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The beauty of a living thing is not the atoms that go into it, but the way those atoms are
put together.

Carl Sagan

Twould rather have questions that can’t be answered than answers that can’t be
questioned.

Richard Feynman
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SUMMARY

Natural fractures in subsurface rocks are a source of heterogeneity that impacts flow and
transport behaviour. The presence of fracture discontinuities needs to be modelled ex-
plicitly due to observed deviations from the continuum assumption of porous media.
The departures are due to both individual properties (such as aperture, infill, and rough-
ness) and global network properties (such as topological summary and length distribu-
tion). Understanding flow patterns due to effects of rock fractures networks is essential
for many applications such as exploiting hydrocarbons, geothermal heat extraction, sub-
surface nuclear waste storage, and water aquifer development. Assessing the impact of
fractures in modelling studies requires fracture network data which is difficult to sample
from seismic data (due to image resolution issues) and borehole data (owing to sparse
sampling). Outcrop analogue data provide a means to sample networks while honouring
both spatial position and topological relationships.

This Thesis develops advanced methods by which outcrop-derived realistic fracture
networks can be rapidly extracted and used to derive insights into fracturing patterns.
We first introduce a method to extract fracture networks from images automatically in
Chapter 2. The technique based on the complex shearlet transform is combined with an
image post-processing and vectorizing workflow to convert image tiles of fractured rocks
into digitized traces. The technique is applied to two case studies of drone imagery in
fractured limestone pavements - the Parmelan Anticline, France and Brejoes, Brazil. In
both these cases, the UAV imagery has been shot at image resolutions of 18-20 mm/pixel
and yields fracture datasets with millions of fractures. The workflow aids the process of
natural fracture characterization from outcrops by replacing the time-consuming man-
ual interpretation.

In Chapter 3, we extend the automatic extraction technique to a different case study:
the Lilstock limestone pavements, Bristol Channel, UK. We treat fracture networks as
spatial graph data structures consisting of nodes and edges. We design and apply a set
of graph routines that utilize geometric and topological criteria to convert automati-
cally traced segments to geologically significant fractures. The derived Bristol Channel
dataset comprising more than 350,000 fractures is unique, forming a major fracture ge-
ology benchmark. The graph abstraction in the form of primal and dual representations
allows the computation of network properties that can be used to compare networks.
We find that the major topological type in the large-scale networks is Y-nodes or nodes
with degree 3. We also find positive correlation between fracture lengths and number of
topological connections indicating the disassortativity of natural fracture networks.

Fracture networks display a natural spatial variation in their organization. Previous
methods within the structural geology literature to quantify spatial heterogeneity often
ignore topological organization. Spatial variations are generally associated with high-
deformation drivers such as folding, faulting, and diapirism. In Chapter 4, we quantify
spatial variations in weakly-deformed rocks using examples of fracture networks in the
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Lilstock pavements. We introduce a novel graph-based approach by which graph dis-
tance measures are used to compare sub-graphs with a gridded, moving-window ap-
proach. The pair-wise sub-graph similarities are analyzed using unsupervised hierar-
chical clustering on the distance matrices. We utilize graph similarity measures such as
the fingerprint distance, D-measure, NetLSD, and Portrait Divergence to compute differ-
ences between graphs. The results highlight spatial clusters possessing autocorrelation,
which is not otherwise detectable through spatial fracture persistence measures. The
method is applicable to any 2D fracture trace network and can aid in deriving variation
trends within analogues. These insights can then be applied in geostatistical discrete
fracture network extrapolation techniques to impart realistic variation in reservoir mod-
els.

By their greater propensity to dissolve in acidic fluids, carbonate rocks can develop
subsurface karstic networks through hypogenic processes. Similar to rock fractures, the
presence of these karstic discontinuities implies that flow and transport do not adhere to
a continuum description where the creeping flow regime is alone dominant. Instead in
vuggy porous media, there is a free flow regime that needs to be considered. Geological
models of karstic cave systems can include specification of 3D cave geometrical features
explicitly. However, there is a paucity of realistic cave passage data. Chapter 5 presents a
novel workflow based on mobile SLAM Lidar mapping by which one can rapidly acquire
3D point cloud data of cave analogues and generate accurate 3D renditions of intricate
cave geometries. The workflow is applied to a few caves from Brazil.

The workflow presented in the Thesis is aimed at maximizing the potential of net-
work discontinuity data that is ubiquitous owing to the recent proliferation of UAV-based
photogrammetry. This Thesis is mainly focussed on opening-mode joints, although
other discontinuities such as veins, shear fractures, and stylolites also impact subsurface
flow and transport. However, the present framework can be expanded to such datasets
with minimal degrees of adaptation. The approaches presented can be extended to
quantify and compare fracture patterns in different tectonic settings and lithologies.
Such a typology of fracture networks can be used to reduce uncertainty in fracture mod-
elling further.



SAMENVATTING

Natuurlijke breuken in ondergrondse gesteenten zijn een bron van heterogeniteit die het
stromings- en transportgedrag beinvloedt. De aanwezigheid van breuk-discontinuiteiten
moet expliciet worden gemodelleerd vanwege waargenomen afwijkingen van de conti-
nuiim aanname van poreuze media. De afwijkingen zijn te wijten aan zowel individuele
eigenschappen (zoals opening, opvulling en ruwheid) als globale netwerkeigenschap-
pen (zoals topologische samenvatting en lengteverdeling). Het begrijpen van stromings-
patronen als gevolg van de netwerkeffecten van steenbreuken is essentieel voor veel toe-
passingen, zoals de exploitatie van koolwaterstoffen, geothermische warmte-extractie,
ondergrondse opslag van kernafval en de ontwikkeling van watervoerende lagen. Het
beoordelen van de impact van breuken in modelstudies vereist breuknetwerkgegevens
die moeilijk te bemonsteren zijn uit seismische gegevens (vanwege problemen met de
beeldresolutie) en boorgatgegevens (vanwege schaarse bemonstering). Analoge gege-
vens uit de ontsluiting bieden een manier om netwerken te bemonsteren, waarbij zowel
de ruimtelijke positie als de topologische relaties worden geéerbiedigd.

Dit proefschrift ontwikkelt geavanceerde methoden waarmee uit de ontsluiting af-
komstige realistische breuknetwerken snel kunnen worden geéxtraheerd en gebruikt om
inzichten te verkrijgen in breukpatronen. We introduceren eerst een methode om breuk-
netwerken automatisch uit afbeeldingen te extraheren in Chapter 2. De techniek op ba-
sis van de complexe shearlet-transformatie wordt gecombineerd met de nabewerking
van afbeeldingen en de vectoriserende workflow om beeldtegels van gebroken gesteen-
ten om te zetten in gedigitaliseerde sporen. De techniek wordt toegepast op twee ca-
sestudies van dronebeelden in gebroken kalksteenverhardingen: de Parmelan Anticline
in Frankrijk en Brej6es, Brazilié. In beide gevallen zijn de UAV-beelden opgenomen met
beeldresoluties van 18-20 mm/pixel en leveren breukgegevensreeksen op met miljoe-
nen breuken. De workflow ondersteunt het proces van karakterisering van natuurlijke
breuken uit ontsluitingen door de tijdrovende handmatige interpretatie te vervangen.

In Chapter 3, breiden we de automatische extractietechniek uit naar een andere da-
taset - de Lilstock kalksteenverhardingen, Bristol Channel, VK. We behandelen breuknet-
werken als ruimtelijke grafische datastructuren die bestaan uit knooppunten en randen.
We ontwerpen en passen een reeks grafiekroutines toe die geometrische en topologische
criteria gebruiken om automatisch getraceerde segmenten om te zetten in geologisch
significante breuken. De Bristol Channel dataset bevat meer dan 350,000 breuken en
vormt een unieke dataset die een belangrijke benchmark voor breukgeologie vormt. De
abstractie van de grafiek in de vorm van primaire en dubbele representaties maakt het
mogelijk netwerkeigenschappen te berekenen die kunnen worden gebruikt om netwer-
ken te vergelijken. We vinden dat het belangrijkste topologische type in de grootschalige
netwerken Y-knooppunten zijn of knooppunten met graad 3. We vinden ook een posi-
tieve correlatie tussen breuklengtes en het aantal topologische verbindingen, wat wijst
op de disassortativiteit van natuurlijke breuknetwerken.

xiii



Xiv SAMENVATTING

Breuknetwerken vertonen een natuurlijke ruimtelijke variatie in hun organisatie. Eer-
dere methoden binnen de structurele geologieliteratuur om ruimtelijke heterogeniteit te
kwantificeren, negeren vaak de topologische organisatie. Ruimtelijke variaties worden
over het algemeen geassocieerd met factoren met een hoge vervorming, zoals vouwen,
breuken en diapirisme. We laten zien dat dit niet het geval is in Chapter 4 door ruimte-
lijke variaties in zwak vervormde rotsen te kwantificeren met behulp van voorbeelden
van breuknetwerken in de Lilstock-trottoirs. We introduceren een nieuwe op grafie-
ken gebaseerde benadering waarbij afstandsmetingen worden gebruikt om subgrafie-
ken te vergelijken met een gerasterde benadering met bewegend venster. De paarsge-
wijze overeenkomsten van de subgrafieken worden geanalyseerd met behulp van onge-
controleerde hiérarchische clustering op de afstandsmatrices. We gebruiken maatstaven
voor gelijkenis van grafieken, zoals de vingerafdrukafstand, D-maat, NetLSD en Portrait
Divergence om verschillen tussen grafieken te berekenen. De resultaten kunnen ruim-
telijke clusters met autocorrelatie benadrukken, die anders niet detecteerbaar is door
middel van ruimtelijke breukpersistentiemaatregelen. De methode is van toepassing
op elk 2D-breukspoornetwerk en kan helpen bij het afleiden van variatie-trends bin-
nen analogen. Deze inzichten kunnen vervolgens worden toegepast in geostatistische
discrete breuknetwerk-extrapolatietechnieken om realistische variatie in reservoirmo-
dellen te geven.

Door hun grotere neiging om op te lossen in zure vloeistoffen, ontwikkelen carbo-
naatgesteenten ondergrondse karstnetwerken door hypogene processen. Net als bij rots-
breuken, impliceert de aanwezigheid van deze karstische discontinuiteiten dat stroming
en transport niet voldoen aan een continuumbeschrijving waarin alleen het sluipende
stromingsregime dominant is. In plaats daarvan is er in vuggy poreuze media een regime
van vrije stroom waarmee rekening moet worden gehouden. Geologische modellen van
karstgrotsystemen kunnen expliciet specificatie van geometrische kenmerken van 3D-
grotten bevatten. Er is echter een gebrek aan realistische gegevens over grotpassage.
Chapter 5 presenteert een nieuwe workflow op basis van mobiele SLAM Lidar-mapping
waarmee men snel 3D-puntenwolkgegevens van grotanalogen kan verkrijgen en nauw-
keurige 3D-weergaven van i kan genereren.

De workflow die in het proefschrift wordt gepresenteerd, is gericht op het maxima-
liseren van het potentieel van 2D-breukgegevens die alomtegenwoordig zijn dankzij de
recente proliferatie van op UAV-gebaseerde fotogrammetrie. Dit proefschrift is voorna-
melijk gericht op verbindingen in de openingsmodus, hoewel andere discontinuiteiten
zoals aders, schuifbreuken en stylolieten ook de ondergrondse stroming en het trans-
port beinvloeden. Het huidige raamwerk kan echter met minimale aanpassingen wor-
den uitgebreid tot dergelijke datasets. De gepresenteerde benaderingen kunnen worden
uitgebreid om breukpatronen in verschillende tektonische omgevingen en lithologieén
te kwantificeren en te vergelijken. Een dergelijke typologie van breuknetwerken kan wor-
den gebruikt om de onzekerheid in breukmodellering verder te verminderen.



INTRODUCTION

The Discrete Fracture Network (DFN) abstraction in subsurface models provides explicit
fracture network architecture renditions exhibiting complex spatial network-like patterns.
Representing this geometry of fracture networks explicitly in subsurface models is neces-
sary as spatio-temporal physical processes in the subsurface exhibit strong thermal-hydro-
mechanical-chemical (THMC) coupling with structural heterogeneities. Naturally frac-
tured rock outcrops are often used as geological analogues to guide subsurface modelling.
The recent proliferation of UAV-based photogrammetry has resulted in significantly large
volumes of image data that can yield 2D fracture network information. 2D fracture net-
works digitized from pavements contain spatial information on the organization of frac-
tures. Hence, they are useful to bridge the gap between sparse borehole data and guide
stochastic techniques in DFN modelling. There is a need for new tools and methods to
utilize this wealth of data into a coherent DFN modeling workflow. This Thesis addresses
related questions that arise when geomodellers need to take stock of new data pipelines
and integrating them within fracture modelling workflows.



2 1. INTRODUCTION

1.1. RATIONALE

Natural fractures in rocks form networks of discontinuities that are spatially variable
[Laubach et al., 2019]. The spatial character of networks exerts an influence on bulk
material continuum properties such as rock strength, stability, and permeability to fluid
flow [Bourbiaux, B., 2010, National Research Council, 1996, Nelson, 2001]. Anthropogenic
uses of fractured rock reservoirs, both shallow and deep, include hydrocarbon & geother-
mal energy exploitation [Berkowitz, 2002, Vidal et al., 2017], water aquifer management
[Witherspoon, 1986], subsurface storage of gases such as CO,, H,, methane, and nuclear
waste disposal [Wang and Hudson, 2015]. In all these applications, the natural fracture
pattern plays an important role in model predictions when fractures are represented ex-
plicitly.

Computational models that deal with various aspects of fractured rock behaviour re-
quire geometric inputs of fracture patterns [Berkowitz, 2002, Bourbiaux et al., 2005a,b,
Bourbiaux, B., 2010]. Subsurface data is not sufficient to fully characterise fracture net-
works as the features fall below seismic resolution, and both wellbore data and core data
are too sparse [Maerten et al., 2006, Wu and Pollard, 2002]. Even when high-quality seis-
mic is available, seismic attributes can only infer relative trends in fracturing intensity
and orientation, with limited pattern information. Well test pressure data can provide
insight into flow potential, but pressure signals are often intermixed with other hetero-
geneities within the subsurface [Aguilera, 1987, Aljuboori et al., 2015]. It is, therefore,
difficult to ascertain or quantify how fracture networks spatially vary in space from sub-
surface data [Laubach et al.,, 2018a, 2019].

Considering the above-mentioned limitations associated with subsurface data, out-
cropping analogues can be used as a resource to understand multi-scale discontinuity
patterns and relate them to deformation via geological rules [Awdal et al., 2016, Lamarche
etal., 2012, Laubach et al., 2009, Shackleton et al., 2005]. Outcrops that are relatively free
from exhumation and weathering effects are useful to study variations in fracturing. Spa-
tial variation in fracture network geometry (or non-stationarity) is generally attributed to
high-deformation drivers such as folding and faulting. However, natural variation is also
qualitatively observed in weakly-deformed rocks and this can be attributed to variations
in lithology and spatially-varying mechanical unit thicknesses.

Spatial variation in outcropping fractures is often analyzed using scanlines [Mauldon
and Mauldon, 1997] and many statistical procedures have been developed for analysing
scanline data. However, scanlines have similar deficiencies as well data, and there is no
cognisance of spatial organization inherent to fracture networks. The spatial character
of fracture networks is better studied from 2D trace maps derived from fractured out-
cropping analogues [Bisdom et al., 2017, Lamarche et al., 2012]. Digital outcrop models
derived from UAV photogrammetry quickly generates large volumes of image data that
can yield rich, quantitative information on 2D fracture network patterns [Bemis et al.,
2014, Bisdom et al., 2017, Hodgetts, 2013]. However, a bottleneck in obtaining vector-
ized geometries from images is that 2D trace maps are usually interpreted by hand. This
is a time-consuming process that is prone to interpreter bias and is subjective in terms
of results. Such resulting hand-traced fracture maps are often too small to identify the
non-stationary spatial character of fracture networks. Therefore, there is a dual need
for methods that can efficiently extract 2D fracture trace data from imagery and robust
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quantitative metrics that can quantify spatial variability in realized fracture trace maps.

1.2. SCOPE OF THIS THESIS

In this Thesis, we develop a workflow to automatically extract multi-scale fracture net-
work datasets from fractured rock images derived from UAV-derived, Structure-from-
Motion (SfM) photogrammetry. The workflow consisting of a series of image process-
ing steps and is applied to three datasets from different carbonate settings; Parmelan
(France), Brejoes (Brazil), and Lilstock (UK) forming the largest fractured rock datasets
to date with over a million fracture traces, enabling detailed quantification and study of
spatial network variation. The Parmelan plateau in France is an example of fracturing in
a pop-up fold structure. The Brejoes and Lilstock pavements represent weakly deformed
carbonate rocks with background fracturing.

The fracture networks are converted into graphs with node positioning, enabling the
use of spatial graph theory-based methods. The automatic extraction results, in the form
fracture segments, are converted to geologically significant fractures using graph-based
routines. The size of these realized fracture graphs using the spatial graph abstraction
enables a systematic analysis of intra-network and inter-network spatial variability. Us-
ing unsupervised clustering algorithms, we are able to discover patterns of variability
within fracture networks. We utilise graph distance metrics based on various graph prop-
erties such as block geometry probability distributions and graph spectra to analyse spa-
tial variation in fracture patterns. Recognizing the challenge of geomodelling in karst
reservoirs, where in addition to flow through matrix and fractures a free-flow regime
exists in vuggy pathways, we present an innovative data acquisition technique based
on SLAM-lidar and point-cloud processing to rapidly capture the 3D geomorphology of
caves.

1.3. THESIS OUTLINE

This Thesis starts with Chapter 2 devoted to the methodology and application of an auto-
mated fracture tracing workflow to convert UAV photogrammetry of fractured rock into
DFNs. The method is validated using two carbonate outcrops from Parmelan, France,
and Brejoes, Brazil, as an example and benchmarked against a volcanic dyke dataset
from the literature.

Chapter 3 deals with extending the automated tracing method in Chapter 2 to the fa-
mous Bristol Channel fractured limestones. This outcrop is unique, with large exposures
of fractured rock with very little noise. This chapter presents a method to embed fracture
networks within a spatial graph-theoretic framework and uses graph-based measures to
characterize natural fractures.

Chapter 4 focusses on quantifying spatial variations in network geometry. Using frac-
tures automatically extracted in Chapter 3 from the Lilstock pavements represented as
spatial graphs, we use unsupervised hierarchical clustering combined with graph dis-
tance metrics to identify spatial clusters.

In Chapter 5, a novel method for the fast acquisition of cave patterns is introduced.
The technique combines portable lidar in combination with point-cloud processing to
rapidly generate high-resolution 3D cave system models.






AUTOMATIC FRACTURE TRACE
DETECTION

Representing fractures explicitly using a discrete fracture network (DFN) approach is often
necessary to model the complex physics that govern thermo-hydro-mechanical-chemical
processes (THMC) in porous media. DFNs find applications in modelling geothermal heat
recovery, hydrocarbon exploitation, and groundwater flow. It is advantageous to construct
DFN s from photogrammetry of fractured outcrop analogues as the DFNs would capture
realistic, fracture network properties. Recent advances in drone photogrammetry have
greatly simplified the process of acquiring outcrop images, and there is a remarkable in-
crease in the volume of image data that can be routinely generated. However, manually
digitizing fracture traces is time-consuming and inevitably subject to interpreter bias. Ad-
ditionally, variations in interpretation style can result in different fracture network ge-
ometries, which may then influence modelling results depending on the use-case of the
fracture study. In this chapter, an automated fracture trace detection technique is in-
troduced. The method consists of ridge detection using the complex shearlet transform
coupled with post-processing algorithms that threshold, skeletonize, and vectorize frac-
ture traces. The technique is applied to the task of automatic trace extraction at varying
scales of rock discontinuities, ranging from 10°-10> m. We present automatic trace extrac-
tion results from three different fractured outcrop settings. The results indicate that the
automated approach enables extraction of fracture patterns at a volume beyond what is
manually feasible. Comparative analysis of automatically extracted results with manual
interpretations demonstrates that the method can eliminate the subjectivity that is typi-
cally associated with manual interpretation. The proposed method augments the process
of characterizing rock fractures from outcrops.

This chapter is based on Prabhakaran et al. [2019a], An automated fracture trace detection technique using
the complex shearlet transform, Solid Earth, 10(6), 2137-2166, https://doi.org/10.5194/se-10-2137-2019.
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2.1. INTRODUCTION

Naturally fractured reservoir (NFR) modelling requires an explicit definition of fracture
network geometry to accurately capture the effects of fractures on the overall reservoir
behaviour. The National Research Council [1996] suggested the idea of using geologi-
cally realistic outcrop fracture patterns to guide subsurface fracture modelling. In recent
work, the use of deterministic discrete fracture networks (DFNs) based on trace digi-
tization from photogrammetry of outcrop analogues was investigated by Bisdom et al.
[2017] and Aljuboori et al. [2015] for reservoir fluid flow simulation and well testing.
Outcrop derived DFNs encapsulate 2D fracture network properties at a scale that can-
not be characterized using either standard surface approaches (scanlines and satellite
imagery) or subsurface techniques (seismic imaging/borehole imagery/core sampling).
Ukar et al. [2019] suggested a comprehensive set of protocols to select fractured outcrops
that are representative of the subsurface. Stochastic and geomechanical DFNs are alter-
natives to outcrop derived DFNs for fractured reservoir modeling. Stochastically gener-
ated DFNs have the disadvantage that they cannot replicate the spatial organization of
fracture network patterns observed in nature [Thovert et al., 2017]. Geomechanically de-
rived DFNs are based on the physics of fracture propagation [for e.g. Olson et al., 2009,
Thomas et al., 2018] and can reproduce realistic fracture patterns provided the complex
paleostress field and paleorock properties are known; however, they are also compu-
tationally intensive and hence have limited applicability. A carefully chosen fractured
outcrop that is relatively free of noise (fractures resulting from exhumation and weath-
ering and not too much hidden by vegetation) may be used to interpret realistic fracture
networks which are geometrical inputs used in simulating various subsurface thermo-
hydro-mechanical-chemical (THMC) processes.

Recent advances in Unmanned Aerial Vehicles (UAVs) and stereo-photogrammetry
has dramatically simplified the acquisition of georeferenced datasets of fractured out-
crop images [for e.g. Bemis et al., 2014, Harwin and Lucieer, 2012, Turner et al., 2012].
Photogrammetry using the Structure from Motion (SfM) principle is a relatively inex-
pensive and rapid technique by which 3D outcrop models are built by identifying, ex-
tracting, and positioning common points in georeferenced outcrop images [Donovan
and Lebaron, 2009]. Images are captured using a camera-equipped UAV that is capable
of following pre-programmed flight missions where flight path, altitude, velocity, and
overlap are specified. The images undergo further processing steps that include gener-
ating sparse point clouds of common points, aligning the images, generating dense point
clouds (3D representation of outcrop geometry), and generating meshed surfaces [Bis-
dom et al.,, 2017]. Interpreting fractures on the image orthomosaics with conventional
Geographic Information System (GIS) software completes the outcrop-based DFN work-
flow.

Manually interpreting fractures is time-consuming and forms a bottleneck in outcrop-
based DFN workflows. A manual interpretation has a fair degree of associated subjectiv-
ity, and interpreter bias may take the form of specific scales of features being inadver-
tently omitted or deliberately ignored [Bond et al., 2007, Scheiber et al., 2015]. Manual
interpretation also suffers from a lack of repeatability owing to differing expertise lev-
els of interpreters, and the interpretation criteria followed [Hillier et al., 2015, Sander
et al., 1997]. Reproducibility may not be guaranteed even with the same interpreter in
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multiple trials [Mabee et al., 1994]. According to Bond et al. [2015], quantifying the mag-
nitude and impact of subjective uncertainty is difficult. Long et al. [2018] conducted
a study on variability of fracture interpretation in which geologists with varying levels
of expertise interpreted a single image. They found considerable variation in fracture
topology, orientation, intensity, and length distributions in the interpretations. Andrews
et al. [2019] made a detailed quantification of subjective bias in scanline-based fracture
data collection, the associated effects on derived fracture statistics and suggested proto-
cols for managing the variations. Peacock et al. [2019] delved into the multiple reasons
for bias and the resulting implications for modelling. Given the amount of data gener-
ated in short UAV flight missions, man-hours spent in interpretation, and the need to
de-bias interpretation as much as possible, automatic feature detection techniques may
be considered. Automated approaches can speed up the process, improve accuracy, and
exploit the acquired data to the fullest possible extent.

In this chapter, we apply an automated method to extract digitized fracture traces
from images of fractured rocks. The method utilizes the complex shearlet transform
measure to extract fracture ridge realizations from images. Post-processing image anal-
ysis algorithms are coupled with the ridge extraction process to vectorize fracture traces
in an automated manner. The complex shearlet transform was introduced by Reisen-
hofer [2014] and King et al. [2015] and previously applied to problems such as detecting
coastlines from Synthetic Aperture Radar (SAR) images [King et al., 2015] and propa-
gating flame fronts from planar laser-induced fluorescence (PLIF) images [Reisenhofer
et al.,, 2016]. We present automatic fracture extraction results from drone images of two
carbonate outcrops (Parmelan, France & Brejoes, Brazil) and station scale images of ig-
neous dyke swarmes.

2.2. BACKGROUND

2.2.1. REVIEW OF AUTOMATED AND SEMI-AUTOMATED FRACTURE DETEC-
TION APPROACHES

Rapid digitization of geological features from photogrammetry is challenging owing to
issues like spatially varying image resolution, inadequate exposure, the presence of shad-
ows due to effects of topography on illumination conditions, and chromatic variations
of essential features. False positives are non-geological features (such as trees, shrub-
bery, and human-made structures) that are detected using semi-automated/automated
approaches [Vasuki et al., 2014]. Removal of false positives is time-consuming. On the
other hand, essential features that are not detected at all (referred to as false negatives) by
an algorithm, further complicates the task of automated feature extraction. Automated
methods, in general, detect more features than what is present in the image [Abdullah
etal., 2013]. In this section, we review some approaches for automatic fracture detection
based on the class of algorithm used.

Automated fracture detection utilizing higher dimensional data such as point clouds,
digital elevation models (DEMs) and digital terrain models (DTMs) have an advantage in
that depth variations are captured and can be used to extract features. Thiele et al. [2017]
presented an approach based on a least cost function algorithm applicable to ortho-
photographs of jointed fracture sets and 3D point cloud data. Masoud and Koike [2017]
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introduced a software package to detect lineaments from composite grids derived from
gravity, magnetic, DEMs, and satellite imagery. Bonetto et al. [2015] and Bonetto et al.
[2017] presented semi-automatic approaches that extract lineaments from DTMs utiliz-
ing the curvature of geological features. Hashim et al. [2013] presented an edge detection
and line linking method using Enhanced Thematic Mapping (ETM).

Colorimetry of an image can be used to detect features. By partitioning features in
the image, e.g., matrix rock as lighter shades of gray and fractures as darker shades of
gray, fracture pixels may be extracted separately from matrix rock using pixel values. Va-
suki et al. [2017] developed an interactive colour-based image segmentation tool using
superpixels [Ren and Malik, 2003] which are groupings of pixels that are perceptually
similar.

Edge detection techniques identify points in images where sharp changes in image
intensity occur. Some of commonly used edge detection techniques in image processing
are Canny, Sobel, Prewitt, Robert, Kuwahara, and Laplacian of Gaussian filters. Alterna-
tively, edges may be detected using methods that are invariant to contrast and illumina-
tion in images. Phase symmetry and phase congruency algorithms [Kovesi, 1999, 2000]
fall under this category. Phase symmetry is an edge detection technique that is invariant
to local signal strength. The method identifies axis of a feature, isolating pixels symmet-
ric along profiles that are sampled from all orientations except parallel to the feature.
The axes of symmetry are regions where frequency components either approach a max-
imum or minimum. The phase congruency method is another edge detection method
that detects features by identifying points where Fourier components are maximally in
phase. This approach is also invariant to the magnitude of the signal. The property of
invariance enables the identification of structures within the image even in the pres-
ence of noise. Vasuki et al. [2014] utilized an edge detection algorithm using the phase
congruency principle coupled with a multi-stage linking algorithm for detection of fault
maps.

The Hough transform [Duda and Hart, 1972] is another technique that has been used
to detect lineaments in images. The Hough transform identifies pixels in binary images
that are likely to represent rock fractures using a voting procedure. Each pixel in a binary
image is represented as a sinusoidal curve in a 2D parametric space (or a Hough space).
The voting procedure accumulates a vote for each curve in the parametric space corre-
sponding to each non-zero pixel in the binary image. The curves with the highest votes
are selected as probable fractures since they correspond to the largest number of non-
zero pixels. Results by Callatay [2016] using the Hough transform for fracture detection
report the following limitations. Firstly, the detection is limited to a given fracture ori-
entation set owing to the definition of the Hough transform parameter space. Secondly,
the issues of false positive detection and discontinuities persisted. The method is also
limited by the fact that it needs a binarized image to start.

The development of wavelet theory in the field of harmonic analysis have led to ap-
plications in edge detection [Daubechies, 1992, Heil et al., 2006]. Mallat and Hwang
[1992] proposed wavelet-based approaches for edge detection. Wavelet-based meth-
ods differ from gradient-based edge detection methods that search for local maxima of
the absolute value of the gradient. Felsberg and Sommer [2001] introduced monogenic
wavelets for the purpose. Tu et al. [2005] considered the use of magnitude response of
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complex wavelet transforms. Wavelets, owing to their isotropic properties, cannot ex-
tract curve-like features due to the lack of directional information [Labate et al., 2005].
A number of wavelet-based approaches that have been proposed to overcome this lack
of directional information such as curvelets [Candes and Donoho, 2005], ridgelets [Can-
des and Guo, 2002], contourlets [Do and Vetterli, 2005], bandlets [L.e Pennec and Mallat,
2005] , wedgelets [Donoho, 1999], shearlets [Guo et al., 2005], and band-limited shearlets
[Yi et al., 2009].

2.2.2. THE COMPLEX SHEARLET TRANSFORM

In images of fractured outcrops, the presence of discontinuous gaps due to rupture within
the rock mass, which occur naturally and which maybe enlarged through weathering
processes, are commonly used as defining criteria by interpreters to digitally trace and
classify as fractures within the rock mass. Fractures may also be partially or completely
sealed by the presence of infilling material that may be mineralogically different from
the adjacent rock material. In such a case, the contrast in colour and texture of the infill
material provides an interpretative criterion for classification of these material regions
as fractures. The presence of such prominent discontinuities within otherwise smooth
regions of rock images, can be exploited by the complex shearlet transform to precisely
identify position in the form of edges and ridges.

The basis of the complex shearlet transform applied to fracture extraction from im-
ages emanates from wavelet theory. Wavelets are rapidly decaying wavelike oscillations
possessing a finite duration. Wavelet transforms are routinely used in digital signal pro-
cessing applications which are often time-domain signals. They can also be applied to
image data which can be considered as 2D functions. Wavelet transforms are not able to
detect directionality of structural features in image data since they may only be dilated
or translated. Shearlets that were introduced by Labate et al. [2005] as a new class of
multidimensional representation systems, overcame a major shortcoming of wavelets
by enabling dilation, shear transformation, and translation operations. The isotropic
dilation of wavelets was replaced with anisotropic dilation and shearing in the case of
shearlets. These modifications have resulted in shearlets possessing a number of prop-
erties that make them better suited to handle sparse, geometric features in 2D image
data compared to traditional wavelets [Kutyniok and Labate, 2012].

The complex shearlet transform is a complex-valued generalization of the shearlet
transform that was developed by Labate et al. [2005] to handle geometric structures in
2D data. Reisenhofer [2014] and King et al. [2015] proposed the idea of creating com-
plex shearlets by modifying the shearlet construction so that real parts of the generating
function are even-symmetric and imaginary parts of the generating function are odd-
symmetric. They used the Hilbert transform to convert even-symmetric functions into
odd-symmetric and vice versa. The complex shearlet measure for ridge and edge detec-
tion implemented in King et al. [2015], Reisenhofer [2014], and Reisenhofer et al. [2016]
merged the ideas of phase congruency [Kovesi, 1999] and complex shearlets.

The complex shearlet transform is a complex-valued generalization of the shearlet
transform that was developed by Labate et al. [2005] to handle geometric structures in
2D data. Reisenhofer [2014] and King et al. [2015] proposed the idea of creating com-
plex shearlets by modifying the shearlet construction so that real parts of the generat-
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ing function are even-symmetric and imaginary parts of the generating function is odd-
symmetric. They used the Hilbert transform to convert an even-symmetric function into
an odd-symmetric function and vice versa. The complex shearlet measure for ridge and
edge detection implemented in King et al. [2015], Reisenhofer [2014], and Reisenhofer
et al. [2016] merged the ideas of phase congruency and complex shearlets.

The complex shearlet measure first introduced by Reisenhofer [2014] and improved
by King et al. [2015] was used for applications like coastline detection [King et al., 2015],
flame front detection [Reisenhofer et al., 2016], and feature extraction from terrestrial LI-
DAR inside tunnels [Bolkas et al., 2018]. Karbalaali et al. [2018] used the complex shearlet
transform for channel edge detection from synthetic and real seismic slices. Reisenhofer
et al. [2016] presented a comprehensive comparison of CoOShREM with Canny, Sobel,
phase congruency, and another shearlet-based edge detector [Yi et al., 2009]. Bolkas
et al. [2018] also makes specific comparisons between the performance of Canny, So-
bel, Prewitt edge detection methods versus space-frequency transform methods such as
wavelets, contourlets, and shearlets. A detailed overview of the complex shearlet trans-
form is provided in Appendix A.

2.3. METHODS

2.3.1. THE AUTOMATIC DETECTION PROCESS

The automated fracture trace detection method that we present has five main steps
(see Fig. 2.1). The 1st step uses the Complex Shearlet-Based Ridge and Edge Measure
(CoShREM), a MATLAB implementation by Reisenhofer et al. [2016] that utilizes func-
tions from Shearlab3D developed by Kutyniok et al. [2016] and Yet Another Wavelet Tool-
box [Jacques et al., 2011]. The 1st step, namely the ridge detection, is dependent on a
number of input parameters tabulated in Tables 2.1-2.2. Equation (A.27) gives the ex-
pression for the ridge measure.

An optimal set of deterministic parameter values which can extract features on all
scales is not known a priori. Therefore, we vary the input parameters corresponding to
shearlet system construction and ridge detection within user-defined ranges to compute
multiple ridge realizations. A ridge ensemble map is obtained by superposing the ridge
images and normalizing. A simple sigmoid function applied on the normalized ridge en-
semble, non-linearly scales and thereby isolates higher image intensities. A user-defined
threshold is then applied to intensity values of this non-linearly scaled, normalized ridge
ensemble image to extract a highly probable, binarized, ridge network. The threshold is
set by a visual comparison of the input image with the extracted ridges. The range for
each parameter in Tables 2.1-2.2 is ascertained by first testing the effect of variation of
each parameter with respect to a chosen base case image. This approach to automated
detection captures features of multiple scales and highlights regions of uncertain feature
extraction within the image.

The 2nd step is segmentation of ridges using Otsu thresholding [Otsu, 1979]. This
operation removes small, disconnected, and isolated ridge pixel clusters. The 3rd step is
skeletonization where clusters of pixels representing segmented ridges are thinned into
single pixel representations. For intersecting fractures, the skeletonization procedure
preserves topology by recognizing and splitting the frame at branch points. This ensures
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Figure 2.1: The Automated Fracture Trace Detection Workflow

Table 2.1: Shearlet system and detection parameters used to extract ridges for the base case

Base Case Parameters

waveletEffSupp 125
gaussianEffSup 63
scalesPerOctave 2
shearLevel 3
alpha 0.5
octaves 3.5
minContrast 10
detection negative ridges
even/odd offset 1
Table 2.2: Detection Parameters
Parameter Description
DetectionType  Specification of detection measure (edge/ridge)
minContrast Specification of the level of contrast for edge/ridge detection
offset Scaling offset between the even- and odd- symmetric shearlets
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that in subsequent DFN representation, no further effort is expended to manually con-
nect detected segments.

Normalized Ridge Intensity (-)

/ ) ! \\ simplified
polyline trace polyline trace

| ;
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Figure 2.2: Tllustration of the steps involved in the automatic fracture extraction using a 40 x 34 mm fractured
shale core image (a) CT scan core image from Dwarkasing [2016] (b) Normalized ridge ensemble (c) Segmenta-
tion applied on the ridge ensemble (d) Skeletonization applied to the segmented ridge (e) Vectorized polylines
fitted to the skeletonized clusters (f) Effect of line simplification applied to a single vectorized segment

The 4th step involves piecewise linear polyline fitting to the skeletonized clusters.
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By default, we fit polylines rather than lines to the pixel clusters. Polyline fitting retains
geologically realistic veering and curvature of fractures in the vectorized result. The 5th
step is a line simplification procedure applied to the piecewise linear polyline clusters.
A large number of polyline points would increase the size of vectorized files; hence, we
use the Douglas-Peucker line simplification algorithm [Douglas and Peucker, 1973] that
simplifies piecewise linear polylines. The number of polyline points assigned to each
skeletonized cluster is set constant, but this may be modified to be a linear function of
the cluster size measured in pixels. If images are georeferenced or image scale is known,
the simplified polylines can be written to a vectorized shapefile format. The DFN in the
vectorized shapefile format may now be used for any application that requires explicit
fracture network geometry. An example of a fractured Posidonia shale micro CT image
slice from Dwarkasing [2016] (see Fig. 2.2) illustrates the effects of each of the steps
involved.

2.3.2. SENSITIVITY ANALYSIS OF PARAMETERS ON EXTRACTION RESULTS

Since the detection results may vary owing to different parameter combinations, we con-
ducted a sensitivity analysis to investigate the ridge extraction output with variation in
parameter input. An example of a fractured image sample representing Mesoprotero-
zoic sandstone from the Tomkinson Province, Northern Territory, Australia (Fig. 2.3.a)
is chosen to study the effect of shearlet parameter variation. The image dimensions are
1313 x 1311 pixels and has four prominent fractures with two of them forming an inter-
section. A subtler fracture is present towards the top-left and a thick fracture located at
the bottom-left of the image. A base case set of parameters for constructing a shearlet
system and for ridge identification is set up in the table adjoining Fig. 2.3(a). We vary
all parameters one by one with respect to this base case. Ridge extraction using the base
case shearlet system shows that the major intersecting fracture system is identified; how-
ever, the largest fracture is detected only partially and that too, only at the peripheries.
(see Fig. 2.3.b). The subtle fracture is detected but disconnected. A large amount of
noise is also present.

The complex shearlet system is constructed by the tensorial product of a Mexican
hat wavelet and a gaussian filter. The first two parameters waveletEffSupp and gaus-
sianEffSup refer to the pixel widths over which the wavelet amplitudes sharply change
from zero. The even- and odd-symmetric elements of constructed shearlet system using
the base case parameters for the siliclastic example are depicted in Fig. 2.4(i)-(ii). We
chose to maintain a ratio of two between waveletEffSupp and gaussianEffSup. The ef-
fect of increasing the effective support on the complex shearlet system is shown in Fig.
2.4(xvii)-(xix). Fig. 2.4(xx)-(xxi) indicate the effects of large ratios between the wavelet
effective support and gaussian support. The second parameter is the scalesperOctave
which determines the number of intermediate scales per octave. An octave is the inter-
val between two frequency peaks. For example, we may consider a wavelet that is scaled
by a factor of 2. Physically, this means a stretching of the wavelet thereby decreasing
the frequency. The base-2 logarithmic ratio of the reduced frequency with respect to the
original frequency, is the number of octaves by which the frequency has reduced. We set
the number of octaves as a constant value of 3.5. This implies that there are 7 scales for
the complex shearlet system as can be seen in Fig. 2.4(iii)-(ix). The shearLevel param-
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eter indicate the discrete number of orientations that the complex shearlet system can
assume. The selected value of 3 indicates that there are 23 + 2 (ten) orientations possible
for the complex shearlet system (see Fig. 2.4.x-xvi) and 2(23 +2) (or 20 shearlets). For
large images and large number of shearlets, computational effort is quite expensive. The
alphaparameter is the degree of anisotropy induced by scaling with a null value of alpha
maximizing the degree of anisotropy. We vary alpha, shearLevel, and the scalesperOctave
but the effects on the constructed complex shearlet system are minimal as can be seen
from Fig. 2.4 (xxii) - (xxx).

The effects of variation of the parameters on ridge extraction is depicted in Fig. 2.3(c)-
(p). Decreasing the value of the support by half identifies finer features, but then the
largest fracture is completely missed (Fig. 2.3.e). When the support is doubled, the em-
phasis on larger features is more pronounced (Fig. 2.3.f). The effects of increasing and
decreasing scalesperOctave is depicted in Fig. 2.3(g)-(h) with a higher value resulting in
a finer ridge map. The effect of increase and decrease in the number of shear levels on
the final ridge map is quite minimal as can be seen from Fig. 2.3(i)-(j). The effect of an-
iostropy parameter alpha is depicted in Fig. 2.3(k)- (1) with minimal anisotropy resulting
in a finer ridge map. The minContrast parameter is a grayscale threshold (values from
0 - 255) applied to Eq. (A.27) to extract ridges. A larger value suppresses noisy features
as can be seen from the comparison between Fig. 2.3(m)-(n). The offset parameter is
a scaling offset between odd-symmetric and even-symmetric shearlets quantified in oc-
taves. Reducing the value of this parameter results in a coarser ridge map with enhanced
connectivity (Fig. 2.3.0) compared to the larger value which results in a finer map (Fig.
2.3.p).

From an interpreter’s point of view, three different scales of fracturing need to be
identified and false features also need to be suppressed. From the sensitivity analysis,
the parameters that are most important to generate high-probability ridge maps, are
the wavelet supports (required to capture multiple scales of fracture), grayscale contrast
(suppressing noise and thereby false features), and even-odd offset (which suppresses
ridge detachments). This example illustrates the necessity of computing a ridge ensem-
ble instead of searching for an ideal parameter combination.
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Figure 2.4: Effects of parameter variation on the constructed complex shearlet system for the fractured sili-
clastic example (i) Even-symmetric elements of the complex shearlet system constructed using the base case
parameters in Fig. 2.3. Full system is 1313 x 1318 pixels. (ii) Odd-symmetric elements of the complex shearlet
system using the base case parameters in Fig. 2.3 (iii) - (ix) depiction of seven scales (x) - (xvi) depiction of
seven orientations (out of possible 10) for the odd-symmetric elements of the complex shearlet system (xvii) -
(xix) effect of wavelet effective support and gaussian effective support on the even-symmetric elements of the
complex shearlet system (xx) effect of gaussian effective support double that of wavelet effective support (xxi)
effect of wavelet effective support very large than gaussian effective support (xxii) - (xxiv) effect of scales per
octave on the even-symmetric elements (xxv) - (xxvii) effect of anisotropy parameter on the even-symmetric
elements (xxviii) - (xxx) effect of shear levels on the even-symmetric elements
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2.3.3. SHEARLET PARAMETER SELECTION

To decide upon the shearlet parameter space to generate multiple ridge realizations, we
chose one sample image (see Fig. 2.6.a). Base case parameters are chosen based on
recommendations underlined in Reisenhofer et al. [2016] for shearlet construction and
ridge detection and these are tabulated in Table. 2.1. The use of the base case parameters
results in the overlay depicted in Fig. 2.6(b). As can be observed from visual inspection
of the overlay of the detected ridges over the original image, the automatic method can
extract a large number of fractures. However, there are still some false positives (features
detected on the trees and inside the large karstic cavities) and false negatives (unde-
tected small scale fractures).

Table 2.3: Ensemble for Parameter Variation

Parameter Values
waveletEffSupp Original image size in pixels divided by 5, 8, 10, 12 and 15
gaussianEffSupp  Original image size in pixels divided by 5, 8, 10, 12 and 15

scalesPerOctave 1,2,3 and 4
shearLevel 2,3and 4

alpha 0,0.25,0.5,0.75, 1
minContrast 1,5,10, 15,20

even/odd offset 0.001, 0.01,0.1,1, 2

To select the parameter ranges, we vary parameters with respect to the base case
ridge image, thereby generating multiple ridge images. We use the structural similarity
measure [Wang et al., 2004] to quantify the difference between the base case ridge im-
age and other ridge images. Structural similarity (SSIM) is a measure commonly used in
image quality assessment that returns one value as a measure of similarity between two
images, where one image is the reference image. The SSIM is calculated for each ridge
realization image corresponding to each parameter with respect to the base case ridge
image. The SSIM for variation in scaling offset, anisotropy scaling «, Mexican hat wavelet
support, gaussian filter support scales, minimum contrast, scales per octave, and num-
ber of shear levels are depicted in Fig. 2.5 according to the range of parameters in Table
2.3. From the analysis of the effects of parameters, we decided to vary the shearlet con-
struction parameters so that we have 70 complex shearlet systems (see Table A.1 for the
parameters used to construct the 70 complex shearlet systems).

The total number of stochastic runs for the ridge detection is the number of combi-
nations of shearlet systems and ridge specification parameters. Using such an approach,
a probability map of detected features may be obtained based on which cut-off thresh-
olds can be defined to remove false positives. The result of such a stochastic run with
1050 realizations is depicted in Fig. 2.6. From this result, the utility of the method is ev-
ident wherein the features that are obscured by shadows and the shrubbery have a low
strength signal which can then be filtered away thus reducing the number of false pos-
itives. Another advantage is that both large scale and fine features are captured which
may not be possible using a single set of shearlet parameters.
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Figure 2.5: Variation of SSIM of of base case ridges with shearlet & detection parameters (a) SSIM vs Anisotropy
Exponent (b) SSIM vs MinContrast (c) SSIM vs Wavelet Effective Support (d) SSIM vs Scaling Offset (e) SSIM vs
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Figure 2.6: Effect of multiple ridge realizations (a) test image (b) Ridge map using base case shearlet param-
eters in Table. 2.1 (c) Overlay of ridges using base case shearlet parameters (d) Normalized ridge intensity
ensemble map obtained after 1050 ridge realizations (e) Thresholded ridge intensity map (f) Overlay of ridges
with threshold ridge intensities
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2.4. RESULTS

2.4.1. TRACE EXTRACTION RESULTS FROM PARMELAN, FRANCE
GEOLOGICAL SETTING OF THE PARMELAN PLATEAU
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Figure 2.7: Location of the Parmelan plateau in France within the Bornes Massif depicting drone flight base
points for six drone missions

We tested the automated fracture extraction method on an example from a carbon-
ate outcrop from the Parmelan plateau in the Bornes Massif, France. The Bornes Massif
is a northern subalpine chain in the western French Alps. The method was applied on
a photogrammetric orthomosaic derived from a 3D outcrop model. The outcrop model
was built from source photos acquired using a DJI Phantom 4 UAV. The image resolution
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is 18.6 mm/pixel. Processing of the drone images and generating the orthomosaic was
done using AgiSoft PhotoScan Professional (Version 1.2.6) [2016*] software. The Parme-
lan Anticline in France (see Fig. 2.7) is situated in the frontal part of the Bornes Massif
and consists of Upper Jurassic to Cretaceous rocks of the European passive margin [Berio
etal., 2018, Gidon, 1996, 1998, Huggenberger and Wildi, 1991].

This NE - SW trending anticline consists of a wide, flat crestal plateau bounded by
steeply dipping limbs. Carbonates form the roof of a kilometre- scale box fold formed
during the Alpine orogeny [Bellahsen et al., 2014]. On the crestal plateau, a 1.7 km by 2.3
km large pavement of flat-lying shallow-water carbonates is exceptionally well exposed.
The Parmelan outcrop is a good example of fracture patterns formed in a fold-and-thrust
setting. We applied the automatic fracture detection technique on an orthomosaic that
has been stitched together from drone photogrammetry over six different drone mis-
sions over the Parmelan. The combined extent of the six orthomosaics is depicted in Fig.
2.8(a), and the areal extent of each orthomosaic is depicted in Fig. 2.8(b).
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Figure 2.8: Drone photogrammetry coverage area from the Parmelan (a) Region within the Parmelan plateau
highlighting the areal extent of the drone photogrammetric orthomosaics which are projected over the base
map. Manually traced large scale faults are depicted in red. (b) Spatial extent of the drone coverage of each of
the six UAV flight missions in different colours

AUTOMATIC EXTRACTION RESULTS ON THE PARMELAN ORTHOMOSAIC

Considering memory requirements and for faster computation, the image domain was
divided into georeferenced sub-tiles using the Grid Splitter plugin in QGIS software. Vi-
sual filtering was carried out to remove tiles that did not have exposed rock, had a large
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degree of shrubbery, and which were at the orthomosaic edges where image resolution
is poor. A total of 1000 tiles were chosen for the automated interpretation process. The
areal extent of the orthomosaic covered 0.589 km?, and this region is depicted in Fig. 2.8.
The region covered by the tiles amounts to 0.379 km? and this is shown as an overlay
of the selected tiles in Fig. 2.9(a). Structural measurements were recorded at four small
scale stations (around 2-5 sq.m per station) depicted in Fig. 2.9(c)-(f).
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Figure 2.9: Trace extraction results from the Parmelan (a) Selected tiles from the orthomosaic spatial extent
are highlighted (b) Spatial variation of the fracture intensity depicted as a P21 plot computed using the box
counting method (c) Rose and stereoplot of Station 1 (d) Rose and stereoplot of Station 2 (e) Rose and stereoplot
of Station 3 (f) Rose and stereoplot of Station 4

An ensemble of 1050 ridges was computed using a set of shearlet parameters. A
threshold for the ridge intensity was chosen to filter out the false positives. The thresh-
old was determined by a visual examination of the overlay of detected ridges over the
original images. The subsequent post-processing steps yielded features in each tile.
These were geo-referenced and stitched back into a single vectorized file representation.
Around 3 million features were extracted from the Parmelan orthomosaic. The P»; frac-
ture intensity was computed using the box-counting method by dividing the tile into a 25
x 25 (pixels) regular grid. The Py fracture intensity plot highlights the spatial variation of
fracturing over the Parmelan plateau (see Fig. 2.9.b). The vectorized fracture shape files
along with the Parmelan basemap are presented as a public dataset.

COMPARISON WITH MANUAL INTERPRETATION
To compare results of the automated approach to a manual interpretation, we chose a
sub-region within the Parmelan orthomosaic. The selected subregion depicted in Fig.
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2.10(a) consists of a 24 m x 24 m tile of the Parmelan orthomosaic. The image indi-
cates fractures that seem to be isolated, without a well-connected topology, and which
are predominantly aligned along NW-SE direction. The fracturing intensity is variable
across the tile. The contrast between fractures and the host rock fabric is intensified by
the karstification of the fractures, which can be attributed to weathering and dissolution.
Figure 2.10(b) depicts an overlay of the automatically interpreted fractures overlain over
the original tile. A total of 2910 features was extracted in this tile. This example high-
lights some of the technical challenges associated with automated fracture trace detec-
tion. Shrubbery is present in the image which obscures certain relevant features. The
north-western corner of the image is blurred since it forms the extent of the orthomo-
saic.

Figure 2.10: Comparison between automatic and manual interpretation on a tile from the Parmelan (a) Tile
from the Parmelan orthomosaic depicting intense fracturing with an organization along the NW-SE corridors
(b) Overlay of fractures traced using the automatic detection method (c) Overlay of fractures manually traced
for the tile at a zoom of 1:2000 (d) P»; Fracture intensity for automatic extracted fractures (e) P2; Fracture
intensity for manually extracted fractures

The image also depicts open cavities or blobs, which could be the result of localized
weathering. The effect of the cavities on the feature extraction is that only an edge is
detected. Overall the fracture extraction efficiency is quite dependent on the resolution
and quality of images. In the case of the Parmelan data acquisition, the UAV was flown at
an altitude of 50-70 metres above the pavement; therefore, features such as closed veins,
and slightly open fractures are below the resolution of the drone camera. A higher image
resolution is necessary to extract such features. In our specific case study, good lighting
and exposure during the UAV flight mission prevented shadows from obscuring the im-
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agery. Fig. 2.10(c) depicts a manually performed interpretation at a zoom level of 1:2000
on the raster image with a total of 341 features. P»; fracture intensity comparisons of
both automatic and manual traces are shown in Fig. 2.10(d)-(e). The difference between
the automatic and manual interpretation highlights the inclination of the interpreter to
neglect small scale features. Based on geological experience and prior knowledge of the
field area, there is a tendency to interpret and link together disconnected features from
the original raster image. The closest small-scale station to the sub-tile depicted in Fig.
2.10(a) is station 2. There is agreement between the rose plots of station 2 (see Fig. 2.9.c)
and the interpretations (Fig. 2.10.e-f). The observed fractures in both cases are predom-
inantly sub-vertical.

APPLICATION TO MINERALIZED FRACTURES
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Figure 2.11: Extension of the automated method to extract mineralized fractures (a) Image from Parmelan
depicting mineralized fractures (b) Manual interpretation of mineralized fractures (c) Ridge ensemble

We now showcase an example of a close-range image containing mineralized veins
that are invisible to photogrammetry at altitudes of 40 - 70 m . The resolution of this
image is 0.18 mm/pixel and was taken using a handheld DSLR camera. In this high-
resolution image, the fracture infill has similar colour as the host rock as can be seen in
Fig. 2.11(a). A manual interpretation of the veins (at a zoom of 1:750) is depicted in Fig.
2.11(b). Using a well-tuned set of parameters with reduced wavelet effective supports,
it is possible to extract the much thinner and subtle features as depicted in Fig. 2.11(c).
It can be observed from comparison between Fig. 2.11(b)-(c), that a large number of
false features are also highlighted alongside the features of interest. The main contribu-
tors to the extraction of these non-fracture features are the natural rugosity of the rock
face, presence of pebbles, pockmarks, and erosion features. The arrangement of these
artefacts display a very different pattern; small lines with random direction compared to
the fractures which are consistently oriented and quite continuous. The veins are also of
different thicknesses, with a few veins anastomosing and some branching in a horsetail
manner. Some of the thicker veins also exhibit microstructure within the mineral infill.
Further tuning of parameters in order to capture all the veins while also suppressing false
features is quite challenging and hence we do not explore this in further detail. Despite
the noise, the automated method is not limited to capturing only open fractures but can
also extract closed fractures.
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2.4.2. TRACE EXTRACTION RESULTS FROM BREJOES, BRAZIL

GEOLOGICAL SETTING OF THE BREJOES PAVEMENT

The second case study for the automated extraction method is a carbonate outcrop from
the Irecé Basin, Central Bahia, Brazil (see Fig. 2.12.a-b). The Irecé Basin is located within
the northern region of the Sao Francisco Craton. The Brejoes pavement study area is
within the Irecé Basin and consists of Neoproterozoic platform carbonates of the Sal-
itre Formation (750-650 Ma). The Neoproterozoic cover was affected by the Brasiliano
Orogeny (750-540 Ma) in two separate folding events resulting in fold belts around edges
of the Sdo Francisco Craton [Ennes-Silva et al., 2016]. The Brejoes pavement UAV im-
agery that we used for our analysis was acquired by Boersma et al. [2019]. Structural
measurements from Boersma et al. [2019] is shown in Fig. 2.12(c). The orthomosaic
covers an area of 0.81 km? and consists of fractured, black oolitic limestones that corre-
spond to Unit Al of the Salitre stratigraphy [Guimaraes et al., 2011]. The resolution of
the Brejoes orthomosaic is 20.3 mm/pixel.
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Figure 2.12: Trace extraction results from the Brejoes outcrop (a) Bahia state in NE Brazil (b) Location of the
Brejoes outcrop in the state of Bahia (c) Selected tiles from the Brejoes orthomosaic for the automated ex-
traction (d) Spatial variation of the fracture intensity depicted as a P»; plot computed using the box counting
method

AUTOMATIC EXTRACTION RESULTS ON THE BREJOES ORTHOMOSAIC

The Brejoes orthomosaic is split into 222 tiles for the analysis and this region is shown
in Fig. 2.12(d). The Brejdes example has a different fracturing style than the Parmelan
and consists of an intricate pattern of multi-scale conjugate fractures. The shearlet com-
binations utilized in the case of the Parmelan was insufficient to capture this variation
in scales. Specifically, in the Brejdes case, the large scale features were not captured. A
visual inspection of the ridges was necessary to identify the shearlet combinations that
amplified the large scale features. The contribution of these ridges was increased (factor
of 8) in the ridge ensemble to highlight these large deformation features. Fig. 2.12(e) de-
picts the P,; fracturing intensity computed using the box-counting method by dividing
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each tile into a 25 x 25 (pixel) regular grid. The vectorized fracture shape files along with
the Brejoes basemap are presented as a public dataset (see Prabhakaran et al., 2019b).

COMPARISON WITH MANUAL INTERPRETATION

Figure 2.13: Comparison between manual (left) and automatic (right) interpretation on seven stations within
the Brejoes outcrop. The manual interpretations were obtained from Boersma et al. [2019].

The automatically extracted features from the Brejoes image data were compared
with manual interpretations performed by and obtained from Boersma et al. [2019] at
seven stations. The automatic interpretations were trimmed to the peripheries of the
manual interpretations for a fair comparison between both vectorizations. The loca-
tion of these stations alongside the automatic versus manual interpretations are shown
in Fig. 2.13. A comparison of the rose plots and cumulative length distributions of the
manual and automatic interpretations is depicted in Fig. 2.14. A few observations can be
made from the comparison. Firstly, similar to the Parmelan case, the interpreter picks a
lesser number of features. Secondly, there is a tendency to extend fractures across image
regions where there is no real evidence of rock failure. Thirdly, there is an inconsistency
in specifying the connecting topologies between the interpreted traces. In some stations
(see Mid #2, Mid #3 and North in Fig. 2.13), the automated interpretation suffers from
a large number of false positives. A close examination indicates that the presence of
shadows and eroded, undulating topography of the rocks are the main reasons for these
false positives. In the Brejoes case, the drone was flown at around 10.00 AM, and hence
the exposure of the outcrop face was not optimal. The inclined illumination enhances
shadows on the rugged topography, which are then seen as false positives in the auto-
matic interpretation. False positives due to shrubbery are minimal in the station regions
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Figure 2.14: Comparison of trace length weighted rose plots and cumulative trace length distributions for au-
tomatic and manual trace interpretations from Brejoes outcrop stations.
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2.4.3. BENCHMARKING WITH DATA FROM THIELE ET AL. [2017]

We further tested the automated trace detection on a recently published case study from
Thiele et al. [2017]. The images selected are orthophotographs of two 10 x 10 m areas
from Bingie Bingie Point, New South Wales, Australia (Fig. 2.15.a, Fig. 2.16.a). The ex-
posed rocks are Cretaceous to Paleogene dykes, intruding diorites, and tonalities cross-
cut by joint sets (Thiele et al. 2017). The images are complex as they contain both open
and closed fractures of different scales, distributed between multiple lithological layers.
The images also contain water, shadows, and debris, which makes it even more challeng-
ing. We chose this dataset to benchmark the quality of our results with those presented
using the semi-automatic cost function-based trace mapping approach of Thiele et al.
[2017].
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Figure 2.15: Comparison of Benchmark Image 1 (a) Bingie Bingie Area 2 from Thiele et al. [2017] (b) Normal-
ized ridge map using complex shearlet automatic extraction (c) Threshold applied to the normalized ridges
(d) Binarized ridges map (e) Vectorized traces (f) Assisted cleaned up trace map for Area 1

The variation in fracture scales implied that similar to Brejoes, a different set of shear-
let combinations were needed. We generated 2700 ridge realizations which were used to
construct a normalized ridge ensemble map for both images (Fig. 2.15.b, Fig. 2.16.b).
A simple, non-linear sigmoid function was applied to the normalized ridge intensity to
enhance ridge strength (Fig. 2.15.c, Fig. 2.16.c) and a threshold was chosen based on vi-
sual comparison with the source image to yield highly probable, binarized ridge images
(Fig. 2.15.d, Fig. 2.16.d). The subsequent workflow steps, as described in Sect. 2.3.1 were
followed to obtain vectorized traces (Fig. 2.15.e, Fig. 2.16.e). The vectorized traces were
used to render assisted interpretations depicted in Fig. 2.15(f) and Fig. 2.16(f) which are
comparable in quality to the assisted interpretation of Thiele et al. [2017].
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Figure 2.16: Comparison of Benchmark Image 2 (a) Bingie Bingie Area 2 from Thiele et al. [2017] (b) Normal-
ized ridge map using complex shearlet automatic extraction (c) Threshold applied to the normalized ridges
(d) Binarized ridges map (e) Vectorized traces (f) Assisted cleaned up trace map for Area 2

In the published results of Thiele et al. [2017], assisted interpretations of both areas
are achieved in 37 minutes and 34 minutes, respectively. We can report better perfor-
mances of 27 and 32 minutes for the same areas. The time does not include computing
of the ridge realizations. Once the high probability trace map was generated, the subse-
quent steps of the automated detection workflow took around 3 minutes. The remain-
der of the time was used to perfect the assisted interpretation. The post-processing tasks
performed in this second step were the removal of false positives owing to shadows, wa-
ter, and debris and joining of segments which were disjointed due to poor resolution
within the image. Though we have performed a benchmarking exercise with the data
from Thiele et al. [2017] and also compared our results with manual interpretation, it
would be useful to compare with more manual interpretations to further validate the
accuracy of the technique. Such comparison, however, can be done only on networks
which are either limited in their spatial extent or in the number of features interpreted.
For large orthomosaics, a benchmarking exercise can be challenging as few manually
rendered datasets are comparable in network size.

2.5. DISCUSSION

Extraction of fracture traces from photogrammetric data is a necessary processing step
to construct DFN representations. DFNs created using fracture patterns that are directly
extracted from rock images, are advantageous as they honour the spatial architecture
of fracture networks. Automated extraction methods reduce the human component in
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data processing, and we have achieved this using the complex shearlet transform ridge
detection method accompanied by post-processing steps. The complex shearlet method
can detect both edges as well as ridges in fractured rock images. We find that the ridge
measure works very well for extraction of fractures, and we use the ridge measure in all
our case studies. Though the method performs very well and can extract much more
traces than is possible manually while reducing interpreter bias, there are some issues
that need to be mentioned. In this section, we discuss on the validity and limitations
of the technique, areas where there is scope for further development, and also describe
some potential extended applications of the method.

2.5.1. VALIDITY AND LIMITATIONS

Detection of mineralized features: The method works well when the features of interest
are barren and prominent. When fractures are closed and filled then they are gener-
ally harder to detect and require high resolution images (< 1 mm/pixel) which can be
recorded only at very close ranges at very-low UAV flight altitudes. Recent outcrop stud-
ies [Ukar et al.,, 2019] indicate that many of the barren features in outcrop are absent
within the same subsurface lithological unit while maintaining good correspondence
between mineralized features in both outcrop and subsurface. When mineral fill has a
marked colour contrast with respect to the host rock (as in vein data published recently
by Meng et al., 2019), then superpixel segmentation algorithms can be successful [Vasuki
et al., 2017]. In the case of poor contrast, the complex shearlet transform would require
a great deal of manual tuning of detection parameters to extract reliable results. At such
close ranges, as is needed for veins extraction, it is also likely that many more noisy fea-
tures un-related to fracturing would arise. Since mineral-fill of fractures can provide a
clearer picture into evolution, timing, and stress history of fractures, identifying them on
an outcrop scale is important. This is doubly significant, when the goal is to directly ex-
trapolate fracture patterns from a particular outcropping to the same subsurface target.
In such a case, close range UAV-mounted hyperspectral data acquisition would be better
suited than conventional imaging and image processing methods. With hyperspectral
imaging, data is collected in near-continuous spectral bands. The spectral response of
minerals constituting the rock, owes to atomic-molecular level processes triggered on
interaction with a light source (active or passive) and this may be utilized to identify
mineral composition. Since mineral fill of veins are likely to have a different spectral
response from the mineralogy of the host rock, this variation may be used to isolate the
pixels that correspond to veins. A recent review on close range hyperspectral imaging for
mineral identification identifies various previous studies performed for specific miner-
als [Krupnik and Khan, 2019]. It would be interesting to observe, identify, and distinguish
between mineralized sequences based on the differences in spectral response of the frac-
ture infill material. Since hyperspectral data is much more voluminous and with signif-
icantly more complex image processing than conventional photogrammetry, such anal-
ysis could be confined to selected regions within the outcrop. In conjunction with con-
ventional UAV photogrammetry that covers larger spatial area, laboratory-based geo-
chemical studies, and outcrop observations (scanline sampling, abutting relations etc.),
a more detailed fracture characterization may be conducted.
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Detection of large cavities and false features: Both the Parmelan and Brejoes pave-
ments exhibit karstification with the Parmelan containing many more collapsed karstic
regions. The presence of such low-aspect ratio discontinuities are quite rare in siliciclas-
tic and volcanic outcrops but can prove problematic to the application of the method
in carbonate outcrops where karstification is severe. Both the ridge and edge measures
would fail in identifying such blobs or would at best, extract the periphery of the cavity.
In recent work by Reisenhofer and King [2019], blob detection measures have been de-
veloped within the shearlet framework and could potentially solve this issue. Another
issue is the effect of undulating topography and shrubbery in generating false positives.
False positives generally appear when there is shrubbery, shadows, very rugged terrain,
and non-fracture bedding planes. In the case of the Parmelan, the use of multiple ridges
was successful in suppressing the false positives owing to shrubbery. However, in Bre-
joes, false positives due to underbrush were more difficult to suppress because they
shared the same scale as that of the fractures. In Brejdes, shrubbery was also present
within some of the wider fractures causing false negatives. In such cases, manual inter-
ference is necessary to either mask the regions of shrubbery before the automatic ex-
traction or to remove (or connect) the vectorized traces after the automated extraction.
Additionally, carbonate outcrops are prone to widespread erosion owing to exposure to
meteoric water from precipitation cycles and air corrosion. Geomorphological features
owing to these erosive processes may also play a role in generation of false positives.

Parameter selection A significant difference in fracture scales within an image of inter-
est can prove problematic for the method. In such a case, a vast number of ridge detec-
tion runs and associated increase in computational time is needed to construct a ridge
ensemble that takes into account all scales of discontinuities and yields a satisfactory
result. When such variation is localized, the image could be segmented into regions that
correspond to varying fracture intensities and processed separately. This may be diffi-
cult to assess a priori and in such cases, would require trial runs. In the Brejoes outcrop
example and the close range Parmelan vein example, this difference in fracture scales
was ubiquitous throughout the exposure and more pronounced than the Parmelan out-
crop. Using visual comparison with the original image, the effect of ridges resulting from
certain shearlet parameter combinations was enhanced, so that the ridge ensemble is
improved. In Brejoes, it was the large scale features that needed to be strengthened while
in the case of the Parmelan vein example, the smaller features needed sharpening. Since
parameter selection is still done manually, a more comprehensive way of arriving at the
optimal shearlet combination is desirable. An algorithm that automatically optimizes
for shearlet parameters corresponding to each individual scale of fracture is worthy of
attention.

Artificial fragmentation of traces Manual fracture interpretation from images often in-
volves the step of classifying fracture traces into separate sets based on ground truth
observations or with respect to fracture strike. The automated method described here in
its current form can only extract traces and cannot distinguish/classify traces as belong-
ing to separate sets. When fractures intersect each other, the issue of artificial fragmen-
tation of seemingly continuous traces arises. If an image consists of two orthogonally
intersecting fractures, the automated method would result in four traces intersecting at
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a single branch point, even though a manual interpretation would only identify two frac-
ture traces belonging to two different geometric sets. This type of fragmentation would
result in different length distributions; however, such fragmentation is not an issue if the
outcrop DFN is used for geometric input for flow/geomechanics simulation. This is be-
cause the process of meshing models with explicitly specified DFN geometry would, in
any case, require the specification of all intersection points (or forced fragmentation of
long intersecting fractures). Therefore, the practitioner must exercise caution when us-
ing cumulative length distributions derived from outcrop DFNs that are automatically
extracted. A single fracture could also be fragmented without being cut by other inter-
secting fractures. This may happen in the case of false negatives (due to shadows falling
over part of fracture, debris or shrubbery within an open fracture, and when fracture
opening is very thin at some regions along fracture length) that cause fragmentation of
fractures with gaps in between them. This kind of fragmentation affects the topology
of the network in addition to depressing the height cumulative length distribution. It
maybe noted that manual specification of fracture endpoints is also fraught with bias
[Peacock et al., 2019]. A solution would be to use a range of linking thresholds to connect
traces and study the effects of threshold values on network topology and length distri-
bution.

2.5.2. RECOMMENDATIONS FOR FUTURE WORK

Link between extractable P;;, drone flying altitude, and camera resolution: From the
Py analysis on the Parmelan and the Brejoes automatically extracted fractures, the max-
imum value P»; was around eight m!. The same drone model was used in both cases
(DJI Phantom 4), and the flying altitude was also similar (between 40 and 70 metres).
Although such a conjecture needs further verification, there could be a relation between
the resolution of imagery and maximum extractable fracture intensity. Often flight alti-
tudes are chosen by drone pilots depending upon considerations such as local topogra-
phy, weather conditions, and presence of impediments (such as trees, electricity poles,
and telecommunications towers). A detailed analysis of the relation between flying alti-
tude (and consequently image resolution) and extracted fracture intensity could provide
drone pilots with insights and guidelines for UAV-based outcrop analysis. The ideal fly-
ing resolution to identify features of interest may be ascertained by carrying out a series
of acquisitions at a location where ground truth is known.

Generating data for fractured reservoir modelling workflows: Fractured reservoir char-
acterization workflows in the oil and gas industry have traditionally used stochastic tech-
niques that attempt to extrapolate averaged fracture statistics (either from borehole im-
agery, core data, or outcrop analysis) to reservoir volumes. The use of Multiple Point
Statistics (MPS) for fracture network generation was highlighted by Bruna et al. [2019c] as
an alternative approach to DFN modelling. MPS uses training images of realistic fracture
networks to learn patterns and then generate non-stationary fractured reservoir models.
Corrected for false positives and noise, the automated method can produce accurate,
geologically realistic, and unbiased training images that can feed into the MPS work-
flow. Since our method can extract large scale fracture networks (millions of features
from sub- square kilometre regions), it is also well suited to provide training data for
deep learning workflows. Recently, the use of Generative Adversarial Networks (GANSs)
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for geological modelling at the reservoir scale was proposed by Dupont et al. [2018] and
Zhang et al. [2019] as an alternative to conventional geostatistics, MPS, and object-based
modelling. GANs form a subset of deep learning architectures that are used for genera-
tive modelling [Goodfellow et al., 2014]. GANSs that are trained on realistic data can then
generate geologically realistic, non-stationary models.

Deep learning methods for trace extraction: Deep learning methods have revolution-
ized computer vision applications. Various neural architectures have documented high
degrees of accuracy in machine vision tasks such as overall image classification, identi-
fication and classification of objects within an image, localization of objects, extraction
of regions of interest (semantic segmentation), and extraction of regions corresponding
to individual objects (instance segmentation). The problem of fracture trace extraction
falls within the problem category of region extraction of individual objects and hence
may be attempted using techniques such as mask Regional Convolutional Neural Net-
works [He et al,, 2017]. Deep learning methods, in general, require large amounts of
labelled data to train. In the case of a mask RCNN, the library of training images must
contain marked regions (or overlays) indicating pixels of interest that correspond to in-
dividual fractures. The automated method described in this manuscript can be used to
rapidly generate a large number of overlay images that can be used as training data for
mask RCNN architectures.

Using manual tracing vector data to clean-up traces: The automatic interpretation can
generate false positives even in the best outcrops free from noise. This can happen even
with deep learning methods with large amounts of training data. In such situations,
we may consider using graph-based methods to clean up the vectorized polylines that
are generated using any type of image processing method (shearlet-based or otherwise).
Available prior geological knowledge in the form of manual trace maps can be used to
generate plausible association scenarios between the extracted vectorized traces. In
recent work by Godefroy et al. [2019] the Bron-Kerbosch graph algorithm was used to
identify possible structures in 2D seismic intepretation. Cordonnier and Loukas [2019]
introduced a graph neural network-based method in which missing paths in a network
are inferred and assigned based on training data. Such approaches should also be con-
sidered in resolving the accuracy of fracture trace extraction to the levels necessary for
geomodelling purposes.

2.6. CONCLUSIONS

This chapter presents a method to automatically detect and digitize fracture traces from
images of rock fractures using the complex shearlet transform. The technique replaces
the task of manually interpreting fractures, which is time-consuming, prone to inter-
preter bias, and which suffers from a lack of repeatability. The case studies that are
presented highlight the utility of the complex shearlet-based measure for automatically
detecting fracture traces from 2D images. The automatic trace detection method com-
bines the complex shearlet ridge measure with a series of post-processing steps that
include image segmentation, skeletonization, polyline fitting, and polyline simplifica-
tion. We tested the method at different scales of rock displacement, at outcrop scale (~
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102 m) and station-scale (< 10 m), using two orthomosaics reconstructed from drone
photogrammetry and two rock pavement images. We have considered carbonate and
igneous rock lithologies in the case studies. Using the method, we have extracted mil-
lions of 2D features from outcrop-scale drone orthophotos. The processing time of the
technique depends upon the intensity of fracturing and the complexity of the fracture
networks contained within the image. The automatic trace extraction results are quan-
titatively compared with manually interpreted fractures on selected sub-samples of the
image domain using fracture trace density metrics. The automated technique is capable
of extracting a much larger number of features, with a marked reduction in bias. The
method outlined in this chapter greatly simplifies the process of generating determin-
istic, outcrop-based DFNs. The automatically extracted fracture patterns can be used
by structural geologists to link deformation features to tectonic history and by geomod-
ellers in sub-surface NFR modelling.







THE BRISTOL CHANNEL DATASET

The Lilstock outcrop in the southern Bristol Channel provides exceptional exposures of
several limestone beds displaying stratabound fracture networks, providing the opportu-
nity to create a very large, complete, and ground-truthed fracture model. In this chapter
we present the result of automated fracture extraction of high-resolution photogrammet-
ric images (0.9 cm/pixel) of the full outcrop, obtained using an unmanned aerial vehicle,
to obtain a spatially extensive, full-resolution map of the complete fracture network with
nearly 350,000 ground-truthed fractures. We developed graph-based functions to resolve
some common issues that arise in automatic fracture tracing such as incomplete traces,
incorrect topology, artificial fragmentation, and linking of fracture segments to generate
geologically significant trace interpretations. The fracture networks corresponding to dif-
ferent regions within the outcrop are compared using several network metrics and the re-
sults indicate both inter- and intra-network (layer to layer) structural variabilities. The
dataset is a valuable benchmark in the study of large-scale natural fracture networks and
its extension to stochastic network generation in geomodelling. The dataset also high-
lights the intrinsic spatial variation in natural fracture networks that can occur even in
weakly-deformed rocks over relatively short length scales of tens of metres.

This chapter is based on Prabhakaran et al. [2021b], Large-scale fracture network patterns: Insights from au-
tomated mapping in the Lilstock (Bristol Channel) limestone outcrops, Journal of Structural Geology, 150,
104405, https://doi.org/10.1016/j.jsg.2021.104405
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3.1. INTRODUCTION

Fractures in rocks can form networks with fracture tips forming abutting or crossing
physical interactions with other fractures or remaining isolated within rock matrix. The
evolution into a final cumulative network pattern is history-dependent. The pattern
evolves depending upon how loading paths and rock properties governing growth af-
fect propagation rates under episodic conditions when failure criteria are met, in ad-
dition to the superposed effects of pre-existing sets [Laubach et al., 2019]. The spatial
arrangements of fracture networks can be a significant geomorphic agent, influencing
landscape evolution processes [Scott and Wohl, 2019], serve as dissolution pathways for
karstic cave formation [Bertotti et al., 2020, Boersma et al., 2019], and influence sub-
surface fluid flow patterns that are relevant for hydrogeological, geo-energy and waste
disposal applications [Berkowitz, 2002, National Research Council, 1996]. Given such
non-trivial influences, it is important to be able to characterize large-scale fracture pat-
terns from a network perspective.

Mechanistic numerical modelling of fracture propagation and subsequent fracture
network formation can include complex physics pertaining to individual fractures such
as fracture tip behaviour, fluid driven fracturing, interaction of propagating fractures
with pre-existing discontinuities and other propagating fractures [Laubach et al., 2019].
Such mechanistic models can be based on extended finite element methods [such as
Remij et al., 2015, Valliappan et al., 2019 etc], discrete element methods [such as Guo
etal., 2017, Virgo et al., 2016 etc], and phase-field methods [such as Lepillier et al., 2020,
Yoshioka and Bourdin, 2016 etc], and differ in the way rock substrate and propagating
fracture are numerically treated. Such complex models are computationally intensive
and are limited in the spatial extent of network evolution. Recent developments include
approaches in which fracture networks genetically evolve from flaws without resorting
to rigorous geomechanical treatment [such as Lavoine et al., 2020, Welch et al., 2019] but
large-scale network development is still difficult to realize.

In such a context, outcrop-derived networks hold relevance. The advantage of out-
crops is that they implicitly encode spatial organization of networks and network prop-
erties can be observed and sampled when outcrop quality permits. The proliferation
of Unmanned Aerial Vehicle (UAV) photogrammetry has lead to an increase in both vol-
umes and speed of acquisition of digital outcrop data [Bemis et al., 2014, Hodgetts, 2013].
Coupled with automatic image processing tools, it is now possible to obtain outcrop-
derived 2D discrete fracture networks (DFNs) at large enough scales to enhance our
understanding of geometrical organization and spatial heterogeneity in natural fracture
networks [Palamakumbura et al., 2020].

Outcrop-based characterization of natural fractures typically involves fracture sam-
pling methods such as the use of scanlines [for e.g. Mauldon et al,, 2001, Priest and
Hudson, 1981, Rohrbaugh et al., 2002], fracture traces from orthorectified fractured rock
images [for e.g. Bisdom et al., 2017, Bistacchi et al., 2015], fracture traces from LIDAR [for
e.g. Lamarche et al,, 2011, Wilson et al., 2011], and geophysical imaging such as ground
penetrating radar [Day-Lewis et al., 2017, Molron et al., 2020]. Recent advances in frac-
ture characterization utilize data-fusion techniques in which multi-spectral, hyperspec-
tral, gravity, and magnetic remote sensing are combined in outcrop studies. The combi-
nation of these techniques incorporates high-degrees of geological realism. In this chap-
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ter, we focus on automated mapping of 2D fracture traces using UAV photogrammetry
at the Lilstock outcrop, Bristol Channel, UK which exposes multiple fractured limestone
beds.

The complex shearlet transform method described in Chapter 2 is used to automat-
ically extract fracture traces from high resolution photogrammetric data published by
Weismdiller et al. [2020]. A critical comparison between automatic and manual tracing
was presented in Weismiiller et al. [2020] using topological relationships, fracture inten-
sity, and fracture density measures, and showed that the quality of automatic tracing is
consistent with the interpretations of a proficient interpreter. Weismdiller et al. [2020]
covered five regions of 140 sq. m each within the Lilstock pavement while Passchier et al.
[2021] has mapped the different fracture generations but incompletely.

In this work, the automatic tracing is extended to an area that is 20 times larger re-
sulting in a rich dataset that amounts to nearly 800,000 fracture segments. We develop
a set of graph-based programmatic routines that convert automatically extracted frac-
ture segments into geologically significant fracture traces. The areal extent, detail, and
spatial continuity of the resultant fracture network data, comprising of around 350,000
fractures, is unique. The dataset is an important benchmark which provides a means
to overcome sampling and truncation effects typically experienced with small fractured
outcrops and which have so-far limited efforts at fracture characterization.

3.2. FRACTURES AS SPATIAL GRAPHS

Graph theory concerns the study of mathematical structures, graphs, that model pair-
wise relations between objects. The use of graph theory and spatial graph representa-
tions to represent fracture networks was suggested by authors such as Adler and Thovert
[1999], Manzocchi [2002], Valentini et al. [2007a], Valentini et al. [2007b], Santiago et al.
[2016], and Sanderson et al. [2019]. Such a graph representation maintains topologi-
cal relationships between fracture segments and spatial relationships between fracture
edges. Topology serves as a means to quantify connectivity of a fracture network. Net-
work connectivity parameters have important implications for fractured hydrogeologic
and subsurface modelling [Berkowitz, 2002]. In addition to topological relationships,
fracture networks are also spatial in nature. In this regard, fracture networks are similar
to roads and power grids in that the networks are embedded in space. Such families of
spatial networks are observed to have steric constraints that impose limitations on the
maximum degree of a node [Barthelemy, 2018]. Many specialized methods and tech-
niques developed for spatial graphs can, therefore, be applied to fracture network data.

Graphs are typically represented in matrix forms, allowing the use of computational
linear algebra techniques and algorithms to investigate properties of the network struc-
ture, and derive insights into spatial and spectral properties. Within the structural ge-
ology literature, such approaches are not widespread as data pipelines that can deliver
sufficient volumes of fracture data in the form of spatial graphs face several challenges
in data acquisition and processing. The advent of UAV-based data acquisition and auto-
matic fracture trace extraction opens up new avenues to use graph algorithms to extract
insights from large-scale fracture patterns.

From graph theory, a graph is a pair G = (V, E) with V being a set of vertices and
E, a set of edges. The abstraction that connects mathematical graph theory to fracture
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Figure 3.1: (a) A graph with no spatial positioning can be simply depicted as nodes and edges with a method
of planar drawing [Nishizeki and Rahman, 2004]. Here a fracture network is converted to a graph and drawn in
a "gravity" layout. (b) The fracture graph with spatial positioning applied to each of its nodes (dimensions in
metres) (c) An example of a fracture network plotted as a spatial graph with individual fractures from tip-to-tip
colour coded based on fracture length (dimensions in metres). One fracture is highlighted with enlarged nodes
(d) enlarged view of a single fracture ’F’ within a spatial graph, defined as a set of 'n’ nodes or 'n —1’ edges

networks is that fracture intersections form the vertex set, V and fracture segments link-
ing the vertex set V form the edge set, E. When a spatial positioning data structure is
additionally specified to represent position of each fracture intersection in 2D cartesian
space, the fracture network forms the planar graph, G,. An example of a fracture network
in the form of a graph, with edges representing fracture segments and vertices denoting
fracture intersections is depicted in Fig. 3.1(a). This is a simple planar drawing where
nodes are positioned in such a way that there are no edge crossings. The graph has 1746
nodes and 2617 edges. The same graph with spatial positioning is depicted in Fig. 3.1(b).

In this representation, the definition of a geological fracture 'F’, is simply a subset
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of 'n’ nodes within the graph. This is also equivalent to a subset of 'n—1" connected
edges which are contained within the edge set that forms a walk or path within the graph
(see Fig. 3.1.c and Fig. 3.1.d). The entire fracture network is a list of paths which are
specific sequences of nodes (and edges). A weighted graph is one in which the edge
set is associated with weights that can represent, for instance, the relative importance
of edges within the complete edge list. In case of fracture networks, this may simply
be the euclidean distance between the end nodes of the particular edge. A graph may
be directed and referred to as a digraph which implies that an edge has a source node
and a target node. In case of fracture networks, an undirected graph representation is
sufficient.

The graph representation where fracture intersections form vertices and fracture seg-
ments form edges, as depicted in Fig. 3.1(b), is called the primal form [Barthelemy,
2018]. There is also a dual form of a graph in which fractures from tip-to-tip form graph
nodes and interconnections between fractures form the edges [Barthelemy, 2018]. Such
dualrepresentations have been used by Adler and Thovert [1999], Valentini et al. [2007b],
Andresen et al. [2013], and Vevatne et al. [2014] for fracture networks. To illustrate the dif-
ference between the two representations, an example network from Bisdom et al. [2017]
is depicted in the primal form in Fig. 3.2(a) with fracture intersections being the vertices
and fracture segments forming the edges. The dual form where fractures from tip-to-tip
are nodes and intersections between fractured are edges is depicted in Fig. 3.2(b). It
can be observed that the longest fracture striking NW-SE has the maximum number of
intersections with smaller fractures abutting on to or crossing it. The longest fracture is
therefore the node with the highest degree in the dual graph. Since the dual representa-
tion considers only topological connections between fractures from tip-to-tip, we do not
associate any spatial position to the nodes in Fig. 3.2(b). Figures 3.2(c)-(d) depict adja-
cency matrices of the primal and dual graphs respectively. The degree of a node denotes
the number of edges that intersect the particular node. The node degree distributions
of the primal and dual are depicted in Fig. 3.2(e) and Fig. 3.2(f), respectively. The node
degrees in the primal are subject to geometric constraints with a maximum degree of 6
(a hexa type joint). The dual graph degree distribution is more spread out with 64 being
the largest degree.

By converting fracture network shapefiles to primal graphs, we can then use graph
algorithms and metrics to analyze the networks. Various network metrics can be used
to quantify inter- and intra-network variability in fracture networks using the graph rep-
resentation. This is a novel approach in fracture network analysis in the Geosciences,
made possible by the large amount of fractures. Our results form a valuable benchmark
dataset for future fracture mapping and characterisation methods.
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Figure 3.2: (a) Primal graph representation of a manually interpreted fracture network, Apodi-4, from Bisdom
etal. [2017] in the Jandaira formation of the Potiguar Basin, Brazil having 3309 nodes and 4258 edges. Only the
largest connected component of the network is depicted after removing all isolated fractures. (b) Dual graph
representation of the Apodi-4 fracture network using a 'force’ layout. Fracture traces from tip-to-tip are repre-
sented as graph nodes and intersections between fractures are considered as edges. The dual representations
has 2172 edges and 1082 nodes. Node size is plotted proportional to the node degrees and highlights the cen-
trality of the relatively few long fractures (c) Adjacency matrix of primal graph (d) Adjacency matrix of dual
graph (e) Degree histogram representing node topology of primal graph (f) Degree histogram representing
node topology of dual graph
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Figure 3.3: Overview of the study area located at Lilstock, Bristol Channel, UK generated from UAV photogram-
metry at an altitude of 100 m. The orthomosaic is available as an open dataset [Weismiiller et al., 2020]. Spatial
extent of the five areas within the Bristol Channel outcrop where fracture networks are automatically extracted
is depicted in sequential shades of green. Approximate areas where previous studies done within the same
outcrop are also marked.

The outcrops are located off the southern coast of the Bristol Channel in West Som-
erset, UK, close to the hamlet of Lilstock (see Fig. 3.3). The area is within a 7.428 sq.km
geological Site of Special Scientific Interest (SSSI), referred to as the Blue Anchor to Lil-
stock Coast SSSI, due to the exposures ranging from Hettangian to Pliensbachian within
the Early Jurassic. Deformation features such as faults, fractures, and joints are exposed
within the study area [SpruZeniece et al., 2021]. The site is well-studied in terms of struc-
tural features, tectonic history, sedimentology, stratigraphy, and basin evolution [for e.g.,
Belayneh et al., 2006, Engelder and Peacock, 2001, Glen et al., 2005, Kamerling, 1979,
Kelly et al., 1999, Nemcok et al., 1995, Peacock, 2004, Rawnsley et al., 1998, Van Hoorn,
1987]. The regions of interest and the focus of this contribution are three fractured lime-
stone pavements referred to as benches by Loosveld and Franssen [1992].

The fractured pavements correspond to the northern limb of a single E-W trending
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anticline formed due to N-S compression during the Tertiary [Dart et al., 1995]. We fo-
cus on five fractured pavements the extent of which is depicted in Fig. 3.3. The fractured
regions are designated as Areas 1-5. Areas 1 & 3 and Areas 2 & 4 belong to the same
stratigraphic layer. The particular areas were chosen as they are largely devoid of veg-
etation and weathering, and contain joints belonging to different stages in the tectonic
history forming a well-connected spatial network. Additionally, the studied regions con-
tain sub-regions which were the focus of previous work by Loosveld and Franssen [1992],
Rawnsley et al. [1998], Engelder and Peacock [2001], Belayneh and Cosgrove [2004b], Be-
layneh [2004], and Gillespie et al. [2011a]. The relationship between joints described in
the above-mentioned works is discussed by Passchier et al. [2021].

3.3.1. STRUCTURAL HISTORY

The structural history of the region may be classified into several tectonic phases. Be-
ginning with N-S extension in the Early Jurassic to Early Cretaceous and again in the
Late Cretaceous to Oligocene [Rawnsley et al., 1998], these events are evidenced by E-
W striking normal faults [Brooks et al., 1988]. These extension events were followed by
N-S Alpine compression during the late Oligocene to Miocene resulting in inversion of
normal faults and gentle folding, followed by progressive relaxation during the Late or
post-Miocene [Rawnsley et al., 1998]. Normal faults and conjugate strike slip faults indi-
cate this event [Dart et al., 1995, Glen et al., 2005, Kelly et al., 1999, Nemcok et al., 1995].
This was followed by burial of up to 1.5 km and exhumation with features such as small
folds, faults, veins, and joints [Hancock and Engelder, 1989, Rawnsley et al., 1998].

3.3.2. PREVIOUS DESCRIPTIONS OF JOINTING
The joints exposed in the Lilstock are bedding-perpendicular & largely stratabound with
apertures enhanced by tide-induced dissolution, ranging from sub-millimeter at the
bottom to an order of centimetres at the bed top [Gillespie et al., 2011a]. The decime-
ter thick limestone layers are intercalated with claystone layers of the order of 10° — 102
cm thicknesses. A striking feature of the jointing is the network that is formed due to
joints abutting or crossing each other. The presence of small displacement faults within
the bench cause visibly identifiable variations in fracture patterns and intensities. The
Lilstock outcrop also contains several long, fan-shaped joints that emanate from asper-
ities on faults [Rawnsley et al., 1998]. These joint fans have also been described in other
outcrops near the Bristol Channel in similar lithologies [Bourne and Willemse, 2001].
The joints are believed to be due to minor tectonic events that post-dated the stress
inversion. Various authors have interpreted jointing histories and number of joint sets
based on observations within sub-regions of the outcrop. Loosveld and Franssen [1992]
identified six joint sets based on orientation. Rawnsley et al. [1998] identified four main
joint sets using characteristics such as orientation, length, and spacing. Engelder and
Peacock [2001] identified six jointing sets based on orientation and abutting criteria. Be-
layneh [2004] identified six joint sets based on orientation, length, and aperture. More
recent work by Wyller [2019] distinguished ten jointing generations using abutting re-
lationships, length, and orientation. These above-mentioned attempts at delineating
jointing generations are limited to certain regions within the entire outcrop (see Fig.
3.3). Passchier et al. [2021] utilized the same image dataset as ours and was able to iden-
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tify eight generations of joints from manually traced fractures that include all regions
covered by the previous studies. The criteria used by Passchier et al. [2021] to partition
individual fractures into jointing generations consisted of combination of length, orien-
tation, and abutting criteria. The results highlighted considerable spatial variability in
jointing with some regions containing just 2-3 generations while other areas achieved
saturation with the maximum eight sets.

Rawnsley et al. [1998] associate the earliest joint sets as forming sub-parallel to re-
gional Alpine compression, with subsequent jointing sets being perturbed by faults and
influenced by anticlockwise shift of maximum horizontal stress during basin-wide relax-
ation of Alpine compression. The youngest joints were proposed to be correlated with
relaxation or contracting of rock. Engelder and Peacock [2001] suggested that joint for-
mation is linked to minor tectonic events postdating the basin inversion. The youngest
joints are proposed to be correlated with the contemporary stess field [Engelder and Pea-
cock, 2001] or due to exhumation in a late stage of the Alpine stress field [Hancock and
Engelder, 1989]. Dart et al. [1995] proposed that the jointing patterns involve overprint-
ing of joint generations.

3.4. METHODS

3.4.1. PHOTOGRAMMETRIC DATASET

The image data we consider in this work are extracted from UAV-derived orthoimagery
published as a dataset [Weismiiller et al., 2020]. The full dataset comprises of orthomo-
saics generated from UAV flights at 10 m, 20 m, 25 m, and 100 m. We utilize the ortho-
mosaics acquired between 20-25 m flight altitude resulting in imagery of 0.9 cm/pixel.
Weismiiller et al. [2020] used this value of resolution to manually interpret fractures in
five 140 sq.m regions within Areas 2 and 4 (see Fig. 3.3). Weismiiller et al. [2020] also
performed automatic interpretation in the five regions using the complex shearlet trans-
form method described in Chapter 2 and quantitatively compared with manual interpre-
tations. The validation of manual with respect to automatic mapping indicated closely
similar fracture patterns, generating confidence in an endeavour to extend the auto-
matic interpretation to larger regions of the outcrop over multiple layers. Passchier et al.
[2021] used the same image dataset with similar resolution to identify jointing genera-
tions from manual interpretations within Areas 2 and 4.

3.4.2. AUTOMATIC TRACING WORKFLOW
We extend the workflow based on the complex-shearlet transform from Chapter 2 to the
photogrammetric dataset. The image data are divided into sub-tiles of 1000 x 1000 pixels
for efficient computation and considering memory requirements. The processing steps
are then applied to each tile separately. This splitting of the images therefore enables
processing on multiple workstations. The realized vector geometries are combined into
shapefiles. The number of image tiles that correspond to each bench is summarized in
Table 3.1 along with approximate areal extent.

Since quality of automatic fracture detection depends on enlarged discontinuities
owing to weathering or otherwise and given that the degree of weathering is spatially
variable, a single set of parameters is insufficient to efficiently extract all exposed traces.
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Table 3.1: Study areas and approximate area covered

Region Imagetiles Approx. area (sq.m)

Area l 58 2034
Area 2 128 6017
Area 3 25 714

Area 4 107 6749
Area 5 34 1473

Therefore, three different sets of shearlet parameters are used for ridge detection yielding
three different ridge image ensembles (E1, E», E3) that capture fractures both subtle and
well-eroded. The three shearlet system parameters used are listed in the data supple-
ment. Various linear combinations (a, b, ¢) are applied to Ej, E», E3 to obtain an optimal
Efinq) for each image tile as per

Efinal =a.E, + b.Es + c.Es. (3.1

This combined ensemble, Ef;,; is then used for further image processing as per the
workflow in Section 2.3.1. The traces extracted from each image tile are then merged
as a single shapefile. An example of an image tile with a ridge ensemble and the cor-
responding vectorized shapefile is depicted in Fig. 3.4. Though the Lilstock outcrop is
a high-quality exposure, there are still sources of false positives owing to erosion, water
puddles, shrubbery, and rubble. These artefacts are removed manually using interactive
GIS tools. The total time taken for automatic mapping for all tiles was 384 hours CPU
time (using an Intel Xeon processor with 4 cores, 3.5 GHz, and 32 GB RAM). The time
taken to clear the artefacts varies between 1-2 hours per image tile depending upon the
image.

Figure 3.4: (a) An image tile (9.3 x 9.3 m) from the Bristol Channel dataset (b) computed ridge ensemble (c) the
vectorized shapefile overlain on the image

3.4.3. SHAPEFILES TO GRAPHS

The automatic traces are in the form of shapefiles. We developed MATLAB routines to
enable conversion of shapefiles of fracture networks into graph data structures and vice-
versa. The conversion results in a primal graph, which can then be converted to a dual
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graph if the sequence of primal graph edges that correspond to a complete fracture from
tip-to-tip can be specified. The graph representations can then be exported in various
graph formats that are readable by graph visualization software and packages such as
Gephi [Bastian et al., 2009], iGraph [Csardi and Nepusz, 2006], and NetworkX [Hagberg
etal., 2008].

3.4.4. MAKING GRAPH REPRESENTATIONS GEOLOGICALLY MEANINGFUL
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Figure 3.5: Sequence of graph manipulation routines to convert shapefiles of automatically traced fracture
segments to geologically significant fracture traces and dual graph representations

The use of automatic tracing may produce fractures that deviate from a manual in-
terpretation. When interpreting by hand, an interpreter utilizes multiple cues to trace a
fracture from tip-to-tip and identify fracture tip topologies. Therefore, using ubiquitous
network metrics such as cumulative length distributions, rose plots, topological sum-
maries on automatically extracted traces can result in skewed results. To this end, we
developed a series of graph manipulation routines that take the raw graph data input
generated from the automatic traces into geologically meaningful data. This workflow is
summarized in Fig. 3.5 and further described in the following sections. The code imple-
mentations of the functions is published as an open repository at Prabhakaran [2021a]
with algorithmic description in Appendix B.

TOPOLOGICAL DISCONTINUITIES

Automatically traced interpretations can contain topological discontinuities. By analysing
automatically-traced networks and comparing them with manual interpretations, we
classify connectivity issues and design specific routines to resolve these discontinuities.
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The three most common topological errors are depicted in Fig. 3.6. These include situa-
tions when

* adegree-1 node is in close proximity to a degree-2 node with near orthogonal an-
gles

* adegree-3 (or Y-node) is present as three closely spaced degree-1 nodes

* two degree-2 nodes with sharp orthogonal angles are in close proximity

.l

Figure 3.6: Common topological errors caused by automatic detection (a) a degree-3 connection inaccurately
traced as a degree-2 node with two nearly orthogonal edges in close proximity to a degree-1 node (b) a degree-
3 connection incorrectly traced as three degree-1 nodes in close proximity (c) two degree-2 nodes with nearly
orthogonal edges that are disconnected

In order to resolve these topological errors in connectivity, we perform a delaunay tri-
angulation [De Berg et al., 2000] on the fracture spatial graphs using the nodes as control
points. The triangulation creates tri-elements around the fracture traces. By inspecting
the histograms of tri-element areas, anomalous elements with very small areas can be
isolated. These small tri-elements are formed at the regions of topological errors or with
very high aspect ratios. Using a suitable cut-off area that is determined by visual inspec-
tion of the small tri-element areas, graph manipulations are performed on the graphs
that resolve the loss of connectivity depending upon the node types and edge properties
involved. The manipulations involve adding / removing edges and nodes and updating
the fracture graph. The three types of manipulations that are done to rectify topological
discontinuities are illustrated in Fig. 3.7 and the sequence of operations are summarized
in Appendix B, Algorithms 2-4.
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Figure 3.7: Detail of rectification of the three types of topological discontinuities using Delaunay triangula-
tion (a) type-1 discontinuity with degree-1 node in close proximity to a sharp-angled degree-node (b) type-2
discontinuity with three degree-1 nodes in close proximity (c) type-3 discontinuity with two degree-2 nodes
having sharp angles in close proximity

|

RESOLVING ARTIFICIAL FRAGMENTATION OF FRACTURE SEGMENTS

Artificial fragmentation of fracture trace happens when traces appear to be connected
and topologically correct to visual inspection but split and saved separately within the
shapefile attribute tables. This kind of situation can happen due to tile-wise image pro-
cessing where fracture polylines that are otherwise continuous, are fragmented and saved
as a cascade of isolated segments. Other reasons are due to the way polylines are fitted
to skeletonized, binary pixel clusters as per the workflow in Fig. 2.1. The skeletoniza-
tion procedure specifies branch points between intersecting fractures. However, due
to varying ridge thickness within the image, it is sometimes possible that segments are
connected but incorrectly labelled from a geological perspective. Such a situation is de-
picted in Fig. 3.8(a).
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(a)

(i

Figure 3.8: Resolving artificial fragmentation (a) an example of an artificially segmented fracture is shown
which is saved as four polyline entries within the shapefile. These are highlighted in magenta. The first seg-
ment (top) is of topology type Y-V-V (where V used to denote a degree-2 node and Y a degree-3 node), second
is a V-V segment, third is a V-Y-V segment, and the last one at the bottom is a V-Y segment. (b) The graph edge
linking converts the fragmented four segments into two segments which are both of Y-Y topology type. The
routine does both merge and split operations to ensure that there are no attribute table entries in the shapefile
that begin or terminate in degree-2 nodes

In order to be geologically consistent, the visually continuous but disconnected seg-
ments have to be combined into a single polyline entity. We develop a graph edge linking
function that first identifies all degree-2 nodes within the graph. For these nodes, node
neighbours with degree 2 are identified and appended into a preliminary node path.
The end nodes of the node path are queried again for further neighbour nodes having
degree-2 and repeated till there are no more such nodes in either direction of the node
path. The resulting node path is now a single connected polyline representing a fracture
segment. Algorithm 5 in Appendix B summarizes the procedure. The effect of the edge
linking is depicted in Fig. 3.8(b).

RESOLVING STEP-OUTS

Automatically identifying fracture edges that belong to a single, continuous fracture from
tip-to-tip is a task that can face complications due to the presence of step-outs or edges
that have degree-3 (or Y-nodes) on either ends. Such Y-Y motifs often form step-outs
which impede continuous path finding as they may strike in a different direction as that
of longer adjacent edges. They turn out to be bottlenecks when we seek to identify long
and continuous paths using segment strike as a search attribute. Examples of such step-
out edges are shown in Figs. 3.9(a) and 3.9(c). To resolve the issue, we specifically filter
for graph edges that are below a certain length threshold that have a degree of 3 on both
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start and terminating ends. Below a certain length threshold corresponding to the reso-
lution of the image, a merge operation can be carried out deleting the step-out and cre-
ating a degree-4 node (see Fig. 3.9.b) after adding three edges and removing one node.
In our case we found that a value of around 1-2 times the image resolution was sufficient
for the merge operations.

Figure 3.9: An example of automatically resolving a stepout by a merge operation (a) stepout Y-Y segment
depicted in red (b) Y-Y segment removed and edges merged to form an X node. An example of automatically
resolving a stepout by a flatten operation from Area 4 (c) stepout segments with varying strike that can cause
loss in continuity when parsing for possible walks (d) stepout segments flattened

Above this length threshold, it is likely that the topology at either end of the step-out
is correct, but the Y-Y edge needs to be flattened to correspond with the strike angle of
one pair of edges on either side (see Fig. 3.9.d). In this case, merging of the step-out may
incorrectly displace some edges of the spatial graph. In this procedure, the edges that
are connected to the start and terminating nodes of each step-out are identified. A walk
is identified for each of these edges. Though the step-out is a geometric feature that im-
pedes the possibility of a walk, there are still possibilities of walks looking upstream on
both directions away from the step-out. A decision is made as to which direction along-
side the step-out provides the best increase in walkability based on length of walk. Once
this is identified, the node of the step-out that causes the bottleneck is moved to a more
preferable alignment. The sequence of graph manipulations involved in this flattening
operation consists of adding three edges, removing three edges, adding a node, and re-
moving one node (see Algorithm 6 in Appendix B). The step-out flattening procedure
therefore improves the walkability in one direction.

STRAIGHTENING FRACTURE SEGMENTS

During piecewise polyline fitting as performed when vectorizing fracture traces (see Fig.
3.10.a), a large number of points are inserted to represent the natural sinuosity of frac-
ture traces. Within the graph representation these points are degree-2 nodes and are
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the predominant topology type. Although these nodes provide useful local information,
in terms of overall macro-network topology, it maybe useful to straighten or flatten the
graph edges by removing these degree-2 nodes and replacing them by single edges be-
tween the non-degree 2 nodes. This type of graph manipulation involves removal of all
edges that either start or end in degree-2 nodes (or both) and addition of single edges
between the non-degree 2 nodes (see Algorithm 7 in Appendix B). The effect of such an
edge straightening operation is depicted in Fig. 3.10(b).

Figure 3.10: An example of straightening of fracture segments (a) original fracture network with piece-wise
linear segments and degree-2 nodes (b) fracture segments which are straightened removing the degree-2 nodes

FROM FRACTURE TRACES TO GEOLOGICALLY SIGNIFICANT FRACTURES
The geological identification of a fracture in the outcrop or from image data is that of
a discontinuity feature that is geometrically continuous with the tip extremities either
abutting another fracture, cutting across another fracture, or terminating within rock
matrix. In a typical manual interpretation using UAV-derived imagery, the interpreter
draws polylines in a digitizing software (eg. Adobe Illustrator, Coreldraw, QGIS, ArcGIS
etc) tracing across image pixels that seemingly correspond to a perceived fracture using
visual cues within the image coupled with specific knowledge of the particular outcrop
and general training in structural geology. There are many ways in which such a GIS-
derived interpretation may be biased and lacking repeatability as discussed in Andrews
et al. [2019] and Peacock et al. [2019]. Given these considerations, it is useful to have an
automated method of obtaining geologically significant fractures (or fracture sets) rather
than just fracture segments. A simple way to assign segments to individual sets is to sort
based on striking angles as is done in popular tools such as FracPaQ [Healy et al., 2017],
and NetworkGT [Nyberg et al., 2018]; however, this may be difficult when fractures are
very sinuous. Additionally as pointed out by Peacock et al. [2018] and Andrews et al.
[2020], orientation sets need not always equate to an age sets and there are drawbacks
involved in only considering strike.

The graph representation of a fracture network is complete when we have list of
nodes, spatial positioning data corresponding to each node, a list of edges with start
and terminating points indexed as per node numberings, and a list of edge sequences to
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represent each fracture. Automatic tracing cannot yield the edge sequences so that they
represent sets of fractures (tip-to-tip). To this end, a function is developed to automati-
cally identify continuous paths along graph edges based on twin rules of connectedness
and small strike variation. The routine considers each edge individually and checks if
adjacent edges fall within the threshold of edge strike, on either ends of the edge. Se-
quences of edges (or walks) are assigned as fractures. The routine is described in Algo-
rithm 8 in Appendix B. An example of a continuous and sinuous fracture automatically
combined from graph segments are shown in Fig. 3.11.

S —
\\%‘}"‘\ . Q\‘\\Q
' |
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Figure 3.11: Continuous and sinuous fracture from Area 4 automatically joined from graph segments with a
strike threshold of 20 degrees. Note that the strike of the start and end segment of the fracture vary by more
than 50 degrees

In a related publication based on the same dataset as ours, Passchier et al. [2021]
manually interpret and classify continuous edges as belonging to a single generation.
We have compared the results of the automated function described in this section to
the manually assigned joint generations of Passchier et al. [2021] and there is generally a
good agreement.

COMPUTING DUAL GRAPHS

A dual graph can be computed from a primal graph if the edges sequences correspond-
ing to individual fractures (tip-to-tip) are known or is computed using function described
in Section 3.4.4. The dual graph depicted in Fig. 3.2(b), was computed from a shapefile in
which fracture id’s of manually interpreted fractures were already been listed. Given the
edge sequence information, obtained either from manual interpretation or automati-
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cally, the procedure to compute the dual is by initializing an adjacency matrix whose
size is equal to number of fractures (A,q; is an n x n matrix where 'n’ is the number of
tip-to-tip fractures). By parsing through the intersections made by each fracture with
others, the sparse adjacency matrix is then built up by filling in rows and columns cor-
responding to fracture intersection. The routine is described in Appendix B, Algorithm
9.

3.5. RESULTS

The methods in Section 3.4 are applied to image tiles corresponding to the five selected
areas and based on these we generate five large networks. The created fracture data are
in the form of spatial graphs and shapefiles. A summary of the number of nodes, edges,
and tip-to-tip fractures (or walks) for each area is tabulated in Table 3.2. Edge/node and
edge/walk ratios are also shown as they give an indication as to the connectedness of
the networks. In order to illustrate the level of detail within the generated network data,
zoomed cut-out regions from Area 2 (see Figs. 3.12.a-c) and Area 4 (see Figs. 3.12.e-
f) are depicted. From the cut-outs of Area 2 in Figs. 3.12(a)-(c), there are clear visual
differences in fracturing even though the orientations of fractures are quite consistent
among all three samplings. This is however, not the case in the cut-outs from Area 4
shown in Figs. 3.12(d)-(f). In Fig. 3.12(e), a radial NW-SE trending fracture pattern that
is orthogonally cut by NE-SW fractures can be observed. The fracturing style is very
different in Fig. 3.12(d) with no radial fracturing, higher fracture intensity, and smaller
bounded blocks. In Fig. 3.12(f), the fracturing intensity is highest with even smaller
bounded blocks.

Table 3.2: Summary of primal graph structure

Region [Edges(e) Nodes(n) e/n Walks(w) e/w  Polygons

Areal 42301 30299 1.39 18078 234 11992
Area 2 364703 228661 1.59 123592 295 136053
Area 3 40243 26372 1.52 16900 2.38 13874
Area 4 365333 235089 1.55 141344 2.58 129690
Area 5 78151 49771 1.57 28892 2.7 27220

3.5.1. LENGTH DISTRIBUTIONS AND FRACTURE SET DIRECTIONS

Trace length distributions corresponding to the five areas are depicted in Fig. 3.13. Trace
length distributions show the lengths from fracture tip-to-tip. These are affected by
boundaries of the sampled regions which may be observed by comparing the plots of
largest areas, 2 and 4, with the other three. In Fig. 3.14(a) and Fig. 3.14(b) we depict frac-
tures plotted by their length classified into three logarithmic bins for Areas 1 & 3 which
are stratigraphically the same layer. Similarly, the length-binned fractures are depicted
for Areas 2, 4 & 5 in Fig. 3.14(c), Fig. 3.14(d), and Fig. 3.14(e) respectively.

The rose plots depicted in Fig. 3.13 are computed from strike data that is a length-
weighted average of the strike of edges that sum up to a tip-to-tip fracture. The rose
plots highlight differences in fracture orientation between the layers. Orientation of the
fractures do not vary significantly in Areas 1 & 3. However, Areas 2 & 4 from the same
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Figure 3.12: Samples of fracture networks from a single stratigraphic layer across Area 2 and 4 highlighting the
differences in fracture network organization. Samples (a), (b), and (c) are from Area 2 and (d), (e), and (f) are
from Area 4

stratigraphic layer have considerably different fracture orientations. This is illustrated
in Fig. 3.14(d) with Area 4 containing curved and radial fractures. However, Area 2 does
not have any curved fractures (see Fig. 3.14.c). Similar to Area 4, Area 5 also has curved
fractures as can be seen in Fig. 3.14(e). The scatter in rose-plots corresponding to Areas
4 & 5 is related to the presence of the curved joints.

From Fig. 3.14(c), Fig. 3.14(d), and Fig. 3.14(e), spatial variations in the distribution
of fractures in Areas 2, 4, and 5 can be observed. The longest joints in Area 2 display a
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Figure 3.13: Fracture network trace maps for all areas with corresponding rose plots and cumulative trace
length distributions

spatial variation with a larger concentration to the SW (see Fig. 3.14.c). In case of Area 4,
the radial and curved fractures which are also the longest are located in the western part
of Area 4 (see Fig. 3.14.d). The occurrence of these long, radial joints diminishes to the
east of Area 4. In the case of Area 5, the long fractures has strikingly different curvature
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Figure 3.14: Plotting fractures by logarithmically spaced length bins

directions towards its east compared to its west (see Fig. 3.14.e).

3.5.2. NETWORK TOPOLOGICAL SUMMARY
From Manzocchi [2002], Sanderson and Nixon [2015], and others, an I-node corresponds
to a fracture tip that is isolated, a Y-node is analogous to fracture tip that has abutting
interactions with other fractures (or splaying fractures), and an X-node represents an in-
tersection where one fracture crosses another fracture. The proportions of each node
type can be summarized in an I-Y-X ternary diagram. To quantify network topology, we
use node degree histograms instead of I-Y-X ternary plots. This is because of the need to
depict node degrees greater than four which are not unusual in large-scale networks as
is observed in the Lilstock pavement. Additionally, in the case of dual graph representa-
tions, where fractures are represented as nodes, the node degree can be larger [Valentini
et al., 2007a]. The node degree distribution of the primal graphs corresponding to the
five networks is depicted in Fig. 3.15. The node degree distribution of the dual graphs
corresponding to the five networks is depicted in Fig. 3.16(a)-(e). Degree distributions
of all the primal graphs indicate that the predominant node topology are Y-nodes with a
70-80 % contribution followed by X-nodes. A summary of primal graph edge types based
on topology is shown in Table 3.3.

The dual graph degree distributions provide insight into the connectivity behaviour
of each network. The topological summary of the dual graphs are tabulated in Table 3.4.
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The node degree value indicates the number of connections that a fracture makes with
other fractures within a network. Maximum node degrees in dual graphs are observed
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Figure 3.17: Correlation between dual graph degree and trace length (a) Area 1 (b) Area 2 (c) Area 3 (d) Area 4

(e) Area 5

Table 3.3: Summary of primal graph edges based on topology

Edgetype Areal Area2 Area3 Area4 Area 5
1-1 4

1-3 4041 7048 1007 5127 783
1-4 139 552 12 87 43

1-5 3 27 1 8

1-6 7 1

3-3 30612 176360 27186 238130 47983
3-4 6815 127218 10355 99922 23793
3-5 182 13740 386 4902 1610
3-6 5 1708 18 329 83
3-7 141 6 23

3-8 9

4-4 478 30074 1161 15094 3327
4-5 25 6328 100 1522 465
4-6 1 884 6 129 29
4-7 63 1 4

4-8 7

5-5 392 4 53 25
5-6 115 9 2

5-7 11 1

6-6 13

6-7 2

Total 42301 364703 40243 365333 78151

from Areas 4 and 5 which contain continuous and long, radial fractures. The correlation
between dual graph degree (number of intersections made a fracture) and the fracture
length is also plotted in Fig. 3.17 depicting a positive correlation between fracture length
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and number of intersections. The number of connections is least in Areas 1 and 3. This is
possibly an effect of sample size as these regions are the smallest and their spatial extent
in the N-W direction is quite thin. Area 2, despite covering more area than Area 5, has a
lesser maximum dual degree.

Table 3.4: Summary of dual graph structure

Region Nodes (n) Edges (e) eln Max degree

Area 1 18078 34077 1.88 65
Area 2 124006 301077 242 177
Area 3 16900 36320 214 73
Area 4 141344 314537 5.27 347
Area 5 28892 65867 2.28 236

3.5.3. BOUNDED AREA DISTRIBUTION
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Figure 3.18: Spatial distribution of polygonal regions highlighting the variation in fracturing across different
areas

The fracture patterns develop and enclose bounded regions of unfractured rocks.
These enclosed polygonal areas are extracted from the spatial graphs by identifying the
primary cycles that are created by edges. The spatial distribution of areas corresponding
to these polygonal regions is depicted in Fig. 3.18 as a chloropleth and depicts the vari-
ation across the layers. Histograms of the area distributions of each layer is depicted in
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Fig. 3.19. Area 1 appears to have the largest block areas, followed by similar distributions
for Areas 3 and 5. The largest Areas 2 and 4 have smaller block areas with visibly more

intensive fracturing.
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Figure 3.19: Bounded area distributions with relative frequency in percentages (a) Area 1 (b) Area 2 (c) Area 3
(d) Area 4 (e) Area 5

3.5.4. SPATIAL Pyy AND Py,

Fracture persistence measures (P; ;) formulated by Dershowitz and Herda [1992] are used
to investigate the spatial differences in fracturing. The fracture intensity, P»; and fracture
density P,y metrics are computed using the box-counting method by overlaying the net-
works with a cartesian grid of box size of 2.5 x 2.5m. Fracture intensity (m/m?) involves
computing 2D trace length per area for each grid box. This is depicted for all areas in
Fig. 3.20(a). Fracture density (m~2) computes the number of segments within each grid
box and this is depicted in Fig. 3.20(b). The persistence results reveals regions within
the outcrop with different fracturing motifs. Area 1 has the least fracturing intensity and
density which is uniform in the spatial distribution. Area 3 also is homogenous in the
type of networks present. The greatest variation is in Area 4 which has clear regions of
low and high P»; and P, with a demarcable boundary. Area 2 has the greatest fractur-
ing intensity among all regions especially concentrated in the south and western parts of
Area 2. Similar intense fracturing regions can also be seen in the north-western periph-
eral parts of Area 4. These are not fracture corridors but progressively intense fracturing
with smaller block areas.
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Figure 3.20: (a) Fracture intensity, Pp; (m/ mz) for all areas (b) Fracture density, Pog (m’2) for all areas

3.6. DISCUSSION

Manually tracing fracture networks from image data is time-consuming and can intro-
duce various types of biases depending upon skill, style, and perseverance of the inter-
preter. These challenges are evident from the observed networks in the structural geol-
ogy literature which are not large and not continuous enough to study spatial network
heterogeneity or do not have sufficient resolution to correctly identify topology. Auto-
matic tracing affords rapid and reproducible network results which can be applied to
large image datasets. In case of the Lilstock pavement, high image resolution, enlarged
apertures due to erosion, high contrast in imagery between the wet apertures and dry
surface, and lack of vegetation, aided in easily applying automatic mapping. One major
drawback associated with automatic interpretations which precludes direct usability by
a structural geologist and which were evident from the results in Chapter 2 is that the
detected segments were not yet organized into geologically meaningful, tip-to-tip frac-
tures.

The treatment of fracture networks as graph data structures with spatial positioning
allows us to perform various sequences of graph manipulations to rectify these issues
and convert the data into geologically realistic fractures. The combined use of automatic
tracing and application of such specific routines have resulted in a spectacular, large-
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scale fracture network dataset with unprecedented spatial coverage and resolution. The
network data is of great relevance as it can be used to obtain valuable insights into spa-
tial arrangements of fracture networks and network morphogenesis. In this section, we
delve into possible reasons for the observed spatial variations in network geomorphol-
ogy. Issues regarding the applicability of automatic mapping and how large-scale net-
work data can be leveraged are also considered.

3.6.1. SPATIAL HETEROGENEITY

One of the interesting results of our fracture maps is the layeral differences in patterns.
Areas 1 and 3 have relatively less spatial variation as can be quantified from spatial plots
of fracturing intensity, density, and polygonal areas (see Fig. 3.20.a-b and Fig. 3.18).
They are also the smallest regions with long and thin strips of exposed rock. Area 1 cor-
responds to regions with the least fracture intensity and density, and highest bounded
areas. The most spatially extensive layer, comprising of Area 2 and 4 depict the most
striking variations. From previous work by Gillespie et al., 2011a, Hancock and Engelder,
1989, Rawnsley et al., 1998 and many others, the long radial, fan-like fracture sets are
hydraulically-driven and originate from stress concentrations on the small fault. This re-
gion in the SE of Area 4 also has the least fracturing intensity with wide spacing between
the radial fractures. The interference of small low-displacement faults can also be seen
in the NE region of Area 2 which again has a low-fracture intensity. Similar to Area 4, Area
5 also contains highly sinuous fractures that can be linked to the NE trending regional
fault. In Area 5, the long, radial fractures have strikingly different curvature directions to-
wards its east as compared to its west (see Fig. 3.14.e). These effects totally disappear in
Areas 1,2, and 3 which have mostly straight fractures. Within Area 2, a trend of high frac-
turing intensity can be observed towards the SW which progressively decreases towards
the NE. Area 5 has the largest fracturing intensity in its centre and this progressively de-
creases to its east-west peripheries. Passchier et al. [2021] highlighted spatial variations
in the presence of joints in the regions covered by Areas 2 and 4. From a total of eight
identified jointing generations, only two are distributed evenly across both areas. Three
sets of joints exclusively appear in Area 2 but are absent in Area 4. Another three sets are
found in both Areas 2 and 4, but they are restricted to certain localized regions. The spa-
tial variation of the polygonal area distributions (Fig. 3.18) follows a similar trend as the
fracture persistence plots (Fig. 3.20a-b). The spatial variation in block areas is likely to
depend upon the thickness variation of limestone and underlying shale layers [Belayneh
and Cosgrove, 2004b].

The reasons behind spatial variation may also originate from factors not observable
from simple photogrammetric data. For example, differences in fracturing may emanate
from local variations in layer thickness, due to changes in mineralogical composition of
the host-rock, and orientation/strengths of pre-existing structures. Our image resolu-
tion does not include vein or stylolite networks which are also present in the outcrop
and whose spatial variation may have an influence on the development and of the bar-
ren fracture networks that we have mapped. Spatial layer thickness can be estimated
by methods such as ground penetrating radar (GPR) and mineralogical variation can be
explored using UAV-based sensors such as magnetic and hyperspectral imaging. There-
fore, it is suggested that further investigations into spatial variation in fracture networks
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should incorporate data fusion from a variety of UAV-mounted sensors, coupled with
field-level and ground truthing of features that are below remote sensing spatial resolu-
tions.

3.6.2. FROM TRACES TO TIMING

Previous work on the Bristol Channel summarized in Section 3.3 focussed on relation-
ship between structural history of the region, exposed fractures, and other large defor-
mation features. Identifying fracture generations and sequences of network evolution is
routinely done based on geometric criteria and topological relationships of fracture tips,
sometimes supported by geochemical analysis of cement within fractures. The prob-
lem of identifying fracture timing from the automatically traced fractures was not in the
scope of this contribution. Using the same dataset as we have used, Passchier et al. [2021]
identified eight generations of fractures traced segments without resorting to a fully de-
tailed network interpretation. The oldest generations were considered to be the most
continuous and longest which do not abut against others. Subsequent generations were
then identified based on strike and abutting criteria w.r.t each older joints generation.
In their study, a correlation between length and age seemed probable with only few ex-
ceptions. In the same work, there are also highlighted cases where sequential rule-based
joint identification results in Escherian paradoxes.

Another study by Wyller [2019] focussed on an area that roughly conforms to the
western parts of Area 4 and was able to identify ten sets of joints using statistical analysis
of joint lengths, orientations, and topology. In this study as well, assigning hierarchies
based on abutting relations result in paradoxes which Procter and Sanderson [2018] and
Wyller [2019] refer to as backcycling between joint generations.

The above studies are based on the assumption that abutting and cross-cutting re-
lationships are a sufficient criteria, if not necessary, to be able to delineate fracture sets
into a hierarchy of fracturing episodes. Such approaches may not always suffice, for in-
stance, if fracturing drivers are due to high-deformation episodes or if there is evidence
of complex structural inheritance. In outcrops such as the Lilstock pavement, where
fractures are mostly formed in low-deformation settings, simple geometric criteria as
proposed by Passchier et al. [2021] may be programmed to automatically assign frac-
tures into hierarchical episodes. Given large networks and well-defined criteria, if might
be more prudent to use statistical strategies such as Markov chains to automatically as-
sign generations [Snyder and Waldron, 2018]. The combinatorial approach of Potts and
Reddy [2000] in the form of younging tables to identify deformation histories may also
be applied in an automated manner. In future work, such automated approaches may
be applied to the full-detailed fracture networks presented in this chapter to compare
automatically-assigned generations to those that have been manually-assigned in previ-
ous literature relevant to the Lilstock pavement.

3.6.3. EXTENT OF APPLICABILITY OF AUTOMATIC METHODS

We have been able to extract a very large number of geologically relevant fracture traces
focussing only on the opening-mode fractures that are visible from a flying altitude of
20-25 m. The quality of the interpretations are comparable to the work of a manual
interpreter and this is attained in much less time [Weismiiller et al., 2020]. Often, the
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error in automatic tracing results are within the limits of subjectivity associated with
even a well-trained interpreter. The largest variation in interpretation between man-
ual and automatic is the creation of stepped-out segments. This is due to the fact that
unlike manual interpretation where the interpreter can make a decision on a possible
fracture intersection considering the full outcrop image, automatic methods make use
of local information in the image which leads to uncertainty in regions which are more
eroded than normal. The presence of step-outs sections was observed by Weismiiller
et al. [2020] when comparing topological differences between the two approaches and
revealed that manual interpretations result in topological distributions skewed to higher
node degrees. From a network connectivity point-of-view, such a configuration may be
correct but this can result in shorter length distributions. Despite the fact that multiple
interpreters may differ in the choice of a fracture tip start and end (as shown by Andrews
et al, 2019 in experiments with multiple participants), the issue of curtailed length dis-
tributions are less likely to arise in manual tracing as interpreters use multiple global
cues available within an image to decide the continuity of a trace. We addressed these
issues using the step-out fixing functions. The methods developed here are extendable
to other photogrammetric datasets.

3.6.4. EXTENSION OF OUTCROP FRACTURE NETWORK DATA

In subsurface applications, geomodelers often have to contend with sparse borehole
fracture data as the only available ground-truth. Since geophysical imaging resolution
are often too coarse to resolve subsurface fractures, outcropping fractures have long
been considered as analogues to guide subsurface discrete fracture network models. In a
typical subsurface situation, it is required to be able to extrapolate away and interpolate
between points of well control where fracture data exists in the form of cores, forma-
tion micro-images (FMI), and resistive/acoustic logging. This is a highly ill-posed prob-
lem as the naturally heterogeneous behaviour of fracture patterns are typically under-
represented. This is due to inherent sampling bias within each well data point and well
as uncertainty in relationship between large-scale geological drivers.

The commonly used methods for subsurface fracture network modelling are based
on stochastic point processes that use 1D well data input such as fracture size, type, in-
tensity, number of sets, and cumulative length distributions [Thovert et al., 2017]. Stochas-
tically generated DFNs that utilize such sparse data to extrapolate, are often limited in
their ability to represent fracture clustering effects, spatial variations in fracture orien-
tation, and topological connections, all of which are observable in natural fracture net-
works.

Alternative methods to stochastic point process-based methods such as the semi-
variogram approach of Hanke et al. [2018] applied to areal fracture intensity and frac-
ture intersection density maps, and the multipoint statistics approach of Bruna et al.
[2019a,b] which use training images of user-defined outcrops can help in incorporating
more geologically-realistic fracture networks into geological models.

In this respect, one needs to assess the fracture network properties to be replicated
and for which 2D fracture trace maps can provide additional value. From our analy-
sis of the large-scale Lilstock fracture networks, we would suggest that DFN generating
methods should also be able to replicate bounded area distributions. This may be justi-
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fied by the fact that fracture networks influence effective rock permeability also through
time-dependent diffusive effects from the matrix. Since matrix block area distributions
contributes to the matrix-fracture fluid exchange, it needs to be represented as a pa-
rameter. A second useful parameter that arises from 2D trace maps is the correlation
between fracture length and number of intersections. From our analysis of dual graphs,
(Fig. 3.16) we find this to be positively-correlated.

In the work of Andresen et al. [2013] and Vevatne et al. [2014] where fractures are rep-
resented using dual graphs, the networks display the property of disassortativity in which
nodes of larger degree (longer fractures) share coordination with nodes of a smaller de-
gree. This is also referred to as small-world behaviour by Watts and Strogatz [1998], a
property shared by many other classes of networks. A DFN generating technique must
also be able to replicate disassortativity in network realizations.

At this juncture, we revisit the point on applicability of outcrop-derived fracture net-
works. Recent work by Laubach et al. [2019] have raised questions on the use of fracture
network data that has no provable correlation to subsurface fractures. Ukar et al. [2019]
and Laubach et al. [2019] proposed protocols to identify suitable analogues based on
mineral-lining evidence in fractures. In the case of network data presented in this arti-
cle, we repeat this caveat that though the data is useful in studying the fracture network
properties and their spatial distribution, caution needs to be exerted when extrapolating
to subsurface conditions.

Although the results presented in this contribution have a very clear network struc-
ture with a very low proportion of I-nodes, many outcrop fracture studies and subsurface
data indicate the prevalence of sub-parallel fractures where the isolated type of topology
is the most common. Some examples of such systems are documented by Odling [1997],
National Research Council [1996], Wiistefeld [2010] etc. Such fractured systems which
have poor connectivity among the fractures still have an impact on fluid flow behaviour
[Philip et al., 2005], and there is a need for large-scale data pertaining to such systems.

3.7. CONCLUSION

We present automatically extracted, large-scale fracture networks from limestone pave-
ments the Bristol Channel, UK using photogrammetric data previously published by
Weismiiller et al. [2020]. The automatic extraction process combines methods from
Chapter 2 and a series of programmatic routines described in this chapter. The functions
developed receive fracture network input in the form of a graph data structure, perform
node/edge manipulations on the graph so as to rectify issues such as lack of connectiv-
ity, artificial segmentation, and linking of segments. The resultant graphs can then be
converted into geologically significant fracture traces amenable for further analysis. In
summary, the main findings are listed as:

e Fracture networks from five fractured limestone pavements spread over approxi-
mately 17,000 sq.m are automatically extracted using the complex shearlet trans-
form method from UAV-borne photogrammetric imagery. From a spatial graph
perspective, the number of fracture segments or edges is nearly 800,000.

* Aset of programmatic functions is designed to perform topological manipulations
on fracture segments, resolve discontinuities, resolve artificial fragmentation, and
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combine segments into geologically significant fractures. The programmatic rou-
tines are applied to the automatically extracted fracture segments and a large-scale
fracture dataset comprising around 350,000 fractures is presented.

* Length distributions of fracture networks corresponding to the five regions fol-
low a power-law scaling. Fracture orientations in two regions show considerable
scatter owing to presence of sinuous fractures, while fractures in the other three
regions are organized into well-defined orientation clusters.

* Analysis of node degree distributions of primal graphs indicate that the most com-
mon topology type is the degree-3 node or Y-node indicating the probable sequen-
tial development of the networks in each of the five studied outcrops with younger
and shorter fractures abutting on to older and longer fractures.

* In all the mapped areas, degree distributions of dual graphs positively correlate to
the total fracture lengths highlighting the fact that longest fractures are likely to
have the largest topological length. All the five networks display this property of
disassortativity where fractures possessing smaller degree attach on to fractures
possessing a higher degree.

* The networks possess both inter-network and intra-network variability despite be-
longing to similar stratigraphic layers and in weakly deformed settings. The vari-
ation is quantified using spatial maps of block area distributions, fracture density,
and fracture intensity, and reveal that fracturing patterns in the Lilstock pavement
are heterogeneous over distances of tens of metres.






QUANTIFYING SPATIAL VARIATION
IN FRACTURE NETWORKS

Rock fractures organize as networks, exhibiting natural variation in their spatial arrange-
ments. Therefore, identifying, quantifying, and comparing variations in spatial arrange-
ments within network geometries are of interest when explicit fracture representations or
discrete fracture network models are chosen to capture the influence of fractures on bulk
rock behaviour. By treating fracture networks as spatial graphs, in this chapter we intro-
duce a novel approach to quantify spatial variation. The method combines graph similar-
ity measures with hierarchical clustering and is applied to investigate the spatial variation
within large-scale 2D fracture networks digitized from the well-known Lilstock limestone
pavements, Bristol Channel, UK. We consider three large, fractured regions, comprising
nearly 300,000 fractures spread over 14,200 sq.m. from the Lilstock pavements. Using
a moving-window sampling approach, we first subsample the large networks into sub-
graphs. Four graph similarity measures: fingerprint distance, D-measure, NetLSD, and
portrait divergence, that encapsulate topological relationships and geometry of fracture
networks, are then used to compute pair-wise sub-graph distances serving as input for the
statistical hierarchical clustering technique. In the form of hierarchical dendrograms and
derived spatial variation maps, the results indicate spatial autocorrelation with localized
spatial clusters that gradually vary over distances of tens of metres with visually discern-
able and quantifiable boundaries. Fractures within the identified clusters exhibit differ-
ences in fracture orientations and topology. The comparison of graph similarity-derived
clusters with fracture persistence measures indicate an intra-network spatial variation
that is not immediately obvious from the ubiquitous fracture intensity and density maps.
The proposed method provides a quantitative way to identify spatial variations in fracture
networks, guiding stochastic and geostatistical approaches to fracture network modelling.

This chapter is based on Prabhakaran et al. [2021a], Investigating spatial heterogeneity within fracture net-
works using hierarchical clustering and graph distance metrics, Solid Earth, In Press
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4.1. INTRODUCTION

Fracture networks in rocks develop due to loading paths that vary over geological time-
scale [Laubach et al., 2019]. The evolution of the network exhibits characteristics of a
complex system. There is feedback between the evolving spatial structure and the rock
substrate in which the networks are positioned [Laubach et al., 2018b]. The resulting
spatial arrangement that emerges after cumulative network evolution is of considerable
interest as it influences flow, transport, and geomechanical stability in multiple anthro-
pogenic subsurface applications such as geothermal energy [Vidal et al., 2017], nuclear
waste disposal [Wang and Hudson, 2015], aquifer management [Witherspoon, 1986],
and hydrocarbon exploitation [Nelson, 2001]. Systematically documenting near-surface
fracture patterns is essential, for example, in mining applications where fracture patterns
often provide clues to ore deposit patterns [Jelsma et al., 2004], and in geotechnical en-
gineering, where fractures influence stability in human-made structures such as tunnels
[Leietal., 2017].

An important property of natural fracture networks is that of spatial organization,
which means that the arrangements are not random but follow a statistically discern-
able pattern. One can view the spatial arrangement of fractures as a set of objects within
a geographical reference system. Within such a framework, fracture objects are either
regularly spaced, irregularly spaced with statistically significant regions of close spacing,
and irregularly spaced with statistically insignificant regions of close spacing [Laubach
etal., 2018b]. An alternate framework is a network, where fracture objects are described
in relation to one another [Andresen et al., 2013, Sanderson and Nixon, 2015, Valentini
etal., 2007b]. Spatial variations in fracture network organization are quite common. The
physical phenomena commonly used to explain spatial variation in fracture arrange-
ments are stress shadowing, layer thickness differences, host rock lithology, layered me-
chanical anisotropy, high-strain events such as faulting/folding, and diagenesis. How-
ever, it is generally not easy to associate a type of spatial arrangement to any unique set
of input boundary conditions as similar loading paths can lead to diverging patterns,
and dissimilar loading paths can lead to converging patterns [Laubach et al., 2019].

Quantifying variations in spatial arrangements of fractures involves the sampling of
fracture data. Such quantifications can be in the form of 1D (using scanline methods,
borehole sampling), in 2D (fracture trace maps from outcrop imagery), or 3D (ground-
penetrating radar, microseismic). 1D scanlines provide a method to quantify arrange-
ments and variation, and several statistical measures have been proposed, such as frac-
ture spacing [Priest and Hudson, 1976], fracture intensity [Dershowitz and Herda, 1992],
coefficient of variation [Gillespie et al., 1993], normalized correlation count [Marrett
et al., 2018], and cumulative spacing derivative [Bistacchi et al., 2020]. These measure-
ments, however, only indicate the variation of fracture arrangements on the scanline and
fail to depict the variation in directions away from the scanline direction. Scanlines do
not provide information on properties such as fracture length, spatial arrangements, and
relationships with other fractures.

2D fracture trace maps are especially useful as this type of data combines both geo-
metric and topological information in the form of a network. Recent advances in UAV-
photogrammetry [Bemis et al., 2014, Bisdom et al,, 2017] and automated image pro-
cessing algorithms [Prabhakaran et al., 2019a] have led to large datasets of 2D fracture
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traces that reveal much more about network attributes than is possible from 1D sam-
pling. Given such large datasets with rich information, it is pertinent to directly quantify
spatial variation from the network structure. Spatial fracture persistence [Dershowitz
and Herda, 1992] can quantify 2D spatial variation but only considers some aspects of
the network (such as the sum of trace lengths, number of traces, etc., within a sampling
region). Thus, there is a need for more advanced techniques specific to 2D fracture trace
data and which can use the combined geometric and topological structure.

From a geostatistical perspective, the concept of spatial variability describes how a
measurable attribute varies across a spatial domain [Deutsch, 2002]. Quantifying mag-
nitude and directional dependence of the variability can also be done using geostatisti-
cal tools, provided there is a means to measure variability across multiple spatial sam-
ples. The variability in fracture data has typically been reduced to variability in attributes
(such as fracture length by sampling area, number of intersections, number of sets, and
orientations), and attribute variability used to make decisions of stationarity. The iden-
tification of representative element volumes (REVs) then follows from the choice of sta-
tionarity. However, given that natural fracture networks display spatial heterogeneity,
the suitability of such REVs based on stationarity assumptions needs to be re-examined.
Therefore, it is interesting to compare network variation (rather than attribute variation)
across the spatial domain. Any comparative method must retain topological and geo-
metric structures encoded within the spatial samples.

4.2. GRAPH THEORY IN FRACTURE NETWORK ANALYSIS

4.2.1. FRACTURE NETWORKS AS GRAPHS

Many authors have suggested using graph theory for the characterization of fracture
networks [such as Andresen et al., 2013, Sanderson and Nixon, 2015, Sanderson et al.,
2019, Valentini et al., 2007b, Vevatne et al., 2014]. In graph theory and network science,
graphs are structures that comprise a set of edges and vertices representing relationships
between data. In fracture networks, the vertices are intersections between fractures,
and the edges represented by fracture segments connecting the vertices [Sanderson and
Nixon, 2015]. By assigning positional information to the vertices (also called nodes),
fractures in the form of graphs encapsulate both topological and spatial information
[Sanderson et al., 2019]. An alternate graph representation is when fractures from tip-
to-tip are vertices, and intersections with other fractures are edges. Barthelemy [2018]
refers to these types of representations as to primal and dual forms, respectively. Oth-
ers, such as Doolaeghe et al. [2020], call the two representations as intersection graphs
and fracture graphs.

We had previously depicted an example of a fracture network in its primal form (see
Fig. 3.2.a) and in its dual form (see Fig. 3.2.b). The degree of a graph node is simply
the number of edges that are incident at a particular node. As seen in the primal graph
in Fig. 3.2.(e), the maximum node degree is 6, with the most common degree value be-
ing 3. This type of degree distribution is typical for a spatial graph in which physical
constraints limit the maximum possible node degree. We may note that node degrees
in spatial graph representations of fracture networks are most likely to be 1,3, or 4. For
fracture networks interpreted from outcrop images as depicted in Fig. 3.2(a), eroded
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fractures and enlarged apertures may lead to higher degrees due to issues in resolving
closely spaced nodes.

In the case of the alternate representation, referred to as dual graphs by Barthelemy
[2018] and depicted in Fig. 3.2(f), the maximum degree can be much higher, and the
longest fractures that have the highest number of intersections also have the highest
degree. Andresen et al. [2013] and Vevatne et al. [2014] suggested that fracture networks
are disassortative in that shorter fractures preferentially attach on to the longer fractures.
The property of disassortativity is quantitatively defined using assortativity coefficients
[Newman, 2002] with disassortative networks having negative assortativity coefficients.
Andresen et al. [2013] and Vevatne et al. [2014] report negative assortativity coefficients
for fracture networks that are represented in the dual form. From Fig. 3.17, for the Bristol
Channel fracture data, such a correlation between dual graph node degree and length is
observed.
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Figure 4.1: (a) An unweighted planar graph with six nodes and seven edges (b) adjacency matrix of unweighted
graph (c) a weighted planar graph with edge weights proportional to euclidean distances between connecting
nodes (d) weighted sparse adjacency matrix for weighted planar graph (e) a directed, unweighted graph (f)
adjacency matrix of directed graph

In graph representations, weights can be assigned to edges that are proportional to
the importance of that edge. In the case of fracture networks in the primal form, this can
be the euclidean distance between the nodes (or fracture edge intersections). The weight
may also be the direction cosine of the particular edge that indicates orientation. In the
dual graph representation, intersections between fractures represent the edges. There-
fore the edge weight may be specified in terms of intersection angle. Graphs may also be
directed with a specific direction to edges. In the case of spatial graphs derived from frac-
ture networks, an undirected but weighted representation is sufficient. Fig. 4.1(a), Fig.
4.1(c), and Fig. 4.1(e) depicts examples of unweighted, weighted, and directed planar
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graphs, respectively. The corresponding adjacency matrices are depicted in Fig. 4.1(b),
Fig. 4.1(d), and Fig. 4.1(f).

4.2.2. GRAPH DISTANCE MEASURES TO QUANTIFY NETWORK SIMILARITY
Several graph similarity measures exist within the graph theory literature to compare
graphs [see Emmert-Streib et al., 2016, Hartle et al., 2020, Tantardini et al., 2019 for recent
reviews]. Graph comparisons are a challenging, non-trivial problem in terms of comput-
ing complexity [Schieber et al., 2017]. Still, various measures exist that can capture and
highlight useful aspects of the graph structure that facilitate comparisons. Graph isomor-
phismbetween two graphs implies that there exists a series of necessary conditions such
as an equal number of nodes, edges, degree sequences, and sufficient conditions such as
equal adjacency matrices [Van Steen, 2010]. An isomorphism test on two graphs G; and
G, can only yield two results, either isomorphic or not. Graph similarity can therefore
be differentiated from graph isomorphism in that the latter comparison can only return
a binary outcome. Graph similarity on G; and Gy, on the other hand, returns a real-
valued quantity that converges to zero when the two graphs approach isomorphism (or
complete similarity).

Tantardini et al. [2019] classify distance measures based on whether the metric is
capable of comparing graphs with an unequal number of nodes or not. The metrics may
also be classified based on whether they can also handle weighted and directed graphs.
Using a graph-similarity measure on a fracture network, we can explore spatial variations
in network structure by comparing multiple sampling points.

4.2.3. COMBINING DISSIMILARITY MEASURES WITH CLUSTERING ALGORITHMS
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Figure 4.2: A simple example of hierarchical clustering using euclidean distance (a) 10 randomly positioned
points in 2D space (b) dendrogram computed from hierarchical clustering using the euclidean distance de-
picting clusters of the 10 individual points at different levels organized into a hierarchy. The procedure of
hierarchical clustering is shown in Algorithm 1.

Since we are interested in quantifying spatial variability, we may recast the problem
as that of identifying clusters within the network. Clustering is also referred to as unsu-
pervised classification and is a process of finding groups within a set of objects with an
assigned measurement [Everitt et al., 2011]. If we consider a dataset, D = [X], X2, ...Xy],
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containing 'n’ data samples, clustering then implies arranging the elements of D into
'm’ distinct subsets, C = [Cy, Cs,...Cy;], where m < n. From a statistical perspective, the
clustering task is different from classification because the former is exploratory, whereas
the latter is predictive, although both attempt to assign labels. Therefore clustering must
precede classification.

In the existing literature on fracture networks, assigning labels to specific perceived
archetypal networks (or end-members) is standard. These typologies include terms such
as orthogonal, nested, ladder-like, conjugated, polygonal, corridors, etc. [Bruna et al.,
2019a,b, Peacock et al., 2018]. However, when faced with the reality of outcrop-derived
2D fracture trace data, it is not easy to assign such labels. Therefore, clustering is a sig-
nificant and necessary step in exploratory fracture data analysis.

Hierarchical clustering (HC) is an unsupervised statistical clustering method [Kauf-
man, 1990] that can identify clusters within a set of observations given a distance matrix
computed by applying a well-defined distance function, pair-wise on each observation.
In contrast to other clustering methods such as k-means or k-medoids, which require
an a priori known number of clusters as input arguments, HC re-organizes observations
into hierarchical representations from which the user can pick a level of granularity. At
the lowest level, there is just one cluster containing all the observations. At the highest
level, the number of clusters is equal to the observations. HC algorithms are referred to
as agglomerative or divisive depending upon whether they begin from a lower level or
from the highest level. The clustering then organises the discrete data into a hierarchical
dendrogram structure that positions the clusters based on the magnitude of similarity.
By combining graph distance computations across spatially distinct samplings with un-
supervised HC, cluster detection automatically leads to quantified spatial variation. A
simple example of HC is illustrated on a set of randomly distributed points in space (see
Fig. 4.2.a). The result is the hierarchical dendrogram structure depicted in Fig. 4.2(b).

4.3. FRACTURE DATASETS

To validate the proposed approach based on graph distance metrics and hierarchical
clustering, we utilize three large-scale fracture networks from Chapter 3 (see Fig. 4.3).
There is considerable spatial variation in the jointing. From previous literature docu-
menting joints within the Lilstock pavements, the spatial variation is attributed to mul-
tiple reasons. The proposed explanations include proximity and influence of faults ex-
plained by fluid-driven radial-jointing emanating from asperities within fault [e.g., Gille-
spie et al., 1993, Rawnsley et al., 1998], spatial variation of thicknesses of intercalated
limestone and shale layers (e.g., Belayneh, 2004), proximity to high-deformation features
such as folding [e.g., Belayneh and Cosgrove, 2004a], the interplay between regional and
local stresses resulting in complex stress fields [e.g., Whitaker and Engelder, 2005], in-
heritance from the spatial distribution of pre-existing vein/stylolite networks that influ-
enced later joint network development [e.g., Dart et al., 1995, Wyller, 2019], and synk-
inematic cementation in veins affecting later development of joints [Hooker and Katz,
2015]. Recent work on fractures at the Kilve outcrop [Procter and Sanderson, 2018], ex-
posing the same geological units as those considered in this work, conclude that anoma-
lous fracture intensity exists in fracturing at various locations and suggest that variability
in fracture intensity cannot be fully explained by variations in thickness, compositional,
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Figure 4.3: Overview of fracture networks corresponding to the three considered regions. This map is derived
from an open image dataset published by Weismiiller et al. [2020] and available for download with a CC-BY
license

or textural variations.

Table 4.1: Summary statistics for the three regions

Region Approx. area (sq.m)  Fractures Edges Nodes
Region1l 6017 124006 364703 228661
Region2 6749 141344 365333 235089
Region3 1473 28892 78151 49771

From this dataset, we utilize fracture networks corresponding to three contiguous re-
gions. Figure. 4.3 depicts the three areas’ spatial extent labelled as Regions 1 to 3. The
intensity of fracturing is such that the spatial graphs corresponding to each region have
a single connected component. Table 4.1 tabulates summary statistics for the three net-
works. The number of edges and nodes correspond to the primal graph representation.
What is referred to as fracturesin Table 4.1 are sequences of graph edges that are clubbed
together based on continuity and a strike direction threshold (or number of dual graph
nodes). Regions 1 and 2 correspond to a single stratigraphic layer but, owing to erosion,
they are not contiguous within the outcrop. We treat them separately in our analysis of
spatial variation.

The detailed resolution, topological accuracy, and spatial extent of the traced net-
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Figure 4.4: Comparison of the three regions in terms of networks, orientations and length distributions. Map
dimensions are in metres.

works make the dataset appropriate for a detailed analysis of spatial variation in frac-
turing. The networks have significant intra- and inter-network variability in fracturing.
Figure. 4.4 and Fig. 4.5 illustrate these differences. From Fig. 4.4, the fracture orienta-
tions of Region 1 depict discernable angular bins of fracture orientations. On the other
hand, rose plots of Regions 2 and 3 show considerable scatter owing to the presence of
long and curved fractures. Fracture length distributions are different, with Region 2 hav-
ing the longest fractures and Region 1 the shortest. The distribution of joints within a
particular length bin is also highly variable. In Fig. 4.5, the cumulative variation in the
strike along individual fracture edges that comprise a tip-to-tip fracture is plotted as a
function of the total length. The slope of the scatter plots give an indication of the frac-
ture curvature. The slope of the scatter plot is higher in Regions 2 and 3 than in Region
1. We interpret the curvature to, therefore, be the least in Region 1.
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Figure 4.5: Correlation between sum of strike differences of fracture segments constituting tip-to-tip fractures
versus total fracture length for the three regions
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4.4.1. SUB-SAMPLING THE NETWORK DATA

24 Sub-graph circular sampling with a spacing =5 m, diameter =7.5 m
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Figure 4.6: Sub-sampling of a fracture graph corresponding to full region into sub-graphs of 7.5 m diameter
and spacing of 5 m

We circularly sample the fracture networks on a cartesian grid with a sub-graph ex-
tracted within a circular region centered at each grid point. The grid spacing-to-circle di-
ameter is maintained such that neighboring sub-graphs share some portion of the area
(see Fig. 4.6). Near the networks’ boundaries, the sub-graphs are either too small or re-
sult in disconnected graph components. We neglect these samples so that they do not
affect the clustering results. The process of circular sampling creates edge nodes with
degree 1, which has the effect of altering node topology by introducing isolated, degree-
1 nodes. To prevent this from impacting clustering results, we remove all edges from
the sub-graphs emanating from degree-1 nodes that contact the periphery of the circu-
lar sample. This effect is illustrated in Fig. 4.7. Each sub-graph can now be compared
to every other sub-graph using a graph distance metric to compute a pair-wise distance
matrix. The distance matrix serves as the input to the hierarchical clustering algorithm.

For N sub-graphs, the number of comparisons necessary are w The compu-
tational complexity of graph comparison increases polynomially with the size of sub-
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Figure 4.7: Treating isolated nodes and dangling edges that arise due to circular-sampling (a) circularly sam-

pled subgraph with a diameter of 7.5 m (b) edges connected to isolated nodes intersected by circle (c) subgraph
after removing isolated nodes and corresponding dangling edges

Table 4.2: Number of subgraphs obtained per region

Region No. of sub-graphs
Region1l 219
Region2 212
Region3 117

graphs in terms of node sizes. Since the number of comparisons increases quadratically
with the number of sub-graphs, we seek to balance grid spacing and sampling diameter.
For Regions 1 and 2, we choose a spacing of 5 metres for circularly sampled subgraphs
with a diameter of 7.5 m. For Region 3, which is also the smallest region, a spacing of 5
metres would lead to quite a smaller number of sub-graphs. Therefore, we use a more
dense spacing of 3 metres with a diameter of 7.5 m. Table 4.2 tabulates the number of
sub-graphs pertaining to each region.

4.4.2. GRAPH SIMILARITY MEASURES
We use the following four graph similarity measures to compare the sub-graphs.

» Fingerprint Distance [Louf and Barthelemy, 2014]
* D-measure [Schieber et al., 2017]

e NetLSD [Tsitsulin et al., 2018]

 Portrait Divergence [Bagrow and Bollt, 2019]

The performance of these similarity measures have been validated previously by Har-
tle et al. [2020] and Tantardini et al. [2019] for a variety of benchmark graph datasets.
Each similarity measure is described briefly in the following subsections. The reader is
referred to the references above for further details on the similarity measures.

FINGERPRINT DISTANCE

The fingerprint distance introduced by Louf and Barthelemy [2014] is purely geomet-
ric and combines statistics of block faces and shape factors in computing a probability
distribution of a spatial graph. Louf and Barthelemy [2014] formulated the measure in
the context of quantifying differences in street patterns. A block denotes the 2D region
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enclosed by graph edges. For any given spatial graph, this corresponds to the num-
ber of bounded sub-graphs or primary cycles. We neglect isolated fractures and those
having dead ends when computing these blocks. Given the network intensity in our
dataset, such isolated fractures are minimal. Every block has an associated shape factor,
"¢’ which is expressed in terms of block area’ A’ and circumscribing circle area, 'A,’,

Ame®

A
oy

¢ (4.1

$=0.41 $=0.68
(@ ®
$=0.17 $=0.49 $=0.22

Figure 4.8: (a) shape factors for regular block shapes with equal edge lengths (b) shape factors for polygonal
blocks resulting from real fracture networks in Region 1 (dimensions are relative)

The value of ¢ is always smaller than 1, with larger values meaning that the block face
shape is closer to that of a regular polygon. Figure. 4.8(a) depicts shape factors of regular
polygons versus that of polygons derived from spatial networks in Fig. 4.8(b). No unique
correspondence exists between a particular shape and a magnitude of ¢; however, the
overall distribution of ¢ indicates reveals block shape distribution patterns and high-
lights differences between spatial graphs. The shape factor alone does not fully serve
as a similarity measure as blocks can have similar shapes but different face areas. The
distribution of the block-face areas is binned logarithmically to integrate information
from the shape factor and block area distributions. A conditional probability distribu-
tion, P(¢p| A)P(A), is then defined representing the contribution of P(¢) for each area bin
and the summation of which yields the fingerprint curve, P(¢),

P(¢p)=)_P(PlAP(A). 4.2)
A

An example of a fingerprint, so named by Louf and Barthelemy [2014], is depicted in
Fig. 4.9(e) and Fig. 4.9(j), with the distribution curves for three area bins, for two fracture
networks derived from image tiles (see Figs. 4.9.b,c,f,g) corresponding to Region 1 (Fig.
4.9.a). The curves in Fig. 4.9(e) and Fig. 4.9(j) encapsulates information based on shape
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Figure 4.9: (a) Overview of Region 1 with two selected 1000 x 1000 pixel image tiles (b) enlarged view of first
image tile (c) fracture network corresponding to first tile as a spatial graph with dimensions of 8.6 m x 6.75
m and having 3583 edges and 2382 nodes (d) block face areas coloured as per three area bins, 0-100 cm2,
100-1000 cm?, and 1000-10000 cm? (e) P(¢) or fingerprint of the sub-graph depicting the combined effects of
area and shape factor, ¢ pertaining to the three area bins. (f) enlarged view of second image tile (g) fracture
network corresponding to second image tile as a spatial graph with 5418 edges and 3539 nodes (h) block face
areas binned logarithmically (i) fingerprint of second spatial graph. (a),(b), and (f) are derived from images
contained in the open dataset (CC-BY license) published by Weismiiller et al. [2020]

factors and block areas (see Figs. 4.9.d,h), including the proportional contribution from
all logarithmic area bins considered.

Denoting f, (¢) as the ratio of the number of faces with a shape factor '¢’ thatliein a
bin’a’ over the total number of faces for that graph, a distance d, between two graphs G,
and G is computed by integrating over f (¢p) for the two different graphs. The distance
based on f,(¢) of the two graphs for a single area bin is defined as:

1
da(Ga, Gy) = fo 4 - fL ()" dg 4.3)

As per Louf and Barthelemy [2014], the value of n can either be 1 or 2. We choose
n =1 in our computation. The global fingerprint distance Drp between G, and G can
then be computed summing over all area bins «,
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Dpp(Ga,Gp) =Y de(Ga, Gp)* (4.4)
a

A MATLAB implementation of the fingerprint distance is presented in Prabhakaran
[2021b] and we computed the distance matrix for all sub-graphs corresponding to the
three regions using this implementation.

D-MEASURE

The D-measure introduced by Schieber et al. [2017] is a three-component distance met-
ric with weighting constants for each component. The three properties of graphs com-
pared are the network node dispersion (NND), node distance distribution (i), and the
alpha centrality (a). The dissimilarity measure, Dpyy, is the weighted sum:

F (g, tn)

D Jh) =
pm (g, h) = un log?

+wy ‘\/NND(g)— \/NND(h)‘ +

ws ( \/ﬂPa<g),Pa(h)) . \/f(Pa(gC),Pa(hc'))

, (4.5
2 log2 log2 ) (45)

where ¢ indicates the Jensen-Shannon divergence. The constants w;, w», and ws in Eq.
(4.5) are real and non-negative weights such that w; + w3 + w3 = 1.

As per Schieber et al. [2017] the first term in Eq. (4.5) compares averaged connectiv-
ity node’s patterns as per node distance distribution. Schieber et al. [2017] define NND,
within the second term, as a measure of the heterogeneity of a graph with respect to con-
nectivity distances that capture global topological differences. The NND is computed as:

F(@Pr,...,PN)
log(d+1)
where the numerator in Eq. (4.6) is the Jensen Shannon divergence of N connectivity
distance distributions [Py, P».....PN]. P; is constructed as P; = p;(j) where p;(j) is the
fraction of nodes connected to node i at distance j. The Jensen-Shannon divergence of
[Py, Ps.....PN] is expressed as:

NND(G) = , (4.6)

1 pi(j)
(Py,..... PNy) = — p~log(—). 4.7)
I NZJ ilog| =,
p;j in Eq. (4.7) is the average of N distributions and can be written as,
1 N
== i (j). 4.8
K=y ; pi(j) (4.8)

The third term in Eq. (4.5) is based on probability density functions associated with
alpha centrality of graph P,(g) and alpha centrality of the graph complement P, (g¢).
The value of weights was suggested by Schieber et al. [2017] as w; = wp = 0.45 and
ws = 0.1. We use the implementation provided by Schieber et al. [2017] with these sets of
weights to build the distance matrices for all sub-graphs within the three regions of in-
terest. We depict in Fig. 4.10 for the two example fracture networks, the three properties
that are used in computing the D-measure.
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Figure 4.10: D-measure components for the two example fracture graphs comparing a-centrality of nodes,
distributions of a-centrality, NND distributions, and node distance distributions

PORTRAIT DIVERGENCE

The Portrait Divergence similarity score derives from network portraits introduced by
Bagrow et al. [2008] for unweighted graphs and extended to weighted graphs by Bagrow
and Bollt [2019]. For a graph g with N nodes, the network portrait is defined as a matrix
B where each entry is the number of nodes with k nodes at [ distance. The limits of /
and kare0 </ <dand0 < k < N -1, with d being the diameter of the graph. The row
entries of the network matrix Bj; are probability distributions of a random node having
k nodes at a distance I:

_ Bk
P(k|]) = N (4.9)

For a second graph #, if the network matrix is B; « With a corresponding probability dis-
tribution of Q(k|l) and diameter d’, the Kullback Leibler (KL) divergence between P(k|l)
and Q(k|!) is expressed as:

max(d,d) N Pk, D)
KL(P(kIDIIP(kID) = ) ZP(k DHlog——— (4.10)
1=0 Q(k, D)

The portrait divergence Dpp(g, h) is computed by the Jensen Shannon divergence be-
tween P(k|l) and Q(k|l):

Dpp(g,h) = JSD(P(kID), Q(klD). (4.11)

This can be expressed in terms of Kullback Leibler divergences and mixture distributions
as:

1
Dpp(g,h) = E(KL(PIIJVI)+KL(QIIM7) (4.12)
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where the mixture distribution M of P(k|l) and Q(k|!) is given by:
1
M= E(P(kll) +Q(kl]) (4.13)

The portrait divergence measure provides a single value 0 < Dpp(g, h) < 1 for any pair of
graphs. Bagrow and Bollt [2019] applied the portrait divergence measure to both syn-
thetic and real world networks. The code implementation of portrait divergence at-
tached with Bagrow and Bollt [2019] is used to construct the distance matrices for all
sub-graphs within the three regions of interest. The network portrait or the B;; matrix
for the example fracture graphs are depicted as heatmaps in Fig. 4.11.

graphg graph h

0

Figure 4.11: Heatmap representations of network portrait sparse matrices (Byy) for the two example fracture
graphs

LAPLACIAN SPECTRAL DESCRIPTOR

The NetLSD distance was introduced by Tsitsulin et al. [2018]. It is based on a Frobenius
norm computed between heat trace signatures of normalized Laplacian matrices of two
graphs. For a graph g with a normalized Laplacians L and 7 nodes, a heat kernel matrix
is defined as:

n
Hi=e b= et bjd] (4.14)
j=1
Using the heat kernel matrix H;, a heat trace h; is defined as:

he=Y et (4.15)

For a second graph g’ with a heat trace signature of 7/}, the NetLSD distance Dysp is then
the Frobenius norm of the two heat signatures as:

Disp = ||ht;h;:||Frobeniux (4.16)
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Figure 4.12: Comparing heat trace signature vectors for the two example fracture graphs computed using
NetLSD

Figure. 4.12 depicts heat trace signatures computed using the NetLSD python pack-
age implemented by Tsitsulin et al. [2018] for the two example fracture graphs. We use
this package to populate the distance matrices associated with sub-graphs from each
region.

The values of graph similarity computed using the four metrics described by Equa-
tions (4.4), (4.5), (4.12), and (4.16) for the two example fracture graphs depicted in Fig.
4.9(c) and Fig. 4.9(g) are summarized in Table. 4.3.

Table 4.3: Summary of graph similarities computed for example fracture networks

Graph Similarity Value
Fingerprint Distance [Dgp] 0.1414
D-measure [Dpsl] 0.1244
Portrait Divergence [Dpp] 0.2926
NetLSD [Dyspl 0.0147

4.4.3. HIERARCHICAL CLUSTERING

After sub-sampling the fracture networks (see Section 4.4.1) and using the graph dis-
tance metrics described in Section 4.4.2 to construct distance matrices, we apply hierar-
chical clustering. HC can be done in an agglomerative versus divisive manner [Hennig
et al., 2016]. We utilize the agglomerative approach, which generally follows the steps
described in Algorithm 1. Based on how linking of clusters is done as per Algorithm
1(iii), HC can be classified into methods such as single linkage, complete linkage, un-
weighted pair-group average, weighted pair-group average, unweighted pair-group cen-
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Algorithm 1 Agglomerative Clustering

Input: Data D = [X7, X>,....X5]

Output: Dendrogram C = [C1, C2...Cyy

(i). Initialization. m clusters of one element each with pair-wise distances computed and stored
in symmetric square distance matrix D g; ¢,

(ii). form pair C; and C }i that are closest within C

(iii). form cluster C = C; U C; and generate a new dendrogram node

(iv). update D ;¢ after computing distance between Cj and C — Cy,

(v). delete rows and columns corresponding to Cj, C; from Dy, and add rows and columns
pertaining to Cj.

(vi). repeat (i) - (v) till only a single cluster remains

troid, weighted pair group centroid, and Ward’s method [Wierzchon and Klopotek, 2018].
Ward’s method performs the linkage by minimizing the sum-of-squares of distances be-
tween objects and cluster centres. We use Ward’s method implemented within the R sta-
tistical programming environment to apply the HC to all the sub-graph distance data.

4.5. RESULTS

We first show region-wise results of graph property computations. Intra-region spatial
clustering resulting from the combined application of graph similarity measures with HC
is then discussed. We use the following abbreviations for brevity throughout the section:
FP - fingerprint distance, DM - D-measure, LSD - NetLSD, PD - portrait divergence.

4.5.1. REGION-WISE GRAPH CHARACTERISTICS

Fingerprints pertaining to the regions is depicted in Fig. 4.13(a). The peak of the finger-
print plot is highest at a shape factor of 0.4 for Region 1 and increases to above 0.5 for Re-
gions 2 and 3. Histograms in Fig. 4.13(a) depict the number of polygons within each area
bin pertaining to fracture networks in each region. The network portraits or Bj; matrices
of each sub-graph within the three regions are combined to create ensemble region-wise
network portraits depicted as heatmaps in Fig. 4.13(b). The non-zero entries in the By
matrices, indicated by warmer colours in the heatmaps, have visibly different patterns.
Heat traces for the sub-graphs in each region are shown in Fig. 4.13(c). Figure. 4.14
depicts the variation of the network properties that are components of the D-measure
distance i.e., a- centrality, NND, and u for sub-graphs for the three regions.
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4.5.2. INTRA-REGION SPATIAL VARIATION

Intra-region spatial variation results can be presented as distance matrix heatmaps cor-
responding to each graph similarity metric. Dendrograms depict the hierarchical orga-
nization of the sub-graphs corresponding to similarity entries within the distance ma-
trix entries. The intra-regional variation is more intuitively illustrated spatially by show-
ing sub-graphs using an appropriate colour scheme that groups similar clusters under
colours picked within a linear spectrum. This section presents the clustering results
for all three regions using a combination of dendrograms, spatial cluster maps, and
heatmaps.

REGION 1

The spatial distribution of clusters pertaining to the four distance metrics overlain over
the network is shown in Fig. 4.15(a)-(d) along with the associated dendrograms for the
top 10 clusters. The sub-graphs are represented by coloured discs that follow a diverging
colour scheme. The number of sub-graphs within each of the top 10 clusters is also listed
under the dendrogram branches. It may be noted that the top 10 clusters are shown to
depict, analyse, and compare the spatial variation across distance measures. A com-
plete, uncut dendrogram and associated heatmaps of the similarity measures are de-
picted in Appendix Fig. C.1. We can cut the dendrogram at different heights guided by
slope changes in the weighted sum of squares plots shown in Fig. C.1. The boundaries
of spatial clusters vary with the dendrogram cut height, with sub-regions emerging by
traversing deeper into the dendrogram. This variation is depicted in Appendix Figs. C.4
- C.5 for a range of clusters varying from 5-10. The number of sub-samples for the four
similarity measures pertaining to a dendrogram cut of k = 10 is tabulated in Table. 4.4.

Table 4.4: Summary of sub-graphs within each cluster of Region 1 for k = 10

Metric | clst1 clst2 cIst3 clst4 clst5 clst6 clst7 clst8 clst9  clst 10
FP 3 36 24 47 2 24 41 16 20 6

DM 24 25 5 15 17 19 40 39 10 25
LSD 12 17 21 23 16 28 11 30 13 48
PD 38 17 3 5 24 25 79 13 6 9
Total 219

We can observe that spatial autocorrelation exists for the FP (Fig. 4.15.a), DM (Fig.
4.15.b), and PD (Fig. 4.15.d) similarity measures. The LSD yields a speckled pattern with
no obvious spatial autocorrelation (Fig. 4.15.c). In order to compare clustering results
derived from the graph similarity measures, the spatial fracture persistence Py and P»;
computed using box-counting (box size of 0.5 x 0.5 m) is depicted in Fig. 4.15(e) and
Fig. 4.15(f), respectively. Comparing clusters derived from graph similarity measures to
the fracture persistence plots reveals boundaries within the network that are not easily
discernable from the latter. Since LSD does not show spatial autocorrelation, we do not
analyse it further.

Fig. 4.16(a)-(c) depicts topology histograms and rose plots of the clusters pertain-
ing to the remaining three similarity measures. The orientation rose plots and topo-
logical summaries are generated by combining all circular samples identified under a
cluster into ten clusters sub-graphs from the larger region fracture graph. It can be ob-
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Figure 4.15: Hierarchical clustering results for Region 1 depicting the top 10 clusters using (a) Fingerprint dis-
tance (b) D-measure distance (c) NetLSD distance (d) Portrait Divergence distance (e) spatial Pyq (f) spatial
P21

served from the rose plots that the clusters have varying fracture orientations that tran-
sitions across the hierarchy identified by the dendrograms. The topological summaries
of the clusters do not vary significantly. Appendix Figs. C.10-C.12 depicts zoomed-in
sub-graphs corresponding to each of the top 10 clusters that visually confirm the intra-
regional variation.

We briefly describe the characteristics of the clustering results prefixing 'n’ to the
number of subsamples within a cluster to refer to a particular cluster at a k=10 dendro-
gram cut. From Fig. 4.15(a) and the zoomed-in archetypal examples in Fig. C.10, the
clustering derived from FP seems to have a N-S variation trend. The trend is corrobo-
rated by observing the dendrogram, which splits into a northern branch comprising of
clusters n36, n24%, n47 and a southern branch with clusters 16, n20, n41, n16, n2, n24%.
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Figure 4.16: Variation in fracture orientations and topological summary for Region 1 corresponding to (a) Fin-
gerprint (b) D-Measure (c) Portrait divergence

An outlier branch 73 exists at the boundary between northern and southern branches.

A similar variation is observable from the result of DM (see Fig. 4.15.b). However, the
cluster demarcations are less stark than with FP with a notable stippled pattern. A major
dendrogram division is a branch consisting of a thin sliver in the N-E (clusters n24, n25b,
n5, n15) which also include some boundary periphery samplings in the wast and south
of Region 1. The south-western sliver is mainly contained in a branch containing cluster
nl7. The central parts of Region 1 fall under the dendrogram branch containing clusters
n39, n10, n25%. The remainder of the Region 1 is covered by branch containing clusters
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nl9 & n40. Appendix Fig. C.11 depicts archetypal examples of sub-graphs relevant to
each cluster for DM.

The results of PD also depict N-S variation (see Fig. 4.15.d) in the clustering. Sim-
ilar to DM, PD is also sensitive to the sub-graph completeness with peripheral clusters
represented under n13. The branches comprising n13, n6, n9, and n38, nl7 closely
correspond to the trend of high fracture persistence (compare with Fig. 4.15.e and Fig.
4.15.f). Similar to results from FP and DM, the thin sliver in the N-E of Region 1 is cap-
tured under the branch with clusters 13, n5, n24. The remainder of Region 1 falls under
clusters n25, n79. Fig. C.12 depicts archetypal examples of sub-graphs corresponding to
each cluster for PD.

REGION 2

Spatial distribution along with dendrograms of top ten clusters pertaining to the four
graph similarity measures for Region 2 is depicted in Fig. 4.17. The full dendrograms
and heatmaps are placed in Appendix Fig. C.2. The variation of spatial clusters with dif-
ferent choices of dendrogram cut-heights is shown in Appendix Figs. C.6 and C.7. The
number of sub-samples for the four similarity measures pertaining to a dendrogram cut
of k =10 is tabulated in Table. 4.5. Similar to Region 1, there is marked spatial autocor-
relation with FP (Fig. 4.17.a), DM (Fig. 4.17.b), and PD (Fig. 4.17.d), whereas the LSD
(Fig. 4.17.c) shows a speckled pattern. The spatial clustering results can be compared
with the fracture persistence plots in Fig. 4.17(e) and Fig. 4.17(f).

Table 4.5: Summary of sub-graphs within each cluster of Region 2 for k = 10

Metric | clst1 cIst2 clst3 clst4 clst5 clst6 clst7 clst8 cIst9 clst 10
FP 20 22 41 52 9 17 36 8 3 4

DM 19 20 14 25 10 16 23 38 23 24
LSD 2 6 31 28 53 9 15 38 5 25

PD 17 30 17 8 24 15 28 24 15 34
Total 212

Node degree histograms and rose plots depict the differences in network topology
and fracture orientations between the identified clusters pertaining to FP (Fig. 4.18.a),
DM (Fig. 4.18.b), and PD (Fig. 4.18.c). For all three measures, the shape of rose plots indi-
cates a transition of principal orientations smoothly across clusters. For example in Fig.
4.18(a) for FP, the more complex fracturing in the west of Region 2 is depicted by cluster
n20 with a very diffuse rose plot, changing orientations to a predominantly orthogonal
pattern in cluster n03. The DM (clusters n16 and n10 in Fig. 4.18.b) and PD (clusters
n08 and n17” in Fig. 4.18.c) also identify this region of orthogonal fracturing. The corre-
sponding topological summaries also depict an increased proportion of degree-4 nodes
as compared to the histograms of other clusters.

From FP clustering results (see Fig. 4.17.a), the dendrogram identifies a western
branch with clusters n20 and n22. The branch comprising of clusters n8, n3, n4 cor-
respond to the radial fracturing region identified by Gillespie et al. [1993] that originates
from the fault in the SE of Region 2. Clusters n9, n17, n36 all under a branch covering
parts of Region 2 further away from the radial fracturing region. Clusters n41, n52 origi-
nate under a branch forming the northern and eastern boundaries of Region 2. Fig. C.13
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depicts archetypal sub-graphs under each cluster in detail for FP. The clustering results of
DM (Fig. 4.17.b) and PD (Fig. 4.17.d) appear to be similar and with dendrograms roughly
splitting into three main branches that correspond to specific portions of Region 1. First
is the radial fracturing area represented by branch forming clusters 710, 716, n23” for D-
measure (Fig. 4.17.b) and branch forming clusters n17”, n8 for the portrait divergence
(Fig. 4.17.d). The area to the N-W periphery of Region 2, farthest away from the fault, is
represented by branch forming clusters n19, n20, n14, n25 for DM and by branch form-
ing clusters n24%, n15%, n34 for PD. The transition region branch is represented within
the DM dendrogram by clusters 138, n23%, n24 and within the PD dendrogram by clus-
ters n24?, n15?, n28. Appendix Figs. C.14 and C.15 depict detailed sub-graph examples
for DM and PD, respectively.



4.5, RESULTS 91

Region 2

==

20 22 41 52 917 36 834 19 20 14 25 1016 23° 38 23% 24
8ok T T T T ] 80| T T T T ]
Lee <
4449
e 000 29550889
22222228 2800022
444444 +4+4 +
40t ¢4>:<> + i 40 :: + i
8822909564 :zg
$H4 444444 2000004 +
444444444 + +44444444 +
+ < +44 + S +
. | | . @ | | ‘ ()
0 40 80 120 160 0 40 80 120 160

80 1
4}4»0‘
+oe4 44
+444 0444
$O0  of ei
40 1 23 t g
+4
444
+44 4444
POOOOOS¢
1+ ISteel ¢
O L 1 L L
0 40 80 120 160

L .

0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 14 16

Pao (m?) Py (m™)

Figure 4.17: Hierarchical clustering results for Region 2 depicting the top 10 clusters using (a) Fingerprint dis-
tance (b) D-measure distance (c) NetLSD distance (d) Portrait Divergence distance. (e) spatial Pyq (f) spatial
P21



4. QUANTIFYING SPATIAL VARIATION IN FRACTURE NETWORKS
Region 2

92

_ -~ ( -~ (

— TN AV Y =T

a// A// E R \/, ,\:‘/,, I R \\:Vﬁ/ < E CE
24 {
// ez | M:,m la ‘\\J// \\J//,, 7 3 ””E-m - ,\\ i

o
-~

| A
W/, 54 - ’ w/km/ =/ S M//\ g
@ @B PR g G

R@FEE LR @ @F LR
NSNS e K i M 70 N o M LR 4P
,\m@ ,\a/, I S i ) E :E : @ E E
-, g ) - = st 38§ ] - = { )| ) =
WU = B (P —

I~

\*./\J.m R ,\‘,/n\‘/,,.m e n\*/n\*/.w :

n152

BV == P

-~
—
— «

c
= 3 <
O oo | L oL
+4 _wj + +4 @ + +4
0 +4 ~ +44 0n ¢
o + + ++4 -
D¢ + +
+ + +
+ ‘» + T, + 44
+ + 44 + 4+
~| + | % L | N +4
+ +44 + +4
S +4 fzooxot +4444 ¢
» 4444 ] +4
I + o +4 N +
+4 o +4 +4
++ “ N Q
~ +44 -0
L + O ++4 — L + 44
N + — +44 o ++4
+4 o +4+ < +4
+4 — +4 N +4
+ +44 +4
N +4+ o] +
N + b_/ +
o —
g <F L
-
+ o
(=]
o I gl
o N
o — ® =
o Q - v
[ = ~

Figure 4.18: Variation in fracture orientations and topological summary for Region 2 corresponding to (a) Fin-

gerprint (b) D-Measure (c) Portrait divergence



4.5, RESULTS 93

REGION 3

The spatial distribution along with dendrograms of the top 10 clusters pertaining to the
four graph similarity measures for Region 3 is depicted in Fig. 4.19. The full dendro-
grams and heatmaps are placed in Appendix Fig. C.3. The variation of spatial clusters
with different choices of dendrogram cut-heights (and number of clusters) is shown in
Appendix Figs. C.8 and C.9. Similar to the Region 1 and 2 results, there is marked spatial
autocorrelation with FP (Fig. 4.19.a), DM (Fig. 4.19.b), and PD (Fig. 4.19.d), whereas the
LSD (Fig. 4.19.c) shows a stippled pattern. The spatial clustering results can be com-
pared with the fracture persistence plots in Fig. 4.19(e) and Fig. 4.19(f). The number of
sub-samples for the four similarity measures associated with a dendrogram cut of k = 10
is tabulated in Table 4.6.

Table 4.6: Summary of sub-graphs within each cluster of Region 3 for k = 10

Metric | | clst1 clst2 clst3 clst4 clst5 clst6 clst7 clst8 clst9 clst10
FP 2 5 28 11 27 6 9 4 11 14
DM 24 15 6 16 1 5 5 25 3 17
LSD 9 25 4 9 6 5 5 10 16 28

PD 7 23 25 1 5 21 4 16 3 12
Total 117

Node degree histograms and rose plots depict the differences in network topology
and fracture orientations between the identified clusters relating to FP (Fig. 4.20.a), DM
(Fig. 4.20.b), and PD (Fig. 4.20.c). For all three measures, the shape of rose plots indi-
cates a transition of principal orientations smoothly across clusters. For example, in Fig.
4.20(a) for the fingerprint measure, the cluster n06 in the west of Region 3 has three main
sets that become orthogonal in cluster n09, the nearest cluster eastwards. Cluster n05
at the eastern extremity of Region 3 has an orthogonal pattern that has rotated almost
80 degrees clockwise compared to the western boundary. Orientations of fractures clus-
ters between the eastern-most and western-most clusters show transitions between the
extremal archetypes.

From the FP clustering results (Fig. 4.19.a), the spatial variation appears to have an
E-W trend. From the dendrogram, an eastern branch comprising clusters n6, n9, 4, 114,
14 and a western branch consisting of clusters n5, n28, n11%, n27 can be identified. An
outlier branch with Cluster n2 appears at the interface between the eastern and western
branches. Detailed visualization of archetypal sub-graphs relating to each of the FP clus-
ters is presented in Appendix Fig. C.16. The dendrogram structure and spatial clustering
for the DM (Fig. 4.19.b) depicts a central region represented by a branch containing clus-
ters n24, n15, n6, n16. The eastern and western peripheries organize as clusters n1, n5¢,
n5%, n25, n3, n17 under a second branch. Underneath this branch, clusters n1, n5¢, n5”
correspond to extremities of the Region 3, which are not fully sampled. The dendrogram
structure for the PD (Fig. 4.19.d) is similar with clusters n7, n23, n25 organizing under
the branch representing the central region and clusters nl, n5, n21, n4, nl6, n3, nl2
forming the eastern and western peripheral regions. Clusters nl and n5 pertain to ex-
tremities of Region 3, which are not fully sampled. Appendix Figs. C.17 and C.18 depict
zoomed-in sections of the sub-graphs relating to each of the top clusters that confirm
the detected intra-regional variation for DM and PD, respectively.
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4.6. DISCUSSION

Within the structural geology literature, fracture persistence measures of Dershowitz and
Herda [1992], the topological approach of Sanderson and Nixon [2015], and qualitative
descriptions are most commonly to compare 2D fracture networks. The lack of quantita-
tive measures for spatial network data is partially due to the lack of extensive 2D fracture
trace data. Using fully mapped, extensive fracture networks, it is possible to systemati-
cally investigate network variations. By treating 2D fracture networks as planar graphs,
applying graph similarity measures to quantitatively compare sub-samplings, and using
hierarchical clustering, we are able to organize data into a hierarchy of patterns. The re-
sulting dendrogram, derived from similarity scores, can be examined at multiple levels.
One can argue that variation exists at multiple length scales, and more granular inquiry
would lead to different clusters. In this section, we discuss some additional perspectives
related to our methodology and results.

Linking spatial variation patterns to fracturing drivers: The results indicate that spatial
variation in fracture networks is not always evident from the ubiquitously used fracture
persistence measures, such as Py and P,;. The proposed method highlights variations
in network structure which can then help draw inferences into possible drivers for the
spatial differences. In the case of Regions 2 and 3, the proximity to the fault influences
network development. Such a model has been proposed by Peacock and Sanderson
[1995], Gillespie et al. [2011b], and Wyller [2019], where the oldest fractures are long and
radial, emanating from local asperities within the fault. These older fractures then influ-
ence the development of younger fractures. This is observed in Region 2, where clusters
form roughly parallel to the E-N-E striking fault with the direction of variation to the N-
W. Region 3 is positioned between two such asperity epicentres. There are long, radial
fractures on the eastern and western extremities with a transition region in-between.
The direction of cluster variation trends E-W. Fracture pattern variation in Region 1 is
not affected by faulting. Since Regions 1 and 2, pertain to a single layer, the N-E regions
of Region 1 show visual similarities between the westernmost extremities of Region 2.
The intraregional variations in Region 1 could be due to layer thickness variation, al-
though we do not have sufficient thickness data to confirm this. The analysis of spatial
variation can assist in deciphering fracture timing. Given the temporal nature of network
formation, it is desirable to delineate network evolution into relative episodes of fractur-
ing. In previous analyses specific to the Lilstock dataset used in this contribution, Pass-
chier et al. [2021] identified jointing sets with timing history based on fracture length,
strike, and topological relationships. Although the temporal history is identified from
joints that were picked manually but not wholly by Passchier et al. [2021], there is still a
discernable spatial variation where some jointing sets are localized while others occur
throughout the outcrop. Identifying spatial clustering in complete networks provides a
basis by which joint sets can then be arranged in a hierarchy of temporal development.

On the choice of a graph distance metric: We have restricted our investigation scope to
four state-of-the-art graph similarity distances from the recent graph theory literature.
Many more graph distances applicable to spatial graphs exist [Hartle et al., 2020, Tan-
tardini et al., 2019]; furthermore, the best means remain an open problem in network
science research. Some novel distance measures are not graph-based but derive from
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persistent homology (such as Feng, 2020). In this approach that considers the shape of
data, persistence diagrams are generated from spatial graphs, and bottleneck distances
are combined with hierarchical clustering to discover clusters. The results from Feng
[2020] compared favourably to that of Louf and Barthelemy [2014] when applied to pat-
terns of cities. As may be observed from our results, the metrics highlight certain aspects
of the fracture network while not considering others. For instance, the fingerprint dis-
tance only considers block area and shape factor distributions of the blocks and neglects
orientations. The other three distances use graph properties directly, and hence orienta-
tion information (or the lack of it) is a consequence of how the spatial graph is defined.
We used weighted graphs that incorporate euclidean distance between nodes as edge
weights for the similarity computations. However, each edge also has a striking attribute
to completely describe its position in 2D space (in the case of 3D, it needs a dip). Ide-
ally, the edge weight should then be a vector, w = [[,0] incorporating both lengths, '/’
and orientation, '8’, but the distance metrics we use do not allow the use of non-scalar
weights.

Do REV’s exist for fracture networks? In the context of fractured reservoir modelling,
identification of a representative elemental volume (REV) aids continuum-based simu-
lation approaches. However, the complexities of fluid flow and transport through frac-
tured porous media require an explicit representation of fractures. Given the difficulties
associated with obtaining realistic network geometries, stochastic-process-based meth-
ods derived from sparse fracture data are commonplace. However, these methods are
often unable to represent inherent non-stationarity in spatial variation [Thovert et al.,
2017], and work by Andresen et al. [2013] find that DFNs from nature exhibit disassorta-
tivity, which is not a property of generated networks. Other techniques based on multi-
point statistics [Bruna et al., 2019b] attempt image-based approaches to modelling non-
stationary networks. Estrada and Sheerin [2017] present a different approach in which
DFNs are directly generated as spatial graphs (referred to as random rectangular graphs).
Such a method can incorporate insights from outcrop-derived NFRs. Regardless of the
method used to extrapolate, stationarity decisions have to be made based on hard data,
and this is where our approach is helpful. We can use outcrop-derived networks to define
and delineate stationarity’s spatial boundaries and assign a particular type of network
with due cognition of the inherent graph structure. Much literature exists on linking
fracture patterns to high-deformation drivers such as folding, faulting, and diapirism,
with the goal being to identify and correlate appropriate outcrop analogues to particu-
lar subsurface conditions. As our clustering results indicate, at the dimensional scales
of sampling we have used, Tobler’s first law of geography applies to fracture networks.
Therefore, a representative network based on network similarity can be derived. The
method can be applied to analogues for which data already exists. Further work is re-
quired to differentiate fluid-flow and transport responses of the identified cluster type.

Other clustering methods: We have used a combination of HC and graph distance met-
rics to delineate regions within a spatial graph and arrange them in a hierarchy of sim-
ilarities. Within the graph theory literature, there are other non-HC methods based on
graph properties such as modularity [Blondel et al., 2008, Newman and Girvan, 2004,
Traag et al., 2019] or by graph spectral partitioning [Fiedler, 1973, Spielman and Teng,
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2007]. Recent developments using graph neural networks and graph machine learning
include modifications on the concept of modularity [Tsitsulin et al., 2020] and spectral
methods [Bianchi et al., 2020] towards the goal of partitioning graphs into clusters.

4.7. CONCLUSION

This chapter presents a method to automatically identify spatial clusters and quantify
intra-network spatial variation within 2D fracture networks. We test the technique on 2D
trace data from a prominent limestone outcrop within the Lilstock pavements, located
off the southern coast of the Bristol Channel, UK. The fracture network data that span
three separate regions and cover over 14,200 sq.m are converted to the form of planar
graph structures, spatially sampled into sub-graphs, and then compared using four dif-
ferent graph-distance measures. The pair-wise similarities in the form of distance matri-
ces are used to arrange region-wise sub-graphs into a hierarchical relationship structure,
also referred to as a dendrogram, using the statistical technique of hierarchical cluster-
ing. Positional order information from the dendrogram is used to render maps depict-
ing the spatial variation within the fracture networks. The delineations of these intra-
network sub-patterns provide a way to identify representative elemental volumes that
preserve fracture networks’ topological and geometric properties. The presence of these
sub-regions can also serve as a guide to making decisions on stationarity with respect to
geostatistical modelling. The main findings from this chapter are summarized as:

* representing fracture networks as graphs enable combining hierarchical clustering
and graph-distance metrics to reveal interesting intra-network spatial similarity
patterns not otherwise discernable from existing global or local fracture network
descriptors.

 organization of fracture network sub-graphs based on pair-wise similarities into
a hierarchical tree enables identification of spatial clustering at different dendro-
gram heights with newer and more granular cluster boundaries emerging at suc-
cessively deeper levels of enquiry.

* spatial autocorrelation is more apparent with the fingerprint, D-measure, and the
portrait divergence distances than the NetLSD, which yields speckled patterns with
little or no spatial autocorrelation.

* spatial variation maps deriving from hierarchical clustering using the D-measure
and portrait divergence identify similar spatial clusters and cluster boundaries.
However, with the fingerprint distance, the cluster boundaries are different.

e fracture segment orientations show gradual variation in segment strikes across the
identified clusters despite orientation not being explicitly considered and only eu-
clidean distance being used to weight spatial graph edges.



SLAM LIDAR FOR 3D CAVE
GEOMETRY DATA ACQUISITION

This chapter describes a novel approach to data acquisition in karstic caves using Simul-
taneous Localization and Mapping (SLAM) LIDAR technology. Many carbonate reservoirs
are to some degree karstified, and there is evidence from well-bore logs, drilling data, seis-
mic signatures, and well test data to indicate that large vugular cavities with dimensions
of 10s of meters exist in the subsurface. The subsurface cavities are hypothesized to be
either due to epigenetic karst created by meteoric water and then buried as paleokarst,
or hypogenic karst developed due to subsurface mixing of dynamic porous fluid streams.
Similar to fracture discontinuities in the subsurface, dissolution features also form spa-
tial networks. Understanding the 3D structure of karstic cave networks is essential for
dynamic modeling of karstic reservoirs where shape influences fluid transport and well-
bores’ geomechanical stability. SLAM Lidar is well suited for subterranean caves that suffer
from conditions such as poor illumination and non-availability of GPS-signals, making
georeferenced photogrammetry impossible. We showcase the application of SLAM LIDAR
caves from Bahia, NE Brazil, where 3D point clouds are acquired and converted to 3D
shape models. The methodology is useful for rapidly acquiring 3D shapes of speleogenetic
features. These 3D models may be used as physical benchmark models for further de-
velopments in coupled Darcy-Stokes reservoir simulation and hydrodynamically coupled
geomechanical stability analysis.
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5.1. KARST AND ITS RELEVANCE IN RESERVOIR SYSTEMS

Carbonate reservoir rocks in the deep subsurface host around 60% and 40% of the world’s
oil and gas reserves respectively, with field data indicating that they are all karstified to
some extent [Ford, 2007]. The hydrogeological phenomenon of karstification is a highly
complex process which depends on several factors, such as regional geology, fluid-rock
interaction, and flow- stress conditions. Surface karst systems are characterized by caves,
enclosed depressions and opened fractures and their global distribution has been esti-
mated around 10-20 % of the Earth’s ice-free land area, roughly following the distribution
of carbonate and gypsum rocks over the Earth’s surface [Ford and Williams, 2007]. Un-
derstanding and monitoring geometries and behaviour of karsts acquires urgency owing
to their other anthropogenic applications. Near sub-surface karst aquifers form drink-
ing water sources for 25% of the world population. Karst also poses major hazards for
constructions due to high probability of collapse and subsidence caused by sinkholes.

In the deep subsurface, which is relevant for oil and gas, karst is problematic due to
the dissolution features forming complex shapes, organizing as spatial network struc-
tures, and possessing lateral variability. The combined effects result in poor 3D seismic
quality and, therefore, poor predictability of karst occurrences, hampering the devel-
opment of reservoir geo-models. Concerning reservoir development, drilling through
karstic features causes significant problems like drilling fluid losses, drillstring failures,
improper casing placement, and cementation integrity issues due to crooked hole geom-
etry. Additionally, palaeo-karsts form complex pore networks resulting from collapsed
karst caves coalescing within single or multiple karst cave systems. Karstic reservoirs
are challenging to model as their multi-scale nature necessitates the mathematical im-
plementation and coupling of different governing flow equations for porous continua,
fractures, and vugular cavities.

The formation of karst, commonly referred to as karstification, is triggered by water-
rock interactions, hydrogeological mass transport, and destruction of permeable solu-
ble rocks [Dreybrodt et al., 2005]. Typical karst morphologies include pavements, kar-
ren, dolines (or sinkholes), poljes, cones (or towers), and caves. In cave formation (or
speleogenesis), a significant distinction has been made based on genetic settings and is
thus classified broadly as epigenic or hypogenic. The former develops in intimate in-
teraction with the landscape, with both surface and underground components (under
un-confining conditions) formed by downward-moving CO2, consuming meteoric wa-
ter. Hypogene caves evolve without any direct genetic linkage with the surface (under
confining conditions). Such caves form due to an upward-moving, cross-formational
fluid flow that intersects with contrasting water chemistry, gas composition, and tem-
perature. Hypogenic speleogenesis is defined as the formation of solution enhanced
permeability structures by water that recharges the soluble formation from below [Klim-
chouk, 2011]. The fluids are driven either by hydrostatic pressure or other sources of
energy like thermal or concentration gradients. The conventional thinking in epigenic
speleogenesis does not explain many features routinely observed in karstic caves, such
as dead ends, bedrock partitions, and the absence of elements like scallops and flutes
specific to lateral flow. Therefore, discriminating between epigenic and hypogenic ori-
gins is possible using passage morphology, sedimentological, and mineralogical criteria
[Klimchouk, 2009].
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Hypogenic speleogenesis results in complex patterns guided by the original perme-
ability structure of the soluble host rock, heavily influenced by the fracture patterns in
the pre-speleogenetic rock matrix. Network and sponge work mazes, irregular cham-
bers, isolated passages, and rising shafts are some of the elementary patterns observed in
hypogenic caves. The combination of pre-existing fracture stratigraphy with hypogenic
speleogenesis leads to the formation of multiple storeys of layered mazes with inlet feed-
ers at the deepest levels and outflow cupolas at the shallowest levels. Many hypogenic
systems that are uplifted and brought up to the epigenic realm acquire epigenic over-
print due to the newly established un-confining flow patterns; however, there is a limited
degree of integration due to the different organization, driving forces, and functioning of
respective parent flow systems [Klimchouk et al., 2017].

Reservoir characterization and modelling of subsurface karst systems require a ge-
netic interpretation of void-conduit systems and an understanding of their hydraulic
functioning. The void conduit systems could have a positive influence when they en-
hance effective reservoir permeability and negatively influence reservoir development
strategies in case of water breakthrough or short-circuiting due to insufficient oil sweep
of the injected water. They could also compromise seal integrity, which may impact ap-
plications like geological sequestration of CO2. Given such challenges, there is a need
for real-world geological analogues of karstic cave systems to guide reservoir modelling.
Detailed analysis of accessible hypogene cave systems can serve as analogues for karst
reservoirs and provide insight into the resultant porosity and permeability distribution.
Models currently in use assume extremely simplified circular or oblong geometries for
the vuggy cavities and often neglect the relationship between pre-existing fractures and
the arrangement of cavities. Three-dimensional morphological data can bridge this gap.

Challenges unique to the cave environment hamper the mapping of cave systems
for analogue studies. These include difficulties in illumination and the absence of geo-
positioning satellite signals. Acquiring quality datasets within cave environments has
been attempted using stationary Lidar. Combined with artificial illumination, stationary
LiDAR can generate 3D point clouds of cave systems fused with image data. The main
disadvantage with this approach is the unwieldy nature of stationary LiDAR equipment,
which is generally bulky and requires precise set-up. Such techniques are ill-suited to
map narrow passages with relevant features. Mobile LiDAR is an alternative to station-
ary LiDAR to map cave geometry. Simultaneous Location and Mapping (SLAM) LiDAR
is a compact and mobile version of the conventional stationary LiDAR, which a single
operator can hold. The device continuously records point clouds of the cave geometry
while the operator moves around regions of interest and stores the data onto portable
data storage that the operator also carries. Accurately positioning the entire point cloud
is done using georeferenced station points acquired outside the cave system.

3D mapping of hypogene caves’ interior provides the unique intricate geometries
useful in populating triple porosity (rock matrix, fractures, and void conduits) reservoir
models. This workflow aims to rapidly obtain quantitative cave mapping data, which can
extract geometric properties relevant for cave characterization. The digital geometries
can serve either as direct input for geomechanical and reservoir fluid flow modelling or
as input to populate stochastic karst cave models.
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5.2.3D POINT CLOUD DATA ACQUISITION USING SLAM LIDAR

2D cave maps provide limited quantitative information on caves’ volumetrics, internal
geometries, and associated length scales. Additional measurements inside the cave sys-
tems are necessary using 3D mapping. Illumination issues, limited space inside caves
make photogrammetric reconstruction of 3D geometry difficult. LIDAR technology does
not have this disadvantage. It relies on transmitting a beam of light from a source, which
is reflected off the object(s) of interest, followed by a recording and calculation of the
exact travel time. Thus the measurements are invariant to illumination.

However, conventional lidar equipment is cumbersome to set up and operate within
confined spaces peculiar to cave settings. Mobile lidar mapping also referred to as Si-
multaneous Location and Mapping (SLAM), is a recent innovation in which data mea-
surements are made with a portable moving sensor in a fraction of time compared with
conventional terrestrial lidar. SLAM lidar is well-suited to cave settings due to the ease
and speed at which the data is acquired. The measurements are obtained by a single
operator holding the handheld device while walking through areas of interest.

Figure 5.1: (a) The Geoslam Zeb Revo SLAM lidar device with sensor unit connected to battery and recording
unit in a backpack (b) start of a mission at a fixed location (b) movement through the cave starting the data
capture

We utilize the GeoSLAM ZebREVO portable LiDAR to acquire cave geometries. The
system consists of a rotating scanning head that houses a 2D time-of-flight laser scanner
and an inertial measurement unit. The scanning head connects to the data storage unit
and battery through a short cable. Typically during operation, the user holds the sensor
unit in one hand with the battery-pack and data storage units placed in a wearable back-
pack. The scanner unit weighs only around 1 kg. The lithium-polymer battery weighs
around 600g and has a life of approximately 4 hours in continuous use. The configura-
tion is depicted in Fig. 5.1(a) with operations depicted in Fig. 5.1(b)-(c).

The maximum range of the ZEB-REVO is 30 m with effective range in indoor condi-
tions being 15-20 m. The scanner is able to record around 43,200 points/sec and has an
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angular field of view of 270° x 360° x. The maximum data storage capacity is 55 GB with
scan data acquired at a rate of approximately 10 MB/min. Absolute position accuracy is
between 3-30 cm.

Rea¥o y
@ > Mission 1 -->@---> Mission 3
@ > Mission 2 @ > Mission 4

Figure 5.2: An example of four mission trajectories chosen for mapping a region of maze-like cave. The plan
view is extraced from Calisto Cave. Brazil. Each trajectory closes a loop that starts and ends at a single point.

A typical data acquisition routine would consist of an initial reconnaissance of the
cave passages of interest. The region to be covered is then divided into missions, with
a pre-determined start-point for each mission. The data acquisition begins from such a
start-point, and an operator then walks through the pre-decided trajectory at a constant
slow speed. The walking pace is moderate so that there are enough repeat scans for
the SLAM algorithm to convert laser data into point clouds. The trajectories are pre-
planned such that the mission starts and ends at the same point, and each cave passage
is covered twice in advancing and returning strides. When the routes are extensive and
in the presence of intricate speleothems, loopy and zigzag paths may be chosen so that
there are more points for correct geometry capture. Figure 5.2 depicts an example of a
plan view of a maze-like cave with four mission trajectories. Each mission trajectory has
some degree of overlap with that of other missions so that each mission’s point-clouds
can then be properly aligned and connected.

5.3. POINT CLOUD PROCESSING

Converting raw laser scan data captured using the ZebRevo®is done using GeoSLAM
Hub®software. The data storage device is connected to a conventional laptop by a USB
cable, and GeoSLAM Hub’s interface can access and process the raw datasets. The con-
version from raw scan to point clouds can be standard point cloud formats such as .las,
Jaz, .ply, .e57, and .ascii. The time taken for conversion to point clouds depends on the
dataset’s size (typically the length of a mission) and processing options. The point clouds
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may be viewed within the interface and examined for completeness and coverage. This
step can be performed while in the field on a laptop.

5.3.1. POINT CLOUD REGISTRATION AND ALIGNMENT

The point clouds within a single cave are initially disparate datasets. Merging of separate
point-cloud datasets corresponding to each mission within a cave into a single point-
cloud is done using CloudCompare®, an open-source point-cloud processing software.
Identifying overlap between individual point sets is done using mission start-positions.
By choosing the trajectories to produce such overlaps deliberately, this identification is
made simple. The merging of two datasets is then done by manually picking a minimum
of four common-points. Correctly orienting the merged point-cloud is done using GNSS
information from GCPs recorded on the cave exterior.

Figure 5.3: An example of merging and aligning two point clouds from Lapinha Cave, Brazil (a) plan view of
point cloud data from first mission (b) plan view of point cloud data from second mission (c) merged and
aligned point cloud

Figure 5.4: An example of de-noising from point cloud data of Ioio Cave, Brazil (a) point cloud prior to de-
noising with isolated points highlighted (b) de-noised point cloud

The raw point cloud data may contain stray points which are spatially very far away
from the main point clusters. A de-noising procedure can be carried out which removes
such isolated data points and shrinks the dataset. An example of such a de-noising pro-
cedure is depicted in Fig. 5.4.
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5.3.2. SURFACE WRAPPING OVER POINT CLOUDS

Using Geomagic Wrap®, we convert the merged, aligned, and de-noised point cloud data
into 3D meshes. We use the wrap functionality within Geomagic Wrap®to fit a triangular
mesh surface through the point cloud. Fitting the meshed surface in a free-form manner
honours the natural shapes represented by the 3D point data. Depending upon point
cloud size and the complexity of geometry, we can set the desired number of triangular
polygons with a maximum of up to 100 million. Additional inputs are the number of
holes to be retained within the final polygon object. Once a basic mesh is obtained,
several options are available to rectify geometric issues such as self-intersections, small
holes, spikes, and creased edges. We may also decimate the mesh to reduce the number
of triangles if the mesh is too detailed.

Figure 5.5 depicts an example of a point-cloud converted to a 3D surface object. This
meshed surface, also referred to as a polygon object, can be exported in various CAD
formats such as .stl, .dxf, .iges that can be used as input for fluid-flow or geomechani-
cal modelling. 3D models of caves serve as digital twins may be re-used in future cave
expeditions targetting certain speleological features of interest.

Figure 5.5: (a) a 3D point cloud data set sub-sampled from Cave Torrinha, Brazil consisting of 966798 points
(b) point-cloud converted to a 3D surface object consisting of around 1.5 million triangles

5.4. DISCUSSION

5.4.1. ACCURACY AND RESOLUTION OF POINT CLOUDS

The digital cave models constructed from point clouds have a high degree of accuracy
compared with manual mapping. Due to the absence of differential GNSS inside caves,
accurate positioning needs a combination of cave data lidar measurements with dig-
ital outcrop models (UAV-borne photogrammetry or lidar), which are calibrated and
ground-truthed with ground control points (GCPs). Mapping of entire caves may not
be possible owing to data storage limitations but just small sections. Suppose the region
of interest lies deep within the cave interiors. In that case, accurate positioning of the
point clouds and generated 3D surfaces may not be possible without referring to man-
ual measurements or 2D cave maps. In such a scenario, we may induce errors in the
absolute positioning of 3D cave models. Therefore, recording a GCP at the cave entry
location and performing a starter lidar survey that covers this georeferenced location
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is recommended. Linking additional surveys within the cave to the first georeferenced
survey can then be done.

5.4.2. COMPARISON WITH TERRESTRIAL LIDAR

Before the advent of portable SLAM-based lidar, terrestrial lidar was the preferred method
to obtain 3D geometry of caves. However, its usage is limited to easily accessible and
sufficiently spacious cave passages. The flexibility in use is limited by bulky equipment,
challenging to position and move within complex cave passages. Terrestrial lidar can,
however, yield much more accurate and detailed point clouds. The additional detail
in terrestrial lidar is often unnecessary in terms of computations related to point cloud
processing and conversion to polygonal meshes. Even with point clouds generated us-
ing SLAM-based lidar, de-noised and downsampled point clouds are often sufficient to
build high-quality surface meshes. With SLAM-based lidar, once the data is acquired,
the raw scan data can be converted into 3D point clouds on a conventional laptop in a
matter of hours. Further processing and conversion to structural surfaces require more
computational resources, which one cannot do in a field environment. Visualizing the
raw point cloud data using open-source software and interesting speleological features
can be identified for further investigations while at the fieldwork site.

5.5. CONCLUSION

The presented workflow combines acquiring point-cloud data from cave analogues us-
ing SLAM Lidar followed by point cloud processing in GeoMagic to generate realistic 3D
cave geometry. SLAM lidar technology and point cloud processing have been used for
indoor mapping and in digital manufacturing. By combining these, we present a work-
flow aimed at rapid cave digitization and generation of geometric datasets. Compared to
alternative techniques of speleological fieldwork, this workflow has several advantages:

» the SLAM lidar is compact, wearable by an operator, and thereby ensures a very
high degree of mobility within tortuous cave passages with minimal need for de-
vice setups and adjustments

° SLAM lidar can overcome the twin disadvantages of poor illumination and lack
of GPS signals that make comprehensive data acquisition in cave environments
difficult

* the point cloud data generated by SLAM lidar systems are near-perfect representa-
tions of cave geometry that eliminates and makes redundant the need for manual

mapping

¢ the availability of real-time visualization of recorded points enable the operator to
plan walk trajectories and selectively capture regions of interest within the cave
environment. This feature also allows the user to ensure proper coverage of struc-
turally intricate geometries such as speleothems

* the point cloud processing workflow generates water-tight shape features which is
helpful for geometric data analysis, 3D modelling using realistic cave geometry



CONCLUSION

This Thesis advances state-of-the-art natural fracture characterization by utilizing auto-
matic techniques for fracture tracing and introducing graph theory in analysing spatial
variation in fracture networks. The key contributions are methodological and gener-
ally applicable to any fracture dataset. We have applied the automatic tracing method
to three example carbonate outcrops in Parmelan (France), Brejdes (Brazil), and Lilstock
(UK) producing large-scale datasets that contain millions of fracture segments. By repre-
senting fracture networks as spatial graphs, we developed graph manipulation routines
that convert the trace data into geologically meaningful fracture information. Using
the spatial graph representation of fracture networks, we further utilize graph similarity
measures and hierarchical clustering to analyse and quantify the natural spatial variabil-
ity in fracture networks. This chapter summarizes the main findings and critically dwells
upon the relevance and applications of the developed workflows and results.

6.1. AUTOMATING THE PROCESS OF TRACE EXTRACTION FROM

IMAGES

Studying fracture networks from outcrops requires datasets that are multiscale, incor-
porative of network structure, and reasonably large enough in spatial extent to derive
lessons for subsurface modelling. To efficiently acquire such datasets, we have devel-
oped an automated trace extraction workflow that can rapidly extract 2D fracture traces
from UAV-derived photogrammetry (Chapter 2). The workflow is novel and consists of
ridge detection using the complex shearlet transform followed by a series of image pro-
cessing and vectorization steps that are flexible and need little or no manual interven-
tion. The obtained fracture traces are unbiased and enable complete coverage of avail-
able image data hitherto underutilized due to manual interpretation bottlenecks.

Even though outcrops provide detailed and quantitative fracture geometry, we rec-
ognize that outcrop-derived networks may not always represent subsurface conditions.
Our workflow in Chapter 2 primarily targets open-mode fractures that are easily visible
on images acquired with the typical resolution of UAV cameras. In previous studies that
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compared discontinuity patterns observed in the subsurface with corresponding out-
croppings, mineralized vein and stylolite networks in both surface and subsurface have
concurrence. We can adapt our workflow to such situations, provided there are images
of sufficient resolution consistent with spatial scales of discontinuity networks of inter-
est. One limitation is that the automated workflow requires prior shearlet construction
to detect multiscale discontinuities in images. An improvement is by combining a few
samples of derived traces in the form of training image data with a deep learning work-
flow outlined in Appendix F.

6.2. GRAPH-BASED REPRESENTATIONS AND CHARACTERIZATION

Applying the methodology in Chapter 2 to different outcrop settings, the results provide
fracture segments of more than a million traces. Chapter 3 presents large-scale fracture
networks automatically traced from five regions within the Lilstock pavement into spa-
tial graphs. The graph representation treats fracture data not as objects in space but
as relationships. Such a representation enables the use of graph theory. We developed
a series of routines to represent fracture networks as primal and dual graphs, perform
topological modifications, resolve issues such as artificial fragmentation, and automat-
ically identify geologically significant fractures. Appendix B details these graph-based
routines. Using spatial graph theory enables easy computation of many topological dis-
tributions such as node degree, cumulative length based on edge topology type, and
block areas. We find that natural fracture networks are dominated globally by degree-3
nodes. The networks display disassortativity properties via a correlation between frac-
ture length and several intersected fractures. In Appendix D, we further use the between-
ness centrality metric corresponding to the Lilstock networks to illustrate network infor-
mation’s importance instead of sparse sampling. These 2D network properties provide
essential information that one can implement within stochastic DFN generators based
on point processes derived from sparse data.

6.3. SPATIAL VARIABILITY IN FRACTURE NETWORKS

The large spatial extent of automatically extracted fractures (made possible by method-
ology in Chapter 2) and the representation as spatial graphs (Chapter 3) allow the use
of graph metrics to investigate intra- and inter-network spatial variability. In Chapter
4, we utilize both global graph properties and graph distances to identify spatial differ-
ences in fracture network organization. Graph distances provide heuristics to compare
graphs based on inherent graph properties. By spatially sampling the large-scale net-
works obtained from Chapter 3, and by using the combination of graph distances with
hierarchical clustering, we can uncover spatial patterns within fracture networks.

We use four graph distances, namely, fingerprint, D-measure, NetLSD, and portrait
divergence. These measures convert a graph into probability distributions (fingerprint,
D-measure, Portrait divergence) or signals (NetLSD), that encode some topological and
geometric properties of the graphs. The distance measures then are a comparison of
the extracted probability distribution or signal. We find that the selected graph met-
rics can highlight spatial patterns that are not discernable from other computed spatial
properties such as fracturing intensity or density. The results indicate that a REV, which
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is challenging to define otherwise for fractured media, can be approached using such a
spatial variation investigation. Although the networks we consider are not representative
of subsurface conditions, applying the methodology to properly identified and represen-
tative outcrops can provide useful rules for geostatistical or stochastic extrapolation to
subsurface models.

The core of the approach to comparing graphs in Chapter 4 is based on the extrac-
tion of a suitable graph property representing a key geometric and topological feature
underlying the fracture graph. In Appendix E, we present an implementation of simplic-
ity profiling of graphs. The simplicity profile compares statistics of simplest paths versus
shortest paths within a graph sample and converts this information into a normalized
distribution. The shape of this profile is also beneficial as a comparison metric.

Like fracture networks, karstic cavities that form due to dissolution in porous media
also display a network structure. Karst is abundant in carbonate rocks and often co-exist
with fracture networks providing additional storativity and enhanced connectivity. In
any case, pre-existing fracture networks offer preferential pathways for karstic pathway
evolution. There remains a paucity of realistic and accurate 3D representations of cave
passages. In Chapter 5, we present a workflow to acquire 3D geometric data of caves effi-
ciently. Using portable lidar based on SLAM-algorithms and combined with point-cloud
processing, a fast workflow is presented to obtain detailed, quantitative datasets of karst
cave 3D patterns and intricate geomorphology of speleological features. The caves that
we have explored are within carbonate rocks in Bahia, Brazil and they display a mixture
of epigenic and hypogenic footprint. The 3D geometries serve as practical input for ge-
omechanical and fluid flow modelling that considers explicit karst cavity representation.

6.4. SYNOPSIS

The workflows presented in Chapters 2 and 3 help to obtain truly large-scale, realistic
natural fracture patterns from outcrops. The workflow in Chapter 5, is similarly appli-
cable to karst cavity networks. The datasets generated provided valuable insight into
the structure and spatial variability of fracture networks as presented in Chapter 4. The
case studies of fracture networks (Chapter 4) show both layeral and intra-network dif-
ferences in fracturing patterns. Given that fracture systems have a potentially large im-
pact on subsurface permeability, it is important to account for these spatial variations
in the context of fractured reservoir modelling. The datasets generated have widespread
value in this regard, as one can use them to further test flow, transport, and geomechan-
ical behaviour within explicit discontinuum models. Although spatial variation in high-
deformation settings such as folding and faulting is well-recognized with many analogue
outcrops, quantitative information in weakly-deformed rocks is lacking.

Although the fracture datasets are limited to 2D, and we do not consider stylolite or
vein networks, they still provide relevant information that can guide the decision of sta-
tionarity bounds in geostatistical extrapolation and to determine the size of REVs. This
Thesis presents an integrated workflow that is generally applicable to any dataset. This
data-driven framework based on automated data processing is expandable and improv-
able in many dimensions, such as the use of graph-based DFN generation and graph-
based reservoir simulation.







OVERVIEW OF THE COMPLEX
SHEARLET TRANSFORM

This appendix serves as supplement to Chapter 2.

SHEARLET SYSTEMS
A shearlet generating function consists of an anisotropic scaling matrix and a shear ma-
trix. Let the shearlet generating function be:

v e L*(R?) (A.1)
The admissibility criteria for the shearlet generating function is :

A 2
.LZW(;—IZEZ)' d62d61<00 (A.2)
1

where 1 is the 2D fourier transform of .

A shearlet satisfying Eq.A.2 is an admissible shearlet or a continuous shearlet [Ku-
tyniok and Labate, 2012]. The admissibility condition implies that a reconstruction for-
mula exists for the associated continuous shearlet transform. In order to achieve an op-
timally sparse approximation of an image that possesses anisotropic singularities, the
analysing elements must consist of waveforms that range over several scales, orienta-
tions, and locations with the ability to become very elongated. To this end, a combina-
tion of a scaling operator to generate elements at different scales, an orthogonal opera-
tor to change orientations, and a translation operator to displace elements over the 2D
plane, is used. The scaling matrix A, is defined as [Labate et al., 2005]:

a 0
Aaz(o a“)’ a €[0,1]
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(a) (b)

Figure A.1: (a). Isotropic elements capturing a discontinuity curve (b). Sheared, anisotropic elements captur-
ing a discontinuity curve [modified from Kutyniok and Labate, 2012]

The value of @ controls the degree of anisotropy [see Grohs et al. 2016 for information

on anisotropy scaling molecules or a—molecules]. The scaling matrix is parabolic when
_1

a= 3-

An orthogonal transformation to change the orientations of waveforms. Rotation op-
erators are not preferred as they destroy the structure of the integer lattice Z? whenever
the rotation angle is different from 0, i%, +7, 137”. Changes in the structure of integer
lattice is problematic when transitioning from continuum to digital setting. Hence, a
shearing transformation is used where the anisotropic shearing transformation matrix
S, are defined as:

1
S5 = (0 i) where the parameters a € R*,s € R

The shearing matrix S; preserves the structure of the integer grid for any s € N. The
shearing matrix parametrizes orientations using the variable s associated with slopes
rather than angles and leaves the integer lattice invariant, provided s is an integer. The
difference between isotropic and anisotropic dilation with shearing is depicted in Fig.
A.la and Fig. A.1b).

A shearlet system is defined as [Kutyniok and Labate, 2012]:
SH(y) = {wasi=a "w(A 'S (- n)aeR" s eR reR?} (A.3)
where (- — ) denotes the translation by a point ¢.
The corresponding shearlet transform for mapping a function f € L?(R?) into coeffi-

cients, SHy, f (a, s, t) specified by scaling a, shearing s and translation ¢ is given by:

f - SHl[/ f(ars) t) = fy '(//a,s,t (A4)
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Figure A.2: The cone adapted continuous shearlet system (a) Bias in directions is handled by dividing the
frequency plane into 4 cones €61, 62, 63, 64 and a square low frequency box region in the centre 2 (b) Trape-
zoidal shaped wedge tiling of the frequency induced domain induced by the shearlet transform [modified after
Kutyniok and Labate 2012]

CONE ADAPTED CONTINUOUS SHEARLET SYSTEMS

Equation (A.4) renders horizontal shearlets elongated at very fine scales, which is prob-
lematic in digital implementations. Because the shearing operator can range over a non-
bounded interval, directions are not treated uniformly. To overcome this drawback of
shearing, the cone adapted shearlet system was introduced in which the frequency plane
is split into a horizontal and vertical cone that restricts the shear parameter to bounded
intervals (see Fig. A.2.a). Dividing the frequency plane in such a manner ensures uniform
treatment of directions [Guo et al., 2005, Kutyniok and Labate, 2012]. A cone adapted
shearlet system can be tiled by further division of the frequency domain. Such a tiling
configuration (see Fig. A.2.b) ensures that all directions are treated "almost equally” [Ku-
tyniok and Labate, 2012]. There is still small, but controllable bias in the coordinate axes
directions). The cone adapted shearlet systems can therefore be expressed as the union
of a horizontal cone, a vertical cone, and a low-frequency centre component. The fre-
quency plane is thus split into four horizontal and vertical cones with a low-frequency
square region in the centre. The low-frequency region is given by the relation [Kutyniok
and Labate, 2012]:

R =1{(&1,61) 11,1820 <= 1} (A.5)

Inside each cone, the shearing variable s is only allowed to vary over a finite range.
This produces elements with uniformly distributed orientations. The union of the gen-
erating functions for the horizontal cones ¢ € L?(R?), vertical cones ¢ € L*(R?) and
for the square low frequency region ¢ € L? ([Rzz) is expressed as [Kutyniok and Labate,
2012]:

SH(p, v, %) =D(p) U¥ () UP (@) (A.6)

where
®(p)={p,=@(-0:1eR?}; A7)

¥ (y) = {iae=a

7 (A58 - 0)ae 011]s1<1+a?, teR?}; (A.8)
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3

i = -3 -(5-1¢ -1 1 2
V) = {fase=a 19(A7'8,7 - 0): ae ©O,1],Is <1+ a2, teR?}, (A.9)
Scaling matrix for vertical cones, A, is expressed as:
~ a® o0
Ag= ( 0 a) (A.10)
The cone adapted continuous shearlet transform is expressed as the mapping:
f - SH(pvaZ/ f(t,’ (a’ S t) 4 (d’ g’ i)) = (f’ (Pt’va U/a,s,tv fr 1/753,5,5) (All)
THE DISCRETE CONE ADAPTED SHEARLET SYSTEM
A discrete version of the cone adapted shearlet system may be defined with scaling pa-
rameter j, shearing parameter k, and translation parameter m for a sampling factor of

¢ = (c1,¢) € (Ry)2. Similar to Eq. (A.6) this is a union of the generating functions for
vertical, horizontal, and low frequency central region.

SH(p, v, ;) = @(p;c1) U (y;¢) U (T;0) A.12)
@ (p;01)={p,=@(—c1m) :meZZ}; (A.13)
3 . i 2
W (y30) = {wjkm =21y (Skdy - ~Mm): j=0,1kI < [22], me22}; (A.14)
~ ~ §j.. T % ~ . I 2
‘I’(y/;c):{wjykymzz4 ¥ (Sk' Ayj-—Mcm): j=0,lkl < [22—‘, meZ }; (A.15)
WithMC:[CO1 COZ i M, = COZ 001 ;

(M, and M, are sampling matrices for horizontal and vertical cones)

212 ¢
0o 2/

2/ 0
0 2j/2

Ayj = y Hoj =

’

(A,; and A,; are dyadic scaling matrices for horizontal and vertical cones)

1
,and Sy =

01 (shearing matrix).

The discrete cone adapted shearlet transform associated with ¢, ¥ and ¥ is given by
the mapping,

f g SH(,D,U/JP f(mlr (]r kr m);(fv k! m) = (f) (pm’rfr Wj,k',m; f; u—d/j,]::'m) . (A16)
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THE COMPLEX DISCRETE CONE ADAPTED SHEARLET SYSTEM

Taking the complex-valued wavelet of a real-valued even-symmetric wavelet generator
weven e [? (RZ), using the Hilbert transform operator (%), a complex valued shearlet
generator is obtained [from King et al., 2015, Reisenhofer, 2014]

1//c — 1//even +i 1/jodd_ (A.17)

The complex-valued function can be written in terms of a Hilbert transform pair
of an even-symmetric real valued shearlet and an odd-symmetric real valued shearlet:
[from King et al., 2015, Reisenhofer, 2014]

even

W=yt + i AU, (A.18)

The Hilbert transform operator is written as,

a
&d‘r. (A.19)
-7

—a

7(9) = Jim

The discrete cone adapted complex shearlet system is given as [King et al.,, 2015,
Reisenhofer, 2014]:

SH(p,w,;0) =®(@;c1) U (y;¢) UPW;¢) (A.20)
and
SH (¢, w, ;) = D(;¢1) U (y;0) UPE(;0) (A.21)
where,
®(p;c1)={p,=p(—c1m): me 7%}, (A.22)

i
\Ifc(w;c)={wcjyk,m=wfj'k,m+i(Jf(l,o)T V) jkm: J 201kl <227, meZz}, (A.23)

VE(F50) = {0 o = T o+ Fo 0T D) 2O <[28], me 72} (A29)

Correspondingly the discrete complex cone adapted shearlet transform is given by
the mapping,

f—’ SHC(p,l//Jl—/ f(m,)(j) k) m)v(i) ié) m)) = (f) (Pm’;f; wcj‘k'm)f) ﬁ’;,km) . (AZS)
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EDGE AND RIDGE DETECTION USING THE COMPLEX SHEARLET

TRANSFORM

The behavior of the coefficients of the even symmetric and odd symmetric shearlets can
be used to detect edges and ridges. An edge measure for an image f € L?(R?), a location
x € R? and a shear parameter s is given as,

E (f X S) - |ZaeA Im (f’wca,s,x)l —LaeA |Re(f’wca.8,xn
L Al maxaea |Im(f’ Wca,s,x)i +é

, (A.26)

where A c R* is a set of scaling parameters, v is a real valued symmetric shearlet and
€ prevents division by zero [King et al., 2015, Reisenhofer, 2014]. The complex shearlet
based edge measure can give approximations of the tangential directions of an edge. A
line measure or ridge measure is obtained by interchanging the role of the even symmet-
ric and odd symmetric shearlets [King et al., 2015, Reisenhofer, 2014],

= |ZaeA Re (f’ wca,s,x)| —LacA |Im (f’ wc“’s’x”
|Almaxgea |Re(f’1//ca,s,x)| 3

Ly (f,x,5) . (A.27)

Both the edge and ridge measures given above are inspired from the phase congruency
measure of Kovesi [2000]. The edge and ridge measures are almost contrast invariant.
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Table A.1: Shearlets

Shearlet System  waveletEffSupp gaussianEffSupp scalesPerOctave shearLevel scales nShearlets alpha
1 200 100 1 2 1 36 0

2 125 63 1 2 1 36 0

3 84 42 1 2 1 36 0

4 67 34 1 2 1 36 0

5 200 100 2 2 7 12 0
6 125 63 2 2 7 12 0

7 84 42 2 2 7 12 0

8 67 34 2 2 7 12 0

9 200 100 3 2 10.5 12 0
10 125 63 3 2 10.5 12 0
11 84 42 3 2 10.5 12 0
12 67 34 3 2 10.5 12 0
13 200 100 4 2 14 12 0
14 125 63 4 2 14 12 0
15 84 42 4 2 14 12 0
16 67 34 4 2 14 12 0
17 200 100 1 3 3.5 20 0
18 125 63 1 3 3.5 20 0
19 84 42 1 3 3.5 20 0
20 67 34 1 3 3.5 20 0
21 200 100 2 3 7 20 0
22 125 63 2 3 7 20 0
23 84 42 2 3 7 20 0
24 67 34 2 3 7 20 0
25 200 100 3 3 10.5 20 0
26 125 63 3 3 10.5 20 0
27 84 42 3 3 10.5 20 0
28 67 34 3 3 10.5 20 0
29 200 100 4 3 14 20 0
30 125 63 4 3 14 20 0
31 84 42 4 3 14 20 0
32 67 34 4 3 14 20 0
33 200 100 1 4 3.5 36 0
34 125 63 1 4 3.5 36 0
35 84 42 1 4 3.5 36 0
36 67 34 1 4 3.5 36 0
37 200 100 2 4 7 36 0
38 125 63 2 4 7 36 0
39 84 42 2 4 7 36 0
40 67 34 2 4 7 36 0
41 200 100 3 4 10.5 36 0
42 125 63 3 4 10.5 36 0
43 84 42 3 4 10.5 36 0
44 67 34 3 4 10.5 36 0
45 200 100 4 4 14 36 0
46 125 63 4 4 14 36 0
47 84 42 4 4 14 36 0
48 67 34 4 4 14 36 0
49 200 100 1 2 3.5 12 0.5
50 125 63 1 2 3.5 12 0.5
51 84 42 1 2 3.5 12 0.5
52 67 34 1 2 3.5 12 0.5
53 200 100 2 2 7 12 0.5
54 125 63 2 2 7 12 0.5
55 84 42 2 2 7 12 0.5
56 67 34 2 2 7 12 0.5
57 200 100 3 2 10.5 12 0.5
58 125 63 3 2 10.5 12 0.5
59 84 42 3 2 10.5 12 0.5
60 67 34 3 2 10.5 12 0.5
61 200 100 4 2 14 12 0.5
62 125 63 4 2 14 12 0.5
63 84 42 4 2 14 12 0.5
64 67 34 4 2 14 12 0.5
65 200 100 1 3 3.5 20 0.5
66 125 63 1 3 3.5 20 0.5
67 84 42 1 3 3.5 20 0.5
68 67 34 1 3 3.5 20 0.5
69 200 100 2 3 7 20 0.5
70 125 63 2 3 7 20 0.5







GRAPH ROUTINES

This appendix contains a list of algorithmic routines to modify graphs as described in
Chapter 3. The shearlet parameters used to create ensembles of ridge maps are also
listed.

Algorithm 2 Topological Graph Manipulation Type 1

g, xy — Input Graph and Spatial Positioning Matrix

dt — Perform Delaunay Triangulation around Graph Nodes (xy)

A — Compute tri-element areas d ¢

a — Input tri-element area threshold

for i =1 to length (A< a) do
m — vertex attachment of tri-elements (A < a) with degree 2 (if they exist)
s — vertex attachment of tri-elements (A < a) with degree 1 (if they exist)
t — target node of edge in graph g containing node i
Remove edge s — t from graph g
Remove node s from graph g
Add edge m — t from graph g

end for
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Algorithm 3 Topological Graph Manipulation Type 2

g,xy — Input Graph and Spatial Positioning Matrix

dt — Perform Delaunay Triangulation around Graph Nodes (xy)

A — Compute tri-element areas d ¢

a — Input tri-element area threshold

for i =1tolength (A< a)do
¢,il1,i2,i3 — centroid and vertex elements of tri-element (A < a)
t1,12,t3 — target nodes of edges in graph g containing nodes i1,i2,i3
Remove edges i1 —i1,i2—i2,i3 — i3 from graph g
Remove nodes i1,i2, i3 from graph g
Add edges c—t1,c—t2,c—t3tograph g

end for

Algorithm 4 Topological Graph Manipulation Type 3

g,xy — Input Graph and Spatial Positioning Matrix

dt — Perform Delaunay Triangulation around Graph Nodes (xy)

A — Compute tri-element areas d ¢

ar — Input tri-element aspect ratio

fori=1tolength (A< ar)do
ml, m2 — vertex attachment of tri-elements (A < ar) with degree 2 (if they exist)
t1ml, t2ml, t1m2, t2m2 — target nodes of edges in graph g containing nodes m1, m2
p — midpoint on line connecting m1, m2
Remove edges m1 — t1ml, ml - t2ml, m2 — t1m2, m2 — t2m2 from graph g
Remove nodes m1, m2 from graph g
Add edges p—tlml,p—t2ml,p—t1m2,p—t2m2to graph g

end for

Algorithm 5 Resolving Artificial Fragmentation

g,xy — Input Graph and Spatial Positioning Matrix
N2 — Nodes in graph g having degree 2
for i =1 to length (N2) do
nl, — find neighbours of N2 having degree 2 looking forward
n2 — find neighbours of N2 having degree 2 looking backward
PATH < [n1- N2; - n2]
while exists(n1) OR exists(n2) do
nl, — find neighbours of n1 having degree 2 looking only forward (if exists)
n2 — find neighbours of n2 having degree 2 looking only backward (if exists)
PATH < [nl—-PATH - n2]
end while
end for
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Algorithm 6 Resolving step-outs

[g], [xy] — Input Graph and Spatial Positioning Matrix
E3_3 — sort for edges in graph g having degree 3 at both start and end nodes
t — threshold length
E3_3;;; — E3_3 < t: edges that can be merged
Eg_3f — E3_3> t: edges that can be flattened
for i =1 to length E3_3,, do
f1, f> — neighbour nodes of edge E3_3;, (i) looking forward
b1, by — neighbour nodes of edge E3_3;; (i) looking backward
remove edges E3_3,, (i), f1 — s, fo — s from [g]
remove source node of edge E3_3,,(i) : s
add edges f1 — E3—3m(i) : t, fo — E3—3;, (i) : t to [g]
end for
¢ — strike threshold for flattening
for i =1tolength E3_3 do
ws1, Wsp — walks starting from source node E3_3f(i) : s and away from E3_3f(i)
w1, wrp — walks starting from tail node E3_3¢(i) : £ and away from E3_3 ¢ (i)
C — combs(wsy, Ws2, W1, We2,+/ — ¢) combinations of walk pairs that are alignable
Cmax — max(length(C)) longest combination that is within +/ — ¢
E3_3¢(i): s' — find geometric point that is perpendicular from (E3-gf(i):sorE3 g¢(i): 1) to
line between Cj,4x : endy and Cax : endo
remove edges E3_3f(i) tSs— Es_gf(i) :tand Cypqx :end) — E3_3f(i) : s from [g]
remove node E3_3¢(i) : s from [g]
add node E3_37(i): 5" to [g]
add edges E3_37(i): s’ — E3_3f():tand E3_37(i): s' = Cmax : end; to [g]
end for

Algorithm 7 Straightening fracture traces

g,xy, PAT HS — Input Graph, Spatial Positioning Matrix, and Segmented Fracture Paths
N2 — nodes in graph with degree 2
for i =1 to length (PATHS) do
s, e — source and end nodes of path
add edge s — e to graph
end for
remove nodes N2 from graph
Xy < remove points pertaining to nodes N2 and update spatial positioning matrix
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Algorithm 8 Geologically significant fracture traces

g,xy — Input Graph, Spatial Positioning Matrix
alpha — Set threshold for fracture strike
E — counter of all edges in graph, edges(g)
for i =1 to length (edges(g)) do
s, e — source and end nodes for edge
edgess — possible edges emanating from source node s excluding edge s—e having a fracture
strike within threshold alpha
edgese — possible edges emanating from end node e excluding edge s — e having a fracture
strike within threshold alpha
walks — appending edgess and edges. to walks
book keeping on E by removing edges within walks to avoid repetition
end for

Algorithm 9 Primal to Dual

[gp], [xy], F — Input Graph, Spatial Positioning Matrix, and edge sequence corresponding to
geologically relevant fractures
A, — initialize empty sparse adjacency matrix of length(F) Xlength (F)
for i =1 to length (F) do
N — all neighbour nodes connected to nodes in F;
fia < indices of entries in F that either start or terminate with nodes in N
fill Agli. * length(fig) fiql and Aglfigqi. * length(f;;)] with ones
create [g;4] using Ay
end for
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Table B.1: Shearlet System 1

Shearlet System  waveletEffSupp EffSupp  scalesPerOctave  shearLevel scales nShearlets alpha

1 200 100 1 2 1 36 0
2 125 63 1 2 1 36 0
3 84 42 1 2 1 36 0
4 67 34 1 2 1 36 0
5 200 100 2 2 7 12 0
6 125 63 2 2 7 12 0
7 84 42 2 2 7 12 0
8 67 34 2 2 7 12 0
9 200 100 3 2 10.5 12 0
10 125 63 3 2 10.5 12 0
11 84 42 3 2 10.5 12 0
12 67 34 3 2 10.5 12 0
13 200 100 4 2 14 12 0
14 125 63 4 2 14 12 0
15 84 42 4 2 14 12 0
16 67 34 4 2 14 12 0
17 200 100 1 3 3.5 20 0
18 125 63 1 3 3.5 20 0
19 84 42 1 3 3.5 20 0
20 67 34 1 3 3.5 20 0
21 200 100 2 3 7 20 0
22 125 63 2 3 7 20 0
23 84 42 2 3 7 20 0
24 67 34 2 3 7 20 0
25 200 100 3 3 10.5 20 0
26 125 63 3 3 10.5 20 0
27 84 42 3 3 10.5 20 0
28 67 34 3 3 10.5 20 0
29 200 100 4 3 14 20 0
30 125 63 4 3 14 20 0
31 84 42 4 3 14 20 0
32 67 34 4 3 14 20 0
33 200 100 1 4 3.5 36 0
34 125 63 1 4 3.5 36 0
35 84 42 1 4 3.5 36 0
36 67 34 1 4 3.5 36 0
37 200 100 2 4 7 36 0
38 125 63 2 4 7 36 0
39 84 42 2 4 7 36 0
40 67 34 2 4 7 36 0
41 200 100 3 4 10.5 36 0
42 125 63 3 4 10.5 36 0
43 84 42 3 4 10.5 36 0
44 67 34 3 4 10.5 36 0
45 200 100 4 4 14 36 0
46 125 63 4 4 14 36 0
47 84 42 4 4 14 36 0
48 67 34 4 4 14 36 0
49 200 100 1 2 3.5 12 0.5
50 125 63 1 2 3.5 12 0.5
51 84 42 1 2 3.5 12 0.5
52 67 34 1 2 3.5 12 0.5
53 200 100 2 2 7 12 0.5
54 125 63 2 2 7 12 0.5
55 84 42 2 2 7 12 0.5
56 67 34 2 2 7 12 0.5
57 200 100 3 2 10.5 12 0.5
58 125 63 3 2 10.5 12 0.5
59 84 42 3 2 10.5 12 0.5
60 67 34 3 2 10.5 12 0.5
61 200 100 4 2 14 12 0.5
62 125 63 4 2 14 12 0.5
63 84 42 4 2 14 12 0.5
64 67 34 4 2 14 12 0.5
65 200 100 1 3 3.5 20 0.5
66 125 63 1 3 3.5 20 0.5
67 84 42 1 3 3.5 20 0.5
68 67 34 1 3 3.5 20 0.5
69 200 100 2 3 7 20 0.5
70 125 63 2 3 7 20 0.5
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Table B.2: Shearlet System 2

Shearlet System  waveletEffSupp  gaussianEffSupp  scalesPerOctave  shearLevel scales nShearlets alpha

1 67 67 1 2 3.5 12 0
2 50 50 1 2 3.5 12 0
3 40 40 1 2 3.5 12 0
4 34 34 1 2 3.5 12 0
5 67 67 2 2 7 12 0
6 50 50 2 2 7 12 0
7 40 40 2 2 7 12 0
8 34 34 2 2 7 12 0
9 67 67 3 2 10.5 12 0
10 50 50 3 2 10.5 12 0
11 50 50 3 2 10.5 12 0
12 40 40 3 2 10.5 12 0
13 34 34 3 2 10.5 12 0
14 67 67 1 3 3.5 12 0
15 50 50 1 3 3.5 20 0
16 40 40 1 3 3.5 20 0
17 34 34 1 3 3.5 20 0
18 67 67 2 3 7 20 0
19 50 50 2 3 7 20 0
20 40 40 2 3 7 20 0
21 34 34 2 3 7 20 0
22 67 67 3 3 10.5 20 0
23 50 50 3 3 10.5 20 0
24 40 40 3 3 10.5 20 0
25 67 67 1 4 3.5 36 0
26 50 50 1 4 3.5 36 0
27 40 40 1 4 3.5 36 0
28 34 34 1 4 3.5 36 0
29 67 67 2 4 7 36 0
30 50 50 2 4 7 36 0
31 40 40 2 4 7 36 0
32 34 34 2 4 7 36 0
33 67 67 3 4 10.5 36 0
34 50 50 3 4 10.5 36 0
35 40 40 3 4 10.5 36 0
36 34 34 3 4 10.5 36 0
37 67 67 1 2 3.5 12 0.5
38 50 50 1 2 3.5 12 0.5
39 40 40 1 2 3.5 12 0.5
40 34 34 1 2 3.5 12 0.5
41 67 67 2 2 7 12 0.5
42 50 50 2 2 7 12 0.5
43 40 40 2 2 7 12 0.5
44 34 34 2 2 7 12 0.5
45 67 67 3 2 10.5 12 0.5
46 50 50 3 2 10.5 12 0.5
47 40 40 3 2 10.5 12 0.5
48 34 34 3 2 10.5 12 0.5
49 67 67 1 3 3.5 20 0.5
50 50 50 1 3 3.5 20 0.5
51 40 40 1 3 3.5 20 0.5
52 34 34 1 3 3.5 20 0.5
53 67 67 2 3 7 20 0.5
54 50 50 2 3 7 20 0.5
55 40 40 2 3 7 20 0.5
56 34 34 2 3 7 20 0.5
57 67 67 3 3 10.5 20 0.5
58 50 50 3 3 10.5 20 0.5
59 40 40 3 3 10.5 20 0.5
60 34 34 3 3 10.5 20 0.5
61 67 67 1 4 3.5 36 0.5
62 50 50 1 4 3.5 36 0.5
63 40 40 1 4 3.5 36 0.5
64 34 34 1 4 3.5 36 0.5
65 67 67 2 4 7 36 0.5
66 50 50 2 4 7 36 0.5
67 40 40 2 4 7 36 0.5
68 34 34 2 4 7 36 0.5
69 67 67 3 4 10.5 36 0.5
70 50 50 3 4 10.5 36 0.5
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Table B.3: Shearlet System 3

Shearlet System  waveletEffSupp g scalesPerOctave  shearLevel scales nShearlets alpha
1 29 145 1 2 3.5 12 0
2 25 125 1 2 3.5 12 0
3 23 115 1 2 3.5 12 0
4 20 100 1 2 35 12 0
5 29 145 2 2 7 12 0
6 25 125 2 2 7 12 0
7 23 115 2 2 7 12 0
8 20 100 2 2 7 12 0
9 29 145 3 2 10.5 12 0
10 25 125 3 2 10.5 12 0
11 23 115 3 2 10.5 12 0
12 20 100 3 2 10.5 12 0
13 29 145 1 3 3.5 20 0
14 25 125 1 3 35 20 0
15 23 115 1 3 35 20 0
16 20 100 1 3 3.5 20 0
17 29 145 2 3 7 20 0
18 25 125 2 3 7 20 0
19 23 115 2 3 7 20 0
20 20 100 2 3 7 20 0
21 29 145 3 3 10.5 20 0
22 25 125 3 3 10.5 20 0
23 23 115 3 3 10.5 20 0
24 20 100 3 3 10.5 20 0
25 29 145 1 4 3.5 36 0
26 25 125 1 4 35 36 0
27 23 115 1 4 35 36 0
28 20 100 1 4 3.5 36 0
29 29 145 2 4 7 36 0
30 25 125 2 4 7 36 0
31 23 115 2 4 7 36 0
32 20 100 2 4 7 36 0
33 29 145 3 4 10.5 36 0
34 25 125 3 4 10.5 36 0
35 23 115 3 4 10.5 36 0
36 20 100 3 4 10.5 36 0
37 29 145 1 2 3.5 12 0.5
38 25 125 1 2 35 12 0.5
39 23 115 1 2 35 12 0.5
40 20 110 1 2 35 12 0.5
41 29 145 2 2 7 12 0.5
42 25 125 2 2 7 12 0.5
43 23 115 2 2 7 12 0.5
44 20 100 2 2 7 12 0.5
45 29 145 3 2 10.5 12 0.5
46 25 125 3 2 10.5 12 0.5
47 23 115 3 2 10.5 12 0.5
48 20 100 3 2 10.5 12 0.5
49 29 145 1 3 35 20 0.5
50 25 125 1 3 35 20 0.5
51 23 115 1 3 35 20 0.5
52 20 100 1 3 3.5 20 0.5
53 29 145 2 3 7 20 0.5
54 25 125 2 3 7 20 0.5
55 23 115 2 3 7 20 0.5
56 20 100 2 3 7 20 0.5
57 29 145 3 3 10.5 20 0.5
58 25 125 3 3 10.5 20 0.5
59 23 115 3 3 10.5 20 0.5
60 20 100 3 3 10.5 20 0.5
61 29 45 1 4 35 36 0.5
62 25 125 1 4 3.5 36 0.5
63 23 115 1 4 3.5 36 0.5
64 20 100 1 4 3.5 36 0.5
65 29 145 2 4 7 36 0.5
66 25 125 2 4 7 36 0.5
67 23 115 2 4 7 36 0.5
68 20 100 2 4 7 36 0.5
69 29 145 3 4 10.5 36 0.5
70 25 125 3 4 10.5 36 0.5







SPATIAL VARIATION RESULTS

This appendix contains supplementary spatial variation results derived from the method-
ology presented in Chapter 4. Hierarchical clustering results for each region are pre-

sented in the form of heatmaps distance matrices and dendrograms in Figs. C.1-C.3.

The variation of cluster boundaries for varying levels of dendrogram cuts or granularity

are shown in Figs. C.4-C.9. Archetypal subgraph examples from the detected clusters are

depicted in Figs. C.10-C.18.
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Figure C.1: Combined symmetric heatmap of distance matrix and dendrograms, dendrograms, and sum-of-
squares elbow plots for Region 1 (a) Fingerprint (b) D-measure (c) NetLSD (d) Portrait Divergence
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Figure C.2: Combined symmetric heatmap of distance matrix and dendrograms, dendrograms, and sum-of-
squares elbow plots for Region 2 (a) Fingerprint (b) D-measure (c) NetLSD (d) Portrait Divergence
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Figure C.3: Combined symmetric heatmap of distance matrix and dendrograms, dendrograms, and sum-of-
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Figure C.12: Subgraph samples depicting variation in fracturing identified by portrait divergence in Region 1
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Figure C.13: Subgraph samples depicting variation in fracturing as identified by fingerprint distance in Region
2
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BETWEENNESS CENTRALITIES OF
FRACTURE NETWORKS

This appendix deals with the application of betweenness centrality (BC) to spatial frac-
ture networks. BC is a value assigned to a node in a spatial graph that is computed based
on the ratio between the number of times a node falls on a geodesic path between all
combination of nodes in the graph to the number of shortest paths between all node
combinations of nodes in the graph [Newman, 2001]. It is given as::

gli) =~ Y @) (D.1)

N s#t Ost

where o; is the number of shortest paths from s to ¢ and o (i) is the number of
shortest paths from s to ¢ passing through node i (S and ¢ is usual graph convention
for source and target nodes). ./ is the constant of normalization, which is equal to 4" =
(N-1)(IN—-2) where N is the total number of nodes. The BC for a square lattice decreases
with distance to the barycentre of nodes. In non-lattice spatial graphs, such as fracture
networks, the relative disorder in node positions introduces fluctuations that create non-
trivial patterns which develop due to an interplay of space and topology [Barthelemy,
2018].

The betweenness centrality scores of the nodes create specific arterial paths in the
network that serves as a proxy for traffic flow through the graph Jonckheere et al. [2011].
If we assume that the travelling quantity chooses shortest paths and each node pair
forms an origin-destination couple, BC corresponds to local traffic atanode [Barthelemy,
2018]. The flow can be any physical process such as fluid flow, electricity, traffic, or in-
tangible such as data packets. These arterial paths are not evident by simple a priori
observation of the network but only revealed after computation of BC.

Using Euclidean distance as edge weights, we compute the BC profiles for all five
networks (fracture graphs) as presented in Chapter 3. A set of pathways is revealed by the
BC computation, which is not evident from a traditional fracture network analysis. These
are plotted in Fig. D.1(a) - D.3(a). For each area, we extract a subgraph that contains the
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nodes with the top 12 percent of BC magnitudes. These are depicted in Fig. D.1(b) -
D.3(b). The results indicate that boundary effects and the general shape of the periphery
of the fracture networks influence the final pattern.

100

50

0 50 100 150 200

Figure D.1: (a) BC profile for fracture network in Area 2. Warm colours indicate high BC and dark low BC (b)
Highlighting edges connecting nodes that are in the top 12 % w.r.t BC values

We computed the BC based on edge weights that are equivalent to Euclidean dis-
tance. However, flow and transport in fracture networks are dependent upon fracture
conductivity, F is a function of fracture aperture w and length /. Approximately, we can
write,

w3

Fo~ e (D.2)

F, can now be used as an edge weight. Fracture aperture distributions are stress-
sensitive. To study the effect of stress-sensitivity on BC, we use the geometric aperture
method of Bisdom et al. [2016] to define an effective hydraulic aperture. The variation of

BC w.r.t maximum stress directions is depicted in Fig. D.4 for Areas 4 and 5
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Figure D.2: (a) BC profile for fracture network in Area 4. Warm colours indicate high BC and dark low BC (b)
Highlighting edges connecting nodes that are in the top 12 % w.r.t BC values

We have not yet tested the large-scale networks’ flow behavior to verify the high-BC
nodes’ role as playing an essential role in flow and transport in fractured media. How-
ever, there is evidence from the work of Srinivasan et al. [2018] and Srinivasan et al.
[2019], that use machine learning coupled with physics-based flow simulations, that a
pruned DEN (or backbone) is extractable from a more extensive network while retaining
transport characteristics. It remains to be verified whether one can use the BC for model
order reduction of fracture networks.
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0 30 60

Figure D.3: (a) BC profile for fracture network in Area 5. Warm colours indicate high BC and dark low BC (b)
Highlighting edges connecting nodes that are in the top 12 % w.r.t BC values
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Area 4

Figure D.4: BC profiles corresponding to Areas 4 and 5 with edge weights varying as an edge conductivity that
is a function of geometric aperture






NETWORK SIMPLICITY

The simplicity profile of a spatial graph proposed by Viana et al. [2013] is a high-level
metric to characterize a spatial graph. The concept is based on the statistics of shortest
and simple paths within a planar, spatial graph. For any pair of nodes in a graph (i, j), the
shortest path between the two nodes is obtained by the euclidean length (i, j) through
graph edges. In contrast, a simple path, I* (i, j), is defined as one which requires the least
number of turns to connect the nodes (i, j) through the graph.

e N v S S
Y =< =\ g ]

X
AN B ey b

D — —

Figure E.1: An example depicting the difference between simple and shortest paths for a fracture network.
Source and target nodes are depicted in yellow. The shortest path based on euclidean distance between source
and target nodes is depicted in green. The simplest path requires minimum number of turns to traverse from
source to target and is depicted in magenta
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Simple paths equal the shortest path in lattice-type networks but diverge from unity
in non-lattice networks. A statistical comparison between the ratio of lengths of the sim-
plest and shortest paths yields information about a fracture network structure. This ratio
ll((ll ]])) = 1 for a spatial graph. For lattices and trees, the ratio is 1. For every path in the
primal, i.e., P(i,j), the nodes ‘i’ and ‘j’ are part of fractures F(i) and F(j). F(i) and F(j) cor-
respond to nodes, N(i) and N(j) in the dual graph. We can count the shortest paths in the
dual graph between N(i) and N(j), in terms of the number of dual graph nodes one must
hop to reach from N(i) and N(j). This is equivalent to the number of turns taken. There
can be multiple paths that have a similar number of turns (or node hops). L*(i,j) refer
to the least euclidean distance. Figure E.1 depicts an example of the difference between
the shortest and simplest paths.

The simplicity index S is defined as the normalized average for N nodes as

! 1*(i, )
T N(N-1) a0

(E.1)

The simplicity index S mixes various scales within the fracture network and we can
define a simplicity profile in terms of length d,

S(d) = —— Fap (E2)
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Figure E.2: Simplicity profiles for biological networks (a) Dragonfly wing (b) Ilex aquifolium (c) simplicity pro-
file of dragonfly wing (d) simplicity profile ofllex aquifolium
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The simplicity profile S(d) always has a value greater than 1. The variation of S(d),
with increasing and decreasing d, highlights structural variations within the graph. For
S(d — 0) ~ 1 and at smaller values of d, the paths are at the nearest neighbors’ scale, and
the simplest and shortest paths converge. At the other end of the length-scale spectrum,
when d — d4y, there are many more long and straight paths available, decreasing the
difference between simple and straight paths. At an intermediate d*, where S(d) peaks,
the divergence between the simplest and shortest paths are maximum. At this length
scale, d*, we have the graph domains that are not connected by straight paths. We can
normalize S(d) by dividing by d;,4x. Thus the simplicity profile makes a comparison of
graphs across scales possible. Viana et al. [2013] compared various spatial networks such
as roads, railways, waterways, leaves, and dragonfly wings.

We depict the simplicity profiles of two types of biological spatial networks, i.e., a
dragonfly wing and a a leaf veination pattern in Fig. E.2. Both the graphs were digitized
from image data published in Viana et al. [2013]. An interesting phenomenon is the peak
of d* within the ensemble of simplicity profiles. From the observations of Viana et al.
[2013], different from man-made networks, biological networks such as leaf venation
patterns and physarum have their peaks clustering around -=— — 0.2 followed by fast
decay. From the reconstructed networks of a dragonfly wing and aleaf veination pattern
we are able to see such a peak. Our implementation of the computation of normalized
simplicity broadly matches the curve shapes presented by Viana et al. [2013]. It may be
noted that the profile might vary depending on the strike thresholds used to compute
the dual graph as described in Chapter 3.

We now compute the simplicity profiles for circularly sampled sub-graphs from Area
4 as described in Chapter 3 using our implementation. The sub-graphs and their respec-
tive proﬁles are plotted in Fig E.3. The profiles are quite different with varying peaks
S(7— d -), peak values of S(— -), and decay behaviour. Sub-graph (b), has the most ele-
vated proﬁle while sub- graph (e) has the lowest height. Unlike the biological networks
(see Fig. E.2) the peaks are shifted to the right to a range of between 0.4-0.6 for %— dmax

High

d
S
|:dwm;r:|

Low

0 0.2 0.4 0.6 0.8
d

d’”l,(l,l'

Figure E.3: Simplicity profiles for six different fracture network samples each of 7.5 m diameter. Curve colours
correspond to the colours of the square label insets in the top-left corner of each fracture network sampling.

This can be explained by close scrutiny of the corresponding networks. Sub-graph (e)
has a very diffused type of fracturing with short sets, and hence a lesser number of turns
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is needed to traverse between any two pair of nodes. On the other hand, sub-graph (b)
has long and persistent fracture sets that traverse the sampling, implying more detours
and increasing the simplicity peak. The fracture intensity also plays a role with sub-
graph (f) having the least fracture intensity having the second-largest peak of S (ﬁ)
among all samplings. The simplicity profiles provide a unique, global indicator by which
one can mean to compare fracture networks across scales as the index is normalized.
The concept can be explored further connecting it to detailed comparisons of spatial
heterogeneity in fracturing and the relation of network structure with respect to equiva-
lent permeability.



DEEP LEARNING FOR AUTOMATIC
FRACTURE TRACING

This appendix introduces a deep learning approach to automatic fracture extraction us-
ing Generative Adversarial Networks (GANs). In contrast to the method described in
Chapter 2 where the complex shearlet transform was used to convert images of frac-
tured rocks to vectorized fracture traces, deep-learning methods use a set of training data
which a neural network architecture learns a mapping function between a set of inputs
to outputs. Many such architectures have been successful in computer vision tasks such
as image classification, feature extraction, image generation etc, such as U-Net, CNNs,
etc. This chapter utilizes the vector traces generated by complex shearlet-based auto-
matic tracing pertaining to the Bristol Channel outcrop data to train a conditional GAN.
The trained model is then applied to a new region within the Bristol Channel pavement
to extract fracture traces. The results indicate that such an approach using a pre-trained
deep neural architecture is quite amenable to the problem of fracture detection.

Deep neural architectures for feature detection
Modelling of naturally fractured reservoirs (NFRs) using Discrete Fracture Network (DFN)
approaches, in which spatial organization of fractures are represented explicitly within
porous continuum, have become increasingly popular and relevant in NFR modeling.
Digitized fracture traces from Digital Outcrop Models (DOMs) based on LIDAR/UAV
photogrammetry provide critical information on fracture network properties and ar-
chitecture at a sub-seismic scale. These include fracture length scaling, orientation,
topology, and intensity. However, the extraction of fracture traces is a manual, time-
intensive process and prone to interpreter bias, and the total value of large photogram-
metric datasets is seldom achieved in practice.

The general goal in an automated fracture trace detection workflow can be gener-
alized as an image pixel prediction task. The convolutional neural net (CNN), since its
inception in 2012, has fast evolved and is a ubiquitous choice for many tasks in computer
vision. CNNs have evolved from the basic architecture of convolutional and pooling lay-
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ers into variations such as the U-Net and the RCNN. In these neural architectures, the
CNN learns a loss function between target inputs and outputs. Generative Adversarial
Networks (GANSs) are a type of neural architecture that consist of a generator G and a
discriminator D that participate in a minimax game so that the output indistinguishably
converges to the input and the loss function is automatically learnt [Goodfellow et al.,
2014].

Conditional GANs (cGANS) are a variation of a GAN in a conditional setting. The
typical GAN learns a mapping from a random noise vector z to an output image y, G: z
— ¥. A cGAN learns a mapping from an observed image x and random noise vector z to
y,suchthat G: x,z — y.

Description of cGAN architecture
We utilize the cGAN architecture implementation referred to as Pix2Pix by Isola et al.
[2017]. The generator architecture consists of a modified U-Net with an encoder and
a decoder that retains the skip connections between both components. In a typical
encoder-decoder configuration, input passes through multiple layers that progressively
downsample till reaching the bottleneck. The process reverses at the bottleneck. There
is a loss of low-level information due to the bottleneck, and adding skip connections
prevents this. The blocks of the encoder consist of a Conv — Batchnorm — Leaky ReLU
sequence, and the blocks of the decoder consist of a Transposed Conv — Batchnorm —
Dropout sequence.

Target Image Input Image

[Mean Absolute Error] Discriminator
All 1s
Lambda Sigmoid Cross
Entropy
+

Apply
Gradients

Figure E1: Workflow of the pix2pix cGAN (modified from Isola et al, 2018)

The discriminator is a PatchGAN with each block having a Conv — Batchnorm —
Leaky ReLU sequence.

Training Data
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We create input training data from vectorized fracture traces as presented in Chapter 3.
A total of 138 image tiles from the Bristol Channel dataset is extracted (see Fig. F2). The
vector trace data is rasterized and placed alongside the source to represent the target
image output, as shown in example Fig. E3.

A

0 25 50 m
| |

485850E

s Training Data Tiles New Region 1 s New Region 2

Figure E2: Training image tiles and validation regions from the Bristol Channel dataset

Figure E3: An example of training data for the cGAN from Area 5. The Pix2Pix cGAN learns a pixel-to-pixel
representation from source image on the left to the target image on the right

cGAN Results
The Pix2Pix cGAN is applied to two new regions within the Bristol Channel outcrop (see
Fig. E2). An example result on four images from the two new regions is shown in Fig.
E4 and Fig. E5. The output is a cartoon-like image which still needs to be vectorized.
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The trace vectorization workflow described in Chapter 2 is applied to the output images.
The quality of results compare well with the complex shearlet with the added advantage
of lesser false positives. Further training of the cGAN using augmented training data by
mirroring and rotations can improve the trace detection quality.

Figure E4: Results of the Pix2Pix cGAN applied to an image tile from new Region 1
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tile from new Region 2

image

Results of the Pix2Pix cGAN applied to an

Figure E5
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