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We prove mixed Lp(Lq)-estimates, with p, q ∈ (1, ∞), for 
higher-order elliptic and parabolic equations on the half space 
R

d+1
+ with general boundary conditions which satisfy the 

Lopatinskii–Shapiro condition. We assume that the elliptic 
operators A have leading coefficients which are in the class 
of vanishing mean oscillations both in the time variable and 
the space variable. In the proof, we apply and extend the 
techniques developed by Krylov [24] as well as Dong and Kim 
in [13] to produce mean oscillation estimates for equations on 
the half space with general boundary conditions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Lp(Lq)-regularity for differential equations has been proved to be a very useful 
tool for quasi-linear and nonlinear parabolic problems, as their solutions very often can 
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be derived from the linear problem via elegant linearization techniques combined with the 
contraction mapping principle, see e.g. [6,2,30]. For this, it is useful to look for minimal 
smoothness assumptions on the coefficients of the differential operators involved. Various 
approaches can be found in problems from mathematical physics, e.g. fluid dynamics, 
reaction–diffusion equations, material science, etc. See e.g. [6,18,31].

In this paper we establish Lp(Lq)-estimates with p, q ∈ (1, ∞) for higher-order 
parabolic equations of the form⎧⎨⎩ut + (λ + A)u = f on R× R

d
+

trRd−1Bju = gj on R× R
d−1, j = 1, . . . ,m,

(1.1)

where “tr” denotes the trace operator, A is an elliptic differential operator of order 2m, 
and (Bj) is a family of differential operators of order mj < 2m for j = 1, . . . , m. The 
coefficients of A are assumed to be in the class of vanishing mean oscillations (VMO) 
both in the time and space variable, while the leading coefficients of Bj are assumed 
to be constant. In addition, we assume that near the boundary (A, Bj) satisfies the 
Lopatinskii–Shapiro condition. This condition was first introduced by Lopatinskii [29]
and Shapiro [40]. See also the seminal work of Agmon–Douglis–Nirenberg [1]. Roughly 
speaking, it is an algebraic condition involving the symbols of the principle part of the 
operators A and Bj with fixed coefficients, which is equivalent to the solvability of certain 
systems of ordinary differential equations.

Research on Lp(Lq)-regularity for this kind of equations has been developed in the 
last decades by mainly two different approaches.

On the one hand, a PDE approach have been developed by a series of papers by Krylov, 
Dong, and Kim. Krylov in [25] showed Lp(Lq)-regularity for second-order operators in 
the whole space with coefficients merely measurable in time and VMO in space, with 
the restriction q ≤ p. The methodology of Krylov was then extended by Dong and 
Kim in [11,13] to higher-order systems with the same class of coefficients. In [13], a new 
technique was developed to produce mean oscillation estimates for equations in the whole 
and half spaces with the Dirichlet boundary condition, for p = q. These results had been 
extended recently by the same authors in [14] to mixed Lp(Lq)-spaces with Muckenhoupt 
weights and small BMO assumptions on the space variable, for any p, q ∈ (1, ∞). It 
is worth noting that in all these references as well as others papers in the literature, 
VMO coefficients were only considered for equations with specific boundary conditions 
(Dirichlet, Neumann, or conormal, etc.).

On the other hand, from a functional analytic point of view, Lp(Lq)-regularity can 
be viewed as an application of a more general abstract result, namely that of maximal 
Lp-regularity. Maximal Lp-regularity means that, under certain assumption on gj, for all 
f ∈ Lp(R, Lq(Rd

+)), the solution to the evolution problem (1.1) has the “maximal” regu-
larity in the sense that ut, Au are both in Lp(R, Lq(Rd

+)). In the case of time-independent 
coefficients, a complete operator-theoretic characterization of maximal Lp-regularity was 
introduced by Weis in [44], using a new approach based on functional calculus and 
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Fourier multiplier theorems. Using perturbation arguments combined with the charac-
terization in [44], one can study maximal Lp-regularity in the case when t �→ A(t) is 
continuous. See, for instance, [3,4,34]. Recently, in [15,16] Gallarati and Veraar obtained 
maximal Lp-regularity for evolution equations with time-dependent operators, assuming 
only measurable dependence on time. This result was applied to show Lp(Lq)-estimates 
for parabolic equations/systems in the whole space case in a weighted setting, for any 
p, q ∈ (1, ∞), assuming that coefficients are uniformly continuous in the spatial variables 
and just measurable in the time variable. This generalized the results in [25], where the 
restriction q ≤ p is imposed, for this setting.

With coefficients in the class of VMO, higher-order systems in the whole space have 
been investigated in several papers, for example [22,21] where the leading coefficients are 
VMO with respect to the space variable and independent of the time variable, by using 
Muckenhoupt weights and estimates of integral operators of the Calderón–Zygmund 
type.

Concerning Lp(Lq)-regularity for equations on the half-space with boundary condi-
tions satisfying the Lopatinskii–Shapiro condition, a breakthrough result was obtained by 
Denk, Hieber, and Prüss in [7] in the case of autonomous initial boundary value problems 
with homogeneous boundary conditions and operator-valued constant coefficients. They 
combined operator sum methods with tools from vector-valued harmonic analysis to 
show Lp(Lq)-regularity, for any p, q ∈ (1, ∞), for parabolic problems with general bound-
ary conditions of homogeneous type, in which the leading coefficients are assumed to be 
bounded and uniformly continuous. Later, in [8], the same authors characterized optimal 
Lp(Lq)-regularity for non-autonomous, operator-valued parabolic initial-boundary value 
problems with inhomogeneous boundary data, where the dependence on time is assumed 
to be continuous. It is worth noting that in the special case of m = 1, complex-valued 
coefficients and q ≤ p, a similar result was obtained by Weidemaier [43]. The results 
of [8] have been generalized by Meyries and Schnaubelt in [33] to the weighted time-
dependent setting, where the weights considered are Muckenhoupt power-type weights. 
See also [32].

In this paper, we relax the assumptions on the coefficients of the operators involved. 
We obtain weighted Lp(Lq)-estimates for parameter-elliptic operators on the half space 
with coefficients VMO in the time and space variables, and with general boundary 
operators having constant leading coefficients and satisfying the Lopatinskii–Shapiro 
condition. An overview of our main result is given in the following theorem.

Theorem 1.1. Let p, q ∈ (1, ∞). Then there exists λ0 ≥ 0 such that for any λ ≥ λ0 and 
u ∈ W 1

p (R; Lq(Rd
+)) ∩ Lp(R; W 2m

q (Rd
+)) satisfying (1.1), where

f ∈ Lp(R;Lq(Rd
+)) and gj ∈ F kj

p,q(R;Lq(Rd−1)) ∩ Lp(R;B2mkj
q,q (Rd−1))

with kj = 1 −mj/(2m) − 1/(2mq), we have
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‖ut‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp(R;Lq(Rd

+))

≤ C‖f‖Lp(R;Lq(Rd
+)) + C‖gj‖

F
kj
p,q(R;Lq(Rd−1))∩Lp(R;B

2mkj
q,q (Rd−1))

,

where C > 0 is a constant independent of λ, u, f , and gj.

This is stated in Theorem 3.5, where we also consider Muckenhoupt weights, and in 
the elliptic setting in Theorem 3.6.

To the best of our knowledge, these are the first results concerning equations with 
VMO coefficients and general boundary conditions. Our proofs are based on the results 
in [7] combined with an extension of the techniques developed in [24,26,12–14]. In par-
ticular, in the main result of Section 4, Lemma 4.5, we prove mean oscillation estimates 
for equations on the half space with the Lopatinskii–Shapiro condition. A key ingredi-
ent of the proof is a Poincaré type inequality for solutions to equations satisfying the 
Lopatinskii–Shapiro condition, which is the main novelty of the paper.

To simplify the exposition and not to overburden this paper, here we only consider 
equations with boundary operators with constant leading coefficients. In a subsequent 
work [10], we will further study boundary operators with variable leading coefficients. In 
contrast to the case when A has uniformly continuous leading coefficients, the extension 
of the results in this paper to boundary operators with variable leading coefficients is 
nontrivial and does not follow from the standard perturbation argument. In fact, under 
the VMO assumption on the coefficients of A, in the case when the boundary operators 
have variable leading coefficients, to apply the method of freezing the coefficients as in 
Lemma 4.6 below one would need to show the mean oscillation estimates of Lemma 4.5
for an equation with inhomogeneous boundary conditions. To the best of the authors’ 
knowledge, this case is not covered by the known theory. Moreover, the well-known 
localization procedure (see for instance [7, Section 8]) does not seem to directly apply 
to the case p 
= q, since we would need a partition of unity argument in both t and x. 
The same problem would arise if one considers bounded smooth domains instead of the 
upper-half space: the technique of flattening the boundary would lead to an equation with 
boundary conditions with variable coefficients. This case will be treated as well in [10].

The remaining part of the paper is organized as follows. In Section 2 we give the 
necessary preliminary results and introduce the notation. In Section 3 we list the main 
assumptions on the operators and state the main results, Theorems 3.5 and 3.6. In 
Section 4 we prove the mean oscillation estimates needed for the proofs of the main 
theorems, which are given in Section 5. Finally, in Section 6 we prove a solvability result 
by using the a priori estimates in the previous sections.

2. Preliminaries

In this section, we state some necessary preliminary results and introduce the notation 
used throughout paper.
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2.1. Ap-weights

Details on Muckenhoupt weights can be found in [20, Chapter 9] and [39, Chapter V].
A weight is a locally integrable function on Rd with w(x) ∈ (0, ∞) for almost every 

x ∈ R
d. The space Lp(Rd, w) is defined as all measurable functions f with

‖f‖Lp(Rd,w) =
( ˆ
Rd

|f |p w dx
) 1

p

< ∞ if p ∈ [1,∞),

and ‖f‖L∞(Rd,w) = ess. supx∈Rd |f(x)|.
With this notion of weights and weighted Lp-spaces we can define the class of Muck-

enhoupt weights Ap for all p ∈ (1, ∞). A weight w is said to be an Ap-weight if

[w]p = [w]Ap
:= sup

B

(
−
ˆ

B

w(x) dx
)(

−
ˆ

B

w(x)−
1

p−1 dx
)p−1

< ∞.

Here the supremum is taken over all balls B ⊂ R
d and −́

B
= 1

|B|
´
B

. The extended real 
number [w]Ap

is called the Ap-constant. In the case of the half-space Rd
+, we replace the 

balls B in the definition by B ∩ R
d
+ =: B+ with center in Rd

+.
The classical Hardy–Littlewood maximal function theorem and the Fefferman–Stein 

theorem (see [20, Theorem 9.1.9 and Corollary 7.4.6]) have been recently generalized 
to mixed Lp(R, v; Lq(Rd

+, w)) spaces by Dong and Kim in Corollaries 2.6 and 2.7 of 
[14]. Their proofs are based on the extrapolation theorem of Rubio de Francia (see 
[36–38], or [17, Chapter IV]), that allows one to extrapolate from weighted Lp-estimates 
for a single p ∈ (1, ∞) to weighted Lq-estimates for all q ∈ (1, ∞). These results will 
play an important role in the proof of Theorem 3.5, and thus we state them below for 
completeness.

For m = 1, 2, . . . fixed depending on the order of the equations under consideration, 
we denote by

Q+
r (t, x) = ((t− r2m, t) ×Br(x)) ∩ R

d+1
+ (2.1)

the parabolic cylinders, where

Br(x) =
{
y ∈ R

d : |x− y| < r
}
⊂ R

d

denotes the ball of radius r and center x. We use Q+
r to indicate Q+

r (0, 0). We also define

B+
r (x) = Br(x) ∩ R

d
+.

Let Q = {Q+
r (t, x) : (t, x) ∈ R

d+1
+ , r ∈ (0, ∞)}. Define for p, q ∈ (1, ∞) the parabolic 

maximal function and sharp function of a function f ∈ Lp(R; Lq(Rd
+)) by



1998 H. Dong, C. Gallarati / Journal of Functional Analysis 274 (2018) 1993–2038
Mf(t, x) = sup
Q∈Q

(t,x)∈Q

−
ˆ

Q

|f(s, y)| dy ds

and

f �(t, x) = sup
Q∈Q

(t,x)∈Q

−
ˆ

Q

|f(s, y) − −
ˆ

Q

f(t, x) dx dt| dy ds.

Theorem 2.1 (Corollary 2.6 of [14]). Let p, q ∈ (1, ∞), v ∈ Ap(R) and w ∈ Aq(Rd
+). 

Then for any f ∈ Lp(R, v; Lq(Rd
+, w)), we have

‖Mf‖Lp(R,v;Lq(Rd
+,w)) ≤ C‖f‖Lp(R,v;Lq(Rd

+,w)),

where C = C(d, p, q, [v]p, [w]q) > 0.

Theorem 2.2 (Corollary 2.7 of [14]). Let p, q ∈ (1, ∞), v ∈ Ap(R) and w ∈ Aq(Rd
+). 

Then for any f ∈ Lp(R, v; Lq(Rd
+, w)), we have

‖f‖Lp(R,v;Lq(Rd
+,w)) ≤ C‖f �‖Lp(R,v;Lq(Rd

+,w)),

where C = C(d, p, q, [v]p, [w]q) > 0.

2.2. Function spaces and notation

In this section we introduce some function spaces and notation to be use throughout 
the paper.

We denote D = −i(∂i, . . . , ∂d) and we consider the standard multi-index notation 
Dα = Dα1

1 · . . . ·Dαd

d and |α| = α1 + · · · + αd for a multi-index α = (α1, . . . , αd) ∈ N
d
0.

Denote

R
d
+ =

{
x = (x1, x

′) ∈ R
d : x1 > 0, x′ ∈ R

d−1} and R
d+1
+ = R× R

d
+.

The parabolic distance between X = (t, x) and Y = (s, y) in Rd+1
+ is defined by ρ(X, Y ) =

|x − y| + |t − s| 1
2m . For a function f on D ⊂ R

d+1
+ , we set

(f)D = 1
|D|

ˆ

D

f(t, x) dx dt = −
ˆ

D

f(t, x) dx dt.

Let Q+
r (t, x) be a parabolic cylinder as in (2.1). We define the mean oscillation of f on 

a parabolic cylinder as

osc(f,Q+
r (t, x)) := −

ˆ
+

∣∣f(s, y) − (f)Q+
r (t,x)

∣∣ ds dy

Qr (t,x)
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and we denote for R ∈ (0, ∞),

(f)�R := sup
(t,x)∈Rd+1

sup
r≤R

osc(f,Q+
r (t, x)).

Next, we introduce the function spaces which will be used in the paper. For p ∈ (1, ∞)
and k ∈ N0, we define the standard Sobolev space as

W k
p (Rd

+) =
{
u ∈ Lp(Rd

+) : Dαu ∈ Lp(Rd
+) ∀|α| ≤ k

}
.

For p, q ∈ (1, ∞), we denote

Lp(Rd+1
+ ) = Lp(R;Lp(Rd

+))

and mixed-norm spaces

Lp,q(Rd+1
+ ) = Lp(R;Lq(Rd

+)).

For parabolic equations we denote for k = 1, 2, . . .,

W 1,k
p (Rd+1

+ ) = W 1
p (R;Lp(Rd

+)) ∩ Lp(R;W k
p (Rd

+))

and mixed-norm spaces

W 1,k
p,q (Rd+1

+ ) = W 1
p (R;Lq(Rd

+)) ∩ Lp(R;W k
q (Rd

+)).

We will use the following weighted Sobolev spaces. For v ∈ Ap(R) and w ∈ Aq(Rd
+), 

we denote

Lp,q,v,w(Rd+1
+ ) = Lp(R, v;Lq(Rd

+, w))

and

W 1,k
p,q,v,w(Rd+1

+ ) = W 1
p (R, v;Lq(Rd

+, w)) ∩ Lp(R, v;W k
q (Rd

+, w)),

where by f ∈ Lp,q,v,w(Rd+1
+ ) we mean

‖f‖Lp,q,v,w(Rd+1
+ ) :=

( ˆ

R

( ˆ

R
d
+

|f(t, x)|qw(x) dx
)p/q

v(t) dt
)1/p

< ∞.
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2.3. Interpolation and trace

The following function spaces from the interpolation theory will be needed. For more 
information and proofs we refer the reader to [32,41,42].

For p ∈ (1, ∞) and s = [s] + s∗ ∈ R+\N0, where [s] ∈ N0, s∗ ∈ (0, 1), we define the 
Slobodetskii space W s

p by real interpolation as

W s
p = (W [s]

p ,W [s]+1
p )s∗,p.

For m ∈ N and s ∈ (0, 1] we consider anisotropic spaces of the form

W s,2ms
p (Rd+1

+ ) = W s
p (R;Lp(Rd

+)) ∩ Lp(R;W 2ms
p (Rd

+)).

For p ∈ (1, ∞), q ∈ [1, ∞], r ∈ R, and X a Banach space, we introduce the Besov 
space Br

p,q(Rd) and the X-valued Triebel–Lizorkin space F r
p,q(Rd, X) as defined below.

Let Φ(Rd) be the set of all sequences (ϕk)k≥0 ⊂ S(Rd) such that

ϕ̂0 = ϕ̂, ϕ̂1(ξ) = ϕ̂(ξ/2) − ϕ̂(ξ), ϕ̂k(ξ) = ϕ̂1(2−k+1ξ),

where k ≥ 2, ξ ∈ R
d, and where the Fourier transform ϕ̂ of the generating function 

ϕ ∈ S(Rd) satisfies 0 ≤ ϕ̂(ξ) ≤ 1 for ξ ∈ R
d and

ϕ̂(ξ) = 1 if |ξ| ≤ 1, ϕ̂(ξ) = 0 if |ξ| ≥ 3
2 .

Definition 2.3. Given (ϕk)k≥0 ∈ Φ(Rd), we define the Besov space as

Br
p,q(Rd) =

{
f ∈ S ′(Rd) : ‖f‖Br

p,q(Rd) := ‖(2krF−1(ϕ̂kf̂))k≥0‖�q(Lp(Rd)) < ∞
}
,

and the X-valued Triebel–Lizorkin space as

F r
p,q(Rd, X)

=
{
f ∈ S ′(Rd, X) : ‖f‖F r

p,q(Rd,X) := ‖(2krF−1(ϕ̂kf̂))k≥0‖Lp(Rd,�q(X)) < ∞
}
.

Observe that Br
p,p(Rd) = F r

p,p(Rd) by Fubini’s theorem. Moreover, we have the follow-
ing equivalent definition of Slobodetskii space

W s
p (Rd) =

⎧⎨⎩W k
p (Rd), s = k ∈ N

Bs
p,p(Rd), s ∈ R+\N0.

Later on we will consider X-valued Triebel–Lizorkin spaces on an interval (−∞, T ) ⊂ R. 
We define these spaces by restriction.
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Definition 2.4. Let T ∈ (−∞, ∞] and let X be a Banach space. For p ∈ (1, ∞), q ∈ [1, ∞)
and r ∈ R we denote by F r

p,q((−∞, T ); X) the collection of all restrictions of elements of 
F r
p,q(R; X) on (−∞, T ). If f ∈ F r

p,q((−∞, T ); X) then

‖f‖F r
p,q((−∞,T );X) = inf ‖g‖F r

p,q(R;X)

where the infimum is taken over all g ∈ F r
p,q(R; X) whose restriction on (−∞, T ) coincides 

with f .

The following spatial traces and interpolation inequalities will be needed in our proofs. 
For full details, we refer the reader respectively to [8, Lemma 3.5 and Lemma 3.10]. See 
also [32, Lemma 1.3.11 and Lemma 1.3.13].

Theorem 2.5. Let p ∈ (1, ∞), m ∈ N, and s ∈ (0, 1] so that 2ms ∈ N. Then the map

trx1=0 : W s,2ms
p (Rd+1

+ ) ↪→ W
s− 1

2mp ,2ms− 1
p

p (R× R
d−1)

is continuous.

Lemma 2.6. Let p ∈ (1, ∞) and let m ∈ N and s ∈ [0, 1) be given. Then for every ε > 0, 
for β ∈ N

n
0 with s + |β|

2m + 1
2mp < 1, it holds that for any u ∈ W 1,2m

p (R × R
d
+),

‖trΩ∇βu‖W s,2ms
p (R×Rd−1) ≤ ε‖D2mu‖Lp(R×R

d
+) + ε‖ut‖Lp(R×R

d
+) + Cε‖u‖Lp(R×R

d
+).

The following results for p, q ∈ (1, ∞) will be important tools in the proof of Theo-
rem 3.5.

Theorem 2.7. Let p, q ∈ (1, ∞). Let for j = 1, . . . , m and mj ∈ {0, . . . , 2m − 1}, kj =
1 −mj/(2m) − 1/(2mq). Then the map

trx1=0 : W 1−mj
2m

p (R;Lq(Rd
+)) ∩ Lp(R;W 2m−mj

q (Rd
+))

↪→ F kj
p,q(R;Lq(Rd−1)) ∩ Lp(R;B2mkj

q,q (Rd−1))

is continuous.

Proof. The proof is essentially contained in the proof of [8, Proposition 6.4], so we only 
give a sketched proof for the sake of completeness. Let

u ∈ Lp(R;W 2m−mj
q (Rd

+)).

Taking traces in x1 and applying [42, Theorem 2.9.3] pointwise almost everywhere in 
time, we get
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u|x1=0 ∈ Lp(R;B2m−mj− 1
q

q,q (Rd−1)).

For the time regularity, let u ∈ W 1,2m
p,q (R × R

d
+) and define B as in [8, Proposition 6.4]

by

B = (∂t)
1

2m with D(B) = W
1

2m
p (R;Lq(Rd

+)).

Set uj = B2m−mj−1u. Then, uj ∈ W
1

2m
p (R; Lq(Rd

+)) ∩ Lp(R; W 1
q (R+; Lq(Rd−1))). Fol-

lowing the line of the proof of [8, Proposition 6.4], one can show that uj |x1=0 ∈
F

1
2m− 1

2mq
p,q (R; Lq(Rd−1)). This yields

Dmju|x1=0 ∈ F kj
p,q(R;Lq(Rd−1)),

which completes the proof. �
Lemma 2.8. Let p, q ∈ (1, ∞) and let m ∈ N and s ∈ [0, 1) be given. Then for every 
ε > 0, for β ∈ N

n
0 with s + |β|

2m + 1
2mq < 1, it holds that for any u ∈ W 1,2m

p,q (Rd+1
+ ),

‖tr
R

d
+
∇βu‖F s

p,q(R;Lq(Rd−1))∩Lp(R,v;B2ms
q,q (Rd−1))

≤ ε‖D2mu‖Lp(R;Lq(Rd
+)) + ε‖ut‖Lp(R;Lq(Rd

+)) + Cε‖u‖Lp(R;Lq(Rd
+)).

The proof follows the line of [8, Lemma 3.10], by considering p 
= q there and applying 
Theorem 2.7.

2.4. Anisotropic Sobolev embedding theorem

We will use the following parabolic Sobolev embedding theorem. Details about the 
proof can be found in [5, Section 18.12].

We denote

W k,2m,h
t,x1,x′;p(R

d+1
+ ) = W k

p (R;Lp(Rd
+)) ∩ Lp(R;W 2m

p (R+;Lp(Rd−1)))

∩Lp(R;Lp(R+;Wh
p (Rd−1))).

Theorem 2.9. Let p ∈ (1, ∞) and m ∈ N. Then it holds for k, h sufficiently large that

W k,2m,h
t,x1,x′;p(Q

+
1 ) ↪→ C

2m−1/p
2m ,2m−1/p(Q+

1 ).

Moreover,

‖u‖
C

2m−1/p
2m ,2m−1/p(Q+

1 )
≤ C‖u‖Wk,2m,h

t,x1,x′;p(Q+
1 ),

with C > 0 independent of u.
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3. Assumptions and main results

In this section let p, q ∈ (1, ∞), m = 1, 2, . . . and we consider a 2m-th order elliptic 
differential operator A given by

Au =
∑

|α|≤2m

aα(t, x)Dαu,

where aα : R × R
d
+ → C. For j = 1, . . . , m and mj ∈ {0, . . . , 2m − 1}, we consider the 

boundary differential operators Bj of order mj given by

Bju =
∑

|β|=mj

bjβD
βu +

∑
|β|<mj

bjβ(t, x)Dβu,

where bjβ ∈ C if |β| = mj , and bjβ : R × R
d
+ → C if |β| < mj .

We will give conditions on the operators A and Bj under which there holds 
Lp(Lq)-estimates for the solution to the parabolic problem⎧⎨⎩ut(t, x) + (A + λ)u(t, x) = f(t, x) in R× R

d
+

Bju(t, x)
∣∣
x1=0 = gj(t, x) on R× R

d−1 j = 1, . . . ,m,
(3.1)

and to the elliptic problem⎧⎨⎩(A + λ)u = f in R
d
+

Bju
∣∣
x1=0 = gj on R

d−1, j = 1, . . . ,m,
(3.2)

where, for the elliptic case, the coefficients of the operators and data involved are func-
tions independent on t ∈ R, i.e., defined on Rd

+.

3.1. Assumptions on A and Bj

We first introduce a parameter-ellipticity condition in the sense of [7, Definition 5.1]. 
Here A�(t, x, ξ) =

∑
|α|=2m aα(t, x)ξα denotes the principal symbol of the operator A.

(E)θ Let θ ∈ (0, π). For all t ∈ R, x ∈ R
d
+ it holds that

A�(t, x, ξ) ⊂ Σθ, ∀ ξ ∈ R
n, |ξ| = 1,

where Σθ = {z ∈ C\{0} : | arg(z)| < θ} and arg : C\{0} → (−π, π].

The following (LS)θ-condition is a condition of Lopatinskii–Shapiro type. Before stat-
ing it, we need to introduce some notation.
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Denote by

A�(t, x,D) :=
∑

|α|=2m

aα(t, x)Dα and Bj,�(D) :=
∑

|β|=mj

bjβD
β

the principal part of A(t, x) and Bj respectively. Let t0 ∈ R and x0 be in a neighborhood 
of ∂Rd+1

+ of width 2R0, i.e., x0 ∈ B2R0(x′) ∩ R
d
+ for some x′ ∈ ∂Rd

+, and consider the 
operator A�(t0, x0, D). Taking the Fourier transform Fx′ with respect to x′ ∈ R

d−1 and 
letting v(x1, ξ) := Fx′(u(x1, ·))(ξ), we obtain

A�(t0, x0, ξ,Dx1)v := Fx′(A�(t0, x0, D)u(x1, ·))(ξ)

=
2m∑
k=0

∑
|β|=k

a(β,k)(t0, x0)ξβD2m−k
x1

v

and

Bj,�(ξ,Dx1)v := Fx′(Bj,�(D)u(x1, ·))(ξ) =
mj∑
k=0

∑
|γ|=k

b(γ,k)jξ
γDmj−k

x1
v,

where we denote Dx1 = −i ∂
∂x1

.

(LS)θ Let θ ∈ (0, π) and let t0 and x0 be as above. For each (h1, . . . , hm)T ∈ R
m and 

each ξ ∈ R
d−1 and λ ∈ Σπ−θ, such that |ξ| + |λ| 
= 0, the ODE problem in R+⎧⎨⎩λv + A�(t0, x0, ξ,Dx1)v = 0, x1 > 0,

Bj,�(ξ,Dx1)v
∣∣
x1=0 = hj , j = 1, . . . ,m

(3.3)

admits a unique solution v ∈ C∞(R+) such that limx→∞ v(x) = 0.

Remark 3.1. In contrast to the original definition of the (LS)θ-condition (as for instance 
in [7]), here we assume x0 to be in a neighborhood of the boundary ∂Rd+1

+ instead on 
the boundary itself. This choice is suitable to the VMO assumption on the coefficients 
of the operator A, which will be introduced in assumption (A) below.

We now introduce a regularity condition on the leading coefficients, where ρ is a 
parameter to be specified.

Assumption 3.2 (ρ). There exist a constant R0 ∈ (0, 1] such that (aα)�R0
≤ ρ.

Throughout the paper, we impose the following assumptions on the coefficients of A
and Bj .
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(A) The coefficients aα are functions R ×R
d
+ → C and satisfy Assumption 3.2 (ρ) with a 

parameter ρ ∈ (0, 1) to be determined later. Moreover there exists a constant K > 0
such that ‖aα‖L∞ ≤ K, |α| ≤ 2m, and there exists θ ∈ (0, π2 ) such that A satisfies 
condition (E)θ.

(B) For each j = 1, . . . , m, the coefficients bjβ are such that⎧⎨⎩bjβ ∈ C if |β| = mj ,

bjβ : R× R
d
+ → C if |β| < mj ,

and for |β| < mj , bjβ ∈ C1−mj
2m ,2m−mj (Rd+1

+ ) and there exists K > 0 such that

‖bjβ‖
C1−

mj
2m ,2m−mj

≤ K.

Remark 3.3. The (LS)θ-condition is essentially of algebraic nature, as it can be reformu-
lated as a condition on the roots of a homogeneous polynomial. For further details, we 
refer the reader to [45] and [35]. It is not difficult to verify this condition in applications. 
For instance, see [9, Section 3] or [32, Section 5.2].

Example 3.4. (i) Assume A has order 2m and Bj = Dj−1
x1

, j = 1, . . . , m. Then, the 
Dirichlet boundary condition Bju|x1=0 = gj on ∂Rd

+ satisfies the (LS)θ-condition. We 
refer the reader to [1, Section I.2] for the proof. We remark that the complementing 
condition in [1] is equivalent to the (LS)θ-condition.

(ii) Let A =
∑

|α|=2 aαD
α, with aα ∈ C and let B =

∑
|β|=1 bβD

β with 0 
=
b(1,0,...,0) ∈ C. Then the (LS)θ-condition is equivalent to the algebraic condition that 
for each ξ ∈ R

d−1 and λ ∈ Σπ−θ such that |ξ| + |λ| 
= 0, the characteristic polynomial

a0(ξ)μ2 + a1(ξ)μ + a0(ξ) + λ = 0

of (3.3), has two distinct roots μ± with Imμ+ > 0 > Imμ−, where ak(ξ) =∑
|α|=k a(k,α)ξ

α. The proof follows the line of [27, Section 7.4].

We can now state our main result.

Theorem 3.5. Let T ∈ (−∞, ∞], p, q ∈ (1, ∞). Let v ∈ Ap((−∞, T )) and w ∈ Aq(Rd
+). 

There exists

ρ = ρ(θ,m, d,K, p, q, [v]p, [w]q, bjβ) ∈ (0, 1)

such that under the assumptions (A), (B), and (LS)θ for some θ ∈ (0, π/2), the following 
hold.

(i) Assume the lower-order terms of Bj to be all zero and gj ≡ 0, with j = 1, . . . , m. 
Then there exists λ0 = λ0(θ, m, d, K, p, q, R0, [v]p, [w]q, bjβ) ≥ 0 such that for any λ ≥ λ0
and
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u ∈ W 1
p ((−∞, T ), v;Lq(Rd

+, w)) ∩ Lp((−∞, T ), v;W 2m
q (Rd

+, w))

satisfying (3.1) on (−∞, T ) × R
d
+, where f ∈ Lp((−∞, T ), v; Lq(Rd

+, w)), it holds that

‖ut‖Lp((−∞,T ),v;Lq(Rd
+,w)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp((−∞,T ),v;Lq(Rd

+,w))

≤ C‖f‖Lp((−∞,T ),v;Lq(Rd
+,w)), (3.4)

where C = C(θ, m, d, K, p, q, [v]p, [w]q, bjβ) > 0 is a constant.
(ii) Let v = w = 1. Then there exists λ0 = λ0(θ, m, d, K, p, q, R0, bjβ) ≥ 0 such that 

for any λ ≥ λ0 and

u ∈ W 1
p ((−∞, T );Lq(Rd

+)) ∩ Lp((−∞, T );W 2m
q (Rd

+))

satisfying (3.1) on (−∞, T ), where f ∈ Lp((−∞, T ); Lq(Rd
+)) and

gj ∈ F kj
p,q((−∞, T );Lq(Rd−1)) ∩ Lp((−∞, T );B2mkj

q,q (Rd−1))

with kj = 1 −mj/(2mq) − 1/(2mq), it holds that

‖ut‖Lp((−∞,T );Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp((−∞,T );Lq(Rd

+))

≤ C‖f‖Lp((−∞,T );Lq(Rd
+)) + C

m∑
j=1

‖gj‖
F

kj
p,q((−∞,T );Lq(Rd−1))∩Lp((−∞,T );B2mkj

q,q (Rd−1))
,

(3.5)

where C = C(θ, m, d, K, p, q, bjβ) > 0 is a constant.

From the a priori estimates for the parabolic equation in Theorem 3.5, we obtain the 
a priori estimates for the higher-order elliptic equation as well, by using the arguments 
in [14, Theorem 5.5] and [24, Theorem 2.6]. The key idea is that the solutions to elliptic 
equations can be viewed as steady state solutions to the corresponding parabolic cases.

We state below the elliptic version of Theorem 3.5. Here, the coefficients of A and Bj

are now independent of t.

Theorem 3.6. Let q ∈ (1, ∞) and w ∈ Aq(Rd
+). There exists

ρ = ρ(θ,m, d,K, q, [w]q) ∈ (0, 1)

such that under assumptions (A), (B), and (LS)θ for some θ ∈ (0, π/2), the following 
hold.
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(i) Assume the lower-order terms of Bj to be all zero and consider homogeneous 
boundary conditions. Then, there exists λ0 = λ0(θ, m, d, K, q, R0, [v]q, bjβ) ≥ 0 such that 
for any λ ≥ λ0 and u ∈ W 2m

q (Rd
+; w) satisfying (3.2) where f ∈ Lq(Rd

+, w), it holds that

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq(Rd

+,w) ≤ C‖f‖Lq(Rd
+,w), (3.6)

where C = C(θ, m, d, K, q, [w]q, bjβ) > 0 is a constant.
(ii) Let w = 1. Then there exists λ0 = λ0(θ, m, d, K, q, R0, bjβ) ≥ 0 such that for any 

λ ≥ λ0 and u ∈ W 2m
q (Rd

+) satisfying⎧⎨⎩(A + λ)u = f in R
d
+

Bju
∣∣
x1=0 = gj on R

d−1,

where f ∈ Lq(Rd
+) and gj ∈ B2mkj

q,q (Rd−1), with kj = 1 −mj/(2m) − 1/(2mq), it holds 
that

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq(Rd

+) ≤ C‖f‖Lq(Rd
+) + C

m∑
j=1

‖gj‖B2mkj
q,q (Rd−1)

, (3.7)

where C = C(θ, m, d, K, q, bjβ) > 0 is a constant.

Remark 3.7. (i) In Theorems 3.5 and 3.6 we focus only on the a priori estimates. The 
solvability of the corresponding equations will be derived in Section 6.

(ii) For notational simplicity, in this paper we focus only on the scalar case. However, 
similar to [7], with the same proofs both Theorems 3.5 and 3.6 hold if one considers 
systems of operators, i.e., the coefficients aα and bjβ are N ×N complex matrix-valued 
functions.

(iii) In [7,8] and [33,32], the coefficients there considered are operator-valued, with 
values in a Banach space with the UMD property (Unconditional martingale difference, 
see [23] for details). Since in our proofs we refer to these results when we freeze the 
coefficients and consider an unweighted setting, we believe that it is possible to extend 
our results also to the case of operator-valued coefficients, with values in a Hilbert space 
or in a UMD-Banach space. In particular, the trace theorem also needs to be extended 
to this case. Since in our results we do not include Muckenhoupt weights in the traces, 
this extension is straightforward by following [32]. For UMD-Banach valued coefficients 
in the weighted-space setting, we refer the reader to [28].

4. Mean oscillation estimates for ut and Dαu, 0 ≤ |α| ≤ 2m, except D2m
1 u

The main result of this section is stated in Lemma 4.5, and it shows mean oscillation 
estimates for ut and Dαu, for all 0 ≤ |α| ≤ 2m except D2m

x u. The proof of this lemma is 

1
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the main novelty of the paper, and it generalizes some results in [14] to general boundary 
conditions.

For a function f defined on D ⊂ R
d+1
+ , we set

[f ]
C

ν
2m,ν(D) = sup

(t,x),(s,y)∈D
(t,x) 
=(s,y)

|f(t, x) − f(s, y)|
|t− s| ν

2m + |x− y|ν .

Throughout the section, we assume that A and Bj consist only of their principal part.
Let

A0 =
∑

|α|=2m

āαD
α

be an operator with constant coefficients satisfying |aα| ≤ K for a constant K > 0 and 
satisfying condition (E)θ with θ ∈ (0, π/2).

We first prove an auxiliary estimate, which is derived from a result in [8].

Lemma 4.1. Let T ∈ (−∞, +∞] and p, q ∈ (1, ∞). Let A0 and Bj be as above. 
Assume that for some θ ∈ (0, π/2) the (LS)θ-condition is satisfied. Then for every 
f ∈ Lp,q((−∞, T ) × R

d
+) and

gj ∈ F kj
p,q((−∞, T );Lq(Rd−1)) ∩ Lp((−∞, T );B2mkj

q,q (Rd−1))

with j ∈ {1, . . . , m}, mj ∈ {0, . . . , 2m − 1}, kj = 1 − mj/(2m) − 1/(2mq) and u ∈
W 1,2m

p,q ((−∞, T ) × R
d
+) satisfying{

ut(t, x) + (λ + A0)u(t, x) = f(t, x) in (−∞, T ) × R
d
+

Bju(t, x)
∣∣
x1=0 = gj(t, x) on (−∞, T ) × R

d−1,
(4.1)

with λ ≥ 0, we have

‖ut‖Lp,q((−∞,T )×R
d
+) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q((−∞,T )×R

d
+)

≤ C‖f‖Lp,q((−∞,T )×R
d
+) +

m∑
j=1

‖gj‖
F

kj
p,q((−∞,T );Lq(Rd−1))∩Lp((−∞,T );B2mkj

q,q (Rd−1))
,

(4.2)

with C = C(θ, m, d, K, p, q, bjβ) > 0. Moreover, for any λ > 0, f ∈ Lp,q((−∞, T ) × R
d
+)

and

gj ∈ F kj
p,q((−∞, T );Lq(Rd−1)) ∩ Lp((−∞, T );B2mkj

q,q (Rd−1))

with j ∈ {1, . . . , m}, mj ∈ {0, . . . , 2m − 1}, kj = 1 −mj/(2m) − 1/(2mq), there exists a 
unique solution u ∈ W 1,2m

p,q ((−∞, T ) × R
d
+) to (4.1).
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Proof. We divide the proof into several steps. First we assume that T = ∞.
Step 1. Let u ∈ W 1,2m

p,q (R+ × R
d
+) be a solution to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut(t, x) + (λ + A0)u(t, x) = f(t, x) in R+ × R

d
+

Bju(t, x)
∣∣
x1=0 = gj(t, x) on R+ × R

d−1, j = 1, . . . ,m

u(0, x) = 0 on Rd
+,

(4.3)

with λ > 0. By applying [8, Proposition 6.4] to (4.3), it holds that

‖ut‖Lp,q(R+×R
d
+) + ‖D2mu‖Lp,q(R+×R

d
+)

≤ C‖f‖Lp,q(R+×R
d
+) + C

m∑
j=1

‖gj‖
F

kj
p,q(R+;Lq(Rd−1))∩Lp(R+;B2mkj

q,q (Rd−1))
,

(4.4)

with C = C(λ, θ, m, d, K, p, q, bjβ). We remark that although the estimate is not explicitly 
stated in this reference, it can be extracted from the proofs there. We want to show that 
the estimate (4.4) also holds when λ = 0.

For this, observe that in [8, Proposition 6.4], the coefficients of the operators under 
consideration are time and space dependent. In our case, since A0 has constant coeffi-
cients, using a scaling t → λ−1t, x → λ−1/2mx, we obtain that the estimate (4.4) holds 
for any λ ∈ (0, 1) and with constant C uniform in λ. In fact, for a general λ ∈ (0, 1), let 
v(t, x) := u(λ−1t, λ−1/2mx). Then v satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

vt(t, x) + A0v(t, x) + v(t, x) = f̃(t, x) in R+ × R
d
+

Bjv(t, x)
∣∣
x1=0 = g̃j(t, x) on R+ × R

d−1

v(0, x) = 0 on R
d
+,

(4.5)

where

f̃(t, x) = λ−1f(λ−1t, λ−1/2mx)

and

g̃j(t, x) = λ−mj/2mgj(λ−1t, λ−1/2mx).

Applying (4.4) with λ = 1 to (4.5) we get that

‖vt‖Lp,q(R+×R
d
+) + ‖D2mv‖Lp,q(R+×R

d
+)

≤ C‖f̃‖Lp,q(R+×R
d
+) + C

m∑
‖g̃j‖

F
kj
p,q(R+;Lq(Rd−1))∩Lp(R+;B2mkj

q,q (Rd−1))
,

(4.6)
j=1
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with C = C(θ, m, d, K, p, q, bjβ). Now, scaling back and using the definition of the Besov 
space and Triebel–Lizorkin space, it is easily seen

‖ut‖Lp,q(R+×R
d
+) + ‖D2mu‖Lp,q((0,∞)×R

d
+)

≤ C‖f‖Lp,q(R+×R
d
+) + C

m∑
j=1

‖gj‖
F

kj
p,q(R+;Lq(Rd−1))∩Lp(R+;B2mkj

q,q (Rd−1))
,

(4.7)

where C is independent of λ ∈ (0, 1). Sending λ → 0, we obtain that the estimate (4.4)
holds when λ = 0. Finally, by applying a procedure of S. Agmon as in [24, Theorem 4.1], 
from (4.4) with λ = 0 it follows that when λ > 0,

‖ut‖Lp,q(R+×R
d
+) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q(R+×R

d
+)

≤ C‖f‖Lp,q(R+×R
d
+) + C

m∑
j=1

‖gj‖
F

kj
p,q(R+;Lq(Rd−1))∩Lp(R+;B2mkj

q,q (Rd−1))
,

(4.8)

with constant C = C(θ, m, d, K, p, q, bjβ).
Step 2. Take η ∈ C∞(R) such that η = 1 for t > 1 and η = 0 for t < 0. Define 

un = η(t + n)u. From (4.1), we see that un satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(un)t(t, x) + (λ + A0)un(t, x) = fn(t, x) in (−n,∞) × R

d
+

Bjun(t, x)
∣∣
x1=0 = gn,j(t, x) on (−n,∞) × R

d−1

un(−n, x) = 0 on R
d
+,

(4.9)

for j = 1, . . . , m, where λ > 0 and

fn = η(t + n)f + uηt(t + n) and gn,j(t, x) = η(t + n)gj(t, x).

By applying (4.8) to (4.9), we get that

‖(un)t‖Lp,q((−n,∞)×R
d
+) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαun‖Lp,q((−n,∞)×R

d
+)

≤ C‖fn‖Lp,q((−n,∞)×R
d
+)

+ C

m∑
j=1

‖gn,j‖
F

kj
p,q((−n,∞);Lq(Rd−1))∩Lp((−n,∞);B2mkj

q,q (Rd−1))
, (4.10)

with C = C(θ, m, d, K, p, q, bjβ). Now, taking the limit as n → ∞ yields (4.2), i.e., for 
any λ > 0,
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‖ut‖Lp,q(R×R
d
+) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q(R×R

d
+)

≤ C‖f‖Lp,q(R×R
d
+) + C

m∑
j=1

‖gj‖
F

kj
p,q(R;Lq(Rd−1))∩Lp(R;B2mkj

q,q (Rd−1))
,

with C = C(θ, m, d, K, p, q, bjβ).
Step 3. For the solvability, let f ∈ Lp,q(Rd+1

+ ) and gj ∈ F
kj
p,q(R; Lq(Rd−1)) ∩

Lp(R; B2mkj
q,q (Rd−1)), j = 1 . . . , m. For integer n > 0, define

fn = η(t + n)f and gn,j = η(t + n)gj

so that fn → f in Lp,q(Rd+1
+ ) and

gn,j → gj in F kj
p,q(R;Lq(Rd−1)) ∩ Lp(R;B2mkj

q,q (Rd−1)).

Now let un ∈ W 1,2m
p,q ((−n, ∞) ×R

d
+) be the solution to the initial-boundary value problem 

with fn and gn,j and zero initial value at t = −n, the existence of which is guaranteed 
by [8, Proposition 6.4]. We extend un to be zero for t < −n. It is easily seen that un

satisfies (4.1) with fn and gn,j in place of f and gj , respectively. Applying the a priori 
estimate obtained in the argument above to um − un, we get that {un} is a Cauchy 
sequence. Then the limit u ∈ W 1,2m

p,q (Rd+1
+ ) is a solution to (4.1).

Step 4. For general T < ∞, we may assume T = 0 by shifting the t-coordinate. We 
first take the even extensions of u with respect to t = 0. Then u ∈ W 1,2m

p,q (R ×R
d
+). Next 

we take the even extension of f and gj with respect to t = 0. Let v ∈ W 1,2m
p,q (R × R

d
+)

be the solution to⎧⎨⎩vt(t, x) + (λ + A0)v(t, x) = f(t, x) in R
d+1
+

Bjv(t, x)
∣∣
x1=0 = gj(t, x) on R× R

d−1, j = 1, . . . ,m,

the existence of which is guaranteed by the argument above. Observe that w := u − v ∈
W 1,2m

p,q (R × R
d
+) satisfies

⎧⎨⎩wt(t, x) + (λ + A0)w(t, x) = 0 in (−∞, 0) × R
d
+

Bjw(t, x)
∣∣
x1=0 = 0 on (−∞, 0) × R

d−1, j = 1, . . . ,m.

We claim that w = 0 on t < 0. Indeed, for any T1 < 0, we solve the equation of w in 
(T1, ∞) × R

d
+ with the zero initial data to get w1, and extend w1 = 0 for t < T1. It is 

easily seen that the extended function w1 satisfies the same equation of w in R ×R
d
+. By 

the uniqueness of the solution, w = w1. Therefore, w = 0 when t < T1 for any T1 < 0. 
Then,
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‖ut‖Lp,q((−∞,0)×R
d
+) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q((−∞,0)×R

d
+)

= ‖vt‖Lp,q((−∞,0)×R
d
+) + λ1− |α|

2m ‖Dαv‖Lp,q((−∞,0)×R
d
+)

≤ C‖f‖Lp,q(R×R
d
+) +

m∑
j=1

‖gj‖
F

kj
p,q(R;Lq(Rd−1))∩Lp(R;B2mkj

q,q (Rd−1))

= C‖f‖Lp,q((−∞,0)×R
d
+) +

m∑
j=1

‖gj‖
F

kj
p,q((−∞,0);Lq(Rd−1))∩Lp((−∞,T );B2mkj

q,q (Rd−1))
.

The solvability is obtained by taking the even extension of gj and f , and then solve the 
equation in R × R

d
+. The uniqueness follows from the a priori estimate. �

Remark 4.2. In Lemma 4.1 as well as Theorem 3.5, we assumed θ ∈ (0, π/2). However, 
in [8,32], it is shown that in the case of operators with constant leading coefficients, 
or operators with uniformly continuous leading coefficients in a bounded domain, it is 
sufficient that the conditions (E)θ and (LS)θ are satisfied for θ = π/2, which are slightly 
weaker. The condition (E)π/2 is also referred to as normal ellipticity condition.

From Lemma 4.1, we obtain the following Hölder estimate.

Lemma 4.3. Let 0 < r1 < r2 < ∞. Let v ∈ W 1,2m
p (Q+

r2) be a solution to the homogeneous 
problem ⎧⎨⎩vt + A0v = 0 in Q+

r2

Bjv
∣∣
x1=0 = 0 on Qr2 ∩ {x1 = 0}, j = 1, . . . ,m.

(4.11)

Assume that for some θ ∈ (0, π/2) the (LS)θ-condition is satisfied. Then there exists a 
constant C = C(θ, K, p, d, m, r1, r2, bjβ) > 0 such that

‖vt‖Lp(Q+
r1 ) + ‖D2mv‖Lp(Q+

r1 ) ≤ C‖v‖Lp(Q+
r2 ). (4.12)

Furthermore, for ν = 1 − 1
p ,

[vt]C ν
2m,ν(Q+

r1 ) + [D2m−1Dx′v]
C

ν
2m,ν(Q+

r1 ) ≤ C‖vt‖Lp(Q+
r2 ) + C‖D2mv‖Lp(Q+

r2 ), (4.13)

with C = C(θ, K, p, d, m, r1, r2, bjβ) > 0.

Proof. Set R0 = r1 and Ri = r1 + (r2 − r1)(1 − 2−i), for i = 1, 2, . . . . For each i =
0, 1, 2, . . . , take ηi ∈ C∞

0 (Rd+1
+ ) satisfying⎧⎨⎩ηi = 1 in Q+

Ri

η = 0 outside (−R2m, R2m) ×B
i i i Ri+1
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and

|Dkηi| ≤ C2ki(r2 − r1)−k, |(ηi)t| ≤ C22mi(r2 − r1)−2m (4.14)

where k = 0, 1, . . . , 2m. It is easily seen that vηi ∈ W 1,2m
p (Rd+1

+ ) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
(vηi)t + A0(vηi) = f in R

d+1
+

Bj(vηi)
∣∣
x1=0 = trx1=0Gj on ∂Rd+1

+ , j = 1, . . . ,m

(vηi)(−r2m
2 , ·) = 0,

(4.15)

where

f = v(ηi)t +
∑

|α|=2m

∑
|γ|≤2m−1

(
α

γ

)
āαD

γvDα−γηi

and

Gj =
∑

|β|=mj

∑
|τ |≤mj−1

(
β

τ

)
bjβD

τvDβ−τηi, j = 1, . . . ,m.

Thus we extended (4.11) to a system on R ×R
d
+ without changing the value of v on Q+

r1 . 
Now let

gj = trx1=0Gj ∈ W
1−mj

2m− 1
2mp ,2m−mj− 1

p
p (R× R

d−1).

By applying Lemma 4.1 with p = q, we get

‖(vηi)t‖Lp(Rd+1
+ ) + ‖D2m(vηi)‖Lp(Rd+1

+ )

≤ C‖f‖Lp(Rd+1
+ ) + C

m∑
j=1

‖gj‖
W

1−
mj
2m − 1

2mp
,2m−mj− 1

p
p (R×Rd−1)

,

where C = C(θ, K, d, m, p, bjβ). By Theorem 2.5 with s = 1 − mj

2m ∈ (0, 1], mj ∈
{0, . . . , 2m − 1}, we have

‖gj‖
W

1−
mj
2m − 1

2mp
,2m−mj− 1

p
p (R×Rd−1)

≤ C‖Gj‖
W

1−
mj
2m ,2m−mj

p (Rd+1
+ )

.

Observe that

‖f‖Lp(Rd+1
+ ) ≤ C‖(ηi)tv‖Lp(Rd+1

+ ) + C
∑

|α|=2m

∑
|γ|≤2m−1

‖DγvDα−γηi‖Lp(Rd+1
+ )

and
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‖Gj‖
W

1−
mj
2m ,2m−mj

p (Rd+1
+ )

≤ C
∑

|β|=mj

∑
|τ |≤mj−1

‖DτvDβ−τηi‖
W

1−
mj
2m ,2m−mj

p (Rd+1
+ )

,

where the constant C = C(θ, K, p, d, m) may vary from line to line. By (4.14), it holds 
that

‖(ηi)tv‖Lp(Rd+1
+ ) ≤ C22mi(r2 − r1)−2m‖v‖Lp(Q+

r2 ).

By (4.14) and interpolation inequalities (see e.g. [26] and the proof of [12, Lemma 3.2]), 
for ε > 0 small enough and |γ| ≤ 2m − 1 we get

‖DγvDα−γηi‖Lp(Rd+1
+ ) ≤ ‖Dγ(vηi+1)Dα−γηi‖Lp(Rd+1

+ )

≤ C2(2m−|γ|)i(r2 − r1)−(2m−|γ|)‖Dγ(vηi+1)‖Lp(Rd+1
+ )

≤ ε‖D2m(vηi+1)‖Lp(Rd+1
+ ) + Cε22mi(r2 − r1)−2m‖v‖Lp(Q+

r2 ),

where Cε = Cε
|γ|

|γ|−2m . Moreover, by the parabolic interpolation inequality and (4.14), 
for ε > 0 small enough and |τ | ≤ mj − 1 we get

‖DτvDβ−τηi‖
W

1−
mj
2m ,2m−mj

p (Rd+1
+ )

≤ C2(mj−|τ |)i(r2 − r1)−(mj−|τ |)‖Dτ (vηi+1)‖
W

1−
mj
2m ,2m−mj

p (Rd+1
+ )

≤ ε‖D2m(vηi+1)‖Lp(Rd+1
+ ) + ε‖(vηi+1)t‖Lp(Rd+1

+ ) + Cε22mi(r2 − r1)−2m‖v‖Lp(Q+
r2 )

where Cε = Cε
2m+|τ|−mj

|τ|−mj .
Combining the above inequalities yields

‖(vηi)t‖Lp(Rd+1
+ ) + ‖D2m(vηi)‖Lp(Rd+1

+ ) ≤ (C + Cε)22mi(r2 − r1)−2m‖v‖Lp(Q+
r2 )

+ Cε‖D2m(vηi+1)‖Lp(Rd+1
+ ) + Cε‖(vηi+1)t‖Lp(Rd+1

+ ).

We multiply both sides by εi and we sum with respect to i to get

∞∑
i=0

εi
(
‖(vηi)t‖Lp(Rd+1

+ ) + ‖D2m(vηi)‖Lp(Rd+1
+ )

)

≤ (C + Cε)(r2 − r1)−2m
∞∑
i=0

(22mε)i‖v‖Lp(Q+
r2 )

+ C
∞∑
i=1

εi
(
‖D2m(vηi)‖Lp(Rd+1

+ ) + ‖(vηi)t‖Lp(Rd+1
+ )

)
.
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We choose ε = 2−2m−1 and observe that the above summations are finite. Then, the 
above estimate gives

‖(vη0)t‖Lp(Rd+1
+ ) + ‖D2m(vη0)‖Lp(Rd+1

+ ) ≤ C(r2 − r1)−2m‖v‖Lp(Q+
r2 ). (4.16)

Since the left-hand side of (4.16) is greater than that of (4.12), we can conclude

‖vt‖Lp(Q+
r1 ) + ‖D2mv‖Lp(Q+

r1 ) ≤ C(r2 − r2)−2m‖v‖Lp(Q+
r2 ),

with C = C(θ, K, p, d, m, bjβ).
To show the Hölder estimate for v, we proceed as follows. First, observe that from 

(4.12) and interpolation inequalities, it holds that

‖v‖W 1,2m
p (Q+

r1 ) ≤ C‖v‖Lp(Q+
r2 ). (4.17)

Observe now that for k, h > 0, the derivatives Dk
t D

h
x′v satisfy the same equation 

as v. Hence, from (4.17) and a standard bootstrap argument, it holds that v ∈
W k,2m,h+2m

t,x1,x′;p (Q+
r1) with

‖v‖Wk,2m,h+2m
t,x1,x′;p (Q+

r1 ) ≤ C‖v‖Lp(Q+
r2 ).

Observe that Theorem 2.9 implies for ν = 1 − 1
p ,

v, D2m−1v ∈ C
ν

2m ,ν(Q+
r1)

and

[v]
C

ν
2m,ν(Q+

r1 ) + [D2m−1v]
C

ν
2m,ν(Q+

r1 ) ≤ C‖v‖Wk,2m,h+2m
t,x1,x′;p (Q+

r1 ) ≤ C‖v‖Lp(Q+
r2 ). (4.18)

Since vt satisfies the same equation as v, we have

[vt]C ν
2m,ν(Q+

r1 ) ≤ C‖vt‖Lp(Q+
r2 ). (4.19)

In order to show (4.13), we need to apply the following Poincaré type inequality for so-
lutions to equations satisfying the Lopatinskii–Shapiro condition. Its proof is postponed 
to the end of this section.

Lemma 4.4. Let v ∈ W 1,2m
p (Q+

r2) be a solution to the homogeneous problem (4.11). Then 
there exists a polynomial P of order 2m − 2 such that v − P satisfies (4.11) and there 
exists a constant C = C(d, m, p, K, bjβ , r2) > 0 such that

‖Dα(v − P )‖Lp(Q+
r2 ) ≤ C‖D2m−1v‖Lp(Q+

r2 ) (4.20)

for |α| ∈ {0, . . . , 2m − 2}.
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By (4.18) and Lemma 4.4 there exists a polynomial P of order 2m − 2 such that

[D2m−1v]
C

ν
2m,ν(Q+

r1 ) = [D2m−1(v − P )]
C

ν
2m,ν(Q+

r1 )

≤ ‖v − P‖Lp(Q+
r2 ) ≤ C‖D2m−1v‖Lp(Q+

r2 ),

from which, since Dx′v satisfies the same equation as v, we get that

[D2m−1Dx′v]
C

ν
2m,ν(Q+

r1 ) ≤ C‖D2mv‖Lp(Q+
r2 ).

Together with (4.19), the above inequality yields (4.13). �
Similar to [13, Corollary 5], from Lemma 4.3 we obtain the following mean oscillation 

estimates for ut and Dαu, for all 0 ≤ |α| ≤ 2m except D2m
x1

u.

Lemma 4.5. Let κ ≥ 16 and p ∈ (1, ∞). Let f ∈ Lp,loc(Rd+1
+ ), X0 = (t0, x0) ∈ R

d+1
+ , and 

λ ≥ 0. Assume that for r ∈ (0, ∞), u ∈ W 1,2m
p,loc (Rd+1

+ ) satisfies ut + (A0 + λ)u = f in 
Q+

κr(X0) and Bju|x1=0 = 0 on Qκr(X0) ∩{x1 = 0}, j = 1, . . . , m. Assume that for some 
θ ∈ (0, π/2) the (LS)θ-condition is satisfied. Then

(|ut − (ut)Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0)

≤ Cκ−(1− 1
p )

∑
|α|≤2m

λ1− |α|
2m (|Dαu|p)

1
p

Q+
κr(X0)

+ Cκ
d+2m

p (|f |p)
1
p

Q+
κr(X0)

, (4.21)

where C = C(θ, d, m, K, p, bjβ) > 0 is a constant.

Proof. Using a scaling argument, it suffices to prove (4.21) only for r = 8/κ. Indeed, 
assume that the inequality (4.21) holds true for r = 8/κ. For a given r ∈ (0, ∞), let 
r0 = 8/κ, R = r/r0 and v(t, x) = u(R2mt, Rx). Then v satisfies Bjv = 0 on Q+

κr0(Z0) ∩
{x1 = 0} and

vt(t, x) +
∑

|α|=2m

āαD
αv(t, x) + λR2mv(t, x) = R2mf(R2mt, Rx) (4.22)

on Q+
κr0(Z0), where Z0 = (R−2mt0, R−1x0) ∈ R

d+1
+ . Then, by (4.21) applied to (4.22), 

we have

(|vt − (vt)Q+
r0 (Z0)|)Q+

r0 (Z0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2mR2m−|α|(|Dαv − (Dαv)Q+

r0 (Z0)|)Q+
r0 (Z0)

≤ Cκ−(1− 1
p )

∑
|α|≤2m

λ1− |α|
2mR2m−|α|(|Dαv|p)

1
p

Q+
κr0 (Z0)

+ Cκ
d+2m

p R2m(|f |p)
1
p

Q+
κr0 (Z0)

.
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Note that

(Dαv)Q+
r0 (Z0) = R|α|(Dαu)Q+

r (X0) and (vt)Q+
r0 (Z0) = R2m(ut)Q+

r (X0),

so the above inequality implies (4.21) for arbitrary r ∈ (0, ∞).
We now assume r = 8/κ and consider two cases, where we denote by x1

0 the first 
coordinate of x0.

Case 1: x1
0 ≥ 1. In this case, Q+

κr/8(X0) = Qκr/8(X0). The proof of (4.21) then follows 
from [14, Lemma 5.7], with κ ≥ 2 instead of κ ≥ 8 there. Note that in this case, the 
(LS)θ-condition is not needed.

Case 2: x1
0 ∈ [0, 1]. We denote Y0 := (t0, 0, x′

0) and we set Q′
κr(Y0) := (t0−(κr)2m, t0) ×

Bκr(x′
0). Observe that

Q+
r (X0) ⊂ Q+

2 (Y0) ⊂ Q+
4 (Y0) ⊂ Q+

6 (Y0) ⊂ Q+
κr(X0).

To prove (4.21), we proceed by three steps.
Step 1. We assume for simplicity Y0 = (0, 0), since a translation in t and x′ then gives 

the result for general Y0. Decompose u = v + w where:

• w ∈ W 1,2m
p (Rd+1

+ ) is the solution to the inhomogeneous problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt + (A0 + λ)w = fζ in R× R

d
+

Bjw
∣∣
x1=0 = 0 on ∂Rd+1

+ , j = 1, . . . ,m

w(−62m, ·) = 0,

(4.23)

where ζ ∈ C∞
0 (Rd+1

+ ) satisfies ζ = 1 in (−42m, 0) × B4 and ζ = 0 outside 
(−62m, 62m) ×B6.

• v ∈ W 1,2m
p,loc (Rd+1

+ ) is the solution to the homogeneous problem

⎧⎨⎩vt + (A0 + λ)v = 0 in Q+
4

Bjv
∣∣
x1=0 = 0 on Q4 ∩ {x1 = 0}, j = 1, . . . ,m.

(4.24)

Step 2. It follows directly from Lemma 4.1 with gj ≡ 0 that there exists a unique 
solution w ∈ W 1,2m

p (Rd+1
+ ) of (4.23) that satisfies

‖wt‖Lp(Rd+1
+ ) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαw‖Lp(Rd+1

+ ) ≤ C‖fζ‖Lp(Rd+1
+ )

≤ C‖f‖Lp(Q+
6 ) ≤ C‖f‖Lp(Q+

κr(X0)), (4.25)

where C = C(θ, K, d, m, p, bjβ). In particular,
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(|wt|p)1/pQ+
r

+
∑

|α|≤2m

λ1− |α|
2m (|Dαw|p)1/p

Q+
r
≤ Cκ

d+2m
p (|f |p)1/p

Q+
κr
. (4.26)

Step 3. We claim that there exists a constant C = C(θ, p, K, d, m, bjβ) such that

(|vt − (vt)Q+
r
|)Q+

r (X0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m (|Dαv − (Dαv)Q+

r (X0)|)Q+
r (X0)

≤ Cκ−ν
∑

|α|≤2m

λ1− |α|
2m (|Dαv|p)1/p

Q+
κr(X0)

. (4.27)

To show the claim, we first assume λ = 0. We apply Lemma 4.3 with the choice r1 = 2
and r2 = 4, and we get

[vt]C ν
2m,ν(Q+

2 ) + [D2m−1Dx′v]
C

ν
2m,ν(Q+

2 ) ≤ C‖vt‖Lp(Q+
4 ) + C‖D2mv‖Lp(Q+

4 ), (4.28)

where ν = 1 − 1
p and C = C(θ, p, K, d, m, bjβ).

For λ > 0 we follow the proof of [13, Lemma 3], based on an idea by S. Agmon. 
Consider for y ∈ R,

ζ(y) = cos(λ 1
2m y) + sin(λ 1

2m y).

Note that

D2m
y ζ(y) = λζ(y), ζ(0) = 1, |D2m−|α|ζ(0)| = λ1− |α|

2m .

Denote by (t, z) = (t, x, y) ∈ R
d+2
+ , where z = (x, y) ∈ R

d+1
+ with x ∈ R

d
+, and set

ṽ(t, z) = v(t, x)ζ(y), Q̃+
r = (−r2m, 0) ×

{
|z| < r, z ∈ R

d+1
+

}
.

Since v satisfies (4.24) on Q+
4 , ṽ satisfies⎧⎨⎩ṽt + A0ṽ + D2m

y ṽ = 0 in Q̃+
4

Bj ṽ|x1=0 = 0 on Q̃+
4 ∩ {x1 = 0}.

Thus, we can proceed as in (4.28) and get for r = 8/κ, κ ≥ 16, and |α| ≤ 2m with 
α1 < 2m,

[ṽt]C ν
2m,ν(Q̃+

2 ) + [D2m−|α|
y Dαṽ]

C
ν

2m,ν(Q̃+
2 ) ≤ C‖ṽt‖Lp(Q̃+

4 ) + C‖D2mṽ‖Lp(Q̃+
4 ). (4.29)

Since |D2m−|α|ζ(0)| = λ1− |α|
2m ,

λ1− |α|
2m [Dαv] ν ,ν + ≤ [D2m−|α|

y Dαṽ] ν ,ν ˜+ .

C 2m (Q2 ) C 2m (Q2 )
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Observe now that

(|Dαv − (Dαv)Q+
r (X0)|)Q+

r (X0) ≤ Cκ−ν [Dαv]
C

ν
2m,ν(Q+

r (X0))

≤ Cκ−ν [Dαv]
C

ν
2m,ν(Q+

2 )

and the same holds for vt. This implies that

(|vt − (vt)Q+
r (X0)|)Q+

r (X0) + λ1− |α|
2m (|Dαv − (Dαv)Q+

r (X0)|)Q+
r (X0)

≤ Cκ−ν [vt]C ν
2m,ν(Q+

2 ) + Cκ−νλ1− |α|
2m [Dαv]

C
ν

2m,ν(Q+
2 )

≤ Cκ−ν [ṽt]C ν
2m,ν(Q̃+

2 ) + Cκ−ν [D2m−|α|
y Dαṽ]

C
ν

2m,ν(Q̃+
2 ).

Therefore, the left-hand side of (4.27) is bounded by that of (4.29).
Since D2mṽ is a linear combination of terms such as

λ1− k
2m cos(λ 1

2m y)Dk
xu(t, x), λ1− k

2m sin(λ 1
2m y)Dk

xu(t, x), k = 0, . . . , 2m,

we have

‖D2mṽ‖Lp(Q̃+
4 ) ≤ C

∑
|α|≤2m

λ1− |α|
2m ‖Dαv‖Lp(Q+

κr(X0)).

This together with vt = −A0v yields

Cκ−ν‖ṽt‖Lp(Q̃+
4 ) + Cκ−ν‖D2mṽ‖Lp(Q̃+

4 ) ≤ Cκ−ν
∑

|α|≤2m

λ1− |α|
2m ‖Dαv‖Lp(Q+

κr(X0)),

which shows that the right-hand side of (4.29) is bounded by that of (4.27).
Step 4. Since u = w + v, by (4.26) and (4.27) we get

(|ut − (ut)Qr
|)Q+

r (X0) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0)

(i)
≤ C(|ut − (vt)Qr

|)Q+
r (X0) + C

∑
|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu− (Dαv)Q+

r (X0)|)Q+
r (X0)

≤ C(|vt − (vt)Qr
|)Q+

r (X0) + C
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαv − (Dαv)Q+

r (X0)|)Q+
r (X0)

+ C(|wt|p)1/pQ+
r (X0)

+ C
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαw|p)1/p

Q+
r (X0)

≤ Cκ−ν
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαv|p)1/p

Q+
κr(X0)

+ Cκ
d+2m

p (|f |p)1/p
Q+

κr(X0)

(ii)
≤ Cκ−ν

∑
λ1− |α|

2m (|Dαu|p)1/p
Q+

κr(X0)
+ Cκ

d+2m
p (|f |p)1/p

Q+
κr(X0)

,

|α|≤2m,α1<2m
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where in (i) we used the fact that for any constant c1, c2 it holds

(|ut − (ut)Q+
r (X0)|)Q+

r (X0) ≤ 2(|ut − c1|)Q+
r (X0),

(|Dαu− (Dαu)Q+
r (X0)|)Q+

r (X0) ≤ 2(|Dαu− c2|)Q+
r (X0),

and we took c1 = (vt)Q+
r (X0), c2 = (Dαv)Q+

r (X0), while in (ii) we used v = u − w and 
(4.25). �

We now use the idea of freezing the coefficients as in [14, Lemma 5.9], to obtain the 
following mean oscillation estimate on Q+

r (X0) for operators with variable coefficients 
when r is small.

Lemma 4.6. Let λ ≥ 0 and κ ≥ 16. Assume that A and Bj, j = 1, . . . , m, satisfy condi-
tions (A), (B), and (LS)θ for some θ ∈ (0, π/2), and assume the lower-order coefficients 
of A and Bj to be all zero. Let μ, ς ∈ (1, ∞), 1

ς + 1
μ = 1. Then, for r ∈ (0, R0/κ], 

X0 ∈ R
d+1
+ and u ∈ W 1,2m

pμ,loc(R
d+1
+ ) satisfying ut + (A(t) + λ)u = f in Q+

κr(X0) and 

Bju|x1=0 = 0 on Qκr(X0) ∩ {x1 = 0}, j = 1, . . . , m, where f ∈ Lp,loc(Rd+1
+ ), we have

(|ut − (ut)Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0)

≤ Cκ−(1− 1
p )

∑
|α|≤2m

λ1− |α|
2m (|Dαu|p)

1
p

Q+
κr(X0)

+ Cκ
d+2m

p (|f |p)
1
p

Q+
κr(X0)

+ Cκ
d+2m

p ρ
1
pς (|D2mu|pμ)

1
pμ

Q+
κr(X0)

,

where C = C(θ, d, m, μ, K, p, bjβ) > 0.

Proof. Fix (t0, x0) ∈ R
d+1
+ . For any (s, y) ∈ Q+

κr(t0, x0), set

As,yu =
∑

|α|=2m

aα(s, y)Dαu.

Then u satisfies ⎧⎨⎩ut + (As,y + λ)u = g in Q+
κr

Bju
∣∣
x1=0 = 0 on Q+

κr ∩ {x1 = 0},

where

g := f +
∑

(aα(s, y) − aα(t, x))Dαu.

|α|=2m
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Note that when x1
0 ≤ R0, we have y1 ≤ 2R0 so that the (LS)θ-condition is satisfied for 

As,y and Bj . It follows from Lemma 4.5 that

(|ut − (ut)Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0)

≤ Cκ−(1− 1
p )

∑
|α|≤2m

λ1− |α|
2m (|Dαu|p)

1
p

Q+
κr(X0)

+ Cκ
d+2m

p (|g|p)
1
p

Q+
κr(X0)

, (4.30)

where C = C(θ, d, m, K, p, bjβ). Note that

(|g|p)
1
p

Q+
κr(X0)

≤ (|f |p)
1
p

Q+
κr(X0)

+ I
1
p , (4.31)

where

I = (|(aα(s, y) − aα(t, x))Dαu|p)Q+
κr(X0).

Take now the average of I with respect to (s, y) in Q+
κr(X0). By Hölder’s inequality it 

holds that

(
−
ˆ

Q+
κr(X0)

I ds dy
) 1

p ≤
(

−
ˆ

Q+
κr(X0)

(|(aα(s, y) − aα(t, x))Dαu|p)Q+
κr(X0) ds dy

) 1
p

≤
(

−
ˆ

Q+
κr(X0)

(|(aα(s, y) − aα(t, x))|pς)
1
ς

Q+
κr(X0)

ds dy
) 1

p (|D2mu|pμ)
1
pμ

Q+
κr(X0)

.

Moreover, by the boundedness of the coefficients aα, the assumption r ≤ R0/κ and 
Assumption 3.2 (ρ), we get

(
−
ˆ

Q+
κr(X0)

(|(aα(s, y) − aα(t, x)|pς)Q+
κr(X0))

1
ς

) 1
p

≤
(

−
ˆ

Q+
κr(X0)

(|aα(s, y) − aα(t, x)|)Q+
κr(X0) ds dy

) 1
pς

≤ C(osc(aα, Q+
κr))

1
pς ≤ C((aα)�R0

)
1
pς ≤ Cρ

1
pς .

This together with (4.30) and (4.31) gives the desired estimate. When x1
0 > R0, the 

results follows directly by [13, Lemma 5], since in this case there are no boundary con-
ditions involved. �

We conclude this section with the proof of Lemma 4.4.
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Proof of Lemma 4.4. Without loss of generality we can take r2 = 1. We take for simplicity 
the center X0 of Q+

1 to be (0, 0). A translation of the coordinates then gives the result 
for general X0 ∈ ∂Rd+1

+ .
Assume that the polynomial P has the form

P =
∑

|α|≤2m−2

cα
α!x

α, x = (x1, x
′) ∈ R

n
+, α! = α1! · · ·αd!

and satisfies the boundary conditions

BjP
∣∣
x1=0 =

∑
|β|=mj

bjβD
βP

∣∣∣
x1=0

= 0, (4.32)

where j = 1, . . . , m and 0 ≤ mj ≤ 2m − 1. Since P is of order 2m − 2, we only need to 
consider the boundary conditions whose order is mj ≤ 2m − 2.

Assume that the (LS)θ-condition is satisfied. Then, the boundary operators B1, . . . ,
Bm are linearly independent, and so are their tangential derivatives Dγ

x′Bj .
To determine the coefficients cα of the polynomial, we proceed by induction on the 

value of |α|. For this, we introduce two subgroups of multi-indices:

I|α| :=
{
α ∈ N

d
0 : cα are determined using the boundary conditions

}
J|α| :=

{
α ∈ N

d
0 : cα are determined using the condition (DαP )Q+

1
= (Dαv)Q+

1

}
.

Step 1. Let |α| = 2m − 2 and mj ≤ 2m − 2. We will first determine the coefficients cα
and then prove the Poincaré type inequality

‖Dα(v − P )‖Lp(Q+
1 ) ≤ C‖D2m−1v‖Lp(Q+

1 ). (4.33)

For this, we take the 2m −2 −mj-th tangential derivatives of each boundary condition 
in (4.32) and setting x′ = 0 we get a system of equations of the form∑

|β|=mj

bjβcβ+γ = 0, (4.34)

each γ satisfying |γ| = 2m − 2 −mj , so that |β + γ| = 2m − 2, and γ1 = 0.
We rewrite the above system as the product of the r × n matrix B = [bi,�jβ ]r,ni=1,�=1 of 

the coefficients bjβ by the vector C = (c�α : |α| = 2m −2)n�=1 of the coefficients cα, where 
n denotes the number of the unknown cα’s and r the number of the equations in (4.34).

By the (LS)θ-condition, the r rows of B are linearly independent. This implies that 
there exists an r × r submatrix B1 of B such that rank(B1) = r. Define B2 := B − B1. 
Consider the vectors C1 := (ciα : α ∈ I2m−2)ri=1 and C2 := (ckα : α ∈ J2m−2)n−r

k=1 . We 
then rewrite the equation BC = 0 as B1C1 = −B2C2, and we get

C1 = −B
−1
1 B2C2.
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From this we obtain that the coefficients cα with α ∈ I2m−2 depend on the coefficients 
cα with α ∈ J2m−2.

We determine the last ones by requiring

(DαP )Q+
1

= (Dαv)Q+
1
, α ∈ J2m−2.

We then apply the interior Poincaré inequality as in [12, Lemma 3.3] and we get

‖Dα(v − P )‖Lp(Q+
1 ) ≤ C0‖D2m−1(v − P )‖Lp(Q+

1 )

= C0‖D2m−1v‖Lp(Q+
1 ),

(4.35)

with α ∈ J2m−2 and C0 = C0(d, m, p).
Now let Dα(v − P ) be the vector of the derivatives Dα(v − P ) for any multi-index 

α, B(v − P ) be the vector with components Bj(v − P ), and Dγ
x′B(v − P ) be the vector 

with components Dγ
x′Bj(v − P ). Observe that

BDα(v − P ) = Dγ
x′B(v − P ), (4.36)

where |γ| + mj = |α| = 2m − 2.
Furthermore, let Dα

I(v − P ) and Dα
J (v − P ) denote the vectors with components 

Dα(v−P ) with respectively α ∈ I2m−2 and α ∈ J2m−2. Observe that the order of their 
components depends respectively on the order of the components in the vectors C1 and 
C2 defined above. Thus, for B1 and B2 introduced above, it holds that

BDα(v − P ) = B1Dα
I(v − P ) + B2Dα

J (v − P ).

This, combined with (4.36), implies that

B1Dα
I (v − P ) = Dγ

x′B(v − P ) − B2Dα
J (v − P ). (4.37)

Since Dγ
x′Bj(v − P ) = 0 on the boundary, we can apply the boundary Poincaré 

inequality and we get

‖Dγ
x′Bj(v − P )‖Lp(Q+

1 ) ≤ C1‖D2m−1v‖Lp(Q+
1 ), C1 = C1(d,m, p,K). (4.38)

By (4.37) and combining (4.35) and (4.38), we get

‖Dα(v − P )‖Lp(Q+
1 ) ≤ (det(B1))−1C2‖D2m−1v‖Lp(Q+

1 ), α ∈ I2m−2,

where C2 = C2(d, m, p, K). Since B1 has dimension r×r and rank(B1) = r, det(B1) 
= 0. 
Thus, there exists δ > 0 small enough and depending on bjβ, such that det(B1) > δ. 
Therefore, we obtain (4.33), i.e.,
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‖Dα(v − P )‖Lp(Q+
1 ) ≤ C‖D2m−1v‖Lp(Q+

1 ), |α| = 2m− 2,

with C depending only on d, m, p, K and bjβ .

Step 2. Let |α| = 2m −3 and mj ≤ 2m −3. By taking the (2m −3 −mj)-th tangential 
derivatives of each boundary condition in (4.32) and setting x′ = 0 we get a system of 
equation of the form ∑

|β|=mj

bjβcβ+γ = 0,

each γ satisfying |γ| = 2m − 3 −mj , so that |β + γ| = 2m − 3, and γ1 = 0. As before, 
we determine the coefficients cα with α ∈ I2m−3 in terms of the coefficients cα with 
α ∈ J2m−3. The last one are determined as in the previous step by requiring

(DαP )Q+
1

= (Dαv)Q+
1
, α ∈ J2m−3.

Observe that in the average condition there are coefficients cα with |α| = 2m − 2, but 
they have been already determined in Step 1. From this, proceeding as in Step 1 and 
applying the Poincaré type inequality (4.33) we get

‖Dα(v − P )‖Lp(Q+
1 ) ≤ C‖D2m−2(v − P )‖Lp(Q+

1 ) ≤ C‖D2m−1v‖Lp(Q+
1 ),

with |α| = 2m − 3 and C depending only on d, m, p, K and bjβ .

Step k. Let |α| = 2m − 1 − k and mj ≤ 2m − 1 − k. We proceed by induction.
By taking the (2m − 1 −k−mj)-th tangential derivatives of each boundary condition 

in (4.32) and setting x′ = 0 we get a system of equation of the form∑
|β|=mj

bjβcβ+γ = 0,

each γ satisfying |γ| = 2m − 1 − k − mj , so that |β + γ| = 2m − 1 − k, and γ1 = 0. 
Proceeding as before, we determine the coefficients cα, α ∈ I2m−1−k, in terms of the 
coefficients cα, α ∈ J2m−1−k. The last ones are determined by requiring

(DαP )Q+
1

= (Dαv)Q+
1
, α ∈ J2m−1−k.

Observe that by induction we have determined the coefficients cα, |α| ∈ {2m − 2, . . . ,
2m −k}. Therefore, proceeding as in Step 1, using induction for |α| ∈ {2m −2, . . . , 2m −k}
and applying the Poincaré type inequalities obtained at any induction step, we get

‖Dα(v − P )‖Lp(Q+
1 ) ≤ C‖D2m−k(v − P )‖Lp(Q+

1 ) ≤ · · · ≤ C‖D2m−1v‖Lp(Q+
1 ),

with |α| = 2m − 1 − k and C depending only on d, m, p, K and bjβ .
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Step 2m-1. Let |α| = 0. If P (x)|x1=0 = 0 is a boundary condition, then c0 = 0. 
Otherwise, we determine c0 by using the average condition (P )Q+

1
= (v)Q+

1
.

This concludes the construction of the required polynomial P . Moreover, by induction 
we get (4.20).

To conclude the proof, observe that the polynomial P satisfies the boundary condi-
tions. In fact, by the construction above, at each step one can show by induction that 
the tangential derivatives of the boundary conditions are equal to zero. Since the bound-
ary conditions are satisfied at the origin x′ = 0, they must then be satisfied for any 
x′ ∈ R

d−1. The assertion follows. �
5. Lp(Lq)-estimates for systems with general boundary condition

We are now ready to prove Theorem 3.5. For this, we will follow the procedure of 
[14, Theorem 5.4] and we will need two intermediate results. The first one follows from 
Lemma 4.6.

Lemma 5.1. Let p, q ∈ (1, ∞), v ∈ Ap(R), w ∈ Aq(Rd
+), λ ≥ 0 and t1 ∈ R. Assume that 

A and Bj , j = 1, . . . , m, satisfy conditions (A), (B), and (LS)θ for some θ ∈ (0, π/2), 
and assume the lower-order coefficients of A and Bj to be all zero. Then, there exists 
constants R1, ρ ∈ (0, 1), depending only on θ, m, d, K, p, q, [v]p, [w]q, and bjβ, such 
that for u ∈ W 1,2m

p,q,v,w(Rd+1
+ ) vanishing outside (t1 − (R0R1)2m, t1) × R

d
+ and satisfying 

(3.1) in Rd+1
+ , where f ∈ Lp,q,v,w(Rd+1

+ ), it holds that

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ) ≤ C‖f‖Lp,q,v,w(Rd+1
+ ), (5.1)

where C = C(θ, d, m, K, p, q, [v]p, [w]q, bjβ) > 0.

Proof. For the given v ∈ Ap(R) and w ∈ Aq(Rd
+), using reverse Hölder’s inequality (see 

[20, Corollary 9.2.4 and Remark 9.2.3]) we find σ1 = σ1(p, [v]p), σ2 = σ2(q, [w]q) such 
that p − σ1 > 1, q − σ2 > 1 and

v ∈ Ap−σ1(R), w ∈ Aq−σ2(Rd
+).

Take p0, μ ∈ (1, ∞) satisfying p0μ = min
{ p

p− σ1
, 

q

q − σ2

}
> 1. Note that

v ∈ Ap−σ1 ⊂ Ap/(p0μ) ⊂ Ap/p0(R),

w ∈ Aq−σ2 ⊂ Aq/(p0μ) ⊂ Aq/p0(R
d
+).

Then it holds that

u ∈ W 1,2m
p μ,loc(R

d+1
+ ), f ∈ Lp0μ,loc(Rd+1

+ ).

0
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Indeed, by [14, Lemma 3.1], for any g ∈ Lp0μ,loc and for any half-ball B+
1 ⊂ R

d
+ and 

interval B2 ⊂ R,

1
|B+

1 ||B2|

ˆ

B+
1 ×B2

|g|p0μ dx dt = 1
|B2|

ˆ

B2

1
|B+

1 |

ˆ

B+
1

|g|p0μ dx dt

≤ 1
|B2|

ˆ

B2

( [w]q/(p0μ)

w(B+
1 )

ˆ

B+
1

|g|qw(x) dx
) p0μ

q

dt

≤
( [v]p/(p0μ)

v(B2)

ˆ

B2

( [w]q/(p0μ)

w(B+
1 )

ˆ

B+
1

|g|qw(x) dx
) p

q

v(t) dt
) p0μ

p

.

Let κ ≥ 16 be a large constant to be specified. If r > R0
κ , since u vanishes outside 

(t1 − (R0R1)2m, t1) × R
d
+, for 0 ≤ |α| ≤ 2m, we have

(|Dαu− (Dαu)Q+
r (X0)|)Q+

r (X0) ≤ 2(|Dαu|)Q+
r (X0)

≤ 2(I(t1−(R0R1)2m,t1)(s))
1− 1

p0
Q+

r (X0)
(|Dαu|p0)

1
p0
Q+

r (X0)

≤ Cd,m,p0κ
2m(1− 1

p0
)R

2m(1− 1
p0

)
1 (|Dαu|p0)

1
p0
Q+

r (X0)
,

(5.2)

where I denotes the indicator function.
If r ∈ (0, R0/κ], then by Lemma 4.6 with p = p0, there exists a constant C =

C(θ, d, m, μ, K, p0, bjβ) such that, for 1
μ + 1

ς = 1,

(|ut − (ut)Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0)

≤ Cκ−(1− 1
p0

) ∑
|α|≤2m

λ1− |α|
2m (|Dαu|p0)

1
p0
Q+

κr(X0)
+ Cκ

d+2m
p0 (|f |p0)

1
p0
Q+

κr(X0)

+ Cκ
d+2m

p0 ρ
1

p0ς (|D2mu|p0μ)
1

p0μ

Q+
κr(X0)

.

(5.3)

Combining (5.2) and (5.3) we get

(|ut − (ut)Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0)

≤ C(κ2m(1− 1
p0

)R
2m(1− 1

p0
)

1 + κ−(1− 1
p0

))
∑

|α|≤2m

λ1− |α|
2m (|Dαu|p0)

1
p0
Q+

κr(X0)

+ Cκ
d+2m

p0 (|f |p0)
1
p0 + Cκ

d+2m
p0 ρ

1
p0ς (|D2mu|p0μ)

1
p0μ

Q+
κr(X0)

.

Observe that
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(ut)�(t, x) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (Dαu)�(t, x) ≤ sup(|ut − (ut)Q+

r (X0)|)Q+
r (X0)

+ sup
∑

|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu− (Dαu)Q+

r (X0)|)Q+
r (X0),

where the supremum is taken over all the Q+
r (X0) with (t, x) ∈ Q+

r (X0). This implies

(ut)�(t, x) +
∑

|α|≤2m,α1<2m

λ1− |α|
2m (Dαu)�(t, x)

≤ C(κ2m(1− 1
p0

)R
2m(1− 1

p0
)

1 + κ−(1− 1
p0

))
∑

|α|≤2m

λ1− |α|
2m [M(|Dαu|p0)(t, x)]

1
p0

+ Cκ
d+2m

p0 [M(|f |p0)(t, x)]
1
p0 + Cκ

d+2m
p0 ρ

1
p0ς [M(|D2mu|p0μ)(t, x)]

1
p0μ .

(5.4)

By taking the Lp,q,v,w(Rd+1
+ )-norms on both sides of (5.4) and applying Theorems 2.1

and 2.2, we get for C = C(θ, d, m, K, p, q, [v]p, [w]q, bjβ),

‖ut‖Lp,q,v,w(Rd+1
+ ) +

∑
|α|≤2m,α1<2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ )

≤ Cκ
d+2m

p0 ‖f‖Lp,q,v,w(Rd+1
+ ) + Cκ

d+2m
p0 ρ

1
p0ς ‖D2mu‖Lp,q,v,w(Rd+1

+ )

+ C(κ2m(1− 1
p0

)R
2m(1− 1

p0
)

1 + κ−(1− 1
p0

))
∑

|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ),

(5.5)

where we used

‖[M(D2mu)p0μ]
1

p0μ ‖Lp,q,v,w(Rd+1
+ ) = ‖M(D2mu)p0μ‖

1
p0μ

Lp/(p0μ),q/(p0μ),v,w(Rd+1
+ )

≤ C‖(D2mu)p0μ‖
1

p0μ

Lp/(p0μ),q/(p0μ),v,w(Rd+1
+ )

= C‖D2mu‖Lp,q,v,w(Rd+1
+ ),

with C = C(d, p/(p0μ), q/(p0μ), [v]p, [w]q).
It follows from the equation that

aα̃α̃(t, x)D2m
x1

u = f − ut −
∑

|α|=2m,α1<2m

aα(t, x)Dαu− λu,

where α̃ = (m, 0, . . . , 0). Thus, by taking the Lp,q,v,w-norms and by the assumptions on 
the coefficients, it holds that for C = C(θ, d, m, K, p, q, [v]p, [w]q),

‖D2m
x1

u‖Lp,q,v,w(Rd+1
+ ) ≤ C‖f‖Lp,q,v,w(Rd+1

+ ) + C‖ut‖Lp,q,v,w(Rd+1
+ )

+ C
∑

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ). (5.6)

|α|≤2m,α1<2m
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Combining (5.5) and (5.6), we get

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ )

≤ Cκ
d+2m

p0 ‖f‖Lp,q,v,w(Rd+1
+ ) + Cκ

d+2m
p0 ρ

1
p0ς ‖D2mu‖Lp,q,v,w(Rd+1

+ )

+ C(κ2m(1− 1
p0

)R
2m(1− 1

p0
)

1 + κ−(1− 1
p0

))
∑

|α|≤2m, α1≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ).

Finally by first taking κ ≥ 16 sufficiently large and then ρ and R1 sufficiently small such 
that

Cκ−(1− 1
p0

) ≤ 1
6 , Cκ2m(1− 1

p0
)R

2m(1− 1
p0

)
1 ≤ 1

6 , and Cκ
d+2m

p0 ρ
1

p0ς ≤ 1
6 ,

we get (5.1). The lemma is proved. �
From Lemma 5.1 and using a partition of unity argument with respect to only the 

time variable, we can prove the second intermediate result.

Proposition 5.2. Assume that A and Bj, j = 1, . . . , m, satisfy conditions (A), (B), and 
(LS)θ for some θ ∈ (0, π/2), and assume the lower-order terms of Bj to be all zero. 
Then there exists ρ = ρ(θ, m, d, K, p, q, [v]p, [w]q, bjβ) ∈ (0, 1) such that for λ ≥ 0, f ∈
Lp,q,v,w(Rd+1

+ ) and u ∈ W 1,2m
p,q,v,w(Rd+1

+ ) satisfying (3.1), we have

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ )

≤ C1‖f‖Lp,q,v,w(Rd+1
+ ) + C2

∑
|α|≤2m−1

‖Dαu‖Lp,q,v,w(Rd+1
+ ), (5.7)

where

C1 = C1(θ, d,m,K, p, q, [v]p, [w]q, bjβ),

C2 = C2(θ, d,m,K, p, q, [v]p, [w]q, R0, bjβ).

Proof. Without loss of generality, we can assume the lower-order coefficients of A to be 
zero. To see this, just move the terms 

∑
|α|<2m aα(t, x)Dα to the right-hand side of (3.1), 

i.e., consider

ut +
∑

|α|=2m

aα(t, x)Dαu = f −
∑

|α|≤2m−1

aα(t, x)Dαu

and recall that the lower-order coefficients of A are bounded by K, so that
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∑
|α|≤2m−1

‖aαDαu‖Lp,q,v,w(Rd+1
+ ) ≤ CK

∑
|α|≤2m−1

‖Dαu‖Lp,q,v,w(Rd+1
+ ).

If (5.7) holds for A =
∑

|α|=2m aα(t, x)Dα, we thus get

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ )

≤ C1‖f‖Lp,q,v,w(Rd+1
+ ) + C1CK

∑
|α|≤2m−1

‖Dαu‖Lp,q,v,w(Rd+1
+ )

+ C2
∑

|α|≤2m−1

‖Dαu‖Lp,q,v,w(Rd+1
+ )

≤ C1‖f‖Lp,q,v,w(Rd+1
+ ) + C2

∑
|α|≤2m−1

‖Dαu‖Lp,q,v,w(Rd+1
+ ).

Take now R1 ∈ (0, 1) from Lemma 5.1 and fix a non-negative infinitely differentiable 
function ζ(t) defined on R such that ζ(t) vanishes outside (−(R0R1)2m, 0) and

ˆ

R

ζ(t)p dt = 1.

Then, u(t, x)ζ(t − s) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u(t, x)ζ(t− s))t + (λ + A)(u(t, x)ζ(t− s))

= ζ(t− s)f(t, x) + ζt(t− s)u(t, x) on R
d+1
+

Bj(u(t, x)ζ(t− s))
∣∣
x1=0 = 0 on R× R

d−1.

(5.8)

For each s ∈ R, since u(t, x)ζ(t −s) vanishes outside (s −(R0R1)2m, s) ×R
d
+, by Lemma 5.1

applied to (5.8) we get∑
|α|<2m

λ1− |α|
2m ‖Dα(uζ(· − s))‖Lp,q,v,w(Rd+1

+ )

≤ C‖fζ(· − s)‖Lp,q,v,w(Rd+1
+ ) + C‖uζt(· − s)‖Lp,q,v,w(Rd+1

+ ), (5.9)

where C = C(d, m, K, p, q, [v]p, [w]q, bjβ). Note that

‖Dαu(t, ·)‖p
Lq,w(Rd

+) =
ˆ

R

‖Dαu(t, ·)‖p
Lq,w(Rd

+)ζ(t− s)p ds

=
ˆ

‖Dαu(t, ·)ζ(t− s)‖p
Lq,w(Rd

+) ds.
R
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Thus, by integrating with respect to t,

‖Dαu‖p
Lp,q,v,w(Rd+1

+ )
=
ˆ

R

‖Dα(uζ(· − s))‖p
Lp,q,v,w(Rd+1

+ )
ds.

From this and (5.9) it follows that∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ) ≤ C1‖f‖Lp,q,v,w(Rd+1
+ ) + C2‖u‖Lp,q,v,w(Rd+1

+ ),

where C1 = C1(θ, d, m, K, p, q, [v]p, [w]q, bjβ) > 0 and C2 depends on R0R1 and the same 
parameters as C1 does. �

Now Theorem 3.5 follows from Proposition 5.2.

Proof of Theorem 3.5.. It suffices to consider T = ∞. For the general case when T ∈
(−∞, ∞], we can follow the proof of Lemma 4.1 with the obvious changes in the weighted 
setting, so we omit the details.

(i) In Proposition 5.2 we take λ0 ≥ 0 depending only on C2 such that

1
2

∑
|α|≤2m−1

λ1− |α|
2m ≤

∑
|α|≤2m−1

(
λ1− |α|

2m − C2

)

for any λ ≥ λ0. By (5.7) we get

1
2

∑
|α|≤2m−1

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ) + ‖D2mu‖Lp,q,v,w(Rd+1
+ )

≤ C‖f‖Lp,q,v,w(Rd+1
+ )

and thus ∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w(Rd+1

+ ) ≤ C‖f‖Lp,q,v,w(Rd+1
+ ). (5.10)

Finally, the estimate of ‖ut‖Lp,q,v,w(Rd+1
+ ) follows by noting that ut = f − (A + λ)u and 

(5.10). This proves (3.4).
(ii) As in the proof of Proposition 5.2, we can assume the lower-order coefficients of 

A to be zero. Let

A(0, 0)u :=
∑

|α|=2m

aα(0, 0)Dα.

By Lemma 4.1, we first solve
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⎧⎪⎪⎨⎪⎪⎩
∂tu1 + (λ + A(0, 0))u1 = 0 in R

d+1
+∑

|β|=mj

bjβD
βu1

∣∣∣
x1=0

= −
∑

|β|<mj

bjβ(t, x)Dβu
∣∣∣
x1=0

+ gj on R× R
d−1,

and by Theorem 2.7 we get

‖∂tu1‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lp(R;Lq(Rd

+))

≤ C‖
∑

|β|<mj

bjβD
βu‖

W
(2m−mj) 1

2m
p (R;Lq(Rd

+))∩Lp(R;W
2m−mj
q (Rd

+))

+
m∑
j=1

‖gj‖
F

kj
p,q(R;Lq(Rd−1))∩Lp(R;B2mkj

q,q (Rd−1))
. (5.11)

Next u2 = u − u1 satisfies the equation⎧⎪⎪⎨⎪⎪⎩
∂tu2 + (λ + A)u2 = f − (A−A(0, 0))u1 in R

d+1
+∑

|β|=mj

bjβD
βu2

∣∣∣
x1=0

= 0 on R× R
d−1,

to which we can apply statement (i) with v = w = 1 to get

‖∂tu2‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu2‖Lp(R;Lq(Rd

+))

≤ C‖f‖Lp(R;Lq(Rd
+)) + C‖(A−A(0, 0))u1‖Lp(R;Lq(Rd

+))

≤ C‖f‖Lp(R;Lq(Rd
+)) + CK‖D2mu1‖Lp(R;Lq(Rd

+)),

(5.12)

with λ ≥ λ0, where λ0 depends only on the constant C2 from Proposition 5.2. Now, since 
u = u1 + u2, by (5.12),

‖ut‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp(R;Lq(Rd

+))

≤ ‖∂tu1‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lp(R;Lq(Rd

+))

+ ‖∂tu2‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu2‖Lp(R;Lq(Rd

+))

≤ ‖∂tu1‖Lp(R;Lq(Rd
+)) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαu1‖Lp(R;Lq(Rd

+))

+ CK‖D2mu1‖Lp(R;Lq(Rd
+)) + C‖f‖Lp(R;Lq(Rd

+)),



2032 H. Dong, C. Gallarati / Journal of Functional Analysis 274 (2018) 1993–2038
which by (5.11) is further bounded by

C‖f‖Lp(R;Lq(Rd
+)) + CK

m∑
j=1

‖gj‖
F

kj
p,q(R;Lq(Rd−1))∩Lp(R;B2mkj

q,q (Rd−1))

+ CK‖
∑

|β|<mj

bjβ(t, x)Dβu‖
W

(2m−mj) 1
2m

p (R;Lq(Rd
+))∩Lp(R;W

2m−mj
q (Rd

+))

≤ C‖f‖Lp(R;Lq(Rd
+)) + CK

m∑
j=1

‖gj‖
F

kj
p,q(R;Lq(Rd−1))∩Lp(R;B2mkj

q,q (Rd−1))

+ CK(Cε‖D2mu‖Lp(R;Lq(Rd
+)) + Cε‖ut‖Lp(R;Lq(Rd

+)) + Cε‖u‖Lp(R;Lq(Rd
+))),

where the last inequality follows from the smoothness the coefficients bjβ(t, x) for |β| <
mj and by using interpolation estimates as in Lemma 2.8. Now, taking ε small enough 
so that CKCε ≤ 1/2 and λ such that λ ≥ max{λ0, 2CKCε}, we get (3.5). �

From Theorem 3.5, we now prove Theorem 3.6.

Proof of Theorem 3.6. (i) Take ζ ∈ C∞
0 (R) and set v(t, x) = ζ(t/n)u(x), n ∈ Z, which 

satisfies, in Rd+1
+

⎧⎨⎩vt(t, x) + (A + λ)v(t, x) = h in R× R
d
+

Bjv(t, x)
∣∣
x1=0 = 0 on R× R

d−1,
(5.13)

with h := 1
nζt(

t
n )u(x) + ζ( t

n )f . If we now apply Theorem 3.5 to (5.13) with v = 1 we get

∑
|α|≤2m

λ1− |α|
2m ‖Dαv‖Lp(R;Lq,w(Rd

+)) ≤ C‖h‖Lp(R;Lq,w(Rd
+)), (5.14)

with C = C(θ, m, d, K, p, q, R0, [w]q, bjβ). Observe now that

‖h‖Lp(R;Lq,w(Rd
+)) ≤

1
n
‖ζt(·/n)‖Lp(R)‖u‖Lq,w(Rd

+) + ‖ζ(·/n)‖Lp(R)‖f‖Lq,w(Rd
+),

and

‖Dαv‖Lp(R;Lq,w(Rd
+)) = ‖ζ(·/n)‖Lp(R)‖Dαu‖Lq,w(Rd

+).

Thus, combining the above estimates with (5.14) and letting n → +∞, we get (3.6). 
(ii) The estimate (3.7) follows in the same way from (3.5). �
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6. Existence of solutions

The a priori estimates of Theorems 3.5 and 3.6 can be used to derive the existence of 
solutions to the corresponding equations. In this section we focus on the solvability of 
the parabolic problem (3.1). The elliptic case follows in the same way from the a priori 
estimates in Theorem 3.6.

As in the proof of Lemma 4.1, via a standard argument it suffices to consider T = ∞. 
See, for instance, [24, Theorem 2.1]. Under the conditions in Theorem 3.5(ii), from the a 
priori estimate (3.5), the standard method of continuity (see [19, Theorem 5.2]) combined 
with Lemma 4.1, yields existence and uniqueness of a strong solution to (3.1).

We now assume that the conditions in Theorem 3.5(i) are satisfied and we show the 
solvability of (3.1) via a density argument as in [14, Section 8]. By reverse Hölder’s 
inequality and the doubling property of Ap-weights, one can find a sufficiently large 
constant p1 and small constants ε1, ε2 ∈ (0, 1) depending on d, p, q, [v]p, [w]q such that

1 − p

p1
= 1

1 + ε1
, 1 − q

p1
= 1

1 + ε2
,

and both v1+ε1 and w1+ε2 are locally integrable and satisfy the doubling property, i.e., 
for every r > 0, t0 ∈ R, x0 ∈ R

d
+,

ˆ

I2r(t0)

v1+ε1dt ≤ C0

ˆ

Ir(t0)

v1+ε1dt, (6.1)

ˆ

B+
2r(x0)

w1+ε1dt ≤ C0

ˆ

B+
r (x0)

w1+ε1dt, (6.2)

where C0 is independent of r, t0, and x0, and Ir(t0) = (t0−r2m, t0+r2m) denotes an inter-
val in R. By Hölder’s inequality, any function f ∈ Lp1(Rd+1

+ ) is locally in Lp,q,v,w(Rd+1
+ )

and for any r > 0,

‖f‖Lp,q,v,w(Q+
r ) ≤ C‖f‖Lp1 (Q+

r ), (6.3)

where Q+
r = ((−r2m, r2m) × Br) ∩ R

d+1
+ , with Br being a ball of radius r in Rd, and C

depends also on r.
Now if f ∈ Lp,q,v,w(Rd+1

+ ), by the denseness of C∞
0 (Rd+1

+ ) in Lp,q,v,w(Rd+1
+ ), we can 

find a sequence of smooth functions {fk}k=0,1,... with bounded supports such that

fk → f in Lp,q,v,w(Rd+1
+ ) as k → ∞. (6.4)

Since for each k, fk ∈ Lp1(Rd+1
+ ), by the solvability in the unweighted setting of The-

orem 3.5(ii) with p1 instead of p = q, zero lower-order coefficients for Bj and gj ≡ 0, 
there exists a unique solution uk ∈ W 1,2m

p (Rd+1
+ ) to
1
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⎧⎨⎩(uk)t(t, x) + (A + λ)uk(t, x) = fk(t, x) in R× R
d
+

Bjuk(t, x)
∣∣
x1=0 = 0 on R× R

d−1, j = 1, . . . ,m,

provided that λ ≥ λ1(θ, m, d, p1, K, R0, bjβ) and ρ ≤ ρ1(θ, m, d, p1, K, bjβ).
We claim that if λ ≥ max{λ0, λ1}, then uk ∈ W 1,2m

p,q,v,w(Rd+1
+ ). If the claim is proved, 

it follows from the a priori estimate (3.4) and from (6.4) that {uk} is a Cauchy sequence 
in W 1,2m

p,q,v,w(Rd+1
+ ). Let u be its limit. Then, by taking the limit of the equation for uk, it 

follows that u is the solution to (3.1).
In order to prove the claim, we fix a k ∈ N and we assume that fk is supported in Q+

R

for some R ≥ 1. By (6.3) we have

‖Dαuk‖Lp,q,v,w(Q+
2R) < ∞, 0 ≤ |α| ≤ 2m (6.5)

and

‖(uk)t‖Lp,q,v,w(Q+
2R) < ∞. (6.6)

For j ≥ 0, we take a sequence of smooth functions ηj such that ηj ≡ 0 in Q+
2jR, ηj ≡ 1

outside Q+
2j+1R and

|Dαηj | ≤ C2−j|α|, |α| ≤ 2m, |(ηj)t| ≤ C2−2mj .

Observe that ukηj ∈ W 1,2m
p1

(Rd+1
+ ) satisfies⎧⎨⎩∂t(ukηj) + (A + λ)(ukηj) = fj in R

d+1
+

Bj(ukηj)
∣∣
x1=0 = trx1=0Gj on ∂Rd+1

+ , j = 1, . . . ,m,

where by Leibnitz’s rule

fj = uk(ηj)t +
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

(
α

γ

)
aαD

γukD
α−γηj

and

Gj =
∑

|β|=mj

∑
|τ |≤mj−1

(
β

τ

)
bjβD

τukD
β−τηj .

Now let

gj = trx1=0Gj ∈ W
1−mj

2m− 1
2mp1

,2m−mj− 1
p1

p1 (R× R
d−1).

By applying the a priori estimate (3.5), with p1 instead of p = q there, to ukηj , we get
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‖∂t(ukηj)‖Lp1 (Rd+1
+ ) +

∑
|α|≤2m

λ1− |α|
2m ‖Dα(ukηj)‖Lp1 (Rd+1

+ )

≤ C‖fj‖Lp1 (Rd+1
+ ) + C

m∑
j=1

‖gj‖
W

1−
mj
2m − 1

2mp1
,2m−mj− 1

p1
p1 (R×Rd−1)

,

with a constant C = C(θ, m, d, K, p1, bjβ) > 0. By Theorem 2.5 with s = 1 −mj/(2m) ∈
(0, 1], mj ∈ {0, . . . , 2m − 1}, we have

‖gj‖
W

1−
mj
2m − 1

2mp1
,2m−mj− 1

p1
p1 (R×Rd−1)

≤ C‖Gj‖
W

1−
mj
2m ,2m−mj

p1 (Rd+1
+ )

.

Observe that

‖fj‖Lp1 (Rd+1
+ ) ≤ C‖(ηj)tuk‖Lp1 (Rd+1

+ ) + C
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

‖DγukD
α−γηj‖Lp1 (Rd+1

+ )

and

‖Gj‖
W

1−
mj
2m ,2m−mj

p1 (Rd+1
+ )

≤ C
∑

|β|=mj

∑
|τ |≤mj−1

‖DτukD
β−τηj‖

W
1−

mj
2m ,2m−mj

p1 (Rd+1
+ )

.

This implies that

‖∂t(ukηj)‖Lp1 (Rd+1
+ ) +

∑
|α|≤2m

λ1− |α|
2m ‖Dα(ukηj)‖Lp1 (Rd+1

+ )

≤ C‖(ηj)tuk‖Lp1 (Rd+1
+ ) + C

∑
1≤|α|≤2m

∑
|γ|≤|α|−1

‖DγukD
α−γηj‖Lp1 (Rd+1

+ )

+ C
∑

|β|=mj

∑
|τ |≤mj−1

‖DτukD
β−τηj‖

W
1−

mj
2m ,2m−mj

p1 (Rd+1
+ )

,

from which it follows that

‖(uk)t‖Lp1 (Rd+1
+ \Q+

2j+1R
) +

∑
|α|≤2m

λ1− |α|
2m ‖Dαuk‖Lp1 (Rd+1

+ \Q+
2j+1R

)

≤ C2−j‖uk‖Lp1 (Q+
2j+1R

\Q+
2jR

) + C2−j
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

‖Dγuk‖Lp1 (Q+
2j+1R

\Q+
2jR

)

+ C2−j
∑

|β|=mj

∑
|τ |≤mj−1

‖Dτuk‖
W

1−
mj
2m ,2m−mj

p1 (Q+
2j+1R

\Q+
2jR

)
.

By standard interpolation inequalities (see e.g. [26]),

‖Dγuk‖L (Q+ \Q+ ) ≤ C‖D2muk‖L (Q+ \Q+ ) + C‖uk‖L (Q+ \Q+ ),
p 2j+1R 2jR p 2j+1R 2jR p 2j+1R 2jR
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and by the interpolation estimates as in Lemma 2.6,

‖Dτuk‖
W

1−
mj
2m ,2m−mj

p (Q+
2j+1R

\Q+
2jR

)

≤ C‖D2muk‖Lp(Q+
2j+1R

\Q+
2jR

) + C‖(uk)t‖Lp(Q+
2j+1R

\Q+
2jR

) + C‖uk‖Lp(Q+
2j+1R

\Q+
2jR

).

Thus, we get

‖(uk)t‖Lp1 (Q+
2j+2R

\Q+
2j+1R

) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαuk‖Lp1 (Q+

2j+2R
\Q+

2j+1R
)

≤ C2−j(‖(uk)t‖Lp1 (Q+
2j+1R

\Q+
2jR

) + ‖D2muk‖Lp1 (Q+
2j+1R

\Q+
2jR

)

+ ‖uk‖Lp1 (Q+
2j+1R

\Q+
2jR

)).

By induction, we obtain for each j ≥ 1,

‖(uk)t‖Lp1 (Q+
2j+1R

\Q+
2jR

) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαuk‖Lp1 (Q+

2j+1R
\Q+

2jR
)

≤ Cj2−
j(j−1)

2 (‖(uk)t‖Lp1 (Q+
2R) + ‖D2muk‖Lp1 (Q+

2R) + ‖uk‖Lp1 (Q+
2R)). (6.7)

Finally, by Holder’s inequality, (6.1), (6.2) and (6.7), we get for each j ≥ 1,

‖(uk)t‖Lp,q,v,w(Q+
2j+1R

\Q+
2jR

) +
∑

|α|≤2m

λ1− |α|
2m ‖Dαuk‖Lp,q,v,w(Q+

2j+2R
\Q+

2j+1R
)

≤ ‖v‖
1
p

L1+ε1 (I2j+1R)‖w‖
1
q

L1+ε2 (B+
2j+1R

)

(
‖(uk)t‖Lp1 (Q+

2j+2R
\Q+

2j+1R
)

+ ‖D2muk‖Lp1 (Q+
2j+1R

\Q+
2jR

) + ‖uk‖Lp1 (Q+
2j+1R

\Q+
2jR

)

)
≤ CCj(1+ 1

p+ 1
q )2−

j(j−1)
2

(
‖(uk)t‖Lp1 (Q+

2R) + ‖D2muk‖Lp1 (Q+
2R) + ‖uk‖Lp1 (Q+

2R)

)
.

The above inequality together with (6.5) and (6.6) implies that uk ∈ W 1,2m
p,q,v,w(Rd+1

+ ), 
which proves the claim.

Remark 6.1. Under certain compatibility condition, the solvability of the corresponding 
initial-boundary value problem can also be obtained. See, for instance, [26, Sect. 2.5] and 
[8] for details.
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[29] Ya.B. Lopatinskĭı, On a method of reducing boundary problems for a system of differential equations 
of elliptic type to regular integral equations, Ukraïn. Mat. Zh. 5 (1953) 123–151.

[30] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Non-
linear Differential Equations and Their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995.

[31] S. Meyer, M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt 
equation, Appl. Math. Optim. 64 (2) (2011) 257–271.

[32] M. Meyries, Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global 
Attractors, PhD thesis, 2010.

[33] M. Meyries, R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with 
inhomogeneous boundary conditions, Math. Nachr. 285 (8–9) (2012) 1032–1051.

[34] J. Prüss, R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with 
coefficients continuous in time, J. Math. Anal. Appl. 256 (2) (2001) 405–430.

[35] Y. Roitberg, Boundary Value Problems in the Spaces of Distributions, Mathematics and Its Appli-
cations, vol. 498, Kluwer Academic Publishers, Dordrecht, 1999.

[36] J.L. Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.) 
7 (2) (1982) 393–395.

[37] J.L. Rubio de Francia, A new technique in the theory of Ap weights, in: Topics in Modern Har-
monic Analysis, vols. I, II, Turin/Milan, 1982, Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, 
pp. 571–579.

[38] J.L. Rubio de Francia, Factorization theory and Ap weights, Amer. J. Math. 106 (3) (1984) 533–547.
[39] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 

Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, with the 
assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[40] Z.Ya. Šapiro, On general boundary problems for equations of elliptic type, Izv. Akad. Nauk SSSR 
Ser. Mat. 17 (1953) 539–562.

[41] H. Triebel, Theory of Function Spaces. II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, 
Basel, 1992.

[42] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, second edition, Johann 
Ambrosius Barth, Heidelberg, 1995.

[43] P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions 
in Sobolev spaces with mixed Lp-norm, Electron. Res. Announc. Am. Math. Soc. 8 (2002) 47–51.

[44] L. Weis, A new approach to maximal Lp-regularity, in: Evolution Equations and Their Applications 
in Physical and Life Sciences, Bad Herrenalb, 1998, in: Lecture Notes in Pure and Appl. Math., 
vol. 215, Dekker, New York, 2001, pp. 195–214.

[45] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4C6F703533s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4C6F703533s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4C756Es1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4C756Es1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4D53574Ds1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4D53574Ds1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4D6579546865736973s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4D6579546865736973s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4D53313262s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib4D53313262s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib50533031s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib50533031s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib526F697462657267426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib526F697462657267426F6F6Bs1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib527562696F3832s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib527562696F3832s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib527562696F3833s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib527562696F3833s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib527562696F3833s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib527562696F3834s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib537465696E4841s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib537465696E4841s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib537465696E4841s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib5368613533s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib5368613533s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib54723932s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib54723932s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib547231s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib547231s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib57656964653032s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib57656964653032s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib576569733031s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib576569733031s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib576569733031s1
http://refhub.elsevier.com/S0022-1236(18)30035-1/bib576C6F6B61426F6F6Bs1

	Higher-order elliptic and parabolic equations with VMO assumptions and general boundary conditions
	1 Introduction
	2 Preliminaries
	2.1 Ap-weights
	2.2 Function spaces and notation
	2.3 Interpolation and trace
	2.4 Anisotropic Sobolev embedding theorem

	3 Assumptions and main results
	3.1 Assumptions on A and Bj

	4 Mean oscillation estimates for ut and Dαu, 0<=|α|<=2m, except D12mu
	5 Lp(Lq)-estimates for systems with general boundary condition
	6 Existence of solutions
	References


