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Chapter 1

GENERAL INTRODUCTION

1.1 Survey

The investigation of automated chromosome analysis is important. Not only
because computer assisted karyotyping may be faster and more accurate than
manual karyotyping but also because quantitative measurements give the
possibility to detect statistically significant aberrations from the normal
chromosome. A short introduction to chromosome analysis is given in Appendix A.

The choice which chromosome features have to be measured depends strongly
on the staining method used. The first chromosome measurements were length
measurements. These length measurements were based on the contour of a chromosome
(Gallus et al. (1970), Ledley et al. (1964, 1965, 1966a, 1966b, 1968, 1969, 1972),
Neurath et al. (1966, 1969)) or on the integrated density profile of a chromosome
(Rutovitz (1967)). Which method is preferred depends partly on the shape of the
chromosomes, which is influenced by the preparation technique used. For instance
when both chromatids are close together, the profile method is most suitable.

The chromosomes contract during the metaphase. The contraction differs not
only from cell to cell, but also within one cell from chromosome to chromosome.
Even for one chromosome the contraction between the long arm and the short arm
may differ (Gaillard (1970) and Fitzgerald (1965)). When the contour method is
applied, the position of the arm ends depends on the definition of the contour
of a chromosome. So Tength measurements are of limited use.

DNA based features are independent of contraction. DNA contents of
chromosomes have been measured by Mendelsohn et al. (1966, 1969, 1973) Mayall
(1974), Van der Ploeg et al. (1974), Bosman (1976). To compute DNA based
features, the chromosomes are stained with a DNA specific dye. The integrated
optical density is a measure for the mass of the chromophore present. The
accuracy of these measurements is affected by several sources of error, due to
the specimen and the measuring system.
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The main emphasis in this thesis has been laid on the algorithms for the
computation of DNA based features. In most of the final experiments, the
cytologist used banding patterns for identification of the chromosomes
(Caspersson et al. (1968)). To that end the chromosomes were stained with
atebrine, before the DNA specific Feulgen staining. Banding patterns will be a
subject of further quantitative research in the Pattern Recognition Group at
the Applied Physics Department of the Delft University of Technology.

In this thesis algorithms are given to compute DNA based features. The
accuracy attained in these DNA based features is compared to the accuracy in
length measurements, which is influenced by the contraction. The length
measurements were based on the integrated profile. In addition to the accuracy
study also classification results with these features are given. Primarily we
have tried to give a critical evaluation of some measuring, computing and
pattern recognition techniques to problems associated with the field of
chromosome analysis. Some of the results apply to a larger field of research.

Although banding patterns are a powerful tool, they are still dependent on
the contraction of the chromosomes. DNA specific staining procedures give the
possibility to compute DNA based features, which are independent of the
contraction. Combining a banding technique with a DNA specific staining procedure
on the same metaphase enables investigation of -DNA based features of chromosomes
already accurately classified according to the banding pattern.

Our research started with some preliminary investigations on the measurement
of chromosome 1lengths based on the position of the arm ends and the centromere
(Groen (1971)). These arm ends were computed from the curvature of the contour.
The investigations led to a critical evaluation of the problems in the
measurement of contours and their curvature, which is reported in chapter 2.

The methods of Gallus/Aalderink and Ledley are compared and the errors in the
curvature and the position of the arm ends of an artificial chromosome are given.
To this end probability density functions of Freeman codes have been derived.

In chapter 3 a description is given of a program (CHRDNA) and corresponding
subroutines to compute DNA based features. This program locates the chromosomes
in complete scanned metaphases and computes the DNA content and the integrated
density profile of the individual chromosomes. From this profile the DNA ratio
length and centromeric index are computed. The algorithms used, are described
and evaluated.
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In chapter 4 several sources of error in the DNA measurement are
investigated. The distributional error and the quantization error of a linear
and of a Togarithmic scale are examined in further detail. The experimentally
determined errors in the features due to the scanning, photography and the
homologue variations are given.

In chapter 5 the classification results with these features are given. The
influence of the number of homologue pairs is investigated.

1.2 MATERIALS AND METHODS

The preparation, staining and scanning of metaphases were performed at the
Department of Histochemistry and Cytochemistry of the University of Leyden.
Details of the procedure are given by Van der Ploeg et al. (1974). A diagram of

the procedure is given in figure 1.1.

CHEMICAL PREPARATION

Whole venous blood was obtained from healthy volunteers and cultured for
68-70 hours, after which colcemid was added to block the dividing cells in the
metaphase (Bosman et al. (1975)). After centrifugation and osmotic expansion
the cells were placed on object glasses and dried.

For the final measurements, the chromosomes were first stained with atebrine,
according to Caspersson's technique and microphotographed. The atebrine was washed
away by fixation in methanol: formaldehyde 35%: glacial acetic acid (85:10:5
volume parts). After hydrolysis, Feulgen staining was carried out with Schiff
reagent prepared according to Duijndam et al. (1973) and the preparations were
microphotographed again.

PHOTOGRAPHY

The metaphases were photographed on 35 mm Copex Ortho Rapid (Agfa-Gevaert)
or Kodak High Contrast film, using a Dialux (Leitz) microscope with a Leica MDx
camera body. In order to excite atebrine fluorescence, light of about 440nm was
used. For Feulgen photography the 1ight was filtered with an AL 559 filter. A grey-
wedge was photographed together with the chromosomes for calibration purposes
and to check whether the densities of the photographic negative were in the

linear part of the Hurter-Driffield curve or not. (Den Tonkelaar et al. (1964)).
The negatives were embedded in immersion oil between glass slides and scanned.
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SCANNING PROCEDURE

The microphotographs contain the image of a complete metaphase. The
microphotographs of Feulgen stained metaphases are scanned with a SMP (Zeiss)
cytophotometer interfaced to a PDP-12 computer. The scanning stage of the SMP
cytophotometer has a stepsize of 10 um with200 steps per second. The intensities
are measured at intervals, which are multiples of the stepsize. The diameter of
the measuring diaphragm equals the measuring interval chosen. The illuminated
field has a diameter of about 2 times the measuring diaphragm to reduce stray
light errors. The intensities are quantized in 512 linear grey levels (9 bits).

The scanning is executed under control of the HISPAT program (Van der Ploeg
et al. (1974)). The area scanned is a rectangle. Only one side of the rectangle
is limited (320 points). When the metaphase image is too large, it is scanned in
a number of overlapping rectangles.

The measured intensities are converted to densities and stored on 9 track
magtape.

COMPUTATIONAL PROCEDURE

The computation is performed at the IBM 370/158 computer of the Delft
University of Technology. The magtapes with scanned metaphases are analyzed
with the CHRDNA program, which is discussed in detail in chapter 3. This
program delivers .DNA based features of the chromosomes.

For classification purposes and for the computation of the homologue
variations, the chromosomes are Tlabeled by their chromosome number (Paris
conference, Hamerton (1973)). This labeling for the final experiments was done by
cytologists according to the microphotographs of the atebrine stained metaphases.
This Tabel is added to the measured features.

The file system consists of the original scans of the metaphases, the
computed profiles (projections of the densities on a principal axis or on a best
fit polynomial) and the measured features.
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Chapter 2

SOME QUANTITATIVE ASPECTS OF THE ANALYSIS
OF CURVATURE MEASUREMENT

2.1 INTRODUCTION

The methods of Gallus (1970), Aalderink (1970) and Ledley (1964, 1965,
1966a, 1966b, 1968, 1969, 1972) to measure the curvature of quantized curves are
investigated in this chapter. The influence of the contour-tracing algorithm on
the measurement of the curvature has been discussed by Bennett et al. (1975),
based on the noise characteristics of the frequency domain. The contour-tracing
algorithm which we used (8 neighbour connectivity) appeared to have a good
signal to noise ratio in Bennett's experiments.

In order to compare the measured curvature and the real curvature, we
need a curve from which the real curvature can be computed. A function which
more or less resembles the contour of a small chromosome is used, because one
of our important applications of curvature measurement is chromosome analysis.
The function ('analytical chromosome') is

r(@) =1+0.25 cos wb (2.1)

in which (r,0) are polar coordinates and w is a parameter. The function is plotted
in figure 2.1. It resembles a small acrocentric chromosome for w=3, and it shows
some resemblance to a small median chromosome for w = 4. The curvature of this
function has a symmetric character. When we introduce higher harmonics with a
certain phase in r(6), asymmetric shapes can be obtained as well.

A brief summary of the concepts of curvature is given here.
An extensive discussion has been given by Kreyszig (1959). Let c be a curve in
83 given in the allowable parametric representation:

c = (%Y z) =c(t) (2.2)

with allowable narameter t.
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Figure 2.1 Analytical chromosome (r(0) = 1 + 0.25 cos wb)

The Tength s(t) of an arc of c is
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We will restrict ourselves to a plane curve in a two-dimensional Euclidian

space ﬁz, and derive an expression for x and the angle ¢ between the X-axis and
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Using relation (2.5) we obtain

k(s) = |Va(s)?| =

é(s)| (2.7)

So k(s) is the absolute value of ¢(s). The sign of ¢(s) determines whether
the curve at position s is convex or concave.

2.2 QUANTIZED CURVES AND THEIR FREEMAN CODE

When a curve has to be processed by a digital computer it must be
quantized. A square grid is superimposed on the curve. The intersections of
curve and grid divide the curve into a large number of curve segments. For
each intersection there are two grid nodes, one on either side of the curve.

It depends on the quantization method used, which node is marked to be a point
of the quantized curve.

Freeman (196la, 1962, 1969) suggests the Grid Intersect Quantization (GIQ).
In this method the node closest to the intersection is marked as a point of the
quantized curve (see figure 2.2a). When the curves are the boundaries of objects
an Object Boundary Quantization (0BQ) is used. See e.g. Gallus et al. (1970),
Ledley et al. (1964, 1965, 1966a, 1966b, 1969), Aalderink (1970) and Freeman
(1970). In this method the node which belongs to the object is marked as a point
of the quantized curve (see figure 2.2b). Instead of marking the object nodes,
the background nodes could be marked as well. This Background Boundary
Quantization (BBQ) is illustrated in figure 2.2c.

In these quantization methods we must make the restriction, that the curve
is quantized fine enough. It is not allowed, that a curve passes more than once
between two neighbouring nodes of the grid. In the case illustrated in figure
2.3, such information will be Tost in the quantization process. This matter is
further discussed in Appendix B.

Young (1974) derived a quantization theorem for curves. This theorem requires

for a curve with maximal curvature 73 grid constant

h € ks, : (2.8)
Kmax

The intersections between the grid and the curve divide the curve into
curve segments. The quantized curve consists of line elements from node to node.

These are called Freeman vectors. A curve segment may be associated with a
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Freeman vector or may reduce to a single node. This can be seen in figure 2.2
and will be further discussed in section 2.5.

A Freeman vector i can be presented by an integer f(i) from 0 to 7, where
® = 3nf(i) is the angle between the X-axis of the coordinate system of the
grid and the Freeman vector. This code f(i) is given in table 2.1 and in
figure 2.4. Properties of the Freeman code are given by Freeman (196la, 1961b,
1962, 1969, 1970). Using the Freeman code one can represent a quantized curve
by a string of numbers between 0 and 7. Freeman coding of straight Tines has
been discussed by Brons (1974).

Table 2.1 Freeman code

Freeman vector Freeman 3 2 1
(x,y) code
(1,0) 0 4 0
(1,1) 1
{05 1) 2
g |
-1,-0
(=¥ea1) 5 2 6 7
( 0;_]) 6
( 1)_1) 7
Figure 2.4 Freeman code

2.3 METHODS TO DETERMINE THE CURVATURE OF A QUANTIZED CURVE

Gallus et al. (1970) and Aalderink (1970) describe a method to determine
concave and convex parts of a quantized contour by determining the difference
f'(i) between two successive Freeman vectors f(i) and f(i+l) obtained by the
method of 0BQ. When f'(i) is out of the range [-3,4], due to the discontinuity
between the Freeman code values 0 and 7, we have to add or subtract 8 so that
f'(i) is made to lie within this range.

f1(i) = f(i+l) - f(i), -3<f'(i) <4. (2.9)

The value f'(i) = -3 will never occur because of the Object Boundary
Quantization process. This is explained in Appendix B.

The difference f'(i) is smoothed to suppress the noise caused by the
quantization process. (This filter process may be described by z transforms. This
gives no link, however, with the method of Ledley, investigated later on).
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The smoothed signal v(i) is

v(i) = 20 w(j) f'(i-3), in which (2.10)
j=moo
w(j) =0 if  |j| = B+n
w(j) = (B+n-|j|)/A if B < |j| <B+n-1 (2.11)
w(j) = n/A if 0<|j| <B
and
A = n(n+2B).

Gallus uses for B the value 0 (triangular filter).
Aalderink uses for B the value 1 (trapezium filter).

The value of n used by Gallus and Aalderink depends on the number of points
of the curve and is determined by the required frequencies in the signal.

A graphical representation of w(j) is given in figure 2.5a. The DFT of w(j),
W(p),is given in figure 2.5b.

A filter w(j) working on the difference of a variable may be described as a
filter w'(j) working on the variable itself because,according to (2.9) and (2.10)

oo oo (=]

v(i) = 2 w(3) f'(i-3) = 2 w(j) f(i-j+1) - 3 w(i) f(i-) =
J:—Oo J:-OO J:—OO
= 2 w'(J) f(i-3) (2.12)
J:—OO
with w'(j) = w(j+l) - w(j). (2.13)

Using formulas (2.11) and (2.13) we obtain for the method of Gallus/Aalderink
(G/A) for w'(J)

w'(j) =0 if J <-B-n
-B < j <B-1
Jj > B+n-1
(2.14)
w'(j) = 1/A  if -B-n<j<-B-1
w'(j) = -1/A if B <Jj <B#n-1
A = n(n+2B).

22
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A graphical representation of w'(j) is given in figure 2.6a. The DFT of
w'(j), W (p) is given in figure 2.6b.

When we compare the spectra of the filters of Gallus and Aalderink (given in
figure 2.6b) the suppression of the higher spatial frequencies of Aalderink's
filter is slightly better. The suppression of the higher frequencies is poor
compared to a differentiating Tow-pass filter, given in figure 2.7. The
coefficients of this filter are

B

= —l—cos jm B1 -
J mj

w(j) sin j ™ By (2.15)
in which B1 is the ratio of the cut-off frequency and half the sampling frequency.
A triangular windowing function was used. This filter was constructed according
to Oppenheim (1975). Results of this filter are given in section 2.7.

The smoothed difference v(i) of the successive Freeman codes filtered
according to Gallus/Aalderink can be described as

=8-1 B+n-1

vii)=x | 2 f(i-d) - % f(i-j) (2.16)
j==-B-n j=B .

To obtain the angular direction ®(i) of the Freeman vector, the Freeman
code f(i) is multiplied by m/4. The smoothed difference v(i) is derived as a
function of the number of Freeman code values. In Appendix C the real curve
length associated with this number of codes is approximated. When this real curve
length is taken into account v(i) must be multiplied by 4/(mvZh). An approximation
for the curvature éG/A(i) is obtained by multiplying v(i) by these two factors
(/4 and 4/mv2h).
1 B+n-1

CRIEIEE I RS (2.172)
-n J:

=1

J

. 1 -8~
6/a1) = A‘r[ 2

and

A' = (n+ZB T/2 h ) (2.17b)
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A' can be interpreted as the approximated curve Tength between the centres of
the leading and trailing curve segment. Equation (2.17a) denotes that the method
of Gallus and Aalderink computes the average angular directions of the n Freeman
vectors of the leading curve segment [ i+B, i+B+n] and of the trailing curve
segment [ i-B-n, i-B]. The difference is taken as approximation for the
curvature. In figure 2.8 an example of Aalderink's method is given for n=4, B=1,
and h=1.

/

3 = 1
Palh) V246

(04040+1-(2+14241)) =-0.15 9

Figure 2.8 Example of Aalderink's method

The method of Ledley (1964, 1965, 1966a, 1966b) is based on curve segments
with a centre, a trailing and a Teading vector, illustrated in figure 2.9. Ledley
approximates the curvature KL(i) of the segment by ©/L. The angle between
the leading and the trailing vector is © and the length of the curve segment is L.
This curvature is

in which ¢H is the angle between the leading vector and the X-axis and ¢T is the
angle between the trailing vector and the X-axis.

We use quantized curves, so length is expressed in the number of Freeman
vectors. When the approximated real curve length associated with this number of
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vectors is taken into account, we have to multiply the number of vectors by
im/2h (Appendix C). The number of Freeman vectors of the leading and of the
trailing vector is n; B is the number of Freeman vectors from the centre to the
head of the trailing vector and also from the centre to the tail of the leading
vector.

Py
H=leading vector
centre i

T=trailing vector

Figure 2.9 Contour segment according to Ledley

We assume that the angular direction of the leading or trailing vector is an
approximation of the angular direction of the tangent to the curve in the middle
of the curvesegment defined by the leading or trailing vector. The approximated
curvelength A' between these two middles is given in equation (2.17b). Amending
Ledley's method, we divide the difference between the angular directions of the
leading and trailing vector by this distance to obtain the first order difference.
For the curvature approximation éL of Ledley we obtain

6. (1) = 4r (8 - ¢7). (2.19)

In figure 2.10 an example of this method is given for h=1, B=1 and n=4.

When we compare the method of Gallus/Aalderink (2.17) to the method of Ledley
(2.19) we see that the essential difference is the measurement of the angular
direction of the leading and of the trailing vector. In the method of Gallus/
Aalderink the angle is determined by the average angle between the n Freeman
vectors and the X-axis. In Ledley's method, the angle between the vector itself
(the chord) and the X-axis is computed.

In more recent literature Ledley (1968, 1969, 1972) approximates the angle



LT L 1 4 rad
(i)}= (arctan — —arctan =)=-013
. nV2s 4 2 /m

Pigure 2.10 Example of the method of Ledley

between the leading and the trailing vector by laying these vectors on a grid
with their tails at the origin. The number of coordinate points which must be
traversed along the outside of the rectangular grid in going from the head of

the trailing vector to the head of the leading vector is counted. When the
outside is traversed counter-clockwise the count is positive, when the outside is
traversed clockwise the count is negative. In figure 2.11 this method is applied
to the example of figure 2.10.

i

Tl

— ¢+ +—-3
-4
-5 H

0

Figure 2.11 Approximation of Ledley
We assume that the curve segment defined by the leading or trailing vector may

be approximated by a straight line. In this case the head of the leading and of

the trailing vector will always be on a (2n+l) x (2n+l) square.
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This square is given in figure 2.12a for n=4. An edge point of the square is
uniquely coded by the sum of the Freeman code values from the origin to the edge
point. In the approximation of Ledley the number of edge points is counted
between the trailing and the Teading vector. This number is equal to the
difference in code value of the edge points, if both the trailing and Teading
vector reach the edge of the (2n+l) x (2n+l) square. In this case Ledley's
approximation is identical to the method of Gallus/Aalderink. In this method the
difference in the average Freeman code values of the Teading and of the trailing
vector is computed.

2 11 10 9 8 7 6 5 4 2 11 10 9 8 7 6 5 4
T 1 T T/’ ST ST T [ Tk 1]

13—— — - —+——3 13--v~—f-—~—~—/~——l§~-l‘~—43

14 S //, 32 et D
15—ttt fl aA 15 P e

16t——"1— 0 18— S K;\’ — et )

17 = i o A s 17 + L——\» =13

H

18— t- : =130 18 = e e —==130

19+ e} -429 19 - + t —129
i Ll - | J

20 21 22 23 24 25 26 27 28 20 21 22 23 24 25 26 27 28

qQ b

Figure 2.12 Square of edge points for n=4

When the contour is much curved, the leading and the trailing vector do not
necessarily end up at the edge of the square. In the approximation of Ledley we
partly count inside the square in this case instead of following the outside.
This introduces an additional error, which is illustrated in figure 2.12b for the
trailing vector T.

2.4 ERRORS PRESENT IN CURVATURE APPROXIMATION

We will investigate the errors in the method of Gallus/Aalderink and Ledley
for the approximation of the curvature. The second method of Ledley will be Teft
out of consideration because this method is identical to the method of Gallus/
Aalderink for slightly curved contours. Part of the problem is closely related to
numerical differentiation (Hildebrand (1956)).
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We can distinguish two types of errors:

a) The error caused by the quantization of the grid, discussed in section 2.5.

b) The error caused by the approximation, which is related to the error in
numerical differentiation. Finite differences are used instead of infinite
small ones. This error is discussed in section 2.6.

In Ledley's method we compute the angular directions of the leading and
trailing vector. The quantization error is due to the fact that the end points
of these vectors are grid points, which generally are not located on the curve.
For the second error we consider the original curve discarding the quantization
error. As the curve may be locally described by a continuous and differentiable
function y = y(x), we can apply the mean-value theorem. So the angular direction
of the chord equals the angular direction of the tangent to the curve in a point
on the curve segment bounded by the leading (or trailing) vector. Discarding the
quantization error we may write instead of equation (2.19)

3.(4) ;\1— [6(£,) - 6(£)]

and (2.20)
s{1 -B-n)<f; <s{i-8)
s(i + B) < 52 <s(i+ B +n).

s(i) is the position at the original curve, where the curve enters the grid element
associated with, contour point (i).

In the method of Gallus/Aalderink we sum the directions of n Freeman vectors
of the Teading and trailing vector. This may be described as summing n angular
directions of the curve in the appropriate intervals, only roughly quantized in
8 values by the Freeman code, introducing the quantization error (a). For the
second error (b) we again look at the original curve, discarding the quantization
error. So for the leading and the trailing vector we average n angular directions
of the original curve for those curve segments, which lead to a Freeman vector
(section 2.2). Discarding the quantization error we may write instead of
equation (2.17a)

1 B+n-1 3

1 1
TR R e s e R (2.21)
j=-8

Ra/aciiises AL B & "Gy

A |
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in which fi-j is a point on the curve segment defined by the (i-j)th Freeman
vector.

As the angular direction ¢ of the original curve is a continuous function
of the arc length, we can again apply the mean-value theorem. So the average
value of ¢ equals the value of ¢ in a point on the curve segment bounded by the
leading (or trailing) vector. Equation (2.21) can be written as

éG/A(1) ='A1—,[¢(E4) = ¢(f3)]

and (2.22)
s(i-B-n) < 53 < s(i-B)
s(i+B) < 24 < s(i+B+n)

Thus formula (2.17a) and formula (2.19) have been reduced to the same form.
When we discard the quantization error, in both methods the curvature is
approximated by the difference in angular direction of the tangent to the curve
at two points El and Ezor£3 and 24. The points 51 and EZ or £3 and £4 are
located at the curve segments defined by the trailing and leading vector.
Generally &, # &5 and &, # &,.

2.5 QUANTIZATION ERRORS (OBQ) IN CURVATURE APPROXIMATION

A contour is divided by the intersections with the grid into a Targe number
of curve segments. This can be seen in figure 2.2b for the Object Boundary
Quantization process. Acurve segment is not always represented by a Freeman
vector, as-it may reduce to a single node as well.

In figure 2.13 the possibie cases are given for the Object Boundary
Quantization process and a clockwise contour-tracing algorithm. We assumed that
the grid is fine enough so that in one grid element the contour may be
approximated by a straight 1line with angular direction ¢ (with the X-axis of the
grid). The grid elements marked la, 2a, 3a and 4a do not lead to a Freeman code,
the grid elements marked 1b, 2b, 3b and 4b have an even Freeman code and the
grid elements marked 1lc, 2c, 3c and 4c have an odd Freeman code. Rotation by a
multiple of 90° transforms all cases a into each other. The same is vaiid for
all cases b and c. The cases occurring for a certain value of ¢ are given in
table 2.2.
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Figure 2.13 Clockwise OB contour—tracing algorithm
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nof

/

-180°< @< -90°¢

f=6
-135° <@ <-45°

e

N

A

t27

-90° <9 <0°

Table 2.2 Situations occurring for a given ¢

v case
¢ =0° 1b
0° < p< 45° 1b, 1c, 2a
= 45° 1c, 2a
45°< p< 90° 1c, 2a, 2b
¢=90° 2b
90° < ¢ < 135° 2b, 2c, 3a
¢ = 135° 2¢, 3a
135° < v< 180° 2c, 3a, 3b
¢ = 180° 3b
-180° < v< -135° 3b, 3c, ha
9 = 135° 3¢, ‘4a
-135° < ¢ < -90° 3c, ba, kb
¢ = -90° bb
-90° < v< -45° bb, ke, 1a
P m B0 bc, 1a
-45° < p<0° ke, 1a, 1b
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GALLUS/AALDERINK

We start with the quantization error in the method of Gallus/Aalderink
(equation 2.17a) in which we sum the Freeman code values multiplied by 7/4. We
will restrict ourselves to the clockwise contour-tracing algorithm, as the
counter-clockwise algorithm is analogous.

Let us first investigate the cases for 0° <¢ < 45° (1b, 1c and 2a). We
assume that the curve may be approximated by a straight Tine in a column of the
grid. The line segment in a column results either in a Freeman code 0 (1b) or in
the combination of a Freeman code 1 (1lc) and no Freeman code (2a).

So the probability of case 2a equals the probability of case lc. The case 2a
is discarded in the calculation of the probability of Freeman code 0 and Freeman
code 1, because it does not lead to a code value.

In figure 2.14 the cases 1b and 1lc are given in detail. We assume that the
position of the contour in relation to the grid is random, so that the position y,
where the contour enters the grid element has an uniform distribution p(y).

ply) =¢ if 0<y<h. (2.23)

The probability that for a given ¢ (O0 <y <I45°) a Freeman code value 1

will occur is:

h tan ¢
p(f = 1|¥) = p(0 <x<h) = / p(y)dys (2.24)
o
00 <y < 45°.
1b 1¢

Freeman code =0 Freeman code=1

e object point O contour point

Figure 2.14 Two cases for 0° <y < 45°
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This gives
p(f = 1¢) = tany and p(f = 0fp) =1 - tan g, 0° <y <45°, (2.25)

Only Freeman code value 1 is present for ¢ = 45°, Only the value 0 is present for
p = 0°.

When 45° <¢ <90° a line segment contained in a row results in a Freeman
code 2 (2b) or in the combination of no Freeman code (2a) and Freeman code 1 (lc).
We assume that the position x, at which point the contour leaves the grid element
has an uniform distribution. In the same way as above we obtain-.

p(f = 1|¢) = cotan ¥ and p(f = 2|¢) = 1 - cotan ¢,
45° <¢ < 90° (2.26)

and so on. The distributions of p(f = 0/¢) and p(f = 1|¥) are given in figure
2.15. The distributions of all even codes and of all odd codes are identical,
but they are shifted a multiple of 90°.

1

plf=01y)
p(f=119)

1 1 1 1 1 ) 1 1 e S "SR NG S Sy ) 1 1 -
-45 -40 -30 ° -20 -10 0 10 20 30 40 4S 0 10 0 30
I 2 40 S0 60 70 80 90 )

Figure 2.15 Distributions of p(f = 0|¢) and p(f = 1l|¢)

When the position of the contour in relation.to the grid is random, the
a priori probability p(¢) that segmentation will create a curve segment with
angular direction ¢ in a grid column (for -45° < < 45°%, -180° <y < -135°,
135° <o < 180°%) or row (45° <¢ < 135%, - 135° <y < 45°%), is given by
(Appendix C)




p(v) =5 /Zcos v,  -45° <o <450,

(2.27)

So the a priori probabilities for an even and an odd Freeman code value can be

computed as

p(f

and

m/h
p(f = odd) = 4p(f=1) = /2 [ tan ¢ cos ¢ dp = V2 - 1 = 0.4142.
0

/Y
even) = 4p(f=0) = V2 f (1-tan ¢) cospdp = 2 - V2 = 0.5858
0

(2.28)

As the distributions for all even and odd codes are the same (only shifted),

we will restrict ourselves to values of ¢ between 0° and 450, because other

functions can be obtained by shifting and reflection.

The bias in the expected value ® of the angular direction ® of the Freeman

vector for a given ¢ may be computed from equation (2.25) as

bias(®lv) = &® - ¢|¢) = T tan v - ¢ 0 <y <45°,

With the distribution p(¥) given by equation (2.27) this bias is

1]

- w/b . .
bias (®) = /2 / (gtanv -9¢)cosy do =7 (V2-2) + (V2-1) =
0

-2

-4.59 . 107¢ rad = -2.63°.

The variance for a given ¢ is

var(@le) = &((e-B)2 |0} = ()’

(1 - tanyp)tany, 0 <y < 459,
With the distribution p(¢) given in equation (2.27) this variance can be
computed as

2, %2 2

var(®) = &{(P-®)°} = 76 [1-Tn(1+/2)] = 0.1034 rad”.

The average angular direction of n Freeman vectors is used in the method of
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Gallus/Aalderink as approximation of the angular direction of the tangent to the
curve. Assuming, that the errors in the angular directions of the Freeman vectors

are uncorrelated the variance in the curvature estimated by Gallus/Aalderink
(equation 2.17a) is

2 . wz/?
OG/A * var(¢G/A) = g__TE [1-Tn(1-V2)] (2.32a)
nA
In the method of Gallus/Aalderink we take the difference between the leading
and trailing vector. This difference introduces a factor 2 in equation (2.32a).
In figure 2.16 AIOG/A is plotted as function of n. In the case n=1, B=0, it is
expected that the most correlated situation appears. Hence a new calculation has

been performed for this case in Appendix D, where the correlation is taken into
account.

0.6 —
Ao
0.5
3
o Gallus/Aalderink
0.4 uncorreloted
A Ledley
uncorrelated
(o] X correlated
0.3
o
L
0.2f 2
Z 7 o
T °
%
0.1} L
;
i
5/ )
0

0 h! 2 3 4 B TR 8 9\ 10 ' wo-seal)

Figure 2.16 A'0  for the method of Gallus/Aalderink and Ledley
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In this correlated case the variance is

2

Ué/A=2(7T)2[/Z+2-/1‘0]. (2.32b)

AT

This results in an increase of about 20% in the standard deviation. This value of
A'aé/A is also plotted in figure 2.16.

LEDLEY

In Ledley's method the angular directions ® of the leading and the trailing
vector are computed. We will again restrict ourselves to values of ¢ between 0°
and 45°. Other cases can be obtained by shifting and reflection. When the curve
segment length is n contour points, for slightly bent curves the horizontal
distance between the head and the tail of the vector will be n times the grid
constant h. This horizontal distance will be shorter for more sharply bent curves,
introducing a larger error. So the error we are now estimating is the minimum
error attainable with Ledley's method.

The angle between the leading or trailing vector (called the chord) and the
X-axis is ¥. The intersection point of the tail of the chord and the grid is y,
the intersection point of the head of the chord is y', illustrated in figure 2.17.

o — i —

-—(k+2)h

curve

—-lk+1h
L—

,///////’ﬁﬁ;;:,/

P i
y _ (‘b

Figure 2.17 Quantization process in Ledley's method

\

nh
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The estimation of the angular direction ® of the chord in Ledley's method is

® = arctan ( integer (y') ¥es (2.33a)

n

For a given ¢ the intersection point y' is

y' =y + hntane. (2.33b)
Assuming that y is uniformly distributed between 0 and h, y' will be
uniformly distributed between hntan ¢ and h(n tany¢ + 1) for a given .

Let k be an integer, so that (k+1)h is in this interval

hntany¢ < (k+1)h <h(n tan¢ + 1) (2.33¢)
Equation (2.33c) can be rewritten as

k+1

arctan % <y < arctan —= (2.33d)

We have two possible outcomes for ® when ¢ is given

P = arctan% 1F hntany <y' < (k+l)h
(2.34)
@ = arctan KL if  (kel)h <y' <h(n tang + 1).
The probabilities for these two cases are given as
K (k+1)h 1
p(®=arctan =) = plhntan ¢ <y' < (k+l)h] = f B dx =
I hntan ¢
=k+1-ntangy
(2.35a)
i k+1 1 .
p(®=arctan T) = pl(k+l)h < y' <h(n tan ¢ + 1)] =
h(n tan ¢ + 1) 1
= / R dx = n tan g - Kk
(k+1)h
in which
Ko k+1 b
arctan + <y < arctan ==, 0 <k <n-1. (2.35b)
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The bias in Ledley's method is calculated as

bias(®|p) = &® - ¢|p) = (n tan ¢ - k)(arctan 5%£—-arctan %& + arctan %—- %

(2.36)
with the restriction (2.35b).

As the situation here is analogous to that described in Appendix C (with column
width nh instead of h) the distribution p(¢) is given by equation (2.27). Hence

the bias is

n=1

bias(®) = V2 Y  (arctan E%l~— arctan %)(\ n° + K - n2+(k+1)2) + (V2-1).
k=0

(2.37)

This bias is given in figure 2.18 as function of n. The variance for a
given ¢ is

&[(P - Z’)2|~P] = (arctan 5%1-— arctan %)z(k +1 -n tan ¢)(n tan ¢ - k).
(2.38)

|[bias]|

Figure 2.18 Bias in Ledley's method
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With the distribution p(¢) given in equation (2.27) this variance is

- fi=1
&E[(P - ¢)2] = vZ 5 (arctan E%l-- arctan %)2 (k+1)\/;2+k2 - k) n2+(k+1)2 +
k=0
2 Z 2 2
- ey R e n +Vn+ (k+1)°1(k + n -Vn® + k%) (2.39)

2 2

[k +1+n —\/ﬁz+ (k+1)1 (k - n +\ n2 + k%)

Now the quantization error in Ledley's method according to equation (2.19)
follows from (2.39) through

2 . 2 7
o = var(¢L) = ;T? E[(P - ®)7]. (2.40)

In figure 2.16 A'UL is plotted as a function of n. In the case n=1 Ledley's
method is identical to the method of Gallus/Aalderink.

2.6 ERROR CAUSED BY NUMERICAL DIFFERENTIATION

This error is dependent on the shape of the curve and the place of Sl and
52 in the appropriate intervals (equation (2.20)). With methods of numerical
analysis (Hildebrand (1956)) an upper bound can be given for this error, but for
our investigation an upper bound is a much too rough approximation. The convergence
of Taylor expansions (Hamming (1962)) in the region of interest is not sufficiently
fast to allow an estimation of the error. So we have to restrict ourselves to an
example as no general theory has been given. For the 'analytical chromosome' of
section 2.1 this error is computed experimentally. The quadratic deviation E2

b
between the curvature ¢ of the analytical chromosome and the first order
difference of ¢ is calculated as

2 _1 & = 1 2
By = 2 B(1) - 5 (6() - 6())] (2.41)
and
A" = (n + 2B)/Z wh
in which n is the number of points involved.
The position of Sl and 52 in the intervals [s(i-B-n), s(i-B)l and
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[s(i+B), s(i+B+n)l are not known (equation (2.20)).%*) Two assumptions are made
about the position of El and 22.

a) 51 and 22 are uniformly distributed in the intervals

b) 51 and 52 are in the middle of the interval.
In figure 2.19 the error Eb relative to the maximum real curvature ¢max is given

as function of the interval length nh (B=0), for the analytical chromosome with
w=3and w= 4.

relative
error
o W=4
€ uniformly distributed
+ W=4
50 % £ middle of interval
A w=3
€ wuniformly distributed
¥ W=3

E middle of interval

1 1 1 1 | 1

1.0 ————snh

Figure 2.19 Relative error in the curvature due to the numerical differentiation
B =0, h=0.05

Figure 2.19 shows that the assumptions about the position of El and $2 have an
important influence on the relative error. For an increasing interval nh the
error due to a linear approximation of the curvature increases. This results in
an increasing difference between the first order difference and the first
derivative.

*) The non-equidistance of the arc lengths between the intersections of the
contour and the grid also gives a contribution to the uncertainty of the
position of 21 and 52. A1l statements in this chapter concerning E‘ and 52

are assumed to hold for 53 and Eb as well.

42



2.7 EVALUATION OF THE ERRORS IN CURVATURE MEASUREMENT
The total error E is computed for the analytical chromosome (w = 3 and

w = 4). Assuming that o and Ey are uncorrelated, the total error E is calculated
as

S Vg

o N

(2.42)

in which o and Eb are defined as in section 2.5 and 2.6 respectively. Eb is
corputed assuming that Zl and 52 are in the middle of the interval. The error E

is theoretical as far as o~ is concerned. This error E relative to the maximum
curvature émax is given for the method of Gallus/Aalderink and the method of
Ledley in figure 2.20. The experimentally found quadratic deviations between the
real curvature and the estimated curvature in these two methods are also given

in figure 2.20. The errors in the method of Gallus/Aalderink are given for
different values of B in figure 2.21 and for different values of h in figure 2.22.
These errors are computed for the analytical chromosome with w = 4. The errors
show the same tendency in Ledley's method and for the analytical chromosome with

w= 3,

Ww=3 w=4
o/ | -
100% o Gallus /Aalderink 100% o Gallus /Aalderink
relative a Ledley relative q\ a Ledley
REFOr —— ‘theoretical’ &rier \ —— ‘'theoretical’
T \ —-=- experimental \ - =-- experimental

50% - 50 % -

L 1 1 1 I L Il 1 1 | 1 1

10 — = nh 10 ——— nh

Figure 2.20 Relative error in the curvature for the method of Gallus/Aalderink
and Ledley (B = 0, h = 0.2)
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These figures show, that the shape of the 'theoretical' and experimental
curves agree. This indicates that the theory about the quantization error
provides good results. The difference between the 'theoretical' and experimental
curve can be explained by the assumption we made in the computation of Eb. When
we had assumed that El and 52 were uniformly distributed in the intervals, the
'theoretical' error would have been larger than the experimental error
(see section 2.6).

The error consists of two parts: a quantization part (a) decreasing with
increasing nh and a numerical differentiation part (b) increasing with increasing
nh, giving an optimum, dependent on the shape of the curve. The minimum error is
very high (between about 30% and 50%). A lower value of this minimal error can
only be obtained when the minimum occurs at lower values of nh to reduce the
numerical differentiation error (given in figure 2.19). This can be realized by
decreasing grid constanth (and so increasing n) to reduce the quantization error.
This agrees with figure 2.22. A minimum in the total error is not always present,
because the quantization error may already be dominated by the numerical
differentiation error at n=1. This is the case in figure 2.21 for B=1 and B=2.

Many cases with different values of B, n and h have been investigated. The
minimal experimentally determined curvature error is in almost all cases at B=1l.
The difference in the minimal error between B=1 (Aalderink) and B=0 (Gallus) is
very small.

In figure 2.23 the experimental error is given of the differentiating low
pass filter described in section 2.3. When we compare this error with figure 2.20,
it is clear that although the suppression of the higher frequencies is
considerably better in this filter than in the method of Gallus/Aalderink, the
resulting minimum error is almost identical.

The minimum error in Ledley's method is less than in the method of Gallus/
Aalderink, as can be expected from figure 2.16. This figure shows that the
quantization error in Ledley's method is less. This is important for smaller
values of h, as in this case the difference in the quantization error of both
methods is obvious, and the error is not dominated by the numerical differentiation
error.

In figure 2.24 the values of n are given for which the experimentally
computed curvature error is minimum as function of the number of contour points
for B = 0. This was done for the analytical chromosome with w= 4. The values
for n experimentally found by Gallus for real chromosomes are also shown in this
figure. They are below the optimal values of this investigation. As the
analytical chromosome is only more or less representative for the smaller
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chromosomes, the values given for B and nh are only valid for this type

of chromosomes.
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2.8 EVALUATION OF THE POSITION OF THE CURVATURE EXTREMA

Errors in the computed position of the curvature extrema are important in
chromosome analysis, because these extrema are often used to locate arm ends.
There again are two main error sources:

a) quantization errors,
b) errors caused by numerical differentiation.

The investigation of the numerical differentiation error presents the same
problem as in section 2.6. As no general theory is available, we have to compute
this error for the curvature experimentally. In section 2.6 we computed this
error from the first order difference discarding the quantization effect. The
error in the extrema is very much dependent on the proposition we make about
the position of El and 52 in such an approach. So it is appropriate to investigate
this error by experimental computation of the total quadratic deviation of the
measured extrema in relation to the analytically computed extrema of the
analytical chromosome . In this total quadratic deviation also the quantization
error is present, which will be investigated first.

There are two quantization errors. The first quantization error is introduced
by the grid. We have to take agrid pointas extremum instead of the point on the
contour, in which the curvature is extreme. This results in a quadratic deviation
oi which can be approximated as

h h
2 i 2,2 2 .2
01 = 0[ 5 / ;]—2— (X +y )dxdy = § h &

(2.43)
The second quantization error originates in the curvature measurement. The

measured curvature in each curve point is contaminated by noise, as is discussed

in section 2.5. So the point in which the measured curvature is extreme may differ

from the point in which the real curvature is extreme. We assume that the

measured curvature éM(i) is equal to the real curvature ¢(i) to which the noise

€(i) is added, so

dy(i) = d(i) + €(i). (2.44)

We assume that the distribution of €(i) is independent of i. So, no dependency is
present in the noise of neighbouring points.
We will calculate the probability that curve point k is a curvature minimum.
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This implies that

dy(k) <dy(1), V1 # k. (2.45)
Combination with equation (2.44) gives

e(1) >d(k) - d(1) +e(k), VY1 #k. (2.46)

The probability that éM(k) is minimum for a given value of €(k) is the
product of the probabilities that e(1) fullfills equation (2.46) for all points
1 # k, so

. M e
pBy(k) = minle(k)] = M / ple(1)1de(1). (2.47)
T (K)-9(1)4¢(K)

The unconditional probability that éM(k) is minimum is
. +m .
prW)= min] = / ple (k)] pwmk)=rMnk(M]M(M (2.48)
and

+°° .
&(k) = kz k pldy(k) = min].

(2.49)
2 = 2
op(k) = 2 [k - &K)I" plpy(k) = min]
k==00
The total quantization error o is given by
o =Vo? + o2 . (2.50)

In figure 2.25 the quantization error o is compared to the experimentally
determined total quadratic error E in both methods for the analytical chromosome
(w= 3 and w = 4). For the computation of 0, the distribution of €(i) was
approximated by a normal distribution with a standard deviation given in equation
(2.32) (Gallus/Aalderink) and equation (2.40) (Ledley).

For small values of nh the curves do more or less agree. For larger values
of nh the error of the numerical differentiation dominates in the experimentally
determined error E and the curves can no Tonger be compared.
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Figure 2.25 Quantization error 0 and experimentally determined error E in the

position of the minima

The quantization error o in the position of the minima is greater for w= 3
than for w = 4. This may be expected as the curvature has a more flat minimum
for w = 3 than for w= 4. The quantization error in the curvature is the same in
both cases, resulting in a greater quantization error in the position for w = 3.

In figure 2.26 the experimentally determined quadratic error in the position
of the minima is given for both methods for two values of h. The difference
between the value of the minima of these curves for the method of Gallus/Aalderink
and Ledley is small.

When we compare figure 2.25 and figure 2.26 with the minima in the curvature
error shown in figure 2.20, 2.21 and 2.22, we see that the minimum error in the
extrema position lies at greater values of nh than the minimum in the curvature
error. When we are only interested in the position of the curvature extrema, the
optimal values of nh are greater than the optimal values, given in section 2.7
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for the curvature error. The filtering still gives the low frequency information
about the position of the extrema, introducing a large distortion in the
N

curvature, as the higher frequencies are suppressed.

\
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Figure 2.26 Quadratic error in the position of the minima for the method of
Gallus/Aalderink and Ledley

So the filtering depends on the purpcse for which we need the curvature.
A filtering which gives a minimum error in the extrema position, introduces large
(systematic) distortions in the curvature. A compromise might be to filter in
such a Way that the curvature error is about its minimum, as this only gives a
moderate increase in the error of the extrema position, particularly for smaller
values of h.

2.9 CONCLUSIONS

In this chapter we have seen that although the method of Gallus/Aalderink
and the method of Ledley for the measurement of the curvature seem to be quite
different, they only differ in the way in which the angular direction of the
tangent to the curve is measured.

The errors in the measured curvature are theoretically and experimentically
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examined for an 'analytical curve' resembling a small chromosome. The error as

a function of the length of the leading or trailing vector n, consists of two
parts, a decreasing quantization part and an increasing part caused by numerical
differentiation. The minimum error for the investigated 'analytical chromosome'
is high (between about 30% and 50%). The minimum error decreases with decreasing
grid constant.

The difference in the curvature error between the method of Gallus (B=0) and
Aalderink (B=1) is very small. The minimum error in the curvature is Tess in
Ledley's method, than in the method of Gallus/Aalderink.

The minimum error in the position of the extrema Ties at highér values of
nh (about 1.0) than the minima in the curvature error. So the choice of the filter
parameters depends on the purpose for which we need the curvature.
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Chapter 3

THE COMPUTATION OF DNA BASED PARAMETERS OF
FEULGEN STAINED HUMAN CHROMOSOMES

3,1 INTRODUCTION

This investigation has been carried out in collaboration with the
Department of Histochemistry and Cytochemistry of the State University of Leyden
It was here that the metaphase spreads were prepared from human lymphocyte
cultures and here that staining, photography and scanning of the negatives took
place.

A Zeiss cytoscan (SMP) controlled by a PDP 12 is used for the scanning.
This mechanical moving-stage scanner has a smallest stepsize of 10 um. In order
to obtain sufficient spatial resolution (0.1 um - 0.15 um), photomicrographic
negatives of the human metaphases are scanned. Details of this procedure are
given by Van der Ploeg et al. (1974).

The scanned metaphases (on magtape) are analysed with the programs that
will be described. A Tine-printer picture of such a scan is given in figure 3.1.
The programs are modular, consisting of a main program, which calls subsequent
subroutines for the necessary steps in the computation. In figure 3.2 a block
diagram of the program for the computation of DNA based parameters is given. The
program starts with the Tocalization of the chromosomes by means of a histogram
technique. The DNA content and the DNA profile are computed for each chromosome.
The DNA profile represents the density integrated over narrow stripes
across the chromosome. The centromere position is computed from
this profile. The DNA ratio of a chromosome can be obtained by dividing the DNA
content of the Tong arm by the total DNA content of the chromosome. The length of
the chromosome and the centromeric index are also computed from the profile. The

centromeric index is defined as the length of the long arm divided by the total
length.
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Figure 3.1 Line-printer picture of a scanned part of a metaphase
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read scanned metaphase
from magtape

localize each chromosome
(HSTBCK, LYSCNT)

compute region of each
chromosome and its DNA
content (DNAEXT)

compute DNA profile
and chromosome Tength
(PROJCT)

compute centromere position
DNA ratio and centromeric
index (CPROC)

print and punch \\
chromosome data

make Tine-printer picture
of the scan

A

Figure 3.2 Block diagram of the program to compute DNA based features
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3.2 LOCALIZATION OF THE CHROMOSOMES

First we have to determine the boundaries of the chromosomes, defined by a
dissection level DL‘ Points with a density higher than the dissection level are
called background points. Points with a density Tess or equal to the dissection
Tevel are regarded as object points.

An image histogram is used to determine the dissection level. This image
histogram represents the occurrence frequency of image samples as a function
of the density. In figure 3.3 an image histogram of a metaphase is given.

A pronounced background peak is always present in the histogram, because most
points are background points. It is possible to base the value of the dissection
level only on this background peak. It is better, however, to base the dissection
level also on the chromosome part of the histogram, as the dissection level is
also used to isolate chromosomes in difficult situations, where the chromosomes
nearly touch.
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lyvre 3.3 Histogram of the density values of a scanned negative of a

metaphase (S01A)
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When the image histogram has a bimodal structure, a common heuristic
(Mendelsohn (1968, 1969)) defines the dissection level as the density
corresponding to the internal minimum. Wall (1974) shows that when the noise is
gaussian this procedure minimizes the variance of the estimated image area. In
practice, however, the histogram does not always show a bimodal structure.
Therefore a different method not based on bimodality will be used here.

This method is described by Green (1970). The dissection level is obtained

from the background peak value Dbpand arepresentative minimal chromosome

density Dc' This minimal chromosome density DC is the density for which the
summed histogram values (cumulative histogram) equal a certain fraction fl of the
total chromosome histogram area. The chromosome histogram area is the histogram
area from which the background histogram area is subtracted (assuming that the
background peak has a symmetric shape). The dissection level Dl is set at

D, =D

L bp-f

Z(Dbp— DC) (3.1)
in which f2 is a certain fraction. Both fl and f2 are heuristically adapted.

In order to separate chromosomes, which are close together a low setting
of the dissection Tevel is used. The values of f1 and fy used for Feulgen stained
chromosome images are fl = 0.1 and fz = 0.6. These values were experimentally
found by varying fl and fz, until chromosomes which were close together could be
separated without chromosomes being split up. This dissection level is computed
with the subroutine HSTBCK.

When the dissection level is known, the contours of the objects are found
by the Object Boundary Quantization method. The clockwise contour-tracing
algorithm used tests the 8 neighbours of the last contour point found, until the
first one of two successively scanned neighbours is a background point and the
second one is an object point. This implies that the original contour must have
intersected the grid between these two points. The object point is taken as
contour point. This contour-tracing algorithm is programmed in the subroutine
LYSCNT.
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3.3 CALCULATION OF THE DNA CONTENT

The DNA content DNA of a chromosome C is computed as (chapter 4)

2
h ..

DNA = 2= > Dy, - D(i,3)] 3.2
a7 i,j2% b ( )

in which h is the grid constant, ka is the specific absorptivity of the
chromophore at the wavelength of the monochromatic 1ight used for

photography and v is the gamma of the photographic material. D(i,j) is the
measured density of the negative at spot position (i,j) and Dy is the average
background density.

When we calculate the DNA content according to formula (3.2) for the
chromosome points found with the subroutines of section 3.2, we introduce an
error due to the relatively Tow setting of the dissection level, as is
illustrated in figure 3.4. This low setting optimizes separation of chromosomes
close together but cannot be used in the computation of DNA content.

density
D(i,j)
(] background

value Dp
dissection
/level D

Figure 3.4 Section along a scanline of the density values

This problem is overcome by extending the regions of all chromosomes
simultaneously, until the whole area of the metaphase is divided into chromosome
regions. The first extension consists of the points which have four neighbour
connectivity to anobject point. The following extensions consist of those points
which have four neighbour connectivity to the previous extension of an object.
When the extensions of two different chromosomes come together, the extension
stops locally at that point.

In figure 3.5 the average density values of the extensions for three
chromosomes are given as a function of their distance from the original region
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(as measured in the preparation). It can be seen, that after about
0.7 um the background area is attained. To compute the DNA content the
extensions up to 0.7 um are regarded as part of the chromosome. The remainder
of the extensions up to 1.4 um is used to estimate the average background
density Db' In this way a local béckground value is determined for each
chromosome.

The chromosome regions, the DNA content of the chromosomes, and the local
background values are computed with the subroutine DNAEXT.

average B
extension
density
x/*dt*_*~*4“*—*ﬂbﬁbﬁk*—
05+ e =
o chromosome 2
o A chromosome X
% chromosome 22
0.4

% L 1 1 | "

1 2

extension inum
(in preparation)

Figure 3.5 Average density values of the extensions (negative 744-10)
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3.4 COMPUTATION OF THE DNA PROFILE

For chromosomes which are not curved the profiles are computed by a
summation of the chromosome densities over stripes perpendicular to the
principal axis. The principal axis passes along the centre of gravity. The
angle 0 between the principal axis and the X axis of the scan grid is

2m
6 = 1 arctan ————:l%—~ (3.3a)
M0 ~ Mo2
with
m.=hPT 33 P9, - o(iLa) . (3.3b)
Pq i,jec

See also Rutovitz (1967) and Ledley (1972). The summation stripes perpendicular
to the principal axis constitute a new grid (requantization grid) rotated an
angle 6 from the scan grid.

PROFILES BY SUMMATION OF THE SCAN GRID POINTS

According to a not uncommon method,for each point (i,j) of the scan grid,
the nearest point (k,1) in the requantization grid is computed. The profile
P(k) is obtained by summation of all D(i,j) values assigned to rows of points
along the y' direction of the requantization grid. When the grid constant of
the requantization grid equals the grid constant of the scan grid, this profile

is
h2 -
P(k) = g 2 2 D - D(i,)) (3.42)
a’ i,jeC

with the restriction that

k-3 <i cos 0 + j sin 8 < k+i. (3.4b)

This method introduces a significant error. The number of summed scan grid
points (i1,j) for a row (condition (3.4b)), varies as a function of 6 and k as
we have checked for a strip of constant width. In figure 3.6, the coefficient of
variation in the number of summed elements is given (averaged for k) as a function
of 6 for such a strip of constant width. This coefficient of variation can be
as large as 30%, clearly illustrating that this method can not be applied to the
computation of profiles.
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Figure 3.6 Coefficient of variation in the number of summed scan grid points for

a strip of constant width (length = 50 h, width = 20 h)

PROFILES BY SUMMATION OF THE REQUANTIZATION GRID POINTS

It would have been best to compute the areas of the scan grid elements
covered by each grid element of the requantization grid and use these areas as
weight coefficients for the value of the scan grid points. From a computational
point of view this is a very elaborate method.

A fairly good approximation can be obtained by using the following method
illustrated in figure 3.7. For each point (k,1) of the requantization grid, the
nearest point (i,j) in the scan grid is-computed. The value of D(i,j) is given
to D(k,1). These grid points are summed in the y' direction of the
requantization grid to obtain the profile P(k)

2
ALV % [0, - D(k,1)] (3.5a)
a
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with the restriction that i,jeC and

integer[(kh' cos 6 - 1h' sin 6)/h +
integer [(Th' cos 6 + kh' sin 6)/h +

by
n

(3.5b)

o= o=

.

1]

) d
-

with h' the grid constant in the requantization grid. Using this method for
a chromosome of constant width the number of summed elements is constant,

independent of k and 6. The number of times, however, that a scan grid element is
sampled depends on k and 0.

\_ e

requantization -3
grid h

Figure 3.7 Summation of the requantization grid points

By taking a grid constant h' of the requantization grid, which is less than

the grid constant of the scan grid, the grid elements of the scan grid are used

a number of times. This number is a rough approximation of the covered area.
Groen et al. (1976) have investigated the error in this method for a chromosome
model, constructed with the aid of 9 two-dimensional Gaussian distributions on
each chromatid. In figure 3.8 the maximum deviation in the profile of this
chromosome model is given as function of h/h'. The error is less than about 2% if
h/h' is larger than 4 (0 = 10°).
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Figure 3.8 Maximum deviation as function of h/h' for a chromosome model

INTERPOLATION METHOD

The profile error caused by requantization can be reduced by interpolating
between the corner points of the scan grid elements. Oosterlinck (1975) gives an
interpolation in which the density in a grid element D(x,y) is written as

D(x,y) = Cp + CZ + Cay + Cpay (3.6)

in which o is the density in the centre of the grid element and (z,y) is the
position of the sample point measured from this centre (0,0). It is required that
the function is exact at the four corner points (-%,%), (%,-%), (%,%) and (-%,-3).
From these restrictions the coefficients of equation (3.6) can be solved and are

given as
¢y = 30 D(-3,-3) + D(3,-3) + D(-3,3) + D(3,3)]
C2 * é['D(-%a'%) + D(},-3) - D(-3,3) + D(},3)] (3.7)
C3 = é['D('Jéa'%) - D(%a'é) + D('%s%)."' D(%a]é)]
C4 = D(—%a'%) - D(%"%) = D('é’%) + D(%a%)] .

The requantization error using this interpolation was experimentally
investigated for the same chromosome model as was used in figure 3.8. The maximum
deviation in the profile is 2% for h/h' equals 1 (independent of 0).
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This interpolation method was used in the projection procedure.

CURVED CHROMOSOMES

When a chromosome is curved, summation of the densities perpendicular to
the principal axis will introduce large errors. So a second order polynomial
is fitted to the chromosome and the densities are summed perpendicular to this
polynomial, as is described by Ledley (1972). This polynomial in the rotated grid
(x', y') determined by the principal axis is

1 I2 1
Yp = 9(x") = qx'" + gox' +qq, (3.8)

p
When the distance between a point (x',y') and the polynomial is measured along

the y' axis, this polynomial is the best fit in the RMS sense if it minimizes

2

E= 22 [y -g(x)I7I0y - D(i,d)] (3.9)
isjeC
with x' =4 hcos @ + jhsinb
y'=jhcos® -1hsiné.

The minimum of equation (3.9) is found by differentiation of E with respect to the
coefficients of the polynomial 9159, and a3 and setting these derivatives to zero.

The arc length s(x') of this polynomial measured from the top of the parabola
(x' = x’o) is calculated in Appendix E and found to be

1 1 b ik 2||2 I 2..2

s(x') = 7, 29 (x'-xg) V1+4q7 (x -x5)" + Inl2q(x'-x;) + \ 1+4qy(x'-x /) ]
in which (3.10)

x'--q2

o ?ﬁ; ’
Ledley uses as an approximation for this arc length
1 Qe 22II2
sL(x ) = (x —xo)[l t3 ql(x -xo) ]. (3.11)

In figure 3.9 the error in this approximation is given as a function of q; fora
part of the parabola, which is symmetric around the top (x' = xé). The

arc length of this part is 40, the grid constant equals 1 and q, = 10 9 -

The distance yé - y% from the top to the chord through the arc ends
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Figure 3.9 Relative error in Ledley's approximation of the arc length and the

top distance yé - y% as a function of 9

(relative to the arc length) is also given in figure 3.9.

From this figure it is obvious that for more sharply curved chromosomes
considerable deviations in the arc lengthmay occur, therefore we have preferred
to use equation (3.10). This implies, that the inverse calculation of x' from a
given s has to be done numerically (Newton-Raphson method).

In order to sum, a new curvilinear grid (x",y") with y" perpendicular to
the parabola is sampled. This summation is illustrated in figure 3.10, x" and y"
correspond to the arc length and the distance from the parabola respectively.
The grid constant in the y" direction equals the grid constant h" at the
parabola. The points (x',y') in the coordinate system of the principal axis
corresponding to the points (x",y") of the curvilinear grid are computed from
the equations

x' = sTHxM) -y

y' = g(sTH(x") + y" cos ¢

sitre (3.12)

in which tany = 2q1x' + 5. The angle between the tangent to the curve g(x')
and the X' axis is ¢. The sample points are weighed with the grid element area,
because this area in a curvilinear coordinate system is not constant. This area
a of a grid element in the curvilinear coordinate system is
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3/2]

a = h"?[1-2q,y"/(1 + tan’ ¢) (3.13)

in which h" is the grid constant at the second order polynomial. A derivation of
equation (3.13) is given in Appendix E.

Figure 3.10 Summation perpendicular to a second order polynomial

The symmetry of the densities on both sides of the principal axis or the
second order polynomial is obtained by summing the absolute differences of the
projections for positive and negative y' or y". The decision whether the densities
will be projected on a principal axis or on a second order polynomial is based on
this symmetry measure. This measure is also used in chapter 4. The profiles are
computed with the subroutine PROJCT, which normalizes the profile to a predetermin
number of points along the axis. Therefore the projection is performed twice. The
first time to compute the profile roughly in order to determine its length.

The second time to obtain the profile with the required number of points

by adjustment of the grid constant h' of the new grid. The end points of the
profile are defined as the points, where the density drops below 0.1 of its
maximum value.

In figure 3.11 the DNA profiles of two median, a submedian and an acrocentric
chromosome are given.
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Figure 3.11 Profiles of different types of chromosomes with normalized length

3.5 THE COMPUTATION OF THE CENTROMERE POSITION FROM A DNA PROFILE

An important feature of a chromosome is the centromere position. For
median and submedian chromosomes the centromere position is given by a minimum in
the DNA profile. Generally no minimum can be observed in the profiles of
acrocentric chromosomes, but the centromere position can be obtained from a
shoulder (local change in slope) in either end of the profile. See also
figure 3.11.

First of all the program has to distinguish between median or submedian
chromosomes and acrocentric chromosomes. This is done by determination of the
number of maxima in the profile. These profiles are contaminated with noise from
e.g. the quantization process and the grid transformation. Hence precautions have
to be taken to prevent introduction of spurious maxima by the noise. The
suppression of spurious maxima is achieved by filtering the profile and by the
restriction that maxima must be Targer than a certain fraction of the average
value of the profile.

The profiles are filtered digitally by fitting a local second or third order
polynomial to the profiles. The width of the filters is chosen in such a way,
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that the spurious maxima, which could occur, are suppressed. Van Zee (1974) has
investigated these spurious maxima and the filter width experimentally. The

spurious maxima were sufficiently suppressed and the filters did not influence
the location of the maxima or the centromere when the filter width was between

Table 3.1 Filters for second an third order polynomials

number of
point ~~points n 3 7 3
number
-5 -36 =21
-4 9 14 -2
-3 Ly 39 3 -3
-2 69 54 6 12
-1 84 59 7 17
0 89 54 6 12
1 84 39 3 3
2 69 14 -2
3 Ly =21
4 9
5 -36
normalization 429 231 21 35
factor
Table 3.2 Filters for the first derivative
second order polynomials third and fourth order polynomials
number of number of
point points 1 3 7 > point points 1 3 7 >
number number
=5 =5 =5 300
-4 -4 -4 -4 -294 86
-3 -3 | -3 | -3 -3 -532 | -1h2 | 22
-2 -2 =2 -2 -2 ~2 -503 | =193 -67 1
-1 -1 -1 -1 -1 =1 =296 | -126 -58 | -8
0 0 0 0 0 0 0 0 0 0
1 i 1 1 1 1 296 126 58 8
2 2 2 2 2 2 503 193 67 | -1
3 3 3 3 3 532 | 142 | -22
4 4 4 4 294 -86
5 5 5 =300
normalization normalization
factor 110 60 28 10 factor 5148 | 1188 252 | 12




7 and 9 points for profiles of 64 points. The weight coefficients of the filters
used are given in table 3.1 and table 3.2. These filters are discussed by
Savitzky et al. (1964).

The shoulder of the profile of acrocentric chromosomes is found by using a
filter (table 3.2), which gives the first derivative of a profile. Then the same
problem as with a median or submedian chromosome arises: to locate a minimum (due
to the shoulder) between two maxima.

The number of maxima with a value larger than a certain fraction of the
average value of the profile is computed for the smoothed profile. Whentwo valid
maxima exist, the chromosome is assumed to be median or submedian, and the
internal minimum between these maxima is computed. This internal minimum is
accepted when its value relative to the lowest of the two neighbouring maxima is
less than a certain threshold. At this minimum a second order polynomial is fitted
to the profile. The minimum of this polynomial is taken as the centromere
position.

When no valid internal minimum or no two valid maxima can be found, we
assume that the chromosome is acrocentric and in that case the first derivative
of the profile is computed. The procedure is repeated, but now at the internal
minimum of the derivative a third order polynomial is fitted to the profile.

The minimum of the first derivative of this polynomial is taken as the
centromere position. When still no valid internal minimum or no two valid
maxima are found an error condition is raised.

The described computation of the centromere is realized with the subroutine
CPROC. The value of the internal minimum divided by the Towest of the two
neighbouring maxima is an output parameter, which gives an indication of the
reliability of the centromere position determined.

69




Chapter 4

ERRORS IN THE MEASUREMENT OF
DNA BASED FEATURES

4,1 INTRODUCTION

DNA based features of human chromosomes can be determined by cytophotometry,
provided reliable preparation and staining methods are used. Extensive literature
on cytophotometry and its possible errors is available. An excellent review is
given by Mayall et al. (1970). Although cytophotometry still has some drawbacks,
reliable results can be obtained under standardized conditions.

A survey of the possible errors is given in this chapter. The errors
which are important for our investigation of DNA based features are discussed in
further detail. The errors in these features are experimentally determined and
evaluated for repeated scans and repeated photography and compared with the
homologue variations.

To obtain sufficient spatial resolution (0.1 um) with the SMP cytophotometer
photomicrographic negatives of human metaphases are scanned. This requires two
microscopic systems as illustrated in figure 4.1. In the first system a
microscopic negative is obtained from the preparation. (In the description of this
system Tight 1ntensities*) will be denoted by an italic Z.) In the second system
(densitometer) the microscopic images are scanned. The diameter of the measuring
spot equals the sample interval h.(Light intensities in this second system will
be denoted by a capital I. For example io and IO are the incident light
intensities of the first resp. the second system). The errors in the second system
are small compared with those in the first system, because.only the scanned field
of the negative is illuminated and the optical path is identical for all scanned
fields.

*) We will use the word light intensity, because this is common practice in

literature. According to the S| system it should be luminous flux,
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Figure 4.1 Microscopic imaging system
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4,2 THE MEASUREMENT OF DNA BASED FEATURES

The Taw of Lambert and Beer relates the optical density d to the amount of
chromophore present in the measuring field, when the chromophore is
homogeneously distributed over the measuring field. This lTaw was modified by
Walker (1958) for cytophotometry. According to this modification the optical
density d is

k_M

d =—3- (4.1a)
in which ka is the specific absorptivity of the chromophore at the measuring
wavelength, 4 is the area of the measuring field and M is the mass of the
chromophore present in the measuring field.

The optical density in the first microscopic system is defined as

i
0
-2 (4.1b)

d = 10

log

in which io is the incident Tight intensity and < is the transmitted light
intensity.

In our investigation photomicrographic negatives of chromosome preparations
were scanned in order to obtain a measuring spot, which was small enough to
assume a sufficient homogeneous chromophore distribution, as is discussed in
section 4.5. Photography was performed at the wavelength of the absorbance
maximum of the chromophore under standardized conditions. The properties of a
photographic emulsion are commonly specified by the characteristic curve or
Hurter-Driffield curve given in figure 4.2.

This curve relates the optical density D of the negative to the exposure #
given as

B.=E TE = kE A TE (4.2)
in which £ is the intensity of illumination and TE is the exposure time. kE is a
constant, which depends on the first microscopic system and Z is the transmitted
intensity. When TE is extremely long or extremely short, the photographic
densities produced are lower than the expected values (reciprocity failure).
A degree of blackening always occurs at zero exposure. This is described as the
fog density of the emulsion. In order to obtain an optimal response and a
linear relation, we have to make sure that the optical densities produced by
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chromosome and background Tie within the linear part of the Hurter-Driffield
curve (part B-C of figure 4.2). The relation between D and # of this linear
part can be described as

D=ca+v %loga=a+ry ®ogksT, (4.3a)

in which @ is a constant and v is the gamma of the photographic emulsion, defined
as the slope of the linear portion of the Hurter-Driffield curve.

010g w

Figure 4.2 Hurter-Driffield curve of a photographic emulsion
The optical density of the negative measured in the second microscopic
system is

1
D= "1og £ (4.3b)

in which I0 is the incident intensity and I is the transmitted intensity.

The mass of DNA (DNA content) present in a chromosome C is obtained by
summation of the densities measured over the measuring spot of the second
microscopic system. Background correction is realized by subtraction of the
background density obtained from the background extensions of the chromosome
described in chapter 3. The DNA content is computed as

h2
DNA = 5 > 2 [Db - D(k,1)] (4.4)
a k,leC

in which D(k,1) is the density at grid position (k,1) of chromosome C and Db is
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the background density. The specific absorptivity ka and v are unknown constants.
The grid constant is h. Both the grid positions and the grid constant are
calculated as if the grid was present at the original preparation. As these
densities are obtained from the.photographic negative, by combination of
equations (4.1), (4.3) and (4.4) DNA can be expressed in the intensities related
to the preparation in the first microscopic system
ona = b 5 Vs oo My M
o - 9 &Y - ¥ iap ) . :;)- (4.5)

a k,leC ki:Jet

The intensity atgrid position (k,1) of the preparation is Z(k,1), when an
incident intensity éo is present. The mass of chromophore present at the
measuring spot (grid position (k,])) with area 4 is M(k,1). The background
intensity of the chromosome in the preparation is ib’ when the same incident
intensity io is present. The equivalent mass of chromophore present at the
measuring spot in the background is Mb'

To compare the chromosome DNA content of different metaphases, the
chromosomes were normalized as two unknown constants are present in equation
(4.4).0nemethod is to normalize the DNA content with respect to the DNA content
of the chromosomes 2. In order to reduce noise in the normalized DNA values,
it is better to take more than two chromosomes into account. In this
investigation the chromosomes 2, 3 and 4 were used for normalization. The
normalization factor n was obtained by Tinear regression of the measured DNA
content against the expected normalized DNA contents of these chromosomes.

& DNA; ¥,
i=2,3,4
2 (4.6)
2. , i
i=2,3,

17:

with measured DNA content DNAi and an expected normalized DNA content 4% of
chromosome i *). The values of W, were first obtained from literature

(Mendelsohn (1973)) and afterwards from our own experiments.

The variance OENA in the DNA content, measured according to equation (4.4) is

*) One pair is present at most of each chromosome i.
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4 n
2 _ h <Z v ] c 2
0%, = a“(D(k,1)| + =< 0%(D,) (4.7a)
DNA k2a7? k,leC M b
and
n /1 2 o001 1 2
’ G eL
Oona = = =2 + —0°(D,) 4.7b
DNA = Ty Vng n n b ( )

in which . is the total number of points of chromosome C and D(k,1) the density
at grid position (k,1). The background density is obtained from averaging Ny
background points outside the chromosome. It is assumed that the errors in these
background points are uncorrelated. So the variance in the average background
density is oZ(Db)/nb, in which 02(Db) is the variance in a single background
point. When these errors are strongly correlated the value of Ny must be
considered 1. The error in the average background density is the same for all
points of the chromosome, introducing an error with a systematic character,
contrary to the error in D(k,1) which has a stochastic character. For a number of
errors like the quantization error (section 4.4) and the shot noise (section 4.3)
o(D(k,1)) is always less or equal to O(Db). In that case the standard deviation
in the DNA content oy, will always be less or equal to ADNA given as

h2nc 1 1 (0,)
o <ADNA = V—+—o0(D 4.8
kY Y. ny b (4.8)

in which it is assumed that the errors in the density D(k,1) are uncorrelated.
The relative error in the DNA content is

1,1

s o(0p)
ADNA _ C b (4.9)
DNA™ ~ Da ’

with D, = ﬁL- 2 2 [Db - D(k,1)], the average chromosome density.
c Kk;leC

4,3 ERRORS IN THE MEASUREMENT OF DNA BASED FEATURES
Generally there are two types of measuring errors: stochastic errors and

systematic errors. Systematic errors are difficult to detect and introduce a bias
in the experiment. When systematic errors occur as scaling factors, they are not
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important in our investigation, because we are only interested in the relative
magnitude of the measurements.

Errors in the specimen are due to:
a) The staining.(loss of substrate, non-specific staining, differences in the
stoichiometry),
b) The presence of other components which absorb at the same wavelength.

Errors may occur in the microscope measuring system due to:
a) The microscope.The specimen is not an ideal amplitude object. .This error is
reduced by the embedding of the specimen in a mixture of Caedax: Cargille oil
(15:1 mass parts) resulting in a refractive index of about 1.54. The focusing
of the microscope is subjective and the question may be asked, whether the
in-focus situation is the most pleasant image for the microscopist or not. In
figure 4.3 the transfer function of the microscopic system according to
Van den Berg (1974) is given (A = 561 nm, numerical aperture (NA = 1.30). When
a large numerical aperture isused, a high resolution is obtained but the depth of
field is small. Figure 4.3 shows that an out of focus displacement of one
wavelength gives drastic changes in the transfer function. Mendelsohn et al.
(1972) showed, however, that the influence of focusing on the measured DNA
content is small, because of the summation procedure over the whole chromosome.

Zzout of focus distance
05

Figure 4.3 Optical Transfer Function (H) of a microscopic system as function of

the spatial frequency p (N = 561 nm, NA = 1.30)
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b) Glare. Stray light is an important source of error in micro densitometry.

It has extensively been discussed by Goldstein (1970). Light which passes through
the preparation will be repeatedly reflected at glass-air surfaces in the
microscope and by imperfections of other parts of the optical system. When the
illuminated microscope field is larger than the specimen, some of the light
passing through the specimen-free areas will end up at the image of the specimen
by this error. So the apparent absorbance will be less than the real one. This
error is slightly affected by the numerical aperture of the microscope condensor,
but is closely related to the area of the illuminated specimen-free field. The
true absorbance of the specimen d is according to Goldstein (1970)

d = og [(1-0)/(2-9)] (4.10)

in which the intensity ioof the incident light is taken to be unity and Z is the
apparent transmittance of the specimen in the presence of glare J. Van der Ploeg
et al. (1974) have investigated the glare of the system used, which appeared to
be 0.9%. This low value for the glare is mainly due to the high quality of the
optical system. The highest local absorbance in Feulgen stained chromosomes
amounts to 0.25. The glare then results in a relative error in the measured
absorbance of about 1%. In practice the error in the total integrated optical
density value of a chromosome will be Tess since many of the local density
values are lower.
C) Distributional error. This error is introduced by an inhomogeneous chromophore
distribution over the measuring field. The distributional error in the total
integrated optical density will be the sum of the distributional errors in the
individual measurements, when the specimen is scanned. In section 4.5 we will
investigate the influence of this error on the measured DNA content.

Mayall and Mendelsohn (1970) argue that there stillis uncertainty about
the unbiasedness of the law of Lambert and Beer for objects with dimensions
approaching the optical resolution of the microscope. This should be a point of
further research.
d) Chromatic error. This error can be expected when the product of specific
absorptivity ka of the chromophore and the sensitivity v of the photographic
emulsion changes in the spectral bandwidth of the measuring light. As in the
photographic procedure an interference filter with a narrow bandwidth in the
flat peak of the Feulgen DNA absorbance spectrum has been used, this error may
be discarded.
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e) Condensor Aperture. The conical illumination biases the average path length
through the specimen and the effective area of the measuring field. As this
error is a scaling factor, it is only important for absolute measurements.

Errors introduced by the photography are due to:
a) Densities outside the linear part of the Hurter-Driffield curve.
b) Variations in the parameters ¥ and & of the Hurter-Driffield curve.
¢) Graininess. This limits the resolution in microphotographs, which have undergone
excessive photographic magnification. Mees (1954) argues, that the origin of this
effect is not only due to the individual grains of the emulsion but also to the
random spatial distribution of quantum arrivals at the emulsion.

Van der Ploeg et al. (1974) have investigated the optimal combination of
magnification, film type and stepsize of the scanning stage, with respect to this
error.

Errors in the scanning densitometer are due to:

a) The photosensitive device.A photodiode (BPX42) is the photosensitive device in
the densitometer. The shot noise of the photodiode is dominated by the thermal
noise of the pre-amplifier. The measured standard deviation of the noise opd’
present in the amplified current is 0.14% of the maximum value of the scale and
independent of the measured intensity.

Another source of error may be present in deviations from linearity in the
characteristic of the photosensitive device. These deviations are small for the
type of photodiode used.

b) The quantization noise and the linearity of the analog to digital convertor.
The quantization noise of a linear and a logarithmic scale is investigated in
more detail in section 4.4.

C) The instability of the light intensity.This error is negligible in the
densitometer used.

d) The measuring spot.The size of the measuring spot does not only influence the
distributional error, but also the optical transfer function of the densitometer.
The optical transfer function for a circular spot is

79




23, (mop)
H{p) = —a— (4.11)

TOp

in which o is the diameter of the spot, p is the spatial frequency and J1 is the
first order Bessel function (Van den Berg (1974)). In figure 4.4 the optical
transfer function of the densitometer is given for several values of the spot-
diameter. The spatial frequency is calculated as if the spot was present at the
preparation in the first microscopic system. (The amplification of the first
microscopic system is 322 times). In our experiments the spot diameter always
equals the grid constant. At half the sampling frequency the transfer function
decreases from 1 to 0.72 in this situation. This decrease due to the measuring
spot is small compared with the influence of the focus in the first microscopic
system (figure 4.3) on the transfer function of the complete system.

1.0

H
0=20pu
0=30u

05
0=40Q
0=50W

0 1 | 1 | 1 1 0=60u

0 2000 4000 6000 —— - p mm-!

Figure 4.4 Optical transfer function for different spot diameters 0. Spatial
frequency o of the first system (amplification 322 times)

MEASUREMENTS IN RELATION TO DIFFERENT TYPES OF ERRORS

The errors present in repeated scans of the same negative are introduced by
the stochastic errors in the scanning densitometer e.g. noise in the photo-
sensitive device and quantization noise. The negative was remounted before each
scan. Although the distributional error has a systematic character, it also
introduces stochastic errors in repeated scans, because the position of the
measuring spot will differ from scan to scan.

In order to investigate the photographic errors, repeated photographs were
taken of one metaphase and these photographs were scanned. The errors now
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include the scan duplication errors, the errors introduced by the photography and
the errors of the first microscopic system as far as these errors have a
stochastic character.

In our case a number of errors present in the first microscopic system are
relatively small such as: glare, chromatic error, condensor aperture error and
also the influence of non-ideal focusing. The distributional error is
investigated in section 4.5. This error decreases with decreasing size of the
measuring spot. The errors in the second microscopic system (densitometer) are
even less, because the illuminated field is only two times the spot size and the
optical path is identical for all scan points.

The scan duplication error, the photographic error and the homologue
variations are experimentally investigated in section 4.6. The errors in the
specimen, however, are indistinguishable from the homologue variations here.

4.4 QUANTIZATION ERRORS OF A LINEAR AND A LOGARITHMIC SCALE WITH
RESPECT TO DNA MEASUREMENTS

In this section we shall exclusively discuss the quantization error in
the measurement of the density in the second microscopic system (densitometer).

In a linear scale the intensity I is first quantized and then the Togarithm
is taken of the quantized intensity to obtain the density (equation (4.3b)). The
maximum measured intensity Imax is set to the maximum N of the scale, so the
quantization interval is Imax/N' The error in the density 6D is in first order
approximation given as

10
ao:%%ah—]—‘;LeaI. (4.12)

Assuming that the quantization error in the intensity I is uniformly distributed,

the standard deviation o D) of the quantization error is in first order

lin(

approximation
101og el
N (4.13)
V12 I N

In a Togarithmic scale first the Togarithm is taken to obtain the density
and then the density is quantized. Let the logarithmic scale consist of fd
density units, 10fd being the Targest intensity rate that can be expressed
within this scale. Hence we assume
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I I
- 0g 2 = 1010 10 (4.14)

max min max

I

10
fq = “log i

in which Imax is the maximum intensity, and Imin is the Towest intensity to be
measured. Assuming that the quantization error in the density D is in first order

approximation uniformly distributed, we obtain for the standard deviation Ulog(D)
of the quantization error
fd
o, (D) = —— 4.15)
teg Viz N

in which N 1s the number of quantization levels of fd So when

1/1 ( 1og e)/fd, a linear scale gives a smaller quantization error.

ma?he DNA content is computed according to equation (4.4). Since at a
chromosome point (k,1) the density D(k,1) is less than the background density Dy
a]in(D(k,l)) will be less than o, (Db) for a linear scale according to equation
(4.3b). The standard deviation 0‘04 (k,1)) equals Olog(Db) for a logarithmic scale
So the quantization error in the DNA content will be less or equal to ADNA given
by equation (4.8). According to equations (4.9), (4.13) and (4.15) the uoper bound
for the relative error in the DNA content will be

1 1

— + I 10109 e

Ny n_ max
ADNA
( N >]in = (4.16)
DHA V2 N 1, D,

for a linear scale and
1 1

£, N s & e
(ADNA) _d.¥ny, " ng (4.17)
DNA /1og ~ . ’
vqé N Da

for a Togarithmic scale, in which Ib is the background intensity and Da is the
average chromosome density.

According to equation (4.3a) and (4.3b) the intensities I measured by the
densitometer in the negative, can be expressed in the intensities of the first
microscopic system as

I
0 (64 >
T = 10%(k; 7 T)7. (4.18)
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In the measuring process the illumination intensity Io of the densitometer
is adjusted in such a way, that the maximum occurring intensity Imax is the
maximum N of the scale. The maximum intensity Imax and the background intensity

Ib are given as

0 (¢4 . Y
T = 10 (kg Zpax TE) (4.19a)
max
and
Iy % . ¥
= 10%(ky 7, T2)7 - (4.19b)
b ;

From equation (4.19a) and (4.19b) v can be expressed in the background intensity

Ib as
10 Imax 10 7"b
v = "log T / log - (4.20)
b max
\
The upper bound ADNA/DNA for the relative error in the linear case can be
expressed as function of I, by combination of equation (4.16), (4.3a) and
(4.20) as
Z
e <]01og 2—9—> \/ﬁL-+ ﬁL Imax ]0109 e
<ADNA) - max b c (4.21a)
DNA/1in ~ I g ’
Viz N 1 ('Olog —”I‘ﬂ> PIPINT th
b/ k,5ec %9 T[TV
Combination with equation (4.1) gives:
1 1 10
i * 7 Cmax Imax 109 €
(ADNA) PR (4.21b)
DNA /1in ~ I '
10 max
vﬁé N Ca Ib log Ib
in which Ca is the average chromosome chromophore concentration given as
. :
C,=a =% (M(k,l) g _b> (4.22a)
c k,leC A A
and Cmax is the maximum chromosome chromophore concentration given as
M M
_ _max b
Cmax - el (4.22b)
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In the same way ADNA/DNA is obtained by combination of equation (4.17),
(4.3a), (4.20) and (4.1) for the logarithmic case

ADNA)  _ b "c
<DNA>]09 - — . (4.23)
viz N ¢, 0109 T2
a I

In figure 4.5 ADNA/DNA is given as function of Ib/Imax’ which is a measure of the
contrast present in the negative. The curves are given for both the linear and

2214 /
AgNNAA — — — Llogarithmic scale (fg=2) /
—— Llinear scale /
107
1072
1073
? 1 1 5 18 1 | 1 M , , )
2 05 T

Ib/Tmax

Figure 4.5 Relative error in the DNA content for a linear and a logarithmic

scale (nb = 100, Ca/cmax = 0.15)
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the Togarithmic case for 32 and 512 quantization Tevels. The curves are plotted
for fd =2, Ca/Cmax = 0.15, yon 100 and e - 300. These are values for an
average chromosome of the SolA negative (see Section 4.6). ADNA/DNA is an upper
bound for oDNA/DNA in the linear case. For Ne >-nb this bound is close because in
equation (4.7b) the average standard deviation of the chromosome densities is

weighed with l/nc. In the linear case the error has a minimum when Ib/I equals

max
1/e, but the minimum is flat. When the contrast present in the negative is of

the magnitude of the density range fd of the logarithmic scale, the
logarithmic scale gives the smallest error. However, when the contrast is small
compared to the density range, the error of a linear scale is less. When the
contrast present in the different negatives to be scanned, varies to a large
extent, a linear scale is preferable.

In figure 4.6 ADNA/DNA is given as a function of the number of quantization

levels N computed from equations (4.21b) and (4.23) for (T § - equals 0.05.
ADNA
DNA~ K e linear scale
in%
& - logarithmic scale (fd=2)
—r experimental value Llinear scale
10 -
Ib/1m0x=0-05
5~
0 AA 1
32 64 128 256 512 — =N

Figure 4.6 Relative error in the DNA content as function of N(nb = 100,

n. = 300, C,/C .. = 0.15)

The same parameter values are used as in figure 4.5. For negatives of Feulgen
stained chromosomes Ib/ImaX is between 0.05 and 0.2. When Ib/Imax equals 0.05,
it is shown in figure 4.6, that the error in the logarithmic case (fd = 2) at
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32 quantization levels is about the same as with 128 quantization levels in
the Tinear case.

In figure 4.6 also the experimentally determined relative root mean square
error in the DNA content is given for a linear scale with N quantization levels.
For one scan of the SolA negative the intensities were requantized and the
relative root mean square error in the DNA content of the metaphase chromosomes
was computed with respect to the situation with 512 quantization levels.

For N = 64 quantization Tevels the experimental values are close to the upper
bound, but not below it. This may be caused by the fact that all parameter
values are approximations for an 'average chromosome' and that when Ne >'nb the
upper bound is very close. When N <64 the quantization error in the background
is so large, that the quantization errors in the background points may no longer
be assumed to be uncorrelated.

Similar formulas are valid for the measurement of the profile. Only

there the summation takes place over one stripe instead of over the whole
chromosome. Since the position of the centromere is determined by the minimum
of the profile, the quantization error of the background density having a
systematic character does not influence the position of the centromere.

I},5 THE DISTRIBUTIONAL ERROR IN THE DNA MEASUREMENT

From section 4.2 on we have assumed that the chromophore is homogeneously
distributed over the measuring spot. We shall now evaluate deviations from this
assumption.

When we assume that the law of Lambert and Beer still holds for
subresolvable dimensions, the DNA content of a chromosome is

1 10 I(x,Y) )

DNA = f / log 22 L dxdy. (4.24)
F;? X,yeC Ib

In the preceding sections of this chapter we have approximated this integral by

(equation (4.4), (4.3b))
2 2

DNA = 2 2 DNA(k,1) = h > [Db-D(k,])] = T(L zz IO]Og I(II(,]
k,leC a’ k.leC a¥ k. lec b
(4.25)

The intensity I(k,1) is the average of the intensities I(x,y) across the
circular measuring spot. The distributional error is introduced by the
inhomogeneous chromophore distribution over the measuring spot, because the
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intensity I(x,y) is integrated across the spot instead of the density
]0109 I(x,y).

For a grid element (k,1) this distributional error is investigated. We also
take into account that the intensity is not integrated across the grid element,
but across the circular measuring spot contained in the grid element. In the
grid element the intensity is locally expanded in a Taylor expansion. When we
use only the first two terms, the intensity at a point (x,y) in the grid element
(ksl)is

I(z,y) = (1+bac+(:y)Ik1 (4.26)

with
x = x-kh, y = y-1h, I = I(kh,Th),

Lol
Iy 0%

and(;:_]‘_ﬂ

=0 Ik1 % | =
y=0 y=0
Ik] is the intensity at the centre of the grid element (k,1).

The contribution DNA(k,1) of grid element (k,1) to the measured DNA content
is
. [ iy

2
h™ 10 I(k,1 h 10 T UST

DNA(k,1) = ¢ ' log 2 = 'Uog L.¥ . (4.27)
a’ Ib ka7 Ib1rr2

With the approximation of equation (4.26) DNA(k,1) is
I

2
h® 10 K1

DNA(k,1) = - (4.28)
iy

We should have computed for grid element (k,1) Dﬂﬁ(k,l), given as

h/2 h/2
i Pk 10 [(x,y)

With the approximation of equation (4.26) Dﬂﬁ(k,]) is computed in Appendix F.
For -1 <bx + ¢y <1, in which = and y are contained in the grid element,
DNA(k,1) is expanded as

o 4 iy 10 . 2i Pl g
DNA(K,1) = ¢ '%log 7% . et h ((br)” ~(b-0)"]
a

a? =2 294(5-1)(21-1)
(4.30)
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In first order approximation DNA(k,1) is

2 I 4,2 2 10
a ~ h™ 10 k1l _h'(b
a a

The distributional error (ADNA)dist for grid element (k,1) is obtained from
equation (4.31), (4.28) and (4.26) and is in first order approximation

4, 2
~ h (gkl) 1Olog e
(ADNA) 4351 = DNA(K,1) = DNA(K,1) = - —g— . — 2 (4.32a)
a
2 2
, 2 2 2 aD aD
with g, = b™ + ¢ = ( > + < ) . (4.32b)
< /1 \% )
The relative distributional error in the total DNA content is
SDADI
<ADNA> . k,leC (4.33)
OV Jgist 24 5 5 ('Vlog Iy - log Ip)
k,leC

Equation (4.33) shows that in the first approximation the distributional
error is proportional to the square of the grid constant h and to the sum of the
squares of the gradients of the density.

An estimation of the distributional error in the negatives can be obtained
from equation (4.33). The SolA negatives (average density 0.2) have a maximum
value of AD of about 0.2 for an extension of 0.18 um in the specimen (70 gm in the
negative). The 744 negatives (average density 0.1) have a maximum value of AD
of about 0.06 for an extension of 0.13 um in the specimen (40 um in the
negative). The gradient of the points located at the slope of the chromosome
(about 1/3 of the chromosome points) is approximated by the maximum gradient.
For the rest of the points it is assumed that the gradient is zero. This results
in a distributional error for a stepsize of 0.2 um in the preparation given as

SolA negatives 0.8%
744 negatives 0.3%.

At the stepsizes which were used the distributional error is comparatively small.
See also section 4.6.
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4.6 FURTHER EXPERIMENTS AND RESULTS

To investigate the error present in repeated scans in relation to the grid
constant, two metaphases (codenumber SolA and 744) were photographed and
repeatedly scanned with different grid constants. The diameter of the measuring
spot was equal to the grid constant in all cases. One metaphase (744) was
photographed nine times and scanned to investigate the photographic error. Ten
different metaphases of one subject were photographed and scanned to obtain the
coefficient of variation in homologue chromosomes. The measured features were DNA
content, DNA ratio, length and centromeric index (C.I.). These features were
measured with the methods described in chapter 3.

The standard deviation in a feature of an experiment is computed as follows:
Let u% be the value of feature u of chromosome i in metaphase scan j. The mean
value of u% for chromosome i is
n
m ¢
U= 3 ul (4.34)
m j=1
in which By is the total number of metaphase scans.

The variance in uj for a chromosome i over the experiments involved is
n

m .
» _zl (ui - Ui)z
e
s = o1 . (4.35)

To determine the variance in a feature in a particular metaphase scan j, we
have to group a number of different chromosomes in order to obtain some statistical
significance. When we divide the 46 chromosomes in groups Gk’ containing g
chromosomes, we can compute the variance in group Gk in a certain metaphasekscan

Jj as

2
R b (4.36)
Gy »J R

To compute sé j we assume that the variance in feature u is the same for the
k!

chromosomes of group Gk. In our experiment the 46 human chromosomes were divided
into three groups: Gl consisting of the chromosomes of the A and B group according
to the Denver system, G2 consisting of the C group and G3 consisting of the

D, E, F and G group.




Centromere positions which have not been placed correctly, result in outliers
in the DNA ratio and the centromeric index. In experiments with samples from
which the class is known, outliers can be detected by their deviation from the
class mean. However, as methods were developed for the situation in which the
class is not known,criteria based on individual measurements had to be found, to
detect possible outliers. These criteria were evaluated with samples from which
the class was known. Measurements were regarded to be outliers when their
deviation from the class mean was over 20%. Four criteria were investigated:

a) The symmetry of the profile,

b) The quadratic deviation between the centromere position of the total
profile and those of the profiles of the partial chromosome on each
side of the principal axis (or the best fit polynomial),

c) The depth of the minimum in the profile or in the first derivative of
the profile for acrocentric chromosomes,

d) A threshold for the DNA ratio of acrocentric chromosomes.

A combination of methods c and d detected the highest number of outliers. To
accept a centromere position, the final conditions to be fulfilled are

1) the relative depth of the minimum in the profile or in the first
derivative of the profile for acrocentric chromosomes must be less than
0.9

2) the DNA ratio must be larger than 0.7, when the centromere is located
with the routine for acrocentric chromosomes

These two final conditions were used as outlier criterium for all experiments
described in this thesis.

In table 4.1a the coefficient of variation is given in the feature values of
the negative SolA for repeated scans with different grid constants. The coefficient]
of variation is calculated according to equation (4.36). Calculated as if the grid
was present at the original specimen, thegrid constantsare: 0.13, 0.15, 0.18,
0.21 (twice), 0.26 and 0.31 pm. The number of chromosomes used is placed between
brackets. In table 4.1b the coefficient of variation is given in the feature
values of the negative 744-10 for repeated scans. The grid constants involved are
0.06, 0.09, 0.12, 0.16 and 0.22 um. In table 4.1c the coefficient of variation in
the feature values of the total metaphases is given for the grid constants, for
which this coefficient of variation is minimum.

In table 4.2 the coefficient of variation is given in the features of nine
different negatives of the metaphase 744 (grid constant 0.12 um). In table 4.3a th
homologue coefficient of variation is given for ten different metaphases of one
subject labeled by the cytologist. In table 4.3b the homologue coefficient of
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Table 4.1a Coefficient of variation for different grid constants, negative SolA

group DNA content DNA ratio length C.l.
A,B 0.8% (70) 0.4% (70) 0.6% (70) 0.6% (70)
€ 0.9% (105) 0.5% (105) 0.5% (105) 0.6% (105)
DV-EF, G ¥u7%-(122) 1% 7 1076) 2L e 0 2.4%  (76)
total 1.2% (297) 0.9% (251) 1%7%(297) 1.4% (251)

Table 4.1b Coefficient of variation for different grid constants, negative 744-10

group DNA content DNA ratio length Csl.
A,B 0.8% (k46) 2.1% (ko) 1.2% (46) 2.5% (L4o)
c 1.1%  (64) 0.9% (49) 1.6% (6L4) 1.0%  (49)
D, E, F, G 1.4%  (75) 1.9% (L46) 2.0% (75) 2.6% (L6)
total 1.2% (185) 1.7% (135) 1.7% (185) 2.1% (135)

Table 4.1c Grid constant for which the coefficient of variation of the total
metaphase is minimum

coefficient of variation

negative grid constant| DNA content DNA ratio length Lol
So1A 0.21 pm 0.6% (43) 0.7% (39) 1.2% (43) 1.1% (39)
7h4-10 0.16 um 0.9% (39) 1.0% (25) 1.3% (39) 1.0% (25)
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Table 4.2 Coefficient of variation for different negatives, metaphase 744

(stepsize 0.12 p)

group. DNA content DNA ratio length c.l
A,B 1.5% (88) 2.7% (86) 1.5% (88) 2.1%  (86)
C 2.0% (115) 2.9% (92) 1.5% (115) 2.2% (92)
Dy By Fy G 2.8% (143) 3.4%  (82) 2.1% (143) L.hy  (82)
total 2.2% (346) 3.0% (260) 1.8% (346) 3.0% (260)

Table 4.3a Coefficient of variation for the homologue chromosomes of 10
metaphases of one subject, classified by the cytologist

group DNA content DNA ratio length C.l
A,B 6.0% (89) 6.7¢ (79) 5.8% (89) 5.7% (79)
c 6.9% (123) 6.5% (101) 7.3% (123) 5.9% (101)
D, E, F, G 7.3% (166) 12.9%  (92) 10.4% (166) 12.5%  (92)
total 6.9% (378) 9.2% (272) 8.6% (378) 8.7% (272)

Table 4.3b Coefficient of variation for the homologue chromosomes of 10

metaphases of one subject, clacsified automatically (Chapter 5)

group DNA content DNA ratio length C.!I
A,B 5.2% (87) 6.0% (78) 6.1% (87) 5.2% (78)
C L.0% (126) 3.0% (102) 6.7% (126) 3.4% (102)
D, E, F, G | L4.8% (165) 8.4% (92) 9.9% (165) 9.5% (92)
total L.7% (378) 6.1% (272) 8.2% (378) 6.5% (272)
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variation is given for the same metaphases, classified automatically based on DNA
content and DNA ratio, with the methods described in chapter 5. So table 4.3a is
affected by the possible errors of the cytologist and table 4.3b by the errors of
the program.

First of all we consider the coefficient of variation in the DNA content.
The errors present in repeated scans of the same negative (table 4.la, 4.1b and
4.1c) are due to photodiode and pre-amplifier noise, quantization noise, the
distributional error and the photographic error, as far as these last two errors
have a stochastic character. Although the distributional error and the
photographic error are systematic, these errors will have a stochastic component
in repeated scans. In the repeated scans the negative is remounted, and the
spot position will differ from scan to scan.

The quantization error was given in figure 4.6 of section 4.4. For the
e between 0.05 and 0.2, Da between 0.1 and 0.2,
0, = 300, Ry 2 100, 512 quantization Tevels), this error will result in a
coefficient of variation of about 0.2%. The measured noise of the photodiode and
the pre-amplifier will result in a coefficient of variation of about 0.7% for
the present situation (section 4.3). In section 4.5 it was shown, that the
systematic distributional error is between 0.3% and 0.8%. In the remainder of this
section it is shown, that the photographic error is about 2%. The stochastic
components of the last two errors, however, are less. The coefficient of

present situation (Ib/I

variation in repeated scans will be due to the combination of these four errors,
and is according to tables4.la, 4.1b and 4.1c of the right order of magnitude.

The method of Hartley (1950) was used to test whether an essential difference
in the variance for the different grid constants was present or not. With a
confidence level of 5% the differences were just significant, showing a
tendency to increase at the higher and the lower values of the grid constant. In
section 4.5 it wasshown, that the distributional error increases with increasing
grid constant. The error given in equation (4.9) will also increase with decreasing
Ny and Nes SO for higher values of the grid constant. For small values of the
grid constant oversampling occurs, and the grain noise of the negative becomes
important (Van der Ploeg et al. (1974)). In table 4.1c the minimum coefficient of
variation is given for the complete metaphase.

The rank correlation test of Spearman (1904) was used to test, if the mean
chromosome DNA content increases with increasing grid constant. According to equa-
tion (4.33) this tendency due to the distributional error can be expected. For the
negative SolA a positive correlation was present with a confidence level of 5%.
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For the negative 744-10 the distributional error was too small to be detected.
The coefficient of variation, given in table 4.2 for different negatives of
the same metaphase, consists both of the errors mentioned earlier (photodiode and
pre-amplifier noise, quantization noise, and the distributional error) and of the
errors present in the photographic process and the first microscopic system. In
section 4.3 it was already shown, that the errors in the first microscopic
system were comparatively small. When we compare table 4.1b and 4.1c with
table 4.2, we see that the photographic process does certainly contribute to
the coefficient of variation in the DNA content (from 1.2% to 2.2%).
The negative of a grey-wedge was scanned to investigate the error due to
the photographic process. In figure 4.7 the coefficient of variation in the
measured intensity of this negative is given. The negative was scanned with a

grid constant equivalent to 0.12 um in the specimen. Ib/Imax is between 0.05 and

coefficient
of variation
inl in %
6_
5_
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3L
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Figure 4.7 Coefficient of variation in the measured intensity for a scanned

negative of a grey-wedge. (equivalent grid constant 0.12 um)
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0.2 for Feulgen stained metaphases. From equation (4.9) and figure (4.7) we may
calculate the coefficient of variation in the DNA content due to the photographic
process. For the present situation (Da between 0.1 and 0.2, & 300, n, = 100)
this photographic error results in a coefficient of variation in the DNA content
of about 1.7%, which agrees with the values given in table 4.2.

Formula (4.9) shows that ADNA/DNA increases with decreasing average
chromosome density Da* So it is important to fit the regions for which the
chromosome densities are summed as close as possible to the chromosome. For too
large regions the summation over the added background densities will contribute
to the amount of noise in the DNA content, but not to the DNA content itself.

In figure 3.5 the average densities of the extensions (defined in chapter 3) of
three chromosomes of negative 744-10 were given. This figure shows that the
extensions reach the background at about 0.7 um in the original preparation. To
compute the DNA values of table 4.2 the extensions up to 0.7 um were considered
to belong to the chromosome, and the extensions over 0.7 um were used to

estimate the background density. An increase of the regions of the chromosomes

to 1.2 um gives an increase in the coefficient of variation in the DNA content to
3.4% (2.2% in table 4.2) illustrating the importance of a narrow region.

When we compare the homologue variation of the chromosomes classified by
the cytologist (table 4.3a), or by the program (table 4.3b), with the variation
present in the negatives, we see that the measuring errors are less than the
homologue variation. Table 4.3a and table 4.3b show that automatic classification
yields a smaller homologue variation in the DNA content and the DNA ratio than
classification by the cytologist. The homologue variation, however, was
calculated for the features that were also used for the automatic classification.

The DNA ratio R is computed as

R=W (4.37)

with DNA content DNAL of the longer chromosome-arm. The relative error in the

DNA ratio is (when we assume independence between DNAL and DNA)
AR _ SOMA apna B¢ Pe
T T oW ONR * WA 357

with an error Axé in the centromere position and a value PC of the DNA profile
at the centromere position. As the systematic error in the background has the
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same influence on DNAL and DNA, this error will partly be compensated in the
ratio.

When we compare table 4.la, 4.1b and 4.1c, we see, that the coefficient of
variation in repeated scans of negative SolA in the DNA ratio is less than the
variation in the negative 744-10. As the variation in the DNA content is about
the same, this indicates that the centromere position was more difficult
to find in this metaphase 744 than in the metaphase SolA. The metaphase 744 had
elongated bended chromosomes and had less contrast than the metaphase SolA.

The photographic process does also increase the specific variation in the
DNA ratio (from 1.68% to 3.02%). The measuring error, however, is less than the
homologue variation given in table 4.3a and 4.3b.

When the length of a chromosome is determined from the boundary, the length
depends on the dissection level defining the boundary. In this investigation the
length was obtained from the profile. In the profile method an analogous problem
is present in the definition of the end points of the profile. The noise
is reduced compared to that in the boundary defined length due to the summation
over the points in a profile stripe. The end points of the profile were
defined as the points where the profile density drops below 0.1 of its maximum
value. The threshold of 0.1 was experimentally obtained by investigation of the
influence of a variation in the end points. The Towest value of the threshold was
taken at which the slope of the profile was steep enough to ensure a reliable
detection of the end points. Interpolation between profile points has been used
for more accurate determination of the end points.

Sigrificant errors in the length are the errors in the position of the
end poihts, caused by the noise present in the profile and the error in the fit
of the principal axis (or best fit polynomial) to the chromosome. As within one
metaphase the density distribution in the arm ends will hardly be dependent on
chromosome length, the noise in the ends of the density profile will be the same
too. So it was expected that the error in the length should be more or less
constant, hence the coefficient of variation should increase with decreasing
length. This tendency is present, but not distinct. This can be explainea by the
fact that the fit of the axis (or the polynomial) along which the length is
measured will be better for the smaller than for the larger chromosomes and
dominate the error in the end points for the latter. Table 4.2 shows that the
coefficient of variation due to the photographic process in the length is of
the same magnitude as in the DNA content.
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As result of the contraction it might be expected, that the homologue
variation in the length should be large. In table 4.3a, however, the homologue
variation in the length is of the same magnitude as the homologue variation in
the DNA content. This can be explained by the fact that Tength measurements are
Jess sensitive to errors due to the specimen, as e.g. differences in stoichiometry
and absorbing materials, than the measurement of DNA contents. The value of
table 4.3b is limited in this respect, because the automatic classification was
based on DNA content and DNA ratio.

The centromeric index C.I. is defined as the ratio between the length of the
long arm and the total length of a chromosome, in the same way as the DNA-ratio
is the ratio between the DNA contents. The relative error in the centromeric
index is similar to equation (4.38) for the DNA ratio, with length instead of
DNA content and P_ equal to 1. The error in the centromere position is again
Axé. So when P equals roughly the average profile density, the influence
of the error in the position of the centromere Amé is the same in the DNA ratio
and the centromeric index. In tables 4.1, 4.2 and 4.3 it is shown that the
coefficient of variation in the DNA ratio and in the centromeric index is of the
same magnitude.

4,7 CONCLUSIONS

In this chapter the different sources of error in the computation of DNA
based features have been investigated.

The influence of the intensity quantization on the DNA content is compared
for a Tinear and a Togarithmic scale. The error in the DNA content for a linear
scale has a minimum when the ratio between background and maximum intensity
equals 1/e, but the minimum is flat. When the contrast present in the negative
fits the density range of the logarithmic scale well, the logarithmic
scale gives the smallest error. However, when the contrast is small compared
to this range, the error of a linear scale is less. When the contrast present in
the negatives varies to a large extent, a linear scale is preferable.

The magnitude of the distributional error for the grid constants (0.15 um to
0.2 um) proved to be relatively small compared to the other sources of error.

The photographic process does increase the coefficient of variation in the
features with respect to the variation introduced by quantization noise and
noise in the photosensitive device.
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To keep the errors in the DNA content small, it is important to fit the
region for which the densities are summed as close as possible to'the chromosome.
The homologue variations in DNA content and DNA ratio are greater than

the coefficient of variation introduced by the measuring process. The
coefficients of variation introduced by the measuring process in the length
features are of the same magnitude as those in the corresponding DNA features.
The homologue variation in the length, however, is greater than that in the
DNA content, while the homologue variation in the centromeric index is of the
same magnitude as that in the DNA ratio.
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Chapter 5

DNA BASED HUMAN CHROMOSOME CLASSIFICATION

5.1 INTRODUCTION

Many books and papers have been published on pattern recognition and
classification theories. Well-known are the books of Duda et al. (1973), Meisel
(1973), Fukunaga (1972), Patrick (1972) and Fu (1976). In statistical pattern
recognition two approaches can be distinguished: parametric and non-parametric
classification. In the parametric methods it is assumed, that the distribution
of the features is known. From the learning samples the parameters of the
distribution are estimated. In the non-parametric methods, the distribution is
not known. The distribution may be estimated by e.g. density estimation or
Parzen windows. An important non-parametric method in which no distribution is
estimated, is the nearest neighbour method. This method assigns an unknown
sample to the class of the nearest learning sample. Many variants of this
nearest neighbour method exist.

The classification rule of some parametric and non-parametric methods can
be expressed by a linear separation in the feature space.

In pattern recognition the classification system is based on the learning

samples. When the number of learning samples is too small, the classification
results with the learning samples are not representative for the performance
of the classification system. Therefore a number of independent test samples
must be used to evaluate the system. When the total number of samples is quite
limited a so-called n-1 method might be used. In this method one sample of all
the available samples is subsequently used as a test sample and all other
samples are used as learning samples.

Classification of human chromosomes has some special characteristics. In
a normal metaphase 46 chromosomes are present. Generally not all chromosomes can
be analysed, because chromosomes may e.g. touch or overlap. So when normal
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metaphases are scanned 46 chromosomes will be found at most. In a normal
metaphase the 22 autosomes are present in homologue pairs. In addition
to these autosomes a female has two X chromosomes and a male one X and one Y
chromosome. The information that of each type of chromosome only one pair can be
present in a scanned metaphase can be taken into account in the classification.
This is only possible, however, when no aberrations are present in the number of
chromosomes in the karyotype.

In this chapter classification results based on DNA content and DNA ratio
are given. The classes we will consider consist of the 22 autosomes and the
2 sex chromosomes. In these experiments five subjects are involved. At least six
metaphases of each subject are used. The influence of the constraint, that
of each type of chromosome only one pair can be present is investigated. The
classification results based on DNA content and DNA ratio are compared to the
classification results based on length and centromeric index and combinations of
these features.

The main errors in the DNA based features are treated in chapter 4. The
DNA content and the DNA profile are obtained by summation of the densities of
the grid elements for a chromosome or chromosome stripe. So the errors in the
features consist of the sum of a large number comparable but not necessarily
dependent errors. According to the central limit theorem, there is reason to
expect, that the features are in approximation normally distributed. Therefore
we used a parametric classification method, in which it is assumed that the
features are normally distributed. The mean and the covariance matrix of the
distributions were estimated from the learning samples.

5.2 BAYES DECISION THEORY

Suppose that one wants to classify individual objects i into classes S%,
based on the measured featurevectorsgi. It is assumed that the conditional
probability density functions p(31|3%) are known for the classes S%. The Bayes
rule relates the a posteriori probability p(&%|31) to the a priori probability
p(QJ) as

. Plu; %) p(2)
P(%ly;) = B CP (5.1)
and
Q
P(u;) = 2 P(u;[) p(2y) (5.2)
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in which Q is the number of classes.

It can be shown, that the minimum error rate is obtained, when the object
is classified in that class Slk for which the a posteriori probability is
maximum (Duda et al. (1973)). So

decide 2, if p(2 [u;) > (2 uy), for all k # . (5.3)

As the probability density function p(!i) is independent of ‘Qj , equation (5.3)
can be rewritten as:

decide SZk if p(gi

2,)p(Q ) > p(gilﬂj) P(S2; ), for all k # J. (5.4)

A misallocation will produce a certain Toss. Let A(Qk |S2] ) be the Toss,

when the true class is 91 and the allocated class is Qk. The conditional

risk = of the allocation Qk is

Q
E(‘Qk ]Ei) = ng A(Qk !‘QJ ) p(QJ IEi)- (5.5)

A minimum risk is obtained by the decision rule:

decide ©, if E(Qk |E].) <E(QJ. !Ei)’ for all k # j. (5.6)

k

5.3 CLASSIFICATION OF A SET OF OBJECTS

Instead of subsequently classifying the individual chromosomes, the
chromosomes of one metaphase may be classified as a whole. The fact that of each
type of chromosome only one pair can be present in a metaphase is then taken into
account. This means that we have a set of 46 chromosomes of one metaphase, which
must be assigned to the 22 pairs of autosomes and the sex chromosomes.

Generally we consider a set of ¥ objects, originating from the classes
Sli(i=1, ...5 Q). The known number of objects in the set originating from class fﬁ

Q
is N;. SO N = 5¥ N;. The N-tuple u = (gl, S2 gN) are the measured feature
i=1

vectors of the ¥ objects. It is assumed, that the ¥ objects are independent.
Let vy indicate, that the object with measured feature vector u; originates
N). So v, G(Sl1 S QQ)
for i = 1, ..., N. The number of elements in T of class 91. is N1(1'=1, e ) i
The mv-tuple € = (el,..., ey) indicates the allocated class of the N objects.

from class 91. » given by the wm-tuple T = (Ul’ St st
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BAYES METHOD
The number of misallocations y is

N
X = 2 6(e;,vy) (5.7a)
i ¥ 77
in which
8(ei, Ui) = 0 if e; = v, (5.7b)
1if e; # Vo for i=1, ..., N.

The mean number of misallocations for all possible T is
- N
X = 2 2, 5(81., Ui) p(TIEi) (5.8)
VYT i=1

STot (1976) has shown that the ei's in equation (5.8) can be chosen independently
and that the allocation criterion becomes:

decide e; for i=l, ..., N so that

2. 8(e., v.) plus]T) is minimum. (5.9)
VT i* 7 =i

There are N!/(NIYNZ! . NO!) different nv-tuples T. So for large values of

N and Q, this classification rule is not useful in practice.

MAXIMUM LIKELIHOOD METHOD
STot (1976) suggests a method in which the Tikelihood function L(u) is
maximized. This Tikelihood rule is

decide e; for i=l, +..s N so that

N
L(u) = M

. p(eilgj) is maximum (5.10a)
I

1
with the restriction that
N
> 6(ei, Q.)=0mw; for all j. (5.10b)
i=1 J .

An exhaustive search involves the same number of possibilities of T as the
Bayes method. In this Tikelihood method an exhaustive search is not necessary.
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The use of the logarithm of the 1ikelihood function results in a sum to be
maximized with restrictions. This can be achieved by linear programming, but
it remains laborious.

For the classification experiments a very fast exchange algorithm was used
instead of linear programming to reduce the computation time. This exchange
algorithm does, however, not necessarily converge to the optimal solution. The
exchange algorithm starts with an arbitrary classification of the chromosomes
with the correct number of homologue pairs. The classification is improved by
exchanging two chromosomes from different homologue pairs, if the Tikelihood
function increases because of this action. This is repeated until no exchange
which increases the Tikelihood function can be found.

5.4 CLASSIFICATION OF METAPHASES ON DNA BASED FEATURES

The chromosomes are classified with the Bayes method, described in
section 5.2 and with the maximum 1ikelihood method described in section 5.3.
It is assumed that the chromosome features are normally distributed. The
conditional probability density function of the features is

1 , S
Us(2.) = exn |- .- . . - M. 5.11
P(u;1&5) YE;SK7§TE;T§ X! | Huy - #y) % (u; &J)] (5.11)
in which K is the number of features, ﬁj is the mean vector of class S2j and
Ej is the covariance matrix of class Slj. For two features equation (5.11) is

identical to

1 1 (ugi - gy
p(ul'i’ Uz-ilgj) = ' : o

————— exp [- 7
Znaljazj\/l-pj 2(1-pj) B

2
_opjlupy - gy - Koy)  (upy - Hp5) ‘]
)
J

- (5.12)

%15%23 2
in which pj is the correlation coefficient between the two features of class Slj.

A n-1 method was used for the classification. In this method the metaphases
of one subject are used as a test set and the metaphases of the other subjects as

a learning set. This is repeated for all subjects,so the metaphases of all
subjects are used as a test set once.
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In the classification of chromosomes of a metaphase additional problems
may arise
a) incomplete measured features
b) chromosomes of which no features could be measured, because the chromosomes
did touch, overlap, or were not present in the scanned area. We will call these
chromosomes: missing chromosomes.

INCOMPLETE MEASURED FEATURES

When the centromere position can not be determined,the DNA ratio and the
centromeric index will be unknown. In this case the chromosomes may be
classified, but only based on the features which could be measured. This implies
that for all classes a covariance matrix must be inverted for all possible
missing features (equation (5.11)). This is an elaborate method when a Targe
number of features is involved. The method is used as at most four features
were considered in the classification experiments.

A sub-optimal solution to the problem is the classification based on
p(gilflj), in which the mean feature value in Slj is inserted for the missing
feature. In this method the inversion of covariance matrices for each missing
feature is avoided.

MISSING CHROMOSOMES

The missing chromosomes are only important for those classifications, in
which the number of metaphase chromosomes is taken into account. The exchange
algorithm used in this case starts from an arbitrary classification with the
correct number of homologue pairs. In this classification dummy chromosomes are
inserted to obtain a total number of 46 chromosomes. The dummy- chromosomes are
equally probable to all classes. These dummy chromosomes inserted for the
missing chromosomes, reduce the influence of taking the number of homologue pairs
into account.

5.5 CLASSIFICATION EXPERIMENTS AND RESULTS

The metaphases of five subjects were used in the experiments described.
At least six metaphases of each subject were scanned. The mean value and the
standard deviation in the measurement of the four features treated in the
previous chapters were computed for each subject and for the total of all
subjects. These values and the number of chromosomes involved are given for the
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Table 5.1 Mean and standard deviation in the DNA content (times 1000)

subject 1 subject 2 subject 3 subject 4 subject 5 total

5 5 5 5 5 5

g © © © o © @
m .nwV N .w ¥ .w : .w 9 .W 4 .QWV .
Ble T8 PreiP6f | e P8 | 2 2E0 e 8| & © 8
- © ol © LI — © - E © .o © s B © s E
S |fE et el w2 | B owg g g hE g o 2
1 |1036 57 9 | 1020 48 15 | 1095 77 17 | 1080 81 8 | 1013 39 9 | 1051 72 58
2 | 1005 26 7 991 35 12 998 74 19 | 1000 38 8 | 1012 26 12 | 1001 50 58
3 821 29 8 842 29 13 824 41 17 817 21 10 827 28 11 827 33 59
L 772 28 8 766 45 12 777 34 18 788 35 7 755 50 11 771 41 56
5 800 34 5 788 30 13 773 41 18 758 50 9 733 62 12 768 50 57
6 725 63 11 705 46 14 710 48 17 705 16 8 711 37 12 711 47 62
7 | 66533 7 | 650 L4 11 | 628 Lk 17 | 651 47 11 | 647 35 10 | 645 Lk 56
8 607 35 10 605 54 13 609 43 13 605 37 9 619 85 11 609 55 56
9 581 38 9 574 47 17 596 50 18 585 20 7 563 61 10 581 49 61
10 586 43 10 570 34 16 599 49 16 574 30 9 550 39 14 576 L4 65
11 569 26 9 562 19 16 571 29 16 576 24 8 551 31 10 566 27 59
12 556 29 9 549 L4 18 560 27 18 568 17 8 539 39 11 554 35 64
13 451 24 10 441 25 15 450 24 16 449 23 6 429 19 13 443 25 60
14 422 29 8 415 17 17 426 31 14 435 12 9 414 33 14 421 27 62
15 439 34 9 411 22 14 426 32 16 427 29 7 402 36 12 420 33 58
16 400 23 12 385 19 14 398 24 14 383 16 9 386 21 13 391 23 62
17 366 33 10 349 32 16 360 27 19 376 25 12 359 32 11 361 31 68
18 338 17 11 326 15 16 328:31-47. 337 14 7 321 16 12 329 22 63
19 282 21 11 270 20 15 282 21 16 281 19 8 255 42 12 274 28 62
20 288 25 11 277 21 17 282 24 18 298 33 8 276 32 10 283 27 64
21 216 20 12 197 14 16 209 16 16 198 17 4 182 27 10 202 22 58
22 237 16 9 208 19 16 2V HPEI3 78 g L TR 208 25 9 217 23 54
X 657 25 6 638 52 5 650 43 8 632 37 9 613 59 9 636 48 37
Y 188 24 & 246 20 9 223 15 7 224 30 21
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Table 5.2

Mean and standard deviation in the DNA ratio (times 1000)

subject 1 subject 2 subject 3 subject 4 subject 5 total
oo = = & C | =
= L S 0 - 2
(0] + ) ) +~ +~ +~
= @ (0] 1] © @ [19)
o — V— . — — — . —
& > > > > > >
[¢] 0 - [ [ORE S [0) . (O [0 =
E © () © (0] el (0] © (] © Q © ]
[e] ot o} | o 0 c 0 = | = 0 c 3
hus @ - E @ - E @ - E @ . [S © - E @ - E
S g & 2 g o 2 g - 2 g o 2 g w2 g o 2
1 522 17 8 526 17 15 533 23 14 540 19 5 533 21 9 530 21
2 620 13 § 602 32 12 615 L8 16 601 51 4 616 43 12 | 612 42
3 | 548 30 8 | 546 29 13 | 554 55 16 | 536 23 7 536 11 10 | 546 37
4 718 28 7 718 31 12 727 35 17 | 686 67 4 727 8 10 720 35
5 7277 395 717 48 11 714 35 16 722, 43 8 722:-52 12 719 43
6 644 39 9 643 41 13 639 48 15 663 19 5 625 22 8 | 642 L0
7 608 52 7 621 43 11 638 35 13 632 L2 7 622 31 9 626 42
8 659 36 10 672 L1 10 635 46 12 666 L3 4 691 32 11 664 45
9 665 32 8 644 39 15 645 42 15 674 14 6 680 94 8 652 38
10 709 28 8 690 13 13 677 44 14 632 44 5 696 36 13 686 40
11 598 13 9 625 L8 14 623 L6 14 613 14 3 598 31 10 613 40
12 733 36 9 13T 57 15 703 36 12 697 L0 7 73317 8 721 45
13 836 65 4 887 56 7 901 34 9 890 84 4 907 82 7 889 67
14 883 28 4 840 100 7 924 20 6 820 140 6 911 17 2 869 96
15 871 8 &4 887 35 7 837 64 11 874 39 3 884 22 3 863 51
16 605 38 9 615 33 12 600 81 13 594 41 6 606 24 11 604 50
17 676 64 9 670 79 8 700 120 10 609 40 5 677 34 6 673 85
18 76 = 17 93 810 130 4 749 53 5 700 180 2 774 56 4 764 99
19 620 110 11 590 38 8 620 120 9 534 22 4 556 21 10 592 88
20 680 160 6 610 120 13 610 140 8 558 18 3 571 41 4 620 130
21 825 75 4 850 68 11 867 67 11 772 22 3 865 79 5 848 73
22 | 830 100 5 |85 59 6 | 841 82 9 | 821 80 3 857 47 8 | 845 75
X 628 26 6 628 26 4 637 30 6 681 49 8 639 18 9 645 43
Y 917 43 3 868 13 2 959 1 908 45
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Table 5.3

Mean and standard deviation in the length (times 1000)

subject 1 subject 2 subject 3 subject 4 subject 5 total

6 5 5 & 5 5

: : G G 2 8 C

o S > S > > >
o [0} - (] = () - (] = [ b (0] -
ERN o RN e e R S ks B
e © + E © . E @ o E © - E o . E c - E
S g w 2| & v 2 g » 2| 8 w € g o 2 g o 2
1 1100 63 9 1076 57 15 1124 66 17 1092 64 8 1090 35 9 1098 62 58
2 985 47 7 1012 54 12 985 55 19 1009 54 8 1009 21 12 999 5C 58
3 864 20 8 832 39 13 863 50 17 844 22 10 849 30 11 851 39 59
L 796 28 8 801 24 12 801 54 18 792 16 7 784 22 11 796 37 56
5 748 56 5 778 38 13 809 41 18 795 27 9 771 27 12 786 42 57
6 761 27 11 741 32 14 766 L9 17 763 11 8 751 18 12 756 34 62
7 687 26 7 676 34 11 689 63 17 720 48 11 657 34 10 686 51 56
8 651 30 10 624 53 13 649 59 13 640 30 9 650 28 11 642 45 56
9 621 38 9 593 34 17 647 42 18 649 34 7 616 22 10 623 L2 61
10 598 33 10 605 42 16 645 54 16 627 36 9 599 27 14 615 45 65
11 601 35 9 599 26 16 637 L4 16 637 18 8 590 20 10 613 38 59
12 598 38 9 601 33 18 634 37 18 633 21 8 593 30 11 612 38 64
13 505 22 10 482 33 15 531 63 16 499 25 6 490 25 13 502 44 60
14 L84 L9 8 481 30 17 502 32 14 486 21 9 477 26 14 486 33 62
15 474 35 9 455 42 14 507 30 16 498 45 7 460 17 12 478 41 58
16 445 26 12 Lho 25 14 495 59 14 L6k 33 9 LL2 26 13 458 43 62
17 452 22 10 419 41 16 477 51 19 474 51 12 424 22 11 451 49 68
18 398 18 11 Loo 47 16 439 32 17 b6 16 7 390 13 12 410 36 63
19 371 25 11 348 31 15 391 L8 16 383 30 8 346 19 12 368 38 62
20 356 25 11 362 33 17 398 36 18 389 35 8 350 16 10 373 37 64
21 309 30 12 292 Lo 16 344 41 16 332 42 4 277 18 10 310 44 58
22 329 21 9 299 50 16 345 41 13 322 28 7 297 15 9 318 42 54
X 701 20 6 655 30 5 686 24 8 659 49 9 661 36 9 671 39 37
Y 292 18 5 334 40 9 345 51 7 328 46 21
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Table 5.4 Mean and standard deviation in the centromeric index (times 1000)

subject 1 subject 2 subject 3 subject 4 subject 5 total

= ot { ot o c ot

2 2 2 2 - -

g 5 5 5 5 E 5
0 3 - o v o v o - o - > v
5| c “8(: 2 (: 8 |c 8| 5| * 38
- © - E @ -« E © - E © - E a « E © « £
S E w2 |2 w2 |g w2 |8 w2|g w2 |g o2
1 508 9 8 |514 18 15 | 522 23 14 | 515 6 5 | 516 22 9 515 20 51
2 | 611 15 5 | 601 20 12 | 598 22 16 | 578 34 L4 | 598 50 12 598 32 49
31525 21 8 | 530 3213 | 540 48 16 |[522 24 7 | 526 20 10 530 35 54
L | 700 12 7 | 686 31 12 | 687 3017 |660 55 L4 | 705 9 10 690 31 50
5] 694 26 5 |681 27 11 671 36 16 | 686 Lo 8 | 683 44 12 680 37 52
6 [ 614 31 9 | 610 3513 | 604 47 15 | 630 27 5 | 600 13 8 | 610 37 50
7 | 578 37 7 |603 3811 606 26 13 | 608 28 7 | 599 25 9 600 33 47
8 | 627 Lo 10 [629 30 10 | 611 39 12 | 633 34 L | 654 26 11 630 38 47
9 | 630 19 8 | 613 3215 | 612 30 15 | 647 12 6 | 651 84 8 | 621 30 52
10 | 669 22 8 | 652 15 13 | 638 47 14 [601- 38 5 | 657 23 13 647 36 53
11 580 6 9 |603 39 14 [596 31 14 [579 11 3 | 576 33 10 590 33 50
12 | 685 26 9 |[689 52 15 | 653 29 12 | 658 28 7 | 685 15 8 | 674 39 51
13 [ 745 71 4 792 55 7 |821 42 9 |[820 100 4 [ 835 94 7 807 78 31
Th | 794 42 4 | 766 88 7 | 843 19 6 | 740 100 6 | 824 17 2 789 81 25
15 | 788 17 4 [792 36 7 | 737 61 11 785 53 3 [ 798 23 3 770 54 28
16 | 577 32 9 |584 3012 |576 60 13 (573 39 6 | 577 13 11 577 40 51
17 | 631 67 9 |624 54 8 |660 110 10 | 580 22 5 | 634 23 6 632 74 38
18 | 669 28 3 | 760 13 L4 | 676 38 5 |[660 140 2 | 699 42 L4 | 697 89 18
19 | 586 66 11 571 35 8 |588 91 9 |524 14 L4 | 539 20 10 566 62 42
20 [ 640 130 6 [592 89 13 |590 130 8 |550 19 3 | 556 30 L4 | 600 120 34
21 | 733 78 4 | 754 74 11 | 777 99 11 [678 27 3 | 770 100 5 | 755 89 34
22 | 750 120 5 | 756 79 6 | 755 95 9 | 734 84 3 | 764 45 8 755 86 31
X | 606 22 6 [598 21 L4 | 610 25 6 |657 55 8 |612 17 9 620 39 33
Y | 8% 59 3 |782 27 2 |899 1 837 61 6
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DNA content in téb]e 5.1, for the DNA ratio in table 5.2, for the Tength in
table 5.3 and for the centromeric index in table 5.4.

The automatic localization of the centromere position was impossible or
did not meet the required criteria in about 29% of the cases. Some chromosomes
gave difficulties in the localization of the centromere position, resulting in a
higher standard deviation of the DNA ratio and centromeric index.

The DNA content of the Y chromosome of subject 1 is less than the DNA
content of the Y chromosome of the other two male subjects. It was almost
impossible to determine the centromere position of the Y chromosomes.

One of the two chromosomes 1 of the subject 3 hadasignificantly larger DNA
content than the other. The same phenomenon is present in the metaphases of
subject 4, but less obvious. This resulted in a larger DNA content of chromosome 1
of subject 3 and 4 in table 5.1.

The difference in length of the chromosomes 1 and 2 is larger than the
difference in DNA content. This explains the difference in classification results
of the A group (chromosomes 1-3) in the remainder of this section. Length and
centromeric index gave better classification results than DNA content and DNA
ratio for this A group.

The correlation between the features was calculated within each class of
homologue pairs. The correlation between the DNA ratio and centromeric index is
high (correlation coefficient larger than 0.8). This can be expected because
these two features are based on the same centromere position. The correlation
coefficient between DNA content and Tength is about 0.3. So some correlation is
present between these two features.

Classification results of the test samples with the n-1 method are given in
table 5.5. The number of homologue pairs is taken into account in this
classification. The chromosomes are classified in the 24 individual classes and
the error rate of the individual classification is listed, averaged for each of
the seven groups of the Denver system and for the total metaphase. In table 5.5

the error rate is also given when the classes consist of the groups of the Denver

system. In table 5.6 the confusion matrix is given of the classification based

on DNA content and DNA ratio into 24 classes. When the centromere position is

not determined, the chromosomes are classified based on DNA content or length only.
The error rate is defined as the percentage of differences between the classi-

fication by the program and by the cytologist. The error rate of classification

into 24 classes is large. When the classification is based on DNA content and

DNA ratio. this error rate is about 48%. The a priori probability of correct
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Figure 5.1 Error rate as a function of the number of probable classes.
Classification with the n-1 method in 24 classes. The number of

homologue pairs is not taken into account.
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Figure 5.2 Reject rate and error rate of classification with the n—1 method in

n into account.
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Table 5.5 Error percentages in the classification (n-1 method, number of

homologue pairs

taken into account).

individual classification classification
features in Denver
A B C D E F G total system

DNA content,

DNA ratio 8.0 [54.0 |60.0 [57.8 [34.2 |54.8 |56.4|48.2 77
length, CI 6.9 |51.3 |61.3 |67.8 | 48.2 |58.7 [69.9 | 53.2 14.6
DNA content 33.7 |67.3 | 72.4 |60.0 | 50.8 [55.6 |56.4|59.3 13.53
length 22.9 [67.3 [74.3 172.8 [71.0 |68.3 [69.9 | 65.6 21.2

Table 5.6 Confusion matrix of the classification based on DNA content and

DNA ratio (n-1 method, number of homologue pairs taken into account).

assigned class
real
Ehgis 1 2 3 4 5 X 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 Y

1 52 6

2 4 53 1

3 56 1 1 1

L 3 31 15 6 1

5 13021 1 1 1 1 1

X 1 4 514 4 6 2 1

6 2 110 534 9 1

7 1259 2% 385 2 1

8 1.:632+10° B9 6 3

9 o e V23257972010 : 10 = 3 1
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Table 5.7 Error percentages in the classification. Number of homologue pairs

not taken into account. Learning set = test set.

individual classification

classification

features in D
A B c D E F G |total tn penver

system

DNA content | 28.0 | 70.8 |72.4]67.8 |45.6 [58.7 | 48.9 | 58.8 14.5

DNA content

DNA ratio 8.0 [54.0 | 61.3|59.4 [34.2 |50.0 [L47.4] 47.5 8.1

DNA content

DNA ratio 6.8 [53.1 |58.5(58.9 [36.3 [50.8 |L47.4]| 46.7 75

length

DNA content

DNA ratio 6.3 | 54.0 |60.0 [55.0 | 42.0 | 49.2 [60.9 | 48.6 7.7

length, ClI

Table 5.8 Error percentages in the classification based on DNA content and

DNA ratio
individual classification classification
me thod in Denver

A B C D E F G total system
n-1 method
pairs taken 8.0 |54.0|60.0|57.8|34.2|54.8 |56.4] 48.2 7.7
into account
n-1 method
pairs not 8.0 | 54.0 | 61.1]60.0|35.8|51.6 [51.9|48.3 8.1
taken into
account
learning set
= Desiint 8.0 |48.7]58.3|54.4[31.6|51.6|48.9]|45.4 7.4

pairs taken
into account
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classification into 24 classes is about 4%. The results of classification in the
groups of the Denver system are much better although not satisfying. The
classification based on DNA content and DNA ratio is better than the classification
based on length and centromeric index. The error rate of classifying objects in

the Denver system based on DNA content and DNA ratio is even a factor 1.9 lower.
Only the individual classification in the A group (chromosomes 1-3) and the

B group (chromosomes 4-5) of the Denver system is better for length and

centromeric index than for DNA content and DNA ratio. Classification only based

on the DNA content or Tength gives a considerable increase in the error rate.

Starting from the DNA content, we have added the features one by one. The
error rates of the classification are given in table 5.7 (learning set = test set,
homologue pairs not taken into account). Addition of the length to the DNA
content and the DNA ratio results in a small decrease of the mean error rates.
The mean error rate increases again with all four features.

In the experiments mentioned above, the chromosomes are assigned to the
class with the highest a posteriori probability, when the number of homologue
pairs is not taken into account. Instead of classifying a chromosome in one
class a number of probable classes may be given. In this case the error rate is
the percentage of chromosomes, for which the real class is not among the given
probable classes. Figure 5.1 shows this error rate as a function of the number
of probable classes. The chromosomes are classified with the n-1 method and the
number of homologue pairs are not taken into account. A number of five classes
is necessary to ensure an error rate of about 5%, when the chromosomes are
classified based on DNA content and DNA ratio.

The error rate can be reduced by rejecting chromosomes with a low
a posteriori probability. In figure 5.2 the classification results are given as
a function of a threshold on the a posteriori probability. The chromosomes are
classified with a n-1 method and the number of homologue pairs is not taken into
account. The error rate of the classification based on DNA content and DNA ratio
(figure 5.2a) can be reduced from about 48% to about 26% by a threshold of 0.4,
introducing a reject rate of 30%. Reject rates up to 75% are necessary in order
to obtain an error rate of less than 5%.

In table 5.8 the error rate is given when the test set is identical to the
learning set and so no n-1 method is used. The improvement is limited, indicating
that the number of learning samples is sufficient for the problem and the
features used.

When the number of homologue pairs is not taken into account, the increase
in the mean error rate is very small. This is also shown in table 5.8.
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The improvement achieved by taking the number of homologue pairs into
account, is investigated in a Monte Carlo experiment. In this experiment it is
assumed, that the standard deviations are a factor f3 times the measured standard
deviations in the features. In figure 5.3 the mean error rates are given as a
function of this factor f3, when the chromosomes are classified based on DNA
content and DNA ratio. The standard deviation in the metaphase error rate is
between 3% and 7%. The absolute differences between the mean error rates are
small. So for the classification based on DNA content and DNA ratio, there is
little advantage in taking the number of homologue pairs into account. Figure
5.3 also shows that f3 must be less than 1/8 to obtain an error rate less than
5%. Similar results may be obtained for length and centromeric index.

o taking into account
and
a not taking into account
the number of homologue

S0% pairs

T

error
rate

v 1 1 1 2
Ve /4 /2 3
Figure 5.3 Error rate as a function of f3. Monte Carlo experiment with DNA conten
and DNA ratio

The error rate at f3=1 is slightly below the measured error rate in table

5.7. This can be explained by the fact, that in this Monte Carlo experiment no
missing chromosomes or incomplete measured features were present.
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5.6 CONCLUSIONS

This thesis deals with two topics concerning DNA based features: the mean
and the standard deviation of the measured features (chapter 3 and 4) and the
classification result with these features (this chapter). The minimum error
rate depends on the distributions of the features, as these distributions and
their parameters determine the overlap, which is present between the classes.

The error rate of a particular classification method will be larger, because of
the finite learning set and the assumptions made about the distributions. In
our case the overlap between the classes - and thus the minimum error rate - is
high. Therefore more emphasis has been given to the analysis of this minimum
error rate than to the evaluation of classification methods.

In chapter 4 it is shown that the errors due to the measuring process are
less than the variations present in homologue chromosomes. The latter variations
are not only due to homologue differences, but also to errors in the
classification of the cytologist, differences in stoichiometry and other
absorbing materials in the specimen. These absorbing materials might be e.g.
carbon particles present in the Schiff reagent used to stain the preparations
or dirt adhering to the glassplates.

When only high quality metaphases are investigated, the standard deviations
will be less than when also metaphases are taken into account in which e.g.
other absorbing materials are present. We used metaphases that were not selected
and that have the normal quality of the Histochemical Department in Leyden.

We had, however, the drawback that the negatives had been stored too long before
the metaphases were scanned. Due to this storage period small air bubbles had been
formed in the embedding medium of the negatives, resulting in additional errors.

When we compare the homologue standard deviations of table 5.1 and table 5.2
to those given by Bosman (1976) (p. 64-67), we see that both measured standard
deviations are of the same magnitude. This could be expected, because partly the
same chromosomal material was used, be it with a different measuring method. When
we compare these standard deviations with those given by Mendelsohn et al. (1973)
and Mayall et al. (1975) we see that our standard deviations are slightly larger.
Comparison between different authors is difficult, because the results depend on
the material as well.

In our opinion automatic classification of chromosomes with DNA based
features in the classes of autosomes and sex chromosomes may be an aid in an
interactive karyotyping system. It gives an initial classification from which
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the cytologist may start correcting the errors. From this point of view,
classification results must be given for normal quality metaphases in which also
outliers in the features (e.g. because of other absorbing particles) must be
taken into account.

Classification results based on length and centromeric index are given by
Neurath et al. (1975) and Ing et al. (1975). Error rates range from 10% to 35%
for classification of the chromosomes in homologue pairs. The error rate we
obtained is considerable higher (53%). In our case, however, no human
intervention in the computation of the features occurred, only overlapping
chromosomes were abandoned.

Classification results based on DNA content and DNA ratio are given by
Mayall et al. (1975). Their error rate of classification in homologue pairs is
27%. The centromere position was, however, interactively adjusted by the
operator in about 20% of the cases. The error rate in our experiment is about
48%. In our case no human interaction occurred and when the centromere
position could not be located or did not meet the required criteria, the
chromosomes were only classified on DNA content.

Compared to the classification with DNA based features, banding patterns
seem to provide better classification parameters. Error rates of the
classification with banding profiles reported by Ing (1975), Granlund (1973)
and Mgller (1973) range from 3% to 23%.

When DNA based features are used for classification in homologue pairs,
it is clear that at this moment and given the culture and staining techniques
used, human interaction in the computation of the features is necessary. Even
the results obtained with human interaction as given in the literature are still
insufficient. So classification with DNA based features at this moment is of
limited use in clinical cytogenetics.

Classification is not the only or the main application of DNA based features.
The determination of variant chromosomes as can be found in e.g. polymorphism,
translocations or deletions, may be more important. Polymorphism is probably
present in chromosome 1 of subjects 3 and 4. Other applications may be found in
the field of prenatal diagnosis and chromosomal myelogeneous leukemia (see e.g.
Mayall et al. (1975)).
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SUMMARY

After a general introduction the measuring system is described in chapter 1.
This system involves a photographic step to obtain sufficient spatial
resolution .

In chapter 2 curvature measurement of quantized curves is evaluated. This
chapter is the result ofs preliminary work on length measurements of chromosomes.
Curvature measurement methods described by Gallus, Aalderink and Ledley are
investigated. The methods seem to be quite different, but an analysis indicates
that they only differ in the way in which the angular direction of the tangent
to the curve is determined.

The errors in the measured curvature are theoretically and experimentally
examined for an analytical curve resembling a small chromosome. The error
consists of two parts, one quantization part and one part related to numerical
differentiation. The error has an optimum as a function of the curve segment
length. The probability density functions of Freeman codes have been calculated
to evaluate the quantization error in the methods of Gallus and Aalderink.

The difference in the minimum curvature error between the methods of Gallus
and of Aalderink is small. In Ledley's method this error is slightly less.

In chapter 3 a description is given of a program and subroutines to
compute DNA based features. This program locates the chromosomes in scanned
metaphases and computes the DNA content and the integrated density profile of
the individual chromosomes. The chromosome regions for which the densities are
summed are obtained by expansion of the original chromosome boundaries (up to
0.7 um). The length, centromeric index and DNA ratio are obtained from the
profile. The algorithms used are described and evaluated.

In chapter 4 the different sources of error in the computation of DNA based
features are investigated. Two types, the quantization error and the
distributional error,are examined in further detail.

The influence of the intensity quantization on the DNA content is compared
for a Tinear and a Togarithmic scale. The error in the DNA content for a linear
scale has a minimum when the ratio between background and maximum intensity
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equals 1/e, but the minimum is flat. When the contrast present in the photo-
graphic negative fits the density range of the logarithmic scale well, this
scale gives the smallest error. When the contrast present in the negatives
varies to a large extent, a linear scale is preferable.

The magnitude of the distributional error for the grid constants used,
proved to be relatively small compared to the other sources of error. The
photographic process does increase the coefficient of variation with respect
to the variation introduced by the quantization noise and the noise in the
photosensitive device. The homologue variations in the features are, however,
larger than the photographic and other errors.

In chapter 5 the measured mean values and standard deviations of the
features are determined for five subjects. At least six metaphases of each
subject were scanned.

Classification results with these features are given both for a
classification in homologue pairs, and for a classification in the Denver system.
The error rate of classification based on DNA content and DNA ratio is 48% in
the homologue pairs and 7.7% in the Denver system. The error rate of
classification based on length and centromeric index is 53% in the homologue
pairs and 14.6% in the Denver system. Compared to the Titerature these values
are relatively high, but in our case there was no human interaction in the
computation of the features.

Only a sTight improvement is obtained when we take the number of homologue
pairs into account for the classification.

We conclude that classification with these DNA based features may only be
a first step in an interactive karyotyping system, given the culture and
staining techniques used. A more important application of DNA based features
may be the detection of variant chromosomes such as found in polymorphism,
translocations or deletions.
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SAMENVATTING

Na een algemene inleiding wordt in hoofdstuk 1 het meetsysteem beschreven.
In dit systeem is een fotografische tussenstap aanwezig om voldoende spatiéle
resolutie te verkrijgen.

Hoofdstuk 2 behandelt een evaluatie van het meten van de kromming van
gediscretiseerde contouren. Dit hoofdstuk vormt het resultaat van een inleidend
onderzoek naar lengtemetingen aan chromosomen. In dit onderzoek zijn de methoden
van Gallus, Aalderink en Ledley om de kromming te bepalen vergeleken. Ogenschijn-
1ijk verschillen deze methoden sterk van elkaar, maar ze blijken na analyse
slechts in de wijze waarop de hoekrichting van de raaklijn aan de contour wordt
bepaald niet overeen te stemmen.

De fout in de gemeten kromming is theoretisch en experimenteel onderzocht
voor een analytische kromme, die op een klein_chromosoom 1ijkt. De fout kan
gesplitst worden in een kwantiseringsfout en een fout die verband houdt met
numerieke differentiatie. De fout heeft een minimum als functie van de lengte
van het beschouwde contour segment. De kwantiseringsfout in de methode van
Gallus/Aalderink is berekend met behulp van de verdelingsdichtheden van
Freeman codes.

De minimale fout in de krommingsberekening volgens Ledley is iets kleiner
dan die in de berekening volgens Gallus of Aalderink, waarvan de minimale
fouten onderling zeer weinig verschillen.

In hoofdstuk 3 wordt een beschrijving gegeven van het programma met de
bijbehorende subroutines om kenmerken te berekenen, die op DNA gebaseerd zijn. Dit
programma localiseert de chromosomen in afgetaste metafasebeelden en berekent de
DNA-1inhoud en het geintegreerde dichtheidsprofiel van de individuele chromosomen.
De gebieden van de chromosomen, waarover de dichtheden worden gesommeerd, worden
verkregen door uitbreiding van de oorspronkelijke begrenzingen van het
chromosoom (tot 0.7 um). De lengte, de centromeerindex en de DNA-ratio worden
berekend uit het dichtheidsprofiel. De algorithmes, die zijn gebruikt, worden
beschreven en geévalueerd.

In hoofdstuk 4 worden de verschillende foutenbronnen in de berekening van
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op DNA berustende kenmerken onderzocht. De kwantiseringsfout en de distributie
fout worden nader bekeken.

De invloed van de intensiteitskwantisering op de DNA-inhoud is vergeleken
voor een lineaire en Togarithmische schaal. De fout in de DNA-inhoud voor een
lineaire schaal heeft een minimum als de verhouding van de achtergrond en
maximale intensiteit gelijk is aan 1/e. Dit minimum is vlak. Als het contrast,
dat in de negatieven aanwezig is, goed overeenkomt met het gebied van de
logarithmische schaal, geeft een logarithmische schaal de kleinste fout. Als
het contrast tussen de negatieven aanzienlijk varieert, verdient een lineaire
schaal de voorkeur.

De grootte van de distributiefout is betrekkelijk klein vergeleken met de
andere foutenbronnen voor de gebruikte rastergroottes. Het fotografische proces
vergroot de specifieke variatie, vergeleken met de specifieke variatie veroor-
zaakt door de kwantiseringsruis en de ruis in de fotodiode. De gevonden homologe
variaties in de kenmerken zijn echter groter dan de variaties, die veroorzaakt
worden door het fotografische proces en de andere optredende fouten.

In hoofdstuk 5 worden de gemeten gemiddelden en standaardafwijkingen in de
kenmerken gegeven voor vijf proefpersonen. Van iedere proefpersoon zijn minimaal
zes metafasen afgetast.

Klassificatieresultaten met deze kenmerken worden gegeven voor zowel
klassificatie in de homologe paren als voor klassificatie in de groepen van het
Denver systeem. Het foutenpercentage gebaseerd op DNA-inhoud en DNA-ratio
bedraagt 48% voor klassificatie in homologe paren en 7,7% voor klassificatie
in het Denver systeem. Het foutenpercentage gebaseerd op lengte en centromeer-
index bedraagt 53% voor klassificatie in homologe paren en 14,6% voor
klassificatie in het Denver systeem. Vergeleken met de Titeratuur zijn deze
foutenpercentages betrekkelijk hoog, maar in ons geval is er geen menselijke
tussenkomst in de berekening van de kenmerken toegepast.

Rekening houden met het aantal homologe paren dat in een metafase aanwezig
is, geeft slechts een beperkte verbetering.

De konklusie is dat klassificatie gebaseerd op deze DNA-kenmerken alleen
een eerste stap in een interaktief karyotyperend systeem kan vormen, bij de
gebruikte kweek- en kleuringstechnieken. Het opsporen van variante chromosomen
zoals die voorkomen bij polymorfisme, translocaties of deleties is wellicht een
meer belangrijke toepassing van deze kenmerken.
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APPENDIX A

SOME ASPECTS OF HUMAN CYTOGENETICS

Chromosomes carry the genetic information in the DNA (deoxyribonucleic acid)
molecule. DNA was isolated from salmon sperm cells for the first time in 1868 by
Friedrich Miescher. In 1962 Crick, Watson and Wilkins (Wilkins (1964)) discovered
the double helix structure of DNA. The bridges between the bases in the double
helix consist of Cytosine (C) - Guanine (G) and Thymidine (T) - Adenine (A)
combinations. The genetic information is present in the sequence of these bases
in the DNA.

The meiosis preceeds the formation of the genetic cells. The 46 normal
human chromosomes may be arranged into 22 homologue pairs of autosomes and two
sex chromosomes. The chromosomes are distributed over the two resulting cells at
the meiosis. If everything passes off correctly, each daughter cell receives a
sex chromosome and one chromosome of each homo1ogue pair, in total 23
chromosomes (haploid cell). During the impregnation again a cell of 46
chromosomes is formed. Of each homologue pair of chromosomes one chromosome is
obtained from the father sperm cell and one chromosome was present in the egg
cell of the mother.

Human chromosomes can be visualized during the metaphase of the mitotic
division. The metaphase is that part of the normal cell cycle that immediately
precedes the division of the cell into two daughter cells. In this phase the
chromosomes condense into discrete objects with lengths from 2 to 20 um.

Human cytogenetics became important between 1950 and 1960, when Tjio and
Levan (1956) revealed the correct number of chromosomes in man and the first
aberration: Down's syndrome with a trisomy of one chromosome was discovered
by Lejeune (1959).

In the early sixties, human cytogenetics made rapid progress. Besides
trisomy other aberrations were found like deletions ('cri du chat' syndrome)
and translocations, where a part of one chromosome is transferred to another
chromosome. The rapid progress seemed to come to an end, because no
differentiating staining methods were available to identify and localize
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individual regions in chromosomes. Nor were easily operational measuring
devices available to study structural details rapidly and with high spatial
resolution.
At that time it was only possible to determine numerical aberrations like
chromosome - mosaicism, large structural aberrations and chromosome damages.
Although autoradiography gave some improvements in the identification of
some special chromosome (e.g. X-chromosome), it did not yield essentially new
developments in the chromosome analysis. The process of autoradiography,
consisting of the labeling with radioactive bases, is difficult and laborious.
The identification of the chromosomes was based on the 1ength measurements.
Chromosomes were karyotyped according to the Denver conference (1960), where the
human chromosomes were arranged into seven distinct groups. A further improvement
of this classification was given at the London conference (1963) and the Chicago
conference (1966).
Chromosome structures were also studied on a more fundamental basis. It was
expected that cytochemical research would contribute much to the knowledge
of cell differentiation and cell function, like the regulation of the gene
function.

In 1968 a new impulse in human cytogenetics had come when Caspersson started
a research with the idea that anti-Teukemic chemotherapeutics could probably bind
specifically to one of the bases in DNA. Applying quinacrine mustard to metaphase
preparations, Caspersson et al. (1968) observed a banding pattern along
chromosomes. It is assumed that the bands are AT-rich regions of the chromosome
and that GC-rich regions are present between the bands.

Very soon after this discovery other reagents were found, which gave a
banding pattern too, Tike the G, C, R and T banding techniques, described by
Hsu (1973), Schnedl (1973) and Dutrillaux (1973). The importance of these banding
patterns for cytodiagnosis was established at the Paris conference in 1971, where

a new karyotyping of individual chromosomes was based on these patterns
(Hamerton (1973)).




APPENDIX B

THE QUANTIZATION PROCESS (0BQ) AND THE VALUE OF THE FREEMAN CODE
DIFFERENCE

In section 2.2 we made the restriction that a curve is never allowed to pass
between two neighbouring grid nodes more than once (no narrow gap). The Object
Boundary Quantization process with this restriction is identical to the contour-
tracing algorithm used here. This contour-tracing algorithm scans the points
of the quantized image. It tests the eight neighbours of the last found contour
point in a clockwise direction, until the first one of two successive scanned
neighbours is a background point and the next one is an object point. This
implies that tHe original curve must have intersected the grid between these two
nodes. The object point of the two is marked as contour point.

When we do not make the restriction in the OBQ, the original curve may pass
twice between two nodes for a narrow gap. In this case a difference f'(i) in
Freeman code values of -2 or -3 should be obtained, as is illustrated in figure
B.1b and B.lc. When these situations occur the information about the gap is lost
in the quantization process, because the quantized image of an object with a
narrow gap is the same as the quantized image of an object without a gap
(figure B.la). The gap will not be detected by the contour-tracing algorithm,
because in the algorithm it is assumed, that between two object points a curve
will never pass.

In the Object Boundary Quantization process (with or without the restriction)
it is impossible to obtain f'(i) = -4. For this narrow gap (illustrated in figure
B.1d) both nodes (pandq) of the intersection with the grid will be selected as
contour points because they are both object points. This results in different
coming and going paths and for f'(i) = -4 these paths must be identical.

For f'(i) = -2, there is only one possible situation given in figure B.le.
As f'(i) = -4 and f'(i) = -3 will never occur, the possible values for
f'(i) are
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Figure B.1 (Not) occurring Freeman code differences for narrow gaps.
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APPENDIX C

THE A PRIORI PROBABILITY P(¥) THAT SEGMENTATION WILL CREATE A CURVE
SEGMENT WITH ANGULAR DIRECTION ¥

It is assumed that the position of a curve in relation to the grid is
random. For the universe of all curves, the total length of all curve segments
with an angular direction ¢ will be constant and independent of ¢. A curve is
divided by the grid intersections into a large number of curve segments. We
assume that the curve may be approximated by a straight line in a column (or
row) of the grid. The length of the curve segments contained in a column or row
of the grid depends on ¢. So the probability p(¢) that a curve segment lies in a
grid column or row depends on ¢.

We will investigate the situation 0°<¢ < 45°, Other situations are similar
and can be obtained by rotation and reflection. We will calculate the probability
that the curve segment lies in a grid column for this situation illustrated in
figure C.1.

v

no f
1////// Figure C.1 Intersected line segment

f:1 A /

O\
\
g \
N
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The Tength of a line segment contained in a column is h/cos . Such a line
segment results in a Freeman code 0 or the combination of a Freeman code 1 and no
Freeman code, until it intersects the next column. For the universe of all
curves p(y) times this length must be constant. So p(y) is proportional to
cos ¢. Integration of p(y) from 0%to 45° must give 1/8, so normalization of p(y)
results in

p(¥) =1§cos 05 (C.1)

0°< p < 459,

Each intersection between a column and a line segment results in a Freeman
code. The length of the line segment contained in the column is h/cos ¢. So the
expected length L of the real curve related to a Freeman code is

m/4
L=8O/ P() ooy G0 = T V2 1. (C.2)
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APPENDIX D

VARIANCE IN THE ESTIMATED CURVATURE WITH THE CORRELATION TAKEN INTO
ACCOUNT (n=1, B=0)

The estimated curvatures by the method of Gallus/Aalderink and by Ledley's
method are the same in the case n=1, B=0. The estimated curvature ¢(i) is given
in this case as (equation (2.17b) and 2.19)

6(i) = v bg f(1) - 7 F(i-1)1. (D.1)
The variance in ¢(i) is given as

var(i)l = (&)2[2 var[f(i)] - 2 covIf(i), f(i-l)]. (0.2)

2

In section 2.5 var(®P) =(%) var [f(i)] was given in equation (2.31) as

var (@) =(%)2 var [f(i)] = (%)Zﬁ[l-ln(u/f)]. (.3)
Assuming that the curve segments may be approximated by a straight line,
covif(i),f(i-1)] is calculated. We will restrict ourselves to 0° <¢ < 459, as
other cases can be obtained by rotation and reflection. When 0° <y <45° two
essentially different situations exist, (a: 0 <¢ < arctan 0.5,
b: arctan 0.5 <y <45°), illustrated in figure D.1.
Assuming that y is uniformly distributed between 0 and h, the probability
of occurrence of two Freeman code values is

a: 0 < ¢<arctan 0.5

pl f(i-1)=0,f(i)=0 |v 1 = 1-2 tan v
pl f(i-1)=0,f(i)=1 |¢' ] = tan ¢ (D.4a)
pl f(i-1)=1,f(i)=0 |¢ ] = tan ¢
pl f(i-1)=1,f(i)=1 |¢ ] = 0
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Figure D.1 Situations for two successive Freeman codes (0 <¢ < 450)

b: arctan 0.5 <¢ < 45°

pl f(i-1)=0, f(i )0 | ¢ 1 =0
pl f(i-1)=0,f(i)=1 | ¢ ] = 1-tan ¢ (D.4b)
pl f(i-1)=1,f(i)=0 | ¢ 1 = 1-tan ¢
pl f(i-1)=1,f(i)=1 | ¢ ] =2 tany -1
covl f(i),f(i-1) | ¢ 1 = &[ f(i),f(i-1) | ¢ ] - &[ (i) | o 1° (D.5)

As only the case f(i-1)=1,f(i)=1 gives a contribution to &[ f(i),f(i-1) | ¢ 1,
we obtain

&[ f(i),f(i-1) | ¢ 1 = pl f(i-1)=1,f(i)=1 | 9 1. (D.6)

Combination of equations (D.6), (D.4a) and (D.4b) gives

&l f(i),f(i-1) | ¢l =0 if 0° <y <arctan 0.5 (D.7)
&l f(i),f(i-1) | ¢ 1 = 2 tanp-1 if arctan 0.5 <y <459,
&[ f(i) | ¢ ] can be calculated from equation (2.25) of chapter 2. Combination
with equation (D.5) and (D.7) gives
covl F(i),f(i-1) | ¢ | = -tan® ¢ if 00 < rctan 0.5

¢;<a
covl f(i),f(i-1) | o 1 = -(tan p-1)% if arctan 0.5 < ¢ < 45°,

(D.8)
With p(p) given in equation (C.1) (Appendix C) cov(f(i),f(i-1)] is
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m/h
cov[ f(i),f(i-1)1=v2 f (2tanp-1)cospdy - VZ /
0

arctan 0.5

or

cov[ f(i),f(i-1)1=-[2 + vZ In(1+/2) - VI0O] = -8.42 .

Combination of equations (D.2), (D.9b) and (D.3) gives

$ e 8 2 2
var3(i)] = (ggr)2/Z+2-/101 = 0.3108/A'%.
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APPENDIX E

ARC LENGTH AND GRID ELEMENT AREA OF THE SECOND ORDER POLYNOMIAL
The arc length of a curve ¢ is given by equation (2.3) of chapter 2

dc dc
f \/ — dt (E.1)

with to an arbitrary starting point.

When the parameter t is substituted by x', we obtain for the second order
polynomial given by equation (3.8)

dc
T = (1, 29;x" +qy) (E.2)

and

Xt 5
[ V1 + (2q;x" + q,) dx". (E.3)

This integral is

[(2q1x +q,) ) 1+ (2g;x' +q2) + In[(29;x"+q, ) \ 1+(29;x"'+q,) ]]
(E.4)

if -q2/2q1 is taken as arbitrary starting point xé.

When 9, is substituted by -2q1x6 in equation (E.4) s(x') is

s(x') = HT%[qu(x'-xc'))\1+4q§(x'-x(‘))2 + In[ 20, (x'-x}) + \/'1+4qf(x'-x6)2]].

(E.5)
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GRID ELEMENT AREA
The area a of a grid element at distance y" of-the parabola is (Cf. figure E.J

a =g (rp#rp) (ry-ry) (E.6)
in which'ry + r, =2 (R-y")
Py =T = R (E.7)
g =l
o "2 yll
soa = h'e (1 - %), (E.8)

The curvature k of a parabola yp= qlx'2 +qx' + g5 is

1 29, (£.8)
K == =
R | 2-3/2 * :
[1+(2q1x+qZ) ] /
Combination of equation (E.8) and (E.9) gives
a = W21 - 2q)y"/ +(20,x" + q,)%13/7]. (E.10)

second
order
polynomial

R=radius of curvature

Figure E.1 Grid element of the second order polynomial
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APPENDIX F

DISTRIBUTIONAL ERROR

The integral was given in section 4.5 by equation (4.29) and (4.26):

~ 1 h/2 h2 o I
DNA(k,1) = / / log = (l+bx+cy)dedy (F1)
kY hy2 -h/2 Ty

which may be split up into

N 10
DNA(k,1) = D, + D, —23 €

1 2 kay
with
h/2 h/?2 I 2 I
1 / [ 10 k1 h“ 10 k1
B = log dedy = log — (F2)
17K nye -h/2 Iy %7 Iy

and

h/2 h/2
D, = / f In(1+ba+cy)dady .
-h/2 -h/2

Integration of D2 with respect to = gives:

h/2
dy (F3)

-h/2

n
o=

h/2
h/z'/ |(1+bx+cy)]n(l+bx+cy)—(1+bx+cy)

which may be split up into

Dy=-DI+ D

p = D3+ Dy +Dg
with
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h/2
1 bh
D4=E-h/2/ (1+%|1+Cy)1n(1+—2—+CH)dy

h/2
Dg __l-h/zf (1 '—beJrCy)]n(l _Pzrl+cy)dy.

I
o

Integration of D4 with respect to y gives

e [0 PG

bh  ch ] 1 he

bh _ ch,2 - e - (F.4)

iy i rg-g)

- g g ch
A similar result may be obtained for D5. Suppose b —2— and c' = = 5 then D2

may be rewritten as

2

1 I2
02=-%h +?T1)E[(l+b+c)

In (1+b‘+c')—(1+b'-c')2 In (1+b'-c') +

2

- (1-b'+c")% Tn (1-b'+c')+(1-b'-c')? In (l-b'-c')]. (F.5)

For -1 <x <1 1In(l+x) may be expanded as

In(1+x) = _Ei (-1 X _ (F.6)

So assuming that -1 <+ b'tc' <+, D, may be expanded as

. PR
2 1)|+1 gb:rc ) )+

D, = - % h™ + »po [(1+2(b'+c')+(b'+c') ) (

s

I ERYE

~(1#2(b'~c")+(b'-c")?)( L e )+ (F.7)

2

(1e2(-b et ye(-breet) D) (3 (1)1 LEN

.i

: by
(_1)|+1 (-b ;C ) )]

b

u.M 8 1M 8

+(142(-b"-c" )+(~b'-c")2)(

136




This expansion may be rewritten as:

g £ 3 Laltise Bt it i aiad Vo 2i
Dy = -0 +95¢ E]-T<b+c)‘-7<b+c)”+ A L
1| |2‘ ]-I l22 4 1 I2.
+3(b'-c") "+ (b'-c)M -m(b-c)‘]. (F.8)

Equation (F.8) may be rewritten as

& 5hb e’ 1

3 < 1 o -
o i Barons T '?EEZT(’Z?_W fay Lbseet)

- (b'-c)?T) . (F.9)

Or combined with equation (F.2) to obtain DNA(k,])

DNA(K,1) = h® 10354 K1 _ ®log e S ok L(bre)? - (b))
%7 Iy KaY =2 2%V4(i-1)(2i-1) be
(F.10)
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LIST OF SYMBOLS

a area of a grid element m2
A constant
A approximated length between the centres of the
leading and trailing curve segment
A area of the measuring field m2
b density gradient m L
b' constant
B half the number of Freeman vectors between the
leading and trailing vector
B1 cutt-off pqrameter of the differentiating
low-pass filter
c density gradient m L
€ curve
¢’ constant
cl/c4 coefficients interpolation function m/m-2
Ca average chromosome chromophore concentration kg m—2
Cmax maximum chromosome chromophore concentration kg m_2
d optical density at preparation
D optical density at negative
Da average chromosome density at negative
Db background density at negative
Dbp background peak density at negative
DC minimal chromosome density at negative
DL dissection level density at negative
D1 constant kg
DZ/DS constants m2
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DNA
DNAL

DNA(k,1)
DNA(k,1)

ADNA

ADNAL

€ = (el, e

fl

f1s T2 3

%
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DNA content of a chromosome
DNA content of the chromosome longer arm

DNA content contained in the measuring spot at
position (k,1)

DNA content contained in grid element (k,1)
without distributional error

error in the DNA content of a chromosome

error in the DNA content of the chromosome
longer arm

N-tuple of the allocated classes

total error

quadratic error due to numerical differentiation
intensity of illumination

expectation

Freeman code

Freeman code difference

density units of the Togarithmic scale
fractions

second order polynomial function
density gradient at grid element (k,1)

th group of chromosomes

k
grid constant scan grid

grid constant requantization grid

grid constant at the second order polynomial

optical transfer function

exposure

integer

transmitted intensity (luminous flux) at preparation

background intensity (Tuminous flux) at preparation

intensity (luminous flux) at position (k,1) of
preparation

kg
kg
kg
kg

kg
kg

1x

1x s

Tm

m




I
max

intensity (Tuminous flux) at preparation
corresponding to Imax

incident intensity (luminous flux) at preparation
transmitted intensity (lTuminous flux) at negative

intensity (luminous flux) at the centre of the
grid element (k,1)

maximum measured intensity (luminous flux) at
negative

incident intensity (Tuminous flux) at negative
integer

glare

first order Bessel function

specific absorptivity

constant first microscopic system

number of features

integer

likelihood function

p,q moment of the chromosome density distribution
mass of chromophore present in measuring field

mass of chromophore present in measuring field
in the background

mass of chromophore present in measuring field
at position (k,1)

number of Freeman code values of the Teading
(or trailing) vector

number of background points

total number of chromosome points
number of metaphase scans

number of chromosomes in group Gy
number of quantization levels
numerical aperture

number of objects in a set

m
m

m
m

Tm

m

P+

kg

kg
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number of objects in class i

diameter measuring spot m
probability density function

DNA based profile

profile value at the centromere position

coefficients of the second order polynomial m ~/m
number of classes

radii m
radius of curvature

DNA ratio

error in the DNA ratio

arclength m
Ledley's approximation of the arclength of a

parabola m
inverse arclength m

estimated variance

estimated variance in group Gk of metaphase scan j
allowable curve parameter

tangent to a curve

starting value of t

exposure time S
N-tuple of feature vectors

feature vector of chromosome i

feature value of chromosome i in metaphase scan j
smoothed Freeman code difference

weight coefficients

weight coefficient differences

DFT of w

DFT of w'




TR A S0 h e

(6]
Ax!
XC

X

Ys ¥s ¥'s Y

“’“kj)

coordinates

x' coordinate of parabola top position
error in the centromere position
coordinates

y' coordinates of the second order polynomial
coordinate

constant of photographic emulsion

angle

gamma of photographic emulsion

Kronecker symbol

noise present in curvature at position (i)

point on the curve segment bounded by the ith

Freeman vector

normalization factor DNA content

rotation angle

angle between leading and trailing vector
curvature

approximation of the curvature by Ledley's method
maximum curvature

wavelength

loss function

mean feature vector of class j

points on the trailing curve segment
points on the leading curve segment
conditional risk

spatial frequency

correlation coefficient of class j
standard deviation of D

standard deviation of éG/A without correlation

rad m L

kg
rad
rad
rad m
rad m-

rad m~

rad m
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standard deviation of éG/A with correlation
standard deviation of éL without correlation

standard deviations of the curvature extrema
positions

standard deviation of the DNA content
covariance matrix of the features of class j
N-tuple of class indications

angular direction of a segmented Tine element
angular direction of the tangent to the curve
angular direction of the leading vector
angular direction of the trailing vector

approximation of the curvature by the method of
Gallus/Aalderink

approximation of the curvature by Ledley's method
measured curvature

maximum curvature

éG/A without quantization errors

¢L without quantization errors

angular direction of a Freeman vector or a grid
vector

normalized DNA content of chromosome 1
number of misallocations
parameter analytical chromosome

class j

rad m

rad m”

kg

rad
rad
rad

rad
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10

Het valt te betwijfelen of klassificatie resultaten voor elk van de chromo-
somen, gebaseerd op DNA-inhoud en DNA-ratio, steeds beter zijn dan die
gebaseerd op lengte en centromeer-index. (Dit proefschrift)

Bij het aftasten van negatieven met een sterk variérend kontrast is een
lineaire kwantiseringsschaal te prefereren boven een logarithmische kwantise-
ringsschaal. (Dit proefschrift)

Even en oneven freemancodes zijn niet even waarschijnlijk. (Dit proefschrift)

Foutenpercentages van klassificatiemethoden zeggen soms meer over de gebruikte
verzameling leer- en testobjecten dan over de klassificatiemethode.

Het gebruik van één verzameling leer- en testobjecten om klassificatiemethoden
te vergelijken, is af te raden.

Een hechter samengaan van optische en digitale beeldbewerking is wenselijk,
hetgeen als een nieuwe vorm van hybried rekenen kan worden beschouwd.

Het verdient aanbeveling om in het belichtingsregelsysteem van automatische
fotocamera's met lange belichtingstijden en z.g. computerflitsers met zeer
korte be]ichtingstijden een gemiddelde correctie voor de reciprociteits-
afwijking op te nemen.

De afbeelding van kinderen op Romeinse munten heeft vaak een symbolische
betekenis.

De feitelijke organisatiestruktuur van veel woningbouwverenigingen is een
basis voor onverantwoorde beslissingen.

Zolang de reformatorische kerkgenootschappen in Nederland het muzikale
gedeelte van de eredienst niet erkennen als een wezenlijke bijdrage in de
uiting en de vorming van het geestelijke leven van de plaatselijke gemeenten,
zullen zij niet komen tot het stellen van eisen, waaraan de kerkmusicus

moet voldoen, hetgeen een noodzakelijke voorwaarde is voor de regeling van
zijn positie met betrekking tot en binnen die kerkgenootschappen.




11 Uit oogpunt van geestelijke volksgezondheid is het niet wenselijk dat
telefoonaansluitingen in nieuwbouwwijken sterk vertraagd worden aangebracht

ten opzichte van de oplevering van de woningen.

12 Lange vrachtwagencombinaties dienen op grond van de verkeersveiligheid

binnen de bebouwde kom van dorpen te worden geweerd.

13 Het in beschouwing nemen van het al dan niet gepoetst zijn van de schoenen
van een sollicitant is een blijk van gebrek aan andere criteria.
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