
Detection and Mitigation Mechanisms for Attacks in Programmable Data Planes

Frank Broy
Supervisor(s): Chenxing Ji, Fernando Kuipers

EEMCS, Delft University of Technology, The Netherlands
22 June 2022

A Paper Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Detection and Mitigation Mechanisms for Attacks in Programmable Data Planes

Author: Frank Broy
Supervisor: Chenxing Ji

Responsible Professor: Fernando Kuipers
EEMCS, Delft University of Technology, The Netherlands

Abstract
DDoS attacks are becoming more common and sophisti-
cated. Only recently, in 2017, Google claims they have
mitigated an attack which sent 2.54 Tbps of traffic to their
servers. In order to prevent these attacks, more and more
robust defence mechanisms need to be put in place to
withstand the malicious traffic and secure the networks.

Programmable data planes allow the users to specify
which rules the headers of a packet need to follow and
what happens if they are different. With this freedom,
achieving more secure networks becomes possible. The
use of the programming language P4 makes it easy to
modify the functionality of the switches and limit the be-
haviour of the network in order to reduce the attack sur-
face. This paper describes certain attacks and mitigation
techniques for them, such as DoS attacks and SYN-flood
attacks. The paper will list existing defence techniques
and enumerate their advantages and drawbacks. There
will be two proof of concept detection and mitigation tech-
niques in P4, and these implementations will be compared
to already existing ones. The P4 implementations will be
provided as well as comparison and performance graphs.

1 Introduction
With the first routers emerging in the 1970s for public use,
people nowadays are used to having constant access to a
world of connected networks. During these 50 years, many
new technologies have emerged, and the field of computer-
networks has been growing constantly. With the massive
growth on the usage of networks, there are also many secu-
rity concerns that arise. In the last few years, the number
of attacks, especially DDoS attacks, has been increasing [1].
The attacks continue to become more sophisticated and pow-
erful [2], with the most powerful ones reaching more than 2.5
Tbps of traffic flow [3]. These attacks can drastically slow
down networks to a point where parts of a network or even
the whole network become completely unresponsive, which
could have direct consequences on the real world. So in or-
der to mitigate these problems, it is imperative to upgrade the
detection and mitigation techniques for these types of attacks.

The current implementation of routers, modems, and
switches consists of a black box implementation, meaning
that only the vendor knows and can change how the device’s

inner algorithms work. The user can only change the settings
of the control plane but cannot modify the logic or function-
ality of the data plane. However, with the latest emergence of
programmable data planes and Software-Defined Network-
ing (SDN), the data plane can be modified with a program-
ming language called P4. P4 allows for defining new proto-
col headers and new processing algorithms, which give the
user more control over their network [4]. While P4 is still a
relatively new language, which came up in 2014, it is already
standardised today in the P4 Language Consortium [5] and
supported by various platforms used in the industry.

This report will answer the question ”What mechanism(s)
can the programmable data-plane adopt to prevent a specific
attack (e.g., DDoS and SYN flooding)?”, so which mecha-
nisms can be implemented in the data plane using P4 to de-
tect and mitigate DDoS and SYN-flood attacks up to a cer-
tain point. This paper contains implementations of these de-
tection and mitigation techniques for general DoS and SYN
flood attacks and compares the results to existing techniques
and implementations such as [6][7][8][9]. Finally, there will
be a conclusion of the various implementations as well as a
discussion to develop a more secure way of networking in
programmable data planes.

The paper will start with a small introduction to P4 and a
more in-depth problem description in section 2. Afterwards,
a general overview of existing attacks and mitigations will be
listed together with their advantages and drawbacks in sec-
tion 3. Section 4 will explain the experiments in more detail,
contain the results as well as a comparison to other papers.
Section 7 will be about the ethical aspects and the repro-
ducibility of the research. Next, section 5 will discuss the
results obtained by this research, possible improvements and
other findings. Finally, a conclusion will be drawn, and pos-
sible improvements or issues will be discussed in section 6.

2 Methodology
In order to conduct this research, specific attacks need to be
simulated and launched onto a network. This network will
be simulated using Mininet, and the attacks will be generated
using various tools and scripts. The detection and mitigation
mechanisms will be implemented using the P4 programming
language, and graphs and other results will be generated using
Python.



2.1 P4
The Programming Protocol-independent Packet Processors
(P4) programming language is specifically designed to spec-
ify how packet data is processed on network devices, specif-
ically on the data plane. P4 allows the users to implement
particular behaviour in their networks, which they can cus-
tomise at their own will in no time. P4 has been around since
2014 and already has its own language consortium [5] and
specification [10].

A P4 program is made up of 5 different parts:

• Parser, which checks if the incoming packets’ headers
correspond to the definitions

• Ingress, defines the tables and the processing algorithms
in a Match-Action pipeline

• Verification, checks if the packets has the correct check-
sum and if there were no errors

• Egress, defines the tables and the processing algorithms
in a Match-Action pipeline with egress specific informa-
tion

• Deparser, which puts the packet back together how it
will be send out later

Every P4 program is compiled into configuration JSON
files by a P4 compiler such as p4c [11]. The program can
now be run with the mininet switch and by injecting the run-
time rules. The whole workflow of a P4 program is listed in
Figure 1.

Figure 1: Workflow in the P4 programming language [12]

P4 can be used in a security aspect of networks since it al-
lows for a complete definition of the packets and how they
are processed. Limiting the correct packets makes the attack
surface smaller, and it becomes easier to defend against the at-
tacks since attackers will not have as many options. With P4,
the detection and mitigation of attacks can happen closer to
the actual source. Therefore, they will be more efficient com-
pared to first treating the packets and then analysing them.

2.2 Types of Attacks
This paper focuses primarily on detecting and mitigating de-
nial of service attacks. These attacks aim to slow down or
even completely take down a network. They can come in var-
ious forms, and exploit and abuse different protocols. Some
of these attacks will be described in the following sections,
next to some detection and mitigation mechanisms.

Denial of Service
Denial of Service attacks are a collection of malicious traffic
that disrupts the normal network flow by sending loads of re-
quests quickly. Due to the high load of traffic, the network
will need more time to respond to the requests or might even
become completely unresponsive if the traffic is too much to
handle. Denial of service attacks can be conducted from a
single machine, but they can also be executed from multi-
ple devices at once, making it a Distributed Denial of Ser-
vice (DDoS) attack. These DDoS attacks are most often ex-
ecuted through botnets, where previously infected machines
are used to send malicious traffic to the target. Defending
against DDoS attacks is hard because of various reasons:

• the attacks can contain a huge amount of traffic that is
sent to the server

• the attacks come from various sources, so it is hard to
block them all

• it is hard to distinguish legitimate traffic from malicious
traffic and therefore very complicated to drop the mali-
cious traffic without affecting the legitimate one

There are many different types of DoS attacks, and the size
can be measured in 3 kinds of units, packets per second, bytes
per second and requests per second. DoS attacks can target
various parts of network infrastructure, ranging from the ap-
plication layer to the protocol layer. The attacks can either
focus on the number of requests sent or on the size of the
requests. In both cases, a complete denial of service can be
achieved.

SYN-flood
Another sort of attack which can bring down networks is pro-
tocol abuse, where flaws in a specific protocol are exploited.
One of those abuses is the so-called SYN flood attack.

SYN floods are an exploitation of the three-way handshake
of the TCP protocol. In a typical TCP handshake, the user
sends a SYN (synchronise) packet to the server to ask it to
open a connection. When the server allows the connection, it
opens a port and replies with a SYN-ACK (synchronise ac-
knowledge) packet. The connection is established when the
user replies with an ACK (acknowledge) packet, and com-
munication can happen. However, if the user sends a SYN
packet but never replies to the SYN-ACK sent by the server,
the server keeps the selected port open for a certain amount of
time. If the user floods the server with SYN requests, then the
server will run out of ports that it can open since they are all
occupied, and this leads to a denial of service since the server
cannot respond to any new incoming requests. An illustration
of the three-way handshake of the TCP protocol as well as of
a SYN flood attack can be seen in Figure 2. Some potential
mitigation techniques are described in section 4.



Figure 2: Normal TCP handshake (left) and SYN-flood attack (right)
[13]

Other attacks
Various attacks can take down or slow down a network. Next
to the before-mentioned attacks, there is also, for example,
the HTTP flood attack. In this attack, the attacker sends a
lot of HTTP GET requests to the server so that the server
cannot handle the traffic load anymore and slows down or
becomes completely unresponsive. Since an HTTP GET re-
quest asks for a particular response, the attacker can choose
the request so that the response is massive. In this case, the
attacker might not need to send as many different requests but
can send only a few which want a bigger response and there-
fore put more load on the network when retrieving the results.
So, in this case, the attacker looks more for the size of the re-
sponse rather than the number of requests. These attacks are
also called amplification attacks.

Another attack is a so-called Slowloris attack [14]. This at-
tack tries to take down a web server by keeping as many con-
nections open to the target. The connections are opened, and
only a partial request is sent. The server then waits for the rest
of the request, which is sent at a later point in time. However,
the response will only come in parts and will never be com-
plete. This method forces the target to keep the connections
open, which at some point, if all connections are used, will
lead to unresponsiveness since no further connections can be
accepted.

An attack, which exploits reassembling packets, is the so-
called Ping of Death [15]. During this attack, the attacker
sends multiple malformed pings to the target. If an IP packet
is too big, it is split into several smaller fragments, which are
later on reassembled. The maximum size of an IP packet is
65,535 bytes, and if that limit is surpassed, memory overflows
might occur, which is what this attack exploits. In the Ping
of Death attack scenario, when the target reassembles the IP
packets, it ends up with a packet larger than 65,535 bytes,
which will overflow the memory buffers, leading to a denial
of service on the target.

2.3 Virtual Network Simulation
To simulate the network that is being attacked, Mininet [16] is
being used. The network is being simulated since it gives eas-
ier access to a network and since the network will be attacked,
which is not ethical and even illegal. Mininet allows quickly

simulating a virtual network and creating different topologies
suited for different needs. In the topology that was used in
the experiments, three hosts and one switch were used, as can
be seen in Figure 3.

Figure 3: Network topology used for the experiments

The way the topology was used was that host one was the
target, host two was the attacker, and host three checked the
target’s response times during an attack. All the hosts were
connected to the same switch, which was itself connected to
a controller.

2.4 Tools and Scripts
To simulate certain attacks, such as the SYN-request flood-
ing, Hping3 [17] was used. Hping3 allows to send and re-
ceive packets which a single command. It has many kinds
of attacks built in, so it is quite simple to simulate an attack,
such as SYN floods or a DoS attacks, which were used for the
experiments in this research.

For all other scripts that were used in this project, Python
was used to automate these functionalities. One script for
example was a latency tester script, which kept sending pings
to the target host and measure the response times. Another
script was automating a TCP handshake between host one
and host three, which was used to measure the response time
during a SYN flood attack.

3 Attack Detection and Mitigation Techniques
General attacks on networks that try to slow them down or
even take them out completely come in various forms and
can exploit various vulnerabilities of the target. The most
crucial part of blocking malicious traffic is to prevent reg-
ular non-malicious traffic from being processed on the net-
work or dropped beforehand. Hence it is imperative to use a
good mitigation technique to distinguish between malicious
and regular traffic. Over the past few years, many techniques
have been discovered and worked on [18] [19] [20], such as
machine learning and even blockchain. It has become harder
to successfully detect malicious traffic since the attackers use
spoofed information and other hiding techniques to hide their
real identity and make it look natural. Another reason why
these attacks become harder to mitigate is the sheer amount
of traffic attackers can generate. With various botnets around



and more IoT devices that can be infected, the amount of traf-
fic attackers can generate in these attackers is ever-growing.

Programmable network devices have the advantage, that
the attack surface can be limited by only allowing what is nec-
essary on the servers. If a protocol is not implemented, it also
cannot be exploited and even if it is present, small modifica-
tions can be included to make it more secure. Programmable
devices also save resources and are therefore faster than the
normal devices that are mostly used today. The following
paragraphs will discuss various techniques that exist to detect
and mitigate these attacks and some drawbacks and advan-
tages of them.

3.1 Heavy-hitter detection for general DDoS
attacks

As one of some naive solutions to withstand denial of ser-
vice attacks, one could upgrade the network’s bandwidth to
make it ready to accept more traffic at once. However, an
attacker could quickly increase the amount of attack traffic
and make the upgrade pointless. Hence, more elaborate de-
fence strategies are needed. One of those strategies could be
a firewall, which controls a network’s incoming and outgoing
flow by monitoring the packets that flow within and blocking
malicious traffic from entering the network due to predefined
rules and policies. However, a firewall can only block the ma-
licious traffic up to a certain point defined by its rules. If there
is both malicious and regular traffic coming in from a specific
port, it is hard not to block any regular traffic next to the ma-
licious one. The main problem is how to distinguish between
legitimate and malicious traffic, since the traffic coming from
the attack might look very similar to the normal one. Addi-
tionally, the firewall needs to be placed at the correct place in
the network to be effective. If it is too far into the network, the
malicious traffic could already take down the network before
it even gets to the firewall.

Another solution against DDoS attacks is upstream filter-
ing. In this solution, all the traffic first passes through an
external filter system. This filter changes, for example, the
target’s IP address in the DNS system, tunnels the requests
or uses other mechanics to filter out the bad traffic before it
can get to the actual target. Since these filters need to be
adopted on more extensive networks to function since they
mainly redirect traffic to keep the flow going, control over the
bigger network is needed to incorporate these systems. So
passing the traffic around within the network and distributing
the load is effective if the network is big enough and robust
enough to support the load until it can be filtered.

Rate-limiting can be an effective strategy for reducing the
traffic sent from a source if that source can be accurately
tracked down. By imposing a limit on how many messages a
single source can send within a specific timeframe, the at-
tacker cannot exceed the threshold, and all messages sent
above the threshold will be automatically dropped. When
the threshold is exceeded multiple times, a ban for the whole
source can also be put in place, which will stop the source
from sending any other messages in the future permanently.
However, this technique is only applicable when the source
can be accurately identified. A rate limit cannot be imposed
as soon as a source uses spoofed information such as source

IP address or source port. So within a network where every
host is well identified, this can be a valid mechanism, but as
soon as sources from the outside can send traffic, rate-limiting
becomes powerless.

By applying machine learning to the security aspect of
networks, a new technique has been developed recently that
could learn to identify attacks based on previous ones that
have been mitigated. By training an algorithm with data from
previous attacks, a machine learning algorithm might be able
to detect incoming attacks faster than any other built-in mech-
anism in the network [13] [18]. These papers have shown
that up to 97% of network anomalies could be detected using
a trained machine learning algorithm, which proves that ma-
chine learning is indeed a valid approach to network security.

There are also other mechanics, which have been studied
in more detail as well, such as the algorithm proposed in [6],
which uses entropy to detect attacks. During an attack, cer-
tain IP addresses might get more traffic than others, which
increases the entropy of those destinations. Once the entropy
exceeds a certain threshold, the traffic is flagged as malicious,
and actions may be taken. Suppose a single IP address re-
ceives only a few requests. In that case, the entropy might
also already be bigger than those compared to others. This
is why dynamic thresholds are put in place, such that minor
deviations of legitimate traffic are not flagged as malicious.
In P4, the implementation works by first parsing the incom-
ing packets, then using match-action pipelines to determine
egress ports, and performing the entropy estimation. The en-
tropy estimation is performed by applying custom hash func-
tions to the packet information and obtaining estimates for the
various frequency estimations. The traffic is then analysed
based on observation windows, and if there is a threshold that
is exceeded, an alarm is set off and the mitigation sets in.

There is also an extension to the previous mitigation tech-
nique, described in [7], which does not only take into account
source addresses for anomaly detection but also destination
addresses. So ddosm-p4 also uses entropy to identify anoma-
lies within the traffic, but it uses more fields of the pack-
ets. So it first parses the incoming packets and then applies
the entropy calculation during match-action pipelines. As in
the previous algorithm, when the entropy exceeds a certain
threshold, the traffic is flagged, and mitigation mechanisms
are put in place. Other than ddosd-p4, this algorithm works
with fixed-point arithmetic since P4 does not support floating-
point arithmetic. The other implementation uses bit shifts and
integers only, whereas here, integers and decimal parts are
stored as bits, which allows for higher precision.

3.2 Heavy-hitter detection for SYN-flood attacks
Part of some naive mitigation strategies for SYN-flood attacks
is also just increasing the number of connections the server
can make. In this case, more connections can be opened, and
the backlog will not be full as quickly. However, since it is
also easy for an attacker to also scale up the amount of TCP
SYN packets sent, this method proves to be not very efficient
in mitigating the attacks. Another method which sounds help-
ful, but can be easily beaten by the attacker by scaling up the
attack volume, is decreasing the amount of time a connection
is kept alive between sending the SYN-ACK and waiting for



the ACK. If the connection is not open for as long, a new
connection can be made again more quickly. However, this
might have a drawback for users with a slower connection
speed since their connection might sometimes be dropped
even though it is legitimate. A last naive strategy is replac-
ing the oldest alive TCP connection with the newest incom-
ing one. This mechanism has the advantage that every re-
quest coming in will be served with a connection. However,
it also means that users who are currently connected might
have their connection revoked if the backlog is full and their
connection is the oldest. Hence these methods might be help-
ful on small scales and might be able to help against minimal
attacks. However, as soon as the attacker can also scale up
the attacks, which is almost always the case, these defence
mechanisms become useless.

However, some more advanced mitigation techniques ex-
ist that are more effective against SYN flood attacks; one
of them is SYN cookies. Instead of opening a port imme-
diately when a SYN request is received, a cookie is created
using a hash function, and a secret key is stored on the server.
This cookie is then sent to the user with the SYN-ACK re-
quest, and the connection is only opened when the final ACK
is received with the valid cookie. If the cookie corresponds
to the one created during the SYN request, the connection
is opened, and the TCP handshake was successful. A nor-
mal SYN-flood attack does not work anymore since the com-
plete handshake needs to be completed to use the network’s
resources. However, these cookies need to have some extra
security features to prevent being exploited. First of all, they
need to expire after a certain time, or else the attacker might
be able to use them repeatedly. Another aspect they need to
follow is that they should only be valid for the machine/user
that sends the SYN request. Otherwise, the attacker could ex-
ploit it by sending ACK requests with the same cookie from
multiple machines.

Another mitigation technique against SYN-floods is a
proxy or firewall, which filters out malicious traffic before
getting to the server. The initial TCP handshake is performed
on the proxy, which means that the server does not know
about the attempt of a user to connect until the proxy or fire-
wall decides that the traffic is legitimate. If the traffic is con-
sidered non-malicious, the proxy forwards the request to the
actual server, establishing the connection. This technique has
the advantage that the malicious traffic might never reach the
actual server, and hence the server will not be slowed down
or even taken down by an attack. However, the firewall might
let some malicious traffic pass through if it is not configured
correctly. An attack might also take down the firewall, and in
that case, the firewall or proxy will not be able to communi-
cate with the server. Hence this mechanism might only prove
helpful if the proxy and firewall are configured correctly.

Some of these mechanisms have been implemented already
by [8] and [9] and have proven to be effective. The mecha-
nisms implemented in these papers are all based on a proxy,
which filters the traffic and only sends non-malicious traffic
to the actual destination. They created four different imple-
mentations, all based on the same system, namely a whitelist
and forwarding. The first implementation is the SYN cookie,
which creates a cookie on the SYN request of the user and

stores it on the proxy. The user and the proxy then complete
the handshake, and as soon as this is done and the cookie
is valid, the IP is whitelisted, and the proxy does the hand-
shake with the server and completes the connection with the
user. The second implementation is the SYN authentication
reset bloom filter method, which sends an RST packet as a re-
sponse to the first SYN of the user. The IP is then whitelisted,
and when the user tries to reconnect, the request is accepted,
and the proxy forwards the request to the server and thus cre-
ates the connection. The third implementation is the SYN
authentication cookie, which creates a cookie if the IP is not
whitelisted yet. If the cookie is valid in the ACK request,
the proxy sends an RST request to the user and terminates
the connection, but the IP is whitelisted. If the user recon-
nects with the same IP, since the IP is already whitelisted, no
cookie is sent, and the connection is established. The fourth
and final implementation is the SYN authentication reset di-
gest method, which is similar to method two. However, a
digest is used instead of a bloom filter to whitelist the IP.

4 Experiments and Results
To test out certain strategies to overcome attacks, the main
idea of this research was to verify a proof of concept and later
discuss certain improvements based on the results and already
existing research. A proof of concept was decided upon be-
fore the actual implementation started, based on previously
known facts and weaknesses of the attacks. The following
sections describe the implementations and also compare them
to more sophisticated techniques from other research.

4.1 DoS attacks
Main idea
Since flood attacks usually consist of the same requests re-
peated many times, the main idea for this proof of concept im-
plementation was to count the incoming requests and as soon
as the amount exceeded a certain threshold, the next pack-
ets were dropped. This idea was tried before [21] [22] [23],
however, these were mainly implemented in other SDN and
without P4, or were focused on different kind of attacks, like
an amplification attack. To make it possible to compare the
results to other research, the main assumption for this proof of
concept was that the traffic was coming from a single source
and that the origin information, such as source IP address and
source IP port, were not spoofed. This is of course not a real-
istic attack, since today most DoS attacks as distributed over
various machines coming from botnets and also very often
use spoofed information in the packet headers. However, if
this proof of concept proves to be effective for this simple
attack scenario, then it might be viable to scale it up to the
distributed and spoofed attacks by modifying certain settings
within the detection mechanism itself and using other fields
than the source information. These modifications could range
from simply changing the thresholds to using formulas and
other counting procedures, such as a sliding window protocol
to make the detection even more efficient.

Implementation details
To implement the proof of concept, a hash-map was used
to count the occurrences of the packets. Each entry in the



hash-map contains the occurrences of the packet information
hashed and once it exceeds a certain threshold, the future
packets which get the same hash-index are dropped. In this
simple proof of concept, the source IP address, destination
IP address, source port and destination port were hashed as
an object and that index was used to count the occurrences.
So for each incoming packet, the hash-index is calculated,
then the value in the hash-map is read and incremented and
then the packet is either dropped if the threshold is exceeded
or processed if not. The main difference between this proof
of concept implementation and the other papers that are com-
pared, is that the proof of concept uses a simple counter which
is incremented per packet, whereas the other implementations
keep track of the entropy of the whole topology at a time. So
the proof of concept is therefore more focused on a single
host rather than a whole network.

The implementation was run on a network topology as de-
scribes in Figure 3, where one host was the target, one host
the attacker and one host which measured responsiveness of
the target during an attack. During an attack, the third host
was sending ping requests to the target in order to check its
responsiveness. These pings were sent from a Python script
and later on graphed to compare them. Next to the response
times, the throughput was also tested and compared. The fol-
lowing scenarios were considered and compared:

• Response time with no attack

• Response time during an attack with no mitigation

• Response time during an attack with proof of concept
mitigation

• Response time during an attack with ddosd-p4 mitiga-
tion [24]

• Response time during an attack with ddosm-p4 mitiga-
tion [25]

To simulate the attack, the hping3 tool [17] was used. Since
the attack was simulated on a virtual machine, the attack
quantity was capped at 100 requests per second, using the fol-
lowing request: ’sudo hping3 –faster -p <destination port> -s
<source port> –keep <target IP>’.

Results

Figure 4: Graph showing the response times of the network during
a DoS attack with various mitigations in place

The graph Figure 4 shows the response time of a packet on
the Y-axis and the packet numbers on the X-axis. Each run
contains 100 packets and for every packet a response time is
registered. The results can be found in Table 1. These results
were obtained after running every test 10 times and averaging
the results of all the runs. The different sub-graphs can be
found in Appendix A for a more detailed view.

During an attack with no mitigation in place, the response
time is way higher than without an attack and a complete
denial of service occurs almost every single time. In this
case it is hard to give an average response time, since only a
few pings make it through before the network becomes com-
pletely unresponsive, but it would be around 0.6 - 0.8 sec-
onds. The average bandwidth is also affected by the attack,
and the average throughput is only 2.67 Mbits/sec.

The proof of concept mitigation improves the response
time of the network during an attack to 0.43 seconds. This is
already faster than without a mitigation in place, but the main
improvement is that the network never becomes completely
unresponsive. The response time is constant and over various
runs, the network always responded to every ping and no reg-
ular packets were dropped. The throughput is only slightly
higher than without a mitigation but the constant availability
of the network even during an attack makes up for it.

The DDoSd-P4 mitigation [6] has an average response time
of 0.19 seconds and also never becomes completely unre-
sponsive. No non-malicious packets are dropped and the re-
sponse time is pretty constant. The improvement over the
proof of concept implementation could be that the actual cal-
culation of the entropy is more efficient than calculating the
hash-index for every packet. So this mechanism proves to be
effective against these kinds of attacks with good response
times and no down time at all. This also shows in the average
throughput, which is 8.31 Mbits/sec during and attack.

For the DDoSm-P4 implementation [7], the average re-
sponse time is 0.205 seconds and the average throughput is
9.43 Mbits/sec. These numbers are similar to the DDoSd
mitigation, which was to be expected, since DDoSm is an
extension of DDoSd. The main difference in the response
time might come from the extra checks and table lookups that
DDoSm does compared to DDoSd. With this simple attack
example it is quite hard to say which of the two implementa-
tions would be better in a real-life scenario, but given that the
DDoSm implementation takes more packet parameters into
account and also uses fixed-point arithmetic, the first guess
would be that DDoSm would perform better than DDoSd. To
confirm this, more tests would need to be conducted but that
is outside of the scope of this project.

So overall the proof of concept mitigation technique works
in detecting and mitigating a very basic denial of service
attack which floods the network with requests. There ex-
ist more efficient algorithms, such as DDoSd and DDoSm,
which are also more suited for real-life applications, however
the proof of concept could be adapted to fit more onto real-
life applications and could also be optimised. A discussion
about this can be found in section 5.



Table 1: Results from the different mitigation techniques against DoS attacks

Average response time Average throughput
No attack 2-3 milliseconds 53 Mbits/sec
Attack no mitigation up to 1 second before DoS 2.67 Mbits/sec
Attack own mitigation 0.43 seconds 2.92 Mbits/sec
Attack DDoSd mitigation 0.19 seconds 8.31 Mbits/sec
Attack DDoSm mitigation 0.205 seconds 9.43 Mbits/sec

4.2 SYN-flood attacks
Main idea
The proof of concept mitigation technique against SYN-
flood attacks builds upon the same idea as the previous
one. Namely a hash-map implementation, which counts the
amount of SYN packets from a certain source and if they ex-
ceed a certain threshold, they are dropped. The difference in
the hashing mechanism is that also the type of packet is taken
into account, such that if a client’s SYN packets are dropped
because the threshold was exceeded, an ACK packet would
still be accepted and a connection could be opened.

Implementation details
Similarly to the DoS proof of concept implementation, this
one also uses a hash-map to count the occurrences of pack-
ets. From each incoming packet, the source and destination
IP address and port will be used, as well as the TCP SYN and
ACK flags, to generate a hash-index. Once the occurrences
exceed a certain threshold, the packets will be dropped and
not processed any further. Since the TCP flags are used in
this scenario, a SYN packet might be dropped, whereas an
ACK packet with the same source and destination informa-
tion might still be processed.

The implementation was run on a network topology as de-
scribes in Figure 3, where one host was the target, one host the
attacker and one host which measured responsiveness of the
target during an attack. During an attack, the third host was
trying to complete a TCP handshake with the target and send
a request over. This procedure was automated using a Python
script and the duration of it was measured and graphed to
be compared with other techniques. The following scenarios
were considered and compared:

• Duration with no attack
• Duration during an attack with no mitigation
• Duration during an attack with proof of concept mitiga-

tion
• Duration during an attack with SYN-proxy mitigation

[8] [9]

– SYN-cookies
– SYN-auth-cookies
– SYN-auth-reset-bloomfilter
– SYN-auth-reset-digest

To simulate the attack, the hping3 tool [17] was used.
Since the attack was simulated on a virtual machine, the
attack quantity was capped at 100 SYN requests per sec-
ond, using the following request: ’sudo hping3 -S –faster -p
<destination port> -s <source port> –keep <target IP>’.

Results

Figure 5: Graph showing the duration to complete a TCP handshake
during an attack with various mitigations in place

The graph Figure 5 shows how long it took to get a SYN-
ACK response from the server by sending a SYN-packet. For
each run, 100 SYN-requests were send to the server and the
duration to get a SYN-ACK request back is graphed. The
Y-axis shows the duration and the X-axis the packet num-
ber. The results can be found in Table 1. These results were
obtained after running every test 10 times and averaging the
results of all the runs. The different sub-graphs can be found
in Appendix A for a more detailed view.

If a SYN-flood attack is happening on this network and
there is no mitigation in place, then the average duration
is takes to get a SYN-ACK response to an ACK request is
around 1.07 seconds. This is due to the fact that all the ports
are occupied and the packet needs to wait until one gets freed
before a response gets send. The bandwidth also suffers from
the attack and drops from 57.03 to 2.47 Mbits/sec on average.
The main difference compared to the DoS attack is that the
network never became completely unresponsive, even though
the response times were slower in this case.

With the proof of concept mitigation in place, the SYN-
flood attack does not have as big of an effect on the network
as without a mitigation. With the mitigation in place, the av-
erage response time rises from 56 milliseconds without an
attack to 0.52 seconds during an ongoing SYN-flood attack.
This is twice as fast as without a mitigation in place, so it is
a working solution. The bandwidth is not much higher with
3.18 Mbits/sec with mitigation compared to 2.47 Mbits/sec
without mitigation.

For the implementations with the SYN-proxy, the average
response times range from 0.13 seconds for the SYN-Auth-
Reset-Bloomfilter mitigation to 0.42 seconds for the SYN-



Table 2: Results from the different mitigation techniques against SYN-flood attacks

Average response time Average throughput
No attack 0.056 seconds 57.03 Mbits/sec
Attack no mitigation 1.07 seconds 2.47 Mbits/sec
Attack own mitigation 0.52 seconds 3.18 Mbits/sec
Attack SYN-Cookies mitigation 0.42 seconds 2.75 Mbits/sec
Attack SYN-Auth-Cookies mitigation 0.35 seconds 2.25 Mbits/sec
Attack SYN-Auth-Reset-Bloomfilter mitigation 0.13 seconds 4.98 Mbits/sec
Attack SYN-Auth-Reset-Digest mitigation 0.15 seconds 4.25 Mbits/sec

cookies mitigation. The average throughput is 2.25 Mbits/sec
for the SYN-Auth-Cookies mitigation and 4.98 Mbits/sec for
the SYN-Auth-Reset-Bloomfilter mitigation. The other tech-
niques are in between these values. The similar results for
the SYN-cookies and SYN-auth-cookies mitigation can be
explained by the similar behaviour the 2 techniques have.
In both cases, a cookie is generated on the first SYN-ACK
packet, and if the final ACK contains the correct cookie, the
connection is established. The only difference is the whitelist,
which is only present in the SYN-auth-cookies mitigation, but
not in the other. Similar results can also be observed for the
last 2 SYN-proxy implementations. Since the only difference
is how the presence in the whitelist is checked, so by using a
bloomfilter or digest, the results are very close to each other
with the bloomfilter performing a bit better in both duration of
the TCP handshake and throughput. Overall, the SYN-reset
implementations perform better than the SYN-cookie imple-
mentations, which might be the case since the cookie is cal-
culated for each SYN packet, whereas if the IP is whitelisted
on for the SYN-reset implementations, no further overhead is
produced.

4.3 Availability
All the proof of concept implementations mentioned before,
as well as the measuring scripts and topologies can be found
on [26].

5 Discussion
Since the proof of concept implementations have proven ef-
fective against some simple attacks, the hypothesis that these
mechanisms can be scaled to more sophisticated attacks re-
mains valid. By tweaking and changing how the detection
and mitigation algorithms work, these techniques might re-
main resistant to other attacks. The main idea of counting
packets and comparing the number to a certain threshold is
simple but effective on paper. By adding some sort of timer
to decrement the counts after a while, this mechanism could
already be improved since a malicious actor might just use an
IP since the machine was infected. This would prevent nor-
mal users from having their machines locked out of the net-
work forever if they were hacked and their machine abused
for an attack. These ideas could however not be further tested
during this project, due to a lack of time caused by problems
that arose during other parts of the project.

The packet data allows the server to figure out the request
and where it is coming from. With P4, it is pretty easy to

define custom packets, which means that the complete net-
work protocol can be customised. With this customisation,
the security can also be improved since if an unknown packet
arrives at the network, it can be dropped and not processed
further. The known packets need to follow strict guidelines
and can be adapted so that they cannot harm the server and
can be easily analysed for attack detection.

In general, a combination of multiple detection and miti-
gation techniques might lead to better defence. However, the
detection time should not be too long because otherwise, the
actual mechanism might be too slow, and the attack might
take down the network before it can react. So there needs to
be a link between reactivity and security.

6 Conclusion and Future Work
With the growing rate of attacks and them becoming more
and more sophisticated, the defence mechanisms also need
to become stronger. Programmable data planes allow devel-
opers to customise their network protocol by defining cus-
tom headers for the packets. They let them decide what to
do with packets that are not recognised or do not follow the
rules. With this freedom, the security of networks can be im-
proved since the users can decide themselves what their net-
work should do and how.

P4 is a suitable programming language to implement these
mitigation and detection algorithms, with the proof of con-
cepts being proven effective. A significant amount of research
in this field has already been done, and the results are very
promising. The comparisons of the different implementations
have shown that some algorithms are better than others. Their
various functions can be extracted and used for other possible
algorithms by analysing them in more detail.

Some of the algorithms share certain features, such as
counting packets. This brings up whether it would be pos-
sible to train a machine-learning algorithm to detect these
attacks. There has already been some research done in this
field. However, it remains an open question if these machine
learning algorithms will become more effective in mitigating
the attacks than the current implementations in our networks.

Either way, with the recent developments of new attacks
emerging, the defensive mechanisms also need to evolve
and become more robust to withstand future attacks. Pro-
grammable data planes and the programming language P4 al-
low for these changes to be possible.



7 Responsible Research

7.1 Reproducibility

The various sections include all the steps to reproduce the
before-mentioned results. To summarise everything, the VM
is the one from [27], so it is an Ubuntu 20.04 OS, running
with eight cores and 8192 MB of RAM. The Python version
for the scripts is 3.8.10. Mininet version 2.3.0 is used, and
the behavioural model and the P4 compiler were the latest
builds from the mentioned repositories. Lastly, hping3 ver-
sion 3.0.0-alpha-2 was used.

To run the code, a mininet topology should be run with one
switch and three hosts, as described in Figure 3, and then the
runtime rules defined by the P4 programs should be added to
the topology. Inside mininet, a session for the attacker and
the pinging host should be started, and from the attacker’s
console, the attack should be started. The pinging host can
run the Python script to ping the target or establish a TCP
connection when the attack is running. Once the 100 pings or
handshakes are complete, the values will be written to a file
and can be graphed and analysed later on.

7.2 Ethical aspects

The attacks and other tools used in this research could be used
to harm networks or other machines. Everything described
in this paper has been used solely to perform academic re-
search, get insights into the mechanisms, and use those re-
sults to draw a conclusion. No attacks on existing networks
were performed, and everything was kept within a sandboxed
environment in a virtual machine.

A Sub-graphs

For each scenario, around 10 runs were made to get an aver-
age result of each technique. In the following graphs, 2 out
of those runs were chosen per scenario to visualise them.

A.1 DoS attacks

Figure 6: Average response time in a virtual network with no on-
going attack

Figure 7: Average response time in a virtual network with an on-
going attack and no mitigation in place

Figure 8: Average response time in a virtual network with an on-
going attack and the proof of concept mitigation in place

Figure 9: Average response time in a virtual network with an on-
going attack and the DDoSd [6] mitigation in place



Figure 10: Average response time in a virtual network with an on-
going attack and the DDoSm [7] mitigation in place

A.2 SYN-floods

Figure 11: Average response time in a virtual network with no on-
going attack

Figure 12: Average response time in a virtual network with an on-
going attack and no mitigation in place

Figure 13: Average response time in a virtual network with an on-
going attack and the proof of concept mitigation in place

Figure 14: Average response time in a virtual network with an on-
going SYN-flood attack and SYN-cookie [8] [9] mitigation in place

Figure 15: Average response time in a virtual network with an on-
going attack and the SYN-auth-cookie [8][9] mitigation in place



Figure 16: Average response time in a virtual network with an on-
going attack and the SYN-Auth-Reset-Bloomfilter [8][9] mitigation
in place

Figure 17: Average response time in a virtual network with an on-
going attack and the SYN-Auth-Reset-Digest [8][9] mitigation in
place

References
[1] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delv-

ing into internet ddos attacks by botnets: characteri-
zation and analysis,” IEEE/ACM Transactions on Net-
working, vol. 26, no. 6, pp. 2843–2855, 2018.

[2] S. Behal and K. Kumar, “Characterization and compar-
ison of ddos attack tools and traffic generators: A re-
view.,” Int. J. Netw. Secur., vol. 19, no. 3, pp. 383–393,
2017.

[3] C. Cimpanu, “Google says it mitigated a 2.54 tbps ddos
attack in 2017.” https://www.zdnet.com/article/google
-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017
-largest-known-to-date, Accessed on 19-05-2020, Oct
2020.

[4] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gure-
vich, F. Zeiger, R. Frank, and M. Menth, “A sur-
vey on data plane programming with p4: Fundamen-
tals, advances, and applied research,” arXiv preprint
arXiv:2101.10632, 2021.

[5] “P4 open source programming language.” https://p4.org
/, Accessed on 19-05-2022, 2022.

[6] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary,
“Offloading real-time ddos attack detection to pro-
grammable data planes,” in 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM),
pp. 19–27, IEEE, 2019.

[7] A. da Silveira Ilha, Â. C. Lapolli, J. A. Marques, and
L. P. Gaspary, “Euclid: A fully in-network, p4-based
approach for real-time ddos attack detection and mitiga-
tion,” IEEE Transactions on Network and Service Man-
agement, vol. 18, no. 3, pp. 3121–3139, 2020.

[8] D. Scholz, S. Gallenmüller, H. Stubbe, and G. Carle,
“Syn flood defense in programmable data planes,” in
Proceedings of the 3rd P4 Workshop in Europe, pp. 13–
20, 2020.

[9] D. Scholz, S. Gallenmüller, H. Stubbe, B. Jaber,
M. Rouhi, and G. Carle, “Me love (syn-) cookies: Syn
flood mitigation in programmable data planes,” arXiv
preprint arXiv:2003.03221, 2020.

[10] “P4 16 language specification.” https://p4.org/p4-sp
ec/docs/P4-16-v1.2.2.html, Accessed on 19-05-2022,
May 2021.

[11] “P4lang/p4c: P4 16 reference compiler.” https://github
.com/p4lang/p4c, Accessed on 19-05-2022, 2022.

[12] Y. Gao and Z. Wang, “A review of p4 programmable
data planes for network security,” Mobile Information
Systems, vol. 2021, 2021.

[13] K. Kostas, “Anomaly Detection in Networks Using Ma-
chine Learning,” Master’s thesis, University of Essex,
Colchester, UK, 2018.

[14] K. K. N. Tiwari and R. Kumar, “Denial of service attack
using slowloris,” ISO 9001:2008, vol. 07, July 2020.

[15] F. Yihunie, E. Abdelfattah, and A. Odeh, “Analysis of
ping of death dos and ddos attacks,” in 2018 IEEE Long
Island Systems, Applications and Technology Confer-
ence (LISAT), pp. 1–4, 2018.

[16] “Mininet: An instant virtual network on your laptop (or
other pc).” http://mininet.org/, Accessed on 19-05-2022,
2022.

[17] “Hping security tool.” http://www.hping.org/hping3.h
tml, Accessed on 19-05-2022.

[18] F. Musumeci, A. C. Fidanci, F. Paolucci, F. Cugini,
and M. Tornatore, “Machine-learning-enabled ddos at-
tacks detection in p4 programmable networks,” Journal
of Network and Systems Management, vol. 30, no. 1,
pp. 1–27, 2022.

[19] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K.-
K. R. Choo, “P4-to-blockchain: A secure blockchain-
enabled packet parser for software defined networking,”
Computers & Security, vol. 88, p. 101629, 2020.

[20] R. Poddar and H. Babu, “Decision tree based iot at-
tack detection in programmable data plane using p4 lan-
guage,” in International Conference on Advanced In-
formation Networking and Applications, pp. 671–683,
Springer, 2022.

https://www.zdnet.com/article/google-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date
https://www.zdnet.com/article/google-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date
https://www.zdnet.com/article/google-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date
https://p4.org/
https://p4.org/
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
http://mininet.org/
http://www.hping.org/hping3.html
http://www.hping.org/hping3.html


[21] X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S.
Kang, “Dida: Distributed in-network defense architec-
ture against amplified reflection ddos attacks,” in 2020
6th IEEE Conference on Network Softwarization (Net-
Soft), pp. 277–281, IEEE, 2020.

[22] J. Boite, P.-A. Nardin, F. Rebecchi, M. Bouet, and
V. Conan, “Statesec: Stateful monitoring for ddos pro-
tection in software defined networks,” in 2017 IEEE
Conference on Network Softwarization (NetSoft), pp. 1–
9, IEEE, 2017.

[23] F. Rebecchi, J. Boite, P.-A. Nardin, M. Bouet, and
V. Conan, “Ddos protection with stateful software-
defined networking,” International Journal of Network
Management, vol. 29, no. 1, p. e2042, 2019.

[24] “Ddosd-p4 repository.” https://github.com/aclapolli/d
dosd-p4, Accessed on 29-05-2022, 2022.

[25] “Ddosm-p4 repository.” https://github.com/asilha/ddos
m-p4, Accessed on 29-05-2022, 2022.

[26] “Paper github repository.” https://github.com/FBroy/D
MMA PDP, 2022.

[27] “P4 tutorial.” https://github.com/p4lang/tutorials, Ac-
cessed on 29-05-2022, 2022.

https://github.com/aclapolli/ddosd-p4
https://github.com/aclapolli/ddosd-p4
https://github.com/asilha/ddosm-p4
https://github.com/asilha/ddosm-p4
https://github.com/FBroy/DMMA_PDP
https://github.com/FBroy/DMMA_PDP
https://github.com/p4lang/tutorials

	Introduction
	Methodology
	P4
	Types of Attacks
	Denial of Service
	SYN-flood
	Other attacks

	Virtual Network Simulation
	Tools and Scripts

	Attack Detection and Mitigation Techniques
	Heavy-hitter detection for general DDoS attacks
	Heavy-hitter detection for SYN-flood attacks

	Experiments and Results
	DoS attacks
	Main idea
	Implementation details
	Results

	SYN-flood attacks
	Main idea
	Implementation details
	Results

	Availability

	Discussion
	Conclusion and Future Work
	Responsible Research
	Reproducibility
	Ethical aspects

	Sub-graphs
	DoS attacks
	SYN-floods


