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Path planning for first responders in the presence of moving
obstacles with uncertain boundaries

Zhiyong Wang, Sisi Zlatanova, Peter van Oosterom
Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 BL, Delft, The Netherlands

In this paper, we study the path planning for first responders
in the presence of uncertain moving obstacles. To support the
path planning, in our research we use hazard simulation to
provide the predicted information of moving obstacles. A major
problem in using hazard simulation is that the simulation
results may involve uncertainty due to model errors or noise in
the real measurements. To address this problem, we provide an
approach to handle the uncertainty in the information of
moving obstacles, and apply it to the case of toxic plumes. Our
contribution consists of two parts: 1) a spatial data model that
support representation of uncertain obstacles from hazard
simulations and their influence on the road network; 2) a
modified A* algorithm that can deal with the uncertainty and
generate fast and safe routes passing though the obstacles. The
experimental results show the routing capability of our
approach and its potential for the application to real disasters.

Index Terms—Data model,
Uncertain moving obstacles

Route planning, Algorithm,

I. INTRODUCTION

During disaster responses, there is a great need to support
navigation for first responders in the presence of moving
obstacles [17, 20]. When disasters happen, different kinds of
moving obstacles (e.g., fires, plumes, floods) can be caused
by the hazards in the infrastructure, and block parts of the
road network. To help responders fast and safely reach their
points of interest, hazard model and simulations can be
employed to provide the information of the obstacles (e.g.,
location, shape, speed), offering a promising way to support
navigation during disasters [1, 9, 22].

One of the challenging issues of using the hazard
simulation is the uncertainty in the simulation results. A
number of factors or conditions, such as model errors,
uncertainties in real measurements, can influence hazard
simulation process, causing generation of uncertain results
from the hazard models. For example, in prediction of forest
fires, many factors can be involved in the fire simulation and
make it difficult to predict fire-fronts. They could either be
randomness in weather conditions, such as winds,
precipitation, and humidity, or errors in the models, like
terrain model and land use model. Another challenging issue
is to find fast and safe routes during disasters. Although
conservatively avoiding the obstacles can guarantee that
responders can reach destinations safely, it would slow down
the response process by wasting much time on traveling.

This is an author’s version of the paper published in the journal IEEE
Transactions on Intelligent Transportation Systems. Corresponding author:
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Because the responders usually have protective equipment
which allows them to pass through certain levels of hazards,
it is also very important to investigate how to find routes that
allow responders to pass through the obstacles but have
limited risk.

To our knowledge, there are few works that investigate the
routing for first responders in the presence of uncertain
moving obstacles. In the GIS field, some research efforts
have been directed to the path planning among moving
obstacles. Visser [19] develops an obstacle avoiding routing
algorithm that can incorporate the dynamic blocks caused by
plumes. Using a flood model, Liu et al. [8] investigate the
routing under flood disasters, and propose an adaptive
routing algorithm which can take into account the effect of
water depth on walking speed. Chitumalla et al. [1] present
an application that uses the forecast information of plumes in
the near future in the routing and provides navigation
services taking blocked areas or streets into account. Wang
et al. [22] propose a data model and an extended A*
algorithm which can support path planning in the presence
of forest fires. However, the above path planners assume that
the shape and the size of the obstacles are accurately defined
and completely certain, which limits their applications for
real disasters. In the past years, there have also been some
research works that use agent technology to assist path
planning during disasters. Rahman and Mahmood [15]
present an ant-based multi-agent system to provide feasible
routes for building evacuation, considering the physical
constrains of obstacles. Similarly, Forcael et al. [2] apply the
ant colony optimization model to find safe evacuation routes
in the case of Tsunamis. Due to lack of consideration of the
uncertainty and complexity of environments affected by
hazards, these agent-based route planning systems have
serious limitations in dealing with the uncertain information
of the obstacles during disasters.

In robotics some researchers have studied the path
planning among uncertain obstacles, addressing issues caused
by the uncertainty in real time observation of obstacles from
sensors. Ok et al. [13] develop a path planner called Voronoi
Uncertainty Fields, which wuses Voronoi diagrams and
potential fields to deal with map uncertainties. Neumany and
Likhachevy [12] design a generalization to the PPCP
(Probabilistic Planning with Clear Preferences) algorithm,
which allows a robot to reason about uncertainty in the
trajectories of dynamic obstacles. Sonti et al. [16] present a
grid-based path planning algorithm using probabilistic finite
state automata (PFSA), and address the routing problems in
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the presence of dynamic obstacles with stochastic motion
models. For navigating robots through large environments
with thousands of uncertain dynamic obstacles, Neuman and
Stentz [11] develop an anytime receding horizon technique,
which is built on a dynamic programming approach with a
heuristic search method. The path planners mentioned above
allow robots generate routes based on the imperfect
information of the obstacles, and even take into account the
uncertainty in the future possible locations of obstacles.
However, while focusing on the free space environment,
their approaches handle the obstacles (e.g., humans, robots)
that can be simply represented by points or cells which have
uncertain locations, and are not suited to deal with the
obstacles like fires, plumes, which can affect large areas with
road networks and also have uncertainty in both geometries
and properties (e.g., the concentration of plumes). Moreover,
because of the physical constraints of robots, these research
studies mainly focus on avoiding obstacles. Nevertheless,
during the disasters, the responders can use equipment (e.g.,
masks) that can protect them from being affected by hazards.
This protective equipment enables the responders to pass
through certain obstacles to deliver their emergency services
instead of conservatively avoiding the obstacles. Hence, there
is also a necessity for taking into account the profile of the
responders to generate routes that are safe enough for them
to pass though the obstacles. However, as far as we know,
not many attempts have been made to address these path
planning problems.

In this paper, we study the path planning in the presence
of moving obstacles with uncertain boundaries. We use
hazard simulations to predict the movement of hazards, and
provide an approach to handle the uncertainty involved in
the results generated from hazard models. Our approach is
composed of the following two parts: 1) a data model, which
is built on the earlier developments proposed in [22], and
introduces a set of new constructs (class, attribute, and
association) to support representation of the uncertain
obstacles generated from hazard simulations; 2) a routing
algorithm, which wuses the uncertainty information of
obstacles to generate the safe routes through the moving
obstacles. The proposed approach is generic and can also be
applied to different types of hazards (e.g., floods, plumes). In
this paper, we mainly consider its application to the case of
plumes. The remaining part of the paper will be as follows:
in Section II, we describe a system architecture which can
provide routing service among uncertain moving obstacles.
Section III presents our designed data model. In Section 1V,
we illustrate the routing algorithm which is developed based
on the A* routing algorithm. Section V gives some results of
the application of the data model and algorithm. This paper
is ended with some conclusions and future works in Section
VI

II. THE SYSTEM ARCHITECTURE

To support routing among uncertain moving obstacles, we
propose a system architecture which can deal with the
uncertainties in the hazard simulations. In this paper, we
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Fig. 1: A set of obstacle polygons (i.e., ol, 02 and o03)
representing smoke plumes. We assume that the obstacles have
the same property (i.e., the same concentration of plumes). The
obstacles occur at the same simulation time, but have different
locations and boundaries. Each obstacle corresponds to a
specific execution of the plume model. The road segment A_B
is affected by obstacles o1 and 02, and not affected by obstacle
03.

mainly consider the moving obstacles that have uncertain
boundaries (as illustrated in Figure 1). As shown in Figure 2,
the proposed system architecture consists of three main
components: hazard models, a geo-database management
system (geo-DBMS), and a multi-agent based navigation
system. When disasters happen, the sensor data is collected
from the field, and used to drive the hazard models to
predict the movement of the obstacles. Because the
uncertainties in hazard simulations are commonly related to
random variables or stochastic parameters, hazard model and
simulations that employ Monte Carlo (MC) method
[3, 4, 23] are selected and used to quantify the uncertainties.
The hazard model is executed for a predetermined number of
times, generating the forecasted information of hazards
during a specific time period. We collect the data generated
from each hazard simulation for each timestamp, and
transform it into a set of obstacle polygons. On the basis of
these polygons, we compute the risk probability of being
affected by the uncertain obstacles. The more polygons come
over certain areas, the higher probability that the obstacles
will affect the areas. In this study, we use the geo-DBMS to
store the results from hazard simulations, and apply the
agent technology to support the routing. Different types of
agents are developed to automate the spatial data processing
and analysis of the simulation results, according to the
framework designed in [21]. The agent system makes a
direct connection to the geo-DBMS, and fetches the data of
hazards. Based on the risk probability, it determines the
states of each road, considering the profile of first
responders. Using the state information of road networks, the
routing algorithm is performed and generates safe and fast
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Fig. 2: The proposed system architecture

routes for the responders.

III. DATA MODEL REPRESENTING UNCERTAIN MOVING
OBSTACLES

In this section, we present a data model, which is used
to help structure the routing-related data in the geo-DBMS.
We build our model based on the earlier works in [22], and
extend it with a set of new constructs (class, attribute, and
association) to describe and quantify these uncertainties from
the hazard simulation models. Figure 3 shows the core of the
designed model. In this paper, we introduce the concept of
levels to represent the state of the environment affected by
the uncertain moving obstacles, instead of using binary values
(i.e., closed and open).

In our data model, the class SimulatedEvent is linked
with Reallncident and describes the simulations that predict
the movement of hazards caused by incidents. Another new
class SimulationOutput (highlighted in red in Figure 3) is
introduced to differentiate and store multiple simulation
results. It represents a specific execution of the simulation
model, and links with a set of output data of Obstacles. A
SimulationEvent can be associated with a number of
SimulationOutput. Note that the input information for the
simulation model is not included in the model, because the
input variables vary in different simulation models and are
out of the scope of this research. But for a specific
simulation model, this information can be easily organized in
a separate class which can be linked to the
SimulationOutput class.

The risk level is the main concept introduced to manage
data about the uncertainty of components of the road
network. In this paper, the status of road segments and
junctions affected by the moving obstacles with uncertain
boundaries is not represented by their availabilities (i.e.,
closed and open), but is described by a set of levels of risk.
In this study we use the probability approach to quantify the
uncertainty, and define the risk level according to the risk
probability of intersecting with obstacle polygons. In our
model, we do not explicitly store this risk probability, but
discretize it by breaking the interval [0,1] into a finite
number of smaller intervals. Each risk level corresponds to a
specific risk probability interval. Take Figure 4 as an

example, risk level = L1 corresponds to a range of risk
probability [0,0.1), risk level = L2 corresponds to a range
of risk probability [0.1,0.3), and so on. The larger the
number in the risk level is, the more chances of exposure to
the obstacles would be encountered. Using the concept risk
level, the proposed model allows for a multi-state
representation of the affected environment.

To determine the risk level, we adopt the following
procedure, which couples the Monte Carlo method to obtain
the risk probability of being affected by the uncertain
obstacles:

Step 1 Generate samples from N, realizations of the given

random variables.

Step 2 Input these samples to run the simulation model, and

generate Ny simulation results.

For each simulation result, determine whether the road

segments and junctions are affected by checking if they

intersect with the obstacle polygons.

Step 4 Count the number of times of being affected, i.e., M,.

Step 5 Calculate the fraction of being affected by moving
obstacles at a given time point, using the following
formula:

Step 3

P, = M,/N; )

This fraction P, is interpreted as an indicator of the
likelihood of being affected by the obstacles. In our
research, we use it as the risk probability to identify
the risk level we introduced earlier.

A new data type RiskTimePeriod is created in the model,
as highlighted in red in Figure 3. It stores the information of
risk level and describes the time period over which the road
is at the predicted risk level. Attributes of RiskTimePeriod
are: periodID, which is the identifier of this time period;
risk_level, which indicate the risk level during this time
period; start_time, which is the starting time of the time
period; end_time, which is the ending time of this time
period. Using this data type, a new attribute timeline is
added in the classes RoadSegment and RoadJunction to
maintain information of the status of the road network at
different time periods. In the following section, we will
illustrate how to use the risk levels to calculate the safe
routes in the presence of uncertain moving obstacles.
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Incident

+ incidentID :int
+ start_time :timestamp
+ description :String

Reallncident

+ GRIPlevel :dynamicGRIPlevel
+ disaster_type :DisasterType
- affected_area :MovingPolygonsinst [0..*]

SimulatedEvent

eventID :int
description :string

+ interpolate(timestamp) :GM_MultiSurface

«dataType»
RiskTimePeriod

periodID :int
risk_level :int
start_time :timestamp
end_time :timestamp

+ o+ o+

execution_time :timestamp
start_time :timestamp
end_time :timestamp
outputNumber :int

+ o+t o+ o+

SimulationOutput

0.*| + outputiD :int

0.*
0.1

«Feature»
RoadNetwork

0.*

Obstacle

+ networkID :int
+ region :GM_Polygon

0.1
1.

+ oo+ o+

obstaclelD :int

obstacle_type :string

description :string

threaten_area :MovingPolygonsinst [0..*]

interpolate(timestamp) :GM_MultiSurface

«Feature»
RoadJunction

K >—— *+ junctionID :int
0.* 2|+ junction :GM_Point

+ timeline :RiskTimePeriod [1..*]

«dataType» «Feature»
MovingPolygonsinst RoadSegment
+ time :timestamp + roadID :int
+ Geometry :GM_MultiSurface + name :string
+ sourcelD :int
+ targetlD :int
+ width :double
«CodeList» i) :d‘]“bl_e )
b - + type of road :string
Isastertype + Geometry :GM_LineString
+ floods + timeline :RiskTimePeriod [1..*]
+ plumes
+ fires

Fig. 3: The core of the data model for representing the uncertain moving obstacles
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Fig. 4: Defining of risk levels based on the risk probability

IV. ROUTING ALGORITHM

Given the predicted information of a road network
affected by uncertain moving obstacles, we formulate the
path planning problem as follows. Here we assume that a
response unit has to move from a source to a destination in
the road network, and departs from a given start time. The
responders have their preferences, i.e., they can pass through
some moving obstacles if the risk of the moving obstacles
they encounter is below a certain level, depending on the
available protective equipment. Besides, they also have time
constrains, i.e., they have a limited amount of time for
moving through the obstacles. Figure 5 shows an example of
guiding a responder who wears a gas mask. The responder
has to pass through a road network affected by smoke
plumes (as shown in Figure 5a). He can move through some
roads with certain risk levels, but his movement is limited by
the amount of oxygen that can only be used for a certain
period of time (see Figure 5b). Under the above
assumptions, the problem is to compute a feasible route to
the destination, taking into account the risk level of road
segments and junctions as well as the time of passing
through the obstacles.

To address the problem mentioned above, in this section

we present a Moving Obstacle Avoiding A* algorithm,
following the basic principles of A* algorithm proposed by
Hart et al. [7]. Our algorithm can deal with the uncertainty
of the moving obstacles, and is named
MOAAstar/Uncertainty. Extending the concept of safe
intervals as used by Narayanan et al. [10] and Phillips and
Likhachev [14], in MOAAstar/Uncertainty we distinguish
three types of intervals: full-safe, partial-safe and non-safe
intervals. These intervals are defined by the users based on
the risk level that we introduced in the data model (Section
III) to describe the status of road segments and junctions. In
the algorithm we use a continuous risk function to
accumulate the time of moving along the partial-safe roads,
and add it into the state as a new state variable (represented
by r), modeling the risk value as an additional dimension.
Moreover we introduce a new parameter, 7,,4,, Which
indicates the maximal amount time that the responders are
allowed to pass through partial-safe roads. The objective of
the algorithm is to try to minimize the arrival time to the
destination, constraining the time of passing through
partial-safe roads (i.e., r < 7,,4,) and avoiding the non-safe
roads. Because of the addition of the risk function, the
dimensionality of the search space is also increased, which
incurs more computational cost. For addressing this problem,
a special technique is required in the algorithm to limit the
search area.

A. Defining safe intervals

Based on the risk_level in the proposed data model
(Section III), we divide the time dimension of the hazard
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(a) A graph representing a road network affected by smoke plumes (in red
polygons). Each polygon corresponds to a specific execution of the plume
simulation. The risk level of each road segment at a certain timestamp is
shown adjacent to the associated edge.

(b) A responder wearing a gas mask. We assume that the responder has
to go from S to D, and He is allowed to pass through the roads with the
risk levels LO and L2, but should avoid the roads with the risk levels L4.

Fig. 5: Navigation for a first responders with a gas mask.

simulation into different groups of intervals. Specifically, the
RiskTimePeriods are categorized into the three types of
intervals that are mentioned earlier: full-safe intervals which
are free to pass through, and partial-safe intervals that can
still be passed through, but have some risks and non-safe
intervals which are not allowed to pass through. Accordingly,
the corresponding risk levels are called full-safe levels,
partial-safe levels, and non-safe levels respectively. In our
approach, the responders are involved in defining the safe
intervals for the search space. They classify
RiskTimePeriods into the three defined types of intervals,
based on their preferences. According to different profiles of
the responders, each RiskTimePeriod would fall into a
different type of intervals.

More formally, the list of RiskTimePeriods, which is
stored in the attribute timeline for each road segment and
junction, is divided into the following three temporal sets
according to the user profile: (p, ..., 2 p%) (p’f e
P D) (01 DL s p{;). where po represents the
interval that is fully safe; p, is the interval that is partially
safe; p, indicates the interval that is not safe. py = (t5,, %),
tog < togs tog 18 the start time of the full-safe interval pg, ¢¢,
denotes the end time of py, and () is the total number of the
full-safe intervals. Similar definitions hold for the partial-safe
interval p2, and the non-safe interval p). M is the total
number of the partial-safe intervals, and U is the total
number of the non-safe intervals. By grouping together the
partial-safe intervals and full-safe intervals, we can obtain
the open intervals, (p1,...,pk,...,PK), which are the
intervals that allow responders to pass through the roads. For
example, for a user who defines risk level as follows:
full-safe levels={L1, L2}, partial-safe levels={L3, L4}, and
non-safe levels = {L5}, a timeline, as shown in Figure 6,
can be converted into a list of full-safe intervals
([0,9],[20, +oc]), a list of partial-safe intervals ([13,20]),
and a list of open intervals ([0,9],[13,400c]). It should be
noted that we do not consider the non-safe intervals in the
routing as they are excluded from the search space.

non -safe

partial -safe

full -safe full -safe

L1 L2 L5 L4 L3

A

Fig. 6: A timeline consisting of three types of intervals defined
based on the risk levels

B. Defining state and state dominance

In the algorithm, we use the open intervals to define the
state for building the search space. However, to support path
planning with risk function that accumulates the time of
moving in the partial-safe intervals, we explicitly include the
risk function as part of the state space. Formally, a state is
defined as follows: s = (x,p’,p”,r), where z is the node
associated with the state; p’ corresponds to one of the open
intervals of node x, i.e., py; p” is either a full-safe interval
py or a partial-safe interval pS r is the risk variable
representing the accumulated time of passing through the
partial-safe interval of roads. In this way, we can easily see
how much time the responder has been going through the
partial-safe obstacles, given a state s. As risk value r is
obtained from a continuous function of time, for a given
node r within certain intervals p’ and p”, there can be
multiples states, all corresponding to different risk values.

Because the dimensionality of our search problem is
increased by addition of the continuous risk function into the
state, the search space is also enlarged, which results in
more computing time and space needed for the algorithm to
search for feasible paths. In this study, a state dominance
relationship is defined and applied to reduce the search
space. State dominance has been used in many planning
problems to limit the search space, and thus to improve the
computation speed [5, 6]. The idea of state dominance is that
if a state s is dominated by another state s’, the solution
obtained from s can not be better than the solution found
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from s’, which means that state s would unlikely contribute
to the optimal solution. Using the state dominance, we can
facilitate the search process by identifying the dominated
states and pruning them from further expansions in the
search, without compromising the optimality of the solution.

For our path planning with the risk function, we derive a
state relationship based on the state defined above. In the
algorithm, we aim to minimize the travel cost for the
responders, while limiting the total risk that is accumulated
in passing through partial-safe roads. In this sense, a state
with less travel cost and lower risk would dominate the one
with more travel cost and higher risk. More specifically,
given two states s and s, which refer to the same node
within the same intervals, but differ on the risk values:
Su = {x,p’,p”,ru}, Sy = {x,p/,p"ﬂ“u}, lf (g(s“) <= g(sv)
and 7, <1y) or (9(su) < g(s,) and r, <= r,), then we say
that state s,, dominates state s,. For state s, g(s) represents
the least cost found so far from the source to s; r denotes
the amount of risk that has been accumulated from the
source to s.

C. Discretizing the search space

When the vehicle moves along an edge that has multiple
full and partial safe intervals, the accumulated risk varies with
the starting time from one node of the edge to the other. For
example, as shown in Figure 7, the vehicle can depart from the
earliest start time ¢y, and moves at the maximum speed. The
dash lines have the equal length of time, and represent the time
periods that the vehicle needs to travel through the edge of a
given length. Different waiting times, tquw,, taws> taws » €N
be introduced and allow the vehicle to start its movement at
different times. The addition of the risk Ar is calculated as the
sum of the time periods when the partial-safe intervals overlap
the traveling period. It is easy to see that Ar is a value between
Ar™™ = 0 and Ar™ = [/mazSpeed. Figure 8 shows the
accumulated risk values that correspond to the waiting times.
As we can see, given different waiting times, the accumulated
risk values are also different. Although waiting would make
the responders take more time to arrive the destination, it may
have some advantages in limiting the risks that the responders
would encounter, and should be considered in the routing.

partial -safe

[ ] full-safe

artial -safe
to P

full -safe full -safe

t maxSpeed

aw,

Fig. 7: An example of different waiting times in passing
through an edge

Time

Fig. 8: The addition of the risk with different waiting times

Following the above discussions, we introduce an
additional waiting option that would lead to less risk, plus
the waiting for the opening of edges. Because using
contiguous timeseries to generate states would cause the size
of the search space significantly enlarged during the search,
we use a time discretization approach in the paper, inspired
by the work of Van Den Berg and Overmars [18]. In the
algorithm the waiting time series are discretized into small
timesteps, At, to generate succeeding states for further
expansions, as shown in Figure 8. We assume that the
chosen time step At is small enough to be able to generate
all possible states. Special constraints will be imposed on the
waiting time, limiting the generation of successors.

D. Planning in the defined search space

Figure 9 shows the main structure of our algorithm
MOAAstar/Uncertainty. The algorithm starts with a given
source and destination, the maximum speed and the
departure time. Each state s in the algorithm is associated
with a cost f(s), which is computed as the sum of the actual
cost g(s) and the heuristic cost h(s). When the state s with
the lowest cost value is selected for further expansion, On
line 13 (Figure 9) we use function GenerateSuccessors(s)
(Figure 10) to find successors of state s, considering all
possible full and partial-safe intervals in transition from
state s. On line 15 (see Figure 9), using the state dominance
function defined in Figure 11, we iterate over all states in the
successors to check if the successor is dominated by the
states that have been found. We only insert the
non-dominated successors into the open set for future
expansion, which would reduce the search space for the path
planner.

In generation of successors (Figure 10), the algorithm first
examines each open interval [t.7, ¢7Y] of edge zy to see if it
overlaps with [g(s),t%] (line 5-7, Figure 10). Only the
overlapped intervals are safe for the vehicle to pass through
the edge, and will be considered. Then we wuse an
incremental approach to generate possible successors,
increasing the waiting time with the fixed time step. To
derive the maximum waiting time, ¢, that the vehicle can
wait after the earliest start time (line 9, Figure 10), we
distinguish partial-safe interval and full-safe interval for
state s: 1). If s is within a full-safe interval, ]\ is set to
the difference between the closed time of full-safe interval
teq" and the earliest start time; 2). If s is within a

partial-safe interval, t7:¢* is set 0. This is because that
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MOA Astar /Uncertainty

1: Initialize source S, destination D

2: initialize 7,4, MmaxSpeed, departureTime

3: openSet «— (), closedSet «+—

4; generate source state Ssource

5: insert Sgource iN OpenSet

6: while openSet is not empty do

7: s +— the state in openSet having the lowest f value
8:  if node(s) = D then

9: return the path from source S to destination D
10:  end if

11:  remove s from openSet

12:  insert s to closedSet

13:  successors «— generateSuccessors(s)

14:  for each successor s’ in successors do

15: if — checkDominated(s’) then

16: insert s’ into openSet

17: end if

18:  end for

19: end while
20: return no-path

Fig. 9: The main
MOA Astar/Uncertainty

structure  of the  algorithm

waiting within the partial-safe interval does not provide the
possibility of reducing the risk value of the successors, and
would not be advantageous. The obtained ¢]}* is used as a
limit on the increment of waiting time t,, on line 11
(Figure 10).

In every loop, on line 13 (Figure 10) we first check the given
waiting time to guarantee that the vehicle starts before the edge
is closed. After that, we calculate the possible arrival time
from node x to y (line 16, Figure 10), and estimate the risk
increment, Ar, that would be accumulated during the travel
through edge zy (line 17, Figure 10). If the vehicle can safely
pass through the edge and arrives with a new risk lower than
Tmae (line 18, Figure 10), we generate a successor s’, and
compute the waiting time needed for transition from s to the
state s’ (line 19-20, Figure 10). As in the regular A* search, we
ignore the state s’ that is in the closedset, because it has been
expanded in previous search (line 21-23, Figure 10). If the
state is in the openSet and the newly found path has a shorter
time, we update the existing state with the new arrival time
and the estimated traveling time h(s’) (line 24-28, Figure 10).
The heuristic h(s) is calculated based on Euclidean distance
between node y and the destination D and the maxSpeed.
The newly created state is inserted into the openSet for further
expansion (line 30-32, Figure 10). It is important to note that
the closed time of the full-safe interval of state s (i.e., t7;*
and the closed time of edge zy (i.e., t.) could be infinity,
which would cause an infinite loop in the algorithm. To prevent
this, we adopt an additional function (Figure 12) to check if
the increment of waiting time should be stopped, making the
algorithm generate a finite set of successors. In Figure 7 and

generateSuccessors(s)

1. © <— node(s), [t%,,t5 ] <— the open interval associated with s
2: new_states «— )

3: for each neighbor y of = do

4. for each open interval i of edge zy do

5: if [g(s),t5] N [t2!, t2Y] = 0 then
6: continue
7: end if
8: earliest_start_time +— maz(g(s),t.?)
9: derive the maximum waiting time ¢;;*
10: tow <— 0
11: while ¢4, <= ;7" do
12: start_time <— earliest_start_time + ¢4y,
13: if start_time > ¢/ then
14: break;
15: end if
16: arrival_time <— start_time + I;,,/maxSpeed
17: calculate the incremental risk Ar
18: if arrival_time < ¢77 and r(s) + Ar <= 7,4, then
19: generate state s’ of node y
20: tw(s,s") <— start_time - g(s)
21: if s’ is in closedSet then
22: continue
23: end if
24: if s’ is in openSet then
25: if arrival_time < g(s’) then
26: g(s') +— arrival_time
o, £() — g(s') + h(s)
28: end if
29: else
30: g(s') +— arrival_time
= £() — g(s') + h(s)
32: insert s’ into new_states
33: end if
34: end if
35: if = checklncrement(start_time, zy) then
36: break;
37: end if
38: increase tq,, with the time step At
39: end while
40:  end for
41: end for
42: return new_states
Fig. 10: The function for generating successors,

generateSuccessors(s).

checkDominated(s)

1: for each s in openSet U closedSet do

2:  if node(3) = node(s) and p'(5) = p/(s) and p"(3) = p”(s) then
3 if s is dominated by § then

4: return true

5: end if

6: end if

7:  return false

8: end for

Fig. 11: The function for checking if a state s is dominated,
checkDominated(s)
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checkIncrement(start_time, xy)

LY,

: pQ

: pf\?a +— the last partial-safe interval of edge zy

. if start_time is within p‘g”a and the end time of p‘g”a = inf then
return false

end if

. if start_time is within pﬁ”ﬂ

return false

. end if

: return true

<— the last full-safe interval of edge =y

and the end time of pﬁ”ﬂ = inf then

Fig. 12: The function for checking if the waiting time
increment should be stopped, given the start_time and edge
xy, checkIncrement(start_time, xy)

Figure 8, we have shown that given an earliest start time and a
traveling period, the accumulated risk changes with the waiting
time. In the following, we will prove that during the increment
of the waiting time t,,,, the generated states that do not meet
the conditions on line 35 (Figure 10) will be dominated by a
state generated earlier.

Theorem 1 If state s is within a full-safe interval that has
an infinite end time, t2;* = inf, and the considered open
interval on edge xy also has an infinite end time, t..! = inf,
there exists a waiting time t°,,, such that the states that are

generated after 10, will be dominated by the state that

aw

corresponds to t°,.

Proof ¢,/ = inf implies that either the end time of the last

full-safe interval, t‘:é’?’a, is infinity or the end time of the last
zy,B

partial-safe interval, ¢3;”, is infinity. In the case that ¢.5"=
inf, we select the start time of the last full-safe interval as
the start time of the vehicle, then get Ar = 0. We denote
the corresponding waiting time by 9, . For any t,,, > t0,,
the generated state s from ¢,,, would have a longer path, thus
g(s) > g(so) and r(s) = r(sp) = 0. Based on our defined state
dominance relationship, state s is dominated by sg. Similarly,
in the case that ti}(f = inf, we select the start time of the
last partial-safe interval as the start time of the vehicle, and
also represent the waiting time by ¢0, . The obtained Ar is
Ar™*® For any tq, > tJ,, the generated state s from .,

would have a larger path cost, thus g(s) > g(so) and r(s) =
r(sg) = Ar™?®. s is also dominated by sg.

V. CASE STUDY

In this study, the proposed data model (presented in
Section III) has been implemented in the spatial Database
Management System (DBMS) PostgreSQL with PostGIS
extension (www.postgresql.org). In connection with the
database, a multi-agent based navigation system has been
developed to support the path planning [21]. It uses the
extended A* routing algorithm
MOA Astar/Uncertainty (presented in Section IV) to generate
paths in the environment affected by the uncertain moving
obstacles. In this section, we test the system, using the road
network dataset in Arnhem, The Netherlands. The road
network is comprised of 13336 road segments and 11712

road junctions. We suppose that two moving toxic plumes
are moving across the city. A group of datasets of polygons
with timestamps have been created to simulate the movement
of plumes (see Figure 13). At each timestamp, there are 50
polygons which are generated following a given normal
distribution of positions. Our navigation system fetches the
data of obstacles, and performs spatial analysis. By counting
the polygons that intersect the road segments and
junctions for each timestamp, the system computes the
likelihood of being affected by the plumes. Here we define 6
levels of risk as follows: L0= [0,0.02), L1 = [0.02,0.05),
L2=[0.05,0.1), L3=[0.1,0.3), L4 = [0.3,0.6), L5= [0.6, 1].
The information of risk levels of road segments and
junctions is stored in the database according to the designed
data model. We consider the following two scenarios: 1) The
responders have the same preference but different time
constraints (see Section V-A); 2) The responders have the
same time constraint but different preferences (see

Section V-B). The system generates the customized routes
and displays the

based on the profile of responders,
calculated results on 2D maps.

(¢) t=9 min (d) t=18 min

Fig. 13: Snapshots of the movement of the plumes (in red
polygons).

A. Scenario 1: navigation for responders with different time
constraints

In this scenario, the system calculates the safe routes for 3
vehicles that have to go from the same source and destination
points, given the same maximum speed 30 km/h and the same
categorization of risk levels. We suppose that the responders in
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(c2) t=3 min, Vehicle vs

(c1) t=0 min, Vehicle v3

(c3) t=9 min,Vehicle v3 (c4) t=18 min, Vehicle vz

Fig. 14: Snapshots of routes calculated for 3 vehicles (in blue circle) with different r,,,,. The vehicles have the same source
and destination points. The shapes and positions of the obstacles (in polygons) are the same in the three simulations, and
change as the vehicles are moving towards the destination. (a) Vehicle vy, 74, = 0 min. (b) Vehicle vy, 74, = 2 min. (c)

Vehicle vs, 70, = 7 min.

different vehicles have different amounts of oxygen, and thus
each responder has its time constraint (indicated by 7,,45)-
Figure 14 shows a comparison of the results calculated by our
system considering different 7,,,,. As we can see from the
figure, although the emergency task in this scenario requires
all responders to go to the same destination, the system, which
performs the calculation with the given r,,,, of each vehicle,
generates different routes for them. The calculated results are
shown in Table I. As shown in the table, while vehicle v
has to wait for a certain amount of time to avoid the moving
obstacles, vehicles v, and vs can move without waiting, which
makes them reach the destination earlier. The table also shows
that our developed algorithm is capable of generating routes

that have the total risk constrained by the user-specified 7,4
With a higher 7,4z, the responders are allowed to stay longer
in the obstacles, and thus follow a faster route to reach the
destination. The scenario also shows that, following different
routes, the responders would have different amounts of risk
accumulated along their routes. If r,,,, is not considered in
the routing, the total risk of the route that the responders could
confront could be larger than their acceptable value, which
would slow or even endanger their response process.
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(c1) t=0 min, Vehicle vs (c2) t=3 min, Vehicle vs (c3) t=9 min, Vehicle vs (c4) t=18 min, Vehicle v3

Fig. 15: Snapshots of routes calculated for 3 vehicles (in blue circle) with different categorization of risk levels. The vehicles
are at the source points. The shapes and positions of the obstacles (in polygons) are the same in the three simulations, and
will change as the vehicles are moving towards the destinations. (a) Vehicle v, full-safe levels={L0, L1, L2}, partial-safe
levels={L3, L4, L5}, non-safe levels = (). (b) Vehicle vq, full-safe levels={L0, L1}, partial-safe levels={L2, L3}, non-safe
levels ={L4, L5}. (c) Vehicle vs, full-safe levels={L0}, partial-safe levels={L1}, non-safe levels ={1.2, L3, L4, L5}.

TABLE I: Calculated results considering different time

’ B. Scenario 2: navigation for responders with different
constraints 7,4,

preferences

Vehicle 7,4, Partial-safe Total Risk Distance Total waiting Arrival time Depending on the available protective equipment
ID (mins) range (mins (km time (mins min . ’
) rang ) ) (mins) _ (min) responders may have different preferences. Therefore

v1 0 01,1 0.0 75 2.6 182 different classifications of risk levels would be made by
V2 2 0.1,1 0.5 8.2 0.0 16.7 th d d in th fi In thi .

U3 = 01T 60 66 00 1% em and used in the routing process. In this scenario, we
Notes: compare the relief routes calculated based on the different

I Vehicles vy, vy and vs have the same source and destination categorization of risk levels (i.e., full-safe, partial-safe, and
2 The routes are calculated by the algorithm, MOAAstar/Uncertainty, given non-safe levels). The considered responders move at the

the maximum speed of 30 km/h and a departure time t = 0.0 min same maximum speed, 30 km/h, and have the same r —
3 The routes are calculated based on the same categorization of risk levels: ] ’ mawx

full-safe levels={L0, L1, L2}, partial-safe levels={L3, L4, L5}, non-safe © min. Figure 15 depicts 3 routes calculated for 3 vehicles.
levels = () These routes have the same pair of source and destination,
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but are generated based on different categorization of risk
levels. Table II shows the results of the calculated routes. As
shown in the table, the total risk of routes are below the
given constraint. The route generated for vehicle v; has the
highest risk value, but it is still acceptable for v; and allows
it to reach the destination in the least amount of travel time
among the three vehicles. This is because that v; accepts
higher risk-levels (as shown in Figure 15), which makes it
possible to pass through the obstacles that are non-safe for
the other vehicles. Waiting option is used by vehicle vy to
avoid the non-safe obstacles and to reduce the risks. With
our navigation system, the responders can get customized
routes, using their own classification of risk levels based on
their available protective equipment.

TABLE 1II: Calculated
categorization of risk levels

results considering different

In the future work, we would like to perform the
complexity analysis of the algorithm. By analyzing the
algorithms, we can estimate how much memory and
computation overhead would be required for the navigation
system. This would help choose the hardware that is capable
of running the algorithms and quickly generating results.
Furthermore, sensitive analysis of the algorithms will also be
needed. To make our navigation system practically used, our
approach will also need to be verified with responders.
Interviews and discussions with responders would be
necessary to help quantify the risk probability ranges to
reflect risk in real disaster situations.
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