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"The real danger is not that computers
will begin to think like men,
but that men will begin to think like computers’

- Sydney J. Harris
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Introduction

Air Traffic Controller (ATCo) workload is a major limiting factor on airspace capacity growth in the coming
years (Majumdar et al., 2004). Concepts such as free flight are proposed for autonomous self-separation, but
full implementation is not expected to be feasible in the near-future (Hoekstra et al., 2002). To bridge this gap,
novel technologies should be introduced to assist ATCos with traffic separation to reduce controller workload
(SESAR Consortium, 2007).

Specifically, Conflict Detection & Resolution (CD&R) is seen as one of the main tasks of an ATCo (EURO-
CONTROL, 1996) and is therefore the focus of this research. CD&R is a control problem in which the ATCo
prevents conflicts between aircraft by providing flight plan adjustments in terms of altitude, heading or
speed. During CD&R, automation could function as a decision aid to ultimately alleviate ATCo workload and
increase safety & performance. However, as multiple alternative actions per situation are possible, proposed
resolutions by automation do not always coincide with human strategy (Prevot et al., 2012), which hinders
automation adoption. Therefore, acceptance remains an issue and is considered one of the main obstacles in
the successful introduction of novel automation (Westin et al., 2016).

A proposed method to increase trust and acceptance of automation is to make the automation strategic
conformal (Hilburn et al., 2014). Westin et al. (2016) argue that tailoring automation to an individual’s strategy
could increase acceptance. To create a predictive model for human actions, machine learning is an apparent
means as it is able to adapt to different controller preferences without full knowledge on the underlying
decision-making dynamics (Sutton et al., 1992).

A proof-of-concept by Regtuit et al. (2018) shows that machine learning techniques are able to identify and
replicate simple conflict resolution strategies from artificially created data. However, when human controller
data is used, two questions arise: One, are controllers sufficiently consistent to base individual-sensitive
automation on? And two, is a group of controllers adequately heterogeneous in strategy for personalized
automation to be beneficial? This research aims to answer these questions by creating a machine learning
model able to predict ATCo commands based on a traffic situation.

As input for the learning algorithm, this research proposes the Solution Space Diagram (SSD)(Mercado-
Velasco et al., 2010), also known as velocity obstacle diagram (Fiorini & Shiller, 1998). The SSD displays the
solution space when detecting & resolving conflicts to support the ATCo. It is hypothesized that the SSD
contains sufficient information concerning an air traffic situation to make an informed decision (Jenie et al.,
2015; Mercado-Velasco et al., 2010; Van Dam et al., 2004). Learning from an image is advantageous because
it eliminates the need for manually designing features based on heuristics and assumptions. A machine
learning technique which is especially well-suited for this is a convolutional neural network (LeCun et al.,
1998).

A preliminary analysis using artificially generated data was performed to test the SSD as a machine learning
feature in a convolutional neural network. In addition, a human-in-the-loop experiment is devised to test
whether controllers are consistent enough to base personalized automation on. An ATC simulator is used
to create a datasets of corresponding SSD images and ATCo commands from a 12-participant population
with two skill levels. These datasets are used to train individual-sensitive predictive models using a super-
vised learning algorithm. Finally, individual model performance is compared to controller consistency and a
comparison with general group-based models is made to test strategy heterogeneity of the group.

The end-result provides insight in how an ATC Conflict Detection & Resolution (CD&R) task can be automated
in a strategic conformal way using the SSD. By making this automation individual-sensitive, it is hypothesized
that acceptance, and thus system-use, will increase. This could ultimately lead to a more reliable, safer
airspace, where Air Traffic Controller (ATCo) workload is reduced.
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How can individual-sensitive automation for Air Traffic Control be achieved by
machine learning in combination with the Solution Space Diagram?

T

What kind of traffic How to extract controller Which ML techniques are How can conformity of
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Figure 1.1: Research Question Breakdown. The Literature Review and Preliminary Analysis are both included in Part II of this document.
The Final Thesis is comprised of the scientific paper in Part I and the Appendices in Part III.

1.1. Problem Statement

The objective of this thesis is to achieve strategic conformal automation for Air Traffic Control, which is linked
to the research question:

“How can individual-sensitive automation for Air Traffic Control be achieved by using
machine learning in combination with the Solution Space Diagram?"

Four sub-questions are devised to obtain an answer on this question, as summarized in the work break-down
structure in Figure 1.1. Each sub-question is detailed below:

SQ1 What kind of traffic scenarios and ATC tasks are relevant to analyze? — This considers the scope of
the scenarios to be analyzed: the number of aircraft in the airspace, the number of aircraft in conflict,
whether to include altitude (2D or 3D), and the complexity of the sector.

SQ2 How to extract controller strategy from experimental data? — The most relevant states of the scenario
have to be identified to create ‘learning features’.

(a) Which states and actions are used by an ATCo to solve tasks?

(b) Which SSD properties are most useful to create learning features from?

SQ3 Which ML techniques are suitable for imitating controller strategy? — Given the experimental data
containing controller strategy, which algorithms can be trained?

SQ4 How can conformity of automation be measured? - In order to measure the effectiveness of the au-
tomation, metrics have to be defined based on e.g. accuracy, efficiency or conformity.



1.2. Methodology 3

Part A: Part B: Part C:
I Data generation I Training a ML algorithm Measuring conformity |

Phase I: Preliminary analysis - Proof-of-Concept

Validation data

! Data generator Environment l
Supervised g Performance
Dataset Learning validation
MVE Trained

ATM Simulator models

Y

Validation data

Environment l
— Supervised > |§ Perflt_)C;'rr:_::lnce
Dataset Learning validation
Trained
ATCo
ATC Simulator models

Figure 1.2: The research methodology consists of two phases. The preliminary analysis and the final experiment. Both phases consist of
three similar parts.

1.2. Methodology

To answer the research questions, insights from the literature review are combined with two experiments. The
literature review provides answers to sub-questions SQ1, SQ2.1, SQ2.2 & SQ3, the preliminary answers SQ2
and the final phase combines all former knowledge to answer the main research question using a human-in-
the-loop experiment.

The experiments consist of two phases: Phase I — the preliminary analysis — assesses the potential of Con-
volutional Neural Networks in combination with the SSD to train a machine learning model. In this phase,
an algorithm is used to artificially generate the dataset. Phase II — the final experiment — uses the previously
obtained knowledge to determine how strategic conformal automation can be achieved using empirical data
generated by human controllers. This structure is visually displayed in Figure 1.2.

1.3. Report Outline

PartI: Scientific Paper: The paper combines the knowledge obtained from the Literature Review,
Preliminary Analysis and the Experiment to answer the main research question.

PartII: Preliminary Thesis: Contains a Literature Review regarding CD&R and machine learning
techniques and a Preliminary Analysis, which explores the potential of using the SSD as
learning feature in convolutional neural networks.

PartIII: Appendices of the Paper: The three chapters in the appendix focus on 1) the final
experimental set-up and data, 2) the machine learning training methodology and 3)
validation on a participant level.

The report is concluded with a conclusion over all parts.
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Abstract—In the upcoming years, en route airspace capacity
will be limited by air traffic controller workload, requiring the
introduction of automation to assist controllers with conflict
detection and resolution. However, acceptance is considered to be
one of the main obstacles in the introduction of novel automation.
Individual-sensitive automation has been proposed to increase
acceptance by adapting to different controller strategies. This
research evaluates how personalized automation for air traffic
control can be achieved using convolutional neural networks.
A human-in-the-loop experiment is devised to generate datasets
consisting of conflict resolution commands with corresponding
velocity obstacle images as learning feature. Results show that the
trained models can reasonably predict command type, direction
and directional value. Furthermore, a correlation is found
between a controller consistency metric and achieved prediction
performance. Finally, the individual-sensitive models performed
significantly better than general group-based models, confirming
the strategy heterogeneity of the population, which is a critical
assumption for personalized automation.

Index Terms—Strategic conformance, machine learning,
learning from demonstrations, solution space diagram, velocity
obstacles, consistency, decision-support

I. INTRODUCTION

N ROUTE airspace capacity is mainly limited by Air
Traffic Controller (ATCo) availability and workload [1].
Concepts such as free flight are proposed for decentralized
autonomous self-separation, but full implementation is not
expected to be feasible in the near future [2]. To bridge this
gap, novel technologies should be introduced to assist ATCos
with traffic separation to reduce controller workload [3], [4].
Specifically, Conflict Detection & Resolution (CD&R) is
seen as one of the main tasks of an ATCo [5] and is therefore
the focus of this research. CD&R is a control problem in which
the ATCo prevents conflicts between aircraft by providing
flight plan adjustments in terms of altitude, heading or speed.
During CD&R, automation could function as a decision aid
to ultimately alleviate ATCo workload and increase safety
and performance. However, as multiple alternative actions per
situation are feasible, proposed resolutions by automation do
not always coincide with human strategy [6], which hinders
automation adoption. Therefore, acceptance remains an issue
and is considered one of the main obstacles in the successful
introduction of novel automation [7].

A proposed method to increase trust and acceptance of
automation is to make the automation strategic conformal
[71, [8]. Westin et al. argue that tailoring automation
to an individual’s strategy could increase acceptance. To
create a predictive model for human actions, machine

learning is an apparent means as it is able to adapt to
different controller preferences without full knowledge on the
underlying decision-making dynamics [9].

A proof-of-concept by Regtuit et al. shows that machine
learning techniques are able to identify and replicate simple
conflict resolution strategies from artificially created data
[10]. However, when human controller data is used, two
questions arise: One, are controllers sufficiently consistent
to base individual-sensitive automation on? And two, is a
group of controllers adequately heterogeneous in strategy for
individual-sensitive automation to be beneficial? This research
aims to answer these questions by creating a machine learning
model able to predict ATCo commands based on the traffic
situation.

As input for the learning algorithm, this research proposes
the Solution Space Diagram (SSD) [11], also known as
velocity obstacle diagram [12]. The SSD displays the solution
space when detecting and resolving conflicts to support
the ATCo, see Figure 1. It is hypothesized that an SSD
image contains sufficient information concerning an air traffic
situation to make an informed decision [11], [13], [14].
Learning from an image is advantageous because it eliminates
the need for manually designing features based on heuristics
and assumptions. A machine learning technique which is
especially well-suited for this is a convolutional neural
network [15].

To test controller consistency and the SSD as a machine
learning feature, a human-in-the-loop experiment is devised.
Data is gathered from a 12-participant population consisting
of six novices with knowledge but no experience in ATC and
six intermediate participants, who have undergone an extensive
ATC introductory course. Traffic scenarios are simulated in an
ATC simulator, which records all aircraft states and controller
commands. Even though altitude changes are a preferred ATCo
resolution [16], only horizontal plane CD&R was considered
due to the reduction in resolution space without necessarily
diminishing task difficulty [17]. The experimentally generated
datasets are used to train individual-sensitive predictive models
using a supervised learning algorithm. Finally, individual
model performance is compared to controller consistency and
a comparison with general group-based models is made to test
group heterogeneity.

The fundamental concepts of this research are introduced
in section II. Subsequently, experiment design is discussed in
section III and training methodology in section IV. The results
are provided in section V, followed by a discussion in section
VI and conclusions & recommendations in section VIIL.
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II. BACKGROUND
A. Strategic Conformance

It seems evident that ATM is bound to move towards a
more automated future [3]. However, acceptance of automation
remains a major obstacle [8]. The lack of acceptance leads
to reduced system use which could influence performance or
safety [18]. Past automation efforts have indeed failed due to
insufficient controller acceptance [19], of which one of the
reasons for rejection is a mismatch in “perceived strategy”
[20].

A concept to counteract this issue is strategic conformance,
defined as “the degree to which automation’s behavior and
apparent underlying operations match that of the human” [7],
[8]. Strategic conformal automation proposes advisories that
are not necessarily algorithmically optimal (e.g. using voltage
potential [21]), but rather follow heuristics defined by the
controllers’ individual control-strategy [16], [22].

An empirical study by Hilburn et al. confirms that
controllers accept conformal resolutions more often and faster
than non-conformal alternatives, especially in complex situ-
ations. However, approximately 25% of conformal advisories
were rejected [8]. This gives rise to the question; are air traffic
controllers consistent enough to base strategic conformal
automation on?

ATCo consistency is a main assumption that enables strate-
gic conformal automation. If controllers are not consistent
over time, they are not likely to agree with individual-sensitive
automation. To obtain a framework for consistency, Westin et
al. analyzed resolution strategies identified by Fothergill et al.
[23] and more than 500 conflict resolutions collected in real-
time simulations [17]. It was concluded that ATCo consistency
can be measured on different levels of abstraction, of which
the detailed decision stages are shown in Figure 2. Given
the controlled aircraft, a command in the horizontal plane is
comprised by its fype (heading, speed or direct to waypoint),
direction (left/right, increase/decrease) and value (in degrees
or knots).

Westin et al. subsequently used this framework in an
empirical study to analyze controller consistency. Results
showed that controllers were consistent, but “could not be
considered homogeneous as a group” [24], confirming the

Aircraft interacted with.
2. Aircraft choice

— T

3. Resolution Type

—

4. Direction

—

5. Directional value

Heading (HDG);
Speed (SPD);
Direct To (DCT).

Heading right (R) or left (L);
Speed increase (I) or decrease (D).

Deviation from original state value
in degrees (HDG) and knots (SPD).

Figure 2: The detailed decision stages from Westin’s consistency classifi-
cations framework can be used to measure consistency or conformity for
different decision stages. Adapted from Westin (2017) [17].

findings by Hilburn et al. [8]. Additionally, Westin concluded
that the expert controllers showed a slightly higher degree of
consistency compared to their trainee counterparts.
Following Westin’s consistency framework, one can
measure controller consistency. This, however, requires
repetition of specific situations during an experiment, limiting
the number of different conflicts that a model can be based
on. Besides, determining the similarity of situations is an
ambiguous process. For these reasons, a simplified metric
to indicate consistency is established in the line of Westin’s
framework. The following equation determines consistency in
resolution type and direction by summing over all commands
Soclass T > class II

per participant:
; 1
S class I+117 >~ class I+II) M

where for example class I and II are respectively HDG and
SPD for command fype consistency. Consistency = 1 when a
single type is used and 0.5 when they are evenly balanced.
For command values, a different equation is used:

consistency = max (

> unique values possible

consistency = -
> unique values used

@)

where the consistency of a participant decreases when
a broader range of value commands is used. These
simplifications of consistency are only valid in constrained,
asymmetrical scenarios as described in section III-A.
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Figure 3: The Convolutional Neural Network structure used in this research. All weights in one plane are identical. Size values
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Although strategic conformal automation appears promis-
ing, certain drawbacks and caveats should be considered.
First, the conformal solution is not always the optimal or
safest solution. Secondly, when working in teams, stimulating
standardized procedures might be preferred over individual
problem-solving styles. Similarly, individual automation loses
its value in case a group of ATCos behaves consensually
according to strict procedures. Lastly, automation can never be
100% conformal, given that humans are not fully consistent.

B. Solution Space Diagram

The Solution Space Diagram (SSD) is an ecological [25]
decision support tool that integrates various critical parameters
of the CD&R problem. Construction of the SSD is shown in
Figure 1. The SSD is composed by defining the Forbidden
Beam Zone (FBZ) per intruding aircraft, which comprises all
relative velocity vectors that lead to a loss of separation. When
the FBZs are displaced by the intruding aircraft’s velocity
vector, the no-go zones are defined. The color of these zones
is determined by the time to closest point of approach (CPA),
namely red (fcpa < 60s), orange (60 < tcpa < 120s) or gray
(tepa > 120s), see e.g. Figure 12.

In the SSD, the green vector indicates the controlled
aircraft’s heading and speed. The red geometric shapes each
indicate a potentially conflicting aircraft (intruder). When the
green velocity vector lies in this colored no-go zone, the
aircraft is indeed in conflict and a resolution is required. The
non-colored zones are thus, by definition, the solution space
for the aircraft.

The concept of the SSD was first introduced as velocity
obstacles for avoidance manoeuvres in robotics research [12].
This research hypothesizes that an SSD image as learning
feature contains sufficient information concerning CD&R to
make an informed decision, which is substantiated by previous
findings. Van Dam et al. introduced the SSD as state vector
envelope, aimed to assist pilots with aircraft self-separation
to obtain higher pilot performance in terms of off-track
distance [13]. In addition, the SSD was found to reduce
ATCo workload as a decision support tool [11] and function
as information basis for deconflicting maneuvers to avoid
collisions between autonomous vehicles [14]. Table I provides
further substantiation by evaluating the visualization of the
CD&R parameters in the SSD. An additional advantage of

Table I: Visualization of CD&R Parameters in the SSD.

CD&R Parameter Visualization in the SSD

Closet Point of Approach (CPA)
Time to CPA

Translating FBZ

Shorter time results in a wider FBZ
Color coded (gray, orange, red)
Inclination of the FBZ

Green vector

Number of FBZs

Ratio of free solution space

Conflict angle
Airspeed and heading
Traffic density
Traffic complexity

using SSD images as learning feature is that the input size
is not affected by the number of (conflicting) aircraft in the
sector, making it a flexible solution which works for a variety
of scenarios.

C. Convolutional Neural Networks

Achieving conformal automation is closely related to a
machine learning field called Imitation Learning (IL), which
aims to perform a task based on expert demonstrations called
Learning from Demonstrations (LfD). The aim is to generalize
the observations to unseen situations, usually using supervised
learning [26].

Artificial neural networks with a deep architecture are a
powerful method for supervised learning as they automatically
devise learning features, without reliance on pre-engineered
parameters [27]. This research follows a similar approach,
where the input images are provided by SSDs converted
to pixel data. In particular, Convolutional Neural Networks
(CNNs) [28] have shown their potential of training on image
data by demonstrating self-driving cars how to drive [29], [30]
and competing with world-class board game champions [31].

Similar to a regular neural network, a CNN consists of
multiple stacked neurons. In the case of a CNN, every input
is connected to a pixel-value of the original image, as shown
in Figure 3. One neuron is locally connected to an area in
the original image. This filter slides over the entire image
to create a new output map. These overlapping filters can
extract visual features such as small corners or edges from
the image. The visual features are subsequently combined
to form compositions while progressing through the net. A
fully connected (FC) layer is used to connect all remaining



neurons to the possible output classes (e.g. left or right). The
probability of outputs is determined by the output classifier
function.

A softmax function [32] is used as output classifier for all
abstraction levels, which transforms the fully connected layer
of real values into a vector of the probability per output class
o(z). The softmax function is defined by Equation 3, where
all entries of o are real, within [0, 1], and add up to 1. K is
the dimension of input vector z.

e®i
T =K
D k=1 2

A cross-entropy function is used to take these probabilities
into account in the loss function [33]. The cross entropy H is
calculated for M output classes by comparing the probability
vector ¢ resulting from the softmax function to the one-hot
encoded target vector y;:

o(z); forj=1,...,.K 3)

M
H(y,0) == wilogo; )

The calculated losses, averaged over a minibatch of samples
are used to update the network parameters 6. Usually a
gradient-based method is used, as described in section IV-C.

In between the convolutional layers, pooling layers
subsample the image. By reducing the image dimensions,
less trainable parameters remain and computation time is
improved. Additionally, this process removes detail from the
image to reduce overfitting [34].

The performance of CNNs is naturally determined by the
inputs, as they should capture all relevant information for the
model to make a prediction. This research utilizes the SSD as
input as described in the proceeding section.

III. EXPERIMENT

An experiment is set-up to validate the assumptions and
hypotheses regarding the information contained in the SSD
and human controller consistency.

A. Experiment set-up

The participants are asked to control an air traffic sector with
multiple incoming aircraft by giving commands following two
main objectives:

o Avoid Loss-of-Separation between aircraft.
o« Aim to guide the aircraft to their exit waypoint as
efficiently as possible.

To reach these objectives, participants could use the following
command types:

e HDG: Heading change command ([1, 360] deg).

e SPD: Speed change command ([200, 290] kts).

e DCT: Direct To exit waypoint command. Automatically
changes the heading towards the assigned exit waypoint.

The experiment consists of four 20-minute scenarios,
resulting in 80 minutes of data per participant, as shown in
Table II.

Table II: Time-planning of each experiment

Type Duration [m]  Elapsed time [m]
Briefing 5 5
Training 5 10
Run 1 20 30
Break 5 35
Run 2 20 55
Break 10 65
Run 3 20 85
Break 5 90
Run 4 20 110
Debriefing 10 120
T~ 45°-135° 0 R

, 0° - 45° [/\ 135° - 180°

Acon same-path head-on

crossing
Ainl

Figure 4: Conflict types as defined by the FAA. The intruding traffic stream is
restricted to crossing conflicts ([45,135] deg) only. Adapted from FAA (2014)
[35].

1) Scenarios: The shape of the sector — inspired by
Amsterdam Sector South 1 — is shown in Figure 5. Two
scenarios (S1 and S2) are used in the experiment with identical
sector geometry but different conflict angles. The scenarios are
restricted to the horizontal plane, i.e. all aircraft fly at the same
flight level and only heading and speed changes are allowed.
This restriction decreases the solution space, which enables
better comparison between controllers in terms of consistency
and strategy. Task difficulty is not necessarily lower because
same-plane situations have a smaller solution space requiring
more monitoring. In order to generate repeatable situations,
conflicting aircraft are matched in two-aircraft pairs. The
scenarios consist of 20 aircraft, thus 10 conflict pairs each. The
main aircraft flow is directed north while the intruding aircraft
flow arrives from the east with a closest point of approach
(CPA) of Onm for all conflicts. Considering the limited time
per experiment, a subset of conflict angles is chosen so similar
conflicts are encountered multiple times by the participant.
Specifically, only crossing conflicts are simulated, i.e. the
relative conflict angles range between 45 and 135 deg [35],
see Figure 4. Every conflict angle in the set {45, 55, ..., 135}
is visited at least four times during the entire experiment.
The conflicts are chronically spaced in a way to minimize
interference between conflicts.

2) PFarticipants: The population consists of 12 participants
divided in two groups: 6 novices with knowledge but no expe-
rience in ATC and 6 participants with intermediate experience
who have undergone an extensive ATC introductory course at
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Figure 5: The 50nm X 60nm sector as displayed in ATC simulator SectorX.
The magenta lines depict the main traffic flows north- and west-bound. Three
aircraft are visible of which two are in conflict. The circles surrounding the
aircraft indicate the protected zones (D = 5nm).

Table III: Experiment set-up

Run 1 Run 2 Run 3 Run 4

Participant Scen. SSD  Scen. SSD Scen. SSD Scen. SSD
Novice

P1-3 OFF OFF ON ON

P'4—6 S| ON S ON S| OFF S OFF
Intermediate

P7-9 OFF OFF ON ON

P10-12 ON ON OFF OFF

LVNL!.

3) Conditions: As the SSD provides a clear overview of
the available solution space, it may influence the decision-
making process and consistency of the controller. To evaluate
the effect of the SSD, each participant completed 2 scenarios
with and 2 scenarios without the SSD. The order in which
the SSD is available is altered to prevent confounding effects.
This experiment set-up is summarized in Table III.

4) Equipment: The scenarios are simulated in SectorX, a
Java-based, medium-fidelity ATC simulation tool developed
at Delft University of Technology. It provides a means
for the ATCo to interact with the environment by passing
in commands using a separate command interface through
clicking on buttons using a computer mouse. For example, to
change an aircraft’s heading west-bound to 270deg, one should
use the following sequence of clicks: [Select the aircraft using
the mouse] — [HDG] — [2] — [7] — [0] — [Execute].

Each time a command is given, the application saves the
command together with all aircraft states at that moment plus
an image of the controlled aircraft’s SSD. During supervised
model training, the SSD image functions as input while the
given command functions as target. The SSD image is used to
train on all runs, regardless of whether the SSD was available
to the participant during that time.

'Air Traffic Control the Netherlands.
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Figure 6: Command count per command type: Heading (HDG), Speed (SPD)
and Direct To (DCT).
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Figure 7: Heading command count per direction.

5) Training procedure: Before measurements, each partic-
ipant performs three training runs to get acquainted with the
ATC simulator. The first run involves controlling a single
aircraft, the second introduces a simple conflict, and the last
run introduces conflict resolution using the SSD. Each training
run lasts at least 90s and can be prolonged on demand.

B. Summary of Dataset

Each command is logged and post-processed using the
aircraft states, which primarily consist of all aircraft positions,
the velocity vectors of all aircraft and their respective bearings
to the exit waypoint. The total experiment resulted in a dataset
of close to 2,800 samples, with an average of 230 samples
per participant. Each sample consists of the state (i.e. the
pixel-values of the SSD at the time of the command) and
a corresponding target (the command). Each command is
comprised of its type (Figure 6), direction (Figure 7) and value
(Figure 8). The charts show that participants vary in number
of commands and preferred command types, directions and
values. Moreover, Figure 9 shows the geometric implications
of these strategic differences between participants.

IV. MODEL CREATION

The dataset as described in section III is used to create the
individual models according to the procedure in Figure 10.
After preprocessing the commands and SSD images, the test
data (i.e. experiment run 4) is separated from the set. The
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Figure 9: Aircraft track lines after experiment run 1 of P7
(a) and P11 (b) indicating geometric heterogeneity in
resolution strategy and consistency.

training data is used to train three personalized models per
participant, one for each abstraction level. K-fold validation
is used to select the models that obtain the highest prediction
performance, after which they are validated using the test set.
Finally, five general models are trained on random samples of
all data. The mean performance of these five models is taken
and defined as the general model baseline.

A. Data preprocessing

The SSD dataset consists of 128x128 pixel RGB samples
which are preprocessed for computing time improvements.
The most relevant information in the SSD is located in the
upper half of the image, as an aircraft is not likely to make
turns larger than 90 deg. Taking this into account, the lower
half of the SSD is cropped away to decrease training times
(Figure 11a). Secondly, to generalize the data, the velocity
vector is rotated upwards (Figure 11b. After this, two potential
steps can be taken: 1) The black background is converted to
white to make the features more pronounced, and 2) conflicts
with a time to loss-of-separation of more than 120s (gray
areas) are removed from the SSD. Although the latter two
steps provided some improvements for certain participants
(who for example ignored conflicts with a tcpa > 120s), it
did not considerably improve results overall. To keep data
preprocessing to a minimum, background conversion and noise
removal are not applied.

Table IV: Final network architecture. Sizes shown in pixels.

Layer Input Filter size Stride Num filters Activation Output
Conv2D 32x64x3 2x2 1 32 ReLLU 31x63x32
MaxPool 31x63x32 15x31x32
Conv2D 15x31x32 2x2 1 64 ReLU 14x30x64
MaxPool 14x30x64 Tx15x64
Conv2D 7x15x64 2x2 1 32 ReLU 6x14x32
Flatten 6x14x32 2688
Dense 2688 ReLLU 1024
Dropout 1024 1024
Dense 1024 Softmax 3

B. Model architecture

Due to comparable input and feature characteristics, the
network architecture of a deep neural network able to play
Atari 2600 games [36] is selected as a starting point. In order
to improve model performance, the filter size is reduced in
order to capture the exact location of the relatively small
features in the SSD such as the speed vector and exit waypoint
vector. In contrast to the architecture from Mnih et al. [36],
the input to the network is encoded in RGB instead of gray-
scale. This allows the network to distinctly interpret the green
velocity and blue exit waypoint vectors, as shown in Figure
12. The final network architecture as shown in Table IV is
determined using A/B-testing, as computation time is too large
for a complete grid search. To reduce overfitting, a dropout
layer is added, which sets the weights of a fraction of the
neurons to zero at each epoch during training [37]. In addition,
max pooling layers [38] are used, which provided better results
than large-filter convolutional layers.

C. Training

The hyperparameters and model architecture are kept
constant for all participants and all target types. The network
parameters are subsequently updated using the network losses
using a first-order gradient-based optimization algorithm
called Adam. Empirical results show that it outperforms
previously popular optimizers such as AdaGrad, RMSProp and
SGDNesterov [39]. In between layers, Rectified Linear Unit
(ReLU) functions are used as activation functions due to their
computational efficiency [40].

The remaining hyperparameters are determined through an
informal search, given their relatively small effect on model
performance and computational constraints due to the range
of possibilities. The final parameters are shown in Table V.
The CNNG are created and trained using Python-based Keras?
with a TensorFlow [41] back-end.

D. Evaluation

Figures 6, 7 and 8 show that the number of samples per class
varies considerably. Evaluation of predictions based on this
imbalanced dataset solely using the accuracy metric (Equation
(5) provides misleading results. For example, if a controller
chooses to use heading instead of speed commands in 95% of
the situations, simply always guessing ‘heading’ would result

2Keras is developed by Francois Chollet and others (2015, https:/keras.io)
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in 0.95 accuracy score. This would give the a false sense
of model performance, because 0% of the speed commands
are predicted. Instead, a more balanced measure is used to
evaluate model performance, called the Matthews Correlation
Coefficient (MCC) [42], which is generally considered to be
less biased than accuracy [43]. Besides, it has been proven to
work well for multi-class predictions [44]. The definitions of
accuracy and the two-class MCC are shown in Equations (5)
and (6) respectively, where T'P = true positive, TN = true
negative, F'P = false positive, F'IN = false negative.

TP+TN 5)
accuracy =
YT TP+TN+FP+FN
with possible values [0, 1].

Table V: (Hyper)parameters during training.
Parameters Value Unit
Optimization algorithm Adam -
Output activation Softmax classifier -
Loss function Categorical entropy -
Train/val/test ratio 60/15/25 -
K-folds 5 -
Mini batch-size 32 samples
Steps-per-epoch 2 x training samples / batch-size ~ samples
Epochs 30 -
Learning rate 0.01 -
Dropout rate 20 %
Input image dimensions ~ 128x128 px

Tteration 1 | Val | Training | Test |
lteration2 | | val | | Test |
lteration 3 | | val | | Test |
Tteration 4 | | val | | Test |
lteration 5 | [ val | Test |

‘ Run'l-3 BV

Figure 13: Stratified 5-fold cross-validation with a separate test set.

TP xTN —FP x FN

MCC =
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

(6)
with possible values [-1, 1]. As MCC is a more critical metric,
MCC values are often lower compared to accuracy values for
identical models.

During training, the MCC is monitored using validation data
and the best performing model is saved for testing. Validation
data is selected iteratively using k-fold cross-validation, which
has proven to have lower variance and bias of performance
measures compared to other methods [45]. During training
1/ kth of the data is iteratively reserved for validation, as
illustrated in Figure 13. This method can be augmented using
stratified sample selection, which ensures that the distribution
of classes in the validation set is comparable to the training set
[45]. Due to the limited quantity of data available, five folds
are applied during training.

Each model consists of three sub-models. Each model
predicts one of the detailed decision stages in Figure 2 that
together comprise a command: resolution type, direction and
directional value. The predicted fype can be heading (HDG),
speed (SPD) or Direct To exit waypoint (DCT). The direction
is left or right for heading commands. The directional value
is the given heading or speed command relative to the current
state, in degrees and knots respectively. The value prediction
divided into the classes [0,10] deg, [10,45] deg and > 45
deg. To summarize, for a given SSD, the models will provide
a type, direction and value prediction, e.g.: HDG — LEFT —
[0,10] deg.
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Figure 14: Three validation steps for Participant 1 (P1).

E. Validation

A validation step follows after the training all individual
and general models. Each individual model is tested with the
participant’s corresponding test dataset (i.e. the 4" run), as
shown in Figure 14a. Additionally, each individual model is
tested with all other participants’ test datasets (Figure 14b).
Finally, five general models are trained using random samples
from all data, see Figure 14c. The number of data samples
is capped to the mean number of samples available for the
individual models. These general models are tested with all
participants’ test datasets to create a baseline.

V. RESULTS

This section is divided into five parts: The first shows
the training phase of the model. The second summarizes the
performance of the individual models for each participant
and abstraction level. Section V-C examines the effects of
participant experience and the availability of the SSD during
the experiment. Subsequently, the individual models are cross-
tested using all other participants’ test data to determine
to which extent the models are individual-sensitive. Finally,
individual model performance is compared to a baseline of
general models, which are trained on all data.

Performance of the models is measured primarily using the
MCC (see section IV-D), which ranges between —1 and 1. An
MCC of 1 indicates a perfect prediction, while 0 and -1 refer to
random and complete disagreement respectively. Plots in this
section are scaled to [0, 1] to highlight differences between
categories. In certain cases accuracy is given as performance
measure because it is more intuitive and is the measure that
is directly experienced by the end-user.

A. The Training Phase

Figure 15 shows the training progress for the individual
model of Participant 1. The spread around each line depicts
the least and best performing fold per abstraction level during
training, which lasts 25 epochs. Increasing validation MCC
values during training (increasing epochs) indicate that the
neural network ‘learns’ from the data samples. In most cases,
the models reach MCC scores >0.95 during training, while
validation MCC scores lack behind, as shown in Figure 15.
This difference between training and validation performance
indicates overfitting on the training data. The spread shows
that validation MCC can differ more than 0.2 per fold, which
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Figure 15: Validation performance during training of P1’s individual model.
The spread indicates the maximum and minimum performance for each fold
per abstraction level.

is a relatively large amount compared to the mean value. While
this figure only shows P1, other participants show comparable
trend lines although final performance values differ.

B. Validation Performance

After training (Figure 15), the models are validated using the
test dataset (Run 4), which is kept apart in all prior processes.
Figure 16 shows the achieved MCC scores per participant and
abstraction level. Large differences in achievable performance
(MCC) occur among participants and abstraction levels
indicating that the personalized predictions do not work
equally well for the entire population. Specifically, the models
of Participants 9 and 10 (mean MCC 0.74 and 0.75 resp.) show
the highest performance, while the models of Participants 11
and 8 (mean MCC 0.43 and 0.55 resp.) show the lowest
performance.

When the data per participant is aggregated and split per
abstraction level, clear performance differences are observed
between the abstraction levels. Direction prediction shows the
highest MCC score (mean = 0.76, SD = 0.11), while type
(mean = 0.52, SD = 0.21) and value (mean = 0.64, SD =
0.12) predictions obtain lower performances. The achieved
accuracies are higher for direction (mean = 0.84, SD = 0.07),
type (mean = 0.69, SD = 0.13) and value (mean = 0.76, SD
= (0.08) predictions.
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Figure 17: Effect of SSD availability on model performance.

The individual models achieve a mean prediction accuracy
of 76% over all abstraction levels. However, when predicting
a HDG command, e.g. HDG — LEFT — [0,10] deg, the
accuracies of all abstraction levels should be multiplied. This
product of accuracies ranges from 22% (P11) to 58% (P10).
On the other hand, when a DCT command is given, only a
type prediction is sufficient.

C. Validation Performance per Condition

Figure 17 shows the effect of the availability of the SSD
during the experiment on the obtained model performance.
The models obtain a slightly lower performance with the SSD
available for all abstraction levels. Contrarily, the achieved
MCC increases close to 1.0 in three particular cases when
the SSD is used, as depicted with the diamonds in Figure 17,
indicating that the SSD has a varying effect per participant.
During the experiment, participants commented on the SSD:
“It is easier with the SSD turned on because there are fewer
options.” (P5), “Without the SSD, I am paying more attention
to the general picture and strategy.” (P6) and “With the SSD,
I am more focused on local conflicts instead of the overview.”
(P8).

The model performances per abstraction level for both skill
levels are shown in Figure 18. Better predicting models are
achieved for the intermediate group (mean = 0.65) compared
to the novice group (mean = 0.60). However, the population
size (N=6 per skill level) is too small for meaningful statistical
analysis.
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Figure 18: Model performance with the participants aggregated by skill level.
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Figure 19: Consistency scores per participant split per abstraction level.

D. Consistency

Figure 19 shows the normalized consistency — as defined in
section II-A — per participant and abstraction level. Participants
5, 7 and 10 appear to be the most consistent compared to a
lower consistency for Participants 8 and 11. A participant’s
consistency level varies per abstraction level, e.g. having a
high rype consistency but lacking consistency in value, or vice
versa.

The aggregated consistencies based on skill level are shown
in Figure 20. The intermediate group shows an unexpected
larger spread, which indicates that the group contains both
more consistent and less consistent participants compared to
the novices. Figure 19 illustrates that the inconsistency in the
intermediate group is predominantly caused by Participants 8
and 11.

Subsequently, the mean consistency from Figure 19 is
plotted versus the average model MCC per participant (mean
over all folds and abstraction levels), as shown in Figure 21. A
Pearson Correlation Coefficient test finds a positive correlation
(r = 0.75, p-value = .005) between participant consistency and
individual model MCC. This shows that the personal models
of more consistent participants perform better than the models
of their less consistent counterparts.

E. Cross-Testing Performance

To check whether the personalized models are indeed
individual-sensitive, they are tested using other participants’
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test datasets and compared to the performance of five general
models, in accordance with Figure 14b and l4c.

Figure 22 shows one of the twelve resulting spider charts
featuring the model of P1. The achievable performance is
distinctly higher with P1’s own test data (mean MCC = 0.72)
compared to testing with other participants’ data (mean MCC
= 0.37). All test datasets are only used during final model
validation and not during model design or training. The peak
at P1 indicates that Participant 1 makes different decisions
in similar situations compared to the rest of the population.
Other participants’ models that show a distinct peak in mean
model performance for their respective participant’s test data
are P1, P6, P7, P9 and P10. The remaining models obtain more
uniform MCC scores, regardless of which test set is used.

F. Comparison Between Individual and General Models

As a third validation step, the individual models are
compared to a baseline of general models. The average
obtained performance per participant is shown in Figure 23
for the individual models and baseline of general models. The
chart shows that most individual models outperform the mean
of the general models, but some cases show near equal or even
worse (P4 and P8) performance, possibly caused by a strategy
change in the final run.

A paired t-test shows that the individual models perform
significantly better (t(11) = 2.9, p-value = 0.02) than the
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Figure 22: Performance (in MCC) of P1’s individual model tested on the test
datasets of all other participants.
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Figure 23: Performance (in MCC) of each participant’s individual model
compared to the mean performance of five general models, averaged over
all abstraction levels.

general models in terms of MCC, see Figure 24. The individual
models provide a mean 0.08 (SD = 0.10) MCC improvement
over the general models. The personalized approach is
most effective for P1, whose individual models score 0.20
MCC higher than the baseline. Furthermore, the right-hand
side of Figure 24 shows the general and individual model
performances measured in accuracy. A paired t-test shows a
significant accuracy improvement (t(11) = 3.2, p-value = 0.01)
of individual models compared to the general models, with a
mean accuracy improvement from 71% to 76% (5.3%, SD =
5.8%). The least and most accurate individual models achieve
61.4% and 83.3% test accuracy respectively.

VI. DISCUSSION

Discussion of results is divided in the main elements of the
research: experiment design, machine learning using the SSD,
controller consistency and group heterogeneity.
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Figure 24: Comparison of model performance between general and individual
models.

A. Experiment Design

The population consists of non-professional ATCos, divided
into novices, with knowledge but no experience in ATC, and
intermediate controllers, who followed the ATC introductory
course. However, consistency and model performance metrics
do not provide demonstrable differences between both groups,
which implies that the ATC course has a limited effect on
average controller consistency in these simplified scenarios. It
is expected that professional ATCos are more consistent than
novices [24], but might also be more homogeneous as a group
due to trained procedures [22]. Although this non-professional
population provided a proof-of-concept, professional ATCos
are required to validate real-world feasibility. Besides, part of
the presented results use statistical analysis to substantiate the
findings while the population (N = 12) is fairly small. Future
experiments could include more participants to obtain higher
statistical power.

Scenario design is constrained to encounter similar conflicts
multiple times. Specifically, intruding traffic always originates
from the east, only converging conflicts are encountered and
altitude is not taken into account. These constraints limit
the number of conflict types and thus the resolution space.
Removing them could have a detrimental effect on prediction
performance and require more training data. The quantity of
training data is a common limitation in machine learning.
Results show that model performance per validation fold
can fluctuate up to 0.2 MCC, which shows sensitivity to
random state-action pair sampling from the training set. This
variance is expected to decrease with exposure to more training
data, which can be obtained with longer experiments. To
verify whether data quantity per participant influences model
performance in this research, the number of available training
samples is plotted versus the achieved model performance in
Figure 25. These figures show no indication that the difference
in available samples per participant is a major influence on
model performance.

Surprisingly, P4’s individual model performs worse than the
mean general models. As can be expected of a novice, P4
may have changed strategy between runs causing the final
experiment run to coincide more with the strategy of other
participants. Due to the limited data quantity in this research,
all data was used. With prolonged experiments, data tainted
with training effects will be eligible for removal.
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Figure 25: Model performance per abstraction level vs the number of training
samples used per model. Each data point represents the summation of 4 runs
per participant.

B. Machine Learning using the SSD

Evidence that convolutional neural networks are able to
interpret the SSD is shown by accuracy increase during
training. However, this might indicate that the network overfits
on the training data at pixel-level without generalization to new
samples. The ability to generalize is deemed likely because
the validation performance during training follows the same
upward trend. Validation results using the separate test set
further confirm this induction. On the other hand, overfitting
on the training samples does occur to an extent, indicated by
the performance difference between the training and test sets.

It is expected that performance improvements can be
achieved by a formal grid search to optimize hyperparameters.
However, one training iteration generates 360 models (12
participants X 3 abstraction levels x 2 SSD conditions
X 5 cross-validation folds) thus iterating over parameters
is computationally expensive and meticulous. The network
architecture used in this research is kept constant for all
abstraction levels, i.e. it can predict command type, direction
and value by only altering the last fully connected layer.
Designing a network architecture per abstraction level could
consequently improve performance.

Command value predictions are obtained using classifica-
tion to more easily compare results to fype and direction
predictions. As command values are continuous, this caused
the accuracy of value predictions to be reliant on the
classification, i.e. the design of the discretization. Therefore,
more precise predictions are expected to be achieved using
regression.

Data quantity is often a limiting factor in machine
learning experiments with human data. A method to increase



effectiveness of the available data is reinforcement learning.
One option is to start with supervised learning — incorporating
human strategy — and to improve the models with more
experience using reinforcement learning [31]. Another is
to use inverse reinforcement learning, which could learn a
personalized reward function that is subsequently used to train
a model through interaction with a simulated environment.

Nonetheless, the achieved MCC scores using the current
methods indicate a considerably better than random prediction,
even for the general models (up to 81% accuracy, averaged
over all three abstraction levels). This illustrates that the
SSD indeed captures sufficient information concerning CD&R
scenarios to base prediction on — given the simplified scenarios
used in this research — confirming the hypothesis. However,
apart from the CD&R parameters included in the SSD,
research on control heuristics indicate that traffic flows, sector
geometry and controller goals also play an important role in
ATCo strategy [22], [23]. Including these sector characteristics
in the visual network input could further increase prediction
conformity. Moreover, model predictions could be taken to
a higher-level decision stage such as aircraft selection and
resolution geometry (e.g. ‘behind’ or ‘in front’), as proposed
in Westin et al.’s consistency framework [17]. Furthermore,
humans base their decision on a dynamic situation, while the
SSD is a static input. Using multiple consecutive SSD frames
could incorporate dynamics into the model.

Besides, given the black-box operation of CNN:ss, it remains
difficult to fully comprehend the decision-making process.
Since this might be unacceptable in a safety-critical domain
such as ATC, a comparison between parametric and non-
parametric algorithms could clarify the benefits and drawbacks
of using image data (the SSD) over engineered learning
features (conflict parameters).

C. Controller Consistency and Population Heterogeneity

A driver of model performance is hypothesized to be
controller consistency. Indeed, the results confirm a correlation
between the consistency metric and model performance. This
is in line with the expectation that more consistent controllers
are better suited to base strategic conformal automation on.
Note that this is a correlation and not necessarily a causal
relation, as there might be underlying effects that cause both
measures to increase. Besides, the validity of the metric
is limited to asymmetric scenarios and constrained conflict
angles as used in this research. A general purpose consistency
metric should evaluate all situations in a case-by-case fashion
to determine the true consistency of a controller.

The availability of the SSD during the experiment was
expected to influence controller consistency and thus model
performance. Contrarily, the results show a slight decrease in
mean model performance when the SSD is available to the
controller. Based on remarks during the experiment, the SSD
might emphasize local conflicts which influences the decision-
making process. The large spread in data indicates that the
effect of the SSD depends on the participant, which might be
mitigated with more training. Regardless, the availability of
the SSD during the experiment is not required when creating
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Figure 26: A future human-in-the-loop experiment should evaluate ATCo
acceptance of proposed resolutions.

strategic conformal automation, as it does not improve model
performance.

Two findings illustrate the strategy heterogeneity of the
participant group: One, part of the models predict distinctly
more accurately when predicting their participant’s test data.
And two, individual-sensitive models significantly outperform
the general models. Although the mean accuracy and MCC
improvements are not large for all participants, for half of the
population MCC scores increased by more than 0.10 (up to
0.20). Nevertheless, the difference between the most accurate
models (mean = 83% accuracy) and the least accurate models
(mean = 61% accuracy) is considerable. Evidently, strategic
conformal automation is not applicable to all controllers in the
population. Nonetheless, the results on controller consistency
and a heterogeneous controller population are in accordance
with previous empirical research where professional ATCos
were used [8], [24].

D. Acceptance and Implementation

To place the achieved model accuracies into context, recall
that 25% of proposed conformal resolutions was rejected
in prior empirical research [8]. The cause for rejection is
not necessarily non-consistency, as i.a. advisory source and
interface representation are also found to influence acceptance
[24]. To close the acceptance feedback loop, a second human-
in-the-loop experiment is required in which controllers rate
the resolutions as proposed by their personalized models.
Furthermore, this feedback could subsequently be used to
iteratively update the models, see Figure 26.

Finally, proper implementation methodology is key to obtain
high acceptance rates. A critical element in this is Level
of Automation (LoA) design, which should ensure controller
performance, workload and situational awareness [46] by
determining the conformal automation’s degree of authority,
such as management-by-consent or management-by-exception
[47]. Besides, strategic conformal automation might propagate
human errors and propose unsafe or non-optimal resolutions.
To counteract this, additional algorithms could support the
conformal automation to find a balance between conformity,
safety and optimality.

VII. CONCLUSIONS AND RECOMMENDATIONS

This research evaluates how strategic conformal automation
for air traffic control can be achieved using convolutional
neural networks through a human-in-the-loop experiment.
A 12-participant experiment is devised to generate training
data consisting of solution space diagram (SSD) images and



conflict resolutions. Achieved model performances show that
the SSD contains sufficient information to make accurate
predictions on command fype, command direction and
command value given by controllers in 2D CD&R scenarios.

Results show a correlation between the controller consis-
tency metric and achieved model performance, confirming
the hypothesis that consistent controllers are more suited
for strategic conformal automation. Regardless, the majority
of controllers in the population is sufficiently consistent
to base the conformal automation on. Personalized models
obtain significantly higher prediction accuracies than general
models, indicating that controllers in this experiment exhibit
differentiating strategies, i.e. are not homogeneous as a
group. This is a critical assumption for strategic conformal
automation. However, the performance improvement due
to individual modeling substantially differs per controller,
ranging from a deterioration to improvements of 0.20
MCC (Matthews Correlation Coefficient) and 12% accuracy.
Nonetheless, convolutional neural networks appear to be a
feasible method to achieve strategic conformal automation.

Recommendations focus on three elements: learning
methodology, experiment design and implementation. More
sector information could be added to the model input,
incorporating important sector characteristics such as traffic
flows and sector geometry. This could add higher abstraction
level decisions such as resolution geometry and aircraft
selection to the model predictions. The benefits and drawbacks
of using image data (the SSD) over engineered learning
features (conflict parameters) can be clarified by a comparison
between parametric and non-parametric algorithms. Finally,
as data quantity is limited in human-in-the-loop experiments,
inverse reinforcement learning could provide a means to use
the available data more effectively by learning a personalized
reward function and gaining experience through simulated
scenarios.

Secondly, a future experiment could improve on population
and scenarios. This research shows that achievable prediction
accuracies are expected to be higher for more consistent con-
trollers. Using a professional air traffic controller population
could confirm this finding and provide insight in real-world
applicability. Furthermore, as the scenarios in this research
proved to be predictable, the next step is to create higher
fidelity scenarios, without constraints on conflicts angles or
altitude.

Finally, research on implementation methodology is vital to
achieve strategical conformal automation that is safe, efficient
and accepted by controllers. The acceptance feedback loop
should be closed through a human-in-the-loop experiment
to assess if strategic conformal automation using individual-
sensitive predictions indeed increases trust and acceptance.
After all, machines are becoming more intelligent every
day, but as the incredible cognitive models of humans
prove difficult to match, the interaction between human and
automation is more relevant than ever.
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An overview of automation in Air Traffic
Control

This chapter elaborates on the current state of Air Traffic Control (ATC) in combination with automation. Ini-
tially, only ATC is considered, specifically focusing on the current structure and tasks. Secondly, automation
in ATC is introduced to see how the human controller can be assisted by machine systems. Finally, past and
currents efforts of automation are discussed to define the main challenges and state-of-the-art.

1.1. Introduction to Air Traffic Control and CD&R

Air Traffic Management (ATM) is a term encompassing all systems that assist aircraft in safely and efficiently
departing, transiting airspaces, and arriving at aerodromes. Among others, it includes Air Traffic Services
(ATS), which in turn incorporates ATC. A lot has changed in ATC since the first ATCo was appointed in 1929.
Spanning almost a century, the world has moved away from the checkered flag towards integrated Com-
munications, Navigation & Surveillance (CNS) and ATM systems. This last development, which started in
the 1990s, is considered to be fourth generation of ATM incorporating Future Air Navigation System (FANS).
FANS allows for improvements concerning communication (e.g. ACARS' and CPDLC?) and surveillance.
However, even though the interaction between aircraft and ATC is transitioning to digital, resolving conflicts
still requires human intervention.

ATCos are tasked with maintaining a safe, orderly, and expeditious flow of air traffic in the global aviation
system (ICAO, 2016). Larger aerodromes facilitate more than 10 different ATCo positions, which can be
divided into three departments: Area Control Center (ACC), Approach Control (APP), and Aerodrome Control
(TWR). The controllers in ACC are mostly concerned with en-route traffic, the APP controllers mainly focus
on arrivals and departures, and the TWR primarily handles ground traffic ICAO, 2016). This research focuses
on ACC, as it is the area with least external constraints and automation in ATC is still in an early phase. An
en-route controller has to perform 13 primary tasks (Seamster, Redding, Cannon, Ryder, & Purcell, 1993),
of which the CD&R task is the most important for ATCos, according to Bekier, Molesworth, and Williamson
(2012), which consequently makes it the main focus of this research.

The Conflict Detection & Resolution Task
An empirical study by Seamster et al. (1993) has identified four primary goals to avoid during CD&R, in
descending order of priority:

1. Violation of minimum separation standards

1 ACARS: Aircraft Communications Addressing and Reporting System
2CPDLC: Controller—pilot data link communications
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2. Deviations from standard operating procedures
3. Disorder that may result in cognitive work overload

4. Making unnecessary requests of the pilot.

Following up on the primary goal, ICAO (2016) dictates a vertical and horizontal separation minimum of 1000
ft and 5 nm respectively under FL 410 in designated airspace, called the protected zone. In case aircraft are on
a trajectory where these minimums will be violated, the aircraft are said to be in conflict. When the minimums
are actually violated, Loss of Separation (LoS) occurs. To ensure this is never the case, ATCos use extensive
strategies and internal rules for prevention, detection and resolution of conflicts. An elaboration on ATCo
strategies is given in section 3.1.2.

1.2. The need for automation

One of the major challenges in aviation today is to maintain efficiency, safety and reliability of ever increasing
air traffic globally (Agogino & Tumer, 2012). According to IATA's 20-year Passenger Forecast, air traffic is
expected to double to 7.2 billion passengers annually within two decades®. While an advanced scheduling
system is in place, small deviations in aircraft trajectories due to weather or airport conditions are difficult
to accommodate and consequently cause large overall delays. For example, in 2017, only 80% of U.S. flights
arrived on time*. The combination of slow responses to changes and fast increasing air traffic overall causes
the ATM system to be at maximum capacity. As infrastructure (e.g. number of airports) will not increase
significantly and hardware (e.g. computing power) only fixes part of the problem (Agogino & Tumer, 2012).
This is caused by the fact that the primary constraint that limits the capacity of an airspace sector is the
human controller, specifically his workload concerning conflict detection and resolution (Erzberger, 2004).
Because a controller can only monitor around 15 aircraft at a time, previous strategies to reduce workload
involved subdividing airspace sectors. However, due to physical constraints (maneuverability of aircraft) and
an increased inter-sector coordination workload, this is not a profound solution (Erzberger, 2004).

Taking into account these capacity issues and the fact that the system is built upon 50-year old principles, it
becomes clear that the ATM infrastructure could fundamental changes. (Erzberger, 2004) Specifically, a more
decentralized approach seems to be a promising domain to explore, following multiple proposed solutions
such as (hybrid) multi-agent systems and the ‘free flight’ concept. (Agogino & Tumer, 2012; Hoekstra et al.,
2002; Nguyen-Duc, Briot, & Drogoul, 2003; Tomlin, Pappas, & Sastry, 1998) Although free flight appears to
be promising, “the distributed nature and the infinite number of conflict geometries make it very hard to
estimate the actual safety level compared to a centralized system." (Hoekstra et al., 2002). Due to strict
certification criteria in the aviation sector, this proof is a necessity before the concepts can be implemented
in everyday operations. In the mean time, it seems that more pragmatic solutions that lie closer to the current
procedures need to be implemented. In any case, ATM has reached a level of technology where only the most
complex elements of the human controller are left to be modeled, namely decision making and strategic
control, making it one of the most ambitious attempts of automation (Hilburn, 2002).

1.3. Drawbacks and hurdles of automation

Although automation is inevitable in the future of ATM, important disadvantages and hurdles have to be
overcome. They can be divided in two categories: acceptance issues and difficulties that are inherent to
automation. Both are discussed below.

According to a literature review performed by Westin et al. (2016), the following conclusions can be drawn re-
garding trust and automation: “a) trust in automation develops over time as a result of prolonged experience,
b) acceptance and operator performance decrease when the authority and autonomy of automation increase,
and c) acceptance and operator performance benefit from automation actively involving the operator in the
control and decision-making loop." (Westin et al., 2016).

3Source: IATA Forecasts Passenger Demand to Double Over 20 Years - IATA (Press release 59, 2016)
4Source: On-Time Arrival Performance U.S. - Bureau of Transportation (2017)
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This, however, does not take into account initial acceptance and trust in a system. Paradoxically, “an operator
might only develop trust after using a system, but might also be unwilling to trust a system he/she has
not used." (Westin et al., 2016). This stipulates the importance of a concept called compatibility, which is
defined as the perceived fit of technology within the context in which it is used, driven by the user’s values,
experiences, and needs (Rogers, 1983). This can directly be translated back to the multi-actor ATM solutions.
As they are less compatible than intermediate supporting centralized automation, they are less likely to be
accepted by the user, i.e. the ATCo. Concluding, one would ideally automate following the reasoning of the
end user, a concept that is introduced in chapter 2.

The second category of drawbacks and hurdles consist of the inherent difficulties of automation. These
‘ironies of automation’ are well-described by Bainbridge (1983). The effects on human performance can be
summarized as: complacency (over-reliance), vigilance problems (reduced alertness), and skill degradation
& transient workload peaks. These difficulties can be partly counteracted by consciously applying Levels of
Automation (LoA) frameworks. Many variants have been proposed, such as Sheridan and Verplank (1978)
or Endsley and Kiris (1995), which can be used both statically as well as in an adaptive or adaptable manner
(Kidwell, Calhoun, Ruff, & Parasuraman, 2012). When designing novel automation, these LoA models should
be considered. Specifically for this project, regarding the maturity of machine learning technology and the
impact of failures, a the lowest form of automation — decision support (level 2) - would be advised initially.

1.4. Past automation efforts

Because the current method of controlling air traffic is not scalable to the extend of the expected growth
in traffic (Erzberger, 2004), automation has been a major domain of interest in ATM. Several articles have
been written on a vision of the role of automation in future ATM, going beyond the propositions of SESAR®
and NextGen® (Sdez Nieto, 2016). More concretely, multiple projects were undertaken to automate ATCo
workflow, such as ARC2000, and CORA.

ARC2000 (Dean, Fron, Miller, & Nicolaon, 1995) was an elaborate project which aimed to determine the
feasibility of automating air traffic control. A main challenge in building the simulator was CD&R, as there
were no reliable algorithms available. In the process of creating these, a concept called ‘forbidden areas’ was
introduced, which translated the trajectory of an intruding aircraft to a region that should be avoided, similar
to the SSD (see section 3.2).

CORA (Controller Resolution Assistant) was developed within EUROCONTROL (Kirwan & Flynn, 2002) and is
based on decision-making heuristics which are found to be widely used by ATCos Fothergill and Neal (2013).
Although CORA was based on human controllers preferences, it could only match the decision-making style
of a subset of them. This was due to the fact that ATCos have different strategies of solving similar conflicts
(Westin, 2017, p. 24).

More recently in the U.S., Data Comm is being implemented for en-route traffic in 2019 providing a digital
communication link between pilots and controllers. “Controllers will be able to reroute, hand off aircraft to
the next center, and send messages to change altitude."” This digital communication link is a critical step
towards ATC automation as the human voice element is taken out of the equation.

In the end, the main question is not whether, but in which manner to automate. A large variety of automa-
tion methods have been proposed, including multi-agent self-separation (Agogino & Tumer, 2012; Hoekstra
et al., 2002; Nguyen-Duc et al., 2003; Tomlin et al., 1998), fuzzy logic (Pineau, 2018), adaptive automation
(Hilburn, Jorna, Byrne, & Parasuraman, 1997) and Reinforcement Learning (Cruciol, Weigang, De Barros, &
Koendjbiharie, 2014; Weigang, de Souza, Crespo, & Alves, 2008) solutions.

A recent publication by Regtuit et al. (2018) aims to automate CD&R in a strategic conformal way (chapter 2)
using machine learning (chapter 4). In this study, Regtuit et al. consider two-dimensional horizontal conflicts
with one conflict pair (i.e. two aircraft). Data is generated artificially by purposely using distinctive strategies,

5SESAR: Single European Sky ATM Research (EU, EUROCONTROL)
6NextGen: Next Generation Air Transportation System (FAA)
7Source: Air Traffic Controller Workforce Plan - Federal Aviation Administration (FAA) (2018)
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such as always steering the controlled aircraft in front or behind the intruding aircraft. These strategies are
extracted from the entire dataset using a clustering algorithm and are subsequently used to train a reinforce-
ment learning algorithm with three states.

Regtuit et al.’s exploratory study offers a first proof-of-concept of using machine learning to achieve strategic
conformal automation for ATC. Yet, opportunity for improvement and further research is evident. Firstly,
more advanced scenarios including more aircraft can be considered. Secondly, the data should be gener-
ated in a natural, bias-free manner using professional ATCos. And lastly, more than three states should be
considered, as the CD&R problem is characterized by more than three parameters.

The aim of this thesis is to work towards strategic conformal automation by building upon the insights of
previous authors and improving on the opportunities that arise. The concept of strategic conformance is
introduced in the next chapter.



Strategic conformance:
individual-sensitive automation

As discussed in section 1.3, one of the major hurdles in automation advances is human acceptance. One
concept that aims to improve this is strategic conformance (Westin, Hilburn, & Borst, 2011). This chapter will
focus first on the theoretical background, advantages and disadvantages of strategic conformance in section
2.1. Subsequently, the practical implications for determining the performance of conformal automation are
discussed in section 2.2.

2.1. Introduction to strategic conformance

Strategic conformance was introduced as a high-level form of compatibility, specifically where the problem-
solving style of the automation is designed to match the human controller’s. This section elaborates on
strategic conformance from both a theoretical and an empirical standpoint.

2.1.1. Compatibility

When discussing strategic conformance as a means to increase automation acceptance, it is key that a com-
monly accepted view of this concept is presented. Although many models exist, the Technology Acceptance
Model (TAM) (Venkatesh, Morris, Davis, & Davis, 2003) appears to be the accepted standard. This model
was later augmented with knowledge of automation by Ghazizadeh, Lee, and Boyle (2012) to create the
Automation Acceptance Model (AAM) (Figure 2.1). This model implies that the main factors that influence
acceptance, and thus actual system use, are compatibility and trust. The diagram shows that acceptance is
not steered by a linear relation but is rather incorporated in a reinforcing loop; by using the system, trust
and compatibility may increase over time. It must be recognized that conformal automation does not in-
fer anything about the efficiency or optimality of the solution. Combining these two statements; strategic
conformal automation could be used to increase acceptance of a novel conflict resolution system while it
gradually transitions to a more efficient (e.g. less additional track miles) solution. (Westin, 2017, p. 30-35)

Human-machine compatibility appears to be the underlying framework to achieve automation acceptance. It
can be evaluated at multiple levels, as synthesized by (Westin, 2017, p. 29). Figure 2.2 shows various categories
of tasks with an increasing cognitive demand. To the right of the categories, descriptions are given that assist
the human controller in achieving these tasks. At the highest, most abstract level, strategic conformance is
offered as a means to achieve compatibility between man and machine on a decision-making level.

This higher level of compatibility mainly consists of two elements where strategic conformance exceeds
traditional compatibility. Firstly, strategic conformance not only mimics obvious communication forms or
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Figure 2.1: The Automation Acceptance Model. Adapted from Ghazizadeh et al. (2012).

appearance of humans, but aims to imitate the underlying decision process. Secondly, strategic conformance
acknowledges that humans have different problem-solving styles, which makes it unrealistic to view humans
as a homogeneous group (under certain circumstances). (Westin, 2017, p. 30-31)

The underlying hypothesis is that when a decision aid proposes a solution that is conformal with the intended
resolution of the controller, it will appear to have followed a similar rationale. This could take away the
cognitive workload that is caused by the process of understanding why the automation is behaving in a
particular way. (Westin, 2017, p. 30)

A Decision/ :
' preferred solution :
i Strategic
i conformance
Decision-making style :
Internal & external User-centered design
mental models Ecology-centered design

Communication & Direct manipulation

Increased level of cognitive work

interaction style Multi-modal systems
Perceptual . .
. Legibility principles
mechanisms s YP P

Motor skill | Handling qualities

Figure 2.2: Levels of human-machine compatibility. The inverse pyramid shows tasks with increasing cognitive demand and the
descriptions on the right offer methods to assist the human in achieving these tasks. Adapted from (Westin, 2017, p. 30).

Individual preferences

The foundation of strategic conformance lies in the diversity of solving conflicts among controllers. As an ex-
ample to show multiple solutions to the same conflict, a right angle conflict with a Closest Point of Approach
(CPA) of zero nautical miles is shown in Figure 2.3. A common strategy is to steer one aircraft behind the other,
as it requires less monitoring (Fothergill & Neal, 2013). Another common strategy involves a heading change
of both aircraft, to share the track deviations (Westin, 2017). One can imagine that the space of possibilities
only increases when conflicts become more complex, including multiple aircraft and a third dimension.
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(¢) Put B in front of A (d) Dual heading change

Figure 2.3: Possible conflict solutions to a right angle problem. Adapted from (Westin, 2017, p. 32).

2.1.2. Empirical evidence

To prove whether strategic conformance is more than a theoretical framework, multiple empirical studies
were conducted (Hilburn et al., 2014; Westin et al., 2016).

Westin and his co-authors are the first to perform empirical work “specifically focused on differences in
decision aid problem solving styles and its effect on individual operator acceptance." (Westin, 2017, p. 20).
In acknowledging the benefits of strategic conformal automation, two main assumptions are made. One,
ATCos accept resolutions significantly more often when they are conformal to their own problem-solving
style and two, ATCos are relatively consistent in their actions.

The first assumption was tested by Hilburn et al. (2014). Sixteen subjects used the SSD (section 3.2) to resolve
conflicts in multiple scenarios without considering altitude. Two weeks later, the subjects performed an
identical task, only now supported by an advisory system that replayed their own decisions in the same
situations. It was found that “conformal advisories (exact replays of a given controller’s previous solution)
were accepted more often, rated higher, and responded to faster than were non-conformal advisories (replays
of a colleague’s different solution)." (Hilburn et al., 2014). Specifically, the conformal advisories were accepted
in 76% of the cases whereas non-conformal advisories were only accepted 57% of the time. This indicates the
striking result that even conformal advisories are rejected 24% of the time. To understand this result, three
follow-up experiments were performed, testing the effects of problem-solving consistency, source bias, and
interface representation. However, analyzing the simulation data with relation to source bias and interface
representation did not result in significant results. (Westin, Borst, & Hilburn, 2015) Results regarding consis-
tency are discussed in subsection 2.2.1.

2.1.3. Drawbacks

Strategic conformance aspires to increase compatibility and trust, and thus actual system use to ultimately
reduce workload. However, in certain situations, individual problem-solving styles may not be desired. Be-
sides, strategic conformance requires prerequisites that may not be valid in all cases.

One situation in which a homogeneous decision-making process is advantageous is when ATCos work in
teams (Westin, 2017, p. 34). This might be the case when there is high traffic flux between two adjacent
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sectors, when a team of a tactical and planning controller work together, or when a controller hands off his
work to a colleague after a shift.

The prerequisite of achieving strategic conformance is that individual controllers are consistent, while con-
sensus is not required. Consistency is defined as individuals taking the same action under the same circum-
stances. If this is not the case, an automation can never be 100% conformal. Consensus regards the entire
group of controllers. Traditional automation usually devises a single strategy for all users. When considering
strategic conformance, it is assumed that there is no mutual consensus among all controllers to solve a
problem in a certain way, otherwise individual-sensitivity loses its value and a homogeneous algorithm is
sufficient.

2.2. Quantifying strategic conformance

In order to ultimately rate the performance of the automation, some definitions require to be quantified.
Specifically, this section aims to make the concepts consistency and conformity more concrete. Controller
consistency is used to evaluate whether a controller is consistent enough to create individual-sensitive au-
tomation, and finally conformity is used to score the performance of the trained algorithm, as it is the goal of
this thesis to create strategic conformal automation.

2.2.1. Consistency

ATCo consistency is one of the major assumptions that enables the relevance of strategic conformal automa-
tion. If controllers are not consistent over time, they will likely not agree with individual-sensitive automation.
To obtain a framework for consistency, Westin analyzed resolution strategies identified by Fothergill and
Neal (2013) and more than 500 conflict resolutions collected in real-time simulations (Westin, 2017, p. 121).
He concluded that ATCo consistency can be measured on different levels of abstraction, as summarized by
Figure 2.4.

Westin used this framework in an empirical study to analyze controller consistency (Westin, Hilburn, & Borst,



2.2. Quantifying strategic conformance 31

2015). The aim of the experiment was to measure the degree of consistency for repeated conflicts over time
(intra-rater variability), and the degree of agreement within the group on resolutions (inter-rater variability).
Results showed that “controllers were consistent, but disagreed on how to solve conflicts". Consistency was
especially prevalent in the higher-level decision stages of Figure 2.4 (levels 1, 2 and 3) and decreased in the
detailed decision stages (levels 4 and 5). Creating conformal automation based only on low-level decisions
might therefore not be the optimal approach. To clarify, the control preferenceis defined as how the controlled
aircraft will pass the intruding aircraft (behind, in front, under or above). The geometry preference is the
spatial relationship, irregardless of what is the controlled aircraft (e.g. the aircraft are behind each other or
above each other).

Additionally, Westin concluded that expert controllers were slightly more consistent compared to their trainee
counterparts. This indicates that it would be beneficial to use expert controllers to create conformal automa-
tion, while trainees are not necessarily unusable.

The next section applies Westin’s framework for consistency to determine the degree of strategic conformance
of an automation.

2.2.2. Conformity

As seen in the previous section, consistency can be measured on multiple levels. When this line of thought
is extended, conformity can be measured at similar degrees of abstraction. A devision in levels can be made
between high-level and detailed decision stages, as shown in Figure 2.4. In measuring conformity, this line
has a very practical implication; the detailed decision stages consist of one action, while the high-level stage
aggregate multiple actions.

Measuring detailed decisions is relatively straightforward. Given the current state, a controller selects an
aircraft, a resolution type, a direction and a directional value and subsequently performs this action. This
enables the state to be linked to an action, creating a labeled dataset. To measure if a trained algorithm is
conformal with the original controller, this dataset is used to validate the policy. The dependent variable
accuracy is measured by whether the algorithm and the controller perform the same action in the same
situation. This approach assumes that an ATCo bases his or her decision for an action only on the current state
(independent of previous states and actions). This enables us to treat the problem as an Markov Decision
Process (see subsection 4.2.1). A requirement for this assumption is consistency. Referring back to the
previous section, ATCos are not always consistent in comparable situations. However, consistency seems
to increase with increasing experience level (Westin, 2017, p. 121). Empirical insight is required to prove that
ATCos are sufficiently consistent to base automation on (see Part I).

Measuring high-level decisions is slightly more elaborate, as it involves more than just state-action pairs. The
high-level decision process is divided into three categories: the number of interactions, the control preference
and the geometry preference. Conformity can determined for all three categories by having the automation
and an ATCo perform the same (short) scenarios: the first category is measured by summing all interactions
with aircraft, the second will measure how aircraft pass each other in conflicts (behind, in front, under or
above), and the third compares spatial relationships.

Spatial relationship can be defined in numerous ways. Comparing relations between e.g. conflict angle
and CPA work well for pair-wise conflicts (Regtuit et al., 2018), but do not translate well to more complex
situations. One solution is to define geometry by statistical parameters (mean, median, variance) of the
heading, altitude and speed of all aircraft. For example: if aircraft fly in an orderly flow, the variance in heading
and speed is low. If a controller prefers to separate aircraft on different levels, the variance in altitude is high.
Another spatial measure could be the amount of sector space that a controller uses. Orderly flows will direct
aircraft in similar paths, while in an unorganized sector, aircraft can be all over the place. A third geometric
preference is the safety margin that ATCos accept. One could measure the CPAs throughout a scenario to
obtain the acceptable proximity of aircraft to each other. Conversely, on could also measure the additional
track miles with respect to the optimal path.

To conclude, it is assumed that when automation achieves comparable results in all five consistency cate-
gories of Figure 2.4, an ATCo will experience the automation to be strategically conformal.






Extracting strategy from data

To automate the CD&R task in a conformal manner, the algorithm requires features that incorporate the
strategy of the human controller. Preferably, the algorithm and the ATCo would use the same features or
parameters to base their strategy on. This will enable the human and the automation to work from a shared
mental model, which could improve conformity. This chapter examines the factors that influence a human
controller during detection and resolution as well as keeping an orderly flow. Additionally, section 3.2 pro-
poses a visual tool to assist with these tasks — the Solution Space Diagram (SSD) — that is hypothesized to
incorporate the aforementioned factors into one visualization.

3.1. Sector management

Managing a sector consists of two elements; CD&R and keeping an orderly flow towards the exit point. This
section initially discusses sector and conflict detection parameters after which the resolution strategies a
controller uses are elaborated on.

3.1.1. Sector and conflict parameters

A literature review by Regtuit et al. (2018) analyses the factors that impact conflict detection by ATCos during
CD&R. Although ATCos tend to solve conflicts in a pair-wise approach, their strategy is also determined by
a global approach through assessing the impact on remaining conflict pairs (Kirwan & Flynn, 2002). For
this reason, Regtuit et al.’s list of parameters was extended with parameters that affect the entire sector, as
synthesized in Table 3.1. To provide an intuitive sense of the top three parameters that determine a pair-wise
conflict, a visualization is shown in Figure 3.1.

Literature showed that ATCos do not only solve conflict after conflict, but actively direct traffic in a flow to
lower its complexity and thus the controller’s workload. A clear representation of the difference between
traffic density and complexity is shown in Figure 3.2; Both scenarios show an equal number of aircraft in
identical locations. However, in the right-hand case, some aircraft headings are slightly changed, creating a
less organized sector which is evidently more difficult to monitor. (Van Gent, Hoekstra, & Ruigrok, 1997)

A successful strategic conformal automation algorithm should take at least these factors into account in
attempt to imitate human detection strategy.

3.1.2. Resolution strategies

Detection of conflicts is currently assisted by automation. Nonetheless, controllers need to assess priority and
thus precedence per conflict themselves. Resolution of conflicts is performed following three mechanisms.
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Table 3.1: CD&R and sector parameters with their effect on ATCo strategy. The top four parameters are applied to conflicts, i.e. single
conflict pairs. The bottom parameters are applicable to the entire sector. Adapted and extended from Regtuit et al. (2018).

Parameter Description Reference

CPA Closest Point of Approach; the minimal distance at any pointin ~ Xu et al. (2016)
time between to aircraft. Controllers use this to asses whether
aircraft are in conflict at all and if they have to interfere.

Time to CPA The time until CPA. A smaller fcpa results in higher a detection ~ Rantanen et al. (2004); Rem-
rate and naturally a higher priority. ington et al. (2000)

Conflict angle The heading angle between the controlled aircraft and the Kimball (1970); Remington et

Relative velocity

conflicting aircraft. Increasing conflict angles lead to higher
difficulty of detection.

The relative speed vector of conflicting aircraft. Speed differ-
ences between objects are more resource limited than relative
distances.

al. (2000)

Law et al. (1993)

Traffic density

Traffic
complexity

Exit waypoint

The situational awareness, and thus detection rate of conflicts,
decreases rapidly when the number of aircraft exceeds a certain
number.

Comparable to traffic density, traffic complexity is a multiplier
of traffic density and decreases detection rate (Fig-
ure 3.2)

Vectoring the aircraft towards their exit waypoint (or hand-off
point) is a main ATCo goal which influences strategy and sector
organization.

Endsley and Rodgers (1998)

Galster et al. (2001)

Endsley and Rodgers (1994),
Appendix A
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According to Rantanen and Nunes (2005) the hierarchical sequence that controllers use to solve a conflict is:

1. An altitude change
2. Aheading change
3. Aspeed change

The preferred resolution is an altitude change because it requires the least monitoring thus reducing work-
load (Rantanen & Nunes, 2005). On the other hand, speed changes are less effective, due to the small speed
envelope of commercial aircraft at high altitudes (Kirwan & Flynn, 2002).

Within these high level options, more elaborate strategies arise. To assess the decision-making style of an
ATCo, their main goal needs to be evaluated, which is to safely expedite and maintain an orderly flow of
air traffic (ICAO, 2016, p. 1-3). In order to achieve this, specific strategies and principles are followed which
are listed by Kirwan and Flynn (2002). A selection of the most important strategies is shown in Table 3.2,
accompanied by a metric to quantify the principle. These quantifications can be used to compare ATCos to
automation in order to measure conformity. Additionally, these metrics could be used to assign numerical
values to an ATCo’s performance to subsequently define a reward function for a RL algorithm (section 4.3).

Measuring total performance or efficiency can be an ambiguous task because the main goal consists several
trade-offs. For example, the number of additional track miles should be minimized, while at the same time
safety margins should be as high as possible. To solve this trade-off, the priorities defined by Seamster et al.
(1993) are used, as shown in section 1.1.

Table 3.2: A selection of ATCo strategies and principles as listed by Kirwan and Flynn (2002) with a metric to quantify these aims.

Strategy or principle Metric

“The bottom line is safety" Need more than 5nm to be safe  Closest Point of Approach (CPA)

“Reduce the complexity (eliminate problems)" % free SSD area

“Minimise the number of aircraft to move" Number of different aircraft that are controlled
“Look for one key action that will resolve the situation" Number of resolutions in total

“Minimize additional track miles flown" Deviation from original path in nautical miles

3.2. The Solution Space Diagram

This section introduces the Solution Space Diagram (SSD). It has been conceived following Ecological Inter-
face Design (EID) principles which implies certain benefits that are discussed in subsection 3.2.1. After this,
the SSD is introduced and linked to the strategic parameters as discussed above.

3.2.1. Ecological Interface Design

This section introduces the concept of EID as a paradigm to increase situational awareness and better problem-
solving performance. In the next section, an application of EID, the Solution Space Diagram (SSD), is intro-
duced.

The EID principles have been introduced in the field of Process Control but are applicable to a large va-
riety of domains. (Vicente & Rasmussen, 1992) EID “addresses the cognitive interaction between humans
and complex sociotechnical systems." (Van Dam, Mulder, & van Paassen, 2008). During the design of new
automation or instrumentation, the imposed constraints of the actual work environment (“ecology") of the
user are taken in account. Research has shown that this improves worker adaptation and consequently results
in better problem-solving performance compared to other principles (Vicente, 2002). EID is built-up from a
combination of structure and form. The structure, or content, entails a deep understanding of the end-user’s
work domain, including relationships, degrees of freedom, constraints and hence the solution space. This
analysis provides a basis for the possible actions which are goal-directed (Van Dam et al., 2008). The second
element of EID, the form, focuses on how to show this solution space to the user. Through meaningful
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Figure 3.3: Basic solution space construction. Adapted from Mercado-Velasco et al. (2010) and Westin et al. (2011)

and functional visualization, the user is able to intuitively'see the solution space and take the appropriate
action. Practically, this involves making normally hidden system dynamics more visible to the user to increase
situational awareness (Van Dam et al., 2008).

3.2.2. Introduction of the SSD

The SSD is an ecological decision support tool that integrates various critical parameters of the CD&R prob-
lem. The concept was first introduced in an aviation context by Van Dam et al. (2004), who used the SSD as
a self-separation tool.? A representation of the SSD is given in Figure 3.3. The inner and outer circle denote
the minimum and maximum velocity of the aircraft respectively. The arrow indicates the controlled aircraft’s
heading and speed. The colored geometric shapes (triangles) each indicate a potentially conflicting aircraft
(intruder). When the velocity vector lies in this colored ‘no-go zone’, the aircraft is indeed in conflict and a
resolution is required. The non-colored zones are thus, by definition, the solution space for the aircraft.

The SSD is constructed by defining the Forbidden Beam Zone (FBZ) per observed aircraft, which comprises all
relative velocity vectors that lead to a loss of separation. When the FBZs are displaced by the velocity vectors
of these observed aircraft, the SSD is obtained. A more detailed explanation of the construction of the SSD
can be found in Mercado-Velasco et al. (2010), who was one of the first to introduce the SSD in combination
with Air Traffic Control.

In past research, the SSD has been applied for two main objectives: creating sector metrics and improving hu-
man performance. It has been used to measure sector complexity and as predictor of performance and work-
load (Rahman, Borst, Mulder, & Van Paassen, 2010). Research has shown high correlations between solution-
space properties, self-reported task difficulty (Hermes et al., 2009) and subjective workload (D’Engelbronner,
2010). Secondly, the SSD improves situational awareness and system understanding according to human-in-
the-loop experiments (Borst et al., 2015; Van Dam et al., 2008). In addition, an experiment which involved
merging aircraft into a single route, has shown significant effects of the SSD on the reduction of controller
workload (Mercado-Velasco et al., 2010).

It is hypothesized that the SSD allows the human and machine to work in a shared work domain (ecol-
ogy). Automation based upon the same SSD parameters a human uses (through visual input), may be more
conformal and more human-like. The SSD also offers a more ‘transparent’® decision process than ordinary
automation might. It should be noted, however, that higher transparency does not necessarily lead to higher
acceptance (Goritzlehner et al., 2014) and that too much transparency results in a higher workload and thus
lower Situation Awareness (SA) (Duggan, Banbury, Howes, Patrick, & Waldron, 2004).

1 Although the aviation domain features ‘intuitive’ EID displays, it is a common misconception to interpret ‘ecological’ as ‘intuitive’. The
systems are designed to be used by experts and may require extensive training. (Borst, Flach, & Ellerbroek, 2015)

2Before Van Dam et al.’s aviation interpretation, the concept of the SSD, or ‘state vector envelope’, was first introduced as velocity obstacles
in robotics research (Fiorini & Shiller, 1998).

3Mark and Kobsa (2005) define transparency as understanding of the reasoning and behavior of automation by the human operator.
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Table 3.3: Parameters incorporated in the SSD; with CD&R (top) and sector (bottom) parameters.

Parameter Visualization in the SSD

CPA The CPA is reflected by a translating FBZ.

Time to CPA A smaller fcpa results in a wider FBZ. Additionally, it can be
indicated with color coding.

Conflict angle The conflict angle is reflected by the inclination of the FBZ.

Relative velocity Relative speed is included by the rate of increasing width of the FBZ.

Traffic density Each aircraft is represented by a separate FBZ in the SSD.

Traffic complexity With higher complexity, the FBZs of separate aircraft overlap less

and will occupy more area of the SSD.

Exit waypoint The exit waypoint is visualized using a strikingly colored heading
vector within the speed limits.

3.2.3. Parameters incorporated in the SSD

Table 3.3 shows the same parameters as introduced in Table 3.1, only now with their visualization in the SSD.
It seems that CPA, time to CPA, conflict angle, relative velocity, traffic density and traffic complexity are all
visually represented in the SSD. On the other hand, the important exit waypoint is not included in the SSD
and should be passed in manually, either as visual addition or as separate numerical value.

To conclude, this chapter evaluated the decision-affecting parameters from literature and related these to
the SSD visualization. Based on these relations, it can be hypothesized that the SSD incorporates sufficient
information to contain the basis of decision-making strategy. However, two limitations must be remarked.
First, the exit point is a strategy-determining feature that should be included in the algorithm. And second,
although some sector information is reflected in the SSD, the complete picture is not fully observable. To
include more sector information, a sector overview image or a vector with all aircraft states could be passed
into a learning algorithm.






Machine Learning techniques

Artificial Intelligence is the simulation and demonstration of intelligent behavior in machines. One of the
major goals in this field is to create autonomous agents that can learn from their environments thus learning
optimal behavior, frequently through trial and error. (Arulkumaran, Deisenroth, Brundage, & Bharath, 2017).
A sub-category of Artificial Intelligence (AI) is Machine Learning (ML), which enables computer systems to
improve their performance on a task without being explicitly programmed.

According to Sutton and Barto (1998), ML can be subdivided into multiple paradigms, consisting of at least
Supervised Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). Figure 4.1 shows
these three types of learning, including subcategories and examples of algorithms. It is difficult to devise a
one-size-fits-all taxonomy for ML algorithms as learning type, method, and purpose are not logically ordered.
Moreover, certain methods - such as neural networks - find their use in all learning types.

Type of Learning Algorithm Category Examples
| Classification e SVM: Support Vector Machines
. « Gradient Boosting Trees
Supervised
Learning 1
Section 4.1 Ly ) o CART Decision Trees
Regression o GLM: Generalized Linear Model
> Clustering « K-means, K-modes
. « Hierarchical
Machine | Unsupervised | |
Learning » Learning
Dimension « PCA: Principal Component Analysis
Ly P P Y
Reduction o GDA: Generalized Discriminant Analysis
Traditional e Q-Learning
>
i Methods « SARSA
Reinforcement
Learning |
Section 4.2 Ly Deep AL « DQN: Deep Q-Networks

o DDPG: Deep Deterministic Policy Gradients

Figure 4.1: A taxonomy of Machine Learning types, subcategories, and examples of algorithms. Both supervised learning and
reinforcement learning are elaborated on in this chapter.

Supervised learning requires a set of labeled data with linked in and outputs. Through extrapolation or
generalization, these algorithms can provide useful results to data that is not present in the training set.
However, this limits use-cases to situations where prior knowledge of the system exists, even though learning
would be most beneficial in situations where agents do not have specific information and have to interact
to learn. (Sutton & Barto, 1998) On the other hand, unsupervised learning can learn without any prior
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Figure 4.2: The problem-solving process for supervised learning. (Kotsiantis, 2007)

knowledge of the system. Usually, this terminology is used to define classification algorithms, i.e. finding
clusters or patterns in unlabeled data. RL does not fit in any of these two categories and is thus categorized as
its own paradigm. RLlearns and improves by interacting with the environment and is reward driven, whereas
the other methods are not. Unsupervised learning is used for both dimension reduction and clustering.
Dimension reduction is a useful technique when reducing the complexity of input data to enhance algorithm
performance. In the case of this research the data consists only of a few parameters or an SSD image (Section
3.2), which renders it less relevant for this application. On the other hand, clustering is the task of grouping
data together that is more similar compared to other data points. This technique can be used to identify and
group controller strategies, as was shown by Regtuit et al. (2018). This is, however, not the aim of this research.

Please note that the objective of this research is not to improve on existing machine learning methods, but
rather to apply the best suited one to achieve strategic conformal automation in ATC. The goal of this research
is imitating expert behavior or preference, for which SL seems best suited as the algorithm is trained based on
expert data (section 4.1). On the other hand, recent successes were made in imitation learning using various
methods of RL, which is therefore covered in section (4.2).

4.1. Supervised Learning

SLaims to classify or regress data given an input and target database. This labeled data is used to train a model
to subsequently predict values that are not in the original data set. Figure 4.2 shows the typical supervised
learning process where the training set contains input and target data. In context of conformal resolution
advisories, the input would be the state space of the current conflict situation and the target data would
consist of the resolutions (or actions) taken by controllers in those states. The assumption is that the model
will be able to predict conformal resolutions for new situations even when state space conditions vary from
the original input data.

The review paper by Kotsiantis (2007) defines four principal categories of supervised learning: logic based,
perceptron based, statistical learning, and a Support Vector Machine (SVM). Six techniques that fall into these
categories are shown in Table 4.1, including their main advantages and disadvantages. Although Decision
Trees and Rule-Learners provide transparency, the overall performance of these algorithms is relatively low.
Based on a preference for accuracy, neural networks and SVMs seem promising. Caruana and Niculescu-
Mizil (2006) confirm this result and conclude that neural nets, SVMs and bagged trees yielded the best per-
formance.
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Table 4.1: Overview of traditional supervised learning methods with their main advantages and disadvantages. Summarized from

(Kotsiantis, 2007)

Method Advantage Disadvantage

Decision Trees Transparency Accuracy and tolerance to interdependent
or redundant attributes

Neural Networks Accuracy Transparency, overfitting, tolerance to ir-
relevant data

Naive Bayes Speed of learning, transparency, incre- Accuracy, tolerance to interdependent or

mental learning

redundant attributes

k-Nearest Neighbor

Speed of learning and incremental learn-

ing

Speed of classification, tolerance to miss-
ing values and interdependent attributes

Support Vector Machine (SVM)

Accuracy, tolerance to irrelevant attributes

Speed of learning, transparency

Rule-Learners

Transparency

Overall low performance

A main advantage of NNs is that they are very flexible in the types of data they accept. They accept a broad
range of data structures without the specific need to manually pre-engineer features, although it does im-
prove computational performance. This makes them adaptable to a broader range of scenarios, e.g. a varying
number of aircraft per conflict. Contrarily, a major advantage of SVMs is that this method requires less
hyperparameters to be tuned, resulting in a workable model without the use of extensive grid-searches.
Additionally, SVMs are less likely to overfit and they theoretically converge to the global optimum due to
quadratic programming (Cortes & Vapnik, 1995).

On the other hand, both methods endure the drawbacks of being black-box models, making it difficult to
verify and validate them. Especially in safety-critical domains — a term applicable to this research - this
is currently considered unacceptable (Jacobs, 2015). Despite this drawback, neural networks have risen in
popularity due to their numerous applications across domains. Due to the large body of recent research and
practical achievements, neural networks are selected for in-depth review in the next section (section 4.1.1).
Of particular interest are deep neural networks that allow image processing (section 4.1.2) or are combined
with reinforcement learning (section 4.2.2) to create more adaptable solutions.

4.1.1. Neural Networks

The basic building block of Artificial Neural Networks (ANN) is the neuron. The neuron was formally known
as the perceptron as introduced by Rosenblatt (1958) (Figure 4.3a). The output y of a neuron follows from the
inputs x; following Equation 4.1:

y=d>(Z wixi+b) 4.1)

The neuron y(x;) can approximate functions by adapting its weights w; and bias b. ¢ is called the activation
function, which determines the neuron’s final output. ‘Learning’ is achieved through back-propagation.
Using known input-output pairs, knowledge is back-propagated through the neuron to update the weights
and biases. To approximate more complex functions, multiple neurons are stacked to form a neural network
(Figure 4.3b).

Activation function

Activation functions determine the relationship between a neuron’s input x and output ¢ (x). By using non-
linear activation functions, the network is able to approximate non-linear functions. Traditional functions
for neural networks are ¢(x) = tanh(x) or ¢(x) = (1 + e~*)~!. However, these functions result in longer train-
ing times compared to non-saturating non-linear functions such as Equation 4.2. (Krizhevsky, Sutskever, &
Hinton, 2012)

¢(x) = max(0, x) (4.2)
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Figure 4.3: Structure of an Artificial Neural Network (ANN).
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Figure 4.4: Propagation through a NN with two hidden layers and one output layer. The difference between the input and the target,
the error E, is back-propagated through the network to update network weights. Please note that biases are not included for simplicity.
Adapted from LeCun, Muller, Ben, Cosatto, and Flepp (2005)

Neurons with these functions are called Rectified Linear Units (ReLUs) (Nair & Hinton, 2010), which have
gained popularity due to their computational efficiency. Since then, many improvements have been pro-
posed (J. Gu et al., 2017).

Weight updates through back-propagation

Although adjusting weights for a single layer is straightforward, it becomes more complicated with multiple
layers. Which weight specifically contributed to a correct or false output? In order to determine the perfor-
mance of the current network, a total error E should be defined, for example by Equation 4.3. (Rumelhart,
Hinton, & Williams, 1986)

1
E(w)= EZZ(y,-,c(w) —tj0)? (4.3)
cj

Where w are the parameters/weights that determine output y, c is an index of the number of samples, j
is the number of outputs and ¢ is the desired output, or target. By applying the chain rule multiple times
backwards through the network, the partial derivative of the total error with respect to the weights 6 E/6w
can be obtained (Werbos, 1974). An example of back-propagation in a NN with two hidden layers and one
output layer is shown in Figure 4.4. Here, Figure 4.4a shows the forward pass to calculate the outputs y; from
inputs x;. After this, the error E is calculated (e.g. using equation 4.3). This error is subsequently used to
update network weights through the error derivatives (Figure 4.4b).

The simplest form of a first order gradient descent is to increment the weights proportionally to this deriva-
tive. In order to minimize total error E, standard gradient descent evaluates the entire dataset at once to
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update the weights according to Equation 4.4, where € is called the learning rate (Rumelhart et al., 1986). The
gradient of the error VE can be interpreted as 6 E/6w.

Aw=€¢) VE;w)/n (4.4)

n
i=1

In restricted cases, the sum and sum gradient can indeed be computed over the entire dataset. However, in
modern applications where network complexities and data sets grow, this is not feasible anymore. For this
reason, stochastic gradient descent is introduced, where the sum and gradient are evaluated per sample E; (w)
(Bottou, 1998).

AW = eVE; (W) (4.5)

A hybrid method that uses more than one sample per iteration, called a minibatch, has shown smoother
gradients (Mnih et al., 2015). Efficiency is gained because gradients and sums can be calculated in parallel
due to vector operations. Two main methods to speed up minibatch learning exist: using momentum and
using separate adaptive learning rates for each weight (Tieleman & Hinton, 2012).

Implementing momentum not only considers the ‘position’ of the weight but also incorporates its ‘velocity’.
The velocity is defined as the weight change: v(#) = Aw(#). The weight update is then defined to be the
previous velocity multiplied with a decay factor @ minus the current gradient multiplied with the learning
rate €:

OE
AW(t) = aAw(t—1) —e— (1) (4.6)
ow

The magnitudes of gradients in a network can vary a lot, especially with small initial weights. One learning
rate throughout the network is not the most efficient manner to approach this, which is why adaptive learning
rates per weight were introduced: RMSProp (Root-mean-square propagation) keeps a moving average of the
squared gradient for each weight (Tieleman & Hinton, 2012).

The inputs x; are frequently called features. Oftentimes these are manually selected based on knowledge
of the underlying system. In addition, they can be pre-engineered for better network performance, e.g.
having an ‘area’ feature instead of only length and width. For well-understood systems such as games, this
is indeed an effective solution. However, when the system is less defined or discrete — for example in visual
environments — a trainable feature extractor is required. This is the idea behind deep learning, which has
achieved major feats using Convolutional Neural Networks (CNNSs), which are discussed in the next section.

4.1.2. Introduction to Convolutional Neural Networks

Networks with a deep architecture can automatically create learning features without reliance on “hand-
crafted" features, which is why they have risen in popularity over the past years (Sutton & Barto, 2018, p. 225).
The first application of Convolutional Neural Networks (CNNs) was by LeCun, Boser, et al. (1989) to recognize
hand-written zip-codes in 1989. Since then, CNNs have been subject to a tremendous amount of research.
A notable milestone is the work of CiresAn, Meier, Masci, and Schmidhuber (2012), who achieved human-
competitive image recognition for the first time. Advancements have primarily focused on new network
architectures, network functions and computational efficiency. However, the underlying concepts remain
the same.

A Convolutional Neural Network (CNN) is a type of feed-forward neural network that is commonly applied
to image data. Similar to a regular NN, a CNN consists of multiple stacked neurons (Figure 4.3a). In the case
of a CNN, however, every input is connected to a (normalized) pixel-value of the original image, see Figure
4.5. One neuron is locally connected to an area in the original image. For example, a 4 pixel squared area
results in 16 inputs plus one bias. This area, or filter, slides over the entire image to create a new output map.
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Figure 4.5: A Convolutional Neural Network structure (LeNet-5) for character recognition. The weights of each plane are kept equal for
computational efficiency. Adapted from LeCun et al. (1998)

These overlapping filters can extract visual features such as small corners or edges from the image. The visual
features are subsequently combined to form compositions while progressing through the net.

The network architecture as seen in Figure 4.5 contains six different convolutional kernels (or convolution
matrices) resulting in six feature maps (C1). Per kernel, the weights are kept constant to reduce the num-
ber of trainable parameters. It is not uncommon for modern architectures to feature 32 or 64 kernels per
convolutional layer (e.g. Silver et al. (2017)).

In between the convolutional layers, pooling layers are used to subsample the image. By reducing the image
dimensions, less trainable parameters remain and computation time is improved. Additionally, by removing
detail from the image, overfitting is reduced (LeCun, Pfeifer, Schreter, Fogelman, & Steels, 1989). The pooling
layer in Figure 4.5 uses a kernel that takes the average of a 2x2 pixel area x to obtain a 1x1 pixel value (LeCun et
al., 1998). Nowadays, a max-operator max(x) is more common (Springenberg, Dosovitskiy, Brox, & Riedmiller,
2015). With no overlapping kernels, the image size is thus reduced by 75%.

Near the output of the network, a fully connected layer is used to connect all remaining neurons to the pos-
sible output classes. These fully connected layers can be interpreted as a standard NN or as a convolutional
layer with 1x1 pixel kernels. The final probability of outputs is determined by the output classifier function.

Output classifier function

The concluding softmax function (Sutton & Barto, 1998) transforms the remaining vector of real values into a
vector of probabilities per output class. This provides the model not only with an output value, but also with
a certainty factor. The softmax function is defined by Equation 4.7. Where all entries of o are real, within [0,1],
and add up to 1. K is the dimension of input vector z.

2

o= forj=1,...,K 4.7

9
k=1 =k

Loss function with probability

When probabilities are included in the model output, basic cost functions such as Equation 4.3 are not
compatible anymore. To take the probability vector into account, a cross-entropy cost function (De Boer,
Kroese, Mannor, & Rubinstein, 2005) can be used to calculate the network loss, which in turn is used to update
the network weights. It fits discrete output problems well and the gradient increases with increasing error (as
opposed to quadratic loss functions), consequently speeding up the learning process. The cross entropy H is
calculated for M output classes by comparing the probability vector o resulting from the softmax function to
the one-hot target vector y;:

M
H(y,p)=-) yilogo; 4.8)
i
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4.1.3. Advances in Convolutional Neural Networks

Initially, convolutional networks were applied to domains where large amounts of data are available such
as character recognition (LeCun, Boser, et al., 1989) and traffic sign classification(CiresAn et al., 2012). In the
following years, more dynamic domains were used in applications. In these years, LeCun, Bengio, and Hinton
(2015) trained a self-driving RC car using imitation learning based on human data. Training data consisted
of raw camera images (input) with steering data (target) to train end-to-end self-driving behavior using a
6-layer CNN. This concept was later improved by Hadsell et al. (2009) by using a stereo camera to enable
self-supervised learning.

It took three more years for a broader adoption of CNNs by research communities after successful applica-
tion to a million image dataset called ImageNet (LeCun et al., 2015). Krizhevsky et al. (2012) devised GPU!
optimized training algorithms and non-saturating neurons (ReLUs, see Equation 4.2) to reduce the error rate
on ImageNet from 26% to 15%.

To reduce overfitting, Krizhevsky et al. (2012) used two techniques; dropout layers and data augmentation. A
dropout layer randomly sets the weights of a fraction of the neurons to zero at each epoch during training.
This will lower the network’s reliance on these neurons and will thus prevent overfitting (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014). The second technique is data augmentation, where the ex-
isting training data set is altered by techniques such as flipping horizontally & vertically, rotating, scaling,
cropping, translating, adding Gaussian noise and adjusting brightness & contrast.

To increase simplicity of network architectures, Springenberg et al. (2015) analyzed all components of the
pipeline of a CNN. It appeared that max-pooling layers can be replaced by increasing the kernel size of
the convolutional layers without performance loss on image databases. Additionally, it retains the original
locations of features better which is intuitively required for analyzing SSDs images.

Further advances in CNNs are primarily focused on the design of convolutional and pooling layers, loss
functions, activation functions, optimizers and computation time (J. Gu et al., 2017) but these incremental
improvements are beyond the scope of this literature review.

A main drawback of supervised learning using CNNs is the vast amount of data required to achieve acceptable
accuracy. A subfield of machine learning that aims to solve this is Deep Reinforcement Learning, which is
covered in the next section.

4.2. Deep Reinforcement Learning

This section ultimately introduces the concept of Deep Reinforcement Learning (DRL). In order to do this, a
short introduction on RL is given which will focus on the Q-Learning algorithm and the current challenges in
RL. Section 4.2.2 will elaborate on Q-Learning with Deep Q-Networks. Subsequently, recent work on Policy
Gradients is discussed (section 4.2.3). Finally, all techniques will be combined to analyse a short case study
on AlphaGo in section 4.3.3

4.2.1. Introduction to Reinforcement Learning

The essence of RL is learning through interaction. An agent develops itself based on feedback it receives from
its environment and alters its behavior based on rewards it receives (Sutton & Barto, 1998).

A key principle that forms the basis for RL are Markov Decision Processes (MDPs), as introduced by Bellman
(1957). The underlying principle — the Markov Property — is that the next state is fully defined by the current
state and the current action. This means that given the current state s; and action ay, they are conditionally
independent of previous states and actions. By interaction with its environment, the agent receives potential
rewards r; per action a; it takes. These rewards are summed and discounted (y) over an epoch to obtain a
final return R. The agent’s goal is to develop a strategy, a policy =, that results in the highest return. When
an optimal policy n* is found, it dictates — for a given set of states — which actions will ultimately result

1Graphics processing unit
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Figure 4.6: The reinforcement learning loop: Based on policy 7, the agent determines an action a; based on the current state s;. After
interaction with the environment, this action results in a new state s;4+1 and potentially a reward r;. Indirectly, the rewards incrementally
alter the policy to improve it. Adapted from Arulkumaran et al. (2017).

in the highest return. The ideology behind RL is that the optimal policy is found through trial and error,
by constantly updating the agent’s knowledge. This loop is shown visually in Figure 4.6. A mathematical
representation of this goal is given in Equation 4.9 (Sutton & Barto, 1998).

" = argmaxE [R|7] 4.9)
T
where the reward R is defined as:
T
R=Y y'r(ssar see1) (4.10)
=1

in which y is the discount factor 0 <y < 1 (Sutton & Barto, 1998).

The next step is to maximize this reward. One of the first and most popular methods for this is called Q-
Learning (Watkins, 1989). The concept of Q-Learning is to find a function Q(s, a) that reflects the predicted
future reward for action a in state s. When this Q-function is subsequently followed, the maximum reward
should be obtained. The Q-function is updated iteratively using the current reward and the estimate of the
optimal future value, as shown in Equation 4.11.

Q(s,ar) — Q(sp,ar) +a|r+ YmL?XQ(st+1; arr1) — Q(sy, ar) (4.11)

where « is the learning rate and y is the discount factor. A learning rate of 0 will force the agent to solely
use the most recent information, whereas a discount factor of 0 will make the agent only regard the current
reward as opposed to future rewards.

The Q-values are updated using the Q-value of the next state with a greedy (max,) action a, regardless of
the actual action that the agent takes, making Q-learning an off-policy learner (Sutton & Barto, 1998). An
alternate form of learning is to directly learn the policy in on-policy learning, which is discussed in section
4.2.3.

RL is a technique that offers adaptability, global optimization and original solutions for complex problems.
However, there are still challenges that make applications not always easy and straightforward (Sutton &
Barto, 1998):

¢ Credit Assignment Problem: The consequences of an action could be experienced many time steps
later which makes it difficult to link certain rewards to the action that led to it.
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¢ Curse of dimensionality: When problems require a large state-action space, it becomes infeasible for
an algorithm to visit all states sufficient times to converge to the optimal policy.

¢ The exploration — exploitation trade-off: The agent must converge towards actions that yield a high
reward, but to find these actions, it has to try new ones. A balance should be found for optimal results
which varies per problem.

* Reward functions have to be designed carefully, which can be a difficult process as their design influ-
ences learning in sometimes unintended ways.

* A policy might get stuck in a bad local optimum if hyperparameters are not tuned properly, which can
be a tedious task.

The next sections introduce more recent advances in reinforcement learning which aim to tackle the above-
mentioned challenges in various ways.

4.2.2. Deep Q-Networks

As determined in section 4.1.2, one of the advantages of deep learning is that a feature extractor is trained
in the process, rendering hand-crafted feature engineering redundant. Nonetheless, RL algorithms based on
manual features usually outperform generic ‘raw-input’ algorithms. This is proven by the difference between
TD-Gammon 0.0 — using a raw representation of the Backgammon board - and the much better performing
TD-Gammon 1.0, which included Backgammon specific features (Sutton & Barto, 2018; Tesauro, 1995).

Although this remains true for well-understood systems such as games, automatic feature extraction clearly
adds value in highly complex, poorly-understood domains such as human strategy. An important advance-
ment was made when deep neural networks were combined with RL by Mnih et al. (2013), showing that high
performance can be achieved with a generic algorithm that was applied to a multitude of environments. Mnih
et al. introduced the Deep Q-Network (DQN) concept; a deep neural network combined with Q-Learning. It
was used to play 49 different Atari 2600 games without any changes of hyperparameters per game (Mnih et
al., 2015). The algorithm was trained on the same input for all games, being four? 64x64 pixel screen captures
per state. The reward signal is tied directly to the game score and no further feedback was provided to the
agent.

DQN can be interpreted as a standard Q-learning algorithm with a deep neural network as Q-function. Ad-
ditionally, Mnih et al. (2015) made two major improvements to Q-Learning to increase stability and conver-
gence: experience replay and using a target network, which are discussed below. Q-Learning was chosen
because it is model-free — making it easier to implement and more generic — and off-policy, which is a re-
quirement for experience replay.

Experience replay

Experience replay (Lin, 1993) is a technique that stores all agent experience in a dataset D = ey, ...,e;. One
experience is defined by e; = (s;, a;, ¢, Sp41) or in words: the state, action, reward and the next state per a
timestep. Every time the weights are updated, a random batch of samples is drawn from dataset D. Experi-
ence replay has three advantages: One, it improves data efficiency because one experience is used in multiple
weight updates. Two, consecutive frames in a game are highly correlated making training inefficient. And
three, with an on-policy strategy, a preference for a certain action generates more samples with that action,
possibly creating an unwanted feedback loop which could lead to a local minimum or divergence. (Mnih et
al., 2015)

A separate network for target generation

The second improvement to Q-Learning is using a different neural network to generate the targets y;. This
target network Q is “cloned" from the original network Q every C steps. This adds a delay between adjusting
the weights and the time the targets are affected. Without this temporal separation, oscillations could occur
due to the inter dependability. (Mnih et al., 2015)

2Four subsequent screen shots were contained in one state to capture velocity and acceleration.
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Network architecture and backpropagation The network architecture consists of three convolutional layers,
followed by a fully connected layer and the output layer. Sub-sampling was achieved without pooling layers
by making the convolutional kernels larger (ranging from 20x20 pixels to 7x7 pixels per kernel). This conserves
the location of the features (e.g. the ball), which is vital for most games. 32 or 64 feature maps per layer were
used and the activation functions are ReLUs (Equation 4.2). The network concludes with 18 output neurons
which correspond to the maximum of 18 possible actions in an Atari game. Actions are selected using an
e-greedy strategy, with a linearly decreasing exploration—exploitation ratio ¢ (Mnih et al., 2015).

The Q-network is trained by minimizing loss functions L; (w;) that change every iteration i when the weights
of the target network are updated:

Li(w;i) =E(s,a,r,s)~UD)

r+)/nze/1XQA(s',a’;wi_)—Q(s, a;w,-)z)] (4.12)

where w; is the weight vector, y is the discount factor, Q represents the function approximating neural net-
work, s is the state, a is the action with the highest expected reward and U (D) displays a uniform, random
sample pull from the database D. Please note that the first term between the brackets represents the target
y; for iteration i.

When this loss function is differentiated with respect to the weights, the following gradient is obtained:
Vw,; Li W) = Es,a,r,5) [(r + YmE}XO(S’, a;w;)—Q(s, a;wi)) Vw,; Q(s, a;wi)] (4.13)
a

For computational efficiency, instead of computing the full expectations of the gradients, the weights are
updated using stochastic gradient descent (Sutton & Barto, 2018):

Wil =W+ | Rt +ymaxQ(seer, a;wy) = Qsp, arswi) | VQ(sy, ar, wi) (4.14)

where « is the learning rate and R is the cumulative reward. The learning rate « (also: step size parameter),
is adapted per weight specifically based on a running average using RMSProp (as seen in section 4.1.1).

To summarize, the DQN algorithm is given by Algorithm 1.

Algorithm 1 deep Q-learning with experience replay by Mnih et al. (2015)

1: Initialize replay memory D to capacity N

2: Initialize action-value function Q with random weights 6

3: Initialize target action-value function Q with weights 6~ = 6
4: for episode =1, M do

5 Initialize sequence s; = x1 and preprocessed sequence ¢ = ¢p(s1)

6 fort=1,T do

7: With probability € select a random action a;

8: otherwise select a; = argmax, Q(¢(s1), a;0)

9: Execute action a in emulator and observe reward r; and image x4+
10: Set S¢4+1 = S¢, at, Xr+1 and preprocess Pry1 = P(Sr4+1)

11: Store transition (¢, a¢, r¢,¢pr1) in D

12: Sample random minibatch of transitions (¢, as, rr, pz+1) from D

13: if episode terminates at step j + 1 then

14: yi=rj

15: else

16: yj:rj+ymaxa/(§((pj+1,a’;6’)

17: Perform a gradient descent step on (y; — Q(¢, a j;H))2 with respect to
18: the network parameters 6

19: Every C steps reset Q = Q

Since their first publication, DQNs have undergone multiple improvements to increase the algorithm’s per-
formance, of which a summary of recent advances is given in Table 4.2 Although not all techniques will be
discussed in detail, DQN from Demonstrations (DQfD) is relevant to this research and is elaborated on in
section 4.3.
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Table 4.2: Overview of recent advances regarding Deep Q-Networks (DQNs).

Improvement Description Reference

Double Q-Learning (DDQN) Reduces the overestimation of the ex- Van Hasselt et al. (2016)
pected return by using a second Q-
Network

Duelling DQN Uses the state-value function V* as  Wang et al. (2016)

baseline and advantage function A”
for adjustment which is easier to
learn.

Prioritised experience replay Samples important experience more Schaul et al. (2016)
frequently compared to the original
uniform sampling to increase learning
efficiency.

Normalized Advantage Function Usesan advantage layer to enableitto S. Guetal. (2016)
(NAF) be applied to continuous functions for
continuous control problems.

DQN from Demonstrations (DQfD) Accelerates learning by using demon-  Hester et al. (2017)
stration data (section 4.3).

Categorical DQN Learns the reward distribution instead ~ Bellemare et al. (2017)
of only the expected reward to obtain
more knowledge about the reward
model.

4.2.3. Policy Gradients

Although DQN has shown very promising initial results, the authors of its initial publication concluded that
Policy Gradients (PG) proved to be a more effective method in some cases (Mnih et al., 2016). PG is an end-to-
end RL algorithm, where the policy — instead of the value function - is directly optimized to obtain the highest
reward. Explicitly learning the policy enables stochastic action decisions, something that could resemble a
human better than the deterministic argmax function in traditional DQN.

PG find their origin in the work of Williams (1992), who researched a class of algorithms that could update
weights in the direction of a gradient, without actually calculating gradient estimates. These algorithms,
called REINFORCE algorithms, learned much slower than traditional RL algorithms. Nonetheless, Sutton,
McAllester, Singh, and Mansour (2000) followed up on Williams” work and proved for the first time that PG
methods converge to a “locally optimal policy".

New interest was sparked when Silver et al. (2014) formalized deterministic policy gradient algorithms. These
deterministic gradients can be estimated more efficiently than the original stochastic policy gradient because
it reflects the “expected gradient of the action-value function". Silver et al. (2014) have shown that determin-
istic policy gradients “significantly” outperform stochastic ones.

Another breakthrough was made by Schulman, Levine, Abbeel, Jordan, and Moritz (2015), who devised a
method for “optimizing control policies with guaranteed monotonic improvement". Their method is called
Trust Region Policy Optimization (TRPO) and is particularly well-suited for optimizing large nonlinear poli-
cies, which are for example seen in neural networks. TRPO was benchmarked against earlier results on
Atari games (Guo, Singh, Lee, Lewis, & Wang, 2014; Mnih et al., 2013) and outperformed them. Additionally,
implementing TRPO appeared to be less complex than incumbent methods.

A final leap was made by Mnih et al. (2016), who improved on their original 2015 paper using PG. The orig-
inal paper used experience replay (section 4.2.2) as one of its key features, which made on-policy training
impossible. To replace the experience replay functionality, they “asynchronously execute multiple agents in
parallel, on multiple instances of the environment" Mnih et al. (2016). Due to this parallel computing, the
input states become uncorrelated and learning is stationary again. By opening up the door for on-policy
algorithms, it was found that an asynchronous variant of the actor-critic algorithm outperforms the current
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state-of-the-art with only half of the training time.

Both Policy Gradients and DQNs found their way in applications regarding imitation learning, which is the
focus of this research and will be discussed in the next section.

4.3. Imitation Learning

Achieving conformal automation is closely related to a machine learning field called imitation learning.
Imitation learning aims to perform a task based on expert demonstrations, without reinforcement signal.
The main two methods are Inverse Reinforcement Learning (IRL) and behavioral cloning. This report defines
arelated field called transfer learning as using stored knowledge of a previous problem to solve a comparable,
but different problem. Because the automation solves the same problem as the ATCo, transfer learning is not
reviewed in this section.

4.3.1. Inverse Reinforcement Learning

IRL is the process of determining the reward function from observations by an expert Ng and Russell (2000).
To assess the practicality of this, two examples are shortly discussed.

The first notable publication aimed to predict hourly Ground Delay Program decisions for real-world data
from two international airports (Bloem & Bambos, 2015). Both actual and scheduled air traffic data was used
to train multiple IRL and random forest models. It was however found that the random forest behavioral
cloning models outperformed IRL.

The second publication is again applied to self-driving cars Wulfmeier, Rao, Wang, Ondruska, and Posner
(2017). The aim was to extract the “underlying reward or cost structure from demonstrations of human
behavior" (Ziebart, Maas, Bagnell, & Dey, 2008). The input data consisted of LIDAR® images and driving
variables of more than 25,000 demonstration trajectories (120 km of urban driving). By using a Maximum
Entropy Deep Inverse Reinforcement Learning (Wulfmeier, Ondruska, & Posner, 2015) algorithm, Wulfmeier
et al. were successful in developing a scalable approach that was proven against multiple benchmarks.

4.3.2. Behavioral cloning

Behavioral cloning is also referenced to as apprenticeship learning or learning from demonstrations. It usually
implies using supervised learning to define a policy from state-action data that was obtained from expert
trajectories. A straightforward example of this is training self-driving cars to keep their lane based on front-
camera data and human steering angles (Chen & Huang, 2017).

More elaborate cases use a combination of RL and supervised learning. Despite the successes of Deep RL,
it requires large amounts of (simulation) data to reach acceptable performance. Although not an issue in
simulation environments, this data requirement limits the number of use-cases in practical applications.
Hester et al. (2017) aim to mitigate this weakness by using demonstrations with a novel method called Deep
Q-learning from Demonstrations (DQfD). Initially, DQfD only trains on the demonstration data set to obtain a
policy (which should be close to the demonstrator’s policy) and a value-function. This value-function is used
for the next phase, where the agent is improved using Q-learning. In the second phase, the agent receives
a combination of demonstration data and self-generated RL samples. The method uses a regularized loss
to make sure the algorithm does not overfit on the demonstration data set. It was shown that DQfD indeed
shows better initial performance compared to state-of-the-art DQN implementations (Prioritized Dueling
Double DQN, combining three methods from Table 4.2).

One high-profile case of supervised learning to achieve behavioral cloning was presented by Silver et al. (2016)
to mimic experts playing the game of Go. Their solution combines multiple techniques that were introduced
in this chapter into one machine learning pipeline. To analyze the synergies and connections between these
methods, a short case study is performed in section 4.3.3.

3LIght Detection And Ranging of Laser Imaging Detection And Ranging: A type of radar mounted on the vehicle
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Figure 4.7: The AlphaGo neural network training pipeline. Adapted from Silver et al. (2016)

4.3.3. Case study: AlphaGo

One of the most well-known recent papers on Al advancement was published by Silver et al. (2016) in Nature.
It combines supervised learning, policy gradients, value functions and Monte-Carlo Tree Search (MCTS) to
achieve super-human performance in the game of Go*. This paper is particularly interesting to this research
because it uses SL to train on expert-moves after which the policy is improved using RL, supported by neural
networks. It is not difficult to see the analogy with an ATCo, i.e. the expert, whose moves are used to train an
algorithm to obtain conformal automation.

The pipeline of the AlphaGo machine learning implementation is shown in Figure 4.7. Based on human
expert moves, two neural networks are trained. A rollout policy network p; to support quick MCTS (Coulom,
2006) and a supervised learning (SL) policy network p, to predict expert moves given the current state of the
board. The SL policy network, trained on more than 30 million moves, achieved an accuracy of 57.0 % by
using stochastic gradient ascent through maximizing the likelihood of conformity in Equation 4.15.

AO M (4'15)
oo

where o represents the weights of the NN and p, the probability of the human action a in state s. Sub-
sequently, the weights of the SL policy network were cloned to an identically structured RL policy network
pp (p = o). This policy network improved itself through self-play against a randomly sampled older version
of itself. Random sampling of ‘opponents’ prevented the policy from overfitting to a local maximum. The
weights are updated proportionally to the function that maximizes the likelihood of a positive outcome for
AlphaGo:

610gpp (arlsy)
X —————Z

4.16
5p t (4.16)

Ap

where the predicted outcome of the game z; is determined by winning (+1) or losing (-1) as seen from the
current time step ¢. This prediction is performed by a combination of the outcome z; of a random rollout of
the MCTS algorithm using the fast policy network p, and the outcome of value network vg(s’). The two
methods are combined using mixing parameter A to calculate the “leaf evaluation V(sz)", which can be
interpreted as the strength of a particular move.

V(sp)=(Q-Vvg(sp) + Az, (4.17)

It must be noted that the input states used by AlphaGo were constructed using knowledge about the envi-
ronment (i.e. game rules). The input consists of 19 x 19 x 48 image stacks, which are the dimensions of the

4Go is one of the oldest and most complex games around (en.wikipedia.org/wiki/Go_(game))
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Go board times the number of features that were constructed. A major improvement on AlphaGo - called
AlphaGo Zero (Silver et al., 2017) — removed the requirement for handcrafted features and initial supervised
learning using expert moves, taking another step towards generic Al

4.4. Conclusion

This chapter focused on machine learning (ML) techniques to achieve conformal automation in ATC. Super-
vised learning (SL) has been analyzed and literature showed that it has been applied to successfully mimic
expert actions, albeit in driving or playing (board) games. In these applications, neural networks, and espe-
cially Convolutional Neural Networks (CNNs) were well-represented; numerous applications used raw image
data as only feature to train the learning algorithm because it eliminates the need for manual feature selection
and engineering, thus not biasing the learning based on prior assumptions. The approach of using image data
will be used throughout the rest of this thesis project.

Although standalone SL proved successful, many of the evaluated publications used a combination of tech-
niques, preferably SL with Reinforcement Learning (RL). RL techniques that proved successful consisted of
off-policy (DQN) and on-policy (PG) algorithms. The combination of SL and RL to obtain well-performing
automation is especially useful in situations were little data is available. This might indeed be the case in this
research, where human data is generated through low-scale experiments.



Preliminary analysis: The visual value of
the SSD using deep neural networks

In order to test the feasibility of modeling control strategies using the SSD, a preliminary analysis is per-
formed. This chapter will introduce the goal and methodology of the analysis in section 5.1, elaborate on
data generation in section 5.2, discuss the algorithm training in 5.3 and show the results in section 5.4.

5.1. Research goal and methodology

Firstly, one of the major assumptions of the main research is the ability to model ATC control strategy from
the SSD. The SSD is assumed to contain almost all features relevant for a controller to make a decision in a
CD&R task. This preliminary analysis aims to examine whether the decision for a certain resolution is indeed
captured in the SSD, and how precise this prediction might be.

Secondly, in chapter 4, several machine learning methods have been proposed and examined. Supervised
learning using a Convolutional Neural Network (CNN) seemed promising, since all SSD features are visually
captured without having to pre-select them based on prior knowledge or assumptions. However, as seen in
subsection 4.1.2, the wide range of tunable hyperparameters results in an infinite number of network struc-
tures and setups. This preliminary analysis is designed to give insight into the effect of these hyperparameters
and the precision that can be achieved when training a CNN on labeled SSD data. Specifically, the first three
sub-questions address these queries.

The goal of the final research is to find out whether machine learning is suitable to model ATCo strategy. One
important element of this is training on an empirical dataset created by human controllers. In order to make
this feasible, model training should be feasible with limited quantities of data only. The fourth sub-question
of this research addresses this by examining the correlation between model accuracy and the quantity of
input data. Moreover, the quality of the dataset can fluctuate due to controller inconsistency. Sub-question
five assesses the impact of this on model performance. Finally, data can be augmented to potentially increase
the effectivity per sample. This possibility will be examined by the last sub-question.

Summarizing, this results in the following research questions:

Main question
How can an ATC resolution strategy be modeled using a Convolutional Neural Network (CNN) with labeled
SSDs as input?

Sub-questions

1. How does model accuracy vary with action resolution?

53
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Figure 5.1: Methodology of the preliminary analysis

2. What is the effect of network architecture on model accuracy?

3. How does model accuracy vary with the dimensions of input data?
4. How does model accuracy vary with the quantity of input data?

5. What is the impact of controller inconsistency on model accuracy?

6. How can existing data be augmented to improve model accuracy?

The experiment aims to measure validation and test accuracy of the network as a result of varying parameters;
First, the labeled resolution dataset is generated, which is kept constant for all results shown in this analysis.
Secondly, the dataset is used to train the CNN with varying hyperparameters and finally, the accuracy of the
algorithm is measured using a separate test set. A summary of the experiment pipeline is shown in Figure 5.1.

5.2. Part A: Data generation

The performance of a supervised learning algorithm is closely related to the quality of the input data used
during training. For this reason, the generation of the dataset deserves emphasis in this analysis. Labeled
data can be generated using either a human controller or a computer algorithm. This analysis makes use of
an algorithmic controller because of higher data consistency and the ability of generating large batches of
data relatively quickly, as opposed to a human controller.

The dataset was generated using BlueSky, an open data and open-source ATM simulator developed at the
TU Delft (Hoekstra & Ellerbroek, 2016) (Figure 5.2). The simulator was extended with a plug-in to generate
resolution-labeled SSDs by simulating many conflict scenarios with varying parameters. To create the dataset
a built-in resolution algorithm was used, namely Modified Voltage Potential (MVP) (Eby, 1994; Hoekstra et
al,, 2002). The MVP algorithm was originally designed as a decentralized CD&R solution. To use it for ATC
purposes, three changes are made. Firstly, the update interval of the resolution algorithm is increased from 1
s to 10 s to act more ‘human-like’. Secondly, only one aircraft receives resolutions, i.e. the controlled aircraft.
And thirdly, a safety margin is added to the resolutions. This decreases efficiency but reduces workload for
the controller, which resembles the actions of a human ATCo (Fothergill & Neal, 2013).

Due to the exploratory nature of this preliminary analysis, only 2 aircraft per scenario are considered in a
two-dimensional space (excluding altitude). Furthermore, resolutions consist of heading changes only. The
protected zone around the aircraft follow conventions (ICAO, 2016). All controlled variables regarding data
generation are summarized in Table 5.1.

Training, validation and test data

To create a complete set of input samples, the conflict angle, CPA and time to CPA per conflict pair are varied
over a range of values. The used ranges result in a total training dataset with 5901 scenarios. This training
set is subsequently divided in a training and validation set, which is used to measure validation accuracy
during training. Additionally, a second batch of scenarios is simulated using different values for the above-
mentioned parameters to generate a test set with scenarios that the neural network has not seen before. This
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Figure 5.2: A screen capture of ATM simulator BlueSky.

Table 5.1: Controlled variables of the dataset generator in BlueSky

Parameter Value Unit
Resolution algorithm MVP (augmented) -
Number of A/C in conflict 2 -
Resolution types Heading changes only -
Update interval 10 S
Look-ahead time 180 S
Protected zone radius 5 nm
Protected zone height 1000 ft
Controlled aircraft heading 40 deg

test set will be used to ultimately validate the models. The parameters used to generate the scenarios are
displayed in Table 5.2.

Per scenario, the SSD of the controlled aircraft is generated and saved together with the proposed conflict
resolution by the MVP algorithm during the time that an aircraft pair is in conflict (with an interval of 10 s).
This data set is then filtered to remove scenarios where the algorithm took too long to solve the conflict or
when LoS occurred. The histogram of proposed resolutions by MVP for the dataset is shown in Figure 5.3.

Ten samples of the dataset are shown in Figure 5.4. One triangle corresponds to one conflicting aircraft. The
green speed vector indicates the heading of the controlled aircraft. When the arrow head lies in the red area,
the aircraft is in conflict and a resolution is required.

5.3. Part B: Training the neural network

A deep Convolutional Neural Network (CNN) was created to be trained on the SSD dataset. This section
elaborates on the design choices that were made. The parameters are either controlled or varied, based on

Table 5.2: Parameters of the training, validation and test scenarios

Parameter Train and validation values = Test values Unit
Conflict angle [40 .. 320] [40 .. 320] deg
CPA [-3,-2,-1,0,1, 2, 3] [-2.5,-1.5,0,1.5,2.5] nm
Time to CPA [240, 300, 360] [180, 420] S

Total scenarios 5901 1410 samples
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Figure 5.3: Histogram of proposed resolutions by MVP for the entire train/val-dataset.
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Figure 5.4: 10 samples from the SSD dataset. The numbers underneath the SSDs indicate the relative heading change that the MVP
algorithm recommended in this situation.

whether they were used to answer the research questions posed in section 5.1. All parameters used to create
and train the CNN are summarized in Table 5.3.

Optimizer algorithm

Section 4.1.1 introduced two new improvements for updating network weights compared to traditional SGD,
namely momentum and adaptive learning rates per parameter. An optimizer called Adam (Kingma & Ba,
2015) implements both techniques in one algorithm. Empirical results show that Adam outperforms previ-
ously popular optimizers such as AdaGrad, RMSProp and SGDNesterov, as can be seen in Figure 5.5.

Convolutional and pooling layers

The network has a similar architecture as LeNet (LeCun et al., 1998), consisting of combinations of convo-
lutional and max-pooling layers and a fully-connected layer followed by a softmax layer. A representation of
one network is shown in Figure 5.6. All evaluated network structures are displayed in Table 5.6.

The number of convolutional layers determines the number of features that can be detected by the network.
The downsides of adding more layers are overfitting, an increased computation time and decaying gradient
values when back-propagating through too many layers, i.e. the vanishing gradient problem (Hochreiter,
Bengio, Frasconi, & Schmidhuber, 2001). Due to the relatively low-detail input in this analysis, a range of 1
to 4 layers has been examined. The pooling layers serve the purpose of decreasing the number of trainable
parameters to decrease training time. Additionally, the chance of of overfitting decreases.

Number of output classes

The number of output classes determines how precise the conflict resolution advisory will be. The maximum
heading deviation is set to be 30 deg, left or right. For example, in case of four classes, the output will be —30,
—15, +15 or +30 degrees relative to the current heading. Table 5.4 shows the relation between the number of
output classes and the corresponding heading increment resolution in degrees.
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Table 5.3: Controlled and varying hyperparameters of the CNN.

Controlled parameters Value Unit
Optimization algorithm Adam -
Loss function Categorical entropy -
Activation functions ReLU -
Output activation Softmax classifier -
Train/val ratio 80/20 -
Train/val/test ratio 65/15/20 -
Mini batch-size 128 samples
Epochs 25 -
Dropout None -
Independent parameters
Number of output classes [2,4,6,8,12] -
Model architectures [1..7] see Table 5.6 -
Input image dimensions [(16x16), (32x32), (64x64), (96x96), (120x120)] px
Number of input samples [150 .. 6000] samples
Data rotation (augmentation) [0, 1, 2, 3, 4, 5, 10, 20, 30] deg
Sample randomization [0.. 100] %
107 MNIST Multilayer Neural Network + dropout
\ : — AdaGrad
R — RMSProp
N — SGDNesterov
AdaDelta
Adam
107

i i
50 100 150 200
iterations over entire dataset

Figure 5.5: Adam optimizer outperforms similar algorithms on an image dataset (MNIST). Adapted from Kingma and Ba (2015).
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Figure 5.6: Baseline network architecture. 96x96 indicates the input dimensions and 7 in the final layer results in 6 resolution classes and
the redundant ‘no resolution’ class.

Table 5.4: Relation between number of output classes and the heading increment resolution.

Output classes [-] Heading resolution[deg]
2 30.0
4 15.0
6 10.0
8 7.5
10 6.0
12 5.0

Data augmentation

Because the format of the input samples is well-known and does not fluctuate, most data augmentation
techniques (subsection 4.1.3) are not applicable to this analysis. The only methods that produce valid SSDs
are flipping and rotating. However, although conflict resolution algorithms are insensitive to the orientation,
humans are not. For example, a human might have a preference for steering left instead of right in certain
scenarios, regardless of conflict orientation. Therefore, only slight rotations are considered for data augmen-
tation.

Input dimensions

To test the impact of input sample size (in pixels), all SSDs were scaled before entering the network, ranging
from 16 pixels squared to 120 pixels squared. The same SSD with different dimensions is shown in Figure 5.7.
It appears that certain features may be barely recognizable by a human controller in the 16 px case. Nonethe-
less, this sample could still provide a neural network enough information to extract learning features. Please
note that the final images fed into the networks are converted to gray-scale for computational efficiency.

Sample randomization
A human controller is expected to be less consistent than the MVP algorithm, choosing a different resolution
in two identical situations. It is assumed that a human has one main strategy, which results in the majority of
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(a) 120 px (b) 96 px (c) 64 px (d) 32 px (e) 16 px

Figure 5.7: An example of an SSD with dimensions used to train the networks. The baseline dimensions are 64x64 px

Table 5.5: Controlled parameters during model training.

Parameter Value Unit
Number of output classes 6 -
Convolutional layers 2 -
Filter depth 32and64 -
Convolutional stride (1,1 px
Max-pooling layers 2 -
Pooling-size 2,2) px
Input image dimensions (96x96) px
Randomized samples 0 %
Data rotation (augmentation) 0 deg

resolutions. The percentage of other resolutions is considered to be random. To simulate this effect, and to
assess the impact on model accuracy, a varying percentage of samples was randomized.

Additional training parameters

This section shortly discusses the additional training parameters. The division of the dataset into training
and validation data is 70% and 30% respectively, unless mentioned otherwise. The initial learning rate has
been set to 0.01. Generally 25 epochs were used for training, which proves to be enough to obtain a stable
accuracy. The mini-batch size is dependent on the hardware used and has been set at 128 samples per batch
after experimentation.

Dropout layers (subsection 4.1.3) are not included in the network architecture.

5.4. Part C: Measuring conformity

This section shows and discusses the results of the preliminary analysis. The effects on model validation and
test accuracy are examined by varying the following independent parameters: action resolution, network
architecture, input data dimensions, number of input samples, data rotation and sample randomization. If
not mentioned otherwise, all parameters as shown in Table 5.5 are kept constant.

This section contains one subsection per independent variable. In every subsection, the dependent param-
eters — training, validation and test accuracy — are graphically shown. Accuracy is defined by % -100%.
Training accuracy is displayed on the left-hand side, where the training progress over time can be evaluated.
The validation and test accuracy are plotted jointly in the right-hand plot. The validation set includes similar
scenarios as the model was trained on, although it has never seen these samples before. The fest set includes
completely new scenarios, that were generated using different settings in BlueSky. The test set resembles a
real-world application the most closely.

5.4.1. Action resolution

Figure 5.8a shows accuracy during training for a varying number of output classes. By visual inspection, most
sets stabilize after 10 epochs. However, it can be seen that instability increases with an increasing number of
output classes. Figure 5.8b shows that — intuitively — both validation and test accuracy decrease with an in-
creasing number of output classes. Besides, the difference between validation and test accuracy respectively
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Figure 5.9: Accuracy for different network architectures

also seems to increase, indicating more overfitting when training with more output classes. Please note that
the accuracy is measured in a binary manner, which means that an error is weighed equally regardless of how
far off the prediction was.

5.4.2. Network architectures

The network architectures that are evaluated are shown in Table 5.6. The baseline architecture is inspired
by LeNet by LeCun et al. (1998). LeNet was used for character recognition, which entails similar difficulty to
interpreting basic SSDs. Small alterations are made to this baseline to evaluate the effects of pooling layer
dimensions, convolutional stride, and number of hidden layers.

Figure 5.9 shows that the considered network architectures do not have a large impact on model accuracy,
varying by a maximum of two percentage points. However, network composition did have an impact on
training time, as shown in Table 5.6. The network architecture that results in the lowest number of train-
able parameters provides the most efficient training. Another benefit of a simple architecture is that it may
mitigate overfitting. The degree of overfitting can be observed in the figure as the difference between the
validation and test set, given the model architecture.



5.4. Part C: Measuring conformity 61

Table 5.6: Network Architectures used for evaluation in Figure 5.9. The number behind a Pooling layer indicates the pool size in pixels
squared. (sX) indicates the stride of a convolutional filter in pixels. All convolutional layers have a filter size of 5x5 pixels.

Architecture# Composition Training Time [s]
baseline CONV (s1) — POOL (4) — CONV (s1) — POOL (2) 540
2 CONYV (s1) — POOL (2) — CONV (s1) — POOL (2) 1410
3 CONYV (s2) — POOL (4) — CONV (s1) = POOL (2) 110
4 CONYV (s1) — POOL (4) — CONV (s2) — POOL (2) 380
5 1x (CONV (s1) — POOL (2)) 920
6 3x (CONV (s1) — POOL (2)) 1030
7 4x (CONV (s1) — POOL2) 980
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Figure 5.10: Accuracy versus input sample dimensions.

5.4.3. Input data dimensions

The effects of input sample sizes are displayed in Figure 5.10. Smaller input sizes cause the network to
require more epochs to train to the same level of accuracy. A remarkable result is observed in Figure 5.10b;
while validation accuracy increases with increasing input dimensions, test accuracy decreases. The highest
obtained accuracy increased from 80.0% to 85.1% by decreasing input dimensions. As the difference between
the validation and test set increases, this is a clear sign of overfitting. With larger input dimensions, the
network ‘memorizes’ the entire SSD, instead of generalizing and looking for features. Overfitting can be
reduced by using dropout layers, using more pooling layers or using larger convolutional filters.

5.4.4. Number of input samples

Figure 5.11 shows a clear relation between the number of samples (the size of the input dataset) and model
performance. Although a smaller dataset inevitably converges faster to its stable accuracy, accuracy itself
lacks behind. Furthermore, increasing the dataset up to 1000 samples considerably impacts accuracy, while
increasing it even further only results in marginal performance increase. A reasonable test accuracy of more
than 70% is achieved using 300 samples. Note that during training, networks have learned from the same
numbers of samples in total. The networks that trained on smaller datasets trained on the same samples
more often.

5.4.5. Data augmentation

Judging from Figure 5.12, data augmentation by random rotation seems to have a marginal impact on accu-
racy. The best model that was obtained using up to 1 degree random data rotation performed 2.5% better
compared to the baseline (75.6% versus 73.1%). Moreover, it appears to have a negative influence when the
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Figure 5.12: Accuracy versus the maximum allowable data augmentation range in degrees.

rotations are large. The benefits of data augmentation might be mitigated by the way of anti-aliasing the
rotated images. More experimentation with data augmentation should be performed to evaluate whether it
could be a way of improving model accuracy with a limited number of samples.

5.4.6. Sample randomization

To simulate human inconsistency, a varying percentage of samples was randomized, as can be seen in Figure
5.13. Recall that the number of output classes for the baseline architecture is 6. This corresponds exactly
to the expected 100/6 = 17% accuracy when 100% of the samples in randomized which can be observed in
Figure 5.13a. In the right-hand figure, an almost linear relation appears between validation accuracy and
% of randomized samples. Validation accuracy decreases because both the training and the validation set
are randomized. More importantly, the figure shows that the test accuracy remains relatively constant with
increasing randomness. This shows that the model is quite robust and is not over-sensitive to noise due to
controller inconsistency, which is a promising result.
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Figure 5.13: Accuracy versus the percentage of randomized samples.

5.5. Conclusions and discussion

This section summarizes the most important insights from the results and points out any limitations and
caveats that should be taken into account. Furthermore, the next steps for further research are discussed.

The following analysis insights reflect on the sub-questions as introduced in section 5.1.

1. Actionresolution — Model accuracy decreases considerably with an increasing number of output classes.
The network should be improved to account of this loss in accuracy.

2. Network architectures — The network architectures that were analyzed do not have a large impact on
model accuracy. However, network architectures did have a large influence on training time.

3. Input dimensions — Input dimensions have a relatively large impact on model accuracy. Given that
larger dimensions result in lower accuracy, special attention should be given to overfitting.

4. Number of input samples — Model accuracy increases steeply up to 1000 input samples. After that,
accuracy stabilizes and added samples only marginally add to test accuracy. To achieve a reasonable
70% accuracy, 300 samples are sufficient.

5. Sample randomization — Controller inconsistency up to 30% did not notably influence test accuracy,
which is a promising result when considering using human generated data.

6. Data augmentation — Randomly rotating the input samples did not result in demonstrable improve-
ments on validation or test accuracy.

Besides these insights, the following caveats and opportunities for improvement are pointed out:

First, the traffic scenarios that were used in this proof-of-concept analysis are considered quite simplistic.
Although controllers solve conflicts in a pairwise manner, further research should evaluate more advanced
scenarios with multiple aircraft having potentially different speeds, altitudes and headings in one sector.
These increasingly complex scenarios will resemble a more real-life application. Adding to this, a more
advanced interpretation should also include speed and altitude changes as possible resolutions, instead of
heading changes only. A last addition to the scenario data is to include more sector information, such as
traffic flow, constraints and exit waypoints.

Secondly, a considerable limitation to this preliminary analysis is that all data is generated using a determin-
istic resolution algorithm. It is not evident that human controllers behave in a consistent, trainable manner
when solving conflicts using the SSD. A next step is therefore to perform an empirical experiment where
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human resolution data is gathered. Even though it was shown that the CNN is robust up to a certain degree
of randomness, usability in practice still has to be examined.

And lastly, the algorithm experienced quite some overfitting and overall accuracy could be improved. This can
be done by using 1) a different loss function, 2) dropout layers and 3) better data augmentation. A continuous
loss function will expectedly train the network more accurately than the categorical discrete classes function
that was used in this analysis, as magnitude of the heading error will be taken into account, rather than a
binary right or wrong. Two, differences between validation and test accuracy are quite large. Implementing
dropout layers could help to reduce overfitting of the model, which seems necessary as Another option
would be to use an ‘all convolutional network’, as discussed in section 4.1.3. Three, when an empirically
generated dataset is used, every sample becomes valuable and should be used as effectively as possible. This
can be done using data augmentation, which did not show promising results so far. Additional methods of
augmentation should be examined to effectively train the network with a low number of samples.

These three improvements are the aim of the experiment as performed in Part I.
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Experiment details

This chapter details the experiment design and obtained dataset. Initially, the scenario design parameters
and the experiment briefing are provided. Subsequently, the participants’ remarks during the experiment are
provided. Finally, the dataset is analyzed on a temporal scale and on a higher abstraction level concerning
aircraft selection, geometric resolution preference and losses of separation.

A.1. Scenario design

The scenarios are designed to be repeatable with clearly distinguishable two-aircraft conflicts. Each Scenario
(S) consists of 20 aircraft, thus 10 predesigned conflicts. The conflicts are designed according to the three
parameters in Figure A.1a. In the final experiment, only the conflict angles are varied to obtain the set of
conflicts. To make the learning more robust, the supervised learning algorithm should see similar conflicts
multiple times. Due to the limited experiment duration, the designed conflicts are restricted to have Onm
CPA. The conflict angles are constrained to crossing conflicts, i.e. the interval [45, 55, ... , 135] deg, as shown in
Figure A.1b. Each angle occurs twice over the two scenarios, see Table A.1. The spacing between consecutive
conflicts is at least 20nm to minimize interference, while maintaining a reasonable workload to keep the
controller engaged.

Closest Point of
Approach (CPA)

/ s 45° - 135° A
0° - 45° [/\ 135° - 180°
L A RN
conflict angle Acon same-path head-on

crossing
Ak /
Amnx
Ainl

(a) CD&R parameters (b) Conflict Types

Figure A.1: Naming conventions for conflicts.
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Table A.1: Conflict parameters of the designed conflicts.

(a) Scenario 1

Conflict Conflict Angle [deg] CPA [nm]
Cl 85 0
Cc2 95 0
C3 65 0
C4 135 0
C5 75 0
C6 85 0
C7 75 0
Cc8 125 0
C9 135 0
C10 105 0

(b) Scenario 2

Conflict

Conflict Angle [deg] CPA [nm]

Cl
C2
C3
C4
C5
Cé6
c7
C8
C9
C10

105
45
95
45
115
65
55
125
55
115

=NelolBoNeoNoBRoloNeN =)
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A.2. Experiment briefing

The following pages show the Experiment Briefing as provided to and discussed with all participants.

Experiment Briefing

Strategic Conformal Automation using Deep Learning

September 27, 2018

Abstract

The goal of the experiment is to safely manage an airspace by providing aircraft with directional
commands. This will be done in Air Traffic Control simulator SectorX. The experiment consists of 4 runs
that take 20 minutes each. All actions will be logged to create a conflict resolution algorithm using machine
learning.

1 The objective

The main objective is to safely guide all aircraft to their respective exit way-points in an efficient manner.
More specifically:

e Loss-of-Separation should be avoided. It occurs when the radii surrounding the aircraft make contact.
e Aircraft should be controlled within the sector.
e Aim to guide the aircraft to their exit waypoint as efficiently as possible.

e Whenever the aircraft near the end of the sector, a transfer of control (TOC) should be given.

All aircraft fly on the same flight level. Altitude changes are not allowed. Without instructions, the
aircraft will proceed in a straight path.

2 The display and the sector

The experiment will be conducted with an air traffic control simulator (SectorX), of which an image is shown in
Figure 1. The sector as displayed on screen is loosely based on Sector 3 above The Netherlands. Characteristics
of the sector traffic are discussed below.

e Traffic arrives from the south or east.

e There is one major traffic flow originating from the south running towards waypoint MIFA. Aircraft with
different origins have other target waypoints.

e All aircraft enter the sector at equal speeds (250 kts) and equal altitude (FL100).
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12:00:10

)
MIFA M

Figure 1: The SectorX display. The dark green shaded trapezoid indicates
the sector area. The yellow triangles denote the waypoints. The aircraft are
depicted in grey and orange.
The aircraft label — as shown in Figure 1 — denotes the following information:

e ACID: Aircraft ID

e ALT: Altitude in thousands of feet (FL)

e SPD: Indicated Airspeed

e COPx: The required exit waypoint

When aircraft are in conflict, their color will change from grey to orange or red, depending on the Time to
Loss-of-Separation limits given in Figure 2.

10
REN W b

(a) Caution: Time to Loss-of-Separation less (b) Warning: Time to Loss-of-Separation less
than 120 seconds. than 60 seconds.

Figure 2: The color of the aircraft symbol indicates if the aircraft is in conflict. When the symbol changes to
green, the aircraft is directed at its exit waypoint.

3 The Solution Space Diagram (SSD)

The Solution Space Diagram (SSD) is used in half of the scenarios. Whenever an aircraft is selected, the SSD
is displayed. The SSD incorporates the Time-To-Contact through color-coding, as displayed in Figure 3.

Interpretation of the SSD

All possible combinations of speeds and headings lie within the two green circles, where the inner and outer
circles represent the minimum and maximum speed respectively. The purple dashed circle shows the indicated
airspeed, the pink line indicates the aircraft’s speed vector, and the purple line indicates the bearing towards
the exit waypoint (COPx). Within the green circles, black space indicates ‘solution space’, whereas grey,
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orange, and red areas indicate future Loss-of-Separation whenever the tip of the speed vector is pointed in
these areas.

4

Figure 3: The Solution Space Diagram (SSD). Time to Loss-of-Separation
denoted by: grey (> 120s), orange (< 120s), and red (< 60s).

Command display

Commands are passed through the command display as depicted in Figure 4.

HEADING DIRECT TO

PREVIEW

EXECUTE

I

Figure 4: The command display

HDG: Give a heading change command [1 - 360 deg].
SPD: Give a speed change command [200 - 290 kts].

DCT: Give a Direct To exit waypoint command. Automatically changes the heading towards the assigned
exit waypoint.

CLR: Clear the command line.
PRV: Preview the selected commands.

EXQ: Execute the string of commands.

For example, to change an aircraft’s heading west (270 deg), one should use the following sequence of clicks:
[Select the aircraft using the mouse] — [HDG] — [2] — [7] — [0] — [EXQ)].

5

The aircraft

Only one type of aircraft is encountered in this sector, with performance comparable to a Boeing 737-400.
The airspeed limits are shown in Table 1.
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Table 1: Airspeed limits of the aircraft

B737-400 IAS [kts]
TAS min 200
TAS initial 250
TAS max 290

6 Planning
A time-schedule of the experiment is shown in Table 2. Breaks can be shortened or extended on request.

Table 2: Time-planning of the experiment

Type Duration [m] Elapsed time [m]
briefing 5 5
training 5 10
run 1 20 30
break 5 35
run 2 20 55
break 10 65
run 3 20 85
break 5 90
run 4 20 110
debriefing 10 120

7 Training runs

Training run 1: Controlling one aircraft
1. Direct the aircraft towards the west
2. Slow the aircraft down to 200 kts
3. Direct the aircraft north

4. Increase speed to 290 kts and direct it towards its exit waypoint

Training run 2: A simple conflict
1. Observe the screen and note how the color of the aircraft changes to orange

2. Resolve the conflict

Training run 3: Introduction of the SSD
1. Select both aircraft and observe how the SSD changes over time
2. Resolve the conflict
3. Observe the SSD

4. Direct both aircraft to their respective exit waypoints
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8 Cheat Sheet

If you have any questions left unanswered, please don’t hesitate to ask!

290 kts - Max. speed

250 kts - Initial speed

200 kts - Min. speed
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A.3. Participant remarks during experiment

Table A.2 shows the noted participant remarks during the experiment. All remarks were translated from Dutch
to English for this report. The remarks give insight in some of the applied strategies and usages of the SSD.
Additionally, certain comments indicate that the briefing and training runs were not fully sufficient mitigate
all training effects.

Table A.2: Logged comments by the participants during the experiment. Based on these comments, some commands have been removed

from the dataset.

Participant Run Time (min) Comment
P1 1 18 This move was too extreme
P1 2 8 I thought HDG changes were kind of cheating
P1 2 18 The north of the sector is easy
P1 3 18 Tuse SPD as backup command
P1 4 18 Command on OM3185 was a mistake
P2 1 2 It takes a while before the A/C indicator becomes green
P2 2 18 Would be nice to have a visual indication of heading change
P2 3 5 Ilike the SSD, you can solve conflicts way ahead of time
P3 1 1 I thought heading commands were relative. First command incorrect
P3 1 2 I dislike the update rate
P3 1 7 Accidental TOC of VS4694
P3 1 Accidental TOC of SM7071
P3 1 Accidental TOC of PG4310
P3 3 4 SSD causes higher workload because you have more options, it is less gambling
P3 3 8 Very difficult
P4 3 15 Low workload
P4 3 16 I am trying to visualize the SSD now that it is not there anymore
P4 4 2 Lost focus, causing Loss of Separation
P5 1 1 In the SSD I see information of aircraft that are not in the sector yet.
P5 1 5 I steer aircraft into the grey SSD area to solve the conflict later
P5 3 12 it is easier with the SSD turned on because there are fewer options
P6 1 5 Accidental TOC of SM7071
P6 3 I'would not steer so close to other aircraft without the SSD
P6 3 Without the SSD, I am paying more attention to the general picture strategy
P6 3 SSD is an information overload, I would like a more basic SSD
p7 6 Accidental Loss of Separation. Thought that the circles could touch.
P7 14 LoS: Tried to steer HDG 0 but error message did not clear automatically.
P8 1 0 Accidental Loss of Separation due to familiarization with the system
P8 1 12 I am trying to steer away from the entry points
P8 1 Felt like a training run, I am still building my internal model.
P8 1 I miss-clicked a couple of times, I cannot focus on the screen while giving commands
P8 1 Clicking does not work perfectly all the time
P8 1 I'am trying to model the traffic streams in my head
P8 2 I place the main aircraft vector perpendicular to the intruding aircraft vector
P8 4 With the SSD: Lower SA, I am more focused on local conflicts instead of the overview
P9 1 3 I use the label vector to steer the around around each other
P10 2 2 Erroneous command given
P10 3 14 This was messy, not how I would normally do it
P11 1 1 Ijust completed the course
P11 1 11 Accidental heading command
P11 3 1 I got used to having the SSD
P11 3 10 I aim the speed vector to the middle point of the intruding aircraft
P12 1 6 LoS due to premature DCT command
P12 2 19 Very unusual sequence of commands with large relative values
P12 3 7 LoS due to premature DCT command
P12 4 9 Accidental 360 degree turn of aircraft
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A.4. Commands over time

This section shows all commands per Participant (P) over time. Figures A.2, A.3 and A.4 show the heading
HDG, speed sPD and direct to DCT commands respectively.
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Figure A.2: Heading commands over time per participant

Figure A.2 shows clear differences in the number of heading commands given per participant, ranging from
approximately 40 to 140 HDG commands for P1 and P5 respectively. This is a first indicator of strategy
heterogeneity in the population. In addition, the chart shows that command density in time can differ
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from run to run for one participant. The scenarios in Runs 1 & 3 and 2 & 4 are identical. Therefore, if
the participants were 100% consistent, the runs would look identical as well, which is not the case. P4, for
example, gives less heading commands in Run 4 compared to Runs 1-3. This change in strategy may be the
cause of the low achieved accuracies of P4’s individual model compared to the general models.

This temporal view also indicates that the moment at which commands are given varies per participant and
per run. This stresses again that besides command type, direction and value, command time is also parameter
in ATCo heterogeneity and potentially strategy.
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Figure A.3: Speed commands over time per participant. Participant 12 did not give speed commands.
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Figure A.3 shows the timeline of speed commands per participant. Substantial differences in strategy can
be seen both inter and intra-participant. Participants 1 and 3 clearly changed their command fype strategy
during the first run, after which it remains reasonably constant. This change in strategy implies that Run 1
(and in some cases Run 2) still includes training effects. Ideally, Run 1 should be removed from the training
set. However, since Run 4 is separated for validation, this would leave too few samples in the training set.
Besides, certain participants (P7, P9, P10) only used sPD commands in emergency situations. A finding that
is confirmed by the participants’ remarks, see Table A.2.
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Figure A.4: Direct To commands over time per participant
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Figure A.4 shows the ‘Direct to exit waypoint’ commands for all participants. The differences inter and intra-
participant are not substantial enough to draw differentiating conclusions.
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A.5. Preferred aircraft flow

Figure A.5 shows the preference for either the main or the intruding traffic flow per participant. The total
number of commands per flow is well-balanced with 1738 and 1607 commands for the main and intruding
flow respectively. Although the preference is balanced on average, specific participants show different strate-
gies. For example, P5, P7 and P9 show a clear preference for the main flow, while P1, P4, and P6 provided more
commands to the intruding flow. Besides, certain participants show a clear preference for one flow (P9), while
others are impartial (P8). These differences confirm yet another abstraction level of consistency;, i.e. aircraft
choice, as included in Westin et al.’s consistency framework (Figure 2.4). As Figure A.5 shows heterogeneity
in the population, it seems evident that aircraft choice is part of controller strategy and should therefore be
included in consistency and conformity metrics. Moreover, aircraft preference consistency seems to coincide
with the participant consistencies as determined in the paper.
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Figure A.5: Number of commands given to either the aircraft in the main or the intruding traffic flow.
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A.6. Preferred geometric resolution

Figure A.6 shows the number of commands that resulted in the controlled aircraft going in front or behind
the conflicting aircraft (see Figure 2.3). Certain participants (P7, P9, P10) show more consistent behavior than
others (P1, P8, P11). Conflict geometry preference is implemented in Westin et al.’s consistency framework
in the high-level decision stage. The heterogeneity in the population shows that geometry preference indeed
varies per participant and is most likely part of a controller’s strategy. In addition, P7 and P10 show a strict
procedure that seems to drive the resolution decision rather than situation at hand.
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Figure A.6: Geometric preference per participant. Only the first command per aircraft is included.
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A.7. Loss of Separation

Figure A.7 shows the number of losses of separation (LoS) per participant and SSD condition. The novices
(P1-P6) and intermediate controllers (P7-P12) caused 11 and 10 losses of separation respectively, indicating
no considerable difference in skill level in this regard. Furthermore, Figure A.7 shows considerably less LoSs
with the SSD (6) than without (15). This implies that the SSD could indeed increase ATCo performance with
regard to safety. In consequence, the SSD acts as its own type of strategic conformal automation through
information integration, rather than action implementation. The SSD is conformal in the sense that the
controller can always resolve the conflict in line with his or her personal strategy.

SSD availability during the experiment was determined by a Latin square thus training effects are not ex-
pected to have influenced these results.
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Figure A.7: Loss of separations during all runs. A loss of separation occurs when aircraft are closer together than the separation minima
allow, i.e. when their protected zones (D = 5nm) make contact.
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Training methodology

This chapter consists of three parts: B.1 illustrates the code architecture including two main methods in
pseudo code. B.2 displays the results of data preprocessing methods and B.3 shows a visualization of the
network weights of the first convolutional filter.

B.1. Code structure

The code structure of the thesis project is given in Figure B.1. It shows the data pipeline including data
generation in SectorX, data preprocessing, model-training, model (cross-)validation and statistical analysis.
Two modules in this pipeline have been highlighted using pseudo-code: model training (train_model (),
Module 2) and cross-validation (cross_validation(), Module 3).

Module 2 Model Training Sequence train_model()

1: Initialize config

2: Set random seed {python, numpy, tensorflow}

3: Require: ssd_array, command_dataframe

4: for Py,in in {P1 - P12, all} do > ‘all’ selects all data for the general models

5 for abstraction_level in {type, direction, value} do

6 for ssd_condition in {off, on, both} do

7 Xdatar Ydata — Prepare_training set(Pyin, abstraction_level, ssd_condition, all_dataframes)

8 if Pirqin = all then

9: Randomize and cap data > Cap to average number of samples per participant
10: Split data in k = 5 folds
11: for fold in k-folds do
12: Xtrain» Xval> Yirain» Yval — k-fold(Xgata, Vdata)
13: model — create_model() > Define network architecture using Keras (Chollet, 2015)
14: model — compile_model(model) > Compile loss function and Adam optimizer
15: for epoch in Nepochs do
16: for step in steps-per-epoch do
17: Compute network loss using Categorical Entropy Loss function
18: Update network parameters 0 using first-order gradient descent parameter optimzer
19: Evaluate model validation metrics > Accuracy, MCC, Informedness, F1 Score
20: Calculate and save Confusion matrix
21: if validation MCC improved then
22: save model parameters to disk > In .h5py format
23: else
24: continue

25: Remove redundant underperforming models
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SectorX: MSim

Convert Data

Analyse Commands

Consistency Metric

+ input: scenario definition (.xml)
+ input: sector definition (.xml)

+ input: playlist (.xml)

+ input: config (.xml)

+ input: participants P1-P12

MSim.jar

- output: traffic data (.xml)
- output: command data (.msg)

- output: screenshots incl. SSD (.png)

Y

>

+ input: traffic data (.xml)
+ input: command data (.msg)
serialize_data(): type

convert_to_dataframes()

- output: command_dataframe

- output: traffic_dataframe

>

+ input: command_dataframe
+ input: traffic_dataframe

+ input: experiment_setup
determine_direction()
determine_geometry()

determine_rel_heading()

- output: command_dataframe

— + input: command_dataframe

plot_commands()

Cons.-Perf. Comparison

determine_consistency()

- output: consistency_dataframe

SectorX: MView

Pre-process SSD Images

Model Training Sequence

+ input: traffic data (.xml)
+ input: command data (.msg)
MView.jar

screen_slicer()

- output: SSD images (.png)

-

+ input: command_dataframe
+ input: SSD images (.png)
down_sample()
rotate_velocity_upward()
crop_image()

opt: convert_background()
opt: remove_noise()

couple_command_and_SSD()

- output: command_dataframe

- output: ssd_array

>

+ input: ssd_array (run1-3)
+ input: command_dataframe (run1-3)

train_model()

- output: model architecture (.json)

- output: model parameters (.h5py)

(Cross-)Validation Sequence
—® + input: model architecture (.json)

+ input: model parameters (.h5py)

+ input: command_dataframe (run4)
+ input: ssd_array (run4)

cross_validation()

auto_validation()

+ input: consistency_dataframe
+ input: performance_dataframe
merge_all_data()

statistical_analysis()

- output: consistency_dataframe

- output: performance_dataframe

Figure B.1: Code environment from data generation to model analyses. SectorX is a Java-based application and the remaining codebase

is written in Python. Keras (Chollet, 2015), based on TensorFlow (Abadi et al., 2016), is used for training the CNNs.
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Module 3 Cross-Validation sequence cross_validation()

1: Initialize config
2: Require: model_parameters, model_architecture, test_data (ssd_array, command_dataframe)

3: for Pir,ip in {P1 - P12, all} do > ‘all’ selects all data for the general models
4: for abstraction_level in {type, direction, value} do

5: Load model_architecture > Identical for all abstraction levels
6: Load model_parameters P01

7 for P, in {P1 - P12} do

8: Load test_data Py, > Experiment Run 4, specified for abstraction level
9: Evaluate accuracy and MCC of model Pyqin

10: Save performance data to disk

B.2. Data preprocessing

The SSDs are preprocessed following the sequence in Figure B.1. As described in Part I, four data processing
techniques are evaluated: cropping, background conversion, noise removal and size reduction. The results
are shown in Figure B.2. preprocessing the SSDs results in minor performance improvements of a few MCC
points. Although direction and value predictions improve slightly, type predictions obtain lower MCC values.
Because the same input dataset is used for all abstraction levels, only cropping and down-sizing are applied
to obtain considerably faster computing times.
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Figure B.2: Mean achieved model performance in MCC for all participants and conditions using different data preprocessing methods.
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B.3. Convolutional Filters

The parameters of the first 32 convolutional filters are shown in Figure B.3. Every filter applies a different
transformation matrix to the pixel values. Figure B.3 shows that certain filters capture only the velocity vector
or exit waypoint bearing. On the other hand, the filters do not detect a binary (black-white) distinction
between solution space or a Forbidden Beam Zone (FBZ). Certain filters (e.g. Filter 32) only detect edges,
where a boundary between white and red exists. The visualization of these filters indicates that the network
is able in detecting the most important elements in the SSD.
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Figure B.3: Parameter (weight) visualization of the 32 filters of the first convolutional layer.



Validation per participant

This chapter provides the methods of validation for all participants. Section C.1 shows the MCC and accuracy
values during training. Section C.2 shows the ultimately achieved MCC scores using k-fold validation, Section
C.3 shows the confusion matrices of the test dataset and Section C.4 shows the cross-validation results.
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C.1. Performance during training

Figure C.1 shows the MCC scores after each epoch during training. The MCC values are obtained by validating
the current model with a validation set that was separated using stratified k-fold validation. Inter and intra
participant performance is clearly visible. The large spread between folds indicates that data quantity is a
limiting factor, because random sampling affects the achievable performance.
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Figure C.1: MCC values during training for all participants and abstraction levels. The spread surrounding the trend lines is defined by
the best and worst performing validation folds.
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Figure C.2 shows the accuracy scores after each epoch during training. The trend lines are comparable to
MCC scores, but the spread between folds appears to be smaller. In general, the accuracy scores are higher
than the MCC scores and overfitting occurs more clearly. For example, The type accuracy of participant 3
deteriorates after 8 epochs. Contrarily, the type accuracy of participant 4 still shows an increasing trend
at epoch 8. Therefore, training cannot be capped at a pre-specified epoch number. As a result, the k-fold
validation performance scores are used to select the best performing model parameters, which are then saved

and validated using the test dataset.
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Figure C.2: Accuracy values during training for all participants and abstraction levels. The spread surrounding the trend lines is defined

by the best and worst performing validation folds.
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C.2. Performance per Participant

Figure C.3 shows the highest achieved MCC value per fold per abstraction level for all participants for both
conditions. This chart gives insight in the effect of the availability of the SSD per participant per abstraction
level. It shows that certain participants experience a positive effect due to SSD availability (e.g. P7 or P9),
while others are relatively insensitive (P3, P12) or experience negative effects (e.g. P6). This indicates that the
SSD can have a beneficial effect on controller consistency, depending on the controller. Intuitively, training
with the SSD might influence its effect on controller consistency. The fact that P7 and P9 have extensive
experience with the SSD substantiates this intuition.
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Figure C.3: Validation results per k-fold for all participants and abstraction levels.
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C.3. Confusion Matrices

This chapter shows the confusion matrices of the test results per participant. A confusion matrix gives insight
in the distribution of True Positive (TP)s, False Positive (FP)s, True Negative (TN)s and False Negative (FN)s by

comparing the true and predicted commands properties. A darker diagonal in the matrix indicates relatively
high MCC scores.

Certain confusion matrices, e.g. P2 value predictions, are incomplete because the participant did not use all
classes. The confusion matrices provide a means gain insight in incorrect predictions. For example, the type
prediction model of Participant 8 oftentimes predicts SPD or DCT commands while a HDG was given. These
errors might be explained by the change of strategy during Run 4 as shown in Figure A.3. As the confusion
matrix shows, a test dataset containing two strategies is does not result in accurate validation results.

Another peculiar example is type prediction of P1, P4 and P9, where SPD commands were never predicted cor-
rectly. This can be explained using Figure A.3. P1, P4 and P9 sparsely or very irregularly used SPD commands,
making a correct prediction difficult. P10 and P12 test datasets did not include speed commands caused by
the fact that P10 and P12 used 5 and 0 speed commands during Runs 1-3 respectively.

The value predictions of P12 are not accurate relative to other participants, as confirmed by its confusion
matrix. An explanation for this might be the irregular distribution of True labels, as only very small or very
large heading deviations are used. This ‘non-linear strategy’ might be difficult to capture by the input-output
mapping of the neural network.
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Figure C.4: Participant 1: Confusion matrices of test results.
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Figure C.5: Participant 2: Confusion matrices of test results.
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Figure C.6: Participant 3: Confusion matrices of test results.
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Figure C.7: Participant 4: Confusion matrices of test results.
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Figure C.8: Participant 5: Confusion matrices of test results.
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Figure C.9: Participant 6: Confusion matrices of test results.
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Figure C.10: Participant 7: Confusion matrices of test results.
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Figure C.11: Participant 8: Confusion matrices of test results.
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Figure C.12: Participant 9: Confusion matrices of test results.
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Figure C.13: Participant 10: Confusion matrices of test results.
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Figure C.14: Participant 11: Confusion matrices of test results.
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C.4. Cross-Validation Results

This section illustrates the cross-validation results per participant. Figure C.16 shows the MCC values ob-
tained by validating a personalized model with all other participants’ test datasets. The chart gives insight in
how ‘personal’ the individual models are and which participants have comparable strategies. For instance,
P5’s directional strategy appears to be conformal to P3-P7’s actions, indicated by the high MCC values for
direction predictions with P5’s model. Insight in similarity between ATCo strategies can be used to group
participants’ datasets to obtain larger training sets.
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Figure C.16: Spider plot per participant showing model performance for all abstraction levels of cross-validation for each participant.
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Figure C.17 combines all abstraction levels in one averaged indicator for an inter-participant comparison.
Especially P1, P6 and P7 show clearly distinguishable peaks, indicating that these participants have the most
differentiating strategies. Others participants, e.g. P11 and P12, appear to have a more generic strategy.
However, P11 and P12’s individual model performance is also below average, implying that they did not
follow a consistent control strategy, which is confirmed by the consistency metrics. Similar spider plots of
professional ATCos could point out their strategy homo- or heterogeneity as a group to determine whether
strategic conformal automation is beneficial for trained professionals.
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Figure C.17: Spider plot per participant showing the mean model performance of cross-validation for each participant.
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Conclusions and recommendations

This research evaluates how strategic conformal automation for air traffic control can be achieved
using convolutional neural networks. To accomplish this, a literature review, a preliminary analysis
and a human-in-the-loop experiment are performed.

A literature study found that Conflict Detection & Resolution (CD&R) is a suited task given its impor-
tance and its ability to be simplified. Considering only horizontal plane conflicts limits the solution
space while not necessarily lowering task difficulty. It was hypothesized that the parameters that in-
fluence CD&R decision-making are for the majority contained in an image of a solution space diagram
(SSD). As a result, convolutional neural networks are applied because they are found to perform well
using visual inputs. In addition, using visual inputs eliminates the need for hand-crafting features
based on assumptions or prior knowledge.

The preliminary analysis confirmed this hypothesis by obtaining considerable prediction accuracy
scores using artificially generated data. A conflict resolution algorithm (Modified Voltage Potential)
was used to resolve approximately 6000 simulated conflicts in ATM Simulator BlueSky. Heading com-
mand direction and value were predicted for horizontal plane two-aircraft conflicts. It was found that
heading direction prediction accuracies up to 90% are achievable using only SSD images as input. In
addition, randomizing part of the dataset to simulate random human behavior proved the robustness
of the convolutional neural networks. Besides, insight in network architectures, hyperparameters and
preprocessing techniques was obtained which is subsequently used in the final phase.

In the final phase, the obtained knowledge is combined with a human-in-the-loop experiment to
evaluate personalized prediction feasibility using human-generated data. Results confirm that the
participants are sufficiently consistent to predict command ftype, direction and value with up to 88%,
96% and 85% accuracy respectively. Additionally, controller consistency and achieved model per-
formance are positively correlated, confirming the hypothesis that consistent controllers are more
suited for strategic conformal automation. Moreover, personalized models obtain significantly higher
prediction accuracies than general models, indicating that controllers in this experiment exhibit dif-
ferentiating strategies, i.e. are not homogeneous as a group. This is a critical assumption for strategic
conformal automation.

Recommendations focus on three elements: learning methodology, experiment design and imple-
mentation. The appendices show population heterogeneity in the higher abstraction levels, such as
resolution geometry and aircraft selection. More (visual) sector information could be added to the
model input, incorporating these decisions in the model predictions. Additionally, as data quantity
is limited in human-in-the-loop experiments, inverse reinforcement learning could provide a means
to use the available data more effectively by learning a personalized reward function. Besides, the
cross-validation results indicate that participants’ data can be combined to obtain larger datasets.

Secondly, a future experiment can improve on population, scenarios and training. As achievable
prediction accuracies are higher for more consistent controllers, using professional air traffic con-
trollers could confirm this finding and provide insight in real-world applicability. Furthermore, as the
simplified scenarios proved to be predictable, the next step is to create higher fidelity scenarios, with-
out constraints on conflicts angles or altitude. Lastly, the appendices show that changes of strategy
occurred during the experiment, which could be mitigated with more extensive training.

Finally, this research provides insight in the feasibility of strategic conformal automation for air traffic
control using machine learning. A human population proved to be sufficiently homogeneous per
controller and heterogeneous as a group for conformal automation to be beneficial. In addition,
machine learning appears to be an effective method to predict human actions based on visual inputs.
However, the acceptance feedback loop should be closed to assess if these individual-sensitive pre-
dictions indeed increase trust and acceptance and thus system-use. After all, machines are becoming
more intelligent every day, but as the incredible cognitive models of humans prove difficult to match,
the interaction between human and automation is more relevant than ever.
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