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Abstract. A rather simple semi-supervised version of the equally sim-
ple nearest mean classifier is presented. However simple, the proposed
approach is of practical interest as the nearest mean classifier remains
a relevant tool in biomedical applications or other areas dealing with
relatively high-dimensional feature spaces or small sample sizes. More
importantly, the performance of our semi-supervised nearest mean clas-
sifier is typically expected to improve over that of its standard supervised
counterpart and typically does not deteriorate with increasing numbers of
unlabeled data. This behavior is achieved by constraining the parameters
that are estimated to comply with relevant information in the unlabeled
data, which leads, in expectation, to a more rapid convergence to the
large-sample solution because the variance of the estimate is reduced. In
a sense, our proposal demonstrates that it may be possible to properly
train a known classification scheme such that it can benefit from unla-
beled data, while avoiding the additional assumptions typically made in
semi-supervised learning.

1 Introduction

Many, if not all, research works that discuss semi-supervised learning techniques
stress the need for additional assumptions on the available data in order to
be able to extract relevant information not only from the labeled, but especially
from the unlabeled examples. Known presuppositions include the cluster assump-
tion, the smoothness assumption, the assumption of low density separation, the
manifold assumption, and the like [6, 23, 30].

While it is undeniably true that having more precise knowledge on the dis-
tribution of data could, or even should, help in training a better classifier, the

? Partly supported by the Innovational Research Incentives Scheme of the Netherlands
Research Organization [NWO, VENI Grant 639.021.611]

?? Secondary affiliation with the Image Group, University of Copenhagen, Denmark.



2 Marco Loog

question to what extent such data assumptions are at all necessary has not been
studied to a great extent. Theoretical contributions have both discussed the ben-
efits and the absence of it of the inclusion of unlabeled data in training [4, 13,
24, 25]. With few exceptions, however, these results rely on assumptions being
made with respect to the underlying data. Reference [25] aims to make the case
that, in fact, it may be so that no extra requirements on the data are needed to
obtain improved performance using unlabeled data in addition to labeled data.

A second, related issue is that in many cases, the proposed semi-supervised
learning technique has little in common with any of the classical decision rules
that many of us know and use; it seems as if semi-supervised learning problems
call for a completely different approach to classification. Nonetheless, one still
may wonder to what extent substantial gains in classification performance are
possible when properly training a known type of classifier, e.g. LDA, QDA, 1NN,
in the presence of unlabeled data.

There certainly are exceptions to the above. There even exist methods that
are able to extend the use of any known classifier to the semi-supervised set-
ting. In particular, we would like to mention the iterative approaches that rely
on expectation maximization or self-learning (or self-training), as can for in-
stance be found in [16, 18, 19, 26, 29, 27] or the discussion of [10]. The similarity
between self-learning and expectation maximization (in some cases equivalence
even) has been noted in various papers, e.g. [1, 3], and it is to no surprise that
such approaches suffer from the same drawback: As soon as the underlying model
assumptions do not fit the data, there is the real risk that adding too much unla-
beled data leads to a substantial decrease of classification performance [8, 9, 19].
This is in contrast with the supervised setting, where most classifiers, generative
or not, are capable of handling mismatched data assumptions rather well and
adding more data generally improves performance.

We aim to convince the reader that, in a way, it may actually also be pos-
sible to guarantee a certain improvement with increased numbers of unlabeled
data. This possibility is illustrated using the nearest mean classifier (NMC) [11,
17], which is adapted to learn from unlabeled data in such a way that some of
the parameters become better estimated with increasing amounts of data. The
principal idea is to exploit known constraints on the these parameters in the
training of the NMC, which results in faster convergence to their real values.
The main caveat is that this reduction of variance does not necessarily trans-
late into a reduction of classification error. Section 4 shows, however, that the
possible increase in error is limited.

Regarding the NMC, it is needless to say that it is a rather simple classifier,
which nonetheless can provide state-of-the-art performance, especially in rela-
tively high-dimensional problems, and which is still, for instance, used in novel
application areas [15, 14, 21, 28] (see also Subsection 4.1). Neither the simplicity
of the classifier nor the caveat indicated above should distract one from the point
we like to illustrate, i.e., it may be feasibility to perform semi-supervised learning
without making the assumptions typically made in the current literature.
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1.1 Outline

The next section introduces, through a simple, fabricated illustration, the core
technical idea that we like to put forward. Subsequently, Section 3 provides a
particular implementation of this idea for the nearest mean classifier in a more
realistic setting and briefly analyzes convergence properties for some of its key
variables. Section 4 shows, by means of some controlled experiments on artificial
data, some additional properties of our semi-supervised classifier and compares
it to the supervised and the self-learned solutions. Results on six real-world data
sets are given as well. Section 5 completes the paper and provides a discussion
and conclusions.

2 A Cooked-up Example of Exponentially Fast Learning

Even though the classification problem considered in this section may be unre-
alistically simple, it does capture very well the essence of the general proposal
to improve semi-supervised learners that we have in mind.

Let us assume that we are dealing with a two-class problem in a one-dimensional
feature space where both classes have equal prior probabilities, i.e., π1 = π2. Sup-
pose in addition, the NMC is our classifier of choice to tackle this problem with.
NMC simply estimates the mean of every class and assigns new feature vectors
to the class corresponding to the nearest class mean. Finally, assume that an
arbitrarily large set of unlabeled data points is at our disposal. The obvious
question to ask is: Can the unlabeled data be exploited to our benefit? The
maybe surprising answer is a frank: Yes.

To see this, one should first of all realize that in general, when employing an
NMC, the two class means, m1 and m2, and the overall mean of the data, µ,
fulfill the constraint

µ = π1m1 + π2m2 . (1)

In our particular example based on equal priors, this mean that the total mean
should be right in between the two class means. Moreover, again in the current
case, the total mean is exactly on the decision boundary. In fact, in our one-
dimensional setting, the mean equals the actual decision boundary. Now, if there
is anything one can estimate rather accurate from an unlimited amount of data
for which labels are not necessarily provided, it would be this overall mean. In
other words, provided our training set contains a large number of labeled or
unlabeled data points, the zero-dimensional decision boundary can be located
to arbitrary precision. That is, it is identifiable, cf. [5].

The only thing we do not know yet is which class is located on what side
of the decision boundary. In order to decide this, we obviously do need labeled
data. As the decision boundary is already fixed, however, the situation compares
directly to the one described in Castelli and Cover [5] and, in a similar spirit,
training can be done exponentially fast in the number of labeled samples.

The key point in this example is that the actual distribution of the two classes
does in fact not matter. The rapid convergence takes place without making any
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assumptions on the underlying data, except for the equal class priors. What
really leads to the improvement is proper use of the constraint in Equation (1).
In the following, we demonstrate how such convergence behavior can generally
be obtained for the NMC.

3 Semi-Supervised NMC and its (Co)variance

One of the major lacuna in the example above, is that one rarely has an unlimited
amount of samples at ones disposal. We therefore propose a simple adaptation
of the NMC in case one has a limited amount of labeled and unlabeled data.
Subsequently, a general convergence property of this NMC solution is considered
in some detail, together with two special situations.

3.1 Semi-Supervised NMC

The semi-supervised version of NMC proposed in this work is rather straightfor-
ward and it might only be adequate to a moderate extent in the finite sam-
ple setting. The solution suggested simply shifts all K sample class means
mi (i ∈ 1, . . . ,K) by a similar amount such that the overall sample mean
m′ =

∑K
i=1 pim

′
i of the shifted class means m′

i coincides with the total sam-
ple mean mt. The latter has been obtained using all data, both labeled and
unlabeled. In the foregoing pi is the estimated posterior corresponding to class
i.

More precisely, we take

m′
i = mi −

K∑

i=1

pimi + mt (2)

for which one can easily check that
∑K

i=1 pim
′
i indeed equals mt.

Merely considering the two-class case from now on, there are two vectors
that play a role in building the actual NMC [20]. The first one, ∆ = m1 −m2,
determines the direction perpendicular to the linear decision boundary. The
second one, m1 + m2, determines—after taking the inner product with ∆ and
dividing it by two—the position of the threshold or the bias. Because ∆ =
m1 − m2 = m′

1 − m′
2, the orientations of the two hyperplanes correspond and

therefore the only estimates we are interested in are m1 + m2 and m′
1 + m′

2.

3.2 Covariance of the Estimates

To compare the standard supervised NMC and its semi-supervised version, the
squared error that measures the deviation of these estimated to their true val-
ues is considered. Or rather, as both estimates are unbiased, we consider their
covariance matrices.
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The first covariance matrix, for the supervised case, is easy to obtain:

cov(m1 + m2) =
C1

N1
+

C2

N2
, (3)

where Ci is the true covariance matrix of class i and Ni is the number of samples
from that class.

To get to the covariance matrix related to the semi-supervised approach, we
first express m′

1 +m′
2 in terms of the variables defined earlier plus mu, the mean

of the unlabeled data, and Nu, the number of unlabeled data points:

m′
1 + m′

2 = m1 + m2 − 2
N1m1 + N2m2

N1 + N2
+ 2

N1m1 + N2m2 + Numu

N1 + N2 + Nu

=
(
1− 2N1

N1+N2
+ 2N1

N1+N2+Nu

)
m1

+
(
1− 2N2

N1+N2
+ 2N2

N1+N2+Nu

)
m2 + 2Nu

N1+N2+Nu
mu .

(4)

Realizing that the covariance matrix of the unlabeled samples equals the total
covariance T , it now is easy to see that

cov(m′
1 + m′

2) =
(

1− 2N1

N1 + N2
+

2N1

N1 + N2 + Nu

)2
C1

N1

+
(

1− 2N2

N1 + N2
+

2N2

N1 + N2 + Nu

)2
C2

N2

+
(

2Nu

N1 + N2 + Nu

)2
T

Nu
.

(5)

3.3 Some Further Considerations

Equations (3) and (5) basically allow us to compare the variability in the two
NMC solutions. To get a feel for how these indeed compare, let as consider the
situation similar to the one from Section 2 in which the amount of unlabeled
data is (virtually) unlimited. It holds that

lim
Nu→∞

cov(m′
1 + m′

2) =
(

1− 2N1

N1 + N2

)2
C1

N1
+

(
1− 2N2

N1 + N2

)2
C2

N2
. (6)

The quantity (1 − 2Ni

N1+N2
)2 is smaller or equal to one and we can readily see

that cov(m′
1 + m′

2) ¹ cov(m1 + m2), i.e., the variance of the semi-supervised
estimate is smaller or equal to the supervised variance for every direction in the
feature space and, generally, the former will be a better estimate than the latter.
Again as an example, when the true class priors are equal, 1− 2Ni

N1+N2
tends to be

nearer zero with increasing number of labeled samples, which implies a dramatic
decrease of variance in case of semi-supervision.

Another situation that provides some insight in Equations (3) and (5) is the
one in which we consider C = C1 = C2 and N = N1 = N2 (for the general case
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the expression becomes somewhat unwieldy). For this situation we can derive
that the two covariance matrices of the sum of means become equal when

T =
(4N + Nu)C

2N
. (7)

What we might be more interested in is, for example, the situation in which
2NT ¹ (4N + Nu)C as this would mean that the expected deviation from the
true NMC solution is smaller for the semi-supervised approach, in which case
this would be the preferred solution. Note also that from Equation (7) it can be
observed that if the covariance C is very small, the semi-supervised method is
not expected to give any improvement over the standard approach unless Nu is
large.

In a real-world setting, the decisions of which approach to use, necessarily
has to rely on the finite number of observations in the training set and sample
estimates have to be employed. Moreover, the equations above merely capture
the estimates’ covariance, which explains only part of the actual variance in the
classification error. For the remainder, we leave this issue untouched and turn to
the experiments using the suggested approach, which is compared to supervised
NMC and a self-learned version.

4 Experimental Results

We carried out several experiments to substantiate some of the earlier find-
ings and claims and to potentially further our understanding of the novel semi-
supervised approach. We are interested to what extent NMC can be improved by
semi-supervision and a comparison is made to the standard, supervised setting
and an NMC trained by means of self-learning [16, 18, 29].

The latter is a technique in which a classifier of choice is iteratively updated.
It starts by the supervised classifier, labels all unlabeled data and retrains the
classifier given the newly labeled data. Using this classifier, the initially unlabeled
data is reclassified, based on which the next classifier is learned. This is iterated
until convergence.

As the focus is on the semi-supervised training of NMC, other semi-supervised
learning algorithms are indeed not of interest in the comparisons presented here.

4.1 Initial Experimental Setup and Experiments

As it is not directly of interest to this work, we do not consider learning curves
for the number of labeled observations. Obviously, NMC might not need too
many labeled examples to perform reasonably and strongly limit the number of
labeled examples. We experimented mainly with two, the bare minimum, and
ten labeled training objects. In all cases we made sure every class has at least
one training sample.

We do, however, consider learning curves as a function of the number of
unlabeled instances. This setting easily disclosed both the sensitivity of the self-
learning to an abundance of unlabeled data and the improvements that may
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generally be obtained given various quantities of unlabeled data. The number
of unlabeled objects considered in the main experiments are 2, 8, 32, 128, 512,
2048, and 8192.

The tests carried out involve three artificial and eight real-world data set all
having two classes. Six of the latter are taken from the UCI Machine Learning
Repository [2]. On these, extensive experimentation has been implemented in
which for every combination of number of unlabeled objects and labeled objects
1,000 repetitions were executed. In order to be able to do so on the limited
amount of samples in the UCI data sets, we allowed to draw instances with
replacement, basically assuming that the empirical distribution of every data set
is its true distributions. This approach enabled us to properly study the influence
of the constraint estimation on real-world data without having to deal with the
extra variation due to cross validation or the like. The artificial sets do not suffer
from limited amounts of data.

The two other data sets, Text and SecStr, are benchmarks from [7], which
were chosen for their feature dimensionality and for which we followed the pro-
tocol as prescribed in [7]. We consider the results, however, of limited interest as
the semi-supervised constrained approach gave results only minimally different
from those obtained by regular, supervised NMC (after this we did not try the
self-learner). Nevertheless, we do not want to withhold these results from the
reader, which can be found in Table 1. In fact, we can make at least two inter-

Table 1. Error rates on the two benchmark data sets from [7].

data set Text SecStr

number of labeled objects 10 100 100 1000 10000

error NMC 0.4498 0.2568 0.4309 0.3481 0.3018
error constrained NMC 0.4423 0.2563 0.4272 0.3487 0.3013

esting observations from them. To start with, the constrained NMC does not
perform worse than the regular NMC, for none of the experiments. Compared to
the results in [7] both the supervised and the semi-supervised perform acceptable
on the Text data set when 100 labeled samples are available and both obtain
competitive error rates on SecStr for all numbers of labeled training data, again
confirming the validity of the NMC.

4.2 The Artificial Data

The first artificial data set, 1D, consists of a one-dimensional data set with two
normally distributed classes with unit variance for which the class means are 2
units apart. This setting reflects the situation considered in Section 2. The two
top subfigures in Figures 1 and 2 plot the error rates against different numbers
of unlabeled data points for the supervised, semi-supervised, and self-learned
classifier. All graphs are based on 1,000 repetitions of every experiment. In every
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round, the classification error is estimated by a new sample of size 10,000. Figure
1 displays the results with two labeled samples, while Figure 2 gives error rates
in case of ten labeled samples. Note that adding more unlabeled data indeed
further improves the performance.
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Fig. 1. Error rates on the artificial data sets for various unlabeled sample sizes and
a single labeled sample per class. Top subfigure: 1D data set. Left subfigure: 2D

correlated. Right: 2D ‘trickster’.

As second artificial data set, 2D correlated, we again consider two normally
distributed classes, but now in two dimensions. The covariance matrix has the
form ( 4 3

3 4 ), meaning the features are correlated, which, in some sense, does not
fit the underlying assumptions of NMC. Class means in one dimension are 4
apart and the optimal error rate is about 0.159. Further results, like those for
the first artificial data set, are again presented in the two figures.

The last artificial data set, 2D ‘trickster’, has been constructed to trick
the self-learner. The total data distribution consists of two two-dimensional nor-
mal distributions with unit covariance matrices whose means differ in the first
feature dimension by 1 unit. The classes, however, are completely determined by
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Fig. 2. Error rates on the artificial data sets for various unlabeled sample sizes and a
total of ten labeled samples. Top subfigure: 1D data set. Left subfigure: 2D correlated.
Right: 2D ‘trickster’.

the second feature dimension: If this value is larger than zero we assign to class
1, if smaller we assign to class 2. This means that the optimal decision boundary
is perpendicular to the boundary that would keep the two normal distributions
apart. By construction, the optimal error rate is 0.

Both Figures 1 and 2 illustrate the deteriorating effect adding too much un-
labeled data can have on the self-learner, while the constrained semi-supervised
approach does not seem to suffer from such behavior and in most cases clearly
improves upon the supervised NMC, even though absolute gains can be moder-
ate.

4.3 Six UCI Data Sets

The UCI data sets used are parkinsons, sonar, spect, spectf, transfusion,
and wdbc’ for which some specifications can be found in Table 2. The classifica-
tion performance of supervision, semi-supervision, and self-learning are displayed
in Figures 3 and 4, for two and ten labeled training objects, respectively.
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Table 2. Basic properties of the six real-world data sets.

data set number of objects dimensionality smallest class prior

parkinsons 195 22 0.25
sonar 208 60 0.47
spect 267 22 0.21
spectf 267 44 0.21
transfusion 748 3 0.24
wdbc 569 30 0.37

In the first place, one should notice that in most of the experiments the
constrained NMC performs best of the three schemes employed and that the
self-learner in many cases leads to deteriorated performance with increasing un-
labeled data sizes. There are various instances in which our semi-supervised
approach starts off at an error rate similar to the one obtained by regular super-
vision, but adding a moderate amount of additional unlabeled objects already
ensures that the improvement in performance becomes significant.

The notable outlier is the very first plot in Figure 3 in which constrained
NMC performs worse than the other two approaches and even deteriorates with
increasing amounts of unlabeled data. How come? We checked the estimates for
the covariance matrices in Equations 3 and 3 and saw that the variability of the
sum of the means is indeed less in case of semi-supervision, so this is not the
problem.

What comes to the fore here, however, is that a reduction in variance for
these parameters does not necessarily directly translate into a gain in classifica-
tion performance. Not even in expectation. The main problem we identified is
basically the following (consider the example from Section 2): The more accu-
rately a classifier manages to approximate the true decision boundary, the more
errors it will typically make if the side on which the two classes are located are
mixed up in the first place. Such a configuration would indeed lead to worse and
worse performance for the semi-supervised NMC with more and more unlabeled
data. Obviously, this situation is less likely to occur with increasing numbers of
labeled samples and Figure 4 shows that the constrained NMC is expected to
attain improved classification results on parkinsons for as few as ten labels.

5 Discussion and Conclusion

The nearest mean classifier (NMC) and some of its properties have been stud-
ied in the semi-supervised setting. In addition to the known technique of self-
learning, we introduced a constrained-based approach that typically does not
suffer from the major drawback of the former for which adding more and more
unlabeled data might actually result in a deterioration. As pointed out, however,
this non-deterioration concerns the parameter estimates and does not necessar-
ily reflect immediately in improved classifier’s performance. In the experiments,
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Fig. 3. Error rates for the supervised, semi-supervised, and self-learned classifiers on
the six real-world data sets for various unlabeled sample sizes and a single labeled
sample per class.

we identified an instance where a deterioration indeed occurs, but the negative
effect seems limited and quickly vanishes with a moderate increase of labeled
training data.
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Fig. 4. Error rates for the supervised, semi-supervised, and self-learned classifiers on
the six real-world data sets for various unlabeled sample sizes and a total of ten labeled
training samples.

Recapitulating our general idea, we suggest that particular constraints, which
relate estimates coming from both labeled and unlabeled data, should be met by
the parameters that have to be estimated in the training phase of the classifier.
For the nearest mean we rely on Equation (1) that connects the two class means
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to the overall mean of the data. Experiments show that enforcing this constraint
in a straightforward way improves the classification performance in the case of
moderately to large unlabeled sample sizes. Qualitatively, this partly confirms
the theory in Section 3, which shows that adding increasing numbers of unlabeled
data, eventually leads to reduced variance in the estimates and, in a way, faster
convergence to the true solution.

A shortcoming of the general idea of constrained estimation is that it is not
directly clear which constraints to apply to most of the other classical decision
rules, if at all applicable. The main question obviously being if there is a more
general principle of constructing and applying constraints that is more broadly
applicable. On the other hand, one should realize that the NMC may act as
a basis for LDA and its penalized and flexible variations, as described in [12]
for instance. Moreover, kernelization by means of a Gaussian kernel, reveals
similarities to the classical Parzen classifier, cf. [22]. Our findings may be directly
applicable in these situations.

In any case, the important point we did convey is that, in a way, it is possible
to perform semi-supervised learning without making additional assumptions on
the characteristics of the data distribution, but by exploiting some characteristics
of the classifier. We consider it also important that it is possible to do this based
on a known classifier and in such a way that adding more and more data does
not lead to its deterioration. A final advantage is that our semi-supervised NMC
is as easy to train as the regular NMC with no need for complex regularization
schemes or iterative procedures.
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