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The recent investigation of chains of Rydberg atoms has brought back the problem of commensurate-
incommensurate transitions into the focus of current research. In two-dimensional classical systems or in
one-dimensional quantum systems, the commensurate melting of a period-p phase with p larger than 4 is known
to take place through an intermediate floating phase where correlations between domain walls or particles decay
only as a power law, but when p is equal to 3 or 4, it has been argued by Huse and Fisher that the transition could
also be direct and continuous in a nonconformal chiral universality class with a dynamical exponent larger than 1.
This is only possible, however, if the floating phase terminates at a Lifshitz point before reaching the conformal
point, a possibility debated since then. Here we argue that this is a generic feature of models where the number
of particles is not conserved because the exponent of the floating phase changes along the Pokrovsky-Talapov
transition and can, thus, reach the value at which the floating phase becomes unstable. Furthermore, we show
numerically that this scenario is realized in an effective model of the period-3 phase of Rydberg chains in which
hard-core bosons are created and annihilated three by three: The Luttinger liquid parameter reaches the critical
value p2/8 = 9/8 along the Pokrovsky-Talapov transition, leading to a Lifshitz point that separates the floating
phase from a chiral transition. Implications beyond Rydberg atoms are briefly discussed.

DOI: 10.1103/PhysRevResearch.3.023049

I. INTRODUCTION

Rydberg atoms trapped with optical tweezers are becoming
one of the major playgrounds to investigate quantum matter.
The laser detuning, which plays the role of the chemical
potential and controls the number of excited atoms, can be
easily tuned, and its interplay with the long-range van der
Waals repulsion and the creation and annihilation of excited
states by a laser with appropriate Rabi frequency has opened
the way to a full experimental mapping of the phase dia-
gram in one dimension (1D) [1,2]. This phase diagram is
dominated at large detuning by big lobes of density waves
of simple integer periods [1–3] and at small detuning by
a disordered phase with short-range incommensurate corre-
lations [4,5]. What happens between these main phases is
remarkably rich, however. At very large detuning, devil’s
staircases of incommensurate density waves [6] are expected
to be present because of the long-range character of the
repulsion between atoms [3]. But even at intermediate de-
tuning where these phases are not present, the transition
between the integer-period density waves and the disordered
incommensurate phase is a very subtle issue [4,5,7–9]. The
problem is the 1D quantum analog of the famous problem
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of commensurate-incommensurate (C-IC) transitions in clas-
sical two-dimensional (2D) physics [10–27], a problem still
partially unsolved despite four decades of analytical and nu-
merical work. With their tunability, Rydberg atoms open new
perspectives in the experimental investigation of the entire
boundary of these transitions and in the possible resolution
of the puzzles still posed by the C-IC transition.

A priori, one could expect the transition out of period-
p phases to be simply in a universality class controlled by
the value of p (Ising for p = 2, three-state Potts for p = 3,
Ashkin-Teller for p = 4, etc.). However, when the transition
is driven by the proliferation of domain walls between or-
dered domains simply related to each other by translation, the
disordered phase is incommensurate. The asymmetry between
domain walls induces a chiral perturbation [12] that is in most
cases relevant and has to drive the transition away from the
standard universality classes. For p � 5, it is well accepted
that the transition becomes a Pokrosky-Talapov [28,29] tran-
sition into a critical phase, followed by a Kosterlitz-Thouless
(KT) [30] transition into a disordered phase with exponen-
tially decaying correlations [22]. By analogy to the classical
2D problem, the intermediate critical phase is referred to as
the floating phase.

For p = 3 and p = 4, there is no consensus, however. If,
in the disordered phase, there is a line where the short-range
correlations have the periodicity of the adjacent ordered phase
as is the case for Rydberg chains, the transition is expected to
be a standard transition in the three-state Potts and Ashkin-
Teller universality classes, respectively [15]. This has been
explicitly demonstrated for models with infinite short-range

2643-1564/2021/3(2)/023049(9) 023049-1 Published by the American Physical Society

https://orcid.org/0000-0002-5313-5035
https://orcid.org/0000-0003-4306-7996
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023049&domain=pdf&date_stamp=2021-04-16
https://doi.org/10.1103/PhysRevResearch.3.023049
https://creativecommons.org/licenses/by/4.0/


NATALIA CHEPIGA AND FRÉDÉRIC MILA PHYSICAL REVIEW RESEARCH 3, 023049 (2021)

repulsions for period-3 [4,7] and period-4 phases [5]. Far from
this commensurate line, it is also by now fairly well estab-
lished numerically that as for p � 5 there is a floating phase
[3]. The main issue is what happens in between. In 1982,
Huse and Fisher [12] argued that the floating phase may not
appear immediately, and that the transition, which cannot be
in a standard universality class because the chiral perturbation
is relevant, could still be direct and continuous, but in a new
universality class that they called chiral. The presence of such
a chiral transition is consistent with the interpretation of recent
Kibble-Zurek experiments on Rydberg chains [2,5]. However,
it has not been possible so far to come up with a compelling
theoretical argument in favor of a Lifschitz point that would
terminate the floating phase at a distance from the Potts point
for p = 3 or the Ashkin-Teller point for p = 4, and in the
absence of such an argument, the issue remains controversial.

In the present paper, we come up with such an argument.
We show that the instability of the floating phase is driven by
a property of the Pokrovsky-Talapov (PT) transition that has
apparently been overlooked so far, namely, that the Luttinger
liquid exponent of the floating phase can change along this
transition. Then, if the Luttinger liquid exponent reaches the
value at which the floating phase becomes instable, which is
the mechanism behind the Kosterlitz-Thouless transition from
the floating phase into the disordered one, the transition can
no longer take place through an intermediate phase, open-
ing the way to a chiral transition. We further argue that the
Pokrovsky-Talapov transition is expected to have this property
for models where the number of particles is not conserved,
and we prove it in the case of a 1D model where particles are
created and annihilated three by three, a model put forward
recently in the context of Rydberg atoms [31] but already in-
troduced earlier in the fermionic description of domain walls
in the context of the C-IC transition in 2D classical systems
[22].

II. GENERAL ARGUMENT

From now on, we will concentrate on the case p = 3 for
clarity. The argument can be straightforwardly extended to
p = 4. Let us assume that there is a line where the correlations
remain commensurate in the disordered phase along which
the transition is in the three-state Potts universality class, and
that there is a floating phase further away along the transition.
Then either the floating phase starts right away as in the
bottom panel of Fig. 1, or it only starts at a Lifshitz point
different from the Potts point as in the top panel of Fig. 1.

In the language of 1D quantum physics, the floating phase
is a Luttinger liquid [32], and it is described by two pa-
rameters: (i) The parameter K that controls the decay of all
correlation functions, often referred to as the Luttinger liquid
exponent; (ii) the velocity v that controls the small momentum
dispersion of the excitations. At a C-IC transition, this inter-
mediate phase is bounded by two very different transitions,
and each of them is a priori controlled by a single parameter:

(1) The parameter K controls the KT transition into the
disordered phase with exponentially decaying correlations.
This transition occurs when an operator present in the model
(or generated under the renormalization-group flow) becomes
relevant, i.e., when its scaling dimension becomes smaller

(a)

(b)

FIG. 1. Sketches of the two main possibilities for the phase
diagram of commensurate melting as a function of the chiral per-
turbation and of the temperature T for 2D classical models or as a
function of the inverse coupling constant 1/λ and the inverse chem-
ical potential 1/|μ| for the 1D quantum model of Eq. (1). (a) The
Luttinger liquid exponent changes along the Pokrovsky-Talapov
transition and reaches the value of K = Kc of the Kosterlitz-Thouless
transition at the Lifshitz point (red dot). Beyond this point, the transi-
tion is chiral in the Huse-Fisher universality class until it reaches the
three-state Potts critical point when the chiral perturbation vanishes
(or when λ becomes infinite). (b) The Luttinger liquid exponent tends
to the noninteracting value K = 1 when approaching the Pokrovsky-
Talapov line, and all constant K lines meet at the three-state Potts
critical point.

than 2. For the operator that simultaneously creates p-domain
walls or particles, this scaling dimension is equal to p2/4K
in a Luttinger liquid with exponent K [33], and this operator
becomes relevant for K > Kc with Kc = p2/8.

(2) The parameter v controls the Pokrosky-Talapov transi-
tion. At this transition, v goes to zero. The dispersion becomes
quadratic, and the dynamical exponent is equal to 2.

There is a priori no reason for the Luttinger liquid pa-
rameter to have a specific value along the PT transition since
this transition is controlled by the velocity. However, it is a
well-known fact that the Luttinger liquid exponent is often
constant along transition lines [32,34], and this applies to the
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Pokrovsky-Talapov transition in certain cases. In particular,
the PT transition describes the transition at which a fermionic
system starts to fill up. If the Hamiltonian conserves the
number of fermions, the system is empty on one side of the
transition. Then, on the other side, in the Luttinger liquid
phase, the density goes continuously to zero at the transition.
In that case, and for interactions that decay fast enough, the
Luttinger liquid exponent is expected to tend to the noninter-
acting value K = 1 at the transition. Then the floating phase
is limited on one side by K = Kc, which is larger than 1 as
soon as p � 3, and on the other side by K = 1. If the two
lines merge at a point along the transition, this point should
correspond to the point where all constant K lines with 1 �
K � Kc meet. This possibility has been discussed by Haldane
et al. [35] and by Schulz [36] in the context of the quantum
sine-Gordon model in which case the point at which the lines
meet was shown to be in the p-state clock universality class
by symmetry. This is summarized in the sketch of the bottom
panel of Fig. 1 where the point where all constant K lines
meet is called the three-state Potts, the standard terminology
for p = 3.

However, if the density of particles does not go to zero at
the Pokrovsky-Talapov transition, and this will, in particular,
be the case if the number of particles is not conserved, the
Luttinger liquid exponent is not fixed at the noninteracting
value of K = 1 along this transition. Then, the constant K
lines do not have to meet at a single point, but they can termi-
nate at different points along the PT transition as sketched in
the top panel of Fig. 1. This opens the possibility of a Lifshitz
point defined as the point where the line K = Kc hits the PT
transition. This point is not a point of special symmetry, and
there is no reason for this point to be the p-state clock. If
the Lifshitz point occurs before the Potts point, then between
them the transition must be the chiral transition predicted by
Huse and Fisher [12].

III. MODEL WITH THE THREE-SITE TERM

We will now show that this is precisely what happens in a
hard-core boson model recently proposed as a dual description
of the period-(p = 3) transition of 1D Rydberg atoms [31].
This model is defined by the Hamiltonian,

H =
∑

i

−t (d†
i di+1 + H.c.) − μni + λ(d†

i d†
i+1d†

i+2 + H.c.).

(1)

Without loss of generality we will fix t = 1 in the following.
When λ �= 0, this model does not conserve the number of

particles, and the U (1) symmetry is reduced to Z3. The last
term splits the Hilbert space into three sectors distinguished
by the total filling mod 3. The Z3 symmetry is broken if
these sectors have the same ground-state energy and unbroken
otherwise. We have studied this model numerically with large-
scale density matrix renormalization-group (DMRG) [37–40]
simulations on systems with up to 3000 sites keeping up to
2000 states and truncating singular values below 10−8. Our
numerical results are summarized in the phase diagram of
Fig. 2. The phase diagram is symmetric around μ = 0, so
we only show and discuss the positive μ side. There are
two gapped phases: (i) the disordered phase at large enough

FIG. 2. Phase diagram of the hard-core boson model with the
three-site term of Eq. (1). It consists of three phases: (i) A disordered
phase (blue) at large μ; (ii) a Z3-ordered phase (yellow) at small μ

and not too small λ; (iii) a floating phase (green) that starts at small
values of λ for small μ, and that extends up to λ ≈ 7 upon approach-
ing the disordered phase. The floating phase is separated from the Z3

phase by a Kosterlitz-Thouless transition (red squares) and from the
disordered phase by a Pokrovsky-Talapov transition (blue circles).
For larger values of λ the transition between the disordered phase
and the Z3 phase is a direct one in the Huse-Fisher universality class
(black diamonds). The dotted lines show the cuts presented in Fig. 6.

μ, which is commensurate with wave-vector zero and corre-
sponds to a full system for λ = 0, and (ii) the Z3-ordered phase
with short-range incommensurate correlations. There is also
a floating phase, a critical phase in the Luttinger liquid uni-
versality class with algebraic incommensurate correlations.
Along the vertical line μ = 0, the wave vector vanishes by
symmetry, making this line the commensurate line along
which the transition should be in the universality class of the
three-state Potts model. As we will see, the floating phase
extends up to a Lifshitz point located at (μ � 0.35, λ � 7),
far from the commensurate line, hence, of the three-state Potts
point. Accordingly, beyond this Lifshitz point, the transition
must be a direct one in the Huse-Fisher chiral universality
class [12,15,31]. The floating phase is separated from the
disordered phase by a Pokrovsky-Talapov transition and from
the Z3-ordered phase by a Kosterlitz-Thouless transition.

Note that the boundary of the disordered phase agrees with
the numerical results of Ref. [31]. In this reference, the authors
also reported that the Z3-ordered phase is gapped provided λ

is large enough, implicitly implying that it might be gapless
at small λ, but they did not try to determine the boundary
where the gap closes. In that respect, our numerical results
complement and correct the numerical results of Ref. [31].
There is indeed a gapless phase at small λ, but it extends
to large values of λ in the vicinity of the transition to the
disordered phase in the form of very narrow floating phase.
The difficulty encountered by the authors of Ref. [31] to
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identify the universality class of the transition is probably a
consequence of this narrow floating phase.

Note also that because of the dual nature of the model
the role of ordered and disordered phases is exchanged with
respect to Rydberg atoms. The period-3 phase of Rydberg
atoms corresponds to the disordered phase of the model of
Eq. (1), and the disordered phase of Rydberg atoms to its
Z3-ordered phase.

The precise form of this phase diagram has been reached
by a careful numerical identification of the various phases and
of the transitions between them that we now review.

1. Floating phase and Kosterlitz-Thouless transition

In the noninteracting case λ = 0, the model can be mapped
on noninteracting spinless fermions. For μ < 2, the state is a
partially filled band up to a wave-vector kF , and all correla-
tions are critical. Along this noninteracting line, the Luttinger
liquid exponent is rigorously equal to K = 1, including at
the Pokrovsky-Talapov commensurate-incommensurate tran-
sition to the gapped phase at μ = 2.

Upon increasing λ, the correlations are expected to remain
critical as long as all operators acting as perturbations are
irrelevant, i.e., have a scaling dimension larger than 2. Now,
the operator with the smallest scaling dimension is expected to
be the three-boson operator. Indeed, the scaling dimension of
an operator creating m particles is equal to m2/4K , and since
the number of particles is conserved mod 3, the only operators
allowed by symmetry correspond to creating m = 3n fermions
with a n integer with an exponent 9n2/4K that is minimal for
n = 1, i.e., for the term creating p = 3 bosons. Its exponent
is equal to 9/4K , so this operator is irrelevant along the non-
interacting line. It only becomes relevant when K = 9/8. As
a consequence, the critical behavior of the noninteracting line
must extend into a critical floating phase up to the constant-K
line K = 9/8 in the λ-μ phase diagram, a property of the
model not discussed in Ref. [31].

To extract the Luttinger liquid exponent inside the float-
ing phase, we have fitted the Friedel oscillations of the
local density profile induced by the open boundary conditions.
Details can be found in Appendix A. To demonstrate the
validity of the criterion K = 9/8 for the transition into the
disordered phase, we show in Fig. 3 the evolution of K along
a vertical cut μ = 1 inside the floating phase, and the correla-
tion length ξ extracted from the density-density correlations
in the Z3-ordered phase. Note that since K is expected to
change only by 12.5%, high accuracy and sufficiently large
system sizes are required to detect such changes. At the KT
transition, the correlation length is expected to diverge very
fast as ξ ∝ exp C/

√
λ − λc. This is consistent with the very

steep divergence of ξ , and plotting ln ξ as a function of
1/

√
λ − λ0 for various values of λ0 shows that the behavior

is linear at λ0 = λc and concave, respectively, convex away
from it, where λc is the value at which K reaches the value of
K = 9/8.

The boundary between the floating phase and the Z3-
ordered phase is almost horizontal and limited to small values
of λ up to μ � 1.8, but then it turns up and slowly approaches
the boundary to the disordered phase. For λ > 1, the floating
phase is extremely narrow with a width �μ < 0.02. The key

FIG. 3. Kosterlitz-Thouless transition at μ = 1. (a) Luttinger liq-
uid parameter as a function of λ. It increases from K = 1 in the
noninteracting case at λ = 0 to the critical value of the Kosterlitz-
Thouless transition Kc = 9/8 at λc ≈ 0.187. The large values beyond
that point (marked with dashed line) are finite-size effects. The Z3-
ordered phase is gapped, and correlations no longer decay as a power
law. (b) Correlation length in the Z3-ordered phase. It is consistent
with a strong divergence upon approaching λc. (c) Scaling of the
correlation length in the Z3-ordered phase as a function of 1/

√
λ − λ0

in a semilogarithmic plot. The scaling is linear for λ0 = λc ≈ 0.187
identified in panel (a) as expected for a Kosterlitz-Thouless tran-
sition, and it is concave for λ0 = 0.25 and convex for λ0 = 0.1,
confirming that the transition has to take place at a finite value of
λ. The solid line is a linear fit, and the dashed lines are guides to the
eye.

qualitative question is whether the two lines get asymptoti-
cally close as λ → +∞, or whether they meet at a finite value
of λ, which would signal the presence of a Lifshitz point. To
address this question, we now turn to a careful investigation
of the transition between the floating phase and the disordered
phase.

2. Pokrovsky-Talapov transition

For λ = 0, the transition at μ = 2 is just a transition be-
tween a completely filled band for μ > 2 and a partially
filled band for −2 < μ < 2 in terms of spinless fermions.
The density is equal to 1 for μ > 2 and decreases with a
singularity (2 − μ)1/2 for μ < 2. In the partially filled band,
all correlation functions decay as power laws with an oscil-
lating prefactor cos(kr), where k is a multiple of the Fermi
wave-vector kF . In particular, the density-density correla-
tions decay as cos(qr)/r2 with q = 2kF . Since between μ =
−2 and μ = 2 the Fermi wave vector grows continuously
from 0 to π , the wave-vector q is generically incommensu-
rate. Close to μ = 2, q approaches 0 mod 2π as (2 − μ)1/2.
At the transition point itself the velocity vanishes and the
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FIG. 4. Main properties of the Pokrovsky-Talapov transition. (a) Scaling of the incommensurate wave-vector q with the distance to the
Pokrovsky-Talapov transition. The solid lines are the results of fits with the Pokrovsky-Talapov critical exponent β = 1/2. The critical point μc

identified with these fits is used in panels (b)–(e). (b) Evolution of the Luttinger liquid parameter K . The system is in the floating phase when K
is below Kc = 9/8. Larger values of K (shown as dashed lines) are finite-size effects since the Z3 phase is gapped with exponential correlations.
The dotted line is a linear extrapolation of the last three points. (c) Inverse of the correlation length on both sides on the floating phase. The
convex curve on the left is consistent with the exponential divergence expected at the Kosterlitz-Thouless transition. In the disordered phase,
the correlation length diverges with the exponent β̄ ≈ 0.49, consistent with the Pokrovsky-Talapov value of 1/2. (d) Average density across the
Pokrovsky-Talapov transition. The solid line is a fit with the Pokrovsky-Talapov critical exponent β̄ = 1/2. (e) and (f) Opposite of the second
derivative of energy with respect to μ—the analog of the specific heat—across the transition. It diverges with critical exponent α = 1/2 below
the transition and approaches a finite value as (μ − μc ) ln(μ − μc ) in the disordered phase.

dispersion is quadratic so that the dynamical exponent is given
by z = 2. For −2 < μ < 2, the Luttinger liquid exponent is
fixed as K = 1. Finally, the second derivative of the energy,
the equivalent of the specific heat for quantum transition,
vanishes identically above μ = 2 and diverges with exponent
α = 1/2 when μ → 2 from below.

This transition is a special example of a Pokrosky-Talapov
transition, and most of its characteristics are generic to this
universality class but not all. So let us review in detail the gen-
eral properties of the Pokrovsky-Talapov universality class.
This is a very asymmetric transition with a dynamical ex-
ponent z = 2. On the commensurate side (the empty or full
side for free fermions), the correlation length diverges with an
exponent ν = 1/2, the specific heat goes to a constant with a
cusped singularity due to a logarithmic correction as shown
by Huse and Fisher [15], and the density is, in general, not
constant but approaches its value at the critical point without
any power-law singularity. On the incommensurate side, the
system is described by a Luttinger liquid with a velocity that
vanishes at the transition and with an exponent K that can
take a priori any value. The wave vector of the correlations
is expected to go to the commensurate one as |μc − μ|1/2,
and the density increases or decreases from its value at μc

with a singularity (μc − μ)1/2. Finally, as discussed above,
the Luttinger liquid exponent is not fixed by symmetry at the
PT transition.

This Pokrovsky-Talapov universality class is expected to
be realized upon reducing μ from the disordered commensu-
rate phase if the transition leads to an intermediate floating
phase with critical correlations. Since the behavior along the
PT transition is central to our analysis, let us first carefully

check the properties of this transition for λ > 0 but not too
large. Our numerical results for a horizontal cut at λ = 1 are
summarized in Fig. 4. All the properties expected for a PT
transition are realized to a high degree of accuracy. We extract
the location of the PT transition by fitting the values of q
as a function of chemical potential μ to the form (μc − μ)β̄

with the critical exponent β̄ = 1/2 as shown in Fig. 4(a). As
one can see, finite-size effects for the system sizes shown
are already negligible. Considering the other characteristics,
the transition is clearly very asymmetric, and all expected
critical exponents are consistent with our numerical results.
The density is already significantly smaller than 1 at the tran-
sition, and it decreases with a square root singularity upon
entering the floating phase. Since the density is not fixed to
1 at the transition, the system is not empty in hole language,
and the Luttinger liquid exponent is not fixed to 1. And indeed,
although it decreases upon approaching the PT transition, it is
consistent with a value definitely larger than 1 at the transition.

3. Lifshitz point and chiral transition

To extract a quantitative estimate of the Luttinger liquid
exponent at the transition point, we have extrapolated the last
three to four points with linear fits, and we have performed
the extrapolation over different sets of points and for various
system sizes to estimate the error bars. The evolution of the
Luttinger liquid exponent extracted in this way along the PT
transition is shown in Fig. 5. This is the central numerical
result of this paper: In agreement with our hypothesis, the
exponent K increases steadily from its noninteracting value
K = 1 at λ = 0. It is impossible to follow it numerically
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FIG. 5. Luttinger liquid critical exponent K as a function of λ

along the Pokrovsky-Talapov critical line. Error bars are estimated
by extrapolating K as shown in Figs. 8(c) and 8(d) over different
subsets of data points and for different system sizes. The dashed line
is a linear extrapolation. It reaches the value K = 9/8 at λ ≈ 7. The
inset: Width �μ of the floating phase as a function of 1/λ.

beyond λ � 3 because the floating phase becomes too narrow,
but a linear extrapolation of the results beyond λ = 3 suggests
that it will reach the critical value K = 9/8 around λ = 7,
hence, that the floating phase has to terminate at a Lifshitz
point located at the end of the PT line at λ � 7.

As an independent check, we have kept track of the width
�μ of the floating phase as a function of λ (see inset of Fig. 5).
A simple polynomial fit as a function of 1/λ suggests that the
floating phase disappears at 1/λ � 0.14, in good agreement
with λ � 7.

To further check this prediction, we have carefully looked
at the nature of the transition across two cuts that intersect
the transition out of the disordered phase at λ = 5 and λ = 10
shown in Fig. 2. As shown in Fig. 6, there is a clear difference
in the way the correlation length diverges along these two
cuts. For the lower cut, the correlation length is expected to
diverge exponentially at the KT transition, algebraically with
exponent ν ′ = 1/2 at the PT transition, and to be infinite
in between. In Fig. 6(a) one can clearly see the asymmetry
between the left and right branches, signaling the existence of
two different quantum phase transitions.

Above the Lifshitz point, the transition is expected to be
a direct chiral transition in the Huse-Fisher [12] universality
class. In this case the correlation length is expected to diverge
on both sides of the transition with the same exponent ν = ν ′.
The solid lines show the results of the fit of the data points on
both sides of the transition with a single critical exponent and
a unique critical point μc. The extracted value of the critical
exponent is consistent with ν = ν ′ � 2/3, in agreement with
recent quantum field theory results [31] with numerical results
on a classical model expected to have a transition in the same
universality class [41] and with the exact result ν = ν ′ = 2/3
derived [42,43] for an integrable version of the chiral Potts
model [44] and extended by Cardy to a family of self-dual
models [45].

FIG. 6. Inverse of the correlation length on both sides of the
Lifshitz point. (a) λ = 5, below the Lifshitz point. The solid lines
are fits in the disordered phase with |μc − μ|ν′

. The value of the
critical exponent ν ′ decreases when the system size increases, and
it is within 10% of the Pokrovsky-Talapov prediction ν ′ = 1/2.
(b) λ = 10, above the Lifshitz point. The solid lines are fits of the
data points on both sides of the transition with a unique critical
transition point and equal critical exponents ν = ν ′. The extracted
values of the critical exponent remain well above 1/2 and are in rea-
sonable agreement with the critical exponents ν = ν ′ � 2/3 reported
previously in other studies of the chiral transition for the period-3
commensurate-incommensurate transition. The data points used for
the fits are marked with filled symbols.

IV. SUMMARY AND PERSPECTIVES

To summarize, we have found a simple physical argument
in favor of the presence of Lifshitz points at commensurate
melting in the 1D models of Rydberg atoms, and we have
demonstrated that it rightly predicts the location of the Lifshitz
point in a model of hard-core bosons with three-site terms.
The core of the argument relies on a simple property of the
Pokrosvky-Talapov transition in systems where the number of
particles is not conserved, namely, that the Luttinger liquid
exponent is not constant along this transition because it is
not fixed by the density. This argument applies to Rydberg
atoms where excited states are created and annihilated by
a laser with appropriate Rabi frequency, and it provides a
solid physical basis to the results recently obtained on this
problem. Interestingly enough, it probably also applies to the
old problem of commensurate melting of surface phases in the
context of which Huse and Fisher came up with the suggestion
that the transition could be in a new nonconformal universality
class if the nonvanishing fugacity of the domain walls is
properly taken into account. Indeed, the role of the particles is
played by the domain walls in these systems, and the fugacity
controls the density of dislocations. So with a nonvanishing
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fugacity one can expect that the exponent of the floating phase
will change along the Pokrovsky-Talapov transition line.

It will be very interesting to revisit the investigation of
various models in quantum 1D and classical 2D physics
along the lines of the present paper. In particular, it would
be interesting to try and measure the exponent of the critical
phases in various models of commensurate melting along the
Pokrovsky-Talapov line and hopefully to locate accurately the
Lifshitz point using the criterion that it reaches the critical
value of the KT transition.

Beyond the Lifshitz point itself, the possibility to de-
termine the extent of the floating phase on the basis of a
numerical investigation of the Luttinger liquid exponent also
opens new perspectives in the field. Indeed, locating the KT
transition by looking at the correlation length is notoriously
difficult because it diverges so fast that it exceeds the acces-
sible system sizes long before the transition, and it is well
known in the context of the XY model that to calculate the
spin stiffness of the critical phase leads to much more accurate
results. Work is in progress along these lines.

Finally, the present results provide a strong motivation to
further investigate the properties of the chiral universality
class, whose realization at commensurate melting is more
likely than ever, but whose characteristics are still partly elu-
sive.

After completion of this paper, it was pointed out to us
[46] that, in addition to a dynamical exponent equal z = 2,
the standard definition of the Pokrovsky-Talapov universality
class includes the fact that the system flows to free fermions,
hence, that the Luttinger liquid exponent of the floating phase
should go to 1 at the transition. For small λ, our numerical
results do not exclude that the transition between the disor-
dered phase and the floating is in this universality class, but
for larger λ, they seem to be inconsistent with this universality
class. Further numerical results are under way to try and fully
characterize this transition.
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APPENDIX A: EXTRACTION OF THE LUTTINGER
LIQUID EXPONENT

To extract the Luttinger liquid exponent inside the floating
phase, we have fitted the Friedel oscillations of the local-
density profile induced by the open boundary conditions. An
example of a typical fit is provided in Fig. 7. In the absence of
incommensurability boundary conformal field theory (CFT)
predicts the profile to be of the form ∝ (−1)x/{sin[πx/(N +
1)]}K . To account for incommensurate correlations, we use the
modified version ∝sin(qx + φ0)/{sin[πx/(N + 1)]}K , which
is expected to describe the asymptotic form of the scaling.
Therefore, to reduce finite-size effects, we fit only the central
part of the profile sufficiently far from the edges x, (N −

FIG. 7. (a) Example of the local-density profile obtained with
DMRG for N = 2100 sites at λ = 1 and μ = 1.7945 and cen-
tered around its mean value (blue dots). The red line is a fit to
the CFT prediction ∝sin(qx + φ0 )/{sin[πx/(N + 1)]}K . The value
of the incommensurate wave vector extracted from this fit is q ≈
0.014 746 88π . The average error between the DMRG data and the
fit is on the order of 10−8. To reduce finite-size effects we only fit the
central part of the profile and discard a few hundred sites at the edges.
(b) Luttinger liquid exponent K extracted from the fit as a function of
the number of discarded sites at each edge. To get a better estimate
of K we take the average over an integer number of helices keeping
a balance between the distance from the edges and the size of the
middle domain (white region).

x) 
 1 as shown in Fig. 7(a). It turns out that the scaling
dimension K is sensitive to both the interval of the fit and
the error in the wave-vector q. The latter problem is solved
by increasing the accuracy of the fit to ≈10−8. The values
obtained for K are then averaged out over different numbers of
discarded edge sites as shown in Fig. 7(b). To get a reliable fit,
the central part used in the fit should contain sufficiently many
helices. This prevents us from getting results in the immediate
vicinity of the Pokrovsky-Talapov transition where the wave-
vector q is very small, but as we will see, the exponent K
varies smoothly as a function of μ, so it is still possible to get
a precise estimate of K in the vicinity of the PT line.

We have extracted the Luttinger liquid parameter and the
incommensurate wave vector for various values of λ. In addi-
tion to Figs. 4(a) and 4(b) for λ = 1, we present our results
for λ = 0.2 and λ = 2 in Fig. 8. Note that for λ = 2 the
width of the floating phase is already very small on the order
of 7 × 10−3. The evolution of the Luttinger liquid parameter
along the Pokrovsky-Talapov transition is presented in Fig. 5.
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FIG. 8. Luttinger liquid parameter and incommensurate wave-
vector for various cuts. (a) and (b) Luttinger liquid parameter K
and (c) and (d) incommensurate wave-vector q as a function of the
chemical potential μ for coupling constant λ = 0.2 (a) and (c) and
λ = 2 (b) and (d). The dotted lines are guides to the eye. The black
dotted lines in panels (a) and (b) are linear fits of the three to four last
points; in panels (c) and (d) we fit all available points to |μc − μ|1/2.
The error bars are smaller than the size of the symbols. Similar plots
for λ = 1 are presented in Figs. 4(a) and 4(b).

APPENDIX B: DENSITY AT THE POKROVSKY-TALAPOV
TRANSITION

We argue that the Luttinger liquid exponent is not constant
along this transition because it is not fixed by the density.
In Fig. 9 we summarize how the density evolves across the

FIG. 9. Density at the Pokrovsky-Talapov transition. (a) Average
density across the Pokrovsky-Talapov transition for various fixed
λ. The circles stand for the data points. The lines are the result of
two types of fits: linear above the transition and of the form a|μ −
μc|1/2 + 〈ni〉c below it. (b) Density along the Pokrovsky-Talapov line
as a function of λ. The errors are smaller than the size of the symbols.
(c) Density as a function of the Luttinger parameter K .

PT transition. We extract the density by averaging the local-
density 〈ni〉. The interval over which we average always lies
between two local maxima. This way, even if the wave-vector
q is close to zero, we obtain meaningful results. To reduce
the edge effects we start with maxima located at 100–200
sites from the edges for N = 600 and at 200–400 sites for
N � 1200.

In order to find the density 〈ni〉c at the PT transition we
fit the data point above the transition with a straight line and
extract the value at the critical point determined from the in-
commensurate wave-vector q as shown in Figs. 8(c) and 8(d).
Below the transition we fit the data with a|μ − μc|1/2 + 〈ni〉c,
where a is the only fitting parameter. As shown in panels
(b) and (c) of Fig. 9, the density changes significantly along
the PT line, and the change in density is correlated with the
nonconstant value of K along this line.
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