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A distributed virtual sensor scheme for

marine fuel engines

*

Nikos Kougiatsos * Vasso Reppa*

* Department of Maritime and Transport Technology, Faculty of
Mechanical, Maritime and Materials Engineering, Delft University of
Technology, 2628CD, the Netherlands,

(e-mail: {n.kougiatsos, v.reppa} @ tudelft.nl).

Abstract: This paper proposes a virtual sensor scheme designed to compensate for sensor fault
effects in marine fuel engines. The proposed scheme design follows a distributed approach, where
the marine fuel engine is decomposed in several subsystems. Then, for each subsystem we design
a monitoring agent that can actively compensate for the effects of sensor faults occurring in the
specific subsystem. This is realized using virtual sensors that can estimate the sensor fault in
order to reconstruct the faulty measurements. Due to the Differential-Algebraic mathematical
description of marine fuel engine dynamics, we design three types of virtual sensors; using
adaptive observers, Set Inversion via Interval Analysis (SIVIA) and static models. Simulation
results are used to illustrate the efficiency of the method.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Fault accommodation, fault identification, sensor faults, Differential-algebraic
equations (DAE’s), nonlinear systems, Marine system modelling, interconnected systems

1. INTRODUCTION

Ensuring safety is a prerequisite for modern marine ves-
sels and a basic pillar for the development of future au-
tonomous ships [de Vos et al. (2021)]. In order to promote
safety on-board marine vessels, better monitoring of the
vessel’s vital systems and sensors such as the propulsion
system, that may include more than one marine fuel en-
gine.

Modern vessels are equipped with thousands of sensors
dispersed in the various on-board machinery and used for
condition monitoring purposes. Despite their importance,
little attention has been given to assessing sensor health,
and sensor faults have been mostly overlooked in liter-
ature. However, sensor measurements should be reliable
for effective control and maintenance of marine vessels.
The recovery from sensor faults can be accomplished using
either physical [Wu et al. (2006)] or analytical redundancy
[Darvishi et al. (2021); Blanke et al. (1998)]. In the first
case, multiple hardware sensors of the same type are used
to check the sanity of the measurements and restore op-
eration. The latter case, on the other hand, involves the
creation of virtual sensors to perform a similar task using
model information.

In the area of sensor fault accommodation of marine fuel
engines there has been some activity both considering
model-based and model-free methods. Blanke et al. (1998)
propose accommodation for faults in the shaft speed sen-
sor of a marine diesel propulsion system using software-
based sensors. Both static models and nonlinear observers

* This publication is part of the project READINESS with project
number TWM.BL.019.002 of the research programme ”Topsector
Water & Maritime: the Blue route” which is partly financed by the
Dutch Research Council (NWO).

are considered in their approach and the methodology
manages to render a minimal overshoot during switching.
In [Ou et al. (2022)], the authors present a model-based
identification method for the combustion system of marine
fuel engines. More specifically, thermodynamic models are
used to detect abnormal behaviour in measurement data
and reconstruct the data. However, in both papers simple
models of the marine fuel engine and only single faults are
considered. Concerning model-free methods, in [Campa
et al. (2008)] a sensor validation scheme is proposed for
heavy-duty diesel engines. In addition, a hybrid scheme
composed of Adaptive Linear (ADALINE) Neural Net-
works for linear engine operating conditions as well as
Minimal Resource Allocating Networks (MRAN) for non-
linear engine conditions is proposed for approximating
faulty sensor measurements. Darvishi et al. (2021) propose
a machine-learning-based framework for sensor validation
based on a multilayer perceptron neural network archi-
tecture for marine vessels. Both ADALINE and MRAN
require a high number of neurons to calculate the output
due to the high system nonlinearity and the detectability of
sensor faults depends on the accuracy of the used training
sets. Moreover, the generalization ability of the produced
results is low.

This paper provides a methodology for the identification
of faults affecting multiple sensors of marine fuel engines
and for the reconstruction of faulty measurements to
restore normal operation (see Section 4). The identification
of sensor faults relies on the use of a mixed scheme
combining three types of virtual sensors that perform
state and fault estimation and whose design is based on
a Mean Value First Principle (MVFEFP) model which can
describe the actual engine more accurately (see Section
3). This model incorporates both differential and algebraic

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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equations (DAE) according to the general mathematical
formulation shown in Section 2. As for the reconstruction
of sensor faults, the estimated faults are subtracted from
the faulty sensor measurements, based on the results of
the identification step.

From the application point of view, the main contribu-
tion of this paper is the proposed virtual sensor scheme
for marine fuel engines. This serves as a continuation of
previous work [Kougiatsos et al. (2022)] which focused
on providing a suitable sensor fault diagnosis methodol-
ogy for these type of engines using a mixed Differential-
Algebraic diagnosis scheme. Moreover, the MVFP engine
model provides better generalization ability of the results
for different engines, since it can be reconfigured in its
parameters and can also be expanded to host more subsys-
tems and sensors. Compared to the state-of-art in virtual
sensor design that considers dynamical systems described
by differential equations [Zhang et al. (2008); Blanke et al.
(2016); Papadopoulos (2020)], we consider a differential-
algebraic description for the marine fuel engine system.
More specifically, for parts of the system described by
differential equations, nonlinear observers are suggested,
for parts described by explicit algebraic equations we
use static nonlinear estimators and for parts described
by implicit algebraic equations, estimators based on set
inversion via interval analysis (SIVIA) are used.

2. PROBLEM FORMULATION

Marine fuel engines are complex systems incorporating
components characterised by heterogeneous dynamics and
inherent interconnections. In Fig. 1 a representation of
a marine fuel engine is shown, where the different parts
are grouped in four distinct subsystems and a total of ten
sensors are deployed for condition monitoring.

@ Torque sensor
7 Fuel Injection sensor
< Pressure sensor

@ Temperature sensor

£(3); Exhaust Gas F‘aih 1

(\ Exhaust

manifold

00000
Sk

1 %
1 Intercooler

Thermomechanical
Process
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Fig. 1. Schematic representation of a typical marine fuel
engine

Given the heterogeneous dynamics and interconnections of
the subsystems in marine fuel engines, the proposed sensor
fault accommodation method is developed considering a
class of N nonlinear DAE-based interconnected systems

> [ =1,--- N described by [Vemuri et al. (2001)]:

0 (1) =AD& D (1) + 4O @D (1), 20 (1), uD (£)+
=0 A @D (1), 20 (1), x D (1), uD (1)) + S (1), (1a)
0=£¢D @D (1), 2D (1), xD (1), uD (&) + (1) (1b)
where () € R"1="7 ig the state variable vector, z(!) ¢ R"7

is the algebraic variable vector, x(!) € R*" are the inter-
connection variables from the neighbouring subsystems,
u!) € R is the control input vector, y(I) : R™ "1 x RY
R™ =71 represents the known nonlinear system dynamics,
R R =71 5 R™ x R¥1 x RY — R™ "1 represents the
known interconnection dynamics with the neighbouring
subsystems, 775(5 e R™—mr, 7721) € R"7 represent the system
disturbances, £) : R x R¥1 x RI s R™ "1 ig a smooth
vector field. The term Az represents the linear part of
the system’s ©) dynamics, where AU) ¢ R(rr=ri)x(ni=rr)
is assumed known.

Each system incorporates a set of sensors SU) =
U7L, S} described as:

S {yé”(t) =2t )+d(”( )+ £0(1)
Ly () = 20 +dD (1) + ()

where yy) € R™ ™" denotes the sensor values corre-

sponding to state variables, y(I) R" denotes the sen-
sor values corresponding to algebraic variables, dc(vl) €
RrI—TL dg) € R™ are the measurement noise vectors
and fi” € RM—T, fz(l) € R"™ are sensor fault vectors.
Each fault vector is given by f)(t) = [fa(;l) (t) F0 )"

[ 1(1)(t)7"' ) T(L?( )] ) where fg(I)(t)vj € {1?"' 7nI} de-
notes the change in the output due to a fault in the j-th
sensor, occurring at time T;j).

The goal of this paper is to design a distributed virtual
sensor scheme to reconstruct the faulty measurements for
ensuring reliable condition monitoring and control of the
engine operation, avoiding the propagation of sensor fault
effects.

3. FUEL ENGINE STATE-SPACE MODELLING

In order to describe the operation of the fuel engine,
the physical MVFP model described in [Geertsma et al.
(2017)] is used. Based on the system decomposition shown
in Fig. 1, we consider four nonlinear interconnected sub-
systems described by nonlinear DAE expressed by (1), (2).
For simplicity purposes, the time dependence may hereby
be omitted.

3.1 Fuel Pump (£M)

Subsystem 1 is expressed as:
e
2D 4 Znom, (1) (3)
7'X X

() . (1) = _

where z(V(t) € R is the amount of fuel injected per
cylinder per engine cycle in kg, xgo)m € R signifies the same
quantity under nominal conditions , u(t) € R is the fuel

injection setting in % and nie™, Tx = W, SFEC™m™,
P7o™ e, ke are defined in [Geertsma et al. (2017)]. The
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output of the fuel injection sensor y*) € R is described
by:
S .y = x(l)(t) +dM 4 @ (4)

3.2 Thermomechanical process (X))

This subsystem has 3 algebraic variables, namely the

(2)

pressure (z;”’) in Pa and the temperature (zéQ)) in K inside

the engine’s cylinders and the engine’s shaft torque (zéz))
in Nm. The mathematical representation of the system is:
Z§2) o 6(2) (:)Z(1>, Z§2),m(4), Z§4))

»2 .9= z22 £(2)( (1) :(f) x<4),zg4)) (5)

B0 Z e ey

where the functions {Zl ,5(2) é? € R can be modelled
using the Seilinger thermodynamic cycle as described in
detail in [Kougiatsos et al. (2022)].

The output values of the pressure, temperature and torque
sensors y(?) € R3 are described by:

S 1 y® = ;@ 4 4@ 4 @ (6)
3.3 Ezhaust Gas Path ()

This subsystem has 1 state-variable, the exhaust receiver
pressure (z(*)) in Pa and 2 algebraic variables, the temper-

ature before (z § )) and after (z§3>) the turbine in K. This
subsystem is represented as follows in state-space:

g, ) 8= —a® a5
Vo @e® .6 ®)

where x®) = [z(1), 2(2) 24 2(]T are the interconnection
variables. The interconnection dynamics denoted by h()
and £3) have already been defined in [Kougiatsos et al.
(2022)]. The related set of sensors is expressed as:

S y®) = [1) L) ]T +d® 4 f® (8)

3.4 Air Path (2¥)

This subsystem has 1 state-variable, the charge air pres-
sure after the compressor (z(*) in Pa and 2 algebraic
variables, the temperatures before (z§4)) and after (254))

the intercooler in K. This subsystem is represented as
follows in state-space:

-y (GO N— 2@ 4 pW (x4 (1) ©)
0= 5(4) (33(4) @ x@®)

where x4 = [z(1), 22 23) 23)]T are the interconnection
variables. The interconnection dynamics denoted by h(*
and £® have already been defined in [Kougiatsos et al.
(2022)]. The sensor set of this system is given by:

SW Y@ = [ @ ]T £ d® 4@ (10)

4. DISTRIBUTED VIRTUAL SENSOR SCHEME

The proposed virtual sensor scheme is activated after the
detection and isolation of sensor faults, using the method
developed in [Kougiatsos et al. (2022)]. The details of
the method are omitted for brevity. As can be seen from

Figure 2 for each one of the fuel engine’s subsystems
»D I = 1,---,N (N=4), a monitoring agent M)
has been designed. Each agent consists of N; modules
MUID g =1 N (Ny =1, Ny = Ny = Ny = 3),
that monitor specific sensor subsets S0 C SU) in the
designated subsystem. Every S(:9) contains sensors mea-
suring either state or algebraic variables. The 10 sensors of

Virtual sensor instance

r
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Yu-r“o

¥ o-f"m

Y-

Monitoring Monitoring i @ Monitoring
s O-F0 Agent 3
M Wiz s > M3
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Fig. 2. Distributed Sensor Fault Diagnosis scheme with the
addition of virtual sensors

the system are divided in the following sensor sets: S(I:1) =
{8(1){1}}7 SEY = {8(2){1}}7 8§22 = {8(2){2}}7 S8 —
{S®{2},8™{3}}, B = {§@{1}, 8G){2}}, SG2) =
{S{1},8®{2}}, 8P = {SBI{1},84){2},8®){3}},
S = (W1}, SW{2}}, S*2D) = (S {2}}, SW3) =
{SW{2},8®{3}}. Each of the modules M9 is then
designed to use the information from the respective sensors
in SU-9, From this point onwards, the following notations

will be used: y(1 1 _ y(l) ygm) _ y(z) y(2 2) _ y(2)
yﬁf 3) _ §2)7 9(53 1) _ y§3)7 y§3’2) _ y(g) y(s 3) _ y§3),
1 _ 4 (42 _ (4)  (43) _ (

Yz " =Y1 Yz T =Yz 5 Yz 4 . Notably, dynamic
virtual sensors are used for the modules MED G
MED - static virtual sensors are used for the modules
M (2 1) M(2 2) ./\/1(3,2)7 M 3 3) M(4 2) M(4,3) and a
SIVIA- based v1rtua1 sensor is used for the module M23),
The proposed virtual sensor scheme aims to guarantee
proper condition monitoring of the fuel engine system and
to maintain the performance of the engine control system.

To this end, and as can be seen in Figure 2, reconstructed
measurements can be used instead of the measurements
provided by the sensors, defined as follows:

(Lq) _ y (I,9) f(Lq)

(11)

yilh}q) ,q) f(Lq)
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where fgﬁ”q), fZ(I’q) are the estimations of the sensors

faults using the identification methodology described in

the next Subsection ??. If no sensor faults are diagnosed,

(La) _ yélyq) (La) _ yil»q).

then y, 7 and y, 5y

We assume that the system disturbance and the mea-
surement noise of each sensor are unknown but uniformly
(1)‘ < 7D (1)’ =) d(I)‘ <

77;5] ) nzj 77,23 )
d( ) are known.

bounded, meaning: ‘n

=(I)
d;

=) =)

,Vjel,--- ng where 7./, 7, ,

4.1 Distributed dynamic virtual sensors

Considering (1a), the sensor fault can be estimated using
a distributed adaptive estimator scheme described as:

00 = ADgTha) 4 o) (GTa) o (I RAC (12a)

D @00,y D)y L0 (D) 4 L0, q>( (L) _ gy y

Q(L.a) f(ha)

o) — Ail,Q)Q(I,q) _ @9 (12b)

§bD () = g0 4 fU10 (12¢)

f*;ﬂq) =1l 4 1)D[€ygﬂ)] (12d)
(I.a9) &

where L9 is the estimator gain such that Aj
AN — 1(1.9) is Hurwitz, I'/:9 is the learning rate of the
adaptive law in (12d) and QU9 is a filtering term to
ensure the stability of the adaptive scheme. Finally, D[] is
the dead-zone operator, used to activate the sensor fault
identification, given as:

0,

Q(CI,q) _

if DED(t) =0

if DUD(t) =1 (13)

where eygm 2y e — fgﬁ”‘” and DU-9) denotes

the binary decision of the monitoring module M9 on
the occurrence of sensor faults as part of the diagnosis
process.

4.2 Distributed algebraic virtual sensors
Considering algebraic equations of the form (1b) we design

two types of algebraic virtual sensors.

Static virtual sensors: When (1b) is written in an
explicit form 2z (t) = é])(m(l)(t),X(I)(t),u(l)(t)), the
following estimator can be used:

2La) — ggl)( {, Q)’y>(<1 ), ))
Fao — (y0 _ 200y pra)

(14a)
(14b)

SIVIA-based virtual sensors: For all other cases (im-
plicit algebraic equations), the use of SIVIA [Jaulin and
Walter (1993)] is proposed. The rationale behind SIVIA
is the identification of sets of nonlinear functions with the
guaranteed property of convergence.

Hereby, the notation [] will be used to denote an inter-
val. Using (1b), the following approximator can be con-
structed:

0= 0D (a2 (1a) o (1) (15)
From (2), the following intervals are known: [z(I9)] =

yg’q) _ ]?Q(CI’Q) + [dgcfﬂl)] ([xyﬂ)] _ [yg(ci,Q) _ fg(ﬁI,EI) _

J(I q)’yéj a _ f(Lq) + J(LQ)] A(I 9 4 [d(I q)] j o=
L sy — )y D] = g0 + [F00) 4 9, ] =
[ulD, @D)]. The set to be mverted by SIVIA is expressed

as Y0 = [¢(1.9)] = 0. Using the above information, the
unknown interval box [£(/:9)] can be estimated based on an
initial prediction interval [2(/:9)], £ [ggl’”,éél*q)]. During
the update phase and when a solution exists in the interval,
forward-backward propagation contractors can be used.
Thus, a solution box [2(:9], is obtained by the union of
all calculated interval boxes.

Remark 1: The bounds é(()l’q), é(g[’q) of the initial prediction
of the interval can be deduced based on logic and physical
laws

Remark 2: Forward-backward propagation contractors are
preferred due to the high nonlinearity of the system [Jaulin
et al. (2001)]

Using that [500)], & [2019 2(19) = o104 [f19) 4
[d(zl’q)] and after some mathematical manipulations, the

N (I, =

unknown interval [fz(l’q)] = [ii q), Z(I’q)]

mated as follows:
~(1,9)

can be approxi-

iz y(l’q) + d( q) _ (I,q)
(16)
FUa) = yho) _ g _ 5(La)
The estimate of the sensor fault is ﬁnally obtained as:
A1a)
. F0 oy f
(I,q) — D) (4 17
jt 5 0 (1)

5. SIMULATION RESULTS

In this section, we apply the accommodation methodology
described in Section 4 to a Diesel Engine using data from
Geertsma et al. (2017) and the state-space modelling of
the different interconnected subsystems shown in Section
3. The used model has already been validated in the
aforementioned work using manufacturer and Factory Ac-
ceptance Test (FAT) data from the actual Diesel Engine.
It is assumed that the measurements of each sensor of the
engine are corrupted by uniformly distributed noise with

J;-I) being 3 % of the amplitude of the noiseless measure-

ments of the sensor. We have simulated permanent abrupt
offset sensor faults affecting the torque sensor S®) {3}, the

pressure sensor after the exhaust manifold S {1} and the
temperature sensor after the engine’s compressor S(4){2}.
The magnitude of the faults are chosen as f:§2) =5
103 Nm, f¥ = 5.10* Pa, f{ = 100 K and their
times of occurrence at T}? = 10 sec, Tf(i’) = 10 sec and
T;;) = 20 sec respectively.

For the diagnosis of sensor faults, the distributed method-
ology described in [Kougiatsos et al. (2022)] is employed.
The design gains of the various monitoring modules are
selected as LY = 1.16, LGY = 445 LD = 319.98
while the learning rates for the design of the dynamic
virtual sensors are selected as M1 = 0.5, T3 = 8.7,
'Y = 5. The engine is simulated for 100 sec at its nomi-
nal operation point. Finally, the mean absolute percentage

error for the sensor fault f(I’q) (%) € {x, z} in the module
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Fig. 3. Estimation of diagnosed sensor faults using the distributed virtual sensor scheme (blue line: actual fault, green

line: fault estimation)
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Fig. 4. (a)-(c) Absolute percentage errors [%] for the fault identification task and (d) Performance of algebraic sensor

fault estimation using SIVIA-based virtual sensor (red line: £22’3), green line: ff’?’), blue line: fz(z’g), black line:

MID (MAPE)!9 is used as the benchmark for the
proposed identification scheme.

The simulation results are shown in Figures 3 and 4. As can
be seen from Fig.3(d), the virtual sensor based on SIVIA
used as part of the monitoring module M23) manages

to identify the magnitude of the actual fault affecting the
sensor S {3} in 30 sec from the time the sensor fault was
diagnosed. Here, it should be noted that the isolation is

delayed by almost 10 sec. Nonetheless, a (M APE)(23) =

(2,3)

8.76 % is recorded starting from ¢;""’ = 40 sec, as can be
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seen from the trend in Fig.4(a). The interval estimation

using SIVIA is also shown to converge, as expected, in
~(2,3) =91
Fig. 4(d) with the width of the interval [f(z ), 2(2"3)]

getting gradually smaller and the center of the interval
fz(2’3) converging to the actual simulated sensor fault f§2,3).
Moreover, the adaptive differential estimator used as part
of the monitoring module M® 1) also manages to identify
the fault affecting the sensor S©){1} within approximately
10 sec, as can be seen in Fig.3(e). The absolute percentage
error value is also shown to converge in Fig.4(b) and

assumes a (M APE)®31Y) = (.26 % starting from tég’l) =20
sec. Finally, the explicit algebraic estimator used as part
of the module M*?) almost instantly identifies the fault
affecting the sensor S(¥{2}, as can be seen in Fig.3(i) and

assumes a (M APE)%2) = 3.74 % starting from té4’2) =20
sec, as can be seen from the trend in Fig.4(c). Based on the
above results, the sensor faults are estimated with great
accuracy by the virtual sensor scheme. In addition, the
sensor fault effects are compensated so that they are not

propagated to the neighbouring subsystems, as we can see
from Fig.3(a)-(c),(f)-(h) and (j).

6. CONCLUSION

In this paper we presented a distributed virtual sensor
scheme for reconstructing the measurements of diagnosed
faulty sensors used for condition and operational monitor-
ing of marine fuel engines. For each of the fuel engine’s
subsystems, monitoring agents were designed with the
ability to actively compensate for sensor fault effects in
those subsystems. To this end, a mixed scheme of virtual
sensors was proposed for fault identification purposes due
to the Differential-Algebraic nature of the system. More
specifically, dynamic virtual sensors were proposed based
on nonlinear estimators, static virtual sensors based on
the explicit algebraic equations of the system and SIVIA-
based virtual sensors based on the implicit algebraic equa-
tions of the system. The sensor measurements were then
reconstructed by means of subtraction of the identified
fault magnitudes from the original measurements. Finally,
a good performance of the proposed methodology in iden-
tifying and alleviating the effects of multiple simultaneous
sensor faults has been suggested by the simulation results.
Future work will include the sensitivity analysis of the
proposed methodology with respect to the magnitudes of
sensor noise and design gains.
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