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Three-Dimensional Inverse Scattering Applied to
Cross-Well Induction Sensors

Aria Abubakar and Peter M. van den Berg

~ Abstract—Cross-well induction logging as known in the oil contrast. They have shown that with the same computational
industry is a method for determining the electrical conductivity  efficiency of the first-order Born approximation, the extended

distribution between boreholes from the low-frequency electro- - gqry gpproximation enables one to solve a much wider class of
magnetic field measurements in the boreholes. In this paper, . .
2-D inverse scattering problem.

we discuss the reconstructions of the three-dimensional (3-D) . )
conductivity distribution using the contrast source inversion Recently, we have developed an inversion method to recon-

(CSI) method. In order to improve the reconstruction results, struct a three-dimensional (3-D) cross-well conductivity dis-
the concept of the extended Born approximation has been used tripution from the dc-resistivity or electrode logging measure-
to arrive at a preconditioning operator. Results of a number a5 2], This method is called the contrast source inversion

of numerical examples show that by using this preconditioning .- .
operator, a large conductivity contrast of the unknown objects (CSI) method, and has been originally introduced by van den

(factor of 100) can be reconstructed up to an acceptable degree of Berg and Kleinman [13] to handle the 2-D wave problem. Un-
accuracy. Moreover, in each iteration, the computational effort to  like most nonlinear inversion methods, the CSI method does not

generate the preconditioning operator is negligible. require some artificial regularization techniques to deal with the
Index Terms_Cross_W(:’\”, induction |ogging, nonlinear inver- pl’oblemS Of the nonuniqueneSS in inverSiOI’l Of data. It attempts
sion, three-dimensional. to overcome this problem by recasting the problem as an opti-

mization problem, in which it seeks not only the contrast sources
(the product between the total fields and the conductivity con-
trasts) but also the conductivity contrasts itself to minimize a
NTEREST in cross-well tomography (imaging) of the eartbost functional consisting of two terms. The first term is the de-
electrical conductivity has increased because of improviect in matching measured (actual or synthetic) field data with
ments in field instrumentation, computing power, and methatle field scattered by a body with particular conductivity, and
of interpretation. Cross-well electromagnetic logging is a tecthe second being the error in satisfying the integral equations
nique to investigate the geological properties of the region bier the field produced in the body by each excitation. An alter-
tween boreholes from the electromagnetic measurements magdeéng method of iteratively solving this optimization problem
in these boreholes at one or more frequencies for a large cdgproposed, in which first the contrast source is updated in the
bination of source and receiver locations. conjugate gradient direction weighted so as to minimize the cost
During the last decade, a number of nonlinear inversigonctional, and then the conductivity contrast is updated to min-
methods has been employed to map the conductivity distifinize the error in the object equation using the update contrast
bution between boreholes. For low-frequency measuremerdsurce. This latter minimization can be done analytically, which
the so-called induction logging, Alumbaugh and Morrisoallows an easy implementation of the positivity constraint for
[3] have developed a multifrequency imaging procedure fetie conductivity. In order to guarantee the error reducing nature
the reconstruction of two-dimensional (2-D) variations obf the algorithm, the CSI method has been improved (see van
conductivity excited by electric line sources. In their approactien Berget al.[14]). In this extended version, the conductivity
the Green function was fixed for a certain background, whilsontrast is updated also in a conjugate gradient step to minimize
the unknown electric field was updated after each iteration. the second term in the cost functional, the object error.
slightly different class of iterative methods undertakes repeatedn the present paper, we have extended the CSI method to
modifications of the Green function after each iteration. Thisandle the full-vector complex 3-D cross-well induction log-
method is known as the distorted Born iterative method [4ding problem. For the forward problem, the concept of the ex-
This method is also used in a 2-D single-well problem by Chewinded Born approximation has been used to arrive at a precon-
and Liu [5] and a 3-D cross-well problem by Newman [7]. Notelitioning operator for the conjugate gradient method. In the in-
that in this method, one has to solve a full forward problem iverse problem, the cost functional of the CSI method has been
each iteration. Torres-Verdin and Habashy [10] use a nonlingabdified to include the preconditioning operators as well. Nu-
inversion technique known as the iterative extended Bomerical examples will show that these preconditioning opera-
approximation to probe the 2-D object with the conductivityors allow us to handle a large contrast (a factor of 100). More-
over, because of the simple form of the preconditioning opera-
tors, the extra computational effort to obtain the preconditioning
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ations in medium properties are contained in the conductivity
distributiono, given by

o(x) = o' (x) — iwe(x) (3)

wheres”’ is the ohmic conductivity, andis the dielectric per-
mittivity. Note that due to the frequency range used by the in-
duction tools, the second term in (3) can be neglected. Then,
is real and positive.

To cast (1) and (2) in an integral form, the actual configuration

Ug:) " (object domainD) in which the field must be computed or the
S conductivity contrast to be inverted is embedded into a medium
JRR S for which the point source solution fd&**““ = §(x)I can be

<<<<<<<<<<<<< . determined analytically. The simplest medium in this category
’ is the unbounded homogeneous medium with conductjty
where the point source solutions are obtained as

s <
’ 2 E%(x) = -V x 1, (4)
1
HE(x) = — [00 + - VV} GI (5)
tWho
S5 wherel is a unit vector, and the scalar Green functivor- G(x)
is given by
Fig. 1. Theoretical model of the cross-well configuration in the homogeneous exp [ikol|x|]
background with conductivity, . The object domai® with conductivityo (x) G(X) = T inlx| (6)
is the domain to be reconstructed from the measurements made in the data 7r|x|
domain{S;, S, S5, 54} € S. in which
. 1
Il. INTEGRAL EQUATION FORMULATIONS ko = (iwpog0)?. )

A theoretical model of the cross-well configuration is shown We defineE? as the primary electric field measured in the
in Fig. 1. We define an inhomogeneous domain as an object dd@ckground and excited by the impressed magnetic current
main D with conductivityo (x) embedded in an unbounded hosourceK<**. This field is represented as
mogeneous background medium with conductivigy The ex-
citation source is a magnetic point dipole directed inthe logging ~ E/(x) = =V x / G(x —xK™(x)dv'.  (8)
direction (vertical magnetic dipole) with a magnetic moment xS
M located in the domain &f. This is a good approximation to Starting from (1)—(8) and using the superposition principle for
the small transmitter coil used in induction tools. The measuridse electric and magnetic fields
ment is also made in the domain.®f We measure either all the
three components of the magnetic field or the vertical compo-
nent of the magnetic field. The data domairconsists of four
boreholes{ 51, Sz, S3, 54} € S. In the present induction log-
ging problem, we want to determine the conductivity distribu- ~ E?(x) = E(x) — [k§ + VV-] A(x), x € D. (10)
tion inside the object domaiP from the measurements made

E=E’+E and H=H +H° 9)

whereE®* andH* are the secondary fields, we arrive at

in the data domairs. The normalized vector potentidl is given by
Consider a Cartesian coordinate frame for which a given , , .
location x is expressed in terms of the unit vectdss is, Ax) = /,ED G(x —x")x(x')E(x') dv'. (11)

and i3 in the z1, 2, and x5 directions respectively (i.e. _ o
X = 111 + 29ls + z3i3. We assume a time harmonic depenln (11), we have introduced a conductivity contrgsds
denceexp(—iwt), wherei? = —1, w is angular frequency, and

.. . . O(X) — 0o
t is time. Maxwell's equations are given by x(x) = ———.

(12)
Jo
_VxH4+oE=0 1) _Equa_tlon (10) is the well-known integral equation to Qevelop an
) ot imaging procedure for low-frequency electromagnetic measure-
V xE—iwpoH = -K (2 ments [10], [11], [16].
] ] o . In the induction logging problem, we are interested in the
Whe_reuo is the magnetic permeability in free space, &fd* is secondary magnetic fieEI*. This secondary magnetic fiel®
the impressed magnetic current source. H®fes (91,92, 93)  can also be represented in term of an integral equation
denotes the spatial differentiation with respect to the position
vectorx = (x1,z9,x3). In (1) and (2), all of the spatial vari- H* (xf) = 0oV x A(xF), xfes. (13)
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We observe that (10) is a singular integral equation in whidWe update the total electric fielB* as follows:
the grad-div ¥'V-) operator acts on a normalized vector poten- @) @) ) @ @)
tial A, defined as the spatial convolutions of the Green function E;’=0, E’=E_ . +to’¢", k=1 (18)
G and the product of the conductivity contrastind the total @ S
electric fieldE. Numerical implementation of such an integralVhere«,,” is constant and the update directias}¥ are func-
equation must be carried out carefully. We follow the discretiz30ns of position. The update directions are chosen to be the
tion procedure of our previous work on the inversion of the eleEletcher-Reeves gradient directions
trode logging measurements [2]. In order to handle the singu- H @2

larity of the integral equation in (10), the normalized vector po- ; i i k i
Y T h (10) P e =0, e =ae® + I “lb o 51 (9

tential A is replaced by its weak form (spherical mean). After @ |7 kb
that, the grad-div operator can be computed with the finite dif- Haek—l HD
ference rule (see Abramowitz and Stegun [1]). This technique ‘

to cope with the singularity of the Green function has also be&terede.” is the preconditioned gradient of the cost functional
used by Richmond [9] to handle the 2-D scattering problenf,, with respect taE* evaluated aESZl. Explicitly this is
Note that the normalized vector potentilconsists of spatial found to be
convolutions and can efficiently be computed by fast Fourier

w f (D) — g (0
transform (FFT) routines (Press al. [8]). PpPp (rk—l - XICDrk—l)

o1l s

- . . . where K%, is the adjoint ofCp mappingLz(D) into La(D).
When the conductivity contrast is known, the discretized Note that in view of the orthogonality of the gradients of the

forward scattering problem for each excitation may be formie, e problem, in this cas@e(”), Fletcher-Reeves
lated as a linear system of equations. This linear system of eclia

ae§j) =

(20)

I1l. FORWARD SCATTERING PROBLEM

; ) . . Ifections are identical with the Polak-Ribiére directions, see
tions can be written compactly in an operator notation as fql; o
lows: leinman and van den Berg [6]. As preconditioning operator

‘Pp we propose

EP® — g _ ]CDXE(Z)7 onD (14) Po(x) = [T - )(ICDI]_I(X) 1)

where the operator expressidf, yE® is directly obtained whereZ is unit operator, ant, is the conjugate transpose of
from the second term of the right-hand side of (10), and ti®y,. The right-hand side of (21) represents a three by three ma-
superscripti) denotes the numbering of the sources. Equati@fix which is easily inverted for eack.

(14) is also called the object equation that holds on the objectThis preconditioning operatd?, is the approximate inverse
domainD. Since the matrix operaté,, consists of spatial con- of (14) using the extended Born approximation, introduced
volutions, we can use advantageously FFT routines (Zwamb® Torres-Verdin and Habashy [10], [11]. However, we have
and van den Berg [17]). However, we then need an iterative $srought the contrast source (the product of the conductivity
lution, and the conjugate gradient (CG) method seems to be @agtrast and total electric field) outside the integral operator
of the most efficient methods. With this so-called CGFFT teclnstead of only the total electric field as Torres-Verdin and
nique we are able to solve complex 3-D problems efficientiabashy did. Numerical experiments indicate that the present
Furthermore, it also gives the fundament of our solution for thersion of the extended Born approximation works better

inverse problem. as a preconditioning operator than the one introduced by
. Torres-Verdin and Habashy [10]. Furthermore, in the inverse
A. Forward Algorithm problem the present version of the preconditioner is sub-

The CG method consists of an algorithm to construct sgtantially less computer intensive, because the opefatgf
quences of electric fiel®® in D which iteratively reduce the does not change during the optimization process. The explicit

i expression of the preconditioning operafy can be found in
value of the cost functional
) Appendix A.
> |EPO — B + KpxE@|| After the update direction has been determined, the constant
Fp= > HEp’(i)H2 (15) a§j> is determined to minimize the cost functional in (15)
! D rewritten as
where the norm oD is defined as ; ; ; AN 12
2 B 1 T 1 C ok 0 P
E®| = EO K - E@(x") do’ 16 Dik = INIE :
[0, = [ BO0)-E9)ar ae AT
in which the overbar denotes the complex conjugate. The constan:;!” is found explicitly to be
We construct sequencéﬁgj)}, fork =1,2,...,Iin the fol- @ 6 @
lowing manner. Define the object error In to be ) <rk71’ e, — Kpxey, >D (23)
Q" = ‘ NTE R
r? = ErO —EY + KpxE. 17) Hei) — Kpxey! -
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Solid lines : with Pp
Dotted lines: without Pp

50 100 150 200 250 300 350 400 450
Number of iterations =—

Fig. 3. Results of the conjugate gradient scheme using the concept of the
extended Born approximation as the preconditioning operator (solid lines) and
without using preconditioning operator (dashed lines).

-12.5

Thus, the object domain is described b¥7.5 < z; < 17.5,

Fig. 2. Configuration of the dual conductivity model in the computation—17.5 < z2 < 17.5, and—17.5 < z3 < 17.5. Hence, the total

domainD with conductivityoo = 0.1 S/m. In this domainD we have two nymber of the rectangular subdomains is equal to 2744.

blocks of 10x 10 x 10 m with conductivitys S/m. For the cross-well induction logging problem, the ver-

tical point magnetic dipole is a good approximation for

Once the root mean square 8h;x in (22) is small enough, the source modeling (Van der Horst al. [15]). Using

the approximate solution CES) is substituted in (13) to arrive K¢ = dwuoMé(x — x%®)is in (8), the primary electric

at the secondary magnetic field*(") at the receiver position field is given by

XR
» 4 () exp (iko |X_ XS;O)D
H = KsxE®, ons (24 BTV =—iwpoM PR—TET
where X (iko‘x—xs?(i) - 1)
KevE® | (xR = / GR(xR %' % [(22 — 25DV i; — (21 — 279 ) i, | (26)
KnBO () = | G ) [(2 =25 P) i1 = (21— 277) 1]

x x(xED(x)dv', x® e S (25) whereM isthe moment of the magnetic dipole. In this example,
24 point sources provides the source of excitations and are lo-
in which the matrix operata * is given in (60) of Appendix I. cated in four boreholes (data domdin S, Ss, andS.). These
The I‘esults Of (24) W|” be Used as SynthetiC measured datas&rces Operate at a frequency Of 20 kHZ, Mds Chosen to

test our inversion procedure. be unity.
) In order to demonstrate the advantages of the use of the pre-
B. Numerical Example conditioning operatoP, in our forward algorithm, we plot the

The discrete form of the algorithm is obtained by assumirrgot mean square (RMS) of the cost-functiori'fag/2 in (15)
that the object domaid® is a rectangular domain with bound-as a function of the number of iteratioks(see Fig. 3). The
aries along the:1, z2, andzs directions. We discretize the ob-solid lines denote the results of the conjugate gradient scheme
ject domainD in a rectangular mesh. The mesh is uniformlysing the preconditioning operat®!,. The dashed lines de-
spacedinthe, z-, andzs direction with widths ofAx;, Azo, note the results of the nonpreconditioned scheme. By comparing
and Axs. In each rectangular subdomain, we assume the cdhese results, we observe that the preconditioned scheme is su-
ductivity contrasty to be constant. The operathit, YE®) = perior to the nonpreconditioned scheme. The superiority of the
[k3 + VV]A is computed using the technique which has begareconditioned scheme is very clear for the high contrast case
used to compute the integral operator in cross-well electrofte = 10). Note that the preconditioning operatBy, for our
logging problem (Abubakar and Van den Berg [2]). forward scheme is only computed once, and it does not depend

As an example, we consider the 3-D model shown in Fig. 2.@n the source excitation. Thus, in each iteration, the extra com-
dual-block model with conductivity located in a background putational effort and the physical memory requirement of the
medium with conductivityrg = 0.1 S/m. Each block has di- use of the preconditioning operatBY, are almost negligible.
mensions of 16« 10 x 10 n?. The35 x 35 x 35 m? testdomain Obviously, we have constructed a very efficient preconditioner
is divided into 14x 14 x 14 subdomains of 2.5 2.5x 2.5n%. for the present cross-well induction logging problem.
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IV. INVERSE SCATTERING PROBLEM The normalizations are chosen such that both terms are equal
to one if the contrast sourd® () vanishes. The first term mea-

measured at the measurement paidis We assume that all the sures the error in the data equation, while the second term mea-
sures the error in the object equation. This is a quadratic func-

measurement points are located in the data dosadaitsideD. . i s . . L
The inverse induction logging problem is represenited by (iﬁ?nal in W but is highly nonlinear iny. Note that in this cost

In the inverse problem, the secondary magnetic fi#te® is

Equation (24) is denoted as the data equation that holds in Qctional, the object equation acts as a regularization for the
ata equation, and we have not employed other regularization

data domainS. The data equation contains both the unkno _ S .
total electric fieldE® and the unknown conductivity contrast SChniques such as total variation, which has been proven effec-
for gradient-type methods [12].

x, butthey occur as a product that can be considered as a contf¥&t : . L
source that produces the secondary magnetic FEId at the Eurthermore, the cost functional in (30) is different from the

measurement points. There is no unique solution for the contr3of used by Ab_ubakar and van den Be_r_g [.2]' In the present
source by inverting the data equation by itself [13]. paper, we have introduced two preconditioning operatBes,

The CSI method attempts to overcome this difficulty by re%)r the data equation ariélp, for the object equation. Here, we

casting the problem as an optimization, in which we seek n Fve used the precon.ditioning opera.tors 'in the cost fgngtional
only the contrast sources but also the conductivity contrast its'éﬁelf rather tha'n only in the update d|rect_|ops as we did in the
to minimize a cost functional consisting of two terms, fheer- orward s_catterlng problem (see (20)). Thls.'s due t(.) present of
rors in the data equation and in the object equation, rewrittenqﬁe two dlﬁg_rtgnt e(;r(;r tizrr]ms in the cost fug_(;tlor?al which (;an r_:_(;;[
terms of the conductivity contrast and the contrast sources ratngpre((:thn ione yt ope same p_recog tioning operator. The
than the fields. An alternating method of iteratively solving thigreconditioning opera s(x) is given by

optimization problem is proposed, in which first the contrast
sources are updated in the conjugate gradient step weighted so
as to minimize the cost functional, and then the conductivit h
contrast is updated to minimize the object error using the up- ereQyx
dated contrast sources also with a conjugate gradient step. In O(x®) = [KsKET] H(x™) (33)

this way, the error-reducing nature of the algorithm is enforced.

To this end, we introduce the contrast souWé” as follows: N whichZ is a unit operator. Note that the preconditioning op-
eratorPs(x) is the approximate inverse of the positive defi-

Qs
Ps.mw (x7) = 2 7 s n, K € {1,2,3} (32)
Nk

denotes the element of the matrix operafbr

W& = yE®, (27) nite version ofKs. The preconditioning operatd?p, is given
_ in (21). More explicit expressions fa@ andPp can be found
The data equation becomes in Appendix I. Note that the preconditioning operaiy in (33)

is only computed once during the iterative process. The precon-
(28) ditioning operatofPp in (21) has to be computed in each itera-
Substituting (14) into (27), we obtain an object equation for tr;“eor.] St‘?p because of the presence of _th(_a co_nduct|V|ty conirast
() - which is also updated during the optimization process. But the
contrast sourcdV'* rather than for the field2'’ .
operatorkpZ is only computed once. |
WO — xyKp WO = xyED onD. (29) 1) Update of the Contrast SourfW@: The algorithm in-
’ volves the construction of sequenqewg)} and{xx},k >1
Equation (29) is also called a source-type integral equation. Tikethe following manner. Define the data error and the object

last two equations are the basic equations to develop the @8pr at thekth step to be
method P =15 — KsWP and 1l = y,EY - W (34)
A. Inversion Algorithm where

Ks-W® =H>® on§.

The CSI method consists of an algorithm to construct se-
quences of contrast sourc®&‘” and sequences of conductivity
contrastsy in an alternating way that iteratively reduces th
value of the cost functional

E{) = EFO 1 £, W, (35)

'I:\Iow supposéW,(j’Z1 andy_1 are known. We updatng) as
follows:

_ Sl (0 - xswO)
A
5 [P (B~ WO 45w 0)

wi =w® 4P (36)
2 whereoc;f) is spatially invariant, andvff) is the Polak-Ribiére
HD (30) gradient direction

N PryEP: () 2 )
2 [ PoxEO, w — o,
where the norm or.»(D) is given by (16), and the norm on <8w(?),8w(f) — ow® >
Lo(S) is given by w§j> = 8w§f) + ’ : 3 b ;(:21,
()
o |1? () (RY T (R 5, R Haw’“—lHn
HH S:/XRESH =) BHO®) doR. (31) ork>1 (37)
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in which 8w,(f) is the gradient (Fréchet derivative) of the cost Once the contrast sourwg) is determined, the total electric

functional F in (30) with respect toW () evaluated alejZl field Egj) in D is obtained by substituting the approximation of

andy;_1. The motivation for the Polak-Ribiére direction rathethe contrast sourcwgf) in (35), resulting in

than the Fletcher-Reeves direction, as it has been chosen in the . . . .

forward algorithm, is the presence of the conductivity contrast ES) = ESZI + afj)ICDw,?). (44)

itself in the cost functional, which is also updated during the

e e o e ot r S ne CS| method comorses e deerminaton o e condc-
) ' ity contrasty in D. With the contrast sourcng) and the

more robust when the difference of the succeeding gradients B\é i ) o -
comes small. The gradieﬁlwg) is given by total field E,, the conductivity contrasy is updated as fol-

lows:

2) Update of the Conductivity Contragt The second step

ow' = nsKEPEPs 1

. . Xk = Xk—1 T BrXk (45)
+npik—1 X (T = KpXe—1)Ppa1Ppiw—1Te—1 (38)

where 3 is spatial invariant. The update directign. is the
where Polak-Ribiére gradient direction

-1
ll? X0 =0,
ns =\ HPSHS’(Z) ) Oxns O — Oxio—
< i o X = Oxx + (O O ;(k 1>DXk—17 k >1 (46)
1 [0xx-111%
o1 = Db, EFO|2 39) wheredxy, is given b
NDsk—1 > Pk 1xx 1 D (39) wheredxy is given by
and / 5 —Pbik—1; (Xk—:LES) - WS)) 'PD;k—lES)
Pos—1(x) = [T — xa—1KpI] "L (x). 40 Xk = e '
Dk 1(X) [ Xk—1 DI] (X) ( ) Zz /PD;kflEgc)‘
With the update directions completely specified, the coeffi- _ _ (47)
cienta'” is determined to minimize the cost functional Note that apart from the denominatay, is the gradient
(Fréchet derivative) of the nominator of the second term of the
i i |2 cost functional in (30) with respect tp evaluated ajf_; and
e L
’ @ @) With the update directions completely specified, the constant
T pik—1 Z HPD;k—l [rk—lo‘k B is determined to minimize the second term of the cost func-
¢ o tional in (30), rewritten as
X (T = xn1 Kp)wi H (41) ; Nk
I [P (s W)
and found explicitly to be Fp = :
pIcty > HPD;k—leEP;(z)HQD
o = (ns <7>s o 177>S,C5W1<:>>S _ i +bBtc (48)

@ AR+ BB+ C
+ Npik—1 <77D;k—11‘k;1, Ppik—1

x (Z- Xk—l’CD)WS)>D)

where

2
a= Z HPD;k—1XkE§f) b

b= Rez <7’D;k—1 (Xk—lES) - W’(:))

~ 112
X <ﬂs HPS’CSWS)HS +NDjk—1 HPD;k—l

2\ L
o) @ T
Dik—1XkE;
D

Observe that we cannot start wiW((f) = 0, since then _ H? ( E® _ W(z‘))H
x = 0, and the cost functionaF; in (41) is undefined for it- ¢ 27: Dik—1 \ Xh—1 B K
eration numbek = 1. Therefore, we choose as starting values 2

the values that minimize only the first term in (30), the data error A=>" HPD;k—lmEp’(Z) H 5

2

D

* Yk s,(2 2
wo _ lsepsa Ol
IKsK5PsPsH=O| 5

KEPEPsH>M . (43) b= REZ <7’D;k—1><k—1Ep

A 2
. . /PD;klekEp;(Z)>
Note thatIquP;PSHS’(Z) is the backpropagation of the data D
from the data domaiss into the object domaitD, and is often c=% Hpn_k_lxk_lEp;(i) 2
- ' D

called a backpropagation of the field data.
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0 2 4 6 8 10

Fig. 4. Four slices of the 3-D conductivity distribution of the exact profile. These are sliegsef—10,z; = 10,25 = —12.5 ande; = 12.5.

This is the quotient of two quadratics which, using elementawhere
analysis, may be shown to attain its minimum when

—(aC — Ac) Ok = 2Ce—19xx (53)
e = SlaB = ab i< qi i
(aB — Ab) anddyx; is given by (47). Note that the contrast gradiéxy,
(aC — Ac)? — 4(aB — Ab)(bC — Bc) vanishes for zero values ¢f_;. We therefore cannot start the
+ (49)
2(aB — Ab) ’ iterative scheme with a zero estimate {gr\We use a backprop-

S L agation method to obtain a useful starting valuedfor
Unhkg in [2] and [13], in th|§ present CSI method, the error- Furthermore, we note that at locations in the domain where
reducing nature .Of the algorithm has been enforced. .—1 vanishes, there is no new gradient direction. This latter fact
Fgr'ghernjore, n t he present problem, we kn'oyv that the CO%:;,f'responsible for the success of the reconstruction of an object.
dUCt!V!tyU IS a positive quantity. The nonnegativity of the CO"Now the constangl, has to be determined by minimizing the
ductivity o i incorporated into the algorithm by using functionalin (48) fory, = ¢7—1. These nonlinear equations are
2 = g _ Y+ 1. (50) solved by using the Fletcher—Reeves—Polak—Ribiére conjugate
70 gradient method in [8]. This completes the description of the

Instead of updating the conductivity contrastwe updates as  Inversion algorithm.

G = Ch—1 + Brda (51) B. Numerical Example

In order to demonstrate the advantage of using precon-
ditioning operatorsPs and Pp in our inverse scheme, we
§o =0, consider again the dual conductivity model described in Sec-

_ (O, 0 — Ok 1) D tion 111.B. In the configuration in Fig. 2, we have two objects
S = 0%k + [T S k21 52 it conductivityo = 10 S/m. Note that in this example, we

with the direction,, given by
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m

0 0.5 1 1.5 2

Fig. 5. Reconstructed 3-D conductivity distribution of (a) without and (b) with the preconditioning operators and using only the vertical confighaent
secondary magnetic field 3.

have considered an extreme difficult cage= 99) to demon- procedure, we assume that the unknown objects are located
strate the performance of our approach. The conductivity eftirely within a test (object) domain with dimension 8535
the background medium is; = 0.1 S/m. In the inversion x 35 n?, although knowledge of the precise location within
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Fig. 6. Reconstructed 3—-D conductivity distribution of (a) without and (b) with the preconditioning operators, using all three components afidagysec
magnetic fieldH=.

this test domain was not assumed. Thus, the object domairiésx 14 subdomains with uniform side-length of 2.5 m. After
described by-17.5 < 1 < 17.5, —17.5 < x2 < 17.5, and discretization of the test domaiP, the total number of the
—17.5 < x3 < 17.5. This test domain is divided into 14 conductivity unknowns is equal to 2744.
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In Fig. 4, we give four plane slices of the conductivity
distribution o(x) of the configuration which has been used to
generate the synthetic data using conjugate gradient metha
described in Section Ill.A but with a finer discretization grid.
These are slices af; = —10,z; = 10,23 = —12.5 andr3 =
12.5. For the forward problem the test domain is subdivided
into 28 x 28 x 28 subdomains with uniform side-length of
1.25 m.

The synthetic data simulated at 20 kHz are generated using 2
point sources and 27 multicomponents receivers. Each source ( T
excitation located on a particular borehole has 27 receivers lo Zs
cated in the other three boreholes. Thus, in total we have 64!
data points. In Fig. 5(a), we give the reconstruction results afte
1024 iterations of the scheme without using preconditioning op- : ‘ ‘
erators from single component data (the vertical component o 0.1 1 10
the secondary magnetic fiel3). Although the total amount ‘ ‘ ‘
of the iteration is large, note that we do not solve a full for-
ward problem in each iteration of the inversion procedure. One
iteration of the inverse scheme takes approximately 27 s on i
400 MHz Pentium Il personal computer.

In Fig. 5(b), we give the reconstruction results after 1024

iterations of the scheme using preconditioning operators alst
from single component data. Now, one iteration of this precondi- 3 0r
tioned scheme takes approximately 30 s. The same level of errc
in contrast of the nonpreconditioned scheme has been achieve
by the preconditioned scheme only at iteration nuniber201.
We observe the resultin Fig. 5(b) is obviously better than the one
in Fig. 5(a), and the preconditioned scheme does notincrease tt
computation time significantly. In order to improve the recon-
struction results, we use now all components of the secondar o i 10
magnetic fieldH* instead of only its vertical componeAt; as ‘ ‘ ‘
our known data in the inversion procedure. In Fig. 6(a), we give
the reconstruction results after 1024 iterations of the schem
without using preconditioning operators and using all compo-
nents of the secondary magnetic fieHs.

The results of the preconditioned scheme after 1024 iteration:
are given in Fig. 6(b). Now the maximum value of the recon-
structed conductivity;*** ~ 2.41. Indeed, once again we ob- or
serve the superiority of the preconditioned scheme. Moreover
by comparing Figs. 5(a) and 6(a), and Figs. 5(b) and 6(b), we

—11.25
11.25

conclude that by using multi components data the general po 2 ; 1_;'525

sition of the targets (dual-block) are reconstructed more accu

rately. Note that although the value of the reconstructed con

ductivity is still not correct, the general position and dimensions 'St

of the dual-blocks conductivity is reconstructed very well. This o1 p 10
smoothing and low value conductivity of the resulting image o(S/m) —

is due to the ill-posed nature of the problem and the very high
conductivity to be reconstructed. We expect that the resolutibl: 7 Conductivity distribution of the exact profiles (solid-lines), and those

of the reconstructed profiles (dashed-lines) without preconditioning operator

of the Images may Improve as we learn more about the appﬂ@l’ng only HE, dotted-lines with preconditioning operator using oy,

priate controls on the inversion parameters (adding an extra regshed-dotted-lines without preconditioning operator ugigj, solid-plus
ularization term as in [14]). lines with preconditioning operator usifdg*.

Furthermore, in order to have more detailed information
about the reconstructed profiles, we present in Fig. 7 threperator are given by dashed-lines for the scheme using only
1-D, the conductivity distributions as a function of verticasingle component data, and dashed-dotted lines for the scheme
positionxs for a fixed transverse positions of, andzs. The using multicomponents data. The reconstruction results using
transverse positions are given by{1.25,11.25),4{8.75,8.75), preconditioning operators are given by dotted-lines for the
and (1.25,1.25). The actual profiles are indicated by solischeme using single component data, and solid-plus-lines
lines. The inversion results without using preconditioninfpr the scheme using all components of the magnetic field.
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Note that the reconstruction results for fixed lateral positionshereZ is a identity operator, and the scalap, is given by
(—11.25,11.25),48.75,8.75), and-{1.25,1.25) are identical.

From the last result, we observe that the present inversion Ap(x) = / G(x —x)dv/ (55)
method with preconditioning operators using multicomponents JxED _ _
magnetic field data was successful in separating the tAbWhich the green functiot/is given in (6). We observe again
blocks and obtaining a relatively accurate description of théffatAn(x) onx € D is a singular equation. One possible way
individual dimensions and their relative positions. Note that #9 cOmpute this preconditioning operator is to compute it an-
this example, we have taken the most difficult case 10 S/m. alytically for each discretization domain as Torres-Verdin and
For the lower conductivity case = 1 S/m andr = 5 S/m, we Habashy [10], [11] did. H(_J\_Ne\_/er, for our purposes, there is no
have also observed the same results. But, the advantage of &$0n t0 use a preconditioning operator that is implemented

use of the preconditioning operators is more obvious for tffdore accurately than the integral operator used. Thus, we will
high conductivity case. handle?, with the same technique we have used to numeri-

cally implement the operatd€p (see Abubakar and van den
Berg [2]). The scalar function p(x) is weakened by taking the
spherical mean of it. We integrate, (x) over a spherical do-
In this paper, we have developed a method that can hangigin with a center ata(;, 2, z3). The radius of this patch is
a 3-D problem for the cross-well induction logging measurgaken to beg1/2)Az = ¢(1/2) min(Az1, Azy, Azs). The re-
ments. For the forward problem, we have introduced a precaiidits are divided by the volume of the spherical domain with
ditioning operator to accelerate the convergence of the schemmsl/gAx_ We then may write
The preconditioning operator is obtained using the concept of

V. CONCLUSION

the extended Born approximation. Numerical examples have Ap(x) :/ G(x —x')dv (56)
shown that we have constructed a very efficient preconditioner x'eD
for the present cross-well induction logging problem. where we have interchanged the order of integrations such that

For the inverse problem, we have introduced a new versidiote that for the limiting casé&z — 0, the weak form of the
of the CSI method that can include the use of preconditionifigreen functiorG for |x| > (1/2)Ax tends toward the strong
operators and guarantee the error-reducing nature of the alfggm of the Green function(s. In fact, G is mean value of the
rithm. The preconditioning operator is obtained again from tiereen function over a spherical domain with centefzat -,
concept of the extended Born approximation. The numerical exs). After this weakening procedure, we are now able to com-
amples showed that in spite of the large size of the conductivipyte the integral over the domain in (56) numerically using
contrast (a factor of 100) and the limited amount of data, tiieapezoidal rule. TherlY VAp(x) is computed with the finite
present inversion method with simple preconditioning operata#éference rule [1],[(57), at the bottom of the next page].
can still give a reasonably good result. Moreover, in view of the An explicit expression for the preconditioning operafys
simplicity of the preconditioning operators used, the extra coris-finally written as
putation time of the use of these operators in our forward and
inverse algori igi - fi(x) ha(x) - lis(x)

gorithms are negligible. Furthermore, we have also ob Poa) = | by(x) loo(x) Iog(x) (58)

served that the use of multicomponents data allows us to recon- P 121 122 123
struct a more accurate position and dimension of the unknown 51(x) laa(x) ls3(x)

-1

targets. where
A | Li(x) =1 — x(x) (k§ + 07) A(x),
PPENDIX B o
PRECONDITIONING OPERATORS l2(x) = l21(x) = —x(x)010;A(x),
113 X) = —X(X)alagA(X),

The preconditioning operator for the object equatis in
(21) can be written explicitly as

Po(x) = [T - x(x) (I +VV)Ap(x)] " (54) lss

6
gx:—/ G(x+x')dv,
() m(Az)? Jixjctan ( )
[1 - %ikoAaZ] exp (%ikoAa:) -1

) =0,
éﬂk%AJ}?’ b
= sinh( LikoAx
explikolx|) [% — cosh (3ikoA) 1 7

s (koAz)?|x]|
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Lyn(x™) = —/ IRG(x™ — x')AZ (x') dv'

x'eD

with n # &

with (1, &, €) € {1,2,3}, in which
AZ(x) = / IR G(x™ — x') do™ (62)
xes

where the overbar denotes the complex conjugate.
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