
 
 

Delft University of Technology

The multi-objective railway timetable rescheduling problem

Binder, Stefan; Maknoon, Yousef; Bierlaire, Michel

DOI
10.1016/j.trc.2017.02.001
Publication date
2017
Document Version
Final published version
Published in
Transportation Research. Part C: Emerging Technologies

Citation (APA)
Binder, S., Maknoon, Y., & Bierlaire, M. (2017). The multi-objective railway timetable rescheduling problem.
Transportation Research. Part C: Emerging Technologies, 78, 78-94.
https://doi.org/10.1016/j.trc.2017.02.001

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.trc.2017.02.001
https://doi.org/10.1016/j.trc.2017.02.001


Transportation Research Part C 78 (2017) 78–94
Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier .com/locate / t rc
The multi-objective railway timetable rescheduling problemq
http://dx.doi.org/10.1016/j.trc.2017.02.001
0968-090X/� 2017 Elsevier Ltd. All rights reserved.

q This article belongs to the Virtual Special Issue on ‘‘Integrated optimization models and algorithms in rail planning and control”.
⇑ Corresponding author.

E-mail addresses: s.binder@epfl.ch (S. Binder), yousef.maknoon@epfl.ch (Y. Maknoon), michel.bierlaire@epfl.ch (M. Bierlaire).
Stefan Binder a,⇑, Yousef Maknoon a,b, Michel Bierlaire a

a Transport and Mobility Laboratory (TRANSP-OR), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de
Lausanne (EPFL), CH-1015 Lausanne, Switzerland
bDelft University of Technology, Faculty of Technology, Policy and Management, Transport and Logistics Group, Jaffalaan 5, 2628 BX Delft, Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 May 2016
Received in revised form 31 January 2017
Accepted 1 February 2017
Available online 10 March 2017

Keywords:
Railway timetable rescheduling
Passenger satisfaction
Multi-objective
Pareto frontier
Integer linear program
Unexpected disruptions occur for many reasons in railway networks and cause delays,
cancelations, and, eventually, passenger inconvenience. This research focuses on the rail-
way timetable rescheduling problem from a macroscopic point of view in case of large dis-
ruptions. The originality of our approach is to integrate three objectives to generate a
disposition timetable: the passenger satisfaction, the operational costs and the deviation
from the undisrupted timetable. We formulate the problem as an Integer Linear Program
that optimizes the first objective and includes e-constraints for the two other ones. By solv-
ing the problem for different values of e, the three-dimensional Pareto frontier can be
explored to understand the trade-offs among the three objectives. The model includes
measures such as canceling, delaying or rerouting the trains of the undisrupted timetable,
as well as scheduling emergency trains. Furthermore, passenger flows are adapted dynam-
ically to the new timetable. Computational experiments are performed on a realistic case
study based on a heavily used part of the Dutch railway network. The model is able to find
optimal solutions in reasonable computational times. The results provide evidence that
adopting a demand-oriented approach for the management of disruptions not only is pos-
sible, but may lead to significant improvement in passenger satisfaction, associated with a
low operational cost of the disposition timetable.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Major disruptions, such as the unavailability of railway tracks due to unexpected events (e.g., rolling stock breakdown,
adverse weather conditions), occur frequently in railway networks. For instance, Jespersen-Groth et al. (2009) report approx-
imately 22 infrastructure-related disruptions per day, with an average duration of 1.7 h, on the Dutch railway network dur-
ing the first half of 2006. These events cause train delays and cancelations, which lead to passenger dissatisfaction. Due to the
disruption, passengers using the railway network have longer travel times and reach their destination later than expected.
Also, passengers can experience even larger delays if they miss a connection.

The deregulation of the European railway market in recent years has thus pushed railway operators to focus on the level
of service provided to customers. Now more than ever, it is crucial for railway operating companies to outperform the com-
petition in terms of passenger satisfaction, measured with indicators such as punctuality or reliability. Providing an adequate
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response to disruptions is a necessary step in this direction. Also, avoiding the cost of increasingly common ‘‘compensation
payments” to passengers suffering from large delays is a strong incentive for railway operators.

The reasons outlined above call for a framework that is able to quantify the response to disruptions and evaluate trade-
offs between the different stakeholders when designing a disposition timetable. Due to its complexity, the recovery problem
is usually broken up into three consecutive phases: timetable rescheduling, rolling stock rescheduling and crew reschedul-
ing. In this paper, we focus on timetable rescheduling. The timetable provided by our framework can then be used as an
input for the second and third phases of the recovery problem, which is hard to solve in an integrated way.

In this paper, we consider major disruptions causing the unavailability of one (or more) track(s) for a known time period.
We therefore look at the rescheduling problem from a macroscopic point of view, disregarding details such as track assign-
ments in stations or signaling. Note that the macroscopic representation of the problem imposes to omit certain details, such
as speed profiles and exact train orderings. The real-life feasibility of the solution is therefore not guaranteed. We assume
that the elements left out of our representation are solved at a later stage of the recovery process. Our framework generates
a so-called disposition timetable, which is conflict-free in terms of operational constraints (e.g., no two trains can be sched-
uled on the same resource at the same time) and as convenient as possible for the passengers. When constructing a dispo-
sition timetable, the objective of the railway operator is to minimize the operational costs, while the aim of the passengers is
to receive the best possible level of service. The two goals are usually incompatible: the best possible service for the passen-
gers may also be the most expensive option for the operator. This inadequacy is the key motivation for our work: construct-
ing disposition timetables that take into account passenger satisfaction, while keeping operational costs low. Furthermore,
we consider the deviation from the undisrupted timetable as a common objective to be minimized by both passengers and
the operator.

The main contribution of this paper is to propose an Integer Linear Programming formulation for the multi-objective rail-
way timetable rescheduling problem in case of a major disruption. It takes into account the passenger satisfaction and
imposes upper bounds on the operational cost and on the deviation from the undisrupted timetable. In contrast to the exist-
ing literature, our formulation allows total flexibility for the timetable rescheduling: a train can be delayed, totally or par-
tially canceled or rerouted through another part of the network, and emergency trains can be scheduled. In addition,
passenger flows are adapted dynamically to the disposition timetable, as the preferred path of a passenger in the undis-
rupted case might not be available anymore in the new timetable.

To the best of our knowledge, this is the first attempt to integrate three objectives in a single framework for railway time-
table rescheduling. The timetables constructed by this approach are therefore results of the trade-off between the conflicting
objectives. The exploration of the three-dimensional Pareto frontier allows to analyze this trade-off and to quantify the qual-
ity of the timetables according to the three objectives. We solve the problem optimally on a realistic case study and show
that the passenger satisfaction can be significantly improved at relatively low additional operational costs.

The remainder of this paper is structured as follows. Section 2 reviews the current state of the scientific literature in the
railway timetable rescheduling field. The problem is formally described in Section 3 and presented as an Integer Linear Pro-
gram in Sections 4 and 5. Section 6 reports the results of the computational experiments on the case study. Finally, Section 7
concludes the paper and provides directions for further research.

2. Literature review

The literature review presented in this section focuses on recent contributions to the train timetable rescheduling prob-
lem. It is mainly based on the review paper on railway recovery models by Cacchiani et al. (2014), where publications are
classified according to three main criteria, defined in Table 1. Based on this classification, we identify gaps where contribu-
tions can be made to the literature, hence justifying the relevance of our work.

The thorough review of railway recovery models presented in Cacchiani et al. (2014) shows that the major part of the
recent scientific literature deals with disturbances rather than disruptions. Further, in most papers, the railway network
is represented at the microscopic rather than at the macroscopic level. Most papers also have an operations-centric approach
Table 1
Criteria classifying the railway recovery literature.

Criterium Description

Disturbance Primary delay (i.e., a process taking longer than initially scheduled) that can be handled by rescheduling the timetable only,
without rescheduling the resource duties (such as crews and rolling stock)

Disruption (Relatively) large external incident strongly influencing the timetable and requiring resource duties to be rescheduled as
well

Microscopic Very precise representation of the railway infrastructure (sometimes at the switch or track section level), in order to
compute detailed running times and headways between trains

Macroscopic High-level representation of a railway infrastructure, considering only stations and tracks (details such as signals or track
sections are ignored)

Operations-centric Focus on minimizing negative effects related to railway companies, such as delays or the number of canceled trains
Passenger-centric Focus on minimizing negative effects related to passengers, such as total travel time or number of connections
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to railway timetable rescheduling, instead of a passenger-centric view. The literature reviewed in this section focuses on the
works most relevant to us, dealing with disruptions at a macroscopic level. First, operations-centric models are presented.
Then, passenger-centric works are reviewed and the differences with the present work are pointed out.
2.1. Operations-centric railway disruption management

Brucker et al. (2002) consider the problem of rescheduling trains in case of a track closure due to construction works on a
double-track line. A local search heuristic that minimizes lateness is presented and tested on a real world instance.
Narayanaswami and Rangaraj (2013) develop a MILP model that resolves conflicts caused by a disruption that blocks part
of a single bidirectional line. Trains can only meet and pass each other in the stations, and cannot be canceled. Train move-
ments are rescheduled in both directions of the line for a small artificial instance, with the objective of minimizing the total
delay of all trains. Albrecht et al. (2013) consider the problem of disruptions due to track maintenance, arising when main-
tenance operations take longer than scheduled and thus force to cancel additional trains. A disposition timetable including
track maintenance is constructed using a Problem Space Search meta-heuristic. The methodology is tested on a single track
railway network in Australia. Corman et al. (2014) compare centralized and distributed procedures for train rescheduling,
and propose heuristic algorithms to coordinate dispatching areas. The authors test their algorithms on a Dutch railway net-
work with various traffic disturbances, including delays and blocked tracks.

Louwerse and Huisman (2014) consider the case of partial and complete blockades in case of a major disruption on a dou-
ble track line. They develop a mixed-integer programming model to generate the disposition timetable. The authors consider
two rescheduling possibilities for trains: cancelations and delays. The objective is to minimize both of them. Schedule reg-
ularity constraints (e.g., operating approximately the same number of trains in each direction during a partial blockade) are
included in the formulation in order to take the rolling stock problem into account implicitly. In case of a complete blockade,
both sides of the disruption are considered independently (i.e., trains will reverse before the disrupted area but no coordi-
nation with the other side is considered). Veelenturf et al. (2015) extend the MILP model of Louwerse and Huisman (2014).
The extended model is able to deal with a real-world railway network and includes the possibility to retime, reorder, cancel
and reroute trains. The paper also considers the transition phases between the undisrupted timetable and the disposition
timetable, as well as back to the original timetable when the disruption has ended. The model is tested on a part of the Dutch
railway network, and in most cases the computational time is acceptable. Zhan et al. (2015) consider railway rescheduling on
a high-speed line in case of a complete blockade. Due to the nature of the seat reservations, trains that have started their
journey have to end in their final destination and cannot be rerouted or canceled. The problem is formulated as a MILP with
the same objective function as Louwerse and Huisman (2014). The model is tested on a real-world Chinese case study and is
able to reduce the effects of the disruption on passenger service. Zhan et al. (2016) reschedule high-speed trains on a double-
track line with a partial blockade (unavailability of one track). The authors formulate the rescheduling problem as a MILP and
use a rolling horizon approach to solve it. The model is tested on the Beijing-Schanghai line and decides the sequence of
trains, the passing times at the stations, as well as canceled services.
2.2. Passenger-centric railway disruption management

Cadarso et al. (2013) develop an integrated optimization model for timetable and rolling stock rescheduling that accounts
for dynamic passenger demand. The problem is solved in two iterative steps. First, the anticipated disrupted demand is com-
puted using a logit model. As demand figures are estimated before the timetable is adjusted, they are based on line frequen-
cies in an anticipated disposition timetable, rather than on actual arrival and departure times. In the second step, the
timetabling and rolling stock rescheduling problem is formulated and solved as a MILP model, subject to the anticipated
demand calculated in the first step. Recovery strategies include canceling existing train services or scheduling extra ones.
However, the possibility of retiming existing trains is not considered. Computational experiments are performed on the
regional rapid transit network of Madrid. Veelenturf et al. (2014) also integrate the rescheduling of rolling stock and time-
table in disruptionmanagement. Timetable decisions are limited to additional stops of trains at stations where they normally
would not halt. The fact that passengers will adapt their path to the new schedule is taken into account in a heuristic iter-
ative framework: after each generation of a new schedule, passenger flows are simulated to evaluate the service from the
passenger’s point of view. Kroon et al. (2015) present a mathematical model and an iterative heuristic to solve the real-
time rolling stock rescheduling problem with dynamic passenger flows. The rescheduled timetable is used as an input in
their formulation. The model minimizes a combination of system-related costs (such as penalties for the modification of roll-
ing stock compositions) and service-related costs that express the effect of train capacities on the total passenger delay.
Computational results are reported on problem instances constructed from the Netherlands Railways network.

The delay management problem, initially introduced by Schöbel (2001), determines which passenger connections should
be maintained in case of a delayed feeder train. Many extensions of the original model have been proposed (see, e.g.,
Schachtebeck and Schöbel, 2010; Schöbel, 2009). Two that are of particular interest to us are Dollevoet et al. (2012) and
Corman et al. (2016). In the former, passengers can reroute themselves in the network if they miss a connection (in earlier
models it was assumed that a passenger who misses a train waits for an entire cycle). In the latter, the authors integrate the
microscopic representation of railway operations and the passenger perspective of the delay management problem.
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2.3. Summary and contributions of the present work

Table 2 compares our approach with recent related publications. The table is split into two parts, based on whether a pub-
lication considers passengers or not. One can observe that our framework is very comprehensive, especially in terms of pos-
sible recovery decisions: all but one (rolling stock) recovery decisions allowed in other publications appear in our
framework. The trade-off for this large number of different rescheduling possibilities is the (relatively) low size of solvable
instances. We also consider the deviation from the undisrupted timetable explicitly in the objective function, a feature that
few publications have.

In terms of passenger modeling, the three first papers presented in the previous section introduce a heuristic iterative
framework to consider passenger flows during disruptions. By contrast, we integrate the passenger travel choices with
the timetable rescheduling problem in a single model, which is solved to optimality. In this sense, our work can be seen
as an integrated version of the three first papers considering passengers. Furthermore, we consider explicitly interactions
between demand and supplied capacity, which Cadarso et al. (2013) disregards. The delay management problem, introduced
by Schöbel (2001), is not considered explicitly in our work; however, by minimizing the generalized passenger travel time in
the objective function we also minimize connection times.
Table 2
Characteristics of publications dealing with disruptions at a macroscopic level.

Publication Model
structure

Solution
algorithm

Objective Recovery
decisions

Passengers Largest reported instance
size

Brucker et al.
(2002)

IP Polynomial local
search algorithm

Minimize maximal lateness of trains O – 30 h, 200 trains, double
track line

Narayanaswami
and Rangaraj
(2013)

MILP GLPK Minimize total delay of all trains D – 30 min, 6 trains, double
track line

Albrecht et al.
(2013)

S Problem Space
Search meta-
heuristic

Minimize total/maximal train and
maintenance delay

D – 50 trains per day, single
track line

Corman et al.
(2014)

AG Division into
small problems
+ Heuristics

Minimize train delays D, O, R – 43 stations, 205 trains,
double track network

Louwerse and
Huisman
(2014)

IP CPLEX Minimize cancelations, delays, and
spatial and temporal imbalances

D, C Implicit 12 stations, 2 h, 16 trains, 2
double track lines

Veelenturf et al.
(2015)

IP CPLEX Minimize cancelations and train delays D, O, R, C – 39 stations, 60 trains per
hour, double track network

Zhan et al.
(2015)

MILP CPLEX Minimize cancelations and train delays D, O, C, A – 23 stations, 130 trains,
double track line

Zhan et al.
(2016)

MILP CPLEX + Rolling
horizon

Minimize cancelations and deviations D, O, C, A – 23 stations, 130 trains,
double track line

Cadarso et al.
(2013)

MILP CPLEX
+ Passenger
simulation

Minimize operational cost, cancelations,
denied passengers and deviation from
original schedule

C, E L, T, RR 46 stations, 2 h, 530,000
passengers

Veelenturf et al.
(2014)

IP CPLEX
+ Passenger
simulation

Minimize rolling stock cost and
passenger delays

A S, T, RR, C 3 h, 16 trains, 450,000
passengers

Kroon et al.
(2015)

IP CPLEX
+ Passenger
simulation

Minimize penalties for rolling stock
modifications and passenger delays

RS S, T, RR, C 14 stations, 11,415
passenger groups, 3hours

Schöbel (2001) IP – Minimize sum of passenger delays D, O SP, T –
Schachtebeck

and Schöbel
(2010)

IP Heuristics Minimize sum of delays and missed
connections

D, O SP, T 598 stations, 92 trains,
double track network

Schöbel (2009) IP Heuristics Minimize sum of delays and missed
connections

D, O SP, T 183 stations, 1962 trains

Dollevoet et al.
(2012)

IP Heuristics for
special cases

Minimize total delay of all passengers D, O SP, T, RR 775 passengers, 404 trains

Corman et al.
(2016)

MILP Heuristics Minimize total passenger time in system D, O SP, T, RR 7 stations, 202 trains,
double track network

This publication IP CPLEX + e
constraints

Minimize passenger inconvenience,
operational cost and deviation from
undisrupted timetable

D, O, R, C,
E, A

SP, T, RR, C 11 stations, 24 trains, 55
passenger groups, double
track network

Model structure: Mixed Integer Linear Program (MILP), Simulation (S), Alternative Graph (AG), Integer Program (IP).
Recovery decisions: Ordering (O), Delay (D), Rerouting (R), Cancelation (C), Emergency train (E), Additional stops (A), Rolling Stock (RS).
Passengers: Logit (L), Transfers (T), Rerouting (RR), Strategy (S), Shortest path (SP), Capacity (C).
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The contributions of this paper are summarized as follows:

� We address the timetable rescheduling problem as a tri-objective problem, with a special emphasis on minimizing pas-
senger inconvenience.

� We propose an integer linear program that integrates both the timetable rescheduling problem and passenger routing.
� We allow total flexibility for the new timetable and define a measure that quantifies the deviation from the undisrupted
timetable.

� We carry out computational experiments on a realistic case study and are able to solve the model to optimality for several
instances.

3. Problem description

We present a multi-objective timetable rescheduling framework for disrupted railway networks. The operator and the
passengers have different goals in railway operations. Passengers would prefer a direct train from their origin to their des-
tination, arriving exactly at their desired arrival time. Considering the operational cost of this solution, it is obviously impos-
sible to provide such a service to every passenger. Hence, a trade-off between these two objectives needs to be found. In case
of disruptions in railway operations, we also need to take into account the deviation from the undisrupted timetable. Con-
sidering this ‘‘cost” is necessary in order to avoid solutions where the schedule of the entire network is overhauled because of
a local disruption. This is beneficial both for the passengers and the operator. Also, once the disruption is resolved, it is easier
and quicker to come back to the undisrupted timetable if the disposition timetable is not too different. Given these objec-
tives, our approach determines which trains should be delayed, canceled or re-routed through another part of the network.
We also include the possibility of scheduling ‘‘emergency trains”, situated in shunting yards near given stations.

In the passenger railway service, a timetable is defined as the set of arrival and departure times of every train at each of
the stations where it stops. In this timetable, some trains may run along a pre-determined ”train line” (i.e., sequence of vis-
ited stations). Here, because we consider a disruption scenario, we do not assume any pre-determined train line, hence the
sequence of visited stations may be different for each train. By solving the model, one obtains a disposition timetable as well
as the modified routings of the passengers through the network.

3.1. Infrastructural model

Time is discretized into nþ 1 time intervals of length s and we introduce the set of time steps H ¼ f0; s;2s; . . . ;nsg, where
ns is the considered planning horizon. We model the railway network at a macroscopic level. The infrastructure is repre-
sented by a set of stations s 2 S and a set of tracks Q # S� S connecting the stations. A track ðs; s0Þ 2 Q is an uninterrupted
railway track linking s to s0 directly, without passing in any other station. Each station s is characterized by its available plat-
forms p 2 Ps and the presence or absence of a shunting yard. We denote by SR # S the subset of stations with a shunting yard,
and by R the set of shunting yards. Every shunting yard rs 2 R is associated with exactly one station s 2 SR.

We define two stations s; s0 2 S to be neighboring if ðs; s0Þ 2 Q and ðs0; sÞ 2 Q . Between two neighboring stations, the running
time tðs; s0Þ, in minutes, and the distance dðs; s0Þ, in kilometers, are known and equal for all trains. Trains cannot switch tracks
between stations and overtakings occur only within stations (i.e., a platform in a station can be reached from any incoming/
outgoing track). Each track can be used in one direction at the time, or it can be assigned to opposite directions alternatively. A
certain headway is respected if two consecutive trains are running in the same direction on the same track. In case the track is
used in opposite directions, a set of conflicting movements is defined to ensure proper separation of the trains.

Two different groups of trains are considered: original trains and emergency trains. The set of original trains k 2 K contains
the trains that are operated in the undisrupted timetable. Their schedule is an input to the rescheduling model. The set of
emergency trains e 2 E represents trains that are located in shunting yards, ready to be scheduled if needed. All trains begin
and end their trip at a shunting yard and the number of emergency trains available in each shunting yard is given by nr . We
assume that all trains are homogeneous, with the same capacity q, defined as the maximal number of onboard passengers.

3.2. Passenger travel choice model

We assume that passengers form groups that share the same origin-destination pair and desired arrival time at destina-
tion. As the travel time is deterministic in our modeling framework, the groups can equivalently be characterized by the
desired departure time. We adopt the latter representation in the following. A passenger group g 2 G is denoted by a triplet
ðog ; dg ; tgÞ, where og 2 S is the origin station, dg 2 S the destination station, and tg 2 H the desired departure time from the
origin. The number of passengers in group g is ng . The model does not allow splitting of the groups (groups of size one
can be considered in order to model passengers individually).

For every passenger group, we consider the set Pfog ;dgg of all paths linking the origin station og to the destination station dg .
A path is a sequence of access, in-vehicle, waiting, transfer and egress movements (refer to Section 4 for a definition in terms
of arcs in a space-time graph). We associate a utility function with every alternative (i.e., path) and assume that each
passenger group chooses the one with the highest utility. The utility function of every alternative j 2 Pfog ;dgg for passenger
group g depends on the following attributes (see Robenek et al., 2016):
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� In-Vehicle Time (VTj): time, in minutes, spent by the passenger group in one (or more) train(s) along the path.
� Waiting Time (WTj): time, in minutes, spent by the passenger group waiting between two consecutive trains at a station
along the path (does not consider the waiting time for the first train).

� Number of Transfers (NTj): number of times the passenger group needs to change trains along the path.
� Early Departure (EDj ¼ maxð0; tg � tÞ): time difference (in minutes) between the desired (tg) and the actual (t) departure
time from origin (t) for the passenger group, if early.

� Late Departure (LDj ¼ maxð0; t � tgÞ): time difference (in minutes) between the actual (t) and the desired (tg) departure
time from origin for the passenger group, if late.

We assume that the price of the trip is equal among all the paths for a given origin-destination pair, so that it does not
need to enter the utility function (utility theory only considers differences between alternatives). Based on the aforemen-
tioned description for a given passenger group g, the utility of the alternative j is defined as follows:
Vj ¼ �ðVTj þ b1 �WTj þ b2 � NTj þ b3 � EDj þ b4 � LDjÞ; ð1Þ

where b1; . . . ; b4 are the relative weights of the attributes described above. This quantity is in minutes and expresses the gen-
eralized travel time of passenger group g along path j 2 Pfog ;dgg, with a negative sign. As commonly done in the literature, the
weights of the various elements of the generalized travel time are defined relative to the in-vehicle time of the path. We use
the values reported in Table 6, obtained from the literature. We assume that passengers have full knowledge of the system
and that they choose the path with the highest utility (i.e., the lowest generalized travel time) to travel from origin to des-
tination. Also, our model does not consider demand elasticity, that is, the number of travelers does not change as a conse-
quence of the disruption.

Due to train capacity issues, it is possible that, for some passenger groups, no feasible alternative exists between origin
and destination within the time horizon. We therefore include an artificial ‘‘penalty path” for those disrupted passenger
groups. This path models the worst possible option to travel from origin to destination. We therefore associate it with the
lowest possible utility: the duration of the time horizon, with a negative sign.

3.3. Recovery decisions

We consider a disruption in the railway network where a number of tracks become unavailable. Multiple track blockades
can occur at the same time, and at different locations in the network. We assume that the network is disrupted for the whole
time horizon of the rescheduling problem. Hence, we do not consider what happens after the end of the disruption (i.e., once
all tracks can be used again). The fact that one of our objectives is to minimize the deviation from the undisrupted timetable
is supposed to facilitate the recovery of the usual timetable.

In order to recover from the disruption, we consider the four following decisions (the three first ones concern original
trains):

Cancelation A train may be fully or partially canceled. A partially canceled train is only operated on a subset of the sta-
tions of its original route and canceled afterwards. Observe that a full cancelation is a special case of a par-
tial cancelation.

Delay The arrival or departure of a train at a station may be delayed up to a maximal amount of time. A train may
also be delayed only for a part of its route. Note that a train with a delay of zero is equivalent to a train in
the undisrupted timetable. We do not allow trains to run earlier than in the undisrupted timetable, as this
is usually avoided in practice because passengers might miss their planned train.

Rerouting A train may be rerouted through another path than the originally planned one.
Emergency train At every station with a shunting yard, a limited number of emergency trains is available. These may be

scheduled as needed.

4. Space-time graph

To represent the problem mathematically, we introduce a directed space-time graph GðV ;AÞ, inspired from Nguyen et al.
(2001). We first describe the sets of nodes and arcs that characterize all possible movements in the network in the following
section. Based on these sets, we describe in Section 4.2 which arcs are available for rescheduling in case of a disruption.

4.1. Complete graph

The set of nodes V ¼ N [ NR [ NO [ ND consists of four different types of nodes. A time-expanded node ðs; p; tÞ 2 N repre-
sents platform p 2 Ps of station s 2 S, at time t 2 H. NR is the set of time-invariant shunting yard nodes, associated with shunt-
ing yards r 2 R. Finally, NO and ND are the sets of time-invariant origin and destination nodes of the passenger groups. We
denote by sðrÞ; sðoÞ and sðdÞ the station associated with node r 2 NR; o 2 NO and d 2 ND, respectively.
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Eight types of arcs are defined, representing all feasible movements of trains and passengers:

� Starting arcs model a train leaving the shunting yard at the start of its trip. They are given by the set
ASta ¼ fðr; ðs; p; tÞÞ j r 2 NR; ðs; p; tÞ 2 N; sðrÞ ¼ s;8p 2 Ps;8t 2 Hg.

� Ending arcs model a train arriving at the shunting yard at the end of its trip. They are given by the set
AEnd ¼ fððs; p; tÞ; rÞ j ðs; p; tÞ 2 N; r 2 NR; sðrÞ ¼ s;8p 2 Ps;8t 2 Hg.

� Driving arcs model the movements of passengers and trains between two neighboring stations. Train driving arcs are
given by the set ADri ¼ fððs; p; tÞ; ðs0; p0; t0ÞÞ j ðs; p; tÞ; ðs0; p0; t0Þ 2 N;8s; s0 2 S : ðs; s0Þ 2 Q ;8p 2 Ps;8p0 2 Ps0 ;8t; t0 2 H : t0 � t ¼
tðs; s0Þg. For every passenger group g, the set Ag

Dri is a duplicate of the arc set ADri and represents the driving movements
of the passenger group. Arcs in ADri and in Ag

Dri are weighted differently, as described in Table 3.
� Waiting arcs model passengers and trains waiting in a station. Train waiting arcs are given by the set
AWai ¼ fððs; p; tÞ; ðs; p; t0ÞÞ j ðs; p; tÞ; ðs; p; t0Þ 2 N;8s 2 S;8p 2 Ps;8t; t0 2 H : t0 � t ¼ sg. Similarly to driving arcs, the set Ag

Wai

is a duplicate of AWai, for every passenger group g, and its arcs are weighted accordingly (see Table 3). Note that a train
(or a passenger) can use consecutive waiting arcs in a station in order to wait longer than s.

� Transfer arcs model passengers transferring from one train to another in a station, with a minimal transfer time m and a
maximal transfer time M. They are given by the set Ag

Tra ¼ fððs; p; tÞ; ðs; p0; t0ÞÞ j ðs; p; tÞ; ðs; p0; t0Þ 2 N;8s 2 S;8p 2 Ps;8p0 2
Ps n fpg;8t; t0 2 H : m 6 t0 � t 6 Mg.

� Access arcs model passenger group g arriving at the origin. They are given by the set Ag
Acc ¼ fðo; ðs; p; tÞÞ j o 2 NO; ðs; p; tÞ 2

N; sðoÞ ¼ s ¼ og ;8p 2 Ps;8t 2 Hg.
� Egress arcs model passenger group g leaving the system at destination. They are given by the set Ag

Egr ¼
fððs; p; tÞ; dÞ j ðs; p; tÞ 2 N; d 2 ND; sðdÞ ¼ s ¼ dg ;8p 2 Ps;8t 2 Hg.

� Penalty arcsmodel passenger group g not succeeding to take the train from origin to destination. They are given by the set
Ag
Pen ¼ fðo; dÞ j o 2 NO; d 2 ND; sðoÞ ¼ og ; sðdÞ ¼ dgg.

The set of train arcs is given by AT ¼ ASta [ AEnd [ ADri [ AWai, while the set of passenger arcs associated with passenger
group g is Ag ¼ Ag

Dri [ Ag
Wai [ Ag

Tra [ Ag
Acc [ Ag

Egr [ Ag
Pen. Note that driving and waiting arcs describe both train and passenger

movements. The nodes associated with passenger group g are denoted by Ng .
The cost of using an arc a 2 AT for a train (ca), or an arc a 2 Ag for a passenger group g (t ga ), are listed in Table 3. We assume

that the operational cost is proportional to the distance travelled by the trains. Therefore, only driving arcs have an operational
cost ca different from zero (c is the cost of running a train, per kilometer). Passenger arcs are weighted according to the utility
function introduced in Section 3.2. The cost of a path in the graph for a passenger group is obtained by summing up the
weights t ga of the arcs in the path. Note that a driving or waiting arc is weighted differently if is used by a train or a passenger.
4.2. Rescheduling graph

The arcs introduced in the previous section represent all possible train and passenger movements in the network. In case
of a disruption, some of these movements are forbidden. Also, we need to distinguish train arcs available to original trains
and to emergency trains. The general features of the procedure used to generate the rescheduling graph GðV ;A�Þ are
explained here. The interested reader can refer to Appendix A for the detailed algorithm.

Whena track becomesunavailable in the network, it cannot beusedby any train. Thedriving arcs inAT corresponding to this
track are therefore removed from the graph. We denote by A� � AT the subset of available train arcs in the disrupted graph.

The timetable of the original trains is an input to the rescheduling problem. Based on this timetable, we construct, for
every original train k 2 K , the set of available arcs, Ak, as a subset of the disrupted train arc set, A�. An original train can
be canceled, delayed or rerouted. Cancelation is modeled by introducing additional decision variables to the problem (see

Section 5). As detailed in Appendix A, the sets AD
k and ARR

k are introduced to model delays and reroutings. For every original

train k 2 K , only arcs in Ak ¼ AD
k [ ARR

k can be used during the disruption. Similarly, we define the set of available nodes, Nk, as
the set of head nodes of all arcs in Ak.
Table 3
Arc weights.

Name Start node End node ca t ga

Starting r ðs;p; tÞ 0 –
Ending ðs;p; tÞ r 0 –
Driving ðs;p; tÞ ðs0; p0; t0Þ c � dðs; s0Þ tðs; s0Þ
Waiting ðs;p; tÞ ðs;p; t0Þ 0 b1 � ðt0 � tÞ
Transfer ðs;p; tÞ ðs;p0; t0Þ – b2 þ ðt0 � tÞ
Access o ðs;p; tÞ – b3 �maxð0; ðtg � tÞÞ þ b4 �maxð0; ðt � tgÞÞ
Egress ðs;p; tÞ d – 0
Penalty o d – ns
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By contrast, emergency trains do not have a previous timetable and can therefore be scheduled at any time. The set of
available arcs is simply the disrupted train arc set A� in that case. The only constraints for emergency trains is to start and
end their trip at a shunting yard and not to use tracks conflicting with other trains. To prevent conflicts, we consider two
different situations:

� In the case where all tracks are available, we assume that a separation of s between the trains is sufficient. Hence, there is
no need to include additional constraints for trains running in the same direction on a track.

� In the case where only one track is available between two neighboring stations s; s0 2 S, it can be used in both directions.
For every train driving arc a ¼ ððs; p; tÞ; ðs0; p0; t0ÞÞ 2 ADri, we define the set of conflicting arcs XðaÞ ¼
fððs1; p1; t1Þ; ðs01; p0

1; t
0
1ÞÞ 2 ADri j s ¼ s01; s

0 ¼ s1; p ¼ p1; p
0 ¼ p0

1; t1 P t; t1 < t0 þ sg. This set formalizes the fact that if a train
goes from station s to s0, from time t to t0, there can be no other train in the opposite direction until time t0 þ s.

5. ILP formulation

In this section, we present an integer programming formulation for the multi-objective railway timetable rescheduling
problem. We consider a tri-objective optimization problem: the quantities to minimize are (i) passenger inconvenience,
(ii) operational costs, and (iii) deviation from the undisrupted timetable. The multi-objective aspect of the problem is
addressed by using e-constraints.

Based on the graph defined in the previous section, we introduce the following binary decision variables:

� wg
a ¼ 1 if passenger group g 2 G uses arc a 2 Ag

;
0 otherwise

�

� xka ¼
1 if original train k 2 K uses arc a 2 Ak;
0 otherwise

�

� ya ¼ 1 if an emergency train uses arc a 2 A�
;

0 otherwise

�

� zki ¼
1 if original train k 2 K is canceled after node i 2 Nk;
0 otherwise

�

Table 4 summarizes all the notations used in the model for the reader’s convenience. The last column indicates where the
notion is further explained, if necessary.
Table 4
Notations used in the ILP model.

Name Description Reference

G Set of passenger groups 3.2
Ag Set of arcs associated with passenger group g 2 G 4.1
Ng Set of nodes associated with passenger group g 2 G 4.1
N Set of time-expanded nodes 4.1
NR Set of shunting yard nodes 4.1
SR Set of stations with a shunting yard 3.1
Agþ
i � Ag Set of passenger arcs leaving node i 2 N [ NO

Ag�
i � Ag Set of passenger arcs entering node i 2 N [ ND

AT Set of undisrupted train arcs 4.1
A� � AT Set of disrupted train arcs 4.2
Aþ
i � A� Set of train arcs leaving node i 2 N [ NR

A�
i � A� Set of train arcs entering node i 2 N [ NR

XðaÞ � A� Set of train arcs conflicting with arc a 2 A� 4.2
K Set of original trains 3.1
Ak � A� Set of available arcs of original train k 2 K 4.2
Nk Set of available nodes of original train k 2 K 4.2
AD
k � Ak Set of available delay arcs of original train k 2 K 4.2, A

ARR
k � Ak Set of available rerouting arcs of original train k 2 K 4.2, A

Aþ
k;i � Ak Set of available arcs of train k 2 K leaving node i 2 N [ NR

A�
k;i � Ak Set of available arcs of train k 2 K entering node i 2 N [ NR

t ga Weight of arc a 2 Ag used by passenger group g 2 G 4.1
ng Size of passenger group g 2 G 3.2
ca Cost of running a train on arc a 2 AT 4.1
rk Shunting yard node where train k 2 K begins its trip
q Passenger capacity of a train 3.1
nr Number of emergency trains available in depot r 2 R 3.1
tki Time difference between node i 2 Nk and the original arrival time of train k at its last station
ta Time duration of arc a 2 ARR

k

dka Delay of arc a 2 AD
k , compared to the original timetable of train k

ce Cost of starting an emergency train
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5.1. Objective functions

The three objective functions are defined as follows (Eqs. (2)–(4)). As detailed in Section 3.2, passenger inconvenience (zp)
is given by the generalized travel time of the passengers. The operational cost of the timetable (zo) is the running cost of orig-
inal trains as well as emergency trains. The deviation cost (zd) represents the deviation from the undisrupted timetable and is
a weighted sum of the different rescheduling possibilities: cancelations, reroutings, delays and the cost of adding an emer-
gency train (the respective weighting factors are dc; dr ; dd; de).
zp ¼
X
g2G

X
a2Ag

t ga � ng �wg
a ð2Þ

zo ¼
X
a2A�

ca � ya þ
X
k2K

X
a2Ak

ca � xka ð3Þ

zd ¼ dc
X
k2K

X
i2Nk

tki � zki þ dr
X
k2K

X
a2ARR

k

ta � xka þ dd
X
k2K

X
a2ADk

dk
a � xka þ de � ce

X
r2R

X
a2Aþ

r

ya ð4Þ
5.2. Constraints

The model we propose has three types of constraints: operational constraints, passenger routing constraints and
e-constraints.

5.2.1. Operational constraints
Constraints of the first type ensure that all train movements are operationally feasible.
X

a2Aþ
k;rk

xka ¼ 1; 8k 2 K; ð5Þ

X
a2A�

k;i

xka ¼
X
a2Aþ

k;i

xka þ zki ; 8i 2 Nk;8k 2 K; ð6Þ

zki ¼ 0; 8i ¼ ðs; p; tÞ 2 N j s R SR; ð7ÞX
a2Aþ

r

ya 6 nr ; 8r 2 NR; ð8Þ
X
a2A�

i

ya ¼
X
a2Aþi

ya; 8i 2 N; ð9Þ
X
a2A�

i

ðya þ
X
k2K

xkaÞ 6 1; 8i 2 N; ð10Þ
X

a02XðaÞ
ðya0 þ

X
k2K

xka0 Þ 6 1; 8a 2 A�
: ð11Þ
Constraints (5) ensure that the original trains leave their shunting yard at the beginning of their trip. Flow conservation con-
straints (6) make sure that a train either continues its trip after node i 2 Nk, or it is canceled. Constraints (7) forbid cance-
lations in stations where there is no shunting yard available. The movements of emergency trains are governed by
constraints (8) and (9): there cannot be more trains leaving a shunting yard than the number of trains available in this shunt-
ing yard and flow is conserved at every node i. Operational conflicts are avoided with constraints (10) and (11). The former
ensure that for every node i, there is at most one incoming train (emergency or original). XðaÞ is the set of conflicting arcs of
arc a 2 AT , i.e., if a train is scheduled on arc a, there can be no train scheduled on any arc of XðaÞ.

5.2.2. Passenger routing constraints
Constraints of the second type deal with the routing of the passengers and are presented below.
X

a2Agþ
og

wg
a ¼ 1; 8g 2 G; ð12Þ

X
a2Ag�

dg

wg
a ¼ 1; 8g 2 G; ð13Þ

X
a2Ag�

i

wg
a ¼

X
a2Agþ

i

wg
a ; 8g 2 G;8i 2 Ng ; ð14Þ

wg
a 6 ya þ

X
k2K

xka; 8g 2 G;8a 2 A� \ Ag
; ð15Þ
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Main ch

Step

(0)

(0b)

(1)
(2)

(3)
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X
g2G

ng �wg
a 6 qðya þ

X
k2K

xkaÞ; 8a 2 A� \ Ag
: ð16Þ
Constraints (12)–(14) are flow conservation constraints for every passenger group: passengers have to leave their origin,
arrive at destination and use an uninterrupted path in their respective network. Constraints (15) and (16) link the passenger
paths to the train paths and ensure that passengers only use arcs where a train is available, and that train capacities are not
exceeded.
5.2.3. e-constraints
To address the multi-objective aspect of the problem, we introduce e-constraints (see, e.g., Ngatchou et al., 2005). Any of

the three objectives can be included as a constraint: zi 6 ei; i 2 fp; o; dg. The order in which objectives are minimized as well
as the selection process for the upper bounds ei is detailed in the next section. Another common approach in multi-objective
optimization is to combine the objectives into a single objective function using weights. The drawback of this approach is
that setting the weights is arbitrary and often complicated (especially if the objectives are expressed in different units).
The use of explicit constraints provides interpretations that the weighted sum of objectives does not.
5.3. Pareto frontier

The goal of the methodology presented in this section is to explore the three-dimensional Pareto frontier of the problem
in an easily interpretable way. By doing so, trade-offs between the three objectives can be quantified in a meaningful way.
The generation of the whole exact three-dimensional Pareto frontier (see, e.g., Mavrotas, 2009; Charkhgard, 2016) is however
out of the scope of this work. Note in particular that the following procedure does not guarantee to find all non-dominated
solutions.

In order to construct the Pareto frontier, we minimize the objectives in the following order: zp, then zd (with an upper
bound on zp), and finally zo (with upper bounds on zp and zd). Choosing passenger inconvenience as the first objective to min-
imize seems natural for our passenger-centric formulation. Minimizing the deviation from the undisrupted timetable second
is motivated by several computational experiments that showed that the trade-off can be best evaluated if the deviation cost
is minimized before the operational cost. Also, in an extreme situation such as a disruption, the sensitivity to operational cost
of the railway operator should be lower than during regular operations. Indeed, the public would be outraged if cost min-
imization appeared to be the main priority of the operator during the disruption. Further, emphasizing to minimize the devi-
ation from the undisrupted timetable helps to recover the timetable at a later stage of the rescheduling process. These
reasons justify the order we chose for the optimization framework. Clearly, the proposed framework is general, and can
accommodate different orderings, that can be justified from the specific context. The following five-step methodology, sum-
marized in Table 5, is used to explore the Pareto frontier.

The rescheduling problem takes an undisrupted timetable as an input. This timetable needs to be optimal with respect to
the objectives we define, so as to have a benchmark — otherwise, the comparison would be unfair. Before solving the prob-
lem on the disrupted network GðV ;A�Þ, we therefore solve the problem on the undisrupted network GðV ;AÞ, without any
original trains, with passenger inconvenience as the objective to minimize. The passenger inconvenience obtained by the
first step, z�p, might however be achieved with a lower operational cost, as there is no constraint on the latter. Thus, the next
step minimizes the operational cost, while enforcing passenger inconvenience to be equal to the optimal value of the first
step. These two steps (denoted by (0) and (0b) in Table 5) thus generate a timetable that is optimal in terms of passenger
inconvenience for the undisrupted network, and is associated with the minimal operational cost for that level of
inconvenience.
aracteristics of the five-step methodology to explore the Pareto frontier.

Objective Constraints Optimal value Network

min zp (8)–(16) z�p GðV ;AÞ
K ¼ £

min zo (8)–(16) z�o GðV ;AÞ
K ¼ £
zp ¼ z�p

min zp (5)–(16) z��p P z�p GðV ;A�Þ
min zd (5)–(16) z��d GðV ;A�Þ

zp 6 ep; ep ¼ e � z��p ,
e 2 f1:0;1:1; . . . ;2:0g

min zo (5)–(16) GðV ;A�Þ
zp 6 ep; ep ¼ e � z��p ,
zd 6 ed; ed ¼ e � z��d ,
e 2 f1:0;1:1; . . . ;2:0g
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The next step is the first one to be applied on the disrupted network (step (1) of Table 5). As described above, we begin by
minimizing the passenger inconvenience, without constraints on operational and deviation cost. This gives an optimal value
for the disrupted case, in terms of passenger inconvenience, z��p (that is obviously higher than z�p). The objective value of step
(1) is then used as an upper bound in the constraints of step (2). The problem is solved with the objective of minimizing zd,
under the constraint zp 6 ep; ep ¼ e � z��p . For every value of e 2 f1:0;1:1; . . . ;2:0g, the problem is solved and the value of the
optimal deviation cost z��d is obtained. This allows to explore the trade-off when the passenger inconvenience varies in
equally spaced intervals, from the best possible solution (z��p ) to a solution with twice the passenger inconvenience. Finally,
in the step (3), operational cost is minimized with upper bounds on passenger inconvenience and deviation cost, obtained
from steps (1) and (2): zp 6 ep; ep ¼ e � z��p and zd 6 ed; ed ¼ e � z��d . The problem is solved for every feasible combination of ep
and ed.

The mathematical model presented in this work is an adaptation from the minimum cost flow problem. Its complexity
comes from the routing of the passengers through the network. As the weights of the passenger arcs depend on the passen-
ger group, there needs to be one decision variable per arc and per passenger group. Thus, every additional passenger signif-
icantly increases the number of decision variables in the model.
6. Case study

We illustrate the methodology on a network constructed from a part of the Dutch railway network. The mathematical
model is solved by CPLEX 12.5 on a Unix server with 8 cores of 3.33 GHz and 62 GiB RAM. Most instances are solved to opti-
mality (with a gap of 0.01%) in the time limit of one hour.

6.1. Case description

We consider the railway network indicated in Fig. 1. It represents a heavily used part of the Dutch railway network and
consists of 11 stations and 18 tracks between the stations. Each station has two platforms and we consider all track sections
to be double tracked. The travel times and distances between the stations are obtained from the Netherlands Railways web-
site. They are reported in Fig. 1. We assume there are four stations with shunting yards for original trains (Rot, Ams, Sch,
AmZ). Five original trains are located in each of these shunting yards. Furthermore, we assume there are two shunting yards
for emergency trains, located in stations Rot and Ams. The number of emergency trains available in each shunting yard is two
(nr ¼ 2;8r 2 R). This gives a total of 24 trains possibly operated in the disrupted case. Every train has a passenger capacity q
of 400. The unit cost c of operating a train in the Netherlands was not available to us. For the sake of this illustrative case
study, we have obtained the value from the Swiss Federal Railways annual report (Swiss Federal Railways, 2013), where
a regional service costs 30 CHF per kilometer.

We model passengers traveling home in the evening after work and consider a time horizon of two hours, which is dis-
cretized into intervals of five minutes. Within this time horizon, passenger groups are generated according to the procedure
described in Appendix B. There are 55 passenger groups with a size of 100 passengers each. The generalized travel time of the
passengers is computed by using the weights given in Table 6 for the passenger arc costs t ga . The cost of the penalty arc is the
time horizon (two hours). We impose a minimal transfer time m of 5 min and a maximal transfer time M of 30 min. Given
Fig. 1. Case study network based on a heavily used part of the Dutch railway network. Stations are indicated by rectangles, and tracks between the stations
by double-headed arrows. The first number associated with every track is the travel time (in minutes) between the stations; the second is the travel
distance (in kilometers).



Table 6
Values of weighting factors in the passengers’ generalized travel time.

Parameter Value Unit Reference

b1 2.5 [min/min] Wardman (2004)
b2 10 [min/transfer] De Keizer et al. (2012)
b3 0.5 [min/min] Small (1982)
b4 1 [min/min] Small (1982)
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these inputs, Table 7 indicates the cardinalities of the sets of the space-time graph obtained by following the methodology
described in Section 4.

Two disruption scenarios are created. For the first disruption scenario, two random tracks are fully blocked. We choose to
block the tracks between station Gouda (Gou) and Utrecht (Utr) in both directions. For the second one, we consider the
worst-case scenario. To do so, we assume that the most heavily used tracks of the undisrupted timetable are blocked. These
turn out to be the tracks between Den Haag (DeH) and Leiden (Lei), and between Leiden (Lei) and Schiphol (Sch). We create
the second disruption instance by considering a full blockade of the tracks between theses stations. For both disruption sce-
narios, we assume the tracks are blocked for the whole time horizon of two hours.

To compute the deviation cost from the undisrupted timetable, we need four different weights: penalties for canceling,
delaying and rerouting trains, and the cost of operating emergency trains. We use the same values as in Veelenturf et al.
(2015), where the aim is to operate as many original trains as possible. The canceled time of a train, i.e., the time difference
between the original arrival time of the train at its last station and the time it is canceled, is weighted heavily by a factor of
dc ¼ 50. Every delayed minute, for each train departure, is weighted only by a factor of dd ¼ 1. The time a rerouted train

spends on a different geographical path than the original one (i.e., on arcs in ARR
k ) is weighted by dr ¼ 10. These values ensure

that rerouting a train is preferred over canceling it, while delaying is the least ‘‘costly” option. Finally, the penalty to operate
an emergency train de is 1,000 plus the operated time of the emergency train. The maximal allowed delay per train MD is set
to 30 min.
6.2. Results

Before applying the rescheduling framework, we run the model on the undisrupted network (i.e., steps (0) and (0b) of
Table 5). We obtain a total passenger dissatisfaction of z�p ¼ 223;400 min and an operational cost of z�o ¼ 87;750 CHF. In this
undisrupted timetable, 20 trains are operated and none of the passenger groups needs to take a penalty arc, as expected.

Tables 8 and 9 show the detailed numerical results for the two disruption scenarios. The two first columns indicate the
upper bounds that were imposed on passenger inconvenience and deviation from the undisrupted timetable. The third col-
umn gives the optimal value of the minimization of the operational cost (i.e., step (3) of Table 5), and the associated opti-
mality gap is reported in the fourth column. Column five indicates the computational time. Columns six to ten report
performance measures of the timetable from the operational point of view: number of rerouted trains, number of totally
or partially canceled trains, number of emergency trains and total delay minutes. Passenger-related performance indicators
are reported in columns eleven to fourteen: the average and maximal additional generalized travel time (for non-disrupted
passenger groups), and the number of rerouted and disrupted passengers (disrupted passengers use the penalty arc). Also,
each block of rows separates instances with different upper bounds on the passenger inconvenience.

For the disruption scenario where tracks between stations Gouda and Utrecht are unavailable, a passenger dissatisfaction
of z��p ¼ 241;600 min is obtained, when minimizing the latter without any constraints on operational costs and deviation
from the undisrupted timetable (step (1) in Table 5). In a second step, the deviation from the undisrupted timetable is min-
imized, and the optimal value of this problem depends on the bound on the passenger inconvenience (step (2) in Table 5).
Table 8 compares a number of solutions of the model, for different values of ep and ed. Note that we only include non-
dominated and feasible instances in Table 8.
Table 7
Cardinalities of the space-time graph.

Set Cardinality Set Cardinality Set Cardinality

N 550 ASta 200 [g2GA
g
Dri 49,652

NR 4 AEnd 200 [g2GA
g
Wai 12,076

NO 11 ADri 2824 [g2GA
g
Tra 22,622

ND 11 AWai 528 [g2GA
g
Acc 1948

[g2GA
g
Egr 1948

[g2GA
g
Pen 55



Table 8
Computational results for disruption Gouda-Utrecht (Gou-Utr).

Upper bounds zo Gap
[%]

Time
[s]

Trains Passenger groups

ep ed Rerouted Totally Partially Emergency Delay Additional travel
time

Rerouted Disrupted

canceled canceled minutes Average Maximal

241600 14055 96660 0 73 4 2 0 4 30 2.49 31 7 1
241600 15616 94170 0 111 4 2 0 4 55 2.49 31 7 1
241600 17178 91980 0 136 5 2 1 4 50 2.49 31 7 1

268444 10582 80250 0 726 5 2 0 0 80 3.00 40 5 5
268444 11078 78060 0 2741 10 2 0 0 400 4.24 57 7 4
268444 11574 76470 3.40 3600 7 2 0 1 135 1.51 30 4 6
268444 14055 70500 2.53 3600 9 2 2 2 255 3.80 40 7 4
268444 15616 67860 2.37 3600 10 2 2 3 300 3.80 40 9 4
268444 17178 67350 5.55 3600 9 2 1 2 205 3.87 40 11 4

295288 10582 71610 0 942 8 2 2 0 125 5.69 55 5 7
295288 11078 68790 1.30 3600 9 2 2 0 315 4.65 50 6 8
295288 11574 67020 3.02 3600 11 2 1 0 260 5.85 40 10 7
295288 14055 60660 3.51 3600 12 2 2 0 445 7.25 40 10 6
295288 15616 57420 1.99 3600 11 2 2 0 470 7.27 40 11 6
295288 17178 56340 3.15 3600 13 2 4 0 535 7.07 65 11 6

322133 10582 69450 1.59 3600 8 2 3 0 190 5.13 50 5 10
322133 11078 66240 1.51 3600 9 2 2 0 240 3.69 45 6 11
322133 11574 63210 0 1233 11 2 2 0 360 5.27 40 9 11
322133 14055 57060 2.53 3600 12 2 3 0 440 7.35 40 12 9
322133 15616 54180 1.90 3600 12 2 3 0 375 6.18 65 9 10
322133 17178 52380 3.05 3600 13 2 4 0 390 8.82 65 12 8

456335 9590 77280 0 15 7 2 0 0 195 3.84 50 1 29
456335 10086 70710 0 30 11 2 1 0 205 9.39 61 3 26
456335 10582 67770 0 40 11 2 3 0 280 3.76 77.5 5 28
456335 11078 63570 0 18 13 2 2 0 300 6.82 65 3 27
456335 14055 53160 0 20 14 2 4 0 315 8.03 61 7 26

483200 10582 67770 0 52 11 2 3 0 280 7.51 87 4 30
483200 11078 63570 0 24 12 2 2 0 310 8.75 91 3 30
483200 14055 53160 0 21 14 2 4 0 315 9.65 65 6 29
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It can be observed that the number of disrupted passenger groups and the maximal additional travel time strongly
depend on the value of the upper bound on the passenger inconvenience, as expected. For an upper bound with e ¼ 1, i.e.
ep ¼ z��p ¼ 241;600, there is only one disrupted passenger group and the passenger group whose additional travel time
increases most has to travel for 31 min more than in the undisrupted timetable. This value of the bound on zp represents
the best passenger experience that can be achieved under the circumstances. The price to pay for this level of passenger sat-
isfaction is the high operational cost, 96,660 CHF (1.1 times the operational cost of the undisrupted case). However, when
e ¼ 2 (i.e., ep ¼ 2 � z��p ), more than half of the passenger groups are disrupted and the additional travel time can be over
one and a half hour longer (91 min) for the passenger groups who are worst off. This solution is obviously not satisfying from
the passenger perspective, but it has a very low operational cost: between 53,160 CHF and 67,700 CHF, depending on the
bound on the deviation from the undisrupted timetable. Note that this operational cost is lower than the operational cost
of the undisrupted timetable; this is explained by the fact that only trains operated in a timetable account for its operational
cost. Hence, if a train is canceled, the operational cost of the timetable decreases, but it is balanced by an increase of the devi-
ation from the undisrupted timetable. This reasoning also explains why the number of partially canceled trains increases
(from 0 to 4) as the operational cost decreases. As canceling a train is costly (in terms of deviation from the undisrupted
timetable), the model will always prefer to cancel a train only partially. Hence, the two trains that are totally canceled
are trains that spent most of their time on the disrupted tracks and therefore need to be canceled totally. Finally, one can
also observe that the number of emergency trains is maximal (4) for the lowest upper bound ep (thus offering a high level
of service to the passengers). This number decreases very quickly when the bound on the passenger inconvenience becomes
less tight, as it is very costly (both in terms of operational cost and in terms of deviation from the undisrupted timetable) to
schedule an emergency train.

Regarding the disruption scenario where the busiest tracks become unavailable between Den Haag, Leiden and Schiphol
(Table 9), a passenger dissatisfaction of z��p ¼ 356;700 min is obtainedwithout e-constraints. The observations thatweremade
for the less severe disruption can be reiterated in this case. The increased severity of the disruption shows in several ways:
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� First, the unconstrained value of the passenger dissatisfaction (z��p ) is almost 60% higher than in the undisrupted timetable
(z��p ¼ 356;700, whereas z�p ¼ 223;400). In other words, in the best case, the passengers will be traveling 1.6 times longer
(on average) than in the undisrupted case. By contrast, the unconstrained value of the passenger dissatisfaction increases
only by 8% (z��p ¼ 241;600; z�p ¼ 223;400) in the less severe disruption.

� The upper bounds on the deviation from the undisrupted timetable need to be much higher than in the less severe dis-
ruption. Otherwise, the problem becomes infeasible as a too tight bound does not allow enough flexibility in the
rescheduling. For instance, the lowest possible bound ed is 17,425 for disruption DeH-Lei-Sch and 9590 for disruption
Gou-Utr.

� Even in the best possible configuration in terms of passenger dissatisfaction (ep ¼ z��p ), there is a very high number of dis-
rupted passenger groups, and the maximal additional travel time is about one hour and a half.

� The emergency trains are used in many instances, even though they are considered ‘‘costly”.

6.2.1. Pareto frontier
In order to quantify the trade-off between operational cost and passenger satisfaction, we plot the Pareto frontier for

different values of deviation from the undisrupted timetable in Figs. 2a and b. The almost vertical line in Fig. 2a indi-
cates that a significant increase in passenger satisfaction can be achieved with only a little increase in operational cost.
We can observe that the higher the deviation from the undisrupted timetable is (i.e., higher ed), the better the timetable
will perform in terms of passenger satisfaction and operational cost. The issue with high values of ed is that the time-
table might be very different from the undisrupted one. Hence, the train operating company might want to accept a
higher operational cost to achieve the same passenger dissatisfaction, but with a lower deviation from the undisrupted
timetable.

Fig. 2b shows the Pareto frontier for the more severe disruption scenario. Again, the basic observations are consis-
tent between the two plots. The fact that the lines are ‘‘less vertical” in the second Figure underlines the severity of
the disruption: even by increasing the operational cost, only so much passenger inconvenience decrease can be
achieved.
Table 9
Computational results for disruption Den Haag-Leiden-Schiphol (DeH-Lei-Sch).

Upper bounds zo Gap
[%]

Time
[s]

Trains Passenger groups

ep ed Rerouted Totally Partially Emergency Delay Additional travel
time

Rerouted Disrupted

canceled canceled minutes Average Maximal

356700 31575 71310 0 1832 9 4 2 4 245 5.82 89 12 12
356700 35521 65520 0 1986 8 5 2 4 215 5.82 89 13 12
356700 39468 65220 0 2971 7 6 1 4 175 5.82 89 13 12
356700 43415 65220 0 1269 9 6 1 4 220 5.82 89 13 12
356700 47362 65220 0 1123 11 6 1 4 250 5.82 89 13 12

390400 19025 61140 0 1752 10 3 2 1 390 4.98 86 9 17
390400 22162 53400 2.07 3600 9 3 4 2 305 4.93 61 11 17
390400 31575 45300 1.72 3600 8 5 3 2 245 5.73 89 12 17
390400 35521 43440 1.61 3600 8 6 5 2 360 6.71 89 11 16
390400 39468 41670 1.94 3600 8 7 5 3 345 6.62 89 11 16
390400 43415 40080 0.68 3600 6 8 3 3 335 6.67 89 12 16
390400 47362 39450 3.79 3600 8 9 3 3 435 7.93 89 12 15

424100 17425 55080 0 6 8 3 2 0 125 4.88 86 8 21
424100 20962 46170 0 988 13 3 5 0 440 9.67 86 14 18
424100 31575 37800 1.25 3600 12 5 5 1 505 7.24 61 13 20
424100 35521 36210 2.58 3600 9 6 4 1 295 3.89 35 8 22
424100 39468 34080 1.12 3600 11 7 5 2 535 7.33 61 13 20
424100 43415 32850 2.45 3600 10 8 4 2 485 7.05 61 11 20
424100 47362 31680 3.28 3600 7 9 5 1 235 7.80 89 10 20

457800 17425 54390 0 4 8 3 2 0 125 0.95 30 3 29
457800 20962 41760 0 26 13 3 5 0 535 10.42 86 13 21
457800 31575 32670 1.66 3600 13 5 5 0 540 6.49 65 11 24
457800 35521 30750 1.83 3600 13 5 7 0 465 7.42 60 12 24
457800 39468 29160 2.67 3600 11 6 6 1 465 4.55 31 9 27
457800 43415 27840 3.38 3600 11 8 5 0 565 10.36 60 13 22
457800 47362 26160 0 6654 8 9 4 1 455 6.69 31 7 25



Fig. 2. Pareto frontiers for several values of deviation from the undisrupted timetable. (a) Disruption Gouda-Utrecht (Gou-Utr), (b) Disruption Den Haag-
Leiden-Schiphol (DeH-Lei-Sch).

92 S. Binder et al. / Transportation Research Part C 78 (2017) 78–94
7. Conclusion

In this work, we introduce an integer linear program for the multi-objective railway timetable rescheduling problem
for a railway network. We consider passenger inconvenience, operational costs and deviation from the undisrupted time-
table as three different objectives to minimize. The infrastructure is modeled from a macroscopic point of view, by con-
sidering stations and track sections in between. When a track becomes unavailable, the model choses between delaying,
canceling or rerouting the trains in the undisrupted timetable. The model also includes the possibility to schedule addi-
tional emergency trains from depots located near given stations. In addition, passenger flows are adapted dynamically to
the new timetable.

The multi-objective nature of the problem is addressed using epsilon constraints: one objective is minimized while con-
straints impose an upper bound on the two other ones. This method has the advantage of using meaningful bounds (e.g., the
operational cost should not increase by more than 50%) in order to construct the Pareto frontier of the problem. This allows
to quantify the trade-off between the three conflicting objectives when designing a disposition timetable.

Computational experiments were performed on a case study based on a heavily used part of the Dutch railway network.
Results show that significant improvements can be achieved in terms of passenger satisfaction with only a minor increase in
the operational cost of the timetable. Also, the higher the deviation from the undisrupted timetable is allowed, the better the
timetable will perform in terms of passenger satisfaction and operational cost.

Using a commercial state-of-the-art ILP solver, the model is solved to optimality on most instances, showing that it is pos-
sible to account for passenger satisfaction in disposition timetables. Furthermore, it is possible to keep the associated oper-
ational costs low and to control for the deviation from the undisrupted timetable. However, the computational time makes
the current implementation impractical to use for real-time timetable rescheduling (some instances are solved in about
3 min, while others have an optimality gap of 3% after one hour). It can nonetheless be used by train operating companies
that wish to generate offline recovery scenarios for highly disrupted scenarios and quantify their effect regarding the three
aforementioned objectives.

The model is a first step towards the integration of passenger-centric indicators in the design of disposition timetables. It
is based on several simplifying assumptions. As a follow-up of the proof of concept presented in this paper, several exten-
sions are possible. For instance, we assumed that the passenger demand does not change when the disruption occurs. In
reality however, passengers might adjust their destination, their desired departure time, or even their chosen travel mode
in a disrupted situation. Hence, an interesting extension would be to account for the shift in the passenger demand follow-
ing the announcement of the disruption. Also, the iterative combination of an exact operation-centric timetable reschedul-
ing model with a heuristic passenger assignment model could increase the size of solvable instances. Further, our
exploration of the Pareto frontier is partial and might miss non-dominated solutions. The use of an exact algorithm to
explore the three-dimensional Pareto frontier is beyond the scope of this paper, but would definitely be an interesting direc-
tion for future research. Finally, since we have ignored the solution methodology side of the problem and rather focused on
the general concept, a natural extension would be to aim at a more efficient solving of the problem. We see decomposition
methods as one promising option that could allow to solve problems with larger time horizons and, critically, more
passengers.
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Appendix A. Construction algorithm of the rescheduling graph
Appendix B. Passenger demand generation

To model the demand, we define passenger groups characterized by origin station, destination station and desired depar-
ture time from origin. As we model people traveling back home in the evening peak hour, we assume that the probability of a
station being a destination of a passenger group is proportional to the number of inhabitants in that city. Table 10 shows the
probabilities of a station being the destination of a passenger group. The probability of being an origin station is uniformly
distributed, with the constraint that the origin station should be different from the destination station. The desired departure
time is generated using a non-homogeneous Poisson process: we consider an arrival rate of 50 passenger groups per hour in
the first hour and 10 passenger groups per hour in the second. We have a total of 55 passenger groups, where each passenger
group has a size of 100 passengers.



Table 10
Probability of a station being chosen as a destination.

Station Probability Cumulative probability

Rotterdam 0.23 0.23
Gouda 0.03 0.26
Utrecht 0.12 0.38
Amersfoort 0.06 0.43
Den Haag 0.19 0.62
Leiden 0.05 0.67
Schiphol 0.07 0.74
Ams. Zuid 0.07 0.82
Duivendrecht 0.07 0.89
Hilversum 0.03 0.93
Amsterdam 0.07 1.00
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