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In recent years, blending mechanistic knowledge with machine learning
has had a major impact in digital healthcare. In this work, we
introduce a computational pipeline to build certified digital replicas
of cardiac electrophysiology in paediatric patients with congenital
heart disease. We construct the patient-specific geometry by means
of semi-automatic segmentation and meshing tools. We generate a
dataset of electrophysiology simulations covering cell-to-organ level
model parameters and using rigorous mathematical models based on
differential equations. We previously proposed Branched Latent Neural
Maps (BLNMs) as an accurate and efficient means to recapitulate complex
physical processes in a neural network. Here, we employ BLNMs to encode
the parametrized temporal dynamics of in silico 12-lead electrocardiograms
(ECGs). BLNMs act as a geometry-specific surrogate model of cardiac
function for fast and robust parameter estimation to match clinical ECGs
in paediatric patients. Identifiability and trustworthiness of calibrated
model parameters are assessed by sensitivity analysis and uncertainty
quantification.

1. Introduction
The combination of physics-based and statistical modelling in cardiovascu-
lar medicine has the potential to shape the future of cardiology [1]. In this
framework, a synergistic use of multi-physics and multi-scale mathematical
models for cardiac function [2–8] and machine learning-based methods, such
as Gaussian processes (GPs) emulators [9–11] and neural networks (NNs)
[12,13], enables the design of efficient computational tools that are compatible
with the computer resources and time frames required in clinical applications.
In the foreseeable future, a continuous, bi-directional interaction between
patient-specific data and artificial intelligence-enriched computer models
incorporating biophysically detailed and anatomically accurate knowledge
would enable the vision of precision medicine [14–16]. Personalized treatment
and surgical planning may be delivered by leveraging different mathematical
methods, such as sensitivity analysis, parameter inference and uncertainty
quantification [17–20].

Several mathematical tools have been proposed to better understand
and treat different groups of adult cardiac pathologies [14]. Electrophysi-
ology simulations play an important role in the assessment of rhythm
disorders. They are used for cardiac resynchronization therapy [21], arrhyth-
mia risk stratification [22,23] and definition of optimal ablation strategies
[24]. Nevertheless, in silico numerical simulations and treatment modalities
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in paediatrics and congenital heart disease are less common or even not established [25–27].
Congenital heart defects (CHDs) are the most common birth defects and are characterized by cardiac anatomical abnormali-

ties that can severely impact cardiac function [28]. Patients with CHDs often have a unique and peculiar combination of cardiac
defects that warrant personalized treatment planning in clinically relevant time frames. Digital twinning of cardiac function
thus holds particular promise for these patients [27].

In this work we introduce a novel digital twin of a paediatric patient with hypoplastic left heart syndrome (HLHS), a
complex form of CHD where the left ventricle of the patient is severely underdeveloped, leading to a number of morbidities
and elevated mortality risk. Furthermore, HLHS is a type of single ventricle physiology that typically requires three palliative
open-heart surgeries to create a functioning cardiovascular system.

Our pipeline seamlessly combines:

Figure 1. Sketch of the computational pipeline. We reconstruct the patient-specific geometry with HLHS from imaging. We generate a dataset of electrophysiology
simulations encompassing cell-to-organ variability in model parameters. We train a BLNM that effectively reproduces 12-lead ECGs while covering model variability.
We employ the BLNM for digital twinning.

2

royalsocietypublishing.org/journal/rsif 
J. R. Soc. Interface 21: 20230729

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

un
e 

20
24

 



— Semi-automatic segmentation and mesh generation tools suited for paediatric patients with CHD [29].
— A physiologically based mathematical formulation of cardiac electrophysiology deriving from the monodomain equation

[16,30] coupled with the ten Tusscher–Panfilov [31] ionic model.
— A recently proposed scientific machine learning method, namely Branched Latent Neural Maps (BLNMs) [32], to build an

accurate and efficient dynamic surrogate model of cardiac function.
— Shapley effects [33] and Hamiltonian Monte Carlo (HMC) [34,35] to perform patient-specific sensitivity analysis, fast and

robust parameter estimation with uncertainty quantification while matching clinical 12-lead electrocardiograms (ECGs).

This digital twin can be employed to simulate different scenarios of clinical interest in silico, as HLHS patients may experience
different forms of electrophysiological comorbidities [36], including ventricular arrhythmias and dyssynchrony [27]. Therefore,
personalized electrophysiology simulations may provide virtual pre- and post-operative guidance in this understudied patient
cohort [37].

2. Results
In figure 1, we depict our computational pipeline to build digital twins of cardiac electrophysiology for congenital heart
disease patients. This pipeline covers all the relevant aspects of digital twinning: image segmentation and mesh generation,
mathematical and numerical physics-based modelling, surrogate model training, sensitivity analysis and robust parameter
calibration with uncertainty quantification.

Segmentation

H
L
H
S

N
o
rm

al

Anatomy Mesh

Figure 2. Comparison of the segmentations and the reconstructed anatomic models and meshes between the HLHS patient and a healthy patient with normal cardiac
anatomy.

Table 1. Parameter space for cardiac electrophysiology sampled via Latin hypercube for the numerical simulations performed with the physics-based mathematical
model.

parameter description range units referencesGCaL maximal Ca2 +  current conductance [1.99 × 10−5, 7.96 × 10−5] cm ms−1 μF−1 [31]GNa maximal Na+ current conductance [7.42, 29.68] ns pF−1 [31]GKr maximal rapid delayed rectifier current conductance [0.08, 0.31] ns pF−1 [31]Dani anisotropic conductivity [0.008298, 0.033192] mm2 ms−1 [27,38,39]Diso isotropic conductivity [0.002766, 0.011064] mm2 ms−1 [27,38,39]Dpurk Purkinje conductivity [1.0, 3.5] mm2 ms−1 [27,38]tLV
stim Purkinje left bundle stimulation time [0, 100] ms [27,40]
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2.1. Pre-processing
Figure 1 (first row) shows the heart–torso model of a 7-year-old female paediatric patient with HLHS constructed from the
computerized tomography (CT) scan of the patient using our semi-automatic model construction pipeline [29]. This patient has
a severely underdeveloped (hypoplastic) left ventricle (LV) and a dominant right ventricle (RV), which is connected to the aorta.
Figure 2 shows the CHD captured in this HLHS patient, compared with the anatomy of a healthy patient.

2.2. Cardiac electrophysiology modelling
We run 200 numerical simulations on the patient-specific heart–torso geometry (see figure 1, second row), spanning seven
relevant electrophysiology parameters of the physics-based model at the microscopic scale and organ level. We collect the
corresponding in silico 12-lead ECGs.

In table 1, we report descriptions, ranges, units and references for the seven model parameters that we explore via Latin
hypercube sampling for the dataset generation. For ionic conductances and myocardial conductivities, we consider a healthy
baseline value from the literature and we define an interval by multiplying this value by 0.5 (lower bound) and 2.0 (upper
bound). In this way, we cover a wide range that includes both healthy and pathological conditions. Similarly, for the Purkinje
conductivities, we use an interval spanning both healthy cases and different cardiovascular diseases [38]. For the stimulation
time of the left Purkinje network, we employ a broad range for possible ventricular dyssynchrony in patients with single
ventricle physiology [27].

In figure 3, we depict the ensemble of the resulting in silico 12-lead ECGs together with the clinical recordings. We point out
that the patient-specific 12-lead ECGs are contained within the pseudopotential variability spanned by the electrophysiology
simulations, manifesting various morphologies in the QRS complex, that is ventricular depolarization, and T wave, that
is ventricular repolarization. The patient diagnosis reports rhythm disorders, atrial enlargement, left and right ventricular
hypertrophy, along with severe abnormalities in the ECGs. Specifically, there are signs of prolonged PR interval, ST segment
depression and T wave inversion.

In figure 4, we show the simulated spatio-temporal transmembrane potential evolution on the patient-specific paediatric
model for a single instance of model parameters. Specifically, we always simulate the sinus rhythm behavior over a cardiac
cycle. Figure 4 focuses on the ventricular depolarization phase, where the electric signal propagates from the one-dimensional
Purkinje network at the two endocardia towards the myocardium, as well as the ventricular repolarization phase, when the
transmembrane potential comes back to its resting state (i.e. approximately −90 mV).
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Figure 3. Physics-based electrophysiological modelling dataset generation. Full dataset containing 200 in silico precordial and limb leads recordings (blue, solid) and
patient-specific 12-lead ECGs (black, dashed). ECG, electrocardiogram.
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2.3. Branched latent neural maps
We train BLNMs, which are represented by feed-forward partially connected NNs, to encode the temporal dynamics of the
12-lead pseudo-ECGs computed with the physics-based mathematical model while also covering model variability from the
cellular to the tissue level (see figure 1, third row). Once trained, BLNMs act as a surrogate model for cardiac electrophysiology
function that can be queried on new parameter instances (within the training range) to provide faster than real-time in silico
12-lead ECGs.

In order to identify the optimal set of BLNM hyperparameters, which are the number of layers, number of neurons, number
of states and disentanglement level in the NN structure, we employ a K-fold (K = 5) cross-validation over 150 multi-scale
physics-based electrophysiology simulations. The hyperparameter search space is given by a four-dimensional hypercube,
where we run 50 instances of Latin hypercube sampling and we pick the BLNM configuration providing the lowest generali-
zation error. For each configuration of hyperparameters, we sample the dataset with a fixed time step of Δt = 5 ms, and we
perform 10 000 iterations of the second-order Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimizer. In table 2, we report the
initial hyperparameter ranges for tuning and the final optimized values.

Then, we train a final optimized BLNM encompassing the whole dataset of 150 multi-scale physics-based electrophysiology
simulations using 50 000 BFGS iterations. The non-dimensional MSE on a testing set comprised of 50 additional numerical
simulations unseen during the training stage, and Latin hypercube sampled from the same parameter space in table 1, is equal
to 5 × 10−4.

2.4. Parameter estimation
We employ the optimized BLNM to find an initial guess for the seven model parameters that results in a computational
pseudo-ECG that best matches the clinically observed 12-lead ECG dynamics of the CHD patient. The estimated model
parameters are reported in table 3.

2.5. Sensitivity analysis
Starting from the parameter calibration shown in table 3, we compute Shapley effects for each model parameter for cardiac
electrophysiology, assuming independence among them as they act in different terms and equations of the physics-based
mathematical model (see figure 1, third row). In figure 5, we show how each parameter contributes to matching electrophysi-
ology simulations with the clinical 12-lead ECGs, that is, in the minimization of the MSE between BLNM outputs and our
patient-specific observations. The sodium current conductance GNa plays a dominant role, followed by the L-type calcium
ion channel conductance GCaL and the different conductivities Dani, Diso and Dpurk. Noteworthy, the interventricular activation
dyssynchrony tLV

stim plays a minor role in the calibration process. This is motivated by the dimension of the right ventricle, which
mostly dictates the activation sequence with respect to the small (underdeveloped) left ventricle.

2.6. Uncertainty quantification
In figures 6 and 7, we show the results of our inverse uncertainty quantification, where we quantify how uncertainty in
matching 12-lead ECGs propagates to uncertainty in the estimated model parameters. We account for both BLNM surrogate
modelling error, via GPs, and measurement error in the clinical recordings.

From figure 6, we see that the posterior distributions of all model parameters θEP, along with the correlation length lGP and
amplitude σGP, converged well towards highly similar unimodal distributions across all chains. The average value of σGP

2  is
approximately equal to 0.08, which is two orders of magnitude higher than the BLNM testing error (5 × 10−4), as the GP encodes
the maximum BLNM uncertainty from each single lead individually and by also considering all possible correlations among the
12 leads, given the full covariance matrix in the multi-variate normal distribution (see §3.6).

In figure 7, we depict the clinical versus in silico 12-lead ECGs, generated with the BLNM over the posterior distribution of
model parameters. We see that the numerical simulations are in good agreement with the patient-specific recordings and show
small variability between the 5 s.d. from the average value.

2.7. In silico scenarios
We consider different in silico scenarios of clinical interest using our personalized computational model. Specifically, we run 3
one-dimensional–three-dimensional electrophysiology simulations under three different conditions: first, we use the calibrated
model parameters θEP, that is, the peak of the posterior distribution in figure 6, then we employ the same computational model
under the assumption of either left bundle branch block or right bundle branch block, that is, by removing the left (respectively,
right) Purkinje fascicles. In figure 8, we show the results of these three numerical simulations by depicting the activation and
repolarization maps for this HLHS paediatric case. We notice that, for this patient-specific geometry, the role of the Purkinje
network in the LV is very limited and the activation sequence is highly similar with and without a full left bundle branch block.
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This means that the left Purkinje fascicle in this patient is either absent or present but fully inhibited or severely delayed, with
respect to the right Purkinje fascicle.

2.8. Computational costs
In table 4, we detail the computational costs and resources required by each step of the digital twinning process. The most
expensive part resides in the physics-based computational electrophysiology modelling dataset generation, which makes use

t = 20 ms

(a) (b) (c)

(d) (e)

(g)

(f)

t = 50 ms t = 100 ms

t = 300 ms t = 330 ms

t = 600 ms

–90 0
Action potential (mV)

40

t = 370 ms

Figure 4. Physics-based electrophysiological modelling. Spatio-temporal membrane action potential evolution for one electrophysiology simulation in the dataset
performed on the HLHS paediatric patient. HLHS, hypoplastic left heart syndrome.

Table 2. BLNM hyperparameter tuning. Original hyperparameter ranges and optimized hyperparameter values for the final training stage.

BLNM layers neurons
hyperparameters number of

states disentanglement level
trainable parameters #

parameters

tuning final

{1 ... 8} {10 ... 30} {9 ... 12} {1 ... Nlayers}

7 19 10 2 2398

Table 3. Parameter estimation. Calibration with the optimized BLNM for cell-to-organ level model parameters of the physics-based mathematical model. The MSE
between the BLNM predictions and the clinical recordings, in non-dimensional form, is 0.16.

parameter value unitsGCaL 2.94 × 10−5 cm ms−1 μF−1GNa 15.58 ns pF−1GKr 0.15 ns pF−1Dani 0.03 mm2 ms−1Diso 0.01 mm2 ms−1Dpurk 1.96 mm2 ms−1tLV
stim 43.3 ms
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of high-performance computing given the stiffness and complexity of the underlying mathematical model. On the other hand,
training a BLNM and employing it for robust Bayesian parameter estimation and sensitivity analysis are more tractable tasks
that can be carried out within a few hours or minutes on a local machine. Using the physics-based mathematical model
throughout parameter calibration with uncertainty quantification and sensitivity analysis would be computationally intractable
and unaffordable given the extensive number of queries that Shapley effects and HMC require to show robustness and
convergence in the provided results (see §3).

3. Methods
3.1. Pre-processing
We reconstruct the heart–torso model from the CT scan of a 7-year-old female paediatric patient with HLHS in a semi-automatic
manner [29]. Namely, we train a NN based on the classic UNet architecture [41] to automatically segment the myocardium
from CT images of patients affected by congenital heart disease. The UNet is trained using a publicly available dataset [42] that
provided CT images and ground-truth segmentation for 110 patients with age between 1 month and 40 years, combined with
our private HLHS dataset containing the images and segmentation of five patients. Given the intrinsic segmentation challenges
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Figure 5. Sensitivity analysis for the seven model parameters encoded in the BLNM via Shapley effects.
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of cardiac structures in both young and CHD patients [43], we subsequently examine and improve the UNet-produced
segmentations to more closely match with the CT scan. We automatically extract the surface meshes from the segmentations
using the marching cube algorithm [44] and truncate the base myocardium above a manually identified plane to create a
biventricular surface mesh. We choose this plane so that it is normal to the long axis of the ventricles and located below the
aortic and atrioventricular annulus. We manually adjust the location of the plane to completely remove the irregular annulus
geometries while keeping most of the ventricles (see figure 2). We note that this choice is common to other electrophysiological
studies [22,45] and facilitates the generation of the fibre field by rule-based algorithms [46]. We subsequently use TetGen [47]
to create the tetrahedral volumetric mesh with a maximum edge size of 1 mm [27,32]. The torso model is created semi-automati-
cally from the images using threshold- and region-growing-based segmentation methods.
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3.2. Cardiac electrophysiology modelling
We detail the physics-based mathematical model, along with its numerical discretization, that is employed to perform electro-
physiology simulations on the HLHS paediatric patient.

3.2.1. Mathematical model

We consider the monodomain equation [16] coupled with the ten Tusscher–Panfilov ionic model [31] to describe the electric
behaviour in the heart–Purkinje system. This system of differential equations reads

(3.1)

∂Φ
∂t + Iion(Φ,w, z) −▽ ⋅ (DM▽Φ) = ℐapp(x, t)  in Ω × (0,T],

(DM▽Φ) ⋅ n = 0  on ∂Ω × (0,T],

dw
dt = H(Φ,w, z)  in Ω × (0,T],

dz
dt = G(Φ,w, z)  in Ω × (0,T],

Φ(x, 0) = Φ0(x),  w(x, 0) = w0(x),  z(x, 0) = z0(x)  in Ω .

We always simulate a single heartbeat by fixing a final time T = THB = 600 ms. The computational domain Ω = Ωpurk ∪Ωmyo is
represented by the one-way coupled one-dimensional Purkinje network and three-dimensional bi-ventricular patient-specific
geometry.

Transmembrane potential Φ defines the electric signal at the Purkinje and myocardial level. The ten Tusscher–Panfilov ionic
model is endowed with 18 variables, which are split in two different subsets. First, there is a vector w = (w1, …,wM) (M = 12)
of ion channel gating variables, which are probability density functions representing the fraction of open channels across the
membrane of a single cardiac cell. Then, there is a vector z = (z1, …, zP) (P = 6) of concentration variables representing relevant
ionic species, such as sodium Na+, intracellular calcium Ca2 +  and potassium K+, which all play a major role in the metabolic
processes [48], dictating heart rhythmicity or sarcomere contractility, and are generally targeted by pharmaceutical therapies.
The specific mathematical formulation of the ten Tusscher–Panfilov ionic model defines the ordinary differential equations forH(Φ,w, z) and G(Φ,w, z), which describe the dynamics of gating variables and ionic concentrations respectively, along with the
ionic current Iion(Φ,w, z) [31]. An external applied current Iapp(x, t) fires the electric signal in the Purkinje fibres. Specifically, we
trigger the action potential at the tip of the right ventricular fascicle at t = 0 ms. A current is then applied to the left bundle
branch at t = tLV

stim. The transmembrane potential Φ evolves in time and propagates in the 1D Purkinje network by solving
equation (3.1).

The diffusion tensor is expressed as DM = DisoI + Danif0 ⊗ f0 in Ωmyo and DM = DpurkI in Ωpurk, where f0 introduces the biventric-
ular fibre field [30,49]. Dani,Diso,Dpurk ∈ ℝ+ dictate the anisotropic, isotropic and Purkinje conductivities, respectively.

The homogeneous Neumann boundary conditions prescribed at ∂Ω define the condition of an electrically isolated domain,
where n is the outward unit normal vector to the boundary.

We bring the 0D version of equation (3.1) to the limit cycle by running 500 heartbeats with a periodic pacing dictated byTHB = 600 ms, and we initialize the transmembrane potential, gating and ionic variables for the one-dimensional–three-dimen-
sional electrophysiology simulations by taking their values during the last heartbeat [50,51].

Following [30], the extracellular potential Φe defining the ECGs is computed in each lead location xe as:

(3.2)Φe(xe) = − ∫Ω▽Φ ⋅ ▽ 1
||x − xe ||dV ,

Table 4. Computational resources. Summary of the computational times and resources to generate the electrophysiology simulations with the physics-based model, to
train the BLNM, to compute Shapley values for sensitivity analysis and to perform Bayesian parameter estimation with uncertainty quantification on 12-lead ECGs.

task computational resources execution time

segmentation and mesh generation (one patient) 1 core 10 min

200 electrophysiology simulations 336 cores 1 day

BLNM hyperparameter tuning (50 confs, 10 000 iterations) 5 cores 20 h

BLNM final training (50 000 iterations) 1 core 2 h and 30 min

parameter estimation (100 trials) 1 core 2 min

sensitivity analysis (Shapley values) 1 core 20 min

uncertainty quantification (HMC, 4 chains) 4 threads 5 min

total — 2 days
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where e = {V1,V2,V3,V4,V5,V6} and e = {LA,RA, F} define six precordial leads and three limb leads located on the paediatric
patient-specific torso model, shown in coloured and black dots in figure 1 (second row), respectively. From these lead locations,
we computationally reconstruct three bipolar limb leads as

(3.3)I = LA − RA II = F − RA III = F − LA,

and three augmented limb leads as

(3.4)aVL = (I − III)/2 aVR = −(I + II)/2 aVF = (II + III)/2 .

The resulting set ECG = {V1,V2,V3,V4,V5,V6, I, II, III, aVL,aVR, aVF} of computational pseudo-potentials defines a comprehen-
sive 12-lead ECG representation of the electrical activity in the patient-specific heart.

3.2.2. Numerical discretization

We employ linear finite elements to discretize the spatial domain Ω in equation (3.1). The tetrahedral tessellation defining the
bi-ventricular mesh has 933 916 cells and 158 277 d.f., with a maximum mesh size of ℎ = 1 mm. The left and right Purkinje
bundles within the ventricular endocardia are generated by employing the fractal tree and projection algorithm proposed
in [52], starting from the atrioventricular node. These left and right bundles are endowed with 14 820 elements (14 821 d.f.)
and 67 456 elements (67 457 d.f.), respectively. Given the coarse space resolution of the bi-ventricular mesh, we apply suitable
non-Gaussian quadrature rules to recover appropriate conduction velocities. We refer to ten Tusscher & Panfilov [27] for a
convergence analysis study showing the interplay among different quadrature point locations, mesh sizes and conduction
velocities, for both Purkinje network and myocardium, in a single ventricle physiology paediatric patient. We consider a
transmural variation of ionic conductances to differentiate epicardial, mid-myocardial and endocardial properties [31]. To solve
equation (3.1), we leverage an implicit–explicit time discretization scheme, where we first update the variables of the ionic
model and then the transmembrane potential [2]. Specifically, in the monodomain equation, the diffusion term is treated
implicitly and the ionic term is treated explicitly. The latter is discretized by means of the ionic current interpolation scheme
[53]. We prescribe the fibre distribution according to a Laplace–Dirichlet rule-based algorithm with αepi = −60∘, αendo = 60∘, βepi =
20∘and βendo = −20∘ [49].

3.3. Branched latent neural maps
We construct a geometry-specific surrogate model of cardiac function by building a feed-forward partially connected NN that
explores the variability of our physics-based electrophysiology model detailed in §3.2 while structurally separating the role of
temporal t and functional θEP parameters. This recent scientific machine-learning tool, proposed by Salvador & Marsden [32],
allows for different levels of disentanglement between inputs and outputs. The surrogate model reads

(3.5)z(t) = ℬℒNℳ t, θEP;w  for t ∈ [0,T] .

Weights and biases w ∈ ℝNw encode the algebraic structures of a feed-forward partially connected NN, which

represents a map ℬℒNℳ :ℝ1 + NP ℝNz from time t and NP = 7 cell-to-organ scale electrophysiology parametersθEP = [GCaL,GNa,GKr,Dani,Diso,Dpurk, tLV
stim]T ∈ Θ ⊂ ℝNP to an output vector z(t) = [zleads(t), zlatent(t)]T ∈ ℝNz. This vector contains in silico

precordial and limb leads recordings zleads(t) = [V1(t),V2(t),V3(t),V4(t),V5(t),V6(t), LA(t),RA(t), F(t)]T ∈ ℝ9, where we use the originalLA(t), RA(t) and F(t) limb leads in place of the bipolar and augmented limb leads in order to reduce the dimensionality of
the output. Indeed, we reconstruct I(t), II(t), III(t), aVL(t), aVR(t) and aVF(t) a posteriori by means of equations (3.3) and (3.4).
Furthermore, vector z(t) leverages some zlatent(t) latent variables that enhance the learned temporal dynamics by acting in regions
with steep gradients [32].

We perform nonlinear optimization with the BFGS algorithm to tune NN parameters. In particular, we monitor the MSE of
surrogate versus physics-based ECG pseudopotentials to find an optimal set of weights and biases w, that is,

(3.6)ℒ(zleads(t), znumerical(t);w) = arg minw ||zleads(t) − znumerical(t)||L2(0,T) ,

where zleads(t) ∈ [ − 1, 1]9 represents BLNM outputs and znumerical(t) ∈ [ − 1, 1]9 defines the physics-based numerical simulations,

both in non-dimensional form. Time t ∈ [0, 1] and model parameters θEP ∈ [ − 1, 1]NP are also normalized during the training
and testing phases. We refer to Salvador & Marsden [32] for a detailed description of all the properties related to BLNMs that
enable them to effectively learn complex physical processes.

3.4. Parameter estimation

We employ our trained BLNM to find a set of model parameters θEP that matches zECG(t) ∈ ℝ12 with zclinical(t) ∈ ℝ12. Here,zECG(t) is the vector of BLNM physical outputs zleads(t) manipulated according to equations (3.3) and (3.4) to generate the full
12-lead ECGs, and zclinical(t) is the clinically measured ECG data vector. In particular, we perform derivative-free optimization
by employing the Nelder–Mead method [54], where we specify a loss function given by the MSE of the mismatch between the
trained surrogate versus clinical ECG potentials, that is,
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(3.7)ℒ(zECG(t), zclinical(t)) = | |zECG(t) − zclinical(t)| |L2(0,T)
2 ,

which leads to a set of calibrated model parameters θEP
NM and corresponding 12-lead ECGs zECG

NM (t). We initialize our optimization

algorithm with a random set of model parameters θ init ∈ [ − 1, 1]NP. We repeat the optimization process 100 times and we average

the model parameters obtained during the different trials in order to get θEP
NM.

3.5. Sensitivity analysis
We perform a variance-based sensitivity analysis using Shapley effects [33] in order to quantify the importance of each model
parameter in fitting patient-specific 12-lead ECGs during the inference process.

Specifically, we employ Sklar’s theorem [55] to define the input multi-variate distribution, which is given by a

Gaussian copula and a series of NP marginals defined by standard normal distributions centred in θEP
NM, that is,N θEP

NM, i
, 0.2 for i = 1, . . . ,NP.

Due to the high computational costs associated with testing all the different combinations of the features, we consider
the random (rather than the exact) version of the algorithm to compute Shapley values. We monitor the expected marginal
contribution of each model parameter to the BLNM prediction with respect to observations, that is, the MSE of equation (3.7).
We fix 2000 permutations, 500 bootstrapped samples and 50 samples to estimate conditional variance for three times.

3.6. Uncertainty quantification
We employ a BLNM within HMC [34] to calibrate model parameters and to perform inverse uncertainty by matching observed
12-lead ECGs from patient-specific recordings. HMC is a Markov chain Monte Carlo (MCMC) method that aims at finding
an approximation of the posterior distribution ℙ(θEP |x), given a certain prior probability distribution ℙ(θEP) with respect

to the model parameters in non-dimensional form θEP ∈ [ − 1, 1]NP. Specifically, we employ the No-U-Turn Sampler (NUTS)
extension of HMC, which automatically adapts the number of steps to estimate the posterior distribution [35]. This algorithm,
which shares and enhances some of the features of sequential [56] and differential evolution [57] MCMC, works well with
high-dimensional target distributions, possibly presenting correlated dimensions. Moreover, HMC reaches convergence using a
reduced amount of samples with respect to vanilla MCMC [35]. For further details about the mathematical derivation of HMC
and its application to cardiac simulations, we refer to Salvador et al. [20].

We run four chains with 1000 adaptation samples in the warm-up phase and 1000 effective samples to estimate the posterior
distribution, with a fixed 90 % acceptance rate. For all model parameters, we consider prior distributions

(3.8)ℙ(θEP
i ) ∼  U(θEP

NM, i
− ι, θEP

NM, i
+ ι) for i = 1, . . . ,NP,

where θEP
NM ∈ [ − 1, 1]NP is the initial guess obtained with the Nelder–Mead method. We always make sure that model parameters

reside within the [−1, 1] range. We set ι = 0.2. Even though NUTS allows for many different initialization protocols, such as
maximum a posteriori (MAP) or maximum likelihood estimation (MLE), we consider an initial random seed for each chain. This
is motivated by the sensitivity of MAP and MLE over multiple runs, especially when several model parameters are calibrated
with respect to noisy or highly varying time-dependent QoIs, which is the case for ECG recordings.

Several sources of uncertainty can be considered. These include model uncertainties (e.g. the discrepancy between the actual
physical phenomenon and the high-fidelity model), the discretization error introduced when solving the differential equations,
the surrogate modelling error of reduced-order models and the measurement errors that intrinsically affect clinical ECG
recordings (i.e. the sensitivity of the instrument used during the clinical test, variations in lead placement position by clinicians
and patient-specific factors such as breathing and motion). However, in our inverse uncertainty quantification process, we only
include the measurement error and the approximation error introduced by the transition from the high-fidelity model to the
BLNM-based surrogate model. In particular, we consider a multi-variate normal distribution centred in the BLNM predictionszECG(t) for the given patient-specific observations zclinical(t), which reads

(3.9)zclinical(t) ∼  N zECG(t),σmeas
2 I + k(t , t ′;σGP, lGP) .

σmeas = 0.1 is the a priori fixed standard deviation dictating the measurement error [58,59], whereas

k(t , t ′;σGP, lGP) = σGP
2 exp − | |t − t ′ ||2

2lGP
2  is the exponentiated quadratic kernel of a zero-mean GP GP(0, k(t , t ′;σGP, lGP)) [60]. Ampli-

tude σGP ∼ 0.01, 1.0  and correlation length lGP ∼ 0.01, 1.0  are additional hyperpriors tuned during HMC to quantify the
surrogate modelling error, which may change according to the specific observation. Vectors t  and t ′ represent discrete time
points in the [0, 1] interval.

A full covariance matrix in the multi-variate normal distribution allows us to model the correlation among different leads.
We evaluate the convergence of the HMC chains by checking that the Gelman–Rubin diagnostic provides a value less than 1.1
for all the model parameters θEP, lGP and σGP [61–63].
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3.7. Software and hardware
All electrophysiology simulations are performed at the Stanford Research Computing Center using svFSIplus [64], a C++
high-performance computing multi-physics and multi-scale finite element solver for cardiac and cardiovascular modelling. This
solver is part of the SimVascular software suite for patient-specific cardiovascular modelling [65].

We train the NNs by using BLNM.jl [32], Julia library for scientific machine learning which is publicly available under
MIT License at https://github.com/StanfordCBCL/BLNM.jl. This library leverages Hyperopt.jl [66] for parallel hyperparameter
optimization by combining the Message Passing Interface with Open Multi-Processing (OpenMP) on physical and virtual cores,
respectively.

We perform sensitivity analysis and parameter estimation with uncertainty quantification using GlobalSensitivity.jl [67] and
Turing.jl [68], respectively, which both exploit OpenMP and vectorized operations to speed-up computations. The code for
sensitivity analysis and Bayesian parameter estimation is available within BLNM.jl as a test case.

Furthermore, this public repository contains the dataset encompassing all the electrophysiology simulations used for the
training and testing phases, along with the patient-specific 12-lead ECGs.

4. Discussion
We present a complete computational pipeline to build digital twins of cardiac electrophysiology for congenital heart disease in
paediatrics. This cohort of patients is understudied in cardiology [27,37], as multi-physics and multi-scale numerical simulations
are mostly focused on adults with certain sets of pathologies, such as dilated, ischaemic and hypertrophic cardiomyopathy,
arrhythmias or bundle branch block [15,21,69,70].

In this pipeline, we leverage biophysically detailed and anatomically accurate computational electrophysiology models,
a recently proposed scientific machine learning tool for surrogate modelling, and robust Bayesian inference methods for
personalized calibration of model parameters to match clinical 12-lead ECGs of an HLHS paediatric patient. We certify the
impact and reliability of our estimation against clinical recordings by integrating fast and effective sensitivity analysis and
uncertainty quantification. We run electrophysiology simulations with the estimated model parameters in order to investigate
different scenarios of clinical interest in silico. We conclude that this paediatric patient presents activation and repolarization
patterns similar to a left bundle branch block, where the interventricular dyssynchrony and the geometrical personalization of
the Purkinje network play a minor role with respect to conductances and conductivities, even for QRS complex calibration.

Image processing allows us to get all the anatomy-specific features of this paediatric patient and our calibration of cell-to-
organ level model parameters enables patient-specific electrophysiology simulations. Nevertheless, given the non-convexity of
the optimization problem, it is important to stress that the final set of model parameters might not be unique and there could
be other choices that lead to similar approximation errors against clinical recordings. Indeed, we notice that changing random
seeds or trying different optimizers, such as second-order local BFGS or even global adaptive differential evolution [71], may
have an influence on the initial parameter estimation. These options are available within the BLNM.jl library. However, these
effects are accounted for and mitigated by averaging many different trials and by running uncertainty quantification.

Performing ad hoc sensitivity analysis for a specific parameter calibration provides individualized information, as these
assessments may change on a patient-to-patient basis. Furthermore, we underline that sensitivity and practical identifiability
(or trustworthiness) of model parameters are generally correlated. For instance, the maximum rapid delayed rectifier current
conductance GKr and the level of interventricular dyssynchrony tLV

stim have the lowest relative impact on this 12-lead ECG
personalization (see figure 5) and present the highest degree of uncertainty, that is, a wider posterior distribution, among all
physics-based model parameters (see figure 6).

Although the actual heart geometry, relative heart orientation and lead placements significantly influence ECGs [72], and
as such may require additional parameters to calibrate, the detailed spatial information retrieved from the CT scan combined
with patient diagnosis allow us to determine these quantities a priori with a very small degree of uncertainty. While we
consider all organ level parameters for the monodomain equation, we determine the relevant cell scale parameters for the ten
Tusscher–Panfilov ionic model starting from the comprehensive sensitivity analyses performed by Dixit et al. and Sánchez et
al. [73,74]. Specifically, the authors showed that ionic parameters related to calcium, sodium and potassium have a dominant
effect in shaping the morphology of 12-lead ECGs and action potential. Furthermore, these ion channels are generally targeted
by different medicines used to treat cardiac diseases [48].

To the best of our knowledge, the work of Tikenogullari et al. [27] is the only prior study proposing computational electro-
physiology models for HLHS paediatric patients. The authors analysed the effect of cardiac growth on electrical dyssynchrony.
They matched some features of the QRS complex for V2, V6 and AVF leads via one-dimensional–three-dimensional numerical
simulations directly, while estimating pointwise values of tissue conductivities and level of dyssynchrony.

While our computational pipeline encompasses several rigorous steps, the physics-based model still requires high-perform-
ance computing and longer computational times compared to other approaches for digital twinning on adults [17,75], which
rely on more phenomenologically based models but do not include robust methods for sensitivity analysis and uncertainty
quantification. However, the monodomain equation, coupled with the ten Tusscher–Panfilov ionic model, provides an accurate
mathematical model, where relevant model parameters with a direct physiological interpretation can be properly tuned.
Moreover, its higher computational costs could be mitigated in future work by novel numerical methods in the framework of
matrix-free [76] and isogeometric analysis [77]. We also remark that the presented approach is based on pseudo-ECGs [30]. On
the other hand, reconstructing 12-lead ECGs by solving the electric potential within the torso, hence coupling the conductive
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torso domain with the monodomain model, would potentially provide some advantages, such as better matching of the times
and peaks for the QRS complex and T wave in the different leads, while reducing the uncertainty of the results [78–80].
Fibre orientation also plays an important role in cardiac function and its impact is particularly significant in the framework of
one-way or two-way coupled electromechanical models [13,81].

A limitation of the presented approach lies in the lack of experimental validation of the parameter calibration process.
Indeed, mathematical modelling of congenital heart disease requires several assumptions due to the current lack of information
in paediatric populations regarding fibre orientation, Purkinje structure, ionic current conductances and conduction velocities.
Future studies should incorporate these data as they become available. Nevertheless, our estimations are robust, account for
uncertainty quantification and are widely contained within the range explored by the electrophysiology simulations (see tables
1 and 3, along with figure 6).

In future developments, we aim to encode anatomical variability and different CHDs, such as Tetralogy of Fallot, transposi-
tion of great arteries or atrial and ventricular septal defects within BLNMs. In this manner, the computationally expensive
offline phase dictated by accurate numerical simulations and the training of the NN can be performed only once before being
applied to new patients. Robust parameter estimation and uncertainty quantification will be then feasible for those CHDs
within minutes, compatible with the time frame required by the clinical practice.

Finally, we note that the proposed computational pipeline can be readily applied to other patient cohorts other than the
challenging case of congenital heart disease presented in this article.
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