

Delft University of Technology

On Software Modernisation due to Library Obsolescence

Gerasimou, Simos; Kechagia, Maria; Kolovos, Dimitris; Paige, Richard; Gousios, Georgios

DOI
10.1145/3194793.3194798
Publication date
2018
Document Version
Accepted author manuscript
Published in
WAPI'18 Proceedings of the 2nd International Workshop on API Usage and Evolution (WAPI 2018)

Citation (APA)
Gerasimou, S., Kechagia, M., Kolovos, D., Paige, R., & Gousios, G. (2018). On Software Modernisation due
to Library Obsolescence. In WAPI'18 Proceedings of the 2nd International Workshop on API Usage and
Evolution (WAPI 2018) (pp. 6-9). ACM. https://doi.org/10.1145/3194793.3194798

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3194793.3194798
https://doi.org/10.1145/3194793.3194798

On Software Modernisation due to Library Obsolescence
Simos Gerasimou

Department of Computer Science

University of York

York, UK

simos.gerasimou@york.ac.uk

Maria Kechagia

Software Engineering Research Group

Delft University of Technology

Delft, The Netherlands

m.kechagia@tudelft.nl

Dimitris Kolovos

Department of Computer Science

University of York

York, UK

dimitris.kolovos@york.ac.uk

Richard Paige

Department of Computer Science

University of York

York, UK

richard.paige@york.ac.uk

Giorgos Gousios

Software Engineering Research Group

Delft University of Technology

Delft, The Netherlands

g.gousios@tudelft.nl

ABSTRACT
Software libraries, typically accessible through Application Pro-

gramming Interfaces (APIs), enhance modularity and reduce devel-

opment time. Nevertheless, their use reinforces system dependency

on third-party software. When libraries become obsolete or their

APIs change, performing the necessary modifications to dependent

systems, can be time-consuming, labour intensive and error-prone.

In this paper, we propose a methodology that reduces the effort de-

velopers must spend to mitigate library obsolescence. We describe

the steps comprising the methodology, i.e., source code analysis, vi-

sualisation of hot areas, code-based transformation, and verification

of the modified system. Also, we present some preliminary results

and describe our plan for developing a fully automated software

modernisation approach.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software evolution; Maintaining software;

KEYWORDS
application programming interfaces; software libraries; library evo-

lution; software modernisation; visualisation

1 INTRODUCTION
Modern software development practices advocate the use of third-

party libraries as a means of improving maintainability, usability

and dependability of software systems [7]. Many of these libraries

aggregate functions and services, and expose endpoints, i.e., Ap-

plication Programming Interfaces (APIs), that enable interacting

with the logic of the libraries. An API is considered an implicit

agreement between a software system (client) and a third-party

library (provider). Based on this agreement, software developers

can integrate the library within their client systems and use the

provided functions without needing to be aware of the underlying

implementation logic.

Despite the benefits accompanying the use of third-party li-

braries and their APIs, a strong dependency link is created with

software systems using these libraries [2]. Since software systems

WAPI’18, June 2018, Gothenburg, Sweden
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

and the libraries they are based on evolve independently, main-

taining the system to a fully-functional state requires additional

effort when changes to the libraries’ APIs violate the agreement. For

instance, library evolution caused by new requirements or architec-

tural changes can lead to API modifications that break compliance

with client systems. Likewise, end-of-support of a software library

can cause client systems to fall into “technology stagnation" unless

they switch to another functionally-equivalent and actively main-

tained library. Similarly, the introduction of a competing library

with improved functionality, better features and reduced overheads

might urge software developers to consider adopting this new li-

brary in subsequent system versions.

In order to avoid the imminent risks that arise from using obso-

lete libraries (e.g., unresolved bugs, susceptibility to cyber attacks

due to security issues), developers typically sustain the effort of

modernising their systems [13]. Nevertheless, modifying the system

to start using a new library is a time-consuming, error-prone and,

to a great extent, developer-driven task [2, 5]. Performing correctly

this task includes identifying system instructions that must change,

doing the necessary code changes and, finally, checking that the

modernised system preserves its original functionality. As the size

of the client system and the legacy third-party library increases, the

effort required for performing these steps increases significantly [7].

We argue that developers can reduce significantly the manual

effort spent for mitigating library obsolescence by adapting con-

cepts and approaches from the areas of software visualisation and

bug finding [5, 12]. For instance, visualisation paradigms can help

developers to understand better the architecture of their systems

and perform impact analysis. Software visualisation is an active

research area, but with rather limited adoption in software devel-

opment [8, 12]. Also, code-based and pattern-based transformation

approaches can assist with automating code refactoring [2].

In this paper, we propose an end-to-end methodology that not

only helps developers to assess the required effort, but also au-

tomates a great part of the modernisation task. In particular, the

methodology involves analysis of the software system’s source code

to extract hotspots, i.e., source code elements that invoke the legacy

library, visualisation of these hot areas using the city metaphor [12],

automatic source code transformation based on templates (patterns),

population of the generated templates with suitable code, and, fi-

nally, verification of the software system and the transformed code

https://doi.org/10.1145/nnnnnnn.nnnnnnn

WAPI’18, June 2018, Gothenburg, Sweden S. Gerasimou et al.

Figure 1: GitHub issue for TinyXML

to establish that the functional and non-functional requirements of

the resulting system are maintained.

The remainder of the paper is organised as follows. In Section 2

we present an example for motivating our approach. In Section 3

we introduce the proposed approach for mitigating library obsoles-

cence and describe a set of preliminary results. Finally, in Sections 4

and 5, we present related work and outline our conclusions and

plans for future work, respectively.

2 MOTIVATING EXAMPLES
We motivate our work using two examples in which library evolu-

tion introduced compatibility-breaking changes. The first example

comes from Tinyxml2
1
, the new version of the popular C++ xml

parsing library. Even though the evolved library is more cpu and

memory efficient than its predecessor, it is heavily redesigned and

does not maintain backward compatibility. Figure 1 shows a rel-

evant issue
2
from the GitHub repository of the Tinyxml project.

These obsolescence issues caused modernisation problems to devel-

opers of client systems. Some developers performed the migration

manually while others preferred to switch to another functionally-

equivalent library; for instance, the FileZilla client (https://filezilla-

project.org) started using pugiXML from version 12 onwards. Irre-

spective of the chosen solution, the effort required for updating the

system was substantial (e.g., see FileZilla development diary
3
).

Second, we refer to the Lighttpd web-server library which is used
by several high-trafficwebsites (e.g., Wikipedia, YouTube). Research

in [4] found that an one-line change to one of the methods in the

updated library (Listing 1), broke support for http compression and

crashed any client applications. Despite the minimal API changes,

this new bug issue could push developers to undertake the effort

and migrate their system to an alternative and more reliable library.

Clearly, library and API changes affect the stability of client

systems. We aim to assist developers by identifying the affected

source code in client systems and simplifying the migration process.

Listing 1: Lighttpd before and after update (as in [4])
/ / L i g h t t p d b e f o r e upda t e
for (h=0 , i = 0 ; i < e tag −>used ; ++ i)

h = (h < <5)^ (h > >27)^ (e tag −>p t r [i]) ;

/ / L i g h t t p d a f t e r upda t e
for (h=0 , i = 0 ; i < e tag −>used −1 ; ++ i)

h = (h< <5) ^ (h > >27)^ (e tag −>p t r [i]) ;

1
http://www.grinninglizard.com/tinyxml2/index.html

2
https://github.com/leethomason/tinyxml2/issues/440

3
https://tinyurl.com/y7styrn4

Source code analysis

Analyse source code and extract system information

System
developers

Software
system

(source code)

Modernised
software system

(source code)

Visualisation of software metrics

Generate visual artifacts using the extracted information

Code-based transformation

Transform source code based on templates

Verification and validation

Check functionality and properties of modernised system

Legacy
library
(API)

New
library
(API)

Figure 2: High-level overview of our methodology for miti-
gating library obsolescence.

3 SOFTWARE MODERNISATION APPROACH
3.1 Modernisation Methodology
The high-level overview of our methodology is shown in Figure 2.

Given as inputs the source code of the client software system and

the API of the obsolete library, our methodology operates as follows.

Initially, it starts a set of extraction transformations that enable

source code analysis, and extraction of suitable metrics and ab-

stract specifications from the legacy code. These metrics (e.g., total

number of API invocations) are very important as they provide

the means to establish and visualise the dependency level of the

software system on the obsolete library. Also, the specifications

are in a form suitable for reengineering. Then, through a code-

based transformation step, our methodology uses the specifications

to generate code based on templates (patterns). These templates

are subsequently populated with suitable code that permit to start

exercising the new library. Finally, verifying and validating the

transformed code and the software system as a whole (e.g., running

unit and integration tests) enables to check that both the function-

ality and properties of the modernised system are preserved.

Stage 1: Source code parsing and analysis
This automated stage focuses on parsing and analysing a set of

input files, i.e., the source code corresponding to the client system

and the API of the obsolete library. The parsing step comprises a

series of actions including source code scanning and preprocessing,

identification of language tokens, semantic analysis, name resolu-

tion and binding, and, finally, generation of various types of internal

models, indexes and Abstract Syntax Trees (ASTs).

Once parsing finishes, the extracted models and ASTs are anal-

ysed. This step enables to identify elements, i.e., files, classes, meth-

ods, and instructions, of the software system that access the obsolete

library. Orthogonal to this process is the extraction of a similar set

of elements from the library’s API that are used by the system.

By combining and analysing the generated sets of elements we

gain insight about the system and establish several dependency

metrics. These metrics capture information about the system ar-

chitecture including interconnections between software modules

and dependencies with external libraries and components. Also,

through impact analysis of the affected system elements we can

establish a coupling degree between the software system and the

obsolete library.

The effectiveness of this stage depends on using a suitable scan-

ning and parsing software component. High-level programming

http://www.grinninglizard.com/tinyxml2/index.html
https://github.com/leethomason/tinyxml2/issues/440
https://tinyurl.com/y7styrn4

On Software Modernisation due to Library Obsolescence WAPI’18, June 2018, Gothenburg, Sweden

languages (e.g., C/C++, Java, C#) come with publicly available and

ready-to-use infrastructures that help with this task; see for in-

stance, Eclipse CDT for C/C++ and Roslyn for C#. We use Eclipse

CDT for our prototype implementation (Section 3.2).

Stage 2: Visualisation of software metrics
Manual source code inspection is challenging for complex systems

with multiple dependencies, packages, classes, and methods (e.g.,

FileZilla has more than 300 C/C++ files and more than 130KLoC).

To facilitate reasoning and effort estimation, we automatically gen-

erate interactive visual artifacts using the metrics produced during

analysis. These artifacts provide a pictorial view of the system and

help with system understanding.

The benefits of using suitable visual metaphors both for assisting

with software exploration and for reducing the cognitive load is

widely accepted [1, 8]. Several visual metaphors have been proposed

for representing static aspects of software (cf. Section 4). To the best

of our knowledge, however, there is no prior research on visualising

the dependencies of a software system on third-party libraries and

using this information to guide software modernisation.

We bridge the gap in existing research by adapting the semantics

of available visualisation metaphors (e.g., Treemap, Code City [12])

to this problem. In our preliminary realisation (Section 3.2), we use

Code City to represent software systems as three-dimensional cities

with districts and buildings, and associate the extracted dependency

metrics with visual properties of city components.

The development team can study the produce interactive visual

artifacts and carry out a risk analysis. The outcome of this study

indicates how to best address the obsolescence issues. An estimate

about the effort required for completing the modernisation can

be also made. For instance, if extensive coupling is identified, it

might be more sensible to investigate how to reduce its degree (e.g.,

by improving the system architecture) before proceeding with the

remaining modernisation stages.

Stage 3: Code-based transformation
During this stage, the software system undergoes a three-step trans-

formation in order to become compliant with the new library. The

first step includes (1) the automated generation of an abstraction

layer (e.g., using the adapter pattern) and its population with ele-

ments that delineate the usage of the obsolete library by the soft-

ware system; and (2) the automated modification of commands

in the affected system files to delegate the work to the generated

abstraction layer instead of the obsolete library. In this way, our

methodology minimises changes in the system’s source code.

The next step involves the inference of mappings between the

obsolete and new libraries [3]. A mapping rule comprises two sets

of API commands that perform the same task, one from the obsolete

library and the other from the new library. The outcome of this

inference step is a list of mappings.

Inferring likely APImappings is challenging and time-consuming,

and its automation has been the focus of recent research [11]. The

selection of a suitable technique depends on the characteristics

of the considered libraries and the expertise of developers. For in-

stance, static analysis and textual similarity techniques [9] can be

used when the APIs of the libraries are, to a degree, similar. Alter-

natively, developers can resort to inspecting the documentation of

these APIs and generating manually the list of mappings.

Listing 2: Code fragment thatmaps the get attributemethod
in TinyXML to the equivalent methods in PugiXML)
const char ∗ XMLElement : : A t t r i b u t e (const char ∗ name ,

const char ∗ va lue) const {

return pugiXMLNode . a t t r i b u t e (name) . v a l u e () ; }

The final step involves populating the generated abstraction

layer with suitable code fragments that invoke the new library. To

achieve this, developers use the extracted list of mappings and write

code within the placeholders in the abstraction layer. For instance,

Listing 2 shows the Tinyxml method (placeholder) for extracting

the attribute from an xml element and the corresponding code

fragment in Pugixml (https://pugixml.org); this relationship is one-

to-many. Once this is done, the functionality that was previously

done by the obsolete library is now undertaken by the new library.

The level of difficulty for writing the relevant code fragments

depends on the correspondence between the obsolete and the new

library. Investigating the time and effort required for completing

this task based on this correspondence is part of our future work.

Stage 4: Verification and validation
The next stage involves checking that both the functional and

non-functional requirements of the evolved system (transformed

and unaffected code) continue to hold. This includes running unit,

integration and system tests, or any other type of formal verification

(e.g., use model checking to verify the absence of concurrency bugs).

Special focus should be given to the amended system parts, i.e.,

the abstraction layer and affected components, as these parts are

most likely to have introduced erroneous behaviour. The visual

artifacts generated earlier can help developers to extract traceability

information and decide where to spend most of their efforts.

3.2 Preliminary Realisation
We present a prototype realisation of our methodology which is

currently under development as an Eclipse plugin. To evaluate our

approach, we use the FileZilla client v.11, a mature open-source

C/C++ application. with a non-trivial code base and several func-

tional and non-functional requirements. FileZilla uses a number of

third-party libraries, including TinyXML for reading and updating

XML files that keep server sites and interface-related properties.

At first, we obtained the ASTs of the FileZilla source code using

the parsing facilities provided by Eclipse CDT
4
. The automated

analysis of these ASTs enabled the identification of hotspots, i.e.,
FileZilla code elements that access the legacy XML library. We also

gained insight into the usage level of this library by the system.

We adapted the code city metaphor [12] to visualise the informa-

tion extracted during the analysis stage. Figure 3 shows a represen-

tation of FileZilla using our adapted city metaphor. We employ the

basic metaphor semantics, i.e., represent an application as a city, a

package/sub-package as a district/sub-district, and a class as a build-

ing. However, we introduce new semantics that help visualising

the dependency level between the software system and the obso-

lete library, and capturing the hotspots. First, we use red-coloured

buildings to show a class that invokes the obsolete library, i.e., an

affected class. Second, we set the height of a red-coloured building

4
https://www.eclipse.org/cdt

https://pugixml.org
https://www.eclipse.org/cdt

WAPI’18, June 2018, Gothenburg, Sweden S. Gerasimou et al.

Figure 3: FileZilla visualisation using our adapted code
city metaphor. The white box is the system, districts/sub-
districts with yellow to orange colours are packages/sub-
packages, blue buildings are unaffected classes and red
buildings are classes that use the obsolete XML library.

as the number of commands from the obsolete library present in

an affected class; taller buildings have more commands that need

to change. Third, we set the width of a red-coloured building as the

number of distinct commands used from the obsolete library; wider

buildings make heavier use of the obsolete library, and hence the

corresponding classes have higher coupling.

Next, we executed the generation transformations that enabled

to automatically produce an abstraction API layer and modify the

affected FileZilla files (i.e., link them with the abstraction layer

instead of the legacy library). We produced the list of mappings

manually by inspecting the specifications of the obsolete and new

libraries. We used this mappings list to populate the elements com-

prising the abstraction layer with suitable code fragments. Our

preliminary experience showed that some code fragments were

straightforward and easy to derive, whereas others were more dif-

ficult and required more effort. Supporting automated mapping

inference and code population is part of our future work.

Given the modernised system, we used the test suite coming

with FileZilla and confirmed that the functionality and properties

of the system still hold. This assessment provided insight that the

abstraction layer has been generated and populated correctly, and

also that the system started exercising the new library.

4 RELATEDWORK
API Evolution. Recent research has been focused on identifying

issues that can break client applications’ source code, because of

changes in used apis. Jazek et al. studied this problem in real word

programs and argued that better tools and methods need to sup-

port library updates in client applications [5]. Xavier et al. also

investigated api changes that may break previously established

contracts, resulting into software crashes [13]. They conducted

empirical studies with real software projects, and they reported

lessons for better library support and maintainability of client appli-

cations. Raemaekers et al. proposed a framework of metrics that can

be used to measure the stability of a software library [10]. Based

on insights from previous work and considering the challenges

associated with mitigating library obsolescence, we develop a visu-

alisation approach that can assist developers of client applications

to improve software robustness.

Visualisation Techniques. Software visualisation techniques are

widely used in program comprehension; see for instance the recent

survey in [8] about existing software visualisation approaches. This

survey highlights the number of visualisation tools for supporting

developers’ needs on dependency management. A few studies have

attempted to provide visualisations of evolving software systems

and their library dependencies. Kula et al. developed a heat-map

metaphor, which can help maintainers to navigate to library de-

pendencies and gives an overview of the users across the different

versions of a library [6]. Wettel et al. have used the city metaphor to

represent software projects and they conducted a controlled exper-

iment with developers to examine how the subjects comprehend

the structure of a program [12]. In addition to the existing related

work, we are using the city metaphor to highlight areas of software

projects using third-party libraries.

5 CONCLUSIONS
The increasing dependency of software systems on third-party

libraries challenges system maintainability. Developers need guid-

ance on identifying and modernising client source code that can be

affected due to library obsolescence. We proposed a modernisation

methodology that can help developers of client systems to maintain

their source code when these obsolescence issues occur. Also, we

introduced a visualisation approach, using the city metaphor, for
visualising source code areas that invoke the legacy library. We

demonstrated a prototype realisation of our methodology and ap-

plied it on the FileZilla client. In the future, we plan to provide a

mechanism that can automatically adapt client source code to new

versions of third-party libraries. We will also explore the automated

test generation for the changed parts of client source code.

REFERENCES
[1] C. R. B. de Souza and D. L. M. Bentolila. 2009. Automatic evaluation of API

usability using complexity metrics and visualizations. In ICSE’09 - Companion
Volume. 299–302.

[2] Danny Dig and Ralph Johnson. 2005. The Role of Refactorings in API Evolution.

In ICSM’05. 389–398.
[3] A. Gokhale, V. Ganapathy, and Y. Padmanaban. 2013. Inferring likely mappings

between APIs. In ICSE’13. 82–91.
[4] Petr Hosek and Cristian Cadar. 2013. Safe Software Updates via Multi-version

Execution. In ICSE’13. 612–621.
[5] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break - An

empirical study. Information and Software Technology 65 (2015), 129–146.

[6] Raula Gaikovina Kula, Coen De Roover, Daniel German, Takashi Ishio, and

Katsuro Inoue. 2014. Visualizing the Evolution of Systems and Their Library

Dependencies. In VISSOFT’14. 127–136.
[7] Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. 2011. Large-scale, AST-based

API-usage Analysis of Open-source Java Projects. In SAC’11. 1317–1324.
[8] Leonel Merino, Mohammad Ghafari, and Oscar Nierstrasz. 2017. Towards action-

able visualization for software developers. JSEP’17 (2017).

[9] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan Nguyen,

Miryung Kim, and Tien N. Nguyen. 2010. A Graph-based Approach to API Usage

Adaptation. In OOPSLA’10. 302–321.
[10] S. Raemaekers, A. van Deursen, and J. Visser. 2012. Measuring software library

stability through historical version analysis. In ICSM’12. 378–387.
[11] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan

Ratchford. 2013. Automated API Property Inference Techniques. TSE’13 39, 5
(2013), 613–637.

[12] Richard Wettel, Michele Lanza, and Romain Robbes. 2011. Software Systems As

Cities: A Controlled Experiment. In ICSE’11. 551–560.
[13] L. Xavier, A. Brito, A. Hora, and M. T. Valente. 2017. Historical and impact

analysis of API breaking changes: A large-scale study. In SANER’17. 138–147.

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Software Modernisation Approach
	3.1 Modernisation Methodology
	3.2 Preliminary Realisation

	4 Related Work
	5 Conclusions
	References

