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Three-Dimensional Inverse Scattering Applied to
Cross-Well Induction Sensors

Aria Abubakar and Peter M. van den Berg

Abstract—Cross-well induction logging as known in the oil
industry is a method for determining the electrical conductivity
distribution between boreholes from the low-frequency electro-
magnetic field measurements in the boreholes. In this paper,
we discuss the reconstructions of the three-dimensional (3-D)
conductivity distribution using the contrast source inversion
(CSI) method. In order to improve the reconstruction results,
the concept of the extended Born approximation has been used
to arrive at a preconditioning operator. Results of a number
of numerical examples show that by using this preconditioning
operator, a large conductivity contrast of the unknown objects
(factor of 100) can be reconstructed up to an acceptable degree of
accuracy. Moreover, in each iteration, the computational effort to
generate the preconditioning operator is negligible.

Index Terms—Cross-well, induction logging, nonlinear inver-
sion, three-dimensional.

I. INTRODUCTION

I NTEREST in cross-well tomography (imaging) of the earth
electrical conductivity has increased because of improve-

ments in field instrumentation, computing power, and method
of interpretation. Cross-well electromagnetic logging is a tech-
nique to investigate the geological properties of the region be-
tween boreholes from the electromagnetic measurements made
in these boreholes at one or more frequencies for a large com-
bination of source and receiver locations.

During the last decade, a number of nonlinear inversion
methods has been employed to map the conductivity distri-
bution between boreholes. For low-frequency measurements,
the so-called induction logging, Alumbaugh and Morrison
[3] have developed a multifrequency imaging procedure for
the reconstruction of two-dimensional (2-D) variations of
conductivity excited by electric line sources. In their approach,
the Green function was fixed for a certain background, while
the unknown electric field was updated after each iteration. A
slightly different class of iterative methods undertakes repeated
modifications of the Green function after each iteration. This
method is known as the distorted Born iterative method [4].
This method is also used in a 2-D single-well problem by Chew
and Liu [5] and a 3-D cross-well problem by Newman [7]. Note
that in this method, one has to solve a full forward problem in
each iteration. Torres-Verdin and Habashy [10] use a nonlinear
inversion technique known as the iterative extended Born
approximation to probe the 2-D object with the conductivity
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contrast. They have shown that with the same computational
efficiency of the first-order Born approximation, the extended
Born approximation enables one to solve a much wider class of
2-D inverse scattering problem.

Recently, we have developed an inversion method to recon-
struct a three-dimensional (3-D) cross-well conductivity dis-
tribution from the dc-resistivity or electrode logging measure-
ments [2]. This method is called the contrast source inversion
(CSI) method, and has been originally introduced by van den
Berg and Kleinman [13] to handle the 2-D wave problem. Un-
like most nonlinear inversion methods, the CSI method does not
require some artificial regularization techniques to deal with the
problems of the nonuniqueness in inversion of data. It attempts
to overcome this problem by recasting the problem as an opti-
mization problem, in which it seeks not only the contrast sources
(the product between the total fields and the conductivity con-
trasts) but also the conductivity contrasts itself to minimize a
cost functional consisting of two terms. The first term is the de-
fect in matching measured (actual or synthetic) field data with
the field scattered by a body with particular conductivity, and
the second being the error in satisfying the integral equations
for the field produced in the body by each excitation. An alter-
nating method of iteratively solving this optimization problem
is proposed, in which first the contrast source is updated in the
conjugate gradient direction weighted so as to minimize the cost
functional, and then the conductivity contrast is updated to min-
imize the error in the object equation using the update contrast
source. This latter minimization can be done analytically, which
allows an easy implementation of the positivity constraint for
the conductivity. In order to guarantee the error reducing nature
of the algorithm, the CSI method has been improved (see van
den Berget al. [14]). In this extended version, the conductivity
contrast is updated also in a conjugate gradient step to minimize
the second term in the cost functional, the object error.

In the present paper, we have extended the CSI method to
handle the full-vector complex 3-D cross-well induction log-
ging problem. For the forward problem, the concept of the ex-
tended Born approximation has been used to arrive at a precon-
ditioning operator for the conjugate gradient method. In the in-
verse problem, the cost functional of the CSI method has been
modified to include the preconditioning operators as well. Nu-
merical examples will show that these preconditioning opera-
tors allow us to handle a large contrast (a factor of 100). More-
over, because of the simple form of the preconditioning opera-
tors, the extra computational effort to obtain the preconditioning
operator is negligible. Furthermore, it will also be shown that by
using multi-components receivers the reconstruction results im-
prove.
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Fig. 1. Theoretical model of the cross-well configuration in the homogeneous
background with conductivity� . The object domainD with conductivity�(x)
is the domain to be reconstructed from the measurements made in the data
domainfS ; S ; S ; S g 2 S.

II. I NTEGRAL EQUATION FORMULATIONS

A theoretical model of the cross-well configuration is shown
in Fig. 1. We define an inhomogeneous domain as an object do-
main with conductivity embedded in an unbounded ho-
mogeneous background medium with conductivity. The ex-
citation source is a magnetic point dipole directed in the logging
direction (vertical magnetic dipole) with a magnetic moment

located in the domain of. This is a good approximation to
the small transmitter coil used in induction tools. The measure-
ment is also made in the domain of. We measure either all the
three components of the magnetic field or the vertical compo-
nent of the magnetic field. The data domainconsists of four
boreholes . In the present induction log-
ging problem, we want to determine the conductivity distribu-
tion inside the object domain from the measurements made
in the data domain .

Consider a Cartesian coordinate frame for which a given
location is expressed in terms of the unit vectors, ,
and in the , , and directions respectively (i.e.

. We assume a time harmonic depen-
dence , where is angular frequency, and

is time. Maxwell’s equations are given by

(1)

(2)

where is the magnetic permeability in free space, and is
the impressed magnetic current source. Here,
denotes the spatial differentiation with respect to the position
vector . In (1) and (2), all of the spatial vari-

ations in medium properties are contained in the conductivity
distribution , given by

(3)

where is the ohmic conductivity, and is the dielectric per-
mittivity. Note that due to the frequency range used by the in-
duction tools, the second term in (3) can be neglected. Then,
is real and positive.

To cast (1) and (2) in an integral form, the actual configuration
(object domain ) in which the field must be computed or the
conductivity contrast to be inverted is embedded into a medium
for which the point source solution for can be
determined analytically. The simplest medium in this category
is the unbounded homogeneous medium with conductivity,
where the point source solutions are obtained as

(4)

(5)

where is a unit vector, and the scalar Green function
is given by

(6)

in which

(7)

We define as the primary electric field measured in the
background and excited by the impressed magnetic current
source . This field is represented as

(8)

Starting from (1)–(8) and using the superposition principle for
the electric and magnetic fields

and (9)

where and are the secondary fields, we arrive at

(10)

The normalized vector potential is given by

(11)

In (11), we have introduced a conductivity contrastas

(12)

Equation (10) is the well-known integral equation to develop an
imaging procedure for low-frequency electromagnetic measure-
ments [10], [11], [16].

In the induction logging problem, we are interested in the
secondary magnetic field . This secondary magnetic field
can also be represented in term of an integral equation

(13)
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We observe that (10) is a singular integral equation in which
the grad-div ( ) operator acts on a normalized vector poten-
tial , defined as the spatial convolutions of the Green function

and the product of the conductivity contrastand the total
electric field . Numerical implementation of such an integral
equation must be carried out carefully. We follow the discretiza-
tion procedure of our previous work on the inversion of the elec-
trode logging measurements [2]. In order to handle the singu-
larity of the integral equation in (10), the normalized vector po-
tential is replaced by its weak form (spherical mean). After
that, the grad-div operator can be computed with the finite dif-
ference rule (see Abramowitz and Stegun [1]). This technique
to cope with the singularity of the Green function has also been
used by Richmond [9] to handle the 2-D scattering problem.
Note that the normalized vector potentialconsists of spatial
convolutions and can efficiently be computed by fast Fourier
transform (FFT) routines (Presset al. [8]).

III. FORWARD SCATTERING PROBLEM

When the conductivity contrast is known, the discretized
forward scattering problem for each excitation may be formu-
lated as a linear system of equations. This linear system of equa-
tions can be written compactly in an operator notation as fol-
lows:

on (14)

where the operator expression is directly obtained
from the second term of the right-hand side of (10), and the
superscript denotes the numbering of the sources. Equation
(14) is also called the object equation that holds on the object
domain . Since the matrix operator consists of spatial con-
volutions, we can use advantageously FFT routines (Zwamborn
and van den Berg [17]). However, we then need an iterative so-
lution, and the conjugate gradient (CG) method seems to be one
of the most efficient methods. With this so-called CGFFT tech-
nique we are able to solve complex 3-D problems efficiently.
Furthermore, it also gives the fundament of our solution for the
inverse problem.

A. Forward Algorithm

The CG method consists of an algorithm to construct se-
quences of electric field in which iteratively reduce the
value of the cost functional

(15)

where the norm on is defined as

(16)

in which the overbar denotes the complex conjugate.
We construct sequences , for in the fol-

lowing manner. Define the object error in to be

(17)

We update the total electric field as follows:

(18)

where is constant and the update directions are func-
tions of position. The update directions are chosen to be the
Fletcher-Reeves gradient directions

(19)

Here is the preconditioned gradient of the cost functional
with respect to evaluated at . Explicitly this is

found to be

(20)

where is the adjoint of mapping into .
Note that in view of the orthogonality of the gradients of the
linear forward problem, in this case , Fletcher-Reeves
directions are identical with the Polak-Ribière directions, see
Kleinman and van den Berg [6]. As preconditioning operator

we propose

(21)

where is unit operator, and is the conjugate transpose of
. The right-hand side of (21) represents a three by three ma-

trix which is easily inverted for each.
This preconditioning operator is the approximate inverse

of (14) using the extended Born approximation, introduced
by Torres-Verdin and Habashy [10], [11]. However, we have
brought the contrast source (the product of the conductivity
contrast and total electric field) outside the integral operator
instead of only the total electric field as Torres-Verdin and
Habashy did. Numerical experiments indicate that the present
version of the extended Born approximation works better
as a preconditioning operator than the one introduced by
Torres-Verdin and Habashy [10]. Furthermore, in the inverse
problem the present version of the preconditioner is sub-
stantially less computer intensive, because the operator
does not change during the optimization process. The explicit
expression of the preconditioning operator can be found in
Appendix A.

After the update direction has been determined, the constant
is determined to minimize the cost functional in (15)

rewritten as

(22)

The constant is found explicitly to be

(23)
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Fig. 2. Configuration of the dual conductivity model in the computation
domainD with conductivity� = 0.1 S/m. In this domain,D we have two
blocks of 10� 10� 10 m with conductivity� S/m.

Once the root mean square of in (22) is small enough,
the approximate solution of is substituted in (13) to arrive
at the secondary magnetic field at the receiver position

on (24)

where

(25)

in which the matrix operator is given in (60) of Appendix I.
The results of (24) will be used as synthetic measured data to
test our inversion procedure.

B. Numerical Example

The discrete form of the algorithm is obtained by assuming
that the object domain is a rectangular domain with bound-
aries along the , and directions. We discretize the ob-
ject domain in a rectangular mesh. The mesh is uniformly
spaced in the , and direction with widths of ,
and . In each rectangular subdomain, we assume the con-
ductivity contrast to be constant. The operator

is computed using the technique which has been
used to compute the integral operator in cross-well electrode
logging problem (Abubakar and Van den Berg [2]).

As an example, we consider the 3-D model shown in Fig. 2. A
dual-block model with conductivity located in a background
medium with conductivity S/m. Each block has di-
mensions of 10 10 10 m . The m test domain
is divided into 14 14 14 subdomains of 2.5 2.5 2.5 m .

Fig. 3. Results of the conjugate gradient scheme using the concept of the
extended Born approximation as the preconditioning operator (solid lines) and
without using preconditioning operator (dashed lines).

Thus, the object domain is described by
, and . Hence, the total

number of the rectangular subdomains is equal to 2744.
For the cross-well induction logging problem, the ver-

tical point magnetic dipole is a good approximation for
the source modeling (Van der Horstet al. [15]). Using

in (8), the primary electric
field is given by

(26)

where is the moment of the magnetic dipole. In this example,
24 point sources provides the source of excitations and are lo-
cated in four boreholes (data domain , , and ). These
sources operate at a frequency of 20 kHz, andis chosen to
be unity.

In order to demonstrate the advantages of the use of the pre-
conditioning operator in our forward algorithm, we plot the
root mean square (RMS) of the cost-functional in (15)
as a function of the number of iterations(see Fig. 3). The
solid lines denote the results of the conjugate gradient scheme
using the preconditioning operator . The dashed lines de-
note the results of the nonpreconditioned scheme. By comparing
these results, we observe that the preconditioned scheme is su-
perior to the nonpreconditioned scheme. The superiority of the
preconditioned scheme is very clear for the high contrast case
( ). Note that the preconditioning operator for our
forward scheme is only computed once, and it does not depend
on the source excitation. Thus, in each iteration, the extra com-
putational effort and the physical memory requirement of the
use of the preconditioning operator are almost negligible.
Obviously, we have constructed a very efficient preconditioner
for the present cross-well induction logging problem.
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IV. I NVERSESCATTERING PROBLEM

In the inverse problem, the secondary magnetic field is
measured at the measurement points. We assume that all the
measurement points are located in the data domain, outside .
The inverse induction logging problem is represented by (24).
Equation (24) is denoted as the data equation that holds in the
data domain . The data equation contains both the unknown
total electric field and the unknown conductivity contrast

, but they occur as a product that can be considered as a contrast
source that produces the secondary magnetic field at the
measurement points. There is no unique solution for the contrast
source by inverting the data equation by itself [13].

The CSI method attempts to overcome this difficulty by re-
casting the problem as an optimization, in which we seek not
only the contrast sources but also the conductivity contrast itself
to minimize a cost functional consisting of two terms, theer-
rors in the data equation and in the object equation, rewritten in
terms of the conductivity contrast and the contrast sources rather
than the fields. An alternating method of iteratively solving this
optimization problem is proposed, in which first the contrast
sources are updated in the conjugate gradient step weighted so
as to minimize the cost functional, and then the conductivity
contrast is updated to minimize the object error using the up-
dated contrast sources also with a conjugate gradient step. In
this way, the error-reducing nature of the algorithm is enforced.

To this end, we introduce the contrast source as follows:

(27)

The data equation becomes

on (28)

Substituting (14) into (27), we obtain an object equation for the
contrast source rather than for the field

on (29)

Equation (29) is also called a source-type integral equation. The
last two equations are the basic equations to develop the CSI
method.

A. Inversion Algorithm

The CSI method consists of an algorithm to construct se-
quences of contrast sources and sequences of conductivity
contrasts in an alternating way that iteratively reduces the
value of the cost functional

(30)

where the norm on is given by (16), and the norm on
is given by

(31)

The normalizations are chosen such that both terms are equal
to one if the contrast source vanishes. The first term mea-
sures the error in the data equation, while the second term mea-
sures the error in the object equation. This is a quadratic func-
tional in but is highly nonlinear in . Note that in this cost
functional, the object equation acts as a regularization for the
data equation, and we have not employed other regularization
techniques such as total variation, which has been proven effec-
tive for gradient-type methods [12].

Furthermore, the cost functional in (30) is different from the
one used by Abubakar and van den Berg [2]. In the present
paper, we have introduced two preconditioning operators,
for the data equation and for the object equation. Here, we
have used the preconditioning operators in the cost functional
itself rather than only in the update directions as we did in the
forward scattering problem (see (20)). This is due to present of
the two different error terms in the cost functional which can not
be preconditioned by the same preconditioning operator. The
preconditioning operator is given by

(32)

where denotes the element of the matrix operator

(33)

in which is a unit operator. Note that the preconditioning op-
erator is the approximate inverse of the positive defi-
nite version of . The preconditioning operator is given
in (21). More explicit expressions for and can be found
in Appendix I. Note that the preconditioning operator in (33)
is only computed once during the iterative process. The precon-
ditioning operator in (21) has to be computed in each itera-
tion step because of the presence of the conductivity contrast,
which is also updated during the optimization process. But the
operator is only computed once.

1) Update of the Contrast Source : The algorithm in-
volves the construction of sequences and
in the following manner. Define the data error and the object
error at the th step to be

and (34)

where

(35)

Now suppose and are known. We update as
follows:

(36)

where is spatially invariant, and is the Polak-Ribiére
gradient direction

for (37)
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in which is the gradient (Fréchet derivative) of the cost
functional in (30) with respect to evaluated at
and . The motivation for the Polak-Ribière direction rather
than the Fletcher-Reeves direction, as it has been chosen in the
forward algorithm, is the presence of the conductivity contrast
itself in the cost functional, which is also updated during the
optimization process and hence disturbs the orthogonality prop-
erties of the gradients. Moreover, the Polak-Ribière direction is
more robust when the difference of the succeeding gradients be-
comes small. The gradient is given by

(38)

where

(39)

and

(40)

With the update directions completely specified, the coeffi-
cient is determined to minimize the cost functional

(41)

and found explicitly to be

(42)

Observe that we cannot start with , since then
0, and the cost functional in (41) is undefined for it-

eration number 1. Therefore, we choose as starting values
the values that minimize only the first term in (30), the data error

(43)

Note that is the backpropagation of the data
from the data domain into the object domain , and is often
called a backpropagation of the field data.

Once the contrast source is determined, the total electric
field in is obtained by substituting the approximation of
the contrast source in (35), resulting in

(44)

2) Update of the Conductivity Contrast: The second step
in the CSI method comprises the determination of the conduc-
tivity contrast in . With the contrast source and the
total field , the conductivity contrast is updated as fol-
lows:

(45)

where is spatial invariant. The update direction is the
Polak-Ribiére gradient direction

(46)

where is given by

(47)
Note that apart from the denominator, is the gradient
(Fréchet derivative) of the nominator of the second term of the
cost functional in (30) with respect toevaluated at and

.
With the update directions completely specified, the constant
is determined to minimize the second term of the cost func-

tional in (30), rewritten as

(48)

where
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Fig. 4. Four slices of the 3-D conductivity distribution of the exact profile. These are slices ofx = �10,x = 10,x = �12.5 andx = 12:5.

This is the quotient of two quadratics which, using elementary
analysis, may be shown to attain its minimum when

(49)

Unlike in [2] and [13], in this present CSI method, the error-
reducing nature of the algorithm has been enforced.

Furthermore, in the present problem, we know that the con-
ductivity is a positive quantity. The nonnegativity of the con-
ductivity is incorporated into the algorithm by using

(50)

Instead of updating the conductivity contrast, we update as

(51)

with the direction given by

(52)

where

(53)

and is given by (47). Note that the contrast gradient
vanishes for zero values of . We therefore cannot start the
iterative scheme with a zero estimate for. We use a backprop-
agation method to obtain a useful starting value for.

Furthermore, we note that at locations in the domain where
vanishes, there is no new gradient direction. This latter fact

is responsible for the success of the reconstruction of an object.
Now the constant has to be determined by minimizing the
functional in (48) for . These nonlinear equations are
solved by using the Fletcher–Reeves–Polak–Ribière conjugate
gradient method in [8]. This completes the description of the
inversion algorithm.

B. Numerical Example

In order to demonstrate the advantage of using precon-
ditioning operators and in our inverse scheme, we
consider again the dual conductivity model described in Sec-
tion III.B. In the configuration in Fig. 2, we have two objects
with conductivity 10 S/m. Note that in this example, we
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Fig. 5. Reconstructed 3-D conductivity distribution of (a) without and (b) with the preconditioning operators and using only the vertical componentof the
secondary magnetic fieldH .

have considered an extreme difficult case ( 99) to demon-
strate the performance of our approach. The conductivity of
the background medium is 0.1 S/m. In the inversion

procedure, we assume that the unknown objects are located
entirely within a test (object) domain with dimension 3535

35 m , although knowledge of the precise location within
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Fig. 6. Reconstructed 3–D conductivity distribution of (a) without and (b) with the preconditioning operators, using all three components of the secondary
magnetic fieldH .

this test domain was not assumed. Thus, the object domain is
described by , , and

. This test domain is divided into 14

14 14 subdomains with uniform side-length of 2.5 m. After
discretization of the test domain , the total number of the
conductivity unknowns is equal to 2744.
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In Fig. 4, we give four plane slices of the conductivity
distribution of the configuration which has been used to
generate the synthetic data using conjugate gradient method
described in Section III.A but with a finer discretization grid.
These are slices of 10, 10, 12.5 and
12.5. For the forward problem the test domain is subdivided
into 28 28 28 subdomains with uniform side-length of
1.25 m.

The synthetic data simulated at 20 kHz are generated using 24
point sources and 27 multicomponents receivers. Each source of
excitation located on a particular borehole has 27 receivers lo-
cated in the other three boreholes. Thus, in total we have 648
data points. In Fig. 5(a), we give the reconstruction results after
1024 iterations of the scheme without using preconditioning op-
erators from single component data (the vertical component of
the secondary magnetic field ). Although the total amount
of the iteration is large, note that we do not solve a full for-
ward problem in each iteration of the inversion procedure. One
iteration of the inverse scheme takes approximately 27 s on a
400 MHz Pentium II personal computer.

In Fig. 5(b), we give the reconstruction results after 1024
iterations of the scheme using preconditioning operators also
from single component data. Now, one iteration of this precondi-
tioned scheme takes approximately 30 s. The same level of error
in contrast of the nonpreconditioned scheme has been achieved
by the preconditioned scheme only at iteration number201.
We observe the result in Fig. 5(b) is obviously better than the one
in Fig. 5(a), and the preconditioned scheme does not increase the
computation time significantly. In order to improve the recon-
struction results, we use now all components of the secondary
magnetic field instead of only its vertical component as
our known data in the inversion procedure. In Fig. 6(a), we give
the reconstruction results after 1024 iterations of the scheme
without using preconditioning operators and using all compo-
nents of the secondary magnetic fields.

The results of the preconditioned scheme after 1024 iterations
are given in Fig. 6(b). Now the maximum value of the recon-
structed conductivity . Indeed, once again we ob-
serve the superiority of the preconditioned scheme. Moreover,
by comparing Figs. 5(a) and 6(a), and Figs. 5(b) and 6(b), we
conclude that by using multi components data the general po-
sition of the targets (dual-block) are reconstructed more accu-
rately. Note that although the value of the reconstructed con-
ductivity is still not correct, the general position and dimensions
of the dual-blocks conductivity is reconstructed very well. This
smoothing and low value conductivity of the resulting image
is due to the ill-posed nature of the problem and the very high
conductivity to be reconstructed. We expect that the resolution
of the images may improve as we learn more about the appro-
priate controls on the inversion parameters (adding an extra reg-
ularization term as in [14]).

Furthermore, in order to have more detailed information
about the reconstructed profiles, we present in Fig. 7 three
1-D, the conductivity distributions as a function of vertical
position for a fixed transverse positions of , and . The
transverse positions are given by (11.25,11.25), ( 8.75,8.75),
and ( 1.25,1.25). The actual profiles are indicated by solid
lines. The inversion results without using preconditioning

Fig. 7. Conductivity distribution of the exact profiles (solid-lines), and those
of the reconstructed profiles (dashed-lines) without preconditioning operator
using onlyH , dotted-lines with preconditioning operator using onlyH ,
dashed-dotted-lines without preconditioning operator usingH , solid-plus
lines with preconditioning operator usingH .

operator are given by dashed-lines for the scheme using only
single component data, and dashed-dotted lines for the scheme
using multicomponents data. The reconstruction results using
preconditioning operators are given by dotted-lines for the
scheme using single component data, and solid-plus-lines
for the scheme using all components of the magnetic field.
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Note that the reconstruction results for fixed lateral positions
( 11.25,11.25), ( 8.75,8.75), and (1.25,1.25) are identical.

From the last result, we observe that the present inversion
method with preconditioning operators using multicomponents
magnetic field data was successful in separating the two
blocks and obtaining a relatively accurate description of their
individual dimensions and their relative positions. Note that in
this example, we have taken the most difficult case 10 S/m.
For the lower conductivity case 1 S/m and 5 S/m, we
have also observed the same results. But, the advantage of the
use of the preconditioning operators is more obvious for the
high conductivity case.

V. CONCLUSION

In this paper, we have developed a method that can handle
a 3-D problem for the cross-well induction logging measure-
ments. For the forward problem, we have introduced a precon-
ditioning operator to accelerate the convergence of the scheme.
The preconditioning operator is obtained using the concept of
the extended Born approximation. Numerical examples have
shown that we have constructed a very efficient preconditioner
for the present cross-well induction logging problem.

For the inverse problem, we have introduced a new version
of the CSI method that can include the use of preconditioning
operators and guarantee the error-reducing nature of the algo-
rithm. The preconditioning operator is obtained again from the
concept of the extended Born approximation. The numerical ex-
amples showed that in spite of the large size of the conductivity
contrast (a factor of 100) and the limited amount of data, the
present inversion method with simple preconditioning operators
can still give a reasonably good result. Moreover, in view of the
simplicity of the preconditioning operators used, the extra com-
putation time of the use of these operators in our forward and
inverse algorithms are negligible. Furthermore, we have also ob-
served that the use of multicomponents data allows us to recon-
struct a more accurate position and dimension of the unknown
targets.

APPENDIX I
PRECONDITIONING OPERATORS

The preconditioning operator for the object equation in
(21) can be written explicitly as

(54)

where is a identity operator, and the scalar is given by

(55)

in which the green function is given in (6). We observe again
that on is a singular equation. One possible way
to compute this preconditioning operator is to compute it an-
alytically for each discretization domain as Torres-Verdin and
Habashy [10], [11] did. However, for our purposes, there is no
reason to use a preconditioning operator that is implemented
more accurately than the integral operator used. Thus, we will
handle with the same technique we have used to numeri-
cally implement the operator (see Abubakar and van den
Berg [2]). The scalar function is weakened by taking the
spherical mean of it. We integrate over a spherical do-
main with a center at ( ). The radius of this patch is
taken to be . The re-
sults are divided by the volume of the spherical domain with
radius . We then may write

(56)

where we have interchanged the order of integrations such that
Note that for the limiting case , the weak form of the
Green function for tends toward the strong
form of the Green function, . In fact, is mean value of the
Green function over a spherical domain with center at

. After this weakening procedure, we are now able to com-
pute the integral over the domain in (56) numerically using
trapezoidal rule. Then, is computed with the finite
difference rule [1],[(57), at the bottom of the next page].

An explicit expression for the preconditioning operator
is finally written as

(58)

where

(57)
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Note that for the present preconditioning operator, is a
symmetric operator. The adjoint of the preconditioning operator

is the complex conjugate of .
The matrix operator in (33) can be written in more

explicit terms as

(59)

where

(60)

in which , , and denote the spatial differentiations with
regard to , , and , respectively.

Unlike the operator on , the on can be
implemented directly . An explicit expression for the
preconditioning operator is finally written as

(61)

where

with cyclic

with

with , in which

(62)

where the overbar denotes the complex conjugate.
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