{* A CityJSON: does (file) size matter? The compression of 3D city models in the CityJSON encoding

Jordi van Liempt MSc Geomatics P5 presentation

Hugo Ledoux Balázs Dukai Ken Arroyo Ohori Willem Korthals Altes

Contents

- Introduction (motivation and CityJSON)
- Theory/related work on compression
- Methodology
 - Benchmark results
 - Conclusion/discussion

Introduction: motivation

- Possibilities 3D city models increasingly explored
- Geoinformation on the web is popular
- Files can become massive, network speed can be a bottleneck
- Therefore: compression of CityJSON

📱 Building

b11267a1d-00ba-11e6-b420-2bdcc4ab5d7f

🧪 Edit 🗙

20 Attributes
A 1 Geometries

bgt_status	bestaand			
bronhouder	G0503			
creationdate	2014-07-09			
eindregistratie				
hoek	(1:32.7)			
identificatiebagpnd	50310000004048			
identificatiebagvbohoogstehuisnummer				
identificatiebagvbolaagstehuisnummer	(1:503010000027095)			
inonderzoek	0			
lokaalid	G0503.032e68f0085849cce0532ee22091b28c			
lv_publicatiedatum	2016-04-12T11:54:23.000			
measuredHeight	7.6399998664856			
min-height-surface	-0.0199999995529652			
namespace	NLIMGeo			
plaatsingspunt	(1:84841.951447542.723)			
plus_status	geenWaarde			
relatievehoogteligging	0			
tekst	(1:168)			
terminationdate				
tijdstipregistratie	2016-03-15T12:02:49.000			

Introduction: research

- Different use cases for 3D city models on the web
- To what extent can the implementation of different compression techniques improve CityJSON's performance on the web, considering **file** *size, visualisation, querying, spatial analysis,* and *editing* performance?

-	Follows the CityGML data model	1st-level city objects	2nd-level city objects
-	But: on average 6x smaller	Building Bridge CityObjectGroup CityFurniture	BuildingPart BuildingInstallation
		GenericCityObject LandUse PlantCover Railway	BridgePart BridgeInstallation BridgeConstructionElement
	Wavefront OBJ-style geometries	Road SolitaryVegetationObject TINRelief TransportSquare Tunnel	TunnelPart
		WaterBody	TunnelInstallation

{

Highlighted: attributes geometry

"type": "CityJSON", "version": "1.0", "CityObjects": { "b0a8da4cc-2d2a-11e6-9a38": { "type": "BuildingPart", "attributes": { "creationdate": "2014-07-09", "terminationdate": "", "function": "garage" }, "geometry": ["type": "Solid". "boundaries": [[0, 1, 2],[1, 2, 3], [1, 3, 4], [0, 1, 4]"lod": 2, **}**. "parents": ["b0a8da4cc-2d2a-11e6-9a39 ·" 1 }, "b1105d28c-00ba-11e6-b420": {..}, "b1126a169-00ba-11e6-b420" {..} }, "vertices": [..]

"type": "CityJSON", "version": "1.0". "metadata": {..}, "CityObjects": {..}, "vertices": [85012.343. 447455.577, -0.27 1. 85010.804, 447448.808. -0.27 1. 85013.832, 447447.447, -0.27 1. . . .

{

Highlighted: attributes geometry

"type": "CityJSON" "version": "1.0", "CitvObjects": { "b0a8da4cc-2d2a-11e6-9a38": { "type": "BuildingPart", "attributes": { "creationdate": "2014-07-09", "terminationdate": "", "function": "garage" }, "geometry": ["type": "Solid". "boundaries": [[0, 1, 2],[1, 2, 3], [1, 3, 4], [0, 1, 4]"lod": 2, **}**. "parents": ["b0a8da4cc-2d2a-11e6-9a39 "1 }, "b1105d28c-00ba-11e6-b420": {..}, "b1126a169-00ba-11e6-b420" {..} vertices": [.

"type": "CityJSON", "version": "1.0", "metadata": {..}, "CityObjects": {..}, "vertices": [85012.343. 447455.577, -0.27 1. 85010.804, 447448.808. -0.27 1. 85013.832, 447447.447, -0.27 1. . . .

Highlighted: attributes geometry

"type": "CityJSON", "version": "1.0", "metadata": {..}, "CitvObjects": {..}, "vertices": [85012.343. 447455.577, -0.27 1. 85010.804, 447448.808. -0.27 1. 85013.832, 447447.447, -0.27 1. . . .

Highlighted: mandatory members

```
"type": "CityJSON",
"version": "1.0",
"CityObjects": {..},
"vertices": {..},
"metadata": {
    "geographicalExtent": [
        84616.468,
        447422.999,
        -0.47,
        85140.839,
        447750.636,
        13.8
        1.
    "referenceSystem": "urn:ogc:def:crs:EPSG::7415"
 'transform": {
    "scale": [
        0.001,
        0.001,
        0.001
        1.
    "translate": [
        84616.468,
        447422.999,
        -0.47
```

Theory: compression

- Reduction of redundancy vs. (de)compression speed
- Lossy vs. lossless
- General-purpose vs. specific purpose
- Transmission time gain > (de)compression time

Theory: zlib

Lempel-Ziv 1977 and Huffman coding

Theory: zlib

Lempel-Ziv 1977 and Huffman coding

Char	Freq	Code
space	7	111
a	4	010
е	4	000
f	3	1101
h	2	1010
i	2	1000

Theory: attribute replace

Theory: attribute replace

Theory: attribute replace

Theory: binary JSON

- JSON has key-value structure, human-readable
- But: binary files are concise and processed faster
- CBOR is one binary encoding for JSON
- Binary code for data type and length of data

Related work: Draco

- ---> Draco library for improved storage and transmission of 3D graphics
- Different compression levels, metadata
 - Quantisation, Edgebreaker, parallelogram prediction, delta encoding

Methodology: tested CityJSON variants

	Original geometry	Draco geometry
1	original	draco
2	original-zlib	draco-zlib
3	original-cbor	draco-cbor
4	original-cbor-zlib	draco-cbor-zlib
5	original-replace	draco-replace
6	original-cbor-replace	draco-cbor-replace
7	original-cbor-replace-zlib	draco-cbor-replace-zlib

Methodology: benchmarking

Results: notes

Performance improvement: function of file size and (de)compression time

Lossiness: all techniques used are lossless

Box plots: variability in datasets

Results: visualisation

Time benchmarks for operation visualise with compression in advance

Results: visualisation

Results: visualisation

Boxplots with overview of results, averaged over all operations, compression in advance

Boxplots with overview of results, averaged over all operations, compression in advance

Boxplots with overview of results, averaged over all operations, compression on the fly

Boxplots with overview of results, averaged over all operations, compression on the fly

Discussion

Alternatives: **b3dm** and **I3S**

- Created for high (visualisation) performance
- CityJSON much easier to use, and should be kept like that!
- Compression can be beneficial, but needs some further investigation
- 3DCityDB, streaming?

References (important ones)

- CBOR. Concise Binary Object Representation (CBOR), 2013. URL https://tools.ietf.org/html/rfc7049.
- Dcoetzee. File:Huffman tree.svg, 2007. URL https://commons.wikimedia.org/wiki/File: Huffman_tree.svg.
- Google. Draco 3D data compression, 2019b. URL https://google.github.io/draco/.
- D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.
- H. Ledoux, K. Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis. CityJSON: A compact and easyto-use encoding of the CityGML data model. Open Geospatial Data, Software and Standards, 4 (1):4, 2019.
- J. Rossignac, A. Safonova, and A. Szymczak. Edgebreaker on a corner table: A simple technique for representing and compressing triangulated surfaces. In Hierarchical and geometrical methods in scientific visualization, pages 41–50. Springer, 2003.
- G. Taubin, W. P. Horn, F. Lazarus, and J. Rossignac. Geometry coding and vrml. Proceedings of the IEEE, 86(6):1228–1243, 1998.
- zlib. zlib A Massively Spiffy Yet Delicately Unobtrusive Compression Library, 2020. URL https: //zlib.net/.

Extra slides

Relevant work: b3dm

- Batched 3D Model
- Cesium 3D Tiles
- Feature table, batch table, gITF
- Mix of JSON/binary
- Attributes: "height" : [10.0, 20.0, 15.0]
- But: feature template

Relevant work: I3S

- Indexed 3D Scene Layer
- Heterogeneous features (3D meshes and point clouds)
- Also tiles, but other specification
- Mix of JSON/binary
- CRS per node

Relevant work: streaming

File size in MB of different streaming implementations

```
{
    "type": "CityJSONFeature",
    "id": "myid", //-- to clearly identify which of the CityObjects is the "main" one
    "CityObjects": {},
    "vertices": [],
    "appearance": {},
}
```

Dataset	collection	collection-cbor	collection-cbor-draco	collection-cbor-draco2
Delft	1.2	0.7	0.6	0.6
Den Haag	3.3	2.4	2.4	2.3
Rotterdam	3.9	2.5	2.6	2.6
Montréal	5.4	3.5	2.9	2.9
Singapore	54.5	34.4	32.1	32.1
TU Delft campus	70.6	41.8	25.5	25.5
New York	109.8	69.7	70.2	70.2
Zürich	284.2	182.5	163.2	165.6

Theory: quantisation

- Lossy—complete vertices and precision
- Coordinates close to each other are mapped to 1 of these coordinates

85016.719, 447470.356, 0.357 85016.643, 447470.446, 0.358 85016.780, 447470.352, 0.402

85016.643, 447470.446, 0.358

Theory: edgebreaker

- Compresses mesh connectivity
- Mesh -> triangle spanning tree -> CLERS string
- Decompression: triangle edges zipped based on CLERS character

Theory: parallelogram prediction

- Storing error of prediction instead of full coordinate
- Parallelogram rule

Methodology: testing platform

Distribution of file size multipliers depending on method and dataset size

Encode times with all compression types