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Summary

In recent years, immersive media, particularly Virtual Reality (VR) technology, has

seen significant growth. VR technology immerses users in fully digital environments,

offering interactive experiences beyond traditional media. However, delivering high-

quality 360° videos over the internet poses challenges such as bandwidth constraints

and latency issues. Latency, in particular, can disrupt the sense of presence by causing

unrealistic interactions that break the illusion of being in a virtual environment. One

promising solution is the prediction of a user’s head pose trajectories to preemptively

adapt the content delivery and minimize delays.

Head pose prediction enables adaptive streaming systems to prioritize and deliver only

the relevant portions of 360° videos, significantly reducing bandwidth requirements

while ensuring a smooth user experience. Despite advances in predictive modeling,

existing approaches often struggle with accuracy when user behavior is unpredictable,

influenced by content characteristics and individual differences. To address these

challenges, this thesis investigates the potential of leveraging entropy metrics, such as

Actual Entropy (AE) and Instantaneous Entropy (IE), as measures of user predictability

to improve head pose prediction.

Through an exploratory analysis of 360° video datasets and existing state-of-the-art

prediction models, we identify a linear correlation between prediction errors and

entropy metrics, highlighting the potential of entropy-driven approaches. We develop

two adaptive attention-based models: an LSTM-based model with entropy-modulated

attention and a multi-head adaptive attention model. In addition, we explore entropy-

augmented baseline approaches. While adaptive models achieve mixed results, a

baseline model combining head pose and instantaneous entropy was found to be more

stable, demonstrating the utility of even straightforward entropy integration.

Although the entropy-based models did not consistently outperform state-of-the-art

methods, our findings demonstrate that entropy augmentation offers a promising

avenue for improving the stability and robustness of head pose prediction in specific

scenarios. This thesis highlights that understanding dataset characteristics and how

entropy is incorporated into model architectures is crucial for optimizing performance.

These insights suggest that future work should focus on adapting model designs to

better account for user predictability, which could lead to more adaptive and responsive

VR systems.
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1
Introduction

1.1. Research Domain
Over the past decade, there has been a surge in interest in immersive media that

provides a more realistic experience than traditional media. Virtual Reality (VR)

stands out as a prime example of immersive technology. It is a rapidly growing

market projected to grow from an estimated $35.7 Billion in 2023 to $111.8 Billion by

2030 [22]. The main novelty of VR technology is that it immerses users into a fully

digital environment, replacing the real world. This allows individuals to experience a

completely new reality that they can interact with, instead of just viewing content on a

screen [57]. By doing so, VR technology makes the viewer feel like they are actually in

this virtual environment instead of their real, physical environment. This feeling is

referred to as presence [65]. Interactivity is the ability for an individual to change their

virtual environment with their movements [62]. VR enhances the feelings of presence

and immersion by allowing users to interact with the virtual world through their

actions [43], much like they would in a real environment. A key challenge with VR

technology is ensuring a sufficient level of immersion, presence, and interactivity [51,

43]. These three factors are crucial to guarantee a high level of user satisfaction when

using a VR system [43]. In particular, unrealistic interactions with the environment can

break the illusion of “being there" and can cause discomfort [51]. To ensure a sufficient

level of immersion, presence, and interactivity, novel types of content are required.

To provide an immersive and interactive experience, 360-degree videos have emerged

as a novel media format. Unlike traditional videos, 360° videos shift the user’s role

from a passive viewer of traditional videos to an interactive and active viewer of VR

content [12]. When viewing 360° videos, users are provided with a VR device, called

a Head-Mounted Display (HMD), which allows them to look around and navigate

the virtual environment by rotating their head. Specifically, participants can interact

with the virtual environment over 3-Degrees of Freedom (DoF) by looking up or down

(pitch), left or right (yaw), and by tilting their head from side to side (roll)[57] as shown

in Figure 1.1 (a). This interaction is enabled by virtually placing the viewer at the center

of the virtual space in a 360° video, called the viewing sphere, as shown in Figure

1.1 (b). The viewing sphere represents the entire virtual environment surrounding

1



1.1. Research Domain 2

Figure 1.1: Navigation of user in immersive content: a) 3-DoF head movements; b) navigation system

on viewing sphere at an arbitrary time instant; c) navigation trajectory over time. [57]

the user. The HMD mimics the viewer’s Field of View (FoV) by only displaying a

portion of the virtual environment called the viewport, as shown in Figure 1.1 (b). The

displayed viewport is selected based on the direction and orientation of the user’s

head within the virtual space, known as their head pose. The sequence of the user’s

head pose, and therefore the viewing direction, over time can be approximated by the

centre of the viewport projected on the viewing sphere (Figure 1.1 (c)). This sequence

is called the user’s navigation trajectory [57, 56].

In order to consume this type of immersive 360° content, it must be transmitted and

streamed efficiently. To guarantee an immersive experience while streaming 360°

videos, it is crucial to ensure a high Quality of Experience (QoE), which depends on a

few key factors [51]. Two main factors for ensuring a high QoE are a high resolution and

a low latency [57]. The resolution requirement is exacerbated by the close proximity

of the screen to the eyes in VR [56, 28, 55]. A high switching delay when the user’s

viewport changes can result in discomfort along with a degraded experience. Ideally,

a high QoE can be ensured by sending the entire content at a high quality to the user,

and exporting the desired viewport during rendering. Initial advances in streaming

360° videos aimed at improving overall system performance in terms of bandwidth,

storage cost, and networking reliability when sending the entire 360° video content [57].

Unfortunately, these solutions still suffered from high bandwidth requirements due to

the high resolution of 360° videos (8K resolution) [48]. These high-resolution videos

had data rates up to two orders of magnitude higher than those of regular videos [48].

Since the user only views a small portion (roughly 15% [26]) of the 360° video content

at a given time, some researchers have focused on more personalized systems by

processing the streaming content based on the viewer’s head pose [74]. This is known

as adaptive streaming [57]. These systems include segmenting the video spatially into

tiles and dynamically adjusting the quality of the tiles based on their proximity to

the viewer’s viewport [53, 76, 20]. Another approach involves using projections of

the spherical content, prioritizing the highest quality for the most important areas
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[19, 27]. Additionally, adaptive streaming systems also take into account network

conditions, adjusting the quality of the video tiles depending on factors such as

available bandwidth and latency [57]. The main goal of adaptive video streaming

systems is to optimize viewer QoE while overcoming streaming limitations of 360°

videos. Through adaptive streaming, we can significantly reduce the amount of data

being streamed, thereby reducing the bandwidth requirements [57]. However, due

to the time taken to transmit user viewport data to the server and then transmit the

content information based on this viewport back to the client, there can be a mismatch

between the actual head pose of the user and the pose for which the frame is rendered

[82]. To overcome this limitation, Qian et al. developed the first user-centric design

that predicts future user viewports in advance [53]. By predicting the user’s head

pose trajectory, adaptive streaming can tailor content information based on the user

viewport in the near future instead of the current user viewport. Using three simple

logistic regression models with a moving window of 1 second, they successfully

anticipated viewer behavior in a short-term window and showed that giving higher

fetching priority to the tiles most likely to be displayed could reduce bandwidth usage

by up to 80% [57, 53].

Even though Qian et al.’s user-centric design demonstrated the feasibility of overcoming

viewport mismatches by predicting future user head poses in advance [53], it only

focused on single-user trajectories and struggled to provide accurate predictions

for windows longer than one second. To build on this, researchers have tried to

better understand how users interact with 360° content. Recent behavioral studies

have shown that users tend to navigate 360° videos in similar ways [60, 47, 35]. For

example, Rossi et al. [60] showed that viewers have highly similar trajectories when

viewing content with a dominant focus of attention. These findings have been the

motivation for the development of cross-user models. Content-agnostic cross-user

models rely solely on user trajectories to predict a user’s head pose. Cross-user models

predominantly use LSTM-based architectures, such as bidirectional LSTMs [23] and

data-fusion LSTMs [28], to forecast user movements. However, being content-agnostic,

they only utilize user trajectories and do not incorporate additional information such

as content features or individual differences in user behavior, resulting in degraded

predictions for windows larger than ~4 seconds [56].

Behavioral studies have also shown that the type of content also affects user trajectories

[60, 47, 35]. Ozcinar et al. showcased that there is a high correlation between user fixa-

tion and video complexity measured through Spatial Information (SI) and Temporal
Information (TI) [32]. As a result, various content-aware designs that augmented user

trajectories with some form of content information (usually in the form of saliency

maps) have also been proposed [56, 17, 50]. To analyze various content-aware predic-

tion models, Rondón et al. proposed a “Unified Evaluation Framework" [55], which

homogenizes datasets and provides common metrics for evaluation. Through their

analysis, they found that the main challenge with incorporating content information

is that an effective design should attenuate the impact of content information in the

short term and give it more importance in the long term. Following these findings,

the current state-of-the-art approaches attenuate content information by passing it

through dedicated recurrent units before merging it with head pose data [56] and
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by incorporating additional content information such as actor information in social

videos [1], motion maps [50] and the flow of objects over the course of the video [49].

However, these models do not incorporate any content information that may affect

the predictability of user movements. Sitzmann et al. [64] demonstrated that viewers

tend to explore the virtual environment more slowly when viewing content that lacks

a dominant focus of attention. They discussed how the entropy of saliency maps, a

measure of the distribution of salient regions in a given scene, can be used to quantify

how the predictability of user trajectories may be affected by the content being viewed.

This unpredictability usually stems from two key factors: the lack of a dominant focus

of attention in the displayed 360° content [64, 60] or variations in user disposition [59].

Notably, the entropy of saliency maps is an aggregate measure, as the saliency maps

are derived from the trajectories of all users viewing a given video, reflecting how the

overall content affects user behavior predictability. The findings of Rossi et al. also

found a consistent correlation between the actual entropy of user trajectories and their

prediction error [59].

In this context, the main focus of this thesis is advancing head pose prediction models.

Rossi et al. primarily use actual entropy to assess the unpredictability of user trajectories

in 360° video environments [59], but the inclusion of additional entropy metrics, such

as instantaneous entropy and the entropy of saliency maps, presents a compelling

opportunity to enhance predictive models. While actual entropy measures the degree

of predictability of a viewer’s entire trajectory throughout a session. Instantaneous

entropy provides a real-time measure of trajectory predictability, which could be used

to enable models to adjust predictions based on current user behaviors, resulting in a

more responsive model. The entropy of saliency maps, on the other hand, quantifies

the distribution of salient regions in a given scene and provides more information for

content-aware designs, possibly enhancing predictive accuracy.

Despite significant research in head pose prediction, user metrics that summarize

or analyze individual user behavior, such as entropy, have not been extensively

incorporated. Jin et al. found that, while viewers tend to focus on more salient regions

in the content, there are notable individual differences in user behavior patterns

[35]. There are existing meta-learning approaches that factor in these differences in

user disposition [39, 42], but there have not been any deep learning approaches that

explicitly use features that describe user disposition. This gap presents an opportunity

for enhancing head pose prediction models by explicitly factoring in individual user

behavior, creating more robust and accurate systems.

This thesis seeks to fill this gap by exploring the use of entropy of user trajectories
to capture and incorporate unpredictability into head pose prediction models. One

approach involves using adaptive attention mechanisms based on instantaneous

entropy to dynamically adjust predictions, while another leverages a straightforward

strategy that augments head pose data with entropy information to improve stability

and accuracy. Our goal is to develop more accurate and responsive models, which will

ultimately enhance the user experience in 360° video content.
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1.2. Research Questions
With the goal to accurately predict head pose trajectories, we aim to answer the

following questions.

Q1. Can aggregated user information, such as the entropy of saliency maps, provide

insights into the predictability of head pose trajectories?

Q2. How do we account for user predictability in a head pose prediction model? Is

incorporating the entropy of user trajectories into prediction models a valuable

addition?

By addressing these questions, we aim to advance our understanding of head pose

prediction and develop a more accurate and responsive prediction model using deep

learning techniques. Effectively analyzing the impact of entropy of saliency maps

(Q1) will help enhance our understanding of head pose predictions, while integrating

individual behavioral characteristics like user entropy (Q2) will allow for more robust

and responsive models.

1.3. Outline of the Thesis
This thesis is structured as follows:

In the Background and Related Works chapter we begin by outlining the VR streaming

pipeline, emphasizing the need for accurate head pose prediction due to the importance

of minimizing motion-to-photon (MTP) latency for an immersive experience. Following

this, we review existing behavioral analyses of users in VR, focusing on research that

examines head pose trajectories as a means of understanding user behavior and

improving prediction accuracy. We then continue with an overview of head pose

prediction techniques, particularly deep learning approaches, and explore the potential

of attention-based models for enhancing prediction performance. Finally, the chapter

discusses the datasets commonly used for head pose prediction tasks, highlighting the

challenges involved in creating a heterogeneous dataset.

In the Methodology chapter, we summarize all the key terms used in this thesis, define

key concepts related to the head pose prediction task, and outline the formulae used

for various content and user metrics. We then provide a detailed overview of the

methodology, which includes the preliminary data analysis, a comparison of existing

state-of-the-art models, the integration of our findings into a new head pose prediction

model, and the subsequent testing process.

The Exploratory Analysis of Datasets and State-of-the-Art-Models chapter analyses

the diversity of 360° video datasets in the context of Spatial Information, Temporal

Information, Entropy of Saliency Maps (SE), and Actual Entropy (AE). Our analysis

reveals a negative correlation between SE and AE, where videos with dynamic centers

of focus tend to elicit higher trajectory randomness, as measured by AE, while

those with static focus exhibit slower, more predictable user movements. Following

our analyses, we evaluate the current state-of-the-art models and find that model

performance deteriorates for high-AE videos, highlighting the challenge of predicting

head movements in highly dynamic or exploratory viewing scenarios. Additionally,
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we find a correlation between model loss and entropy metrics: videos where users

exhibit higher trajectory entropy (AE) tend to be associated with higher prediction

loss, while videos with higher saliency map entropy (SE) show a negative relationship

with prediction loss. These insights suggest that entropy metrics may offer valuable

insights for improving head pose prediction models.

In the Adaptive Attention for Head Pose Prediction chapter, we introduce two models

for head pose prediction, each incorporating entropy information to enhance the

model’s attention mechanism. These models differ in how they utilize entropy to

improve prediction accuracy, with the goal of better capturing user behavior dynamics.

The first model, Entropy-based Adaptive Attention LSTM (E-AALSTM), uses an

LSTM-based architecture with a dynamic, entropy-modulated attention mechanism.

This model adjusts its attention at each time step based on the predictability of the

user’s trajectory, measured by instantaneous entropy. The second model, Multi-head
Adaptive Attention (AMH), takes inspiration from the transformer architecture [9,

72] and incorporates multi-head attention with entropy modulation across attention

heads. While E-AALSTM leverages entropy dynamically using a sequential prediction

process, AMH predicts the entire trajectory in the output window simultaneously,

using only entropy and head pose values from the input window. AMH offers a more

computationally efficient alternative to E-AALSTM. The goal of both attention-based

models is to focus more on predictable parts of the trajectory, avoiding the randomness

introduced by highly unpredictable parts of user trajectories.

In the Evaluation and Results chapter, we first provide a detailed overview of the

experimental setup used to assess the performance of the proposed models. This

includes a discussion of two enriched baselines, i.e., modified versions of the position-

only seq2seq encoder-decoder model [56] that incorporate entropy information. These

models are the Position-only baseline augmented with entropy information (pos-
augmented), where instantaneous entropy is appended to the input at each time step,

and the Position-only baseline with entropy-weighted loss (pos-weighted), where

the loss function is adjusted based on the trajectory’s entropy. These enriched baselines

serve as more straightforward methods of incorporating entropy into the model,

allowing for a better understanding of how different strategies of incorporating entropy

information affect prediction accuracy. We then discuss baseline benchmarks, ablated

versions, and state-of-the-art (SOTA) models selected for comparison. We also outline

the hyperparameters, datasets, and evaluation metrics used to ensure consistency in

our testing process. Following this, we present the results of our evaluation. We first

compare our proposed models against ablated versions and baseline models to assess

the impact of incorporating entropy information. Following this, we evaluate the

best-performing entropy-based model in relation to current state-of-the-art methods.

This final comparison highlights the strengths and weaknesses of our approach, placing

our work within the context of existing research and demonstrating its effectiveness.

Finally, in the Discussion and Conclusion chapter, we discuss the results in the context

of our research questions, along with the limitations of our thesis and future research

avenues. Lastly, we present the conclusions of our work.

This structured approach aims to contribute to the field by deepening our understanding
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of the relationship between the entropy of saliency maps, user trajectory entropy, and

the predictability of head pose trajectories. Building on this, we propose a novel head

pose prediction model that leverages user trajectory entropy with the intention of

improving accuracy and potentially advancing performance over existing models.

1.4. Main Contributions
The contributions of this work can be summarized as follows:

• We conduct an analysis of state-of-the-art head pose prediction models, inves-

tigating their performance across different types of video content and varying

levels of user predictability, measured using instantaneous entropy. Through

this analysis, we discover significant correlations between model performance

and both the entropy of user trajectories and the entropy of saliency maps.

• We introduce and evaluate entropy-based adaptive attention based models for

head pose prediction, specifically E-AALSTM and AMH, which aim to incorporate

the entropy of user trajectories. While these models showed limited improvements

in performance and struggled to leverage entropy information effectively, they

offer insights into the challenges of properly leveraging entropy-based features

in deep learning models.

• We implement a "pos-augmented" model that incorporates entropy values into a

seq2seq encoder-decoder framework. This model showed modest improvements

in prediction stability, especially for datasets where user trajectories tend to be

more unpredictable, as measured by their entropy. While it did not outperform

all state-of-the-art models, it provided more stable and reliable predictions than

other methods, suggesting that entropy augmentation may still have valuable

applications in certain contexts.



2
Background and Related Work

In this chapter, we provide a brief overview of 360° videos and virtual reality, followed

by a discussion of the 360° video streaming pipeline. Within this context, we highlight

the challenge of motion-to-photon latency, a key factor affecting user experience, and

examine how researchers have addressed this challenge by introducing additional

steps to the streaming pipeline. Next, we review established methods for analyzing

user head pose, including their proposed metrics. We then discuss state-of-the-art

approaches for head pose prediction, starting with the widely used seq2seq architecture.

This is followed by an exploration of specific state-of-the-art models and a focus on

the attention-based architecture, which forms the foundation of our proposed model.

Lastly, we review existing datasets for head pose prediction.

2.1. 360° videos and Virtual Reality
The concept of VR dates back to the 1960s with Ivan Sutherland’s first HMD prototype,

designed to immerse users in a simulated environment [71]. However, VR technology

remained niche until the 2010s when it gained traction with the introduction of

consumer-friendly headsets like the Oculus Rift [25]. The acquisition of Oculus by

Facebook in 2014 and the release of other devices like the HTC Vive [73] and Samsung

VR [70] made VR more accessible to everyday consumers. While VR was initially

marketed towards gaming, the increased accessibility helped expand its appeal to

diverse applications in the fields of education, training, therapy, and many others

[25]. Among VR content formats, 360-degree videos have emerged as one of the

most common forms of content for VR experiences, allowing users to explore virtual

environments from all angles. This format, coupled with the use of Head-Mounted

Displays (HMDs), enhances the sense of immersion by providing a fully navigable

viewing space. HMDs serve as the primary tool for interacting with these virtual

environments through head movements. HMDs are equipped with sensors such as

gyroscopes, motion sensors, and cameras to capture user information. The combined

data from these sensors informs the HMD about the viewer’s orientation and location

information, enabling the system to render different viewing angles based on the

viewer’s head pose trajectory [74]. Real-time adjustment of the displayed viewport

based on the user’s head movements creates a sense of presence and immersion, which

8
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Figure 2.1: 360° video streaming pipeline (A simplified version of the pipeline presented by Rossi et al.

[57]).

are key to ensuring a good VR experience. However, this requires minimizing latency

between user movements and viewport updates to avoid discomfort. High resolution is

also essential to maintain a sense of immersion. To deliver this type of high-resolution

360-degree content, efficient streaming is necessary. The streaming pipeline, discussed

in the following section, aims to tackle the ongoing challenge of adapting to fluctuating

network conditions and user preferences, striving to balance resolution, bandwidth

usage, and responsiveness to ensure the best possible viewing experience.

2.2. Streaming of VR content
In this section, we go over the 360° video streaming pipeline in the context of MPEG-

DASH (Dynamic Adaptive Streaming over HTTP) [66]. The primary objective of this

pipeline is to adjust the quality of the content in real-time, based on different conditions

such as head movement and network bandwidth, to ensure a smooth playback. As

shown in Figure 2.1, the pipeline involves several key steps from the acquisition to the

rendering of VR content, which are described below [57]:

1. Acquisition: 360° video cameras capture a 360-degree field of view using multiple

sensors. The resulting images from these sensors are then stitched together into

a spherical format.

2. Projection: The spherical content is then projected into a 2D planar represen-

tation called Panorama. The most common sphere-to-plane projections are the

equirectangular projection (ERP) and the cubemap projection (CMP) [21]. ERP

is the simpler and more popular projection but suffers from distortion near the

poles [5] while CMP offers better overall quality with some distortion due to a

higher distribution of pixels at the corners of the cube.

3. Encoding: The planar representation is then encoded to reduce the amount of

data being transmitted, for example, by using the state-of-the-art codec High-

Efficiency Video Coding (HEVC/H.265) [68]. In DASH, multiple resolutions

and quality levels called representations are created. Allowing each client to
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dynamically select the best quality based on their requirements.

4. Segmenting: The encoded video is divided into temporal chunks and stored on

the server.

5. Adaptation Logic: The client dynamically decides the best representations to

request for upcoming chunks based on their network conditions, buffer status,

and device capabilities.

6. Delivery: The client then selects the most appropriate chunk representation and

an HTTP origin server processes their requests to deliver these chunks over the

internet.

7. Decapsulation and decoding: The client processes the received chunks to extract

the HEVC bitstream, decodes it, and stores it in a playout buffer.

8. Viewport extraction: The user’s viewing direction is used to determine the

content of interest i.e. the viewport.

9. Rendering: The decoded planar representation is back-projected into a spherical

format and the content of interest is displayed to the user.

Advances in the streaming pipeline generally aim at improving overall system per-

formance in terms of consumed bandwidth, storage cost, and networking reliability

metrics. In terms of adaptation logic, there are different approaches to improve the

overall system performance. For example, Viewport-independent solutions approach the

problem like traditional 2D video streaming and treat the entire panorama equally.

This means that each representation available at the server side is encoded with a

uniform quality and resolution across the entire panorama. As a result, the client

needs to download the entire panorama at high quality. This approach, while ensuring

low switching latency, has extremely high costs in terms of storage and bandwidth

usage [2]. To minimize bandwidth usage without sacrificing switching latency, viewer

interactivity needs to be taken into account, leading to viewport-dependent streaming

strategies that also adapt to the user.

Viewport-dependent strategies rely on the assumption that the entire panorama is not

equally important as the viewers focus on some areas more than others. Alface et al.

were the first to show that perfect knowledge of the user interaction with 360° videos

could save bandwidth by only transmitting the viewport [3]. Viewport-dependent

streaming can be implemented in the projection or the encoding step of the streaming

pipeline. The former, also named the projection-based approach, adapts the bitrate

allocation during projection in such a way that areas most likely to be viewed by the

user are the least distorted [80]. This can be accomplished through techniques like

pyramid projections [37] and offset cubemap projections [83]. A viewport-dependent

strategy in the encoding step, also known as tile-based encoding, was first proposed

by Corbillon et al. [13] and then improved by standardised tiled streaming using

the HEVC MCTS [81]. The key novelty of a tile-based system is that the panorama

is divided into multiple regions called tiles and the tiles are encoded at different

bitrates and resolutions. This results in per-tile representations that can be fetched

independently by the client at the desired quality level. This allows for a high degree

of flexibility as clients can fetch higher quality tiles for the viewport and lower quality
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(a) (b)

Figure 2.2: (a) Viewport and head pose in case of low motion-to-photon latency, (b) Viewport and head

pose in case of high motion-to-photon latency (expected viewport in red). Inspired by [74]

tiles for peripheral areas.

However, a key challenge with viewport-dependent streaming is that the head pose

information, used to determine the viewport, is often outdated by the time it reaches the

server. This delay between the user’s head movements and the server’s corresponding

updates to the viewport is known as Motion-to-Photon (MTP) latency. High MTP

latency can lead to a noticeable mismatch between a user’s physical movements and

the visual feedback they receive, reducing immersion. The discrepancy can also cause

dizziness, nausea, and discomfort, ultimately degrading the user’s experience [51].

Figure 2.2 illustrates the effect of motion-to-photon latency: Figure 2.2a shows the

desired scenario where the rendered viewport (green box) corresponds to the expected

viewport, while Figure 2.2b highlights how high latency can result in a viewport

(green box) that is not aligned with the expected viewport (red box); contributing to a

lower degree of immersion. Qualitative studies have shown that users can perceive

latencies as small as 1ms when a 0-latency reference is provided [44]. In studies where

no reference was given, users were able to adapt to latencies of up to 100ms without

noticeable discomfort, showing some flexibility of the human visual system when no

direct comparison is available [4].

Since it is not feasible to eliminate latency entirely, researchers focus on anticipating

a user’s head movements and predicting their future head positions. This allows

the server to deliver content that is more aligned with the user’s expected view, thus

reducing the negative effects of latency. Qian et al. showed that predicting the viewer’s

future viewports can help address the motion-to-photon latency [53]. To achieve more

accurate viewport predictions, researchers have introduced three additional steps
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Figure 2.3: 360° video streaming pipeline with head pose prediction [57].

to the 360° video streaming pipeline: Behavioral analysis, content and behavioral
features, and head pose prediction, as highlighted in red in Figure 2.3 [57]. These steps,

by analyzing user behavior and content features, aim to refine viewport predictions,

ensuring that the system better anticipates the user’s movements and delivers content

with reduced latency. This thesis builds upon these methods, focusing on improving

the accuracy of behavioral analysis and viewport prediction, with particular emphasis

on the predictability of individual users. The next section delves deeper into the

methods used for behavioral analysis and the techniques that researchers have applied

to better predict user behavior, which form the foundation of these steps.

2.3. Behavioral Analysis
As seen in the previous section, head pose prediction is crucial to mitigate the impact

of motion-to-photon latency and ultimately improve the quality of experience when

streaming VR content. To accurately predict a user’s future head pose, we must first

have an understanding of how users behave when viewing 360° video content. We

review the outcomes of behavioral studies on how user head pose trajectories are not

only affected by the 360° video content, but also by individual differences between

users.

User behavior changes based on the type of VR content being viewed [60, 64, 47].

Ozcinar et al. demonstrated a direct correlation between the distribution of user

fixation points and the video complexity, characterized by Spatial Information (SI)
and Temporal Information (TI) [47, 32]. SI measures the spatial information in a

given frame by applying a Sobel filter and TI measures the temporal information

between two frames as the difference between them. Ozcinar et al. found that content

with low TI and high SI tends to have the most fixations while content with low SI
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and high TI receives a low number of average fixations [47]. Similarly, Rossi et al.

observed that when viewing content with no clear focus of attention (as in the case

of documentaries), users exhibit highly exploratory trajectories [60]. This behavior is

particularly noticeable when we measure the similarity or “affinity" of user trajectories.

Users tend to have highly similar navigation patterns when viewing content with a

main focus of attention, while their navigation patterns vary more with content that

lacks a main focus of attention.

User behavior also varies due to individual differences. Jin et al. found that

while users, on average, tend to focus on the salient region, there are still significant

differences in behavior patterns that should be considered [35]. They confirmed

previous findings that future head movements can be predicted using content saliency

information but in the short term, the inertia of the user’s movement has a larger

effect [56]. Rossi et al. identified a consistent correlation between the entropy of user
trajectories and prediction errors [59]. They used the entropy metric presented by

Song et al. called actual entropy (AE), which “captures the full spatio-temporal order

present in a person’s mobility pattern" [67]. As the true probabilities are difficult to

obtain in real-world scenarios, Rossi et al. make use of the Lempel-Ziv compression

algorithm [84] to compute an estimate of the actual entropy [59]. Since actual entropy

compares the behavior of a single user over time, it serves as an intra-user metric.

Rossi et al’s findings highlight the potential of entropy of user trajectories as a more

explicit measure of the user predictability [58, 8]. Showing clearly that trajectories of

individuals with a highly regular style of navigating tend to have a low entropy, while

users with a high value of entropy have less predictable movements. Baumann et al.

used a variation of actual entropy called instantaneous entropy (IE) to measure the

predictability of a user mobility in the real world at each moment [8]. Similar to actual

entropy, instantaneous entropy may also be extended to viewer head pose trajectories

in VR. While AE and IE focus on individual trajectories, Sitzmann et al. proposed the

entropy of saliency maps as an inter-user metric [64]. Instead of analyzing individual

trajectories, this method compares the head poses of all users at each moment in the

same video, generating saliency maps based on user averages. A high entropy results

from a large number of similarly salient objects distributed throughout the scene, while

low entropy typically corresponds to a scene with a clear focus [64]. Their analysis

found that users tend to explore the scene faster when viewing static scenes with low

entropy i.e. scenes with a well-defined center of focus [64]. Previous findings also

show that user gaze, on average, remains within 13.85° of the head orientation [64, 16].

In addition to these behavioral differences, Shi et al. [63] also discovered that the

accuracy of camera-based gaze estimation methods may be affected by HMD shifts

over the course of a VR experience and introduced a method to compensate for these

shifts. It is possible that these adjustments may also affect head pose estimation.

2.4. Head Pose Prediction
In this section, we review methodologies employed for predicting head pose trajectories.

We first discuss how the time-series forecasting framework applies to head pose

prediction. We briefly discuss how deep learning approaches can be used to solve the

head pose prediction problem, with a focus on the LSTM-based seq2seq architecture
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Figure 2.4: Standard seq2seq encoder-decoder architecture. Inspired by [56, 69].

utilized by most deep learning head pose prediction techniques. We then explore

existing solutions for head pose prediction and conclude with a discussion of attention

mechanisms and their potential for the task of head pose prediction.

2.4.1. Deep Learning for Head Pose Trajectory Forecasting
Since head movements can be represented as a sequence of data over time, the

task of head pose trajectory prediction can be presented as a time-series forecasting

problem [56]. Time-series forecasting relies on utilizing past trajectories to predict

future movements. This approach naturally aligns with deep learning approaches,

specifically through the use of convolutional neural networks (CNN), which are

effective at extracting visual dependencies, and recurrent neural networks (RNN), that

can model temporal dependencies in sequential data [56, 9]. Among the state-of-the-art,

RNN approaches typically use a sequence-to-sequence (seq2seq) architecture [69]

using Long Short Term Memory (LSTM) units as the recurrent blocks [56, 45, 79]

because of its effectiveness at capturing complex dependencies from input sequences

and generated realistic output sequences.

Seq2seq architectures make use of LSTMs’ ability to remember relevant information

over long sequences, addressing the vanishing gradient problem found in traditional

RNNs. LSTMs use two key components: the hidden state(ℎ𝑡) and the cell state (𝑐𝑡), both

of which enhance the model’s ability to track dependencies across time. The hidden

state, ℎ𝑡 , holds information about the sequence at a specific point in time, while the cell

state, 𝑐𝑡 , acts as a long-term memory to store information throughout the sequence.

A basic seq2seq model, depicted in Figure 2.4, takes an input sequence of length 𝑀,

denoted as 𝑃 = [𝑃𝑡−𝑀 , . . . 𝑃𝑡] and returns an output sequence of variable length, that in

our case is equal to 2, 𝑃̂ = [𝑃̂𝑡+1, 𝑃̂𝑡+2] by passing the input through an encoder-decoder

architecture as follows:

• Encoder: The encoder encodes the input sequence from 𝑃𝑡 −𝑀 to 𝑃𝑡 −1 by passing
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each input through LSTM layers and returns a fixed length vector representation,

consisting of both ℎ𝑡−1 and 𝑐𝑡−1. These representations capture the temporal

dependencies in the input sequence [11].

• Decoder: The decoder combines the fixed length vector representation with the

latest position in the sequence, 𝑃𝑡 , and decodes it to generate the next position in

the sequence, 𝑃̂𝑡+1. This process can be extended to predict future steps by using

the output 𝑃̂𝑡+1 and the updated vector representation ℎ𝑡 generated by the LSTM

at timestep 𝑡.

Here, the sequence 𝑃 can represent any form of sequential data, such as head pose,

motion maps, or other relevant features.

In the next subsection, we discuss notable existing head pose prediction models, some

of which utilize machine learning techniques beyond deep learning.

2.4.2. Existing Deep Learning Models for Head Pose Prediction
Based on the insights obtained from user behavioral studies discussed in Section 2.3,

several head pose prediction models have been proposed. The majority of these state-

of-the-art models incorporate deep learning in some capacity. We broadly categorize

these models into two types: Content-aware approaches and User-centric approaches.

Content-aware approaches are the ones that, along with the past trajectory of the

user, also use information extracted from the 360° video content that is being viewed.

This information can include saliency maps and motion maps [56, 78, 79], semantic

information [49] and even representations produced by deep learning layers [50].

In this context, Rondón et al. showed that previous attempts [17, 78, 79, 45] failed

to adequately incorporate saliency data and performed worse than a position-only

baseline [56]. This was exacerbated for short prediction horizons due to the models

giving too much importance to saliency features. Their findings showed that, in the

short term, the inertia of the user’s movement is much more important than content

information. As a result, an effective model should be able to attenuate the effect of

content information in the first few prediction steps and give it more importance in the

later steps. To accomplish this, TRACK [56] processes visual features such as content

saliency through an RNN before combining them with the user’s positional features.

This also aligns with the models evaluated by Park et al. that utilized a 3D CNN model

to encode spatio-temporal features from videos through motion maps and saliency

maps [50]. Capturing these spatio-temporal features before combining them with

the user’s movement information results in better predictions compared to simply

passing the motion and saliency maps through an RNN. Abawi et al. successfully

incorporated a variety of features unique to social videos such as facial expression,

actor gaze, and actor face locations to improve their head-pose prediction model [1].

Park et al. proposed SEAWARE, a semantic aware prediction system that exploits video

semantic information by encoding the flow of objects over the course of a 360° video

[49]. SEAWARE showed highly competitive prediction accuracy and efficiency. While

content-aware approaches extract additional information from the viewed content,

they do not consider the user’s individual characteristics beyond the past trajectory. As

a result, researchers also explored user-centric approaches that try to extract additional
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information from user behaviors.

The first few user-centric approaches were simple logistic regression models that

utilized the past and current trajectory of a single user [53]. These models were able

to successfully anticipate user behavior in short time windows. These findings were

able to showcase the potential of head pose prediction. However follow-up works that

explored single-user models [46, 52] found that they suffered from poor prediction

accuracy in the long term mainly due to the lack of other users and content information

[57].

Behavioral studies, like the ones discussed in Section 2.3 showed a strong consistency

and similarity in the way users navigate 360° video content. This opened the gate

to cross-user models that utilized information from multiple users. Ban et al. [7]

proposed an improvement over previous linear regression models by incorporating

K-Nearest-Neighbors (K-NN) clusters. Xie et al. [77] used the predictions of the LR

model to form a K-NN set of users with the closest viewport centers and the set was

used to compute the viewing probability per tile. While this approach was accurate

in a time window of 3 seconds and longer, the clusters neglected the actual spherical

geometry and were instead based on Euclidean distance [57]. These initial models

paved the way for deep learning frameworks trained on datasets of collected trajectories

[28, 39]. State-of-the-art architectures like LSTMs [56] and transformers [9] are shown

to be highly effective at predicting trajectories in both short and long-term windows.

Beyond using state-of-the-art architectures, researchers have also augmented deep

learning approaches by introducing uncertainty [24], using novel representations

of head pose information [28] and adding distance constraints to the loss term [38].

Guimard et al. [24] incorporated a degree of uncertainty in the head trajectories

by introducing a latent variable, 𝑧 that results in multiple predictions based on the

dimensions of 𝑧. During training, the model utilizes a best-of-many-samples loss to

use the best prediction at a given timestep. Along with improved predictions, the

model also provides likelihood estimates for multiple predicted trajectories allowing

for more flexibility in streaming optimization. Illahi et al. [28] found that a 3-point

representation of pose that represents the back of the head, the left eye, and the right

eye in Euclidean space was better for complex models like LSTMs as opposed to

quaternion representations. They also noted that even if the only goal is to predict

head pose, a model that takes both the position of the HMD in space (head position)

and head pose as input outperforms a model that only takes head pose input. Lastly,

Lan et al. [38] found that adding a distance constraint term to the loss function reduces

the possibility of abrupt changes in predicted head pose, resulting in a more stable

model. While these models exploit behavioral information from multiple users, very

few explicitly try to consider individual differences between users. Meta-learning

approaches that try to account for these individual differences have shown promising

results [39, 42]. Li et al. [39] utilized a model agnostic meta-learning (MAML) [18]

to adjust the weights of a Bidirectional LSTM (BiLSTM) [23]. Lu et al. [42], on the

other hand, used a model-based meta-learning framework where the learning step for

both the meta parameters and the inner parameters is wrapped up in a single model

in a feed-forward manner. Both approaches showed improvements over standard

LSTM-based approaches. Chen et al. [10] also highlighted the potential of using
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user-aware metrics by designing a white-box and explainable algorithm for FOV

prediction.

Aside from general meta-learning approaches, there have not been any deep learning

approaches that explicitly use features that describe individual differences between

users. Few techniques have been designed to describe user differences such as

clustering [61] and entropy [58, 8]. Clustering of user trajectories also gives insight

into how much of the viewed content is shared between users [61]. Some users may

inherently be more unpredictable than others, resulting in worse head pose predictions

[59]. Incorporating the entropy metrics discussed in Section 2.3 into prediction models

may help models learn better representations for these unpredictable users. The

entropy of their trajectories provides a quantitative measure of user predictability

[58, 8]. Specifically, actual entropy acts as a single measure for the entire trajectory

of a user, based on both the visiting rate and the temporal order of the visited areas,

and instantaneous entropy [8], an estimate for the momentary predictability of user

mobility.

2.4.3. Attention for Head Pose Prediction
While a large number of state-of-the-art head pose prediction models utilize recurrent

networks, there are two notable problems with recurrent models typically used for

time-series forecasting. Firstly, they process sequential data in order as they must

generate a sequence of hidden states, ℎ𝑡 as a function of the previous hidden state

ℎ𝑡−1 and the input for position 𝑡 (as discussed in Section 2.4.1). This sequential nature

makes it impossible to parallelize computations [72]. Secondly, in an encoder-decoder

mode, the neural network needs to be able to encode all the necessary information of

the past into a single fixed-length memory [6].

In order to address these issues, attention mechanisms have been widely adopted

in fields such as language modeling and machine translation [6, 36, 72]. Attention

mechanisms work by maintaining a set of hidden representations that scale with the

size of the source [36]. By doing so, the model can perform an internal inference

step to perform a soft-search over these representations, effectively maintaining a

variable-length memory [6]. Before the attention mechanism processes an input

sequence, each element of the sequence, 𝑃, is passed through an embedding layer:

𝐸 = 𝑋𝑊𝐸 (2.1)

where 𝑊𝐸 are the weights for the embedding layer. Following this, the attention

mechanism computes the Queries (Q), Keys (K), and Values (V) using learned linear

transformations, defined as:

𝑄 = 𝐸𝑊𝑄 , 𝐾 = 𝐸𝑊𝐾 , 𝑉 = 𝐸𝑊𝑉 (2.2)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are the weight matrices for the queries, keys, and values, respectively.

Finally, attention weights are calculated using the scaled dot-product approach as

shown in figure 2.5b [72]:

𝐴𝑡𝑡𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(QK𝑇

√
𝑑𝑘

) (2.3)
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(a) VPT360 architecture

[9]

(b) Scaled dot-product

attention as described by

[72]

Figure 2.5: VPT360 architecture [9] (a) and scaled dot-product attention [72] (b)

where 𝑑𝑘 is the dimension of the keys. This enables the model to generate a context

vector by taking the weighted sum of value vectors, where the weights are the

attention weights. The resulting context vector is based on past sequences that are

most closely associated with the current position. Instead of relying on a fixed past,

the model can predict future positions based on these context vectors generated

by the attention mechanism [6]. Vaswani et al. proposed an architecture, called a

Transformer that completely abandons recurrence and relies entirely on attention

mechanisms to draw global dependencies between input and output, allowing for

significantly more parallelization [72]. While discarding recurrence lowers the effective

resolution, Vaswani et al. counteract this effect through multi-head attention [72].

Their experiments showed that not only do Transformers take significantly less time to

train, but they also outperform models using both recurrence and attention on machine

translation tasks.

Inspired by these results, Chao et al. proposed VPT360, a transformer model that

addresses viewport prediction as a time series forecasting problem [9]. VPT360 forgoes

recurrent layers and uses a transformer-based architecture, as shown in figure 2.5a. By

leveraging the power of multi-headed attention, VPT360 achieved superior prediction

accuracy to the state-of-the-art methods at the time even without utilizing any content
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information.

To build on these findings, our work aims to explore the potential of including

user-specific entropy metrics in head pose prediction models. Inspired by the work

presented by Jiang et al. which enhances few-shot image classification through adaptive

attention [34]. By integrating a weight generator that refines the context vector using

entropy metrics as support features, we believe our model can offer more nuanced

query representations and improve prediction accuracy. In the next section, we examine

the datasets used in previous works to contextualize our exploration of user behavior

and its impact on model performance.

2.5. Datasets
360° navigation datasets collect user navigation data during immersive VR experiences.

The navigation trajectory of each viewer is collected for a variety of 360° videos.

Specifically, each dataset consists of sequences of spatio-temporal points representing

the user’s viewing direction over the course of various 360° videos. Each sequence is

called a trace. Along with this, some datasets also capture the eye movements of the

users within the FoV, which can be used to get more details about user attention and

salient regions.

During data collection, the first step involves selecting the video content to be used.

The length of the videos can vary significantly across datasets. For instance, some

datasets use short video clips, such as the 10-second segments employed by Ozcinar

et al. [47], while others include full-length videos ranging from 164 seconds to 655

seconds, as demonstrated by Wu et al. [75]. Although full-length videos provide

a more comprehensive representation of user behavior, they may cause discomfort

for users during extended viewing. Consequently, most datasets opt for shorter,

representative segments of approximately 60 seconds [35].

In addition to length, video selection often considers content genre and camera dynam-

ics. Datasets may include a diverse range of genres, such as movies, documentaries,

and gaming content [60, 78], as well as videos with varying camera movements, like

fixed or moving cameras [35, 17]. This diversity helps capture a broad spectrum of

user behaviors. The number of videos in a dataset also plays a crucial role; while a

larger dataset ensures heterogeneity, it introduces challenges in data collection. For

example, in the CVPR18 dataset [79], only 31 out of 45 participants viewed each video,

limiting user coverage per video.

After navigation data is collected, it must be processed and stored in the dataset. User

rotational movements in 3-DoF are typically represented in one of three conventions:

Euler angles [17], spherical coordinates [78, 79, 45], or quaternions [35]. These represen-

tations are discussed in Section 3.2. For deeper analysis, datasets may also include

additional information, such as metadata about the selected videos [35, 79, 78] or

visual features like saliency and motion maps [17].

These datasets allow us to perform reproducible analysis and experiments for fair

comparisons between different head pose prediction methods [35]. In the context of

this thesis, we decided to focus on datasets presented in [55] by Rondón et al., which is
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Dataset Name Head Pose Format Saliency Maps Raw Video Content Details
Length (in s) No. of videos No. of users

NOSSDAV17 [17] Yaw, Pitch, and Roll Yes No 60 10 30

PAMI18 [78] Longitude and No Yes 10-80 76 58

Latitude

CVPR18 [79] Longitude and No Yes 20-60 208 at least 31

Latitude per video

MM18 [45] 3D Position in Yes No 20-45 9 48

unit sphere

MMSys18 [14] Longitude and Yes Yes 20 19 57

Latitude

MM22 [35] Quaternion No Yes 60 27 100

Table 2.1: Features of the datasets discussed.

a collection of existing datasets along with a “Unified Evaluation Framework". This

framework provides methods to post-process and standardize the datasets so that

they can easily be used to train and evaluate head pose prediction methods. It also

includes additional tools to generate saliency maps either by using user attention as

described by Rondón et al. [55] or through the content using the PanoSalNet described

by Nguyen et al. [45]. The framework allows for consistent comparison of head pose

prediction models across diverse datasets.

Some notable datasets are described below:

• NOSSDAV17 [17] consists of traces collected on three types of video content:

Fast pace, computer generated, Fast pace, natural image, and Slow pace, natural image.
Data is collected from 30 users over 10 videos. Each video is 60 seconds long.

Head pose is represented with the Yaw, Pitch, and Roll data in the range [-180,

180]. This dataset also contains saliency maps for each video.

• PAMI18 [78] consists of traces collected over a diverse collection of videos from

YouTube and VRCun, including computer animation, acting, sports, driving,

scenery, and so forth. Data is collected from 58 users over 76 videos. The videos

range from 10 to 80 seconds long. Head pose is represented as latitude and

longitude in the Geographic Coordinate System (GCS), ranging from [-180, 180]

with the center of the video as the origin.

• CVPR18 [79] consists of traces collected over a diverse collection of YouTube

videos including computer animation, acting, sports, and driving. Data consists

of at least 31 traces for each video out of a collection of 208 videos. The videos

range from 20 to 60 seconds long. Head pose is represented as latitude and

longitude in the Geographic Coordinate System (GCS), ranging from [0, 1] with

the top-left corner as the origin.

• MM18 [45] data is collected for 48 users over 9 videos. The videos range from 20

to 45 seconds long. Head pose is represented as the 3D position of the center

of the viewport in the unit sphere, (x, y, z), in the range [0, 1]. The dataset also

contains saliency maps for each video.

• MMSys18 [14] consists of traces collected on videos in various indoor and

outdoor settings in rural and urban environments. Data is collected from 57

users over 19 videos. Each video is 20 seconds long. Head pose is represented as
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latitude and longitude data in GCS, ranging from [0, 1] with the top-left corner

as origin. The dataset also contains saliency maps for each video.

• MM22 [35] consists of traces collected over a diverse collection based on video

quality, amount of camera movement, and dispersion of regions of interest. Data

is collected from 100 users over 27 videos. Each video is 20 seconds long. Head

pose is available in multiple representations, Euler angles, quaternions, and 3D

position in the unit sphere.

Table 2.1 summarizes the main features of the datasets we will consider in this work.



3
Methodology

This chapter first summarizes all the variables mentioned in this thesis with a table.

It then presents the key definitions and the Problem Formulation related to head

pose forecasting framework. We also describe the equations related to content and

user metrics discussed in Section 2.3. Lastly, we briefly discuss the steps involved in

carrying out this project.

3.1. Key Terms
Table 3.1 summarizes all the key terms used in this thesis.

Table 3.1: Definitions of the variables used in the thesis.

Variable Definition
𝑃𝑡 User’s head pose at time step 𝑡

𝜃𝑡 Azimuthal angle at time step 𝑡

𝜙𝑡 Elevation angle at time step 𝑡

𝑟 Length of vector in angular representation

𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 Unit vector in the direction of the equirectangular

projection at time 𝑡

𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤 Quaternion representation of head pose at time step 𝑡

𝑉 Viewed video content

𝑇 Length of video 𝑉

𝑃 = [𝑃0, 𝑃1..., 𝑃𝑇] Trajectory of a user over the course of video 𝑉

𝐼𝑡 All the visual information at time 𝑡 of a generic video 𝑉

𝐻 Prediction horizon

𝑀 Length of input window 𝑉

𝑝 ∈ [0, 𝐻] Each time step within the prediction horizon

ℳ Head pose prediction model

𝑂(.), 𝐿𝑜𝑟𝑡ℎ Orthodromic distance/loss

𝐹𝑡 Pixel representation of the frame at time 𝑡

𝐹
𝑃𝑄
𝑡 Luminance values of frame 𝐹𝑡 in the perceptual quantizer

22
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Variable Definition
domain.

𝑆𝐼𝑡 Spatial Information for the frame at time 𝑡

𝑇𝐼𝑡 Temporal Information for the frame at time 𝑡

𝑠 Ground truth saliency of a given frame

𝑆𝐸 Entropy of Saliency Maps

𝐴𝐸 Actual entropy

𝐶 Quantized sequence of user trajectory 𝑃

𝑃𝑟(.) Probability of finding a subsequence in the past trajectory

𝜆𝑡 Length of a subsequence of 𝐶

𝐼𝐸 Instantaneous entropy

Q,K,V Query, Key and Value matrices for Attention

W,U Weight matrices for a given neural layer

b Bias vector for a given neural layer

𝑀𝑡 Entropy-based Modulating Factor for timestep t

3.2. Key Definitions and Problem Formulation
To formulate the problem of head pose prediction, we need to first define some

notations.

Considering that the user is watching a 360° video 𝑉 of length 𝑇, the trajectory of the

user over the course of the video can then be described as 𝑃 = [𝑃0, 𝑃1...𝑃𝑇−1, 𝑃𝑇]. Here,

𝑃𝑡 denotes the user’s head pose at a given time 𝑡. This allows us to represent viewport

information with a single value, i.e. the center of the viewport on the viewing sphere.

𝑃𝑡 is generally represented using one of three notations:

• Angular representation: 𝑃𝑡 = [𝜃𝑡 , 𝜙𝑡] with 0 ≤ 𝜃 ≤ 2𝜋 as the azimuthal angle,

0 ≤ 𝜙 ≤ 𝜋 as the elevation angle, and 𝑟 = 1 as the radius of the sphere, as shown

in figure 3.1.

• Unit Vector representation: 𝑃𝑡 = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡] which represents a unit vector in the

direction of the equirectangular projection.

• Quaternion representation: 𝑃𝑡 = [𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤] represents the axis/angle

representation for the rotation.
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Figure 3.1: Azimuth angle and elevation for describing head Pose[15]

We define 𝐼𝑡 as the given visual information 𝐼 at time 𝑡 of a generic video 𝑉 , this can

include raw RGB data, pre-computed saliency information obtained from a saliency

extractor, and even optical flow information through motion mapping. Furthermore,

𝐻 is the prediction horizon and 𝑀 is the input window. Each time step for which

the prediction is computed is referred to as a prediction step, denoted as 𝑝, where

𝑝 ∈ [0, 𝐻].
Given the above notation, we now define the head pose prediction task as a model ℳ
that can predict the user trajectory, 𝑃 = [𝑃𝑡 , ..., 𝑃𝑡+𝐻] for all prediction steps, 𝑝 starting

at any given timestamp 𝑡 ∈ [𝑇𝑖𝑛𝑖𝑡 , 𝑇], using the information from 𝑡 −𝑀 to 𝑡 as shown

by Figure 3.2. To allow for a complete input window, we define 𝑇𝑖𝑛𝑖𝑡 = 𝑀

Figure 3.2: Head pose prediction: Head pose from time-stamp t to t+H is predicted using head pose

and video data from time-stamp t-M to t

We formulate the task of optimizing the model ℳ as finding the best model ℳ∗

verifying:

ℳ∗ = arg min

ℳ
E𝑡[𝑂([𝑃𝑡+1, ..., 𝑃𝑡+𝐻],ℳ(𝑃𝑡−𝑀:𝑡 , 𝐼𝑡+1:𝑡+𝐻))],

where 𝑂(.) is the orthodromic distance [55] between the ground-truth series of future

positions, and the predicted series of future positions. Orthodromic distance represents

the shortest distance between two points on the surface of a sphere, measured along

the surface of the sphere [56]. The Orthodromic distance between two unit vectors ®𝑛1
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and ®𝑛2 is calculated as:

𝑂( ®𝑛1, ®𝑛2) = arccos ®𝑛1 · ®𝑛2 (3.1)

3.3. Content and User Metrics
Having previously discussed the definitions of these metrics in Section 2.3, we now

present the formulae for the content metrics, i.e., Spatial Information (SI) and Temporal

Information (TI), and the user metrics, i.e., Actual Entropy (AE), Instantaneous Entropy

(IE) and Entropy of Saliency Maps (SE).

Figure 3.3: SI/TI processing pipeline [32]

• Spatial Information (SI) and Temporal Information (TI): SI measures the spatial

information in a given frame. It is usually higher for more spatially complex

scenes. TI measures the number of temporal changes between two consecutive

frames, it is usually higher for high-motion sequences. SI and TI are not meant

to be a measure of entropy, but instead provide subjective measures to check if

videos in datasets span a wide range of spatiotemporal complexity [54]. SI and

TI are calculated using the processing pipeline outlined in Figure 3.3 [32]:

– Luma extraction: We first pre-process the frames of a video, 𝐹, from RGB to

luma values in, 𝐹𝑙 . For a video, the luma represents the perceived brightness

of a frame. The luma value of a pixel, Y is calculated following ITU-R BT.709

[30]:

𝑌 = 0.2126𝑅 + 0.7152𝐺 + 0.0722𝐵, (3.2)

where R, G, and B denote the Red, Blue, and Green components of the pixel.

– Normalization: 𝐹𝑙 values are then normalized to be in the range [0,1],

resulting in 𝐹′
𝑙
. For an 8-bit representation, the normalize function is as

follows:

Normalize(𝑥) = 𝑥

2
8 − 1

(3.3)

𝐹′𝑙 = Normalize(𝐹𝑙) (3.4)

– Electro-optical transfer function (EOTF): The EOTF function is applied to

𝐹′
𝑙
to convert the luma values into luminance values in the physical domain,

𝐹𝑙𝑒 . We use a simplified version of the EOTF function described in ITU-R

BT.1886 [31], provided by VQEG [54]:

𝐹𝑙𝑒 = (𝑙𝑤 − 𝑙𝑏)𝐹𝛾𝑙 + 𝑙𝑤 , (3.5)
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where 𝛾 = 2.4, and 𝑙𝑤 and 𝑙𝑏 denote the screen luminance for white and black

respectively. For a display with the standard dynamic range, 𝑙𝑤 = 0.1 cd/m
2

and 𝑙𝑏 = 300 cd/m
2

[54].

– Opto-electronic transfer function (OETF): The luminance values, 𝐹𝑙𝑒 are

then converted to the Perceptual Quantizer (PQ) domain, 𝐹𝑃𝑄 , which can

represent luminance levels up to 10, 000 cd/m
2
. We use the OETF function

defined in ITU-R BT.2100-2 [29], provided by VQEG [54]:

𝑙𝑚1 = 10000
𝑛 , (3.6a)

𝑙𝑚1 = 𝐹𝑛
𝑙𝑒
, (3.6b)

𝐹𝑃𝑄 =
𝑐1𝑙𝑚1 + 𝑐2𝑙𝑚2

𝑙𝑚1 + 𝑐3𝑙𝑚2

𝑚

, (3.6c)

where 𝑛, 𝑚, 𝑐1, 𝑐2, and 𝑐3 are constants with values defined as follows:

𝑛 = 0.1593, 𝑚 = 78.8437, 𝑐1 = 0.8359, 𝑐2 = 18.8515, and 𝑐3 = 18.6875.

– SI Calculation: The SI at time 𝑡 is calculated by applying a Sobel filter to the

𝑡th frame, 𝐹
𝑃𝑄
𝑡 and taking the standard deviation (SD) over the resulting

pixels:

𝑆𝐼𝑡 = 𝜎[𝑆𝑜𝑏𝑒𝑙(𝐹𝑃𝑄𝑡 )] (3.7)

– TI Calculation: TI is based on the motion difference features, 𝑀𝑡(𝑖 , 𝑗), which

is the difference between pixel values at the same spatial location across

successive frames:

𝑀𝑡(𝑖 , 𝑗) = 𝐹
𝑃𝑄
𝑡 (𝑖 , 𝑗) − 𝐹𝑃𝑄

𝑡−1
(𝑖 , 𝑗) (3.8)

where 𝐹
𝑃𝑄
𝑡 (𝑖 , 𝑗) is the pixel at the 𝑖th row and 𝑗th column of the 𝑡th frame.

The TI is then computed as the SD over space of 𝑀𝑡(𝑖 , 𝑗) over the entire

frame:

𝑇𝐼𝑡 = 𝑠𝑡𝑑([𝑀𝑡(𝑖 , 𝑗)]) (3.9)

Note that since the calculation of TI requires 2 frames, it starts at 𝑡 = 2

– Denormalization: SI and TI values are denormalized using the inverse of

the normalization function:

Denormalize(𝑥) = 𝑥 ∗ (28 − 1) (3.10)

– Aggregation: SI and TI values are aggregated by taking the mean over all

frames, following ITU-T P.910 [32]:

𝑆𝐼 =
1

𝑇

𝑇∑
1

𝑆𝐼𝑡 , (3.11a)

𝑇𝐼 =
1

𝑇 − 1

𝑇∑
2

𝑇𝐼𝑡 , (3.11b)

(3.11c)

where T is the total length of the video.
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• Actual Entropy (AE): AE is a measure of the predictability of a user’s trajectory

over the course of a video. It is defined as:

𝐴𝐸𝑖 = −
∑
𝑃
′
𝑖
⊂𝑃𝑖

𝑃𝑟(𝑃′
𝑖) log[𝑃𝑟(𝑃′

𝑖)] (3.12)

where 𝑃𝑟(𝑃′
𝑖
) is the probability of finding the subsequence 𝑃

′
𝑖
in the past trajectory

𝑃𝑖 of the user. However, since the true probabilities cannot be obtained in

real-world scenarios, researchers utilize a Lempel-Ziv compression algorithm

[84] to compute an estimate of the AE [59]. By discretizing the spherical space of

the 360° video, the trajectory 𝑃 can be quantized into a sequence, 𝐶, of the blocks

to which 𝑃 belongs to at time 𝑡. Now we can define 𝐿𝑡 = [𝑐𝑡 , 𝑐𝑡+1, ..., 𝑐𝑡−1+𝜆𝑡 ] as a

sub-sequence of 𝐶 of length 𝜆𝑡 time-slots. The Lempel-ziv approximation is then

applied as:

𝐴𝐸(𝐶) ≈ ( 1

𝑇

𝑇∑
𝑡=1

𝜆𝑡)−1

log
2
(𝑇) (3.13)

where 𝜆𝑡 is the shortest subsequence in 𝐶 starting at, and not appearing before,

time 𝑡.

• Instantaneous Entropy (IE): IE is a variation of AE that measures the predictability

of a user’s movements at any given instant. IE at a given instant 𝑘 is calculated

similarly by calculating the AE of the trajectory up to the timestep 𝑘. The quantized

sequence can be represented as 𝐶𝑘 , therefore the Lempel-ziv approximation can

be applied as:

𝐼𝐸(𝐶𝑘) ≈ (1
𝑘

𝑘∑
𝑡=1

𝜆𝑡)−1

log
2
(𝑘) (3.14)

• Entropy of Saliency Maps (SE): SE is an inter-user metric that quantifies how

much the head poses of different users align with one another for a given frame

by utilizing saliency maps. The SE of a single frame is given by the Shannon

entropy:

𝑁∑
𝑖=1

𝑠2

𝑖 𝑙𝑜𝑔(𝑠2

𝑖 ) (3.15)

where 𝑠 represents the ground truth saliency and 𝑁 is the number of pixels.

3.4. Methodology
In this section, we discuss the methodology used for each step of the project. We

began by analyzing the datasets used, followed by an evaluation of state-of-the-art

models. After analyzing the existing data and models for head pose prediction, we

integrated our findings into a head pose prediction model. Finally, we conducted tests

and ablation studies to evaluate the impact of incorporating entropy metrics into head

pose prediction models. These steps are summarized in Figure 3.4.
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Figure 3.4: Methodology

3.4.1. Exploratory Analysis of Datasets and State-of-the-Art-Models
This step involved exploring the datasets listed in Table 2.1 to assess the diversity of

video content and analyze the relationship between entropy metrics, specifically the

Entropy of Saliency Maps (SE) and the Entropy of User Trajectories (AE). Following

this exploratory analysis, we evaluated current state-of-the-art models, analyzing their

performance in relation to entropy metrics throughout the duration of a video. This

evaluation revealed valuable insights into the relationship between entropy metrics

and prediction accuracy, motivating the integration of these metrics into head pose

prediction models.

We began by exploring each dataset listed in Table 2.1 to determine the diversity of the

video content based on Spatial Information (SI), Temporal Information (TI) [32], and

the entropy of saliency maps (SE) [64]. These datasets are commonly used in head

pose prediction studies and are included in the Unified Evaluation Framework [55],

making them relevant for comparing our work with prior research, and future research

that utilizes the framework. Additionally, they cover a variety of scenarios in terms of

video length, number of participants, and video content, providing a solid foundation

for contextualizing our approach within the existing literature. Two datasets, CVPR18

[79] and MM18 [45], were excluded from the analysis and testing due to incomplete

trajectories and missing video content, respectively. User metrics, specifically SE and

actual entropy (AE) of user trajectories [58], were compared for all videos to check for

any trends. We also took a closer look at a few 360° videos in the datasets to gain a

better understanding of these trends.

After analyzing the datasets and exploring the relationships between entropy metrics,

we performed the train-test split of the videos in each dataset to ensure that the splits

were representative of the entire dataset. The Unified Evaluation Framework [55]

performs the train-test split at the video level by selecting a fraction of videos and

training models on all user trajectories for the selected videos. However, this approach

can lead to data contamination, as user trajectories from the same users might appear

in both the training and test sets, albeit on different videos. This overlap could cause

information leakage and affect performance metrics. To address this, we selected 60%

of the videos and 60% of the users for the training set, leaving the remaining user-video

pairs for testing. This approach ensured that the models were evaluated on previously

unseen user-video pairs, allowing for a more accurate assessment when evaluating
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state-of-the-art (SOTA) models.

Following the dataset analysis and train-test split, we evaluated several state-of-the-art

models using the Unified Evaluation Framework [55]. The models were chosen based

on their performance, uniqueness of approach, and availability of code. The models

evaluated, summarized in Table 3.2, include:

• Pos-only [56]: This is a baseline LSTM based model that uses the Seq2Seq

encoder-decoder architecture discussed in Section 2.4.1. As input, it only takes

the user’s head pose over the input window.

• TRACK [56]: TRACK is a variant of the seq2seq encoder-decoder model that

processes content saliency maps with an RNN before merging it with head pose

data. This approach ensures that the effect of content information is attenuated

in the short term while still considering its impact in later steps through the

recurrent network’s representation of the content information.

• DVMS [24]: DVMS also uses a seq2seq decoder architecture, but it utilizes a

latent variable, 𝑧, to generate multiple predictions based on the dimensions of 𝑧.

This introduces a degree of uncertainty in the head pose trajectories and allows

us to train the model based on the best prediction for each timestep.

• VPT360 [9]: VPT360 uniquely forgoes the use of recurrence, employing a

transformer-based architecture that uses multi-head attention to predict the

user’s trajectory over the output horizon all at once.

Reference Approach Notes Content-Aware
Pos-only [56] LSTM trained only on Baseline model No

pitch and yaw

TRACK [56] RNN to process saliency Baseline for information Yes

before merging with pose data. beyond head pose

DVMS [24] Multiple trajectory prediction Incorporation of uncertainty No

of user trajectories

VPT360 [9] Multi-head attention based Forgoes recurrence No

model that forgoes recurrence altogether

Table 3.2: Notable Head Pose Prediction Models

We compared the accuracies of these models on the datasets explored during the

dataset analysis. The accuracy metric used was the orthodromic distance between the

predicted and actual center of the viewport [55]. Prediction accuracy was evaluated

over the course of a prediction window of 5 seconds, in line with previous studies on

head pose prediction [55, 9, 39], which allowed for the evaluation of both short-term

and long-term predictions.

Along with that, the models were assessed based on how much their performance

degraded when predicting trajectories for videos where users tend to exhibit high

entropies compared to those where users exhibit low entropies [8, 59]. This was done

by comparing the average accuracy over the prediction horizon for each video in a

given dataset, and by selecting specific videos to compare the prediction loss at each

timestep with the entropy of saliency maps and user trajectories.
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By performing this analysis, we identified key findings that motivated the integration

of entropy metrics into our proposed models.

3.4.2. Integrating Findings into New Head Pose Prediction Models
Building on the insights from our exploratory analysis, we proposed and evaluated

multiple head pose prediction models. First, we developed two adaptive attention-

based models: an LSTM-based model with an entropy-based adaptive attention layer

and a multi-head attention model incorporating entropy modulation. These models

were designed to dynamically adjust attention scores based on the entropy of user

trajectories. Specifically, attention scores were modulated based on the Instantaneous

Entropy (IE), being lowered when IE was high and raised when IE was low, to focus

more on predictable, stable sections of the trajectories while placing less emphasis on

unpredictable sections. The LSTM-based model recalculates IE for the predicted head

poses and uses those values as input again, allowing the model to adapt as the trajectory

evolved. In contrast, the multi-head attention model only uses the input window

to modulate attention, without recalculating IE for future poses. The integration of

entropy features into these models aimed to improve prediction stability and accuracy

by adjusting the model’s focus towards more stable behaviors.

3.4.3. Evaluation of Entropy-Based Models
Building on the adaptive attention models proposed in the previous chapter, we

also introduced two additional models that enrich the position-only seq2seq encoder-

decoder with entropy information. One model augments the input with instantaneous

entropy, while the other modifies the loss function to incorporate entropy. These

variations allowed us to explore different methods of integrating entropy into the

prediction process. We evaluated the proposed models and the entropy-enriched

baselines by comparing them against their baseline versions, which did not incorporate

entropy-based features. Specifically, we assessed the performance of the proposed

adaptive attention-based models against their non-adaptive counterparts, and the

performance of the augmented models against the baseline position-only model [56].

This comparison allowed us to identify the best-performing entropy-based model

based on accuracy and robustness in handling unpredictable user trajectories. The

evaluation followed the methodology outlined in Subsection 3.4.1 and helped highlight

the impact of entropy features on model performance.

After selecting the best-performing model from this initial evaluation, we conducted a

comprehensive comparison against state-of-the-art models. This allowed us to assess

how well our best proposed model performs in terms of accuracy and robustness

compared to leading existing methods. Additionally, we selected a few videos to

evaluate the performance of our model throughout each video, comparing its stability to

that of another state-of-the-art model. This comparison provided a clear understanding

of how our model performs relative to existing methods and highlighted the value of

incorporating entropy metrics into head pose prediction.



4
Exploratory Analysis of Datasets and

State-of-the-Art-Models

In this chapter, we analyze the datasets used in this study, focusing on the diversity of

360° video content and exploring the relationship between the studied entropy metrics.

This analysis confirms the diversity of the selected datasets and provides insights

into the connection between entropy of saliency maps (SE) and actual entropy (AE),

enhancing our understanding of user behavior in 360° video environments. Before

going into the evaluation of existing state-of-the-art models, We discuss our train-test

splitting approach, ensuring no overlap between users in the training and testing sets

while maintaining the representativeness of the overall dataset. Finally, we evaluate the

performance of existing state-of-the-art models and explore the correlations between

the entropy metrics (SE and Instantaneous Entropy) and the prediction error.

4.1. Dataset Analysis
To ensure that the selected datasets cover a diverse range of 360° video content, we

analyze the distribution of aggregated spatial information (SI), temporal information

(SI) and Entropy of Saliency Map (SE) values per video in the dataset. Figure 4.1

shows the mean SI and TI for the four selected datasets, NOSSDAV17 [17], MM22 [35],

PAMI18 [78] and MMSys18 [14]. The color of each dot represents the mean entropy

saliency maps where blue represents low entropy and red represents high entropy. As

we can see from Figure 4.1, the selected datasets have a wide range of SI and TI values,

with SI predominantly in the [0,50] range and TI in the [0,25] range. The SE values

also cover a broad spectrum, ranging from 55 to 90 for NOSSDAV17 [17] and PAMI18

[78]. MM22 shows an even wider range of entropies from 80 to 200. Saliency maps for

videos in MMSys18 show lower entropy values, ranging from 40 to 55. This variability

ensures that the video content is heterogeneous and enables the models to generalize

across a wide range of 360°-video content. We observe a linear correlation between SI

and TI in the NOSSDAV17 dataset and MM22 dataset, but this correlation is not as

prominent in the PAMI18 and MMSys18 datasets.

In Figure 4.2, we compare the SE and Actual Entropy (AE) of viewers of the videos

31
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 4.1: Mean Temporal Information vs Mean Spatial Information plots with a heatmap for mean SE

for videos in (a) NOSSDAV17, (b) MM22, (c) PAMI18, (d) MMSys18

in these selected datasets to examine any correlations. Notably, the MM22 dataset

contains 2 outlier videos with really high SE (>150), which have been excluded from

the plots to provide a clearer visualization of the overall trend in the dataset. As

described in Section 2.3, SE is an inter-user metric that compares the head poses of

each user for a given frame, and a low SE represents a frame with a dominant center

of attention. Actual Entropy, on the other hand, is an intra-user metric based on the

trajectory of each individual user, and a high AE indicates a highly random trajectory.

We observe a negative correlation between the entropy of saliency maps and actual

entropy in Figure 4.2. This suggests that as the average SE of a video decreases, user

trajectories become more unpredictable, potentially due to heightened engagement

levels where viewers exhibit faster movements that involve following a strong center

of focus. There is also considerable variation in both AE and SE across the datasets,

reflecting the diversity of user behaviors and video content. Furthermore, Figure 4.2e

confirms that this trend holds true across all videos over all four datasets. This shows

that this negative correlation is not isolated within the collected data but represents a

common trend in 360° videos.

For a better understanding of AE and SE, we take a look at the video VRBasketball in

the PAMI18 dataset [78] which has a high mean AE, equal to 2.89, and a relatively

low mean SE, equal to 55.56. The content of VRBasketball is dominated by two static
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

(e) All datasets

Figure 4.2: Mean SE vs Mean AE for videos in (a) NOSSDAV17, (b) MM22, (c) PAMI18, (d) MMSys18,

(e) All four datasets

speakers, and an engaging and dynamic center of focus, a basketball. The presence

of this dynamic object explains why the mean SE is relatively low. The high AE is

likely due to the unpredictable, rapid movements of the basketball around the scene.

This results in rapid and varied head movements as viewers track the ball, leading

to unpredictability in their trajectories. Since most head movements occur in the
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(a) Scene from VRBasketball (b) Average X coordinate for VRBasketball

(c) Scene from Mario (d) Average X coordinate for Mario

Figure 4.3: Representative scenes from VRBasketball (a) and Mario (c). Along with the average X

coordinate of user trajectories over the course of VRBasketball (b) and Mario (d).

horizontal plane, we plot the average X-coordinate of all the users’ head poses over

the course of VRBasketball in Figure 4.3b. As shown by the plot, users show rapid

movements when the speakers pass the ball to each other or perform some tricks.

Specifically, the ball is passed from one speaker to another at timestamps 3 seconds, 6

seconds, and 16 seconds. At 10 seconds, one of the speakers performs some dribbling

tricks while moving around with the ball. This suggests that a dynamic center of

focus with unpredictable movements results in unpredictable head pose trajectories. In

contrast, we also examine video mario in the MM22 dataset [35] which has the lowest

mean AE, equal to 0.37, and a high mean SE, equal to 118.18. Mario’s content has a

static center of focus along the center of the frame. The average X-coordinate over time,

shown in Figure 4.3d, reveals that users show a very stable trajectory with the average

X coordinate staying relatively unchanged. This would explain the low AE, as users

exhibit slower movements while viewing the video. The high SE can be attributed to

users’ slow exploration of the scene, driven by the fact that while the video has a stable

center of focus, it is not particularly interesting. This comparison suggests that videos

with dynamic centers of attention, like VRBasketball, result in more unpredictable head

movements as viewers track moving objects, while videos with static centers of focus,

like Mario, lead to slower, more predictable head movements.

4.1.1. Train-test split
Given the diversity of the datasets, we ensure a balanced and representative train-test

split by partitioning videos into non-overlapping groups and selecting a fraction (in
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 4.4: Distribution of training and testing videos in (a) NOSSDAV17, (b) MM22, (c) PAMI18, and

(d) MMSys18

our case, 0.6) of the videos in each group for the test set. This approach, known as

stratified, uses a stratification key that categorizes the videos in each dataset into 4

groups based on the AE and SE of user trajectories: Low SE and Low AE, Low SE and

High AE, High SE and Low AE, and High SE and High AE. The thresholds, determined

by taking the median SE and AE for all videos in the dataset, are listed in Table 4.1

along with the mean AE and SE for the videos in the train and test set. Videos below

the threshold are classified as low SE or low AE, while those above the threshold are

categorized as high SE or high AE, respectively. This stratification ensures that both

the train and test sets are representative of videos where users exhibit both low and

high entropies, avoiding bias toward a particular type of video content. Additionally,

we ensure that users in the training set do not overlap with those in the test set by using

only 60% of users for training. Some earlier research, such as the Unified Evaluation

Framework [55], repeated users across training and testing for different videos, but

our approach ensures a stricter separation. The mean SE and mean AE plots of the

training videos and testing videos can be seen in Figure 4.4.
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Dataset mean AE mean SE Train Set Test Set
Name Threshold Threshold mean AE mean SE mean AE mean SE

NOSSDAV17 1.01 79.74 0.97 76.08 1.01 76.97

MM22 1.13 103.96 1.14 117.22 1.15 120.25

PAMI18 1.88 71.93 1.92 74 1.92 73.44

MMSys18 2.87 44.93 2.86 44.67 2.88 46.27

Table 4.1: AE and SE thresholds for different datasets.

(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 4.5: Performance of position only baseline, TRACK, DVMS (with K=2 and K=5) and VPT360 on

(a) NOSSDAV17, (b) MM22, (c) PAMI18, and (d) MMSys18 datasets

4.2. Comparing Existing models
We compare the performance of the following models (which have been discussed in

more detail in Section 2.4.2):

• Position-only baseline [55] : LSTM-based model that takes the pitch and yaw as

input.

• TRACK [56] : LSTM-based model that uses the unit vector representation of head
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(a) Orthodromic Distance Loss per video (b) Distribution of test videos

Figure 4.6: (a) Performance of DVMS K=5 on each video in the MM22 dataset, and (b) Mean SE and AE

of test videos in MM22 dataset, the size of the marker represents the mean IE

pose and processes content saliency information using an RNN before merging

it with head pose data.

• DVMS [24] : LSTM-based model that introduces a latent variable, 𝑧 resulting in

multiple predictions based on the dimensions of 𝑧, represented by K. We train

two versions of DVMS, one trained on 2 predictions for each input (K=2), DVMS_2

and one trained on 5 predictions for each input (K=5), DVMS_5. DVMS_2 is

chosen as it has the lowest training time while still utilizing multiple predictions,

DVMS_5 is chosen as the model does not show significant improvements for

more predictions.

• VPT360 : Multi-head attention-based model with no recurrent units.

Each model is trained with an input window of 5 frames and an output window of 25

frames for 500 epochs, stopping early if no improvement is observed after 25 epochs. To

evaluate model performance, we plot the average orthodromic distance between the true

head pose and the predicted head pose across the entire 25-frame prediction horizon,

as shown in Figure 4.5. Based on these results, we observe that DVMS outperforms

TRACK and the position-only baseline across all three datasets. Notably, DVMS

displays significantly better predictions for longer prediction horizons, highlighting

the effectiveness of incorporating uncertainty into the forecasting model. Interestingly,

DVMS shows similar loss values for predictions ranging from 2 to 4 seconds in the

future, indicating that the model maintains consistency in its performance over these

timeframes. We also note that all models tend to perform worse on the MMSys18

dataset, as the losses exceed 0.6 shortly after the first second. This reduced accuracy,

combined with the higher mean entropy of user trajectories observed in the MMSys18

dataset (as shown in Table 4.1), can likely be attributed to the nature of the content

being viewed. MMSys18 consists of shorter 20-second videos, where users typically

display highly erratic trajectories at the beginning of the video as they familiarize

themselves with the scene. This exploratory behavior increases the overall trajectory

entropy, leading to greater unpredictability and consequently higher prediction errors.
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(a) Orthodromic distance vs SE for video_27 (Skydive) (b) Orthodromic distance vs IE for video_27 (Skydive)

(c) Orthodromic distance vs SE for video_23 (chariot) (d) Orthodromic distance vs IE for video_23 (chariot)

(e) Orthodromic distance vs SE for video_13 (mario) (f) Orthodromic distance vs IE for video_13 (mario)

Figure 4.7: Performance of DVMS K=5 [24] for a prediction horizon of 5 seconds for Skydive, Chariot and

Mario compared with the entropy of saliency maps (a,c,e) and the mean instantaneous entropy of users

(b,d,f)

To obtain deeper insights into how entropy metrics affect the predictability of user

trajectories, we take a closer look at the performance of DVMS, K=5, on each video of

the MM22 dataset. Figure 4.6a shows the orthodromic loss for each video across the

25-frame prediction window, the videos are ordered in the legend from the highest

mean AE at the top, to the lowest at the bottom. Figure 4.6b plots the videos based on

SE and AE, and the size of each marker is based on the mean IE over the course of each

video for all users. By comparing Figures 4.6a and 4.6b we can see that the model’s

accuracy tends to decrease for videos where users exhibit high actual entropy (AE).

Specifically, we see that the videos with the highest mean AE such as video_21, video_27,
video_17 also exhibit higher loss values. This aligns with findings from Rossi et al. [59],

which indicate that users exhibiting higher entropies are more challenging to predict.

To gain a better understanding of each video, we select 3 videos based on the mean
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IE SE
Video Correlation p-value Correlation p-value
skydive 0.377 2.5 × 10

−15
-0.22 3.3 × 10

−4

chariot 0.37 2.1 × 10
−18

-0.74 2.7 × 10
−47

mario 0.16 0.01 -0.373 1.38 × 10
−13

Table 4.2: Correlation and p-values for IE and SE with loss for different videos.

actual entropy: High AE (video_27, "skydive"), Medium AE (video_23, "chariot"),

and Low AE (video_13, "mario"). We compare the average loss for DVMS (K=5) over

the course of the entire video to the entropy of saliency maps and the instantaneous

entropies, as shown in figure 4.7. While the relationship between IE and the loss is

not too clear, we can observe that whenever the mean SE of the video increases, the

loss decreases as seen by the peaks in SE corresponding to the valleys in the loss. This

trend is most evident for chariot, as shown by Figure 4.7c.

Table 4.2 summarizes the correlations between the loss and the two entropy metrics

(IE and SE) for the selected videos. For each video, we observe a positive correlation

between the loss and IE, and a negative correlation between the loss and SE.

Based on our exploratory analysis, we note that the selected datasets provide a diverse

range of 360° video content, offering a broad spectrum of user behaviors and exhibited

entropies. This diversity is crucial for ensuring that the models generalize well across

various types of content. Among the models evaluated, DVMS stands out as the most

effective, consistently providing superior performance compared to others. On the

other hand, TRACK and VPT360 perform comparably to the position-only baseline.

Additionally, the analysis of entropy correlations offers valuable insights, revealing

a negative correlation between AE and SE. The most notable finding is the positive

correlation between prediction error and IE, and the negative correlation between

prediction error and SE, suggesting that incorporating entropy metrics into head pose

prediction models may be beneficial for improving their performance.



5
Adaptive Attention for Head Pose

Prediction

In this chapter, we propose two adaptive attention-based models, an LSTM-based ar-

chitecture with an Entropy-based Adaptive Attention layer, and a multi-head attention-

based architecture that uses adaptive attention. The goal of these adaptive attention-

based models is to enhance head pose prediction by dynamically adjusting attention

scores, focusing on the more predictable parts of the user’s trajectory, as indicated

by the entropy of user behavior. We also enrich 2 baseline models with entropy

information for a complete comparison.

5.1. Entropy-based Adaptive Attention LSTM (E-AALSTM)
In the previous chapter, our exploratory analysis revealed a correlation between the

entropy of user trajectories and their predictability. Building on this observation, we

propose two attention-based models that incorporate an entropy-based modulating

factor that dynamically adjusts attention scores based on the user’s behavioral dynamics.

By modulating the attention scores, these models dynamically allocate higher attention

to more predictable and stable segments of the user’s trajectory, prioritizing input

regions that contribute most reliably to accurate predictions. Specifically, we propose

an LSTM-based adaptive attention architecture, E-AALSTM, designed to enhance the

attention mechanism’s ability to handle varying levels of predictability, as measured

by the instantaneous entropy. E-AALSTM modifies the standard sequence-to-sequence

(seq2seq) encoder-decoder architecture by adding an adaptive attention layer, illustrated

in Figure 5.1. This attention mechanism incorporates an entropy-based modulating

factor aimed at selectively focusing on input segments that exhibit greater predictability,

corresponding to lower values of instantaneous entropy. The LSTM-based architecture

iteratively generates predictions for head pose across each time step in the output

window. At each step, it calculates instantaneous entropy for the current prediction

and uses this adjusted output to inform the head pose prediction at the following

time step. By continuously adjusting attention based on these entropy measurements,

E-AALSTM seeks to enhance predictions by focusing on areas of the trajectory where

predictability is higher. In the following subsections, we formally define each part of

40
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Figure 5.1: Seq2Seq architecture with attention layer

the model.

5.1.1. LSTM Layer
The LSTM layer processes the input sequence and generates hidden states h𝑡 and cell

states c𝑡 at each time step 𝑡, as described by the following equations:

i𝑡 = 𝜎(W𝑖𝑥𝑡 + U𝑖h𝑡−1 + b𝑖) (5.1a)

f𝑡 = 𝜎(W 𝑓 𝑥𝑡 + U 𝑓h𝑡−1 + b 𝑓 ) (5.1b)

o𝑡 = 𝜎(W𝑜𝑥𝑡 + U𝑜h𝑡−1 + b𝑜) (5.1c)

g𝑡 = tanh(W𝑔𝑥𝑡 + U𝑔h𝑡−1 + b𝑔) (5.1d)

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ g𝑡 (5.1e)

h𝑡 = o𝑡 ⊙ tanh(c𝑡) (5.1f)

Here, the input, 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑀] represents a subsequence of the trajectory, where

𝑀 is the input window size. 𝜎 denotes the sigmoid function, and ⊙ denotes element-

wise multiplication. The hidden states serve as compressed representations of the

input sequence and are used in subsequent attention calculations.

5.1.2. Adaptive Attention Layer:
The adaptive attention layer modifies the standard attention mechanism to incorporate

the entropy values. This mechanism guides the model to focus on more predictable

portions of the input while lowering the contribution of frames where user behavior is

more erratic. We use the hidden states from the LSTM to generate the Query, Key and
Value Matrices:

Q = W𝑞h𝑡 + bq (5.2a)

K = W𝑘H + bk (5.2b)

V = W𝑣H + bv (5.2c)
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Figure 5.2: Entropy-adaptive scaled dot-product attention

where H = [h1, h2, . . . , h𝑀] represents all hidden states in the input window, and ℎ𝑡 is

the hidden state at the current timestep, 𝑡.

To obtain the modulated attention scores, we implement an adaptive version of scaled

dot-product attention, as shown in Figure 5.2. The attention scores are first calculated

using the scaled dot-product between the Query and Key matrices:

𝑠𝑐𝑜𝑟𝑒𝑠 =
QK𝑇

√
𝑑𝑘

(5.3)

where 𝑑𝑘 is the dimensionality of the Key vectors. These scores represent the relevance

of each timestep in the input sequence for predicting the output.

Entropy-based Modulation: To improve the model’s ability to handle unpredictable

user trajectories, we introduce an entropy-based modulating factor. This factor dynamically

adjusts the attention scores based on the entropy of the user’s trajectory at each timestep.

For each timestep 𝑡, we calculate the instantaneous entropy, IE𝑡 . We use this entropy

to obtain a modulating factor:

M𝑡 = exp(−Ws · IE𝑡) (5.4)

where𝑊𝑠 are learnable weights that adjust the influence of the entropy on the attention

mechanism. The attention scores are then modulated by this factor and the adaptive

attention weights are computed by using a softmax function:

𝑠𝑐𝑜𝑟𝑒𝑠𝑚𝑜𝑑 = M𝑡 · (𝑠𝑐𝑜𝑟𝑒𝑠) (5.5a)

𝐴𝑊𝑎𝑑𝑝𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒𝑠𝑚𝑜𝑑) (5.5b)
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Finally, we compute the context vector using these adaptive attention weights:

𝑐
adaptive

𝑡 = 𝐴𝑊𝑎𝑑𝑝𝑡 · V (5.6)

This context vector is then passed as an input to the linear layers to generate the final

head pose predictions.

Saliency-based Modulation: As an alternative, to minimize computations during

runtime, we propose an alternative modulating factor that utilizes the entropy of

saliency maps instead of instantaneous entropy. Since we noted a negative correlation

between the entropy of saliency maps and trajectory entropy, we use tanh-based scaling

instead of exponential decay.

M𝑡 = tanh(Ws · SE𝑡) (5.7)

Here, 𝑆𝐸𝑡 represents the entropy of the saliency map of the frame at timestep 𝑡.

5.2. Multi-head Adaptive Attention (AMH)
We also propose a variation of the multi-head attention architecture inspired by

the VPT360 model proposed by Chao et al. [9]. In this model, we incorporate the

entropy-based modulation factor (Equation 5.4) into each head’s attention scores. The

key difference between the incorporation of entropy in this approach and its usage

in E-AALSTM lies in how the entropy values are leveraged. The transformer-based

model only uses entropy values from the input window, constraining the model to

pre-existing information. In contrast, the seq2seq model continually measures IE using

the predicted head pose at each timestep to dynamically adapt and improve future

predictions in the output window. Thus, this transformer-based approach tests a fixed

entropy-informed modulation, while the seq2seq model enables iterative adaptation for

more dynamic prediction refinement. Additionally, since AMH predicts all timesteps

in the output window simultaneously, it requires fewer computations compared to

the sequential processing of E-AALSTM, making it more computationally efficient.

The architecture of AMH, shown in Figure 5.3, closely follows the transformer-based

VPT360 architecture. In the following subsections, we describe the AMH architecture

in more detail:

5.2.1. Input Embedding
We generate input embeddings by passing the input sequence through a linear layer to

create vector representations of the input:

embX = WlX + bl (5.8)

Here, the input, 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑀] represents a subsequence of the trajectory where

𝑀 is the input window size.

5.2.2. Positional Embedding
Since the AMH model does not use a recurrent unit to capture temporal features, we

use positional embedding to incorporate relative position information of the elements
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Figure 5.3: Architecture of proposed AMH model

of the input sequence. We implement the positional embedding used in [72] and

use the summation of the input sequence with sine and cosine functions of different

frequencies to obtain our final embeddings.

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (𝑝𝑜𝑠/10000
2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙 ) (5.9a)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (𝑝𝑜𝑠/10000
2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙 ) (5.9b)

eX = embX + 𝑃𝐸𝑝𝑜𝑠 (5.9c)

where 𝑝𝑜𝑠 is the position, 𝑖 is the dimension and 𝑑𝑚𝑜𝑑𝑒𝑙 is size of the hidden layer.

5.2.3. Multi-Head Adaptive Attention Layer
We compute the Query, Key, and Value matrices using the embeddings:

Q = W𝑞eX + bq (5.10a)

K = W𝑘eX + bk (5.10b)

V = W𝑣eX + bv (5.10c)

After transformation, the 𝑄, 𝐾, and 𝑉 matrices are split into multiple heads, enabling

the model to learn from different aspects of the embedding space.

Attention calculation: For each head, we calculate the modulated attention score

following the entropy-adaptive scaled dot-product described in Equations 5.3, 5.4,

5.5, and 5.6. The final output of the multi-head attention, cadaptive
, is produced

by concatenating the output of each head. This output is then added back to the
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embeddings and normalized to form an enriched representation:

e′X = eX + cadaptive

(5.11)

This combined embedding now incorporates entropy-adaptive attention, which en-

courages the model’s ability to adjust attention weights based on the predictability of

head movements in the input sequence, as measured by the instantaneous entropy.

5.2.4. Position-wise Feed-Forward Network
After the attention weights are calculated and added to the embeddings, they are

passed through a fully connected feed-forward network (FFN) to consider interactions

between dimensions:

FFN(e′X) = ReLU(e′X𝑊1 + 𝑏1)𝑊2 + 𝑏2 (5.12)

The output of the position-wise FFN is added to 𝑒′𝑥 and normalized. The predicted

head pose sequence is then produced by passing this output through a final linear

layer.



6
Evaluation and Results

In this chapter, we discuss the experimental setup including the models being compared,

the hyperparameters, and the train-test split. We also go over the criteria used to

evaluate the proposed solutions. Finally, we present the results of our experiments.

6.1. Experimental Setup
In this section, we describe the experimental setup used to evaluate the performance of

the proposed models. We begin by discussing two enhanced baselines that incorporate

entropy information, followed by the baseline benchmarks, ablated versions of each

model, and the state-of-the-art models used for comparison. We then outline the

hyperparameter configurations, train-test splitting of the selected datasets, and the

evaluation metric used to compare the models. This setup is designed to provide

consistent and comparable conditions across all models, isolating the effect of entropy-

based modulation and other architectural variations.

6.1.1. Entropy Enhanced Baselines
For a complete comparison, we enrich the position only seq2seq encoder-decoder

model [56], described in Section 2.4.2. To do so, we consider 2 approaches:

• Position-only baseline augmented with entropy information (pos-augmented):
In this approach, we augment the head pose information by appending the user’s

instantaneous entropy at that instant to the head pose information, and pass

them as an input to the position-only baseline [56]. This approach will act as our

baseline model for a straightforward incorporation of entropy.

• Position-only baseline with entropy-weighted loss (pos-weighted): In this

approach, we use the position-only baseline architecture [56], but we modify the

loss function to more heavily penalize incorrect predictions for frames where the

user’s trajectory exhibits a higher entropy. Specifically, we use a weighted loss

function. Let 𝐿𝑜𝑟𝑡ℎ be the orthodromic distance loss, 𝛼 be a positive coefficient

and 𝐴𝐸𝑡 be IE at time t. We can now represent the loss as:

𝐿𝑡 = 𝐼𝐸𝑡(1 + 𝛼) × 𝐿𝑜𝑟𝑡ℎ (6.1)

46
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These enhanced baselines help us investigate how different methods of adding entropy,

either as an input feature (pos-augmented) or through a weighted loss function

(pos-weighted), influence the model’s performance.

6.1.2. Benchmarks and Comparison Models
To evaluate the performance of our proposed models, we use a diverse set of models

for comparison, including baseline benchmarks, ablated versions, and state-of-the-art

(SOTA) methods from previous works. This comparison helps us understand the

impact of entropy modulation and evaluate the proposed models in the context of

existing approaches.

Models used for ablation (No entropy information): We first evaluate the entropy-

based models and compare them to equivalent models that do not incorporate entropy

information. The equivalent models for E-AALSTM, AMH, and the two enriched

baselines are listed as follows:

• Attention-based LSTM (ALSTM): This is an ablated version of the proposed

E-AALSTM model, where the entropy-based modulation layer is removed. In

this case, the attention mechanism operates without the dynamic adjustment

based on entropy, allowing us to see the performance difference when the entropy

metrics are not considered.

• VPT360 [9]: Since AMH adds the entropy-based modulation factor to the multi-

head attention architecture of VPT360, VPT360 is effectively the ablated version

of AMH. Comparing AMH and VPT360 shows us how the model performs when

entropy-based modulation is disabled.

• Position-only Baseline [56]: This baseline model predicts head pose based solely

on positional data using a seq2seq encoder-decoder architecture. It serves as a

basic point of comparison to measure the effectiveness of incorporating more

complex mechanisms like attention and entropy modulation. It also acts as an

ablated version of pos-augmented and pos-weighted.

State-of-the-art Models used for comparison: After evaluating the ablated models, we

compare the best-performing entropy-based model against a range of state-of-the-art

(SOTA) methods. These models, representing current best practices in head pose

prediction, offer a valuable context for understanding the relative effectiveness of

incorporating entropy information:

• Position-only Baseline [56]: Since many state-of-the-art models use modified

versions of the seq2seq encoder-decoder architecture, we use the position-only

baseline as a benchmark.

• VPT360 [9]: We include the VPT360 model in the comparison to evaluate the

stability of the predictions of our proposed models to the existing state-of-the-art.

• TRACK [56]: A state-of-the-art trajectory prediction model that leverages saliency

maps to predict head-pose using a modified seq2seq encoder-decoder architec-

ture.

• DVMS [24]: An LSTM-based seq2seq model that introduces a latent variable, 𝑧,
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allowing it to generate multiple predictions based on the dimensions of 𝑧, 𝐾. We

compare two versions of DVMS:

– DVMS_2: A version trained with 2 predictions for each input (𝐾 = 2),
chosen due to its lower training time while still utilizing multiple predictions.

– DVMS_5: A version trained with 5 predictions for each input (𝐾 = 5,

included as a reference for a higher number of predictions, and because

increasing K further does not show any significant improvements.

6.1.3. Hyperparameter Settings
To ensure consistency, we standardized hyperparameter configurations across all

models where possible. The following hyperparameters were selected based on

training times and previous literature:

• Learning Rate: 0.0001 for all models, chosen for stability across architectures.

• Optimizer: AdamW [41] optimizer with a weight decay of 0.01

• Epochs: A maximum of 500 epochs with early stopping if the loss does not

improve for 25 consecutive epochs.

• Batch Size: 128, to balance computational efficiency and training stability.

• Model-specific hyperparameters:

– Dropout Rate: 0.1 applied in attention and LSTM layers

– Hidden Layer Size: 512 for all LSTM and Transformer layers to maintain

consistent model complexity.

– Entropy Modulation Factor: Weights for entropy modulation are initialized

randomly from a normal distribution, 𝒩(0, 0.12).
These settings were applied consistently across benchmarks, ablated models, and

state-of-the-art models to ensure that differences in performance are solely due to

architectural differences.

6.1.4. Train-test Split
We evaluate our models on the four datasets discussed in Chapter 4, namely: NOSS-
DAV17 [17], MM22 [35], PAMI18 [78] and MMSys18 [14]. We follow the same train-test

splitting approach utilized for our initial evaluation of the state-of-the-art models

(described in Section 4.1.1). Specifically, we perform a stratified split based on the

mean entropy of saliency maps and the mean actual entropy of user trajectories, to

ensure both training and testing data are representative of the overall dataset. We

perform a 60-40 split for the videos and a 60-40 split over the users ensuring that the

models are evaluated on data (both users and videos) that was not included in the

training process.

6.1.5. Evaluation Metric
To assess the performance of the models, we utilize the Orthodromic distance between

the predicted head pose, 𝑃𝑡 , and the viewer’s true head pose, 𝑃𝑡 . Orthodromic distance
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.1: Performance comparison between E-AALSTM and ALSTM on (a) NOSSDAV17, (b) MM22,

(c) PAMI18, and (d) MMSys18 datasets.

is calculated using equation 3.1:

𝑂(𝑃𝑡 , 𝑃𝑡) = arccos𝑃𝑡 · 𝑃𝑡
We compare the Orthodromic distance for each time step to get a better idea of how

each model performs over a 5-second prediction horizon.

6.2. Results
In this section, we compare the proposed models with their respective no-entropy

benchmarks and then compare the best proposed model with the current state-of-the-

art.

6.2.1. Model Evaluation: Entropy vs No-Entropy Models
By comparing each proposed model alongside a baseline that excludes entropy, we can

assess the direct effect of incorporating entropy on performance over the prediction

horizon. This analysis also helps streamline the final comparison with the state-of-the-

art, as we can highlight the best entropy-based model without repeating evaluations
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.2: Performance comparison between AMH and VPT360 on (a) NOSSDAV17, (b) MM22, (c)

PAMI18, and (d) MMSys18 datasets.

across less effective variations.

Figures 6.1, 6.2, and 6.3 illustrate the performance comparison across different datasets.

Each figure contains four subplots, one for each dataset, i.e. NOSSDAV17 [17], MM22

[35], PAMI18 [78], and MMSys18 [14]. These subplots depict the average loss for

all predictions across the videos of the dataset at each timestep up to the 5-second

prediction horizon. Specifically, we compare the following models:

• Our proposed E-AALSTM versus its benchmark, ALSTM in Figure 6.1.

• Our proposed AMH versus its benchmark, VPT360 in Figure 6.2.

• Our proposed pos-augmented and pos-weighted against their benchmark,

position-only baseline in Figure 6.3.

In Figure 6.1 we observe that our proposed E-AALSTM performs similarly to its

corresponding benchmark, ALSTM. E-AALSTM has a slightly lower accuracy for all

timesteps across the entire prediction window for the MMSys18 dataset. These results

suggest that the adaptive attention architecture may not effectively leverage trajectory
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.3: Performance comparison between pos-only, pos-augmented, and pos-weighted on (a)

NOSSDAV17, (b) MM22, (c) PAMI18, and (d) MMSys18 datasets.

entropy metrics. The MMSys18 dataset, with its shorter videos, tends to feature

higher trajectory entropy due to users rapidly exploring their environment at the start.

By down-weighting high-entropy patterns, the model might inadvertently suppress

information critical for these scenarios, resulting in reduced predictive performance.

We observe a similar trend when we compare the results for AMH and VPT360, as

shown in Figure 6.2. The losses for these models are even more similar, possibly

because the entropy metrics are only considered for the input window. These results

further suggest that our proposed entropy-based adaptive attention layer might not

effectively incorporate entropy information.

Lastly, in Figure 6.3, we compare the results for more straightforward integrations of

entropy metrics, pos-augmented and pos-weighted, to the position-only baseline.

While the position-only model with weighted loss does not show any notable differences

from the position-only baseline, the pos-augmented model shows slightly better

predictions beyond a 2-second window for the PAMI18 and MM22 dataset and notably

better predictions as the prediction window increases for the MMSys18 dataset. The

four plots also reveal a notable trend: the position-augmented model displays enhanced
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(a) NOSSDAV17 (b) MM22

(c) MMSys18

Figure 6.4: Average prediction loss at each timestep for pos-only, and pos-augmented on (a)

NOSSDAV17, (b) MM22, and (c) MMSys18 datasets, based on the predicted head pose 5 seconds after

the input window.

performance over the position-only model as the mean AE exhibited by users in the

testing videos increases. For the NOSSDAV17 dataset, which has the lowest mean

AE of 1.01, the augmented model performs slightly worse for predictions beyond

the 2.5-second window. In contrast, for the MMSys18 dataset which is characterized

by a higher mean AE of 2.88, the pos-augmented model demonstrates significantly

improved accuracy compared to the position-only baseline. We note again that all

models tend to perform worse on the MMSys18 dataset, with losses exceeding 0.6

shortly after the first second, whereas, for other datasets, the mean error remains below

0.5–0.7 even at the end of the prediction horizon (5 seconds). This further confirms

that the higher entropy in user trajectories, typical of shorter videos, introduces greater

unpredictability, making accurate head pose prediction more challenging.

Given the above observation, we further compare the position-only baseline and the

pos-augmented approach by analyzing the average orthodromic distance between the

predicted head pose and the true head pose. Specifically, we average the prediction

error 5 seconds after the input window, for each time step, across all test videos in the
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.5: Violin plots of Orthodromic distance for pos-only and pos-augmented on (a) NOSSDAV17,

(b) MM22, (c) PAMI18, and (d) MMSys18 datasets

NOSSDAV17, MM22, and MMSys18 datasets. Additionally, we compute the standard

deviation at each timestep to study the stability of the models. The pos-weighted model

is excluded from the plots as its performance closely mirrors that of the position-only

baseline. This analysis is illustrated in Figure 6.4. The PAMI18 dataset is excluded

from this analysis because of the large variance in video lengths. The results for the

NOSSDAV17 and MMSys18 datasets are in line with the previous results in Figure

6.3, indicating that the model augmented with viewer entropy data provides better

accuracy for the MMSys18 dataset. This improved accuracy in the MMSys18 dataset is

even more pronounced in the first half of the videos, suggesting that instantaneous

entropy provides more valuable information early in the session when the user is

exploring the environment and exhibiting more unpredictable behavior. Interestingly,

although the pos-augmented model exhibits a slightly improved average orthodromic

distance of 0.49 compared to 0.53 for the position-only model in the MM22 dataset,

it shows significantly greater stability with a much lower variance in the results. To

quantify this stability, we compute the coefficient of variation (CV) for the MM22

dataset, defined as the ratio of the standard deviation of the loss to its mean. The

CV allows us to compare the stability of the models’ performance independently of

the overall error magnitude, as it normalizes the variance relative to the mean. The

position-augmented approach yields a CV of 15.4%, whereas the position-only baseline

has a CV of 23.4%. The lower CV indicates that the predictions of the pos-augmented

model are less variable, meaning it produces more stable and reliable results. This
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.6: Performance of pos-augmented, E-AALSTM, and AMH on (a) NOSSDAV17, (b) MM22, (c)

PAMI18, and (d) MMSys18 datasets

improvement in consistency may be due to the incorporation of entropy-based features,

which help the model account for unpredictability and variability in user behavior.

To further understand the distribution of losses for the last prediction step (5 seconds

in the future), we plot violin plots of the orthodromic distance errors for the pos-

augmented and pos-only models. This analysis highlights the spread of errors at the

5-second mark, offering insight into how the models’ prediction errors are distributed

and whether one model demonstrates more consistent performance over time. In

Figure 6.5, for the NOSSDAV17 and PAMI18 datasets, the violin plots show nearly

identical distributions, with minimal differences in the spread or central tendency

of errors. For the MM22 dataset, the pos-only model shows a distinct, smaller

secondary band in error distribution above the main cluster of losses. By contrast,

the pos-augmented model reduces these higher error cases, as shown by the single,

lower-density cluster of errors. This suggests that the entropy-based augmentation

helps reduce the frequency of large deviations in final predictions, offering more

stable performance. For MMSys18, where viewer trajectories have the highest mean

entropy (2.88 AE), both models show broader distributions, reflecting high variability
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in prediction errors. However, the pos-augmented model exhibits a skew towards

lower error values compared to pos-only, which has a more balanced spread across the

range of losses. This skew suggests that the pos-augmented approach may help the

model reduce high-error predictions even when users exhibit highly unpredictable

behavior, while pos-only remains vulnerable to a wider range of prediction errors.

These results suggest that the pos-augmented model is able to better leverage head

pose trajectory entropy information, in particular for data where users exhibit a higher

degree of unpredictability, measured by the entropy of their trajectories, as seen in the

case of the MMSys18 dataset. They also suggest that it is able to provide more stable

predictions for the MM22 dataset.

Finally, to determine the best-performing proposed model for comparison with the

existing state-of-the-art, we evaluate the performance of E-AALSTM, AMH, and pos-

augmented. Figure 6.6 presents the error curves for each model on the NOSSDAV17 [17],

MM22 [35], PAMI18 [78], and MMSys18 [14] datasets. While all models demonstrate

comparable performance, the pos-augmented model modestly outperforms E-AALSTM

and AMH across all datasets except NOSSDAV17. Consequently, we select the pos-

augmented model for comparison with current state-of-the-art methods.

6.2.2. Comparison to the State-of-The-Art
In this section, we evaluate the performance of the pos-augmented model against the

current state-of-the-art models, discussed in 6.1.2, i.e., pos-only, TRACK, DVMS_5
and DVMS_2, and VPT360. We compare the orthodromic distance over a 5-second

prediction horizon, averaged across all videos, to determine which models maintain

lower predictive error. Figures 6.7 show the orthodromic distance curves for each

model across the four datasets: NOSSDAV17 [17], MM22 [35], PAMI18 [78], and

MMSys18 [14]. In all plots, DVMS_5 consistently achieves the lowest orthodromic

distance, outperforming the other models at most time intervals. This demonstrates

that the multiple prediction approach of DVMS, which generates multiple predictions

during training and selects the best result, is more effective at capturing head pose

trajectory dynamics. By incorporating uncertainty and refining predictions based on

this approach, DVMS is able to provide more accurate and robust forecasts compared to

the other models. For the pos-augmented model, we observe a slight underperformance

toward the end of the prediction horizon for the NOSSDAV17 dataset, where user

trajectories tend to exhibit the lowest actual entropy. Notably, pos-augmented achieves

slightly better short-term predictions compared to TRACK, up to 3 seconds on PAMI18

and up to 4 seconds on MMSys18. Additionally, both seq2seq models (pos-only and

pos-augmented) outperform VPT360 and TRACK on the MM22 dataset, indicating the

suitability of the architecture for this dataset.

The results for the models at two key time points (2.6 seconds and 5 seconds into the

prediction horizon) are summarized in Table 6.1. The values in the table represent the

average orthodromic distance (error) at 2.6 seconds and 5 seconds into the prediction,

which reflects how well each model predicts the user’s head pose in the short-term

and the long-term respectively. Lower values indicate better performance, meaning

the predicted head pose is closer to the true head pose. While the table confirms

our findings that both DVMS models consistently outperform the other models, it
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(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.7: Performance of pos-only, VPT360, TRACK, DVMS-5, and pos-augmented (a) NOSSDAV17,

(b) MM22, (c) PAMI18, and (d) MMSys18 datasets

also highlights the differences between the pos-augmented model and other models.

Notably, the pos-augmented model shows slightly better performance than TRACK at

the 2.6-second mark for the PAMI18, MM22, and MMSys18 datasets. This suggests that

at this early point in the prediction horizon, the pos-augmented model benefits from

the integration of entropy information, while the saliency maps utilized by TRACK

provide more valuable information as the prediction horizon extends to 5 seconds in

the future. This is especially noticeable in the MMSys18 dataset, where user trajectories

tend to exhibit higher entropy, providing more information for the model to utilize.

However, as the prediction horizon extends to 5 seconds, the performance gap between

pos-augmented and TRACK narrows. Overall, the results summarized in Table 6.1

confirm that DVMS_5 is the most effective model across all datasets, consistently

outperforming the others in terms of orthodromic distance. The pos-augmented model

performs competitively, especially for datasets where user trajectories exhibit higher

entropy, but does not match the performance of DVMS_5. This suggests that while the

pos-augmented model benefits from entropy integration, the approach used in DVMS

(generating multiple predictions and selecting the best one) is more robust and leads

to more accurate long-term predictions.
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Table 6.1: Average Loss at 2.6 Seconds and 5 Seconds for Each Model and Dataset

Model NOSSDAV17 MM22 PAMI18 MMSys18
2.6s 5s 2.6s 5s 2.6s 5s 2.6s 5s

pos-only 0.64 0.75 0.40 0.49 0.47 0.53 1.11 1.40

TRACK 0.65 0.73 0.43 0.50 0.46 0.51 1.08 1.22

DVMS_5 0.39 0.55 0.23 0.32 0.28 0.38 0.57 0.76

DVMS_2 0.48 0.63 0.29 0.38 0.35 0.45 0.79 0.96

VPT360 0.65 0.75 0.42 0.51 0.48 0.55 1.03 1.32

pos-augmented 0.65 0.76 0.39 0.48 0.45 0.52 1.01 1.27

(a) NOSSDAV17 (b) MM22

(c) PAMI18 (d) MMSys18

Figure 6.8: Violin plots of Orthodromic distance for pos-only and pos-augmented on (a) NOSSDAV17,

(b) MM22, (c) PAMI18, and (d) MMSys18 datasets

To evaluate model stability, we also compute the violin plots of the errors for the last

prediction step (5 seconds in the future) for the examined models, shown in Figure 6.8.

We exclude DVMS_2 from these plots as the distribution is identical to that of DVMS_5

but with a slightly higher mean error. As expected DVMS_5 exhibits the most stable

distributions, consistently skewed towards lower error values. For the NOSSDAV17

and PAMI18 datasets, the violin plots for all models, with the exception of DVMS_5,

reveal nearly identical distributions, with minimal differences in the spread or central

tendency of errors. However, for the MM22 dataset, both VPT360 and pos-only exhibit

a prominent main cluster of errors centered around 0.08, with a secondary band visible

above this range. In contrast, pos-augmented and TRACK lack this secondary band,

as their distributions taper off more smoothly from their respective modes at 0.06 for

pos-augmented and 0.13 for TRACK. While TRACK lacks the secondary band, its

main error cluster is situated higher, reflecting a broader spread of errors compared
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(a) Video_27 (Skydive) (b) Video_23 (chariot)

(c) Video_13 (mario)

Figure 6.9: Orthodromic loss for the pos_augmented and pos_only models plotted along with the

average instantaneous entropy of viewers across three videos from the MM22 dataset with varying

levels of Actual Entropy (High AE: video_27, Medium AE: video_23, Low AE: video_13).

to the other models. For the MMSys18 dataset, we observe that the loss distribution

for VPT360 is skewed towards higher losses, with its mode at 1.59, indicating a larger

proportion of higher error values. In contrast, the TRACK model’s distribution is

skewed towards lower losses, but its central tendency occurs at higher error levels,

with a mode of 1.17, compared to the pos-augmented model, which has a mode of 0.55.

This suggests that, while the TRACK model has a tendency towards lower losses than

VPT360, its errors still tend to be more concentrated in the higher error range compared

to the pos-augmented model, which demonstrates the most favorable distribution with

its mode of 0.34.

Finally, to identify the portions of the videos where pos_augmented outperforms

pos_only and to understand why it might be more stable, we compare the losses

across specific videos in the MM22 dataset. We select three videos based on the

Actual Entropy (AE) exhibited by viewers: High AE (video_27, "skydive"), Medium AE

(video_23, "chariot"), and Low AE (video_13, "mario"), the same ones chosen for our

exploratory analysis in Section 4.2. For each video, we plot the orthodromic loss for the

predicted head pose 5 seconds into the future (on the left y-axis), alongside the average

instantaneous entropy of viewers throughout the video (on the right y-axis), as shown

in Figure 6.9. Our analysis reveals that in video_27 (skydive), whenever users exhibit

higher IE, the pos_only model’s loss is notably higher compared to pos_augmented.

However, when user trajectories have lower entropy, the losses for both models are

quite similar. This is observed to a lesser extent in video_23 (chariot), where the

pos_augmented model performs better at the start of the video where IE is particularly

high, likely due to the viewers exploring the environment. In video_13, where viewers
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have more predictable trajectories, both models perform comparably.

These findings suggest that integrating trajectory entropy into head pose prediction

models can enhance performance, particularly in scenarios with highly unpredictable

user behaviors. The pos-augmented model emerges as the only approach to show

meaningful improvements, demonstrating enhanced stability and accuracy under

high-entropy conditions, as observed in the MMSys18 dataset and certain segments

of the MM22 dataset. While it remains less accurate than DVMS, the pos-augmented

model outperforms other state-of-the-art models in terms of stability, especially during

video segments with elevated instantaneous entropy. In contrast, adaptive attention

models showed no significant improvements, suggesting that the benefits of entropy

integration depend on the specific method of incorporation. These results highlight

the potential of entropy-based augmentations to adaptively improve both accuracy and

reliability in challenging, high-entropy scenarios. In the next chapter, we summarize

our key findings, discuss their implications, and explore the limitations of our work,

as well as propose future directions for research based on these insights.



7
Discussion and Conclusion

In this chapter, we discuss the results in the context of the incorporation of viewer

entropy, along with some of the limitations of the research project and future research

possibilities. Lastly, we present the conclusions of this thesis.

7.1. Use of Entropy Metrics in Prediction
In this study, we explored the potential of user trajectory entropy to improve head pose

prediction. Our initial exploratory analysis, conducted prior to testing the models,

revealed a significant correlation between entropy metrics and prediction loss. Using

three videos from the MM22 dataset (video_27 "skydive," video_23 "chariot," and

video_13 "mario"), we observed a positive correlation between the Instantaneous

Entropy of viewer trajectories and the prediction error. This finding motivated us to

investigate whether incorporating entropy into head pose prediction models could

improve stability and accuracy, particularly in segments where user behavior was highly

unpredictable. To address this, we introduced two entropy-driven models: E-AALSTM

and AMH. These models aimed to incorporate entropy information into adaptive

attention mechanisms. The goal was to assign lower attention scores to high-entropy

segments, where user behavior is more unpredictable and chaotic, making accurate

predictions more challenging. By focusing more attention on low-entropy segments,

where behavior is more consistent and predictable, we aimed to improve model stability.

Additionally, we tested a simpler approach by augmenting head-pose data with entropy

values in a seq2seq encoder-decoder architecture (referred to as the pos-augmented

model). Our goal was to evaluate whether entropy could improve model stability

and prediction accuracy. The incorporation of entropy into head pose prediction

models demonstrated mixed results, with certain models benefiting from the added

entropy-based features, while others showed no substantial improvement or even slight

deterioration in performance. Notably, the experiments reveal that entropy-based

metrics have nuanced impacts depending on the dataset and model configuration.

Following our findings in Chapter 6, we observe that the proposed adaptive attention

mechanisms (E-AALSTM and AMH) show limited capacity to leverage viewer entropy

data effectively. This conclusion stems from the lack of significant deviations in

performances between these adaptive models and their benchmarks, ALSTM and

60
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VPT360. This suggests that the proposed adaptive attention mechanism may not

capture the entropy information in a way that provides predictive improvements,

and alternative mechanisms may be better suited for utilizing the entropy of user

trajectories.

In contrast, the more straightforward approach of augmenting head-pose data by

appending the entropy information in a seq2seq encoder-decoder architecture (pos-

augmented) demonstrates promising potential. The analysis of violin plots (Figure 6.5)

revealed that the pos-augmented model provided more stable predictions compared

to the position-only model, especially for datasets with higher entropy, which indicates

lower predictability. This was particularly evident in the MMSys18 dataset, and to a

smaller extent in the MM22 dataset, where the pos-augmented model reduced the

frequency of predictions that deviate greatly from the actual trajectory, showing a skew

towards lower error values compared to the position-only model, which had a more

spread-out error distribution. This reinforces the idea that entropy augmentation may

help manage high-variance predictions, improving model stability when handling

more unpredictable user trajectories. When comparing the pos-augmented model to

state-of-the-art methods, we found that it modestly outperformed the VPT360 and

TRACK models on the MM22 dataset and provided better predictions in the short term

on the PAMI18 and MMSys18 datasets. This shows that while entropy-based models

might not always outperform existing techniques, they can provide more stability and

marginal improvements under specific conditions.

Additionally, when we examined specific video segments from the MM22 dataset,

we observed that the pos-augmented model outperformed the position-only model

during periods of high instantaneous entropy (e.g., video_27 "skydive" and video_23

"chariot"). In contrast, in video segments with lower entropy (e.g., video_13 "mario"),

both models performed similarly. These findings emphasize the benefit of entropy

augmentation in managing prediction errors during periods of high uncertainty.

While the pos-augmented model did not outperform state-of-the-art methods in all

scenarios, it showed improvements in stability, particularly on datasets with high

entropy. This supports the idea that entropy-based augmentations can help improve

model performance in unpredictable environments. However, the effectiveness of

entropy integration depends on the dataset’s characteristics and how well the model

can incorporate entropy information in a meaningful way.

7.2. Limitations
In this section, we discuss some of the limitations of our work based on our reflections

while conducting this thesis.

Implementation Constraints for State-of-The-Art Models: The absence of readily

available code for certain state-of-the-art (SOTA) models presented significant im-

plementation challenges. As a result, most SOTA models had to be implemented

from scratch, potentially leading to unintentional discrepancies in replication accuracy.

This constraint limits the scope of the comparative study, as it restricts our ability to

incorporate a wider range of models, particularly those based on non-deep learning

algorithms for head pose prediction. Despite rigorous efforts to ensure correctness in
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implementing SOTA models, slight deviations in architectural or training details may

affect comparative results.

Data Composition and Variability: The datasets utilized in this thesis come from

various sources, introducing potential inconsistencies in video characteristics that may

influence results. For instance, two videos from different datasets with somewhat

similar content—skydive from MM22 and Touvet from MMSys18—exhibit markedly

different mean entropies in user trajectories, recorded at 1.73 and 3.34, respectively.

This discrepancy may partly stem from differences in video lengths, as the MMSys18

dataset predominantly consists of shorter videos. Shorter videos often elicit higher

entropy because users initially exhibit more random trajectories, rapidly exploring the

environment to grasp the scene before the video ends. In contrast, longer videos, such

as those in MM22, allow users more time to stabilize their focus, resulting in lower

entropy. Furthermore, while the PAMI18 dataset includes both short and long videos,

its design involves different users for each video, making it difficult to isolate the

effect of video length on user trajectories. A more cohesive dataset with a controlled

variety of short and long videos viewed by the same users would provide clearer

insights into how video length and user behavior impact trajectory entropies and

model performance.

Hyperparameter Standardization and Limited Tuning To maintain consistency,

standardized hyperparameters were applied across all models, including a learning

rate of 0.0001, an AdamW optimizer with a weight decay of 0.01, a batch size of

128, and a maximum of 500 epochs with early stopping. While this approach was

designed to control for performance variability, it may unintentionally disadvantage

certain models. Some architectures may have performed optimally with different

settings, and the fixed parameters could skew the comparative results. Additionally,

due to computational constraints, and to maintain consistency with previous studies,

extensive hyperparameter tuning was not conducted. As a result, model performance

may reflect sub-optimal configurations for certain architectures, particularly if they

require different learning rates, dropout rates, or hidden layer sizes to achieve peak

accuracy. This limitation affects the robustness of the results, as certain architectures

may yield different outcomes with more refined hyperparameter optimization.

Chosen Saliency Measures: The saliency maps used in this work to calculate the

entropy of saliency maps are generated based on user movements in the video, which

may not always capture all the possible sources of attention in a scene. There are

other approaches to generating saliency maps that can offer complementary or more

accurate insights into visual focus. A more comprehensive evaluation using saliency

maps generated using deep learning models [40] or by using optical flow [33] may offer

additional insights into visual focus. The reliance on user-trajectory-based saliency

maps, while effective in this context, may not fully account for the richness of other

potential sources of visual saliency.

7.3. Future Work
In this section, we provide suggestions for future work based on our findings and

the limitations of our work. One such suggestion is the investigation of alternative



7.4. Conclusion 63

methods for integrating entropy into predictive models. While the entropy-based

attention mechanisms (E-AALSTM and AMH) showed limited improvements in

model performance, the simpler pos-augmented approach showed modest promise

in improving model stability. Future work could explore alternative methods for

integrating entropy, such as incorporating it into different model architectures, or

using it to augment other input features. This could help uncover novel ways of using

entropy to enhance prediction accuracy and robustness.

The variability in video characteristics and user behavior across the datasets used in

this study highlights the need for more cohesive datasets in future work. Specifically,

a dataset designed to include both short and long videos viewed by the same users

would provide a more controlled environment for analyzing trajectory dynamics and

entropy effects. A dataset designed with these factors in mind would allow for clearer

insights into the effects of video content on trajectory entropies. Additionally, future

work could consider why the models incorporating entropy tend to show marginally

worse performance on the NOSSDAV17 dataset and whether that remains consistent

across other datasets where user trajectories exhibit low entropies.

Additionally, the use of user-trajectory-based saliency maps, while effective in this

work, may have overlooked other potential sources of visual saliency. Future work

could expand the scope to include alternative saliency measures, such as saliency maps

generated using deep learning models [40] or optical flow analysis [33]. These methods

could provide an alternative or complementary understanding of user trajectories, and

improve the integration of saliency features in the models.

Finally, while we evaluated models based on Orthodromic distance to remain consistent

with previous research and allow for quick comparison within the Unified Evaluation

Framework [55], alternative evaluation metrics may provide deeper insights into model

performances.

7.4. Conclusion
This study explored the role of entropy in predicting head pose trajectories, with a

focus on entropy metrics derived from both saliency maps and user trajectories. We

found that while the entropy of saliency maps did provide some insight into user focus,

it exhibited an inverse relationship with the entropy of user trajectories. The entropy

of user trajectories, particularly, emerged as a more reliable indicator of trajectory

unpredictability, as evidenced by its closer correlation with higher prediction errors.

The results of this work suggest that incorporating user trajectory entropy into

prediction models, specifically through straightforward augmentation methods like

the pos-augmented model, can offer valuable improvements in model stability. This

is particularly relevant when dealing with datasets characterized by unpredictable

user behavior, where entropy augmentation helped reduce prediction deviations

and provided more consistent results. The analysis of specific video segments

further demonstrated that the pos-augmented model outperformed the position-only

model during windows where user trajectories exhibit higher entropy, highlighting

the potential of entropy to manage uncertainty. In contrast, the more complex

entropy-driven attention mechanisms (E-AALSTM and AMH) did not show consistent
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performance improvements across all models and datasets, pointing to the need for

further exploration of more effective entropy integration strategies.

Ultimately, the study contributes to the understanding of how entropy, particularly

from user trajectories, can be leveraged to enhance head pose prediction models. While

the integration of entropy into deep learning architectures showed mixed results,

straightforward approaches like the pos-augmented model demonstrated promise in

improving prediction stability and could serve as a foundation for future work. Our

findings underscore the importance of considering user behavior dynamics, dataset

characteristics, and model architecture when incorporating entropy, and suggest

several avenues for further research, including the exploration of alternative entropy

integration methods and the development of more cohesive datasets for head pose

prediction tasks.
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