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Abstract

Artificial Intelligence (AI)-based auto-delineation technologies rapidly delineate multiple structures of interest like organs-at-
risk and tumors in 3D medical images, reducing personnel load and facilitating time-critical therapies. Despite its accuracy,
the AI may produce flawed delineations, requiring clinician attention. Quality assessment (QA) of these delineations is
laborious and demanding. Delineation error detection systems (DEDS) aim to aid QA, yet questions linger about potential
challenges to their adoption and time-saving potential. To address these queries, we first conducted a user study with two
clinicians from Holland Proton Therapy Center, a Dutch cancer treatment center. Based on the study’s findings about the
clinicians’ error detection workflows with and without DEDS assistance, we developed a simulation model of the QA process,
which we used to assess different error detection workflows on a retrospective cohort of 42 head and neck cancer patients.
Results suggest possible time savings, provided the per-slice analysis time stays close to the current baseline and trading-off
delineation quality is acceptable. Our findings encourage the development of user-centric delineation error detection systems
and provide a new way to model and evaluate these systems’ potential clinical value.

Keywords Auto-delineation - Quality assessment - Process optimization - Information integration - Radiotherapy center -
Time pressure

1 Introduction

External beam radiotherapy (EBRT) is a widely used cancer
treatment that relies on the precise delineation of tumors and
organs-at-risk (OARSs) to optimize radiation dose delivery.
Manual delineation is laborious and time-consuming, hin-
dering the adoption of time-sensitive therapies like adap-
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tive proton therapy (Albertini et al. 2020; Sonke et al. 2019;
Castadot et al. 2010). Al technologies such as deep learn-
ing-based auto-delineation can swiftly generate delineations
from CT or MRI scans, reducing clinician workload and
enhancing consistency (Nikolov et al. 2021; Cardenas et al.
2019; Sonke et al. 2019). However, Al-generated delinea-
tions often contain inaccuracies requiring quality assessment
(QA) by clinicians (Vandewinckele et al. 2020).

As Fig. 1 illustrates, the QA process involves clinicians
navigating auto-delineated image slices to identify and cor-
rect errors, a particularly demanding task for anatomically
complex regions like the head and neck. Recently, deline-
ation error detection systems (DEDS) have been proposed

@ Springer
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Fig. 1 Overview of the Al-infused delineation workflow. The input is
a set of 3D image volumes to delineate, a computerized tomography
(CT) in the example. After generating the initial delineations with the

to streamline QA by highlighting areas likely to contain
errors (Sander et al. 2020; Zhou et al. 2023; Roberfroid et al.
2024). While these technologies promise to reduce QA time,
their clinical implementation and impact on workflow effi-
ciency remain underexplored.

This study aims to advance the clinical applicability
of DEDS by addressing questions about the suitability of
the DEDS workflow and its potential to expedite the QA
process. We employed a mixed methods approach, starting
with an observational user study involving a radiotherapy
technologist and a radiation oncologist from Holland Proton
Therapy Center (HollandPTC) to refine the DEDS workflow
and validate several information sources for error detection
and prioritization. This was followed by a simulation study
that assessed the time-saving potential of various DEDS
workflows across a diverse patient cohort with varying
anatomies and error patterns.

The user study revealed a preference among the two clini-
cians for prioritizing errors based on clinical metrics, such
as dose, over other forms of assistance with which they are
less familiar. Further, DEDS assistance proved cumber-
some, with the two clinicians expressing fatigue and confu-
sion about the suggested slice orderings. These obstacles
prompted the radiotherapy technologist to partially revert to
a sequential slice-by-slice approach when navigating three-
dimensional image volumes. Simulation results indicate that
DEDS can improve the QA time-quality trade-off, although
further refinement is needed for integration into clinical
practice. This work sets a benchmark for DEDS evaluation

@ Springer

Al, the clinician proceeds to perform a quality assessment (QA). The
process has two tasks that alternate until there are no more errors:
delineation error detection and editing

and provides a simulation model that can be used to assess
different error detection strategies.

2 Related work

Existing literature on user evaluation of radiotherapy soft-
ware and workflows focuses on treatment planning process
steps like delineation (Kalpathy-Cramer et al. 2014; Steen-
bakkers et al. 2005, 2006) and dose optimization (Mazur
et al. 2014, 2013). Particular to the case of delineation,
research has focused on understanding the delineation work-
flow (Aselmaa et al. 2017); and investigating the effect of
alternative image modalities (Steenbakkers et al. 2006) and
delineation uncertainty (Maruccio et al. 2024), and usability
of semi-automatic editing tools (Aselmaa et al. 2017; Ram-
kumar et al. 2016, 2017). Recently introduced deep neural
networks (DNNs) generating delineations of hundreds of
OARs at once (Nikolov et al. 2021; Cardenas et al. 2019)
prompt clinics to create clinician-centric delineation qual-
ity assessment (QA) processes to identify and rectify DNNs
inaccuracies (Vandewinckele et al. 2020).

This paper focuses on the delineation error detection QA
subprocess. Delineation error detection systems (DEDS) can
identify errors at various levels, from voxels to anatomical
structures (Altman et al. 2015; Hui et al. 2018; Rhee et al.
2019; Sandfort et al. 2021; Mody et al. 2022a). DEDS accel-
erate QA by directing attention to errors, reducing unnec-
essary scrutiny of clinically-acceptable delineations. For
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instance, some DEDS employ Als to predict errors within
slices based on auto-generated delineations and their uncer-
tainty (Sander et al. 2020). Recent developments even sug-
gest a DEDS module that actively directs clinicians to the
next slice for review based on predicted error extent (Zhou
et al. 2023) or predicted dosimetric impact (Roberfroid et al.
2024). Despite advances in DEDS, their clinical implemen-
tation and associated user experience challenges remain
largely unaddressed issues.

In adaptive radiotherapy, clinicians prioritize areas based
on dose distribution and patient malignancies (Chaves-de-
Plaza et al. 2022). Various studies explore the dosimetric
impact of delineation errors (Guo et al. 2021; Movik et al.
2023; van Rooij et al. 2019). Recent work introduces a
DEDS that utilizes deformations of auto-generated delinea-
tions and dose prediction technologies to identify dosimetri-
cally relevant areas for inspection (Roberfroid et al. 2024).
We incorporate dose as a clinically relevant priority measure
and discuss alternatives with the two clinicians in the study
when dose information is unavailable.

3 Materials and methods

We used imaging data associated with a retrospective cohort
of 42 head and neck cancer patients treated at Holland Pro-
ton Therapy Center (HollandPTC) between 2018 and 2020.
The study from which the patient data was taken received
IRB approval from Holland Proton Therapy Center (Hol-
landPTC), and all patients provided informed consent. Data
from three patients were employed for the user study and the
complete cohort for the simulation study.

Figure 2 presents an overview of the different types of
three-dimensional images available per patient plus the
additional ones we derived, like Al delineations and their
uncertainty. In the remainder of this paper, we distinguish
three-dimensional images, or image volumes, using a mon-
ospace font. Unless stated otherwise, operations on pairs
of volumes are applied voxel-wise, yielding a new volume
(i.e., vol3 = voll + vol2). We use subscripts on the vol-
ume to index slices or voxels, which we specify in the text.
For instance, vol, in the figure refers to the s” 2D axial slice
of vol.

3.1 Imaging data

The top section of Fig. 2 displays slices of the patient’s CT
scan (image) and organ-at-risk (OAR) delineations (del*)
used for the original treatment planning. We define del* as
delineation ground truth in our studies. In the user study, par-
ticipants did not have access to del* while performing the
error detection tasks. de1*(0AR) represents the delineation of
a specific OAR, which is a binary image with ones where the

OAR lies and zeros otherwise. image and del* have width,
height and slice dimensions of sizes 512 X 512 X 195 voxels
and spacing of 0.98 X 0.98 x 2 mm.

Each patient file also included the treatment dose distri-
bution volume, representing radiation deposition in space. In
Fig. 2, brighter yellow and darker purple colors mean higher
and lower dose values, respectively. We resampled the dose
to match the dimension sizes of image and del*. We include
the dose in our studies because the participants have an
adaptive radiotherapy background, where the dose is used
as a heuristic to determine which slices need more attention
(Roberfroid et al. 2024). In certain situations, metrics such as
the distance to the target volumes may be more appropriate
than the dose. Deciding to prioritize one over the other would
necessitate rearranging the slices and consequently altering the
workflow, which constitutes the primary focus of our paper.

For preprocessing, we cropped all three volumes using
a bounding box centered at the brain stem with dimensions
240 x 240 x 80 voxel and spacing of 0.8 X 0.8 X 2.5 mm.
Linear interpolation was applied to image and dose, while
nearest-neighbor interpolation was used for del*. These
preprocessing steps aligned the data with the input format
expected by the Al

3.2 Al delineations, uncertainty and error

We fed the patient’s image in the HollandPTC dataset to a
pre-trained state-of-the-art Bayesian deep neural network (the
Al in this work), to generate ten candidate delineations for each
input image. For this, we used the FlipOut model described
in Mody et al. (2022b), which is based on the FocusNet archi-
tecture, employing a modified cross-entropy loss. The model
generates delineation candidates by running ten times, each
with a different set of weights sampled from a learned distribu-
tion. The network was trained on a subset of 33 patients of the
MICCAI2015 head and neck dataset (Raudaschl et al. 2017).
For each patient, there are delineations for nine OARs of which
we used six: BrainStem, Mandible, parotid glands (Parotid_L
and Parotid_R), and submandibular glands (Submand_L and
Submand_R). We refer the reader to the original publication
for more details about the network architecture and training.

Each Al-generated candidate cdel! withi € {1,...,10}is
a label map volume, with each voxel having the ID of the
OAR it belongs to (or zero if background). To aggregate the
candidates into the predicted delineation del, we computed
the voxel-wise median label:

del = M(cdell, ..., cde1!?), ey

where M denotes the voxel-wise median function. del is also
a label map with the same dimensions and spacing as image.
To obtain an OAR'’s predicted segmentation de1(0AR), it
suffices to set voxels matching match a given OAR ID to

@ Springer



Cognition, Technology & Work

image, + del*(PR),

dose,

2D slice (s) of image and
dose with bounding box
around del1*(PR)

Parotid R

|

Bayesian Deep
Neural Network

cdel(PR)1 cdel(PR)Z2

cdel(PR)2

cdel(PR)L®

image, + del(PR),

Fig.2 Example of the information sources used in this paper for one
of the patients in the HollandPTC dataset. The top row depicts a slice
of the image and dose of the Parotid_R. We used a Bayesian Deep

one and the rest to zero. Note that the median operation can
be thought of as performing a voxel-wise majority vote on
the OAR IDs.

From the candidate delineations, we also calculated the AI's
uncertainty unc per OAR as the voxel-wise standard deviation
of the OAR’s candidates:

(@)

del(0AR)' — i(0AR))?
ne(OAR) = \/2 (cdel( ) o)
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Neural Network to obtain ten delineation candidates based on the
image. The bottom row depicts the information sources we derived
based on these candidates

where cde1(0AR)' represents the binary image of the OAR’s
i delineation candidate and f(0AR) the mean delineation for
a specific OAR.

As the sample unc slice in Fig. 2 illustrates, the com-
puted uncertainty exhibits higher values (brighter spots) in
image regions with challenging delineation, such as those
lacking inter-tissue contrast. We prefer Al uncertainty over
previous hand-engineered feature-based methods because
it is readily available from the Bayesian network, requir-
ing less domain-specific knowledge, and is correlated with
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delineation errors (Sander et al. 2020; Mody et al. 2022b).
Therefore, in our studies we adopt unc as a proxy for
delineation errors’ location and extent.

The final information source we consider is the delinea-
tion error error, calculated as

error(0AR) = |del*(OAR) — del(0AR)|, 3)

where | - | is the voxel-wise absolute value function.
error(0AR) highlights areas where Al predictions and Hol-
landPTC'’s delineations disagree. Note we do not differenti-
ate between under and over-segmentation errors. Being an
error proxy, unc can suffer from false positives and nega-
tives. In the studies, we use error to provide an upper
bound to the performance gains, assuming an optimal error
detector. Finally, in the user study, we use error as an
additional information source to elicit discussion, allowing
participants to contrast it with unc.

3.3 Per-slice scores

To enable priority sorting in the DEDS-assisted workflow,
for an OAR we compute per-slice scores based on the unc,
dose, and error. Computing the priority scores p(0AR) of
an OAR’s slices entails applying an aggregation function to
each slice of the OAR and collecting the values in an array:

p(0AR) = {agg(vol(0AR),_,)agg(vol(0AR),,), ...,

agg(vol(0AR)_g)}, )

where agg(-) takes as input a set of voxels (in this case
those in an axial slice s) and outputs a number. For
instance, to obtain the mean uncertainty score, we set
vol(0AR) = unc(0AR) and agg = mean. We only consider
voxels within de1*(0AR)’s bounding box to avoid assigning
scores to unrelated parts of the volume, like slices above
and below the OAR. The assumption of correct bounding
boxes before QA is not unreasonable, as inspecting and rec-
tifying OARS’ bounding boxes is an easy task that could be
performed beforehand. In the user study, we considered the
minimum (min), maximum (max), mean, and sum aggrega-
tion functions to enable discussion. In the simulation study,
we focused on the most relevant ones from the user study.

4 User study: workflow comparison

We conducted a two-part user study to investigate clinicians’
current (part 1) and DEDS-assisted (part 2) workflows. In
the following, we describe the study setup and then present
and discuss the main findings, which inform the simulation
study in the next section.

4.1 Study setup
4.1.1 Participants

A radiation oncologist (RO) and a radiotherapy technologist
(RTT) from Holland Proton Therapy Center (HollandPTC),
specialized in the head-and-neck area participated in our
study. Both participants have several years of experience
and perform delineation tasks routinely. TU Delft’s IRB
approved this research, and each clinician provided informed
consent to be part of the study.

4.1.2 Apparatus

The clinicians utilized the DEDS depicted in Fig. 3. We
developed the custom DEDS software based on several ses-
sions with two clinicians from Leiden University Medical
Center and University Medical Center Utrecht. The design
process is detailed in Appendix A. The DEDS incorporates
functionality from standard delineation software like the
list of OAR to review and a slice-based image viewer that
allows inspecting the image volumes with interactions such
as navigation, zooming, and panning. This functionality ena-
bles traditional error detection workflows. Additionally, as
detailed next, the DEDS software implements functionality
that permits clinicians to define and execute priority-based
workflows.

A more detailed slice-level OAR explorer (slice explorer)
allowed participants to inspect OARs’ slices and sort them
based on a priority score

wp(0AR), =w,agg, (unc(0AR),) + w,agg,(dose(0AR),)
+ wsaggs(error(0AR),),

defined as weighted combination of unc, dose, and error
scores. w; represents weights, normalized to sum to one, and
agg; denotes aggregation functions. Participants selected
their preferred aggregation functions and assigned them
weights before starting part 2 of the study using the form in
the score definition area of the DEDS’ GUI in Fig. 3a. We
allowed participants to define the priority score to elicit dis-
cussion about the relevance of different information sources
and aggregation functions.

Although unc can be used as an error proxy, it is not
the only option. For instance, the approach of Sander et al.
(2020) directly flags errors at the patch level. To facilitate
richer discussions, we decided to permit participants to use
the error and told them it was computed by an automatic
method to prevent overreliance. Participants could overlay
the volumes used for the score computation on the image
viewer for closer inspection. A panel to the right of the
image viewer (contextual information) provided details

@ Springer
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Fig.3 Custom DEDS software used in the study. a Shows the graphi-
cal user interface. The main areas are the slice explorer and the image
viewer. Using the score definition box, clinicians can define a slice
ordering per OAR based on uncertainty, dose, and error information

about the current slice, its score, and its location within the
image. Figure 3b presents an example of the different infor-
mation sources for slice s = 11 of OAR=Parotid_R.

4.1.3 Procedure

The RTT and RO participated in a three-stage, 60-min
session. In the first stage, we presented the study’s goal,
introduced the clinicians to the DEDS, explained how to
define priority scores based on weights and aggregation
functions to sort OARS’ slices, and let them interact with
the DEDS to gain familiarity. In the second stage, the
participants detected delineation errors without (part 1)
and with (part 2) DEDS assistance. In part 1, participants
performed their usual sequential error-finding workflow,
permitting them to gain further familiarity with the tool
before introducing assistance. For part 2, participants were
instructed to use DEDS guidance by defining a priority
score (as defined in Eq. 4) and using it to guide the order
in which they visit OARS’ slices. In both parts, the partici-
pants were instructed to consider OARs’ priorities when
deciding which to address within a 5-min time window,
chosen to induce the need to prioritize delineation errors.
Furthermore, OARs were shown in the same order in the
graphical user interface, and participants had to complete
an OAR before moving on to the next. Finally, the par-
ticipants were allowed to move back and forth between
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displayed OAR (slice 11 of Parotid_R). It also presents the per-slice
value obtained with the user-defined aggregation functions

adjacent slices if needed for sense-making. Because rec-
tifying errors is time-consuming and not within the scope
of this study, we asked clinicians to instead indicate per
slice if they would edit it via a keyboard shortcut. After
finishing each task, we used a 5-min time slot to discuss
the clinicians’ experience using specific slices they marked
as requiring editing, and, in part 1, to define the priority
score. In the last 20-min stage, we had a semi-structured
discussion about participants’ workflows, their choice of
information sources for prioritization, and their experi-
ences and challenges for DEDS adoption.

We used a subset (N = 3) of HollandPTC’s patients’ data
(D1, D2 and D3). D1 was used in the familiarization stage.
The RO saw data from D2 and D3 in part 1 and part 2. The
RTT observed D2 twice. This was unintentional and was not
noticed until the data analysis phase. Therefore, we treated
these sessions as independent observations, but we acknowl-
edge this duplication as a limitation and have taken it into
account when interpreting the results. Table 1 summarizes
the structures considered in the user study analysis for D2
and D3. We do not include the mandible because clinicians
tend to skip it due to its low clinical significance (Jensen
et al. 2020) and the clinicians’ high confidence in Al auto-
delineations for bony structures. Also note that the parotid
glands demand the most effort, with their bounding boxes
spanning more slices and containing more voxels per slice
than the BrainStem and submandibular glands.
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Table 1 Overview of the

. Dataset 2 (D2)
organs-at-risk (OARs)

Dataset 3 (D3)

considered for analysis OAR Number ~ Voxels per slice  Volume (mm?*) Number Voxels per slice  Volume (mm?)
of slices of slices
BrainStem 25 1666 29,963 25 1872 36,037
Parotid_L 25 2688 35,736 26 4104 36,875
Parotid_R 26 2912 36,646 24 4292 39,267
Submand_L 18 1209 12,498 16 1015 10,410
Submand_R 17 1394 10,970 17 928 9970

The table lists, for each OAR of each dataset, the number of slices and amount of voxels per slice its
bounding box spans. It also lists the volume in mm?® of the OAR’s delineation ground truth del*. Bold
entries indicate the OAR with the largest volume within each dataset

4.1.4 Data analysis

We recorded the screen and the participant’s spoken remarks
in the sessions. From these, we transcribed clinicians’
remarks and timestamped OAR changes, slice changes,
and slices marked as “required editing”. We recorded slice
changes, yielding information about the order in which clini-
cians inspect the delineations in each condition. These inter-
action logs allowed us to reconstruct clinicians’ workflows.

4.2 Part 1: Non-assisted workflow

The RTT and RO conducted the error-finding task as in clin-
ical practice. Figure 4 shows the sequence of slices followed
by the RTT and RO for the BrainStem (a) and Parotid_L
(b). Figure 4a.1 and b.1 display the clinicians’ and optimal
slice change sequences using the per-slice sum of errors as
the priority score. The y-axis is trimmed to slices within the
bounding box of de1*(OAR) and sorts the slices based on
their 3D position within the image volume. Despite opposing
starting directions, both clinicians share similar navigation
behavior, following a sequential approach (unlike the opti-
mal sequence’s “jumpy”’ behavior), with the RTT moving
from bottom to top and the RO mostly in reverse. They fre-
quently revisited adjacent slices to verify multi-slice errors,
particularly in the slice range [14, 19] of the BrainStem.

To compare the slice sequences of different workflows,
we calculated the number of slice change interactions
required to review slices suggested by a DEDS. A subset
S of an OAR’s slices consists of the IS slices exceeding
the threshold. We evaluated the interactions needed for
slice subsets of increasing size as the threshold decreased,
including clinician workflows with redundant interactions
removed and hypothetical scenarios: an optimal sequence
ordered by decreasing erroneous voxels per slice, a worst-
case sequence reversing the optimal, and five random per-
mutations of the optimal sequence, with the mean and 95%
confidence interval.

Figure 4a.2 and b.2 show slice change interactions as a
function of suggested slice subset size for clinicians’ work-
flows and hypothetical scenarios. The optimal workflow
forms a diagonal line with a unit slope, indicating slice
changes match the subset size. The worst-case scenario
appears as a horizontal line since the highest error slice
is reviewed last. Random samples lie between the optimal
and worst-case scenarios, approaching the latter as the sub-
set size grows, reflecting higher chances of critical slices
appearing later. Clinicians’ workflows generally deviate
from the optimal path and often exceed the worst-case due to
redundant interactions. Removing redundancy improves the
RO’s performance, aligning closer to or surpassing random
workflows but still falling short of the optimal. The RTT’s
workflows remain near the worst-case, often missing critical
slices early. The RO’s workflows are faster than the RTT’s,
indicating shorter per-slice analysis times.

Table 2 compares the performance of different workflows
for inspected OARs. Performance is quantified by the area
under the curve relative to the optimal sequence, normalized
per OAR. Scores closer to zero indicate near-optimal perfor-
mance, while scores closer to one approach the worst-case
scenario. Values above one reflect redundant interactions.
Removing redundant visits (RTT’ and RO’) significantly
improves scores. Trimmed RO workflows (RO’) perform
best, outperforming RTT and random sequences, but still
deviate from the optimal, especially for the BrainStem and
parotid glands, suggesting DEDS guidance could further
reduce interactions and save time.

4.3 Part 2: DEDS-assisted workflows

In part 2, the RTT and RO were offered and instructed to
use DEDS assistance to find slices that required attention.
They started by defining a priority metric as a weighted
combination of unc, dose, and error to sort the slices
in priority order. Table 3 shows the combinations of infor-
mation sources clinicians defined for different OARs. Both
expressed reservations about the redundancy of uncertainty
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Fig.4 Unassisted workflows for BrainStem (a) and Parotid_L (b) for
the RTT and RO. a.1 and b.1 Depict slice changes as the session pro-
gresses, and (a.2) and (b.2) show the interactions needed to complete
a DEDS-suggested workflow, encompassing subsets of OAR’s slices
of increasing cardinality corresponding to decreasing threshold val-

Table 2 Performance of various error detection workflows

OAR RTT RTT’ RO RO’ Random
BrainStem 1.50 1.00 1.32 0.71 0.81
Parotid_L 1.98 0.93 1.10 0.52 0.86
Parotid_R - - 1.11 0.69 0.84
Submand_L - - 0.30 0.18 0.80
Submand_R - - 0.21 0.21 0.75

For a given workflow, its score corresponds to the difference between
the areas under the workflow’s and the optimal workflow’s curves.
The scores are normalized per OAR to provide comparable scores.
The optimal and worst-case sequences have scores of zero and
one, respectively. Clinicians’ workflows with redundant slice visits
removed are indicated by the apostrophe. Bold values highlight the
smallest difference per OAR
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ues for the prioritization scores. We compare the observed workflows
with versions in which redundant interactions have been trimmed and
with several hypothetical scenarios. The purple shaded area corre-
sponds to the 95% confidence interval of the random scenario

and error and their reliability in time-sensitive scenarios.
This might be why clinicians emphasized dose-based risk
measures, assigning lower weights to unc and error.
Information sources, aggregation functions, and weights
remained generally consistent across OARs. The sole excep-
tion was the aggregation function for dose-based slice scores
for the parotid glands, where the RO adjusted it to the mean.

The RTT and RO found following the priority order
to be cumbersome and fatiguing, echoing the RO’s view
that “jumping between slices is not logical” and disrupts
the 3D perception. Figure 5 illustrates this sentiment in
the Parotid_R’s workflow data. The RO (a) struggled
with the initial sorting order provided by DEDS, leading
to a reverse inspection (following ascending rather than
descending priority score order), which led to a mirrored
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Table 3 Settings the RTT and

C Source  BrainStem Parotid_L Parotid_R

RO used to define the priority

score for sorting the slices of RTT RO RTT RO RTT RO

the different OARS in part 2 of

the user study agg w agg w agg w agg w agg w agg w
unc Mean 050 Mean 0.25 Mean 050 Mean 0.25 Mean 050 Mean 0.25
dose Max 0.50 Max 0.65 Max 0.50 Max 0.65 Max 0.50 Mean 0.65
error Sum 0 Sum 0.10  Sum 0 Sum 0.10  Sum 0 Sum 0.10

agg denotes the aggregation functions and w the weights clinicians applied per information source and

OAR
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Fig.5 Assisted workflows of the RO (a) and RTT (b) for Parotid_R.
a.l and b.1 depict slice changes as the session progresses, and a.2
and b.2 show the interactions needed to complete a DEDS-suggested
workflow, encompassing subsets of OAR’s slices of increasing car-
dinality corresponding to decreasing threshold values for the prior-

slice sequence as shown in (a.1). The RTT (b) intermit-
tently followed the DEDS suggestions but often reverted
to traditional navigation, as depicted in (b.1). Figure 5a.2
and b.2 show that deviations from the suggested sequence

RO == Random Trimmed

Interactions Needed to

2. Complete DEDS Workflow

v 50
.2
S 40 -
T
£ 30+
“8 J/
8 —— Suggested
£ —— RTT (113 secs)
= —— Random

0 5 10 15 20 25

Number of Slices Suggested by DEDS

*=*Yes = No

itization scores. We compare the observed workflows with versions
in which redundant interactions have been trimmed and with several
hypothetical scenarios. The purple shaded area corresponds to the
95% confidence interval of the random scenario

led to suboptimal performance. A similar pattern is evi-
dent in the BrainStem and parotid glands, as presented
in Table 4. The trimmed RTT workflows (RTT’) tend to
perform better, as the RTT intermittently followed DEDS
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Table 4 Performance of various error detection workflows

OAR RTT RTT’ RO RO’ Random
BrainStem 0.92 0.92 0.95 0.95 0.42
Parotid_L 0.57 0.39 1.08 1.00 0.40
Parotid_R 1.39 0.34 0.94 0.94 0.42

For a given workflow, its score corresponds to the difference between
the areas under the workflow’s and the optimal workflow’s curves.
The scores are normalized per OAR to provide comparable scores.
The optimal and worst-case sequences have scores of zero and
one, respectively. Clinicians’ workflows with redundant slice visits
removed are indicated by the apostrophe. Bold values highlight the
smallest difference per OAR

pointers, avoiding unnecessary slice visits, especially for
the parotid glands.

4.4 Discussion

Part 1 investigated clinicians’ error detection workflows.
Both the RO and RTT followed a sequential strategy,
inspecting adjacent slices. They favored such workflow
because it helps them to orientate spatially, leveraging their
mental representations of the OARs. Nevertheless, the
comparison of clinicians’ workflows with other scenarios
revealed that redundant and suboptimal sequences decrease
their performance. Part 2 focused on investigating clini-
cians’ use of DEDS systems. The RTT and RO had prob-
lems accepting this approach, complaining about fatigue,
losing their spatial orientation, and, in the case of the RTT,
repeatedly falling back to the sequential workflow. These
issues need to be solved in the future since the workflow
comparison again convincingly demonstrates that DEDS can
reduce the number of needed interactions, which can also
impact overall spent time.

Concerning the three information sources considered,
both clinicians expressed their doubts regarding the intel-
ligibility and trustworthiness of the uncertainty and error
information sources. The dose was less problematic as an
information source, likely due to participants’ experience
in adaptive radiotherapy where heuristics like stimating the

delineation error’s proximity to the tumor are employed.
They mentioned that the maximum dose could provide a
guiding signal because false positives and negatives are
problematic in slices with a max dose higher than the OAR-
specific limit. We leverage this observation in the next
section to develop a computational model of the DEDS
workflow.

The main limitation of the user study is the very small
sample size. To test the insights from the user study on a
larger dataset, we performed a quantitative evaluation of the
DEDS-assisted QA workflow using a simulation approach.
To this end, we introduce a computational model of the com-
plete QA workflow, including analysis and editing, which we
use to investigate the viability of DEDS workflows. Specifi-
cally, we analyze the impact of varying per-slice analysis
times on overall QA performance for the complete Hol-
landPTC dataset.

5 Simulation study: assessing
DEDS-induced time gains

5.1 Simulation setup

To examine the potential time savings achievable with
DEDS, we compare DEDS workflows with the current unas-
sisted clinical workflow. Figure 6 depicts a computational
model of the quality assessment process (QA). In our simu-
lation, we consider three variations of this process that arise
when using different slice sequences.

In the first variation (baseline), the simulated clinician
begins either at the cranial or caudal slice with an equal
probability (Pr = 0.5) and progresses towards the oppo-
site end (next slice step), analyzing all slices. In the sec-
ond (error) and third (dose) variations, the clinician visits
the slices in order of their decreasing error extent and max
dose, respectively. In these DEDS-assisted workflows, the
simulated clinician evaluates a slice only if it has an error
(error threshold equals zero) or its max dose exceeds a pre-
set limit /(OAR), respectively. I(OAR) is an OAR-specific
limit based on constraints proposed by Jensen et al. (2020).

N No
No
— Go to next A“?'yze —> Edit slice — >
slice slice Yes
Start Are there Done Finish
errors? reviewing?

Fig.6 Scheme of the delineation quality assessment (QA) process for
an OAR. The analyze slice and edit slice rectangles have an associ-
ated time cost. The workflow variations we implement differ in the
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In the error variations, we use delineation error instead of
Al uncertainty because Al uncertainty serves as a proxy for
delineation errors. By using the actual error, we simulate a
best-case scenario where Al uncertainty perfectly identifies
delineation errors.

For this study, the same OARs and bounding boxes per
OAR as described in Sect. 3 were used. We preprocessed
the error following the protocol proposed by Sander et al.
(2020) to remove tolerated errors. This filtering process
excludes slices with errors that can be attributed to interob-
server variation. An OAR’s erroneous voxel is considered a
tolerated error if it is within 2 pixels from the border of del*
(OAR), not part of a region of erroneous voxels of at least
ten voxels in size, and not outside the top and bottom deline-
ation limits. The slice metric we use for the error workflow
is the sum of the non-tolerated erroneous voxels.

We use the dose as a proxy of the clinical significance of
potential delineation errors for the patient’s treatment. We
selected the maximum as the aggregation function for the
per-slice dose metric. Jensen et al. (2020) consider the mean
dose, but we opted for the max based on the results of the
user study. max(dose(OAR),) is a more stringent constraint,
representing a worst-case scenario for dosimetric deviations
caused by erroneously delineated voxels in slice s. The max
of the dose per slice indicates a lower risk in areas where the
dose is consistently lower than the OAR’s dosimetric con-
straint. The first three columns of Table 5 display the OARs,
their max-dose constraints, and average slice numbers across
patients for the baseline.

We simulate clinician behavior, relying on existing lit-
erature to estimate time costs for different steps. Based
on Aselmaa et al. (2017), we model the time for analyz-
ing a slice s in the baseline condition as ,(s) ~ M(4.2, 3.2)
seconds. For the error and dose conditions, we model the
analysis time as £ (s) ~ N(4.2 + €, 3.2) seconds. Here, € rep-
resents the additional time required for analyzing DEDS sug-
gestions, which are often not contiguous, resulting in jumps
between non-sequential slices. In the simulation, we con-
sider € € {0, 4} seconds, which allows us to assess the mag-
nitude of the effect introduced by increasing analysis times.
Finally, we assume a two-dimensional brush of size bs = 10
pixels for editing and model the time for editing a group of
bs pixels as 7, ~ M1, 0.1) seconds. The time for editing a
faulty slice is computed as #,,(s) = (¢, + 2., €TT0T)/bs.
Note that the editing time modeling may vary depending on
the editing tools used. In this case, we assume manual pixel
brushing for simplicity. The total time per workflow execu-
tion is calculated as

Tfot = Ta + Ted = Z ta(s) + tgd(s)a (6)

seS

42 patients

Table 5 Results of the simulation study conducted on a retrospective cohort of N

Attended errors (%) Total elapsed time (sec)

Number of slices

lOAR
(Gy)
54

OAR

Error(e = 0) Error(e = 4) Dose(e = 0) Dose(e = 4)

Baseline

Dose Baseline Error Dose

Error

Baseline

76 + 70

48 +
111 +86
144 + 63
160 + 71

270 + 437
231 + 69
253 + 77
134 + 57
121 + 44

225 + 111

157 + 100
203 + 421
150 + 53
169 + 62

93 +

182 + 94
277 + 405

20 +21
42 + 38

100+ 0
100 £ 0

100+ 0
100+ 0

T+6

18+5

23+3
35+3

27+3

BrainStem
Mandible
Parotid_L

180 + 124
231 +90

244 + 96

79 + 30

100 £ 0

100+ 0

11

8+
2+8

18 + 10
215

72

175 + 44
190 + 55
111 + 39
101 + 30

83 +£29

100 +£0

100+ 0

26+3

26

Parotid_R

153 + 59
146 + 53

102 + 48

94

93 + 26

100 +£0

100+ 0

2+ 8

26

Submand_L

47
34

92 +25

100 £ 0

100+ 0

3+4

35
35

Submand_R

+39

82 +

68 +

100 +0

100+ 0

3+4

1031 + 333

659 + 227

1233 + 516

855 +474

1036 + 445

+19

6 + 30

98 +

140 +9

Total

The table lists the organs-at-risk (OARs) considered in the study and their dosimetric limits in Grays (Gy). For each workflow variation, it provides the average and standard deviation of the
number of slices reviewed by the simulated clinicians and the percentage of errors addressed. For the total time taken to complete the QA process, results are further detailed by scenario within

each workflow. Decimal places are omitted for clarity
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where § is the set of slices to review and T, and T, represent
the total analysis and editing time, respectively. To assess
workflow quality, we calculated the percentage of attended
errors for each workflow by dividing the sum of errors in
the visited slices by the total amount of errors within the
OAR’s volume.

We conducted one hundred workflow runs for each
combination of patient, OAR, and experimental condition
(workflow variation).! In the results, we aggregate numerical
quantities like slice numbers and times across the workflow
runs within each OAR of each patient to obtain a statistical
overview of the differences between conditions.

5.2 Results and discussion

Table 5 aggregates slice numbers, percentages of attended
errors, and total elapsed QA times across patients. The last
row of the table indicates that, on average, the baseline
workflow takes longer than dose-based workflows and the
optimistic error-based one. In the baseline workflow, which
takes 1034s, the simulated clinician spends an average of
7.4 s per slice. In the error and dose workflows, the time per
slice is 8.72 and 6.86 s for the optimistic scenario (¢ = 0)
and 12.58 and 10.73 s for the pessimistic one (¢ = 4). Even
if the time per slice is higher in the DEDS workflows, the
total elapsed time generally turns out lower because cli-
nicians do not need to check all slices. Regardless of the
scenario, we observe a two-second difference in per-slice
times between the dose-based and error-based workflows.
These differences translate to total time savings of around
two hundred seconds for both scenarios. However, these
time gains come at the cost of quality. The table shows that
while the baseline and error-based workflows addressed all
errors, the dose-based ones only attended to 69% of them.
A similar speed/quality tradeoff is expected if a higher
threshold is used in the error-based workflows to limit the
subset of slices for review. Focusing on individual OARs,
we observe similar trends. Noteworthy are the BrainStem
and the Mandible for which dose-based DEDS workflows
obtain significant speedups. The dose-based workflows had
the lowest percentage of addressed errors for the Mandible
and BrainStem, indicating that many slices were skipped
because they did not exceed the dosimetric constraints. This
prioritization strategy, along with the larger size of these
structures, accounts for the observed time savings. Skipping
more slices, especially those with significant errors, reduces
analysis and editing times but compromises delineation qual-
ity (Chaves-de-Plaza et al. 2022).

! The simulation and analysis codes are available at https://graphics.
tudelft.nl/study-deds.
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Focusing on the difference between scenarios, it is pos-
sible to observe how increasing the difficulty of the slice
analysis task, and consequently, the time it takes leads to
longer T,,,. Although the pessimistic dose scenario is com-
petitive with the baseline, the error one significantly exceeds
it. At the OAR level, we note that larger structures like the
BrainStem and the Mandible, although closer to the baseline,
still outperform it in most cases. This shows that, even with
increased analysis times, DEDS can be particularly time-
saving when used to review large anatomical structures, at
the expense of confusing clinicians as seen in the user study.

To understand the contributions of the analysis (7,) and
editing (7,,) times to the total QA time, in Fig. 7 we visual-
ize the total analysis (a) and editing (b) times per OAR per
patient averaged across simulation runs. Each column of
gray horizontal lines within an OAR’s area corresponds to
a simulated condition, denoted by the color of the diamond
on the column. Each line corresponds to the average time per
patient and the diamond presents the average across patients.
In general, we observe that in the optimistic scenarios, the
analysis times are consistently below the baseline. In the
pessimistic scenario, DEDS analysis times are less favora-
ble but stay close to the baseline for larger structures like
the BrainStem and the Mandible, a similar trend to the one
we observed for T, before. Except for the BrainStem, the
dose-driven workflow consistently requires more time than
the error-driven one for € = 0 and e = 4. This indicates that
the max(dose) criteria designate more slices as high-risk
compared to error-free slices.

Concerning editing times, the figure indicates that the
baseline and the error-based DEDS workflows perform
similarly because, without a priority metric or error toler-
ance, the simulated clinician has to amend all the delineation
errors in the error-based workflows. In contrast, the dose-
based DEDS workflows are faster because they focus solely
on slices with a high max dose, which are not necessarily
the ones with the errors that take the longest to edit. In line
with the results in Table 5, the improved performance of
dose-based workflows is notable for the BrainStem and the
Mandible, which are the largest structures and, therefore,
tend to have more extensive erroneous regions. Finally, note
that the times between scenarios do not change because we
assumed the editing mechanism remains the same and is
unaffected by the slice sequence.

In summary, the results of the simulation study suggest
that DEDS workflows can reduce QA times. As the results
for the dose-based workflows show, more significant time
gains can be achieved by using more stringent thresholds to
select the subset of slices to review at the cost of decreased
delineation quality. This reduction in quality might be
acceptable if it can be established that the bypassed errors
are not clinically relevant. Our findings show diminishing
DEDS advantages over the baseline workflow for smaller
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structures and when € > 0. Therefore, it is essential to reduce
analysis time to justify the practical use of DEDS.

6 Discussion

In this paper, we evaluated the clinical suitability of deline-
ation error detection systems (DEDS). In particular, can
DEDS speed up the Quality Assessment process without
losing quality? To this end, we co-designed a DEDS with
two experienced head and neck radiation oncologists from
Utrecht University Medical Center and Leiden University
Medical Center. The system was then used by two clinicians
from HollandPTC to perform the assisted and unassisted
DEDS workflows based on slice-wise statistics of the uncer-
tainty, dose, and error. Based on insights from the user study,
we addressed the question of whether DEDS can contribute
to speeding up the clinical QA workflow using a simula-
tion approach. A contribution of this work is a computa-
tional model of the QA process, which we used to simulate
and compare several workflows. Researchers can use and
extend this model to benchmark novel and existing DEDS
proposals.

In the user study, we identified two key challenges to
DEDS adoption. First, the information sources require
refinement. Clinicians appreciated using dose information
for its clarity, as it helped filter out clinically insignificant
slices, but found the uncertainty and error metrics confusing,
unnecessary, and potentially unreliable. This issue might be
addressed by allowing more time for familiarization, intro-
ducing clearer indicators of uncertainty, and enhancing
system-user compatibility in clinical settings (Bansal et al.
2019; McCrindle 2021; Bansal et al. 2019). Second, DEDS
workflows often require navigating between non-contiguous
slices, which clinicians found cumbersome and fatiguing.
This navigation mode led clinicians to revert to conven-
tional, sequential slice inspection, increasing the number of
interactions. The challenge of maintaining a mental frame
when jumping between slices could explain this behavior
(Aselmaa et al. 2017). Providing less intrusive guidance or
better tools to update clinicians’ mental models could allevi-
ate these issues (Musleh et al. 2023).

The simulation study showed that DEDS can improve
QA times over the current baseline, especially for large ana-
tomical structures where only a subset of slices is relevant
according to a predefined metric. Nevertheless, considering
smaller subsets of potentially non-adjacent slices poses two
challenges. First, analysis times increase because clinicians
cannot inspect slices sequentially. A mitigation strategy
could be to offer clinicians chunks of contiguous slices to
allow more effective sense-making. Second, and perhaps
more critical for the adoption of DEDS-based workflows,
it should be possible to be certain that bypassed errors are
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not clinically relevant-a non-trivial challenge that requires
improving Al uncertainty estimates and developing clini-
cally relevant metrics (Roberfroid et al. 2024). For instance,
DEDS could leverage clinical measurements or heuristics
like distance to target volumes as a priority metric when the
error or dose are unavailable. The proposed framework can
directly accommodate new metrics by defining a per-slice
aggregation and a weight, allowing for combination with
other metrics if needed.

Finally, there are several future work avenues. First, the
present study applies to OARs, but other high-priority struc-
tures like target volumes and elective lymph nodes could
also be considered. Target volumes likely face challenges
to adoption because clinicians are less willing to forego
reviewing all slices due to the high risk they represent to
the patient. For example, missing errors in target volumes
could directly impact treatment outcomes, making clinicians
cautious about skipping slices. Lymph node fields are more
promising because of their large extent (which makes them
cumbersome to delineate), high priority, and relative stabil-
ity across the population, facilitating the recent development
of auto-delineation technologies (Cardenas et al. 2021). Sec-
ond, the user and simulation studies could be extended to
include other auto-delineation Als and anatomical regions,
which might have different error modes. Finally, the compu-
tational model of the QA process can be enriched, such as
by using skewed distributions for modeling reaction times,
which can be more appropriate but need substantial empiri-
cal data to estimate their parameters (Wolfe et al. 2010).

7 Conclusion

This study evaluated delineation error detection systems
(DEDS) for improving the Quality Assessment (QA) pro-
cess in clinical settings. A user study identified two main
challenges that must be addressed to increase DEDS’ adop-
tion. First, clinicians preferred dose-based prioritization for
error detection, finding it more intuitive than other metrics
like uncertainty and error, which were seen as confusing and
less reliable. Second, the non-sequential navigation required
by DEDS disrupted clinicians’ natural workflow, making it
harder to make sense of the DEDS’ suggestions. A compu-
tational model was introduced to benchmark different DEDS
workflows. Simulations showed that DEDS could signifi-
cantly reduce QA times, particularly for large structures, but
this speed-up comes at the cost of delineation quality. There-
fore, improving the accuracy of error proxies, such as Al
uncertainty estimates, and developing metrics to assess the
clinical significance of errors are crucial. Researchers can
use and extend the computational model to further evaluate
and refine DEDS.
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Appendix A ADEDS development

In this section, we outline the development of our Delinea-
tion Error Detection System (DEDS) used in the workflow
comparison user study (Sect. 5). We engaged in a co-devel-
opment process with RO1 (RO from Utrecht UMC) and RO2
(RO from Leiden University Medical Center), involving
multiple sessions where they used the tool for error detec-
tion and participated in structured discussions regarding tool
usability and information source suitability. Our analysis
involved logging clinicians’ interactions and transcribing
discussions, with relevant excerpts provided below.

A.1 Clinical delineation software

Figure 3’s top panel displays a standard open-source deline-
ation software’s graphical user interface (GUI), consisting
of two primary sections: the slice explorer (light blue rec-
tangle) listing anatomical structures for delineation and the
slice viewer (orange rectangle) for navigating 3D images
via scrolling or navigation keys, supporting zooming and
panning, and enabling pixel editing using tools like brushes
or polygon pens. Our custom implementation, based on
this GUI, was developed to support the slice-based error
detection task. While we initially considered using exist-
ing delineation software, their closed source code or com-
plexity hindered our envisioned extensions. Therefore, we
re-implemented essential functionalities, excluding editing
features, and instead used key presses to indicate editing
intentions, as described in the subsequent section on extend-
ing the prototype.

A.2 Error detection and prioritization via per-slice
scores

The bottom panel of Fig. 3 shows the GUI of the DEDS pro-
totype. Similar to delineation software it has a slice explorer
and viewer. Nevertheless, we extended the slice explorer
with two features that permit slice-driven error detection.
First, the list offers a higher slice-level granularity level.
Traditional software only allows browsing a list of OARS.
The DEDS slice explorer permits drilling down the OAR
into the slices that it spans. Furthermore, it permits sorting
each OAR’s slices based on user-defined scores as defined in
Sect. 3.3. The bottom left area of the slice explorer in Fig. 3
shows the score definition widget.

A.3 Clinicians’ feedback

The DEDS prototype underwent significant changes based
on feedback from RO1 and RO2, including the addition of

contextual information and image overlay features, customi-
zation of color maps, and simplification of score displays.
Clinicians’ feedback influenced workflow improvements,
such as grouping slices by structure in the slice explorer for
a less overwhelming experience. Initial impressions of unc
and error were mixed, with clinicians finding them limited
and potentially misleading, leading to reduced trust in the
system. To address this, explanations were provided dur-
ing the workflow comparison study. In contrast, clinicians
reacted positively to dose information, suggesting prede-
fined settings per organ, with an emphasis on maximum dose
and gradient magnitude (grad_dose) as valuable addi-
tions to the information sources. These enhancements aimed
to enhance DEDS usability and effectiveness.
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