 𝑛 ,  
and column AXLOAD describes the number of axles responsible for the highest occurring load effect. 
Immediately it shows that although three axles are present, only the first axle has the highest 
contribution, despite the relatively large axle distance to the last two axles.   

 
Figure 87 - Excerpt of WIM data showing contribution of axles to maximum load effect for 3-axled vehicle. 

The figure below shows an example of an 8-axled vehicle with a GVW of 85,6t. A first assumption 
would be that due to the high GVW and the high number of axles, the contribution of a group of axles 
would be relatively the same. However, the 4th and 5th axle are both relatively high loaded, the 5th axle. 
The ratio 𝜂 for axles 4,5,6 and 7 show that this 8-axled vehicle loads the structure as a 4-axled vehicle, 
with primarily only the 5th axle exerting load effect. 

 
Figure 88 – Excerpt of WIM data showing contribution of axles to maximum load effect for 8-axled vehicle. 

The figure below shows that the maximum occurring load effect in the WIM data is generated by either 2 or 3 axles. Assuming that the interspatial axle distances are reasonable, and not very small, this 
indicates that overloaded axles contribute most to maximum occurring load effects. 

 
Figure 89 - 3D representation of contribution of axles to maximum load effect by adding colour scale. 
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Appendix E – Modified LP data: Distribution fitting to maxima  
Daily maxima 
In theory, any function can be fitted to any distribution. However, in which way the distribution fits 
best is debatable. The final distribution shown in figure 46 is determined by fitting 89 univariate 
distributions through the residual sum of squares method and hypothesis testing. For each 
distribution, the location, shape, and possibly other parameters are determined by maximum 
likelihood estimation. This is done by a Python package called distfit32, freely available online. All 89 
distributions are explained and elaborated in the Scipy library33. It must be noted that some of these 
distributions are a modified version of the normal distribution, such as the hyper gaussian function.  

Initially to fit a distribution to the daily maxima, the parameters for Weibull-, Gumbel-, Normal- and 
Beta distribution are calculated. Then, using the distfit package, the theoretically best fitting 
distribution is calculated. The results are shown below. 

 
Figure 90 - Compilation of 3 figures. Top: Relative frequency histogram and fitted distributions for daily maxima. Bottom left: 
Enhanced vision of tail of relative frequency. Bottom right: icdf of daily maxima and fitted distributions. 

The figure shows that most of the fitted distributions approximate the histogram well, only showing 
some minor differences between the peaks and tail. The best fitted distribution using the distfit 
package is the dweibull distribution, short for Double Weibull distribution. Since the tail is of most 
importance in extreme value analysis, this part must be fitted well. From figure 87 the following 
observations are done: 

 
32 https://pypi.org/project/distfit/ 
33 https://docs.scipy.org/doc/scipy/reference/stats.html 
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 The Weibull distribution is underestimating the exceedance frequency. 
 The Gumbel distribution is overestimating the exceedance frequency.  
 The Normal distribution although accurately describes the highest value of the daily maxima, 

underestimates the exceedance frequency of the tail. 
 The Beta distribution also underestimates the exceedance frequency, slightly more than the 

Normal distribution. 
 The Double Weibull distribution seems to fit the data best and although slightly overestimating 

the highest daily maxima, the rest of the tail is properly described. 

Based on these observations, the most logical choice is to use a Double Weibull distribution to fit the 
daily maxima, with the following parameters34: 

Parameter Abbreviation (code) Value 
Shape  𝑐 1.2859689606414004 
Location  𝑙𝑜𝑐 913.3432857362216 
Scale  𝑠𝑐𝑎𝑙𝑒 58.52499587622529 

Table 41 - Distribution parameters for fitted daily maxima distribution. 

Monthly maxima 
The same procedure as for the daily maxima is now applied to determine the monthly maxima for a 
reference period of 𝑡 years. In this example, a return period of 25 years is applied. Thus 25 years of 
monthly maxima is generated. With making use of the distfit package, several probability distributions 
are fitted. The following results are obtained. 

The figure shows a mixture of fitted distributions to the monthly maxima of 25 years. The distfit 
package determined that the mielke35, short for Mielke Beta-Kappa / Dagum, fits the data best. The 
following observations can be done: 

 The Weibull distribution is underestimating the exceedance frequency. 
 The Gumbel distribution is slightly overestimating the exceedance frequency.  
 The Normal distribution although accurately describes the middle values (1250 − 1350 kNm) 

of the monthly maxima, underestimates the exceedance frequency of the tail. 
 The Beta distribution, although accurately describing the tail, underestimates the peak of the 

distribution at 1255 kNm. 
 The Mielke distribution is slightly overestimating the exceedance frequency, but accurately 

describes the peak of the distribution. 

 
34 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dweibull.html#scipy.stats.dweibull 
35 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mielke.html 
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Figure 91 - Compilation of 3 figures. Top: Relative frequency histogram and fitted distributions for monthly maxima. Bottom 
left: Enhanced vision of tail. Bottom right: inverted cumulative distribution of monthly maxima and fitted distributions. 

Usually, the best fitted distribution should be fitted to the data. Visually however the mielke and the 
Gumbel-distribution seem to be almost exact. Based on this, and the fact that Hellebrandt [1] also used 
a Gumbel distribution, the fitted distribution is a Gumbel-distribution with the following parameters36. 

Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1203.0105580793575 
Scale  𝑠𝑐𝑎𝑙𝑒 𝛽 30.00058334129722 

Table 42 - Distribution parameters for fitted monthly maxima distribution. 

Yearly maxima 
To determine the yearly maxima, the same procedure as for the monthly maxima is applied. The 
Gumbel-distribution for the monthly maxima with the parameters denoted in table 42 act as an input. 1 year is simulated by means of drawing 12 monthly maxima from the given Gumbel-distribution and 
storing the maximum of the monthly maxima. This is repeated for 1000 years. With making use of the 
distfit package, several distributions are fitted to the data. The results are shown below. 

 
36 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r 
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Figure 92 - Compilation of 3 figures. Top: Relative frequency histogram and fitted distributions for yearly maxima. Bottom 
left: Enhanced vision of tail. Bottom right: inverted cumulative distribution of yearly maxima and fitted distributions. 

 

The figure shows a mixture of fitted distributions to the yearly maxima of 1000 simulated years. The 
distfit package determined that the lognorm, short for lognormal distribution, fits the data best. The 
following observations can be done: 

 The Weibull distribution is underestimating the exceedance frequency. 
 The Gumbel distribution is slightly overestimating the exceedance frequency for the tail of the 

distribution.  
 The Normal distribution is underestimating the tail of the distribution.  
 The Beta distribution underestimates the peak of the distribution and underestimates the tail 

of the distribution. 
 The lognormal distribution is slightly overestimating the exceedance frequency for the tail of 

the distribution. 

Once again, the lognorm distribution seems to fit the yearly maxima best. Once again, the Gumbel- 
and the lognormal distribution are visually almost identical. The figure below shows that the difference 
in the residual sum of squares for both distributions is negligible.  

Based on the facts that the difference between both functions is negligible and that the monthly 
maxima distribution is also a Gumbel distribution, the fitted function for the yearly maxima is set to be 
a Gumbel distribution with the following parameters. 
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Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1227.9312247878345 
Scale  𝑠𝑐𝑎𝑙𝑒 𝛽 28.938224976728158 

Table 43 - Distribution parameters for fitted yearly maxima distribution. 

Overview 
For the daily, monthly, and yearly maxima the best fitted distributions are chosen. The yearly maxima 
distribution will yield as the basic input for the Monte-Carlo simulation in Chapter 7.3.3. The figure 
below shows the daily, monthly and yearly maxima distributions together with their fitted 
distributions. 

 

Figure 93 - Relative frequency histograms of daily-, monthly- and yearly maxima together with their respective fitted 
distribution. 

 

The figure above shows that the monthly- and yearly maxima distributions are almost identical. This 
follows logically from the fact that the yearly maxima distribution is based on the monthly maxima 
distribution.  
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Appendix F – LP data: Distribution fitting 
Daily maxima 
When calculating the daily maxima, the following distribution is obtained. This rather skewed 
distribution is obtained due to static values for axles. Consequently, distribution fitting becomes rather 
difficult, as shown in the figures below. 

 
Figure 94 - Left: Relative frequency histogram of occurring load effect using LP model. Right: Relative frequency histogram 
with fitted distributions.  

 
Figure 95 - Left: Tail of relative frequency histogram of daily maxima using LP model. Right: inverted cumulative distribution 
of daily maxima from LP data and fitted distributions. 

From the top right figure, it follows that the best fitted distribution is the generalized extreme value 
distribution. The GEV-distribution does indeed describe the peak at 740 kNm properly, however is 
extremely inaccurate describing the tail, as shown in the bottom right figure. The Weibull distribution 
seems to fit the tail best, where the other distributions do not. Hence for the daily maxima a Weibull 
distribution is chosen with the following parameters37. 

Parameter Abbreviation (code) Value 
Shape  𝑐 -0.3796551175784295 
Location  𝑙𝑜𝑐 737.6251634809807 
Scale  𝑠𝑐𝑎𝑙𝑒 23.573497456350264 

Table 44 - Distribution parameters for fitted daily maxima distribution for LP model. 

 
37 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html 
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Monthly maxima 
The same procedure as for the daily maxima is now applied to determine the monthly maxima for a 
reference period of 𝑡 years. In this example, a return period of 25 years is applied. Thus 25 years of 
monthly maxima is generated. With making use of the distfit package, several probability distributions 
are fitted. The following results are obtained. 

 
Figure 96 - Compilation of 3 figures. Top: Relative frequency histogram and fitted distributions for monthly maxima. Bottom 
left: Enhanced vision of tail. Bottom right: inverted cumulative distribution of monthly maxima and fitted distributions. 

The best fitted distribution is the double gamma 38 distribution, which is likely describing occurring the 
double peaks, which aren’t visible in the histogram. However, when looking at the bottom graphs, the 
double gamma distribution seems to underestimate the occurring bending moments. The fitted 
Gumbel distribution however seems to accurately fit the tail, as well as fitting the ‘main’ peak in the 
top left figure. Hence, a fitted Gumbel distribution with the following parameters is adopted for the 
monthly maxima. 

Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1061.1749837873122 
Scale  𝑠𝑐𝑎𝑙𝑒 / 𝛽 34.576516445534956 

Table 45 - Distribution parameters for fitted monthly maxima distribution for LP model. 

 
38 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dgamma.html#scipy.stats.dgamma 
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Yearly maxima 
To determine the yearly maxima, the same procedure as for the monthly maxima is applied. The 
Gumbel-distribution for the monthly maxima with the parameters denoted in table 45 act as an input. 1 year is simulated by means of drawing 12 monthly maxima from the given Gumbel-distribution and 
storing the maximum of the monthly maxima. This is repeated for 1000 years. With making use of the 
distfit package, several distributions are fitted to the data. The results are shown below. 

 
Figure 97 - Compilation of 3 figures. Top: Relative frequency histogram and fitted distributions for yearly maxima. Bottom 
left: Enhanced vision of tail. Bottom right: inverted cumulative distribution of yearly maxima and fitted distributions. 

The calculated best fitted distribution is the johnsonsu 39distribution, which except for the tail, is almost 
identical to the fitted Gumbel distribution. For the tail however, the johnsonsu distribution seems to 
accurately describe the tail. However, since the differences between the Gumbel- and the johsonsu 
distribution are minor, a fitted Gumbel distribution with the following parameters is adopted for the 
yearly maxima. 

Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1061.1361185982641 
Scale  𝑠𝑐𝑎𝑙𝑒 / 𝛽 34.07193556661929 

Table 46 - Distribution parameters for best fitted yearly maxima distribution for LP model. 

 
39 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsu.html?highlight=johnsonsu#scipy.s
tats.johnsonsu 
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Appendix G – WIM data: Distribution fitting 
Daily maxima 
When calculating the daily maxima, the following distribution and fitted curves are obtained. The same 
procedure as for the modified LP data and LP data is used. 

 
Figure 98 – Top left: Relative frequency histogram of occurring load effect using WIM model. Top right: Relative frequency 
histogram with fitted distributions. Bottom left: Tail of relative frequency histogram of daily maxima using WIM model. 
Bottom right: inverted cumulative distribution of daily maxima from WIM model and fitted distributions. 

According to the distfit package, the best fitted distribution is the invgauss40 (Inverse Gaussian 
Distribution). This distribution does indeed describe the peak at around 720 kNm well. As does the 
fitted Gumbel distribution. However, the tail is not properly described by the Gumbel and the Inverse 
Gaussian fits, as shown in the bottom right figure. The fitted Beta distribution seems to be fit the best, 
as well as the fitted unimodal normal distribution. However, fitted Beta distribution is capped at 1300 kNm which in practice might be exceeded. Hence the fitted normal distribution with the 
following parameters is chosen: 

Parameter Abbreviation (code) Value 
Location  𝑙𝑜𝑐  / 𝜇 809.0168630136988 
Scale  𝑠𝑐𝑎𝑙𝑒 / 𝜎 166.4033149501301 

Table 47 - Distribution parameters for best fitted daily maxima distribution for WIM model. 

 
40 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgauss.html 
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Monthly maxima 
The fitted normal distribution acts as an input to determine the monthly maxima. A return period of 25 years is applied. Thus 25 years of monthly maxima is generated. With making use of the distfit 
package, several probability distributions are fitted. The following results are obtained. 

 
Figure 99 – Top left: Relative frequency histogram of monthly maxima using WIM model. Top right: Relative frequency 
histogram with fitted distributions. Bottom left: Tail of relative frequency histogram of monthly maxima using WIM model. 
Bottom right: inverted cumulative distribution of monthly maxima from WIM model and fitted distributions. 

The best fitted distribution is the johnsonsb 41distribution, a modified normal distribution. As can be 
seen, the johnsonsb fit is close to the fitted Beta distribution. Both distributions however 
underestimate the tail, especially for the highest occurring bending moment. The fitted Gumbel 
distribution however does, although slightly overestimating, describe the tail properly as well as 
describing the peak of the distribution properly. Hence, a fitted Gumbel distribution with the following 
parameters is applied. 

Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1394.2954263955064 
Scale  𝑠𝑐𝑎𝑙𝑒 / 𝛽 46.9113226747704 

Table 48 - Distribution parameters for best fitted monthly maxima distribution for WIM model. 

 
41 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsb.html#scipy.stats.johnsonsb 
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Yearly maxima 
To determine the yearly maxima, the same procedure as for the monthly maxima is applied. The 
Gumbel-distribution for the monthly maxima with the parameters denoted in table 48 act as an input. 1 year is simulated by means of drawing 12 monthly maxima from the given Gumbel-distribution and 
storing the maximum of the monthly maxima. This is repeated for 1000 years. With making use of the 
distfit package, several distributions are fitted to the data. The results are shown below. 

 
Figure 100 - Top left: Relative frequency histogram of yearly maxima using WIM model. Top right: Relative frequency 
histogram with fitted distributions. Bottom left: Tail of relative frequency histogram of yearly maxima using WIM model. 
Bottom right: inverted cumulative distribution of yearly maxima from WIM model and fitted distributions. 

Using the distfit package, the best fitted distribution is the johsonsu distribution. However, the bottom 
right figure shows that the fitted Gumbel distribution approximates the johsonsu distribution as well. 
Both fits are slightly underestimating the tail of the distribution. However, all other functions are 
poorly fitted, and thus the fitted Gumbel distribution with the following parameters is adopted. 

Parameter Abbreviation (code 
/ math) 

Value 

Location  𝑙𝑜𝑐 / 𝜇 1392.3859985293516 
Scale  𝑠𝑐𝑎𝑙𝑒 / 𝛽 47.22886254482658 

Table 49 - Distribution parameters for best fitted yearly maxima distribution for WIM model. 
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Appendix H – Examples of 𝜂  for different vehicle types 
In this appendix examples of the distribution for 𝜂  will be given for each vehicle type used in this 
report. In total, three vehicle types are considered. The semi-trucks, both 2- and 3-axled, the full-
trucks, both 2- and 3-axled, mobile cranes and tipper trucks. It must be noted that the figures below 
show distributions for one registered vehicle only, since the distribution is dependent on the axle 
load that follows from the LP data. For example, in figure 99 the first axle load is given as 75 kN. If 
the axle load of the first axle was set to be 115 kN, one could imagine that the distribution shifts to 
the left, as less values exceed this value. 

The first considered vehicle type is the 2-axled semi-truck carrying any kind of trailer. The figure 
42below shows a 2-axled semi-truck carrying a single axle trailer, with the distribution of 𝜂  for all 
three different axles. The red lines indicated the value of the axle load as given by the LP data, i.e. 𝜂 = 1.0. 

 

 
Figure 101- Distribution of 𝜂  for a 2-axled semi-truck carrying a single axle trailer. 

In the figure below the distribution of 𝜂  is given for a 3-axled semi-truck carrying a 2-axled semi-
trailer. The red lines indicated the value of the axle load as given by the LP data, i.e. 𝜂 = 1.0. 

 
42 Source of figures: 
http://onlinemanuals.txdot.gov/txdotmanuals/tri/images/FHWA_Classification_Chart_FINAL.png 
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Figure 102 - Distribution of 𝜂  for a 3-axled semi-truck carrying a 2-axled trailer. 

In the figure below the distribution of 𝜂  is given for a 2-axled full-truck carrying no trailer. The red 
lines indicated the value of the axle load as given by the LP data, i.e. 𝜂 = 1.0. 

 
Figure 103 – Distribution of 𝜂  for a 2-axled full truck carrying no trailer. 

In the figure below the distribution of 𝜂  is given for a 3-axled full-truck carrying no trailer. The red 
lines indicated the value of the axle load as given by the LP data, i.e. 𝜂 = 1.0. 
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Figure 104 – Distribution of 𝜂  for a 3-axled full truck carrying no trailer. 

In the figure 43below the distribution of 𝜂  is given for a 4-axled tipper truck carrying no trailer. The 
red lines indicated the value of the axle load as given by the LP data, i.e. 𝜂 = 1.0. 

 
Figure 105 – Distribution of 𝜂  for a 4-axled tipper/dump truck carrying no trailer. 

In the figure 44below the distribution of 𝜂  is given for a 5-axled mobile crane carrying no trailer. The 
red lines indicated the value of the axle load as given by the LP data, i.e. 𝜂 = 1.0. 

 
43 Source of figure: https://www.grabco.co.uk/grab-hire 
44 Source of figure: https://www.1999.co.jp/eng/10429274 
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Figure 106 – Distribution of 𝜂  for a 5-mobile crane carrying no trailer. 
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Appendix I – Python codes 
 


















































































































































































































































