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The study of the buckling behavior of large shell structures through full-size tests can be 

complex and expensive. Therefore, scaled structures are often preferred to investigate the 

buckling behavior efficiently. However, it can be difficult to design scaled structures that are 

representative of the full-scale structures. Herein, an analytical scaling methodology for 

compression-loaded sandwich composite cylinders based on the nondimensionalization of the 

buckling equations is presented. The methodology is used to develop scaled configurations 

that show a similar buckling response. Both the baseline and the scaled configurations are 

verified by finite-element analysis. Limitations of the methodology are discussed and are a 

result of neglecting the flexural anisotropy and the transverse shear compliance. 

Nomenclature 

aij = Membrane compliance matrix 

Dij = Bending stiffness matrix 

F = Nondimensional stress function 

G12 = In-plane shear modulus 

G13, G23 = Core transverse shear moduli 

K = Nondimensional load parameter,  N11 R
2/ √𝐷11𝐷22 

L = Cylindrical shell length 

Mij = Nondimensional moments 

m = Number of axial half waves 

n = Number of circumferential full waves 

N11 = Axial force resultant, P / 2πR 

P = Axial load 

R = Cylindrical midsurface shell radius 

tcore = Sandwich core thickness 

tply = Ply thickness 

w = Radial displacement 

W = Nondimensional radial displacement, w/ √a11a22D11D22
4

 

x = Axial coordinate 

z1 = Nondimensional axial coordinate, x/L 

z2 = Nondimensional circumferential coordinate, Θ 

Ζ2 = Batdorf-Stein nondimensional parameter, 𝑅 (√12 √𝑎11𝑎22𝐷11𝐷22
4 )⁄   

αb = Nondimensional parameter, (R/L) √D11/D22
4
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αm = Nondimensional parameter, (R/L) √a11/a22
4

 

β = Flexural orthotropy nondimensional parameter, (D12 + 2D66)/√D11D22 

δb = Flexural anisotropy parameter, 𝐷26  √𝐷11𝐷22
34⁄  

γm = Flexural anisotropy parameter, 𝐷16  √𝐷11
3 𝐷22

4⁄  

μ = Membrane orthotropy nondimensional parameter, (2a12 + a66)/(2√a11a22) 

νb = Nondimensional generalized Poisson’s ratio associated with bending, 𝐷12/√D11D22 

 = Ply angle 

Θ = Angular coordinate 

 

Subscript 

buck  = Indicates lowest linear buckling load 

 

Superscripts 

(b)  = Baseline 

(s)  = Scaled 

I. Introduction 

uckling is major consideration in the design of lightweight shell structures, so laboratory-scale cylindrical shells 

are commonly used for the experimental study of buckling behavior
1
 to reduce the cost of experimental 

validation and certification of large structures. It has been shown that such laboratory-scale cylinders can be 

effective for developing design guidelines for launch-vehicle shell structures.
2
 However, scaling can be difficult in 

shell structures due to the small thickness, manufacturing considerations, and the fact that the buckling response is 

closely related to the relative stiffness properties of the structure.  

There is an increasing interest in the use of sandwich composite structures for space launch vehicles with 

laminated facesheets and honeycomb core.
3
 The use of sandwich composites for launch-vehicle structures can 

provide good stiffness, strength, and structural efficiency. However, a large number of parameters play an important 

role in both the scaling and the buckling response. The high imperfection sensitivity of thin-shell structures
4
, and the 

dependence on the boundary conditions add difficulty to predicting the buckling response. Thus, a careful design of 

the scaled structure and verification by finite-element analysis is required. 

Historically, scaled models have been built through the use of dimensional analysis to obtain similarity 

conditions.
5
 This dimensional analysis is employed to deduce a form of the system of characteristic equations. 

Complete similarity is obtained when all the independent dimensionless parameters are the same for both the scaled 

and baseline configurations. The main disadvantage of this methodology is the difficulty in identifying the scaling 

laws, due to the large number of design parameters. 

Similarity theory based on governing equations proved to be effective in the design of scaled structures with 

complete and partial similarity. This was shown by Rezaeepazhand, et al.
6
 who studied the case of laminated 

cylindrical shells under axial compressive load. Later, Hilburger, et al.
7
 used nondimensional parameters, based on 

Reissner-Mindlin plate theory, to obtain scaling laws for noncircular sandwich composite structures subjected to 

combined loads. The main advantage is that the scaling laws by Rezaeepazhand and by Hilburger are deduced from 

properties of the structure and their relationship through the governing equations. The difficulty is to simultaneously 

fulfill all the scaling laws while remaining within the design and manufacturing constraints. Furthermore, lack of 

perfect similarity can limit the applicability of the results.  

The objective of the current research was to develop a scaling methodology based on the nondimensional 

buckling governing equations and parameters. The nondimensional parameters were previously defined by Schultz 

and Nemeth
8
 to characterize the buckling of compression-loaded orthotropic cylinders. This methodology will be 

used to characterize the behavior of large sandwich composite cylindrical shells subjected to axial compression 

through analytically scaled cylindrical shells that can be computationally verified, manufactured, and tested in a 

laboratory.  

II. Scaling Methodology 

In the current study, the cylindrical structure that needs to be scaled, referred to as the baseline cylinder, is a 

cylindrical sandwich composite shell with carbon fiber facesheets and aluminum honeycomb core. The result of the 

structural scaling, referred to as the scaled cylinder, is also a sandwich composite cylinder with the same facesheet 

and core materials. The two cylinders, as well as considered geometric variables and the coordinate system, are 
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presented in Figure 1. The stiffness properties of such composite structures can be varied by changing the facesheet 

stacking sequences. In this study, stacking sequences that depend on only one variable, a ply angle θ with respect to 

the axial direction, were considered. Hence, the facesheet stiffness properties were defined by a layup family and a 

single parameter.  

 

  

(a) Baseline (b) Scaled 

Figure 1. Geometric variables and coordinate system of the baseline and the scaled. 

 

The scaling procedure was applied to two baseline, (b), designs, each with radius, R
(b)

, of 1202 mm and length, 

L
(b)

, of 2305 mm, which results in the ratio R
(b)

/L
(b)

 = 0.52. The facesheets were made of IM7/8552 carbon fiber 

whose properties are reported in Table 1. The chosen baseline designs were simplified subscale launch-vehicle 

structures similar to those used as large-scale test articles in related NASA work.
9
 Specifically, the stacking 

sequence of the facesheets is [60/-60/0]s for the first baseline cylinder (Baseline 1), and [30/-30/90/0]s, for the 

second cylinder (Baseline 2). The first and second baseline cylinder aluminum honeycomb cores, whose properties 

are reported in Table 2, have thicknesses,
 
t
(b)

core,
 
of 5.08 mm and 7.62 mm, respectively. 

 
Table 1. Facesheet properties IM7/855210 

E11 (MPa) E22 (MPa) ν G12 (MPa) tply (mm) 

140,928 9721 0.356 4688 0.18 

 
Table 2. Core properties aluminum honeycomb 3.1 pcf 1/8-5056-.0007 

E11 (MPa) ν G12 (MPa) G13 (MPa) G23 (MPa) 

6.7 0.3 1.5 310 138 

 

The developed methodology was used to obtain scaled, (s), configurations representative of the baseline 

structures. The geometry defined by R
(s)

 and L
(s)

 had to be determined. Additionally, the number of plies, the 

stacking sequence of the facesheets, and the core thickness, t
(s)

core had to be decided . In the current effort, two 

families of stacking sequences were considered for the facesheets, and with both families the ply stacking sequence 

was a function of only one variable, which made the procedure possible. These facesheet stacking sequence families 

are: 

 

1. A symmetric balanced four-ply laminate: [θ/-θ]s 

2. A three-ply balanced unsymmetric laminate: [θ/-θ/0] 
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 The scaling methodology was based on the nondimensional form of the Donnell-Mushtari-Vlasov buckling 

equations as defined by Nemeth
11,12

,
 
and specialized for use with compression-loaded circular cylinders by Schultz 

and Nemeth
8
. The buckling equations were formulated under the assumptions of small strains, and neglect 

transverse-shear deformations and initial geometric imperfections. It was understood that these last two assumptions 

may not be universally valid. The considered equations were formulated by treating the entire sandwich structure as 

a balanced and symmetric laminate, neglecting bend-twist anisotropy effects. With these considerations, the 

nondimensional governing equations of compatibility and equilibrium, Eq. (1) and (2), are:  

 

 Compatibility equation 

 αm
2  F,z1z1z1z1

+
1

αm
2 F,z2z2z2z2

+  2 μ F,z1z1z2z2
− √12 Z2 W,z1z1

= 0 (1) 

 

 Equilibrium equation 

αb
2W,z1z1z1z1

+
1

αb
2 W,z2z2z2z2

+ 2 β W,z1z1z2z2
+ √12 Z2F,z1z1

− K W,z1z1
= 0    (2) 

 

where , , m, b, Z2, and K are nondimensional parameters defined below, F is the nondimensional stress 

function, and W is the nondimensional radial displacement given by 

 

 W = w/ √a11a22D11D22
4

 (3) 

 

where w is the radial displacement, the aij’s are membrane compliances, and the Dij’s bending stiffnesses. The 

subscripts z1 and z2 represent the derivatives in the axial and circumferential direction in the nondimensional 

coordinates. The similarity conditions are the nondimensional parameters in these equations.  

Using the nondimensional parameters in Eq. (1) and (2), the buckling response was formulated independent of 

the geometrical parameters. The response was formulated by the six nondimensional parameters presented in Eqs. 

(4)-(9) as reported in the literature.
8
 

The first two parameters μ and β depend only on the components of the in-plane compliance matrix and the 

bending stiffness matrix: 

 

 12 66

11 22

2a a

2 a a


   (4) 

 12 66

11 22

D 2D

D D


   (5) 

 

The parameter αm establishes a relation between the cylinder radius to length ratio, R/L, and the membrane 

compliances, while αb establishes a relation between R/L and the bending stiffnesses: 

 

 
22

4
m

11

 
aR

L a
 (6) 

 
11

4
b

22

D

D
 

R

L
 (7) 

 

The Batdorf-Stein parameter Z2, formally introduced by Nemeth,
11

 relates the radius with the membrane 

compliances and bending stiffnesses (similar in character to a cylinder radius to thickness ratio, R/t): 

 

 𝑍2 =
R

√12 √a11a22D11D22
4  (8) 

 

 

Finally, the nondimensional load parameter K, relates the axial force resultant N11 with the bending stiffnesses 

and the midsurface shell radius:  
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K =
N11R2

√D11D22 
 = 

P

2πR

R2

√D11D22 
            (9) 

 

where P is the total axial load. 

The goal of this study was to develop a methodology to design scaled configurations with nondimensional 

parameters that match baseline configurations with the nondimensional parameters reported in Table 3. The 

innovative aspect of present methodology was that the parameters were decoupled, which allowed each parameter to 

be calculated in a specific order. The parameter K was not part of the scaling methodology because it was solved to 

determine the lowest buckling load. 

 
Table 3. Baseline nondimensional parameters. 

 
μ β αm αb Z2 

Baseline 1 1.00 1.00 0.52 0.52 107.3 

Baseline 2 1.51 0.79 0.60 0.60 73.9 

 

The first pair of parameters considered in the scaling methodology are the membrane orthotropy parameter, μ, 

from Eq. (4), and the flexural orthotropy parameter, β, from Eq. (5). The two parameters relate the in-plane 

compliance matrix and the bending stiffness matrix parameters, and are function of the material properties; the ply 

stacking sequence, and the core thickness. In this study, there were two families of stacking sequences, [θ/-θ]s and 

[θ/-θ/0], with a single variable ply angle θ. With these families of stacking sequences, it was demonstrated that the μ 

and β parameters strongly depend only on the ply angle θ. This was attributed to the high stiffness of the facesheet, 

when compared to the core, makes the influence of the core negligible. Therefore, the values of the parameters μ and 

β were obtained as function of the angle θ for the two stacking sequence families shown in Figure 2. 

 

  

(a) Membrane orthotropy parameter,  (b) Flexural orthotropy parameter,  

Figure 2. Membrane, μ, and flexural, β, orthotropy parameters versus ply angle θ 

for scaled facesheet stacking sequences [θ/-θ]s and [θ/-θ/0].  

 

From the curves, the angles required for each stacking sequence in order to maintain the baseline values of μ
(b)

 

and β
(b)

 were obtained. For each stacking sequence, the values of angle necessary to match μ
(b)

 were essentially the 

same as those necessary to match β
(b)

. It is important to note that for the considered laminate families, there were 

two possible angles that yield equivalent membrane and flexural orthotropy parameters and therefore two possible 

configurations for the scaled cylinders. Herein, the two configurations obtained from Baseline 1 will be referred to 

as Scaled 1.1 and Scaled 1.2 for the first family [θ/-θ]s and Scaled 1.3 and Scaled 1.4 for the second family [θ/-θ/0]. 

Similarly, the two configurations obtained from Baseline 2 will be referred to as Scaled 2.1 and Scaled 2.2 for the 

first family [θ/-θ]s and Scaled 2.3 and Scaled 2.4 for the second family [θ/-θ/0]. 

The next parameters to evaluate were αm (Eq. (6)) and αb (Eq. (7)). Each of these parameters is a function of the 

ratio R/L. Both αm and αb are also influenced by the ply angle θ and the core thickness tcore. However, the ply angles 

Baseline 1 
Baseline 1 

Baseline 2 

Baseline 2 
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6 

were determined in the previous step, and the core-thickness influence is negligible. Therefore, the parameters αm 

and αb were determined solely by R/L as shown in Figure 3 and Figure 4 for Baseline 1 and Baseline 2, respectively, 

where the relationships for the scaled layups are presented.  
 

  
(a) Nondimensional parameter, αm (b) Nondimensional parameter, αb 

Figure 3. Parameters αm and αb versus R/L for scaled facesheet stacking sequences for Baseline 1 [60/-60/0]s. 

 

  
(a) Nondimensional parameter, αm (b) Nondimensional parameter, αb 

Figure 4. Parameters αm and αb versus R/L for scaled facesheet stacking sequences for Baseline 2 [30/-30/90/0]s. 

 

 It is seen for a given facesheet stacking sequence and for a given ratio R/L, αm and αb are essentially equal, and 

that the relationships between the αm and αb parameters and R/L are linear. This means that for each value of the αm 

and αb parameters, a single solution for the R/L was found. The ratio R/L, reported in Table 4 was important and the 

value raises concerns of possible global bending if the cylinder is relatively long, while the influence of the 

boundary conditions can change the buckling response and the imperfection sensitivity when it is relatively short. 

An important consideration was that the R/L for Scaled 1.1, 1.2, and 1.3 was quite different from R/L of Baseline 1. 

The same occured for Scaled 2.1, 2.2, and 2.3, which were also quite different from Baseline 2. For Scaled 1.1, 1.3, 

2.1, and 2.3, the radius was approximately one third of the length and for Scaled 1.2 and 2.2, the radius and length 

were similar. However, for Scaled 1.4 and 2.4, the R/L is similar to their respective baseline. 

The final parameter to evaluate is Ζ2 (Eq. (8)), which is function of the radius, the axial and circumferential 

membrane compliances, and the bending stiffnesses. Given that the facesheet stacking sequence and R/L for the 

scaled configurations were already selected, the baseline value of Ζ2 can be maintained in the scaled configurations 

Baseline 1 Baseline 1 

Baseline 2 Baseline 2 
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7 

with the right combination of radius, R, and core thickness, tcore. However, available laboratory testing equipment 

constrains the upper bound for R, and the minimum manufacturable core thickness constrains the lower bound for 

tcore. In this study, the radius for all the scaled configurations was fixed and equal to 400 mm (33.3% of baseline). 

The variation of Ζ2 as a function of core thickness was depicted in Figure 5, and the baseline value of Z2 was 

obtained by selecting the core thickness. As observed in Figure 5 and reported in Table 4, the selected values of tcore, 

within the facesheet stacking sequence family [θ/-θ]s, are exactly the same. The core thickness difference within 

facesheet stacking sequence family [θ/-θ/0] was less than 5% as reported in Table 4. It was also noted that the 

importance of the facesheet stacking sequence family decreases with the desired value of Z2 and the increase in the 

core thickness. The scaled configurations with all the necessary variables, facesheet layup, length, and core 

thickness, are reported in Table 4.  

 

 

  

(a) Batdorf-Stein parameter, Ζ2 for Baseline 1 

scaled configurations 

(b) Batdorf-Stein parameter, Ζ2 for Baseline 2 

scaled configurations 

Figure 5. Batdorf-Stein parameter Ζ2 as function of core thickness tcore. 

 

 
Table 4. Geometry of baseline and scaled configurations. 

Designation Layup R/L Length (mm) tcore (mm) 

Baseline 1 [60/-60/0]s  0.52 2305 5.08 

Scaled 1.1 [15/-15]s 0.29 1340 1.28 

Scaled 1.2 [75/-75]s 0.95 421 1.28 

Scaled 1.3 [19/-19/0]  0.29 1340 1.49 

Scaled 1.4 [60/-60/0]  0.52 770 1.54 

Baseline 2 [30/-30/90/0]s 0.52 2305 7.62 

Scaled 2.1 [12/-12]s 0.32 1250 2.29 

Scaled 2.2 [78/-78]s 1.12 357 2.29 

Scaled 2.3 [15/-15/0] 0.32 1250 2.48 

Scaled 2.4 [65/-65/0] 0.62 645 2.54 

 

For the scaled configurations to be tested in a laboratory, certain manufacturing and laboratory equipment 

constraints apply. For instance, the configurations found may not be manufacturable with the considered materials 

because the core thickness is very small. However, other core materials are available that can be used instead. The 

Baseline 1 

Baseline 2 
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obtained scaled configurations should also have dimensions that fit in standard laboratory test equipment. Thus, 

restrictions in length, radius, and strength can prevent the testing of some of these configurations.  

The nondimensional parameters for all scaled configurations of both baselines are reported in Table 5. It is seen 

that most of the scaled parameters matched the associated baseline parameters. However, it was observed that β 

deviated by the highest percentages, up to 20% for Scaled 1.4, and that the Scaled 1.3, 1.4, 2.3, and 2.4 parameters 

deviated more than the Scaled 1.1, 1.2, 2.1, and 2.2 parameters, which indicated that the [θ/-θ]s layup family was 

more amenable to precise scaling than the [θ/-θ/0] family. 

 
Table 5. Nondimensional parameters of baseline and scaled configurations. 

Designation μ β αm αb Z2  

Baseline 1 1.00 1.00 0.52 0.52 107.3 

Scaled 1.1 1.01 0.99 0.52 0.52 107.3 

Scaled 1.2 1.01 0.99 0.52 0.52 107.3 

Scaled 1.3 1.03 1.09 0.53 0.52 107.3 

Scaled 1.4 1.00 1.20 0.57 0.53 107.3 

Baseline 2 1.51 0.79 0.60 0.60 73.9 

Scaled 2.1 1.52 0.78 0.60 0.60 73.9 

Scaled 2.2 1.52 0.78 0.60 0.60 73.9 

Scaled 2.3 1.52 0.82 0.60 0.60 73.9 

Scaled 2.4 1.49 0.89 0.60 0.60 73.9 

 

III. Flexural Anisotropy Effects 

As described thus far, the scaled configurations found were considered similar to the baseline if they have equal 

nondimensional parameters. However, the considered nondimensional equations were formulated neglecting bend-

twist anisotropy and flexural anisotropy. These effects are represented in the constitutive relations (Eq. (10)) by 

matrix elements that relate the nondimensional bending moments (M11 and M22) with the twisting curvature 

(𝜕2𝑊 𝜕𝑧1𝜕𝑧2⁄ ), and by matrix elements that relate the nondimensional twisting moment (M12) with the bending 

curvature in the axial 𝜕2𝑊 𝜕𝑧1
2⁄  and radial direction 𝜕2𝑊 𝜕𝑧2

2⁄ .  

 

[

𝑀11

𝑀22

𝑀12

] =

[
 
 
 
 

𝛼𝑏
2 𝜈𝑏 −𝛾𝑏αb

−𝜈𝑏
1

𝛼𝑏
2 −δb/αb

−𝛾𝑏αb −δb/αb
𝛽+𝜈𝑏

2 ]
 
 
 
 

 

[
 
 
 
 
 

𝜕2𝑊

𝜕𝑧1
2

𝜕2𝑊

𝜕𝑧2
2

2
𝜕2𝑊

𝜕𝑧1𝜕𝑧2]
 
 
 
 
 

 (10) 

Where 

 

𝜈𝑏 =
𝐷12

√𝐷11𝐷22
 (11) 

 

𝛾𝑏 =
𝐷16

√𝐷11
3 𝐷22

4
 (12) 

 

𝛿𝑏 =
𝐷26

√𝐷11𝐷22
34

 (13) 

 

are additional nondimensional parameters derived by Nemeth
12

 for more general laminated shells. 

In order to verify the assumption that flexural anisotropy had a negligible effect on the response, the elements 

𝛿𝑏 𝛼𝑏⁄  and 𝛾𝑏𝛼𝑏 were evaluated and should be significantly lower than the other elements of the matrix. Therefore, 
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they have been compared to the lowest-value element of the matrix, which is 𝛼𝑏
2. This condition is expressed 

mathematically in Eqs. (14) and (15). 

 

𝛰 (
𝛿𝑏

𝛼𝑏
⁄ ) ≪ 𝛰(𝛼𝑏

2) (14) 

 

𝛰 (𝛾𝑏𝛼𝑏 ) ≪ 𝛰(𝛼𝑏
2) (15) 

 

Taking into account these two conditions, a difference of two orders of magnitude was arbitrarily considered 

sufficient. Hence the ratios of 𝛿𝑏 𝛼𝑏⁄  and 𝛼𝑏𝛾𝑏 with 𝛼𝑏
2 should be less than 1%. This was fulfilled for the baseline 

designs. However, these ratios were higher for certain scaled designs, as reported in Table 6. It is seen that the 

flexural anisotropy influence was stronger with the facesheet stacking sequences of the [θ/-θ/0] family. In order to 

abide by the condition of neglecting anisotropy effects, scaled configurations 1.3, 1.4, 2.3, and 2.4 were removed 

from further consideration as scaled configurations. 

 
Table 6. Flexural anisotropy terms of baseline and scaled configurations. 

Designation Layup Length (mm) tcore (mm) 
𝛅𝐛 𝛂𝐛⁄

𝛂𝐛
𝟐  (%) 

𝜶𝒃𝜸𝒃

𝛂𝐛
𝟐  (%) 

Baseline 1 [60/-60/0]s  2305 5.08 0.73 0.55 

Scaled 1.1 [15/-15]s 1340 1.28 9.74 0.86 

Scaled 1.2 [75/-75]s 421 1.28 3.18 2.65 

Scaled 1.3 [19/-19/0]  1340 1.49 46.95 5.91 

Scaled 1.4 [60/-60/0]  770 1.54 33.66 17.61 

Baseline 2 [30/-30/90/0]s 2305 7.62 0.67  0.11  

Scaled 2.1 [12/-12]s 1250 2.29 2.43  0.21  

Scaled 2.2 [78/-78]s 357 2.29 0.60  0.86  

Scaled 2.3 [15/-15/0] 1250 2.48 6.18  9.81  

Scaled 2.4 [65/-65/0] 645 2.54 2.90  8.83  

 

IV. Methodology Verification 

The scaled configurations obtained with the described methodology had nondimensional parameters similar to 

the baselines, but they should also have similar buckling responses if they are to be said to represent the behavior of 

the baselines. Buckling load and buckling mode shape were two such characteristics of buckling behavior compared 

herein. First, the buckling loads and modes were calculated analytically with the procedure described by Schultz and 

Nemeth,
8 
from the governing equations (Eqs. (1) and (2)), assuming solutions for W and F in the form of double sine 

series. Next, applying eigenvalue analysis to solve for the lowest buckling value of K, Kbuck, and the buckling mode 

as described by the number of axial half waves, m, and the number of circumferential full waves, n. Lastly, the 

boundary conditions used in the present study were simply supported with no radial or circumferential 

displacements, and have zero bending moment at z1 = 0 and z1 = L. The obtained buckling loads and modes were 

reported in Table 7. It is seen that the buckling mode for all scaled configurations matched the respective baseline 

buckling mode. It is also seen that the values of Kbuck for all four scaled versions matched the respective baseline 

values within 0.5%. For reference, the buckling loads, Pbuck, calculated according to Eq. (9) are also shown. The 

scaled buckling loads were within the load range a standard laboratory testing machine can apply (1500 kN-2500 

kN). This was relevant because the ultimate desire for these structures was the ability to test them in the laboratory.  
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Table 7. Buckling load and buckling mode. 

Designation 

Axial  

half waves, 

m 

Circumferential  

full waves, n 

Nondimensional 

load parameter, 

Kbuck 

Buckling load, 

Pbuck 

Baseline 1 8 9 743  4485 kN 

Scaled 1.1 8 9 740  646 kN 

Scaled 1.2 8 9 740 646 kN 

Baseline 2 4 8 433  8368 kN 

Scaled 2.1 4 8 431  829 kN 

Scaled 2.2 4 8 431 829 kN 

 

 

The analytical procedure described herein leads to the same results as the procedure reported by Vinson and 

Swieratowki.
13

 Both neglect the transverse shear compliance effects in the core. This was considered a reasonable 

hypothesis due to the relatively small thickness of the core. However, in order to evaluate transverse-shear-

compliance effects, the results were compared to the formulation of Reese and Bert
14 

that considers the transverse 

shear stiffnesses in the core, G13 and G23, significantly higher than the core in-plane shear stiffness, G12, as shown in 

Table 2. The Reese and Bert formulation includes other assumptions and simplifications such as neglecting the in-

plane core stiffness. Nevertheless, the comparison was an indication of the influence of the transverse-shear effects 

that were ignored in the present work. In Table 8, it is seen that the buckling loads calculated from the two 

formulations differ significantly at both scales; specifically, the Scaled 1.2 and 2.2 configurations show the highest 

differences of 16.10% and 14.45%, respectively. This lead to consider that the transverse-shear compliance should 

be included in the methodology. For the purposes of the current study, the Scaled 1.1 and 2.1 configurations will be 

further examined herein, since the buckling loads calculated from the two formulations showed a smaller difference, 

see Table 8.  

 
Table 8. Buckling load for different analytical formulations. 

Designation 
Analytical Schultz 

and Nemeth
8
 

Analytical Reese 

and Bert
14

 
Difference 

Baseline 1 4485 kN 4173 kN 6.96 % 

Scaled 1.1 646 kN 594 kN 8.04 % 

Scaled 1.2 646 kN 542 kN 16.10 % 

Baseline 2 8368 kN 7834 kN 6.38 % 

Scaled 2.1 829 kN 795 kN 1.20 % 

Scaled 2.2 829 kN 708 kN 14.45 % 

 

 

The Scaled 1.1 and 2.1 configurations were verified with finite-element analysis. Finite-element models of the 

baseline and scaled configurations were generated using the commercial general-purpose code Abaqus.
15

 Since the 

considered sandwich shells were relatively thin with thin cores, it was reasonable to model the core as a layer in a 

laminated shell.
16,17

 Thus S4R reduced-integration four-noded shell elements were used in the finite-element 

analysis. The scaled model used elements of approximately 10x10 mm and the baseline model used elements of 

approximately 30x30 mm, which based on a convergence study, were converged mesh densities. Therefore, the 

baseline model had 77 elements in the axial direction and 252 elements in the circumferential direction. The Scaled 

1.1 model had 134 elements in the axial direction and 251 elements in the circumferential direction; the Scaled 2.1 

model had 125 elements in the axial direction and 251 elements in the circumferential direction. The boundary 

conditions were clamped with all degrees of freedom fixed at both ends of the shells, except free axial translation 

was allowed along the loaded edge. The loading in the finite-element analyses was the top edge displacement-

controlled with a velocity of 1 mm/s. Explicit nonlinear dynamic analyses were performed in order to calculate the 

buckling load. The analytical and finite-element buckling loads are given and compared in Table 9. It is seen that the 
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differences between the analytical and finite-element buckling loads were relatively small: 3.81% and 2.95% for 

Baseline 1 and 2, and 8.82% and 1.10% for the Scaled 1.1 and Scaled 2.1, respectively. These differences were 

believed to be due to assumptions that were made in the development of the analytical methodology in neglecting 

the anisotropy effects and the influence of the transverse shear compliance, but which were included in the FEA. 

 
Table 9. Comparison of analytical and finite-element buckling loads. 

Designation 

Analytical 

Schultz and 

Nemeth
8
 

Finite-element Difference 

Baseline 1 4485 kN  4314 kN 3.81 % 

Scaled 1.1 646 kN  589 kN 8.82 % 

Baseline 2 8368 kN 8121 kN 2.95 % 

Scaled 2.1 829 kN 820 kN 1.10 % 

 

 

The load-displacement curves of the baseline and scaled are shown in Figure 6. The load of Baseline 1 is 7.3 

times higher than the load for Scaled 1.1, whereas the load of Baseline 2 is 9.9 times higher than the load for Scaled 

2.1. Regarding the displacement, both baseline structures reach the buckling load at 11.3 mm. The Scaled 1.1 

buckles at 1.9 mm, while Scaled 2.1 reaches the buckling load at 2.3 mm.  

 

  

(a) Baseline 1  (b) Scaled 1.1  

  

(c) Baseline 2  (d) Scaled 2.1  

Figure 6. Load-displacement curves of baseline and scaled. 

The strains from the innermost ply of the inner facesheet incipient to buckling are reported in Figure 7. There 

was a concentration of the strains in the edges of the cylinder for all cases. The predicted strain values for the 

baselines were 5518  and 5653  and the predicted strain values for the scaled configurations were 1388  and 

1797 . These scaled-configuration buckling strains were below typical failure strains for IM7/8552,
10

 so both 

these designs appear to be good candidates for effective buckling test articles.  
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(a) Baseline 1  (b) Scaled 1.1  

 
 

 

 
 

(c) Baseline 2 (d) Scaled 2.1 

Figure 7. Prebuckling strains of innermost ply of baseline and scaled configurations. 

The postbuckling behavior, was another indication of similarity in the baseline and scaled responses. The 

predicted postbuckling radial deformation patterns were quite similar, as shown in Figure 8. It was possible to 

observe two axial half waves and six circumferential full waves for all of the configurations. These postbuckled 

mode shapes were different from the analytically predicted buckling modes reported in Table 7. The postbuckled 

shapes showed characteristic long-wavelength diamond, or offset, patterns, and the analytically predicted buckling 

modes were shorter wavelength checkerboard patterns often predicted as linear buckling modes.  
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(a) Baseline 1  (b) Scaled 1.1  

  
(c) Baseline 2  (d) Scaled 2.1  

 
Figure 8. Postbuckling radial deformation of baseline and scaled configurations. 

 

V. Conclusions 

A scaling methodology for the buckling of sandwich composite cylindrical shells was described. The 

methodology was based on the nondimensionalization of the buckling equations and the study of the 

nondimensional parameters. In order to simplify the number of parameters involved, stacking sequences were 

chosen such that they were determined by a single ply angle, where the sandwich structures were considered 

balanced and symmetric. This allowed the scaling to be reduced to a three-step process: first, the facesheets stacking 

angle θ was determined; next, the geometry ratio, R/L, was determined, and finally the sandwich core thickness, tcore, 

was determined. Through this process, it was possible to find scaled configurations with the same nondimensional 

parameters as those from the baseline configurations, which reproduce the buckling response. 

The developed methodology was used to find scaled designs for two launch-vehicle-like baseline structures. The 

obtained scaled configurations have dimensions and buckling loads that can be applied with standard laboratory test 

equipment. The buckling responses of the baseline and scaled configurations were compared analytically and 

numerically. The scaled analytical buckling modes were found to be identical and the scaled analytical 

nondimensional load parameter K was within 0.5% for both baseline designs. The load-displacement curves, 

prebuckling strains and postbuckling shape were also shown as a measure of comparison between the baseline and 

scaled cylindrical shells. 

 The applicability of the methodology was limited by two initial simplifications: ignoring transverse-shear 

deformations and the flexural anisotropy parameters. The fact that these were neglected can explain some of the 

differences with the results of the finite-element analyses. Extending the methodology to include the transverse-

shear and flexural anisotropy would likely extend the applicable range.  
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