
Datagraphics creation for the modern web
A proof of concept

Tom van de Zande Louis Smit

December 21, 2012

1. Preface

This is the bachelor’s thesis of Tom van de Zande and Louis Smit for the bachelor of science
program in Computer Science at the Delft University of Technology. In the months September
through December of 2012 we have examined the creation of datagraphics for the modern web
environment. A task commissioned by Attingo Services B.V. Attingo has an advisory role in
Schwandt Infographics, a company specialized in creating infographics. In this role Attingo
facilitated the project.

We would like to thank our supervisor, assistant professor Dr. Martin Pinzger from the
Software Engineering Research Group at Delft University of Technology. He stimulated and
supervised us in our ambition to use modern software development methodologies whilst giving
us the space to experiment and discover things on our own.

A special thanks also goes to our mentor Wichert Akkerman, CTO of Attingo, who closely
monitored our progress and helped to set realistic yet ambitious goals.

2

Contents

1. Preface 2

2. Introduction 5

3. Problem analysis 6
3.1. Assignment . 6

3.1.1. Datagraphics . 6
3.2. State-of-the-art . 6
3.3. User stories . 7

3.3.1. SVG Graphics . 7
3.3.2. Data binding . 7
3.3.3. Interaction . 8
3.3.4. Transitions . 8
3.3.5. Platform . 9

4. Concepts and solutions 10
4.1. Scalable Vector Graphics . 10
4.2. Transitions . 11

4.2.1. Modifiers . 12
4.3. Interaction . 12

4.3.1. UI-control states . 12
4.3.2. Actions . 13

4.4. Data-binding . 13
4.5. Data models . 14

5. Architecture 15
5.1. Information viewpoint . 15

5.1.1. Projects . 15
5.1.2. Scenes . 15
5.1.3. Elements . 16
5.1.4. DataModels . 16

5.2. Functional viewpoint . 16
5.2.1. Parser . 16
5.2.2. Backend and ViewerState . 17
5.2.3. DataPoller . 18
5.2.4. Viewer . 18
5.2.5. Editor . 18

5.3. Concurrency viewpoint . 19
5.3.1. Pitfalls . 20
5.3.2. Future considerations . 20

5.4. Development viewpoint . 20
5.4.1. Development environment . 21
5.4.2. Testing and developer workflow . 22

6. Recommendations 24

3

7. Process 26
7.1. Scrum . 26
7.2. Reflection . 26

8. Conclusion 27

A. Original assignment (in Dutch) 29
A.1. Project voorstel . 29

A.1.1. Opdrachtgever . 29
A.1.2. Opdracht . 29
A.1.3. Use case . 30

4

2. Introduction

This document contains the findings of a feasibility study of an application enabling infographic
1 designers to convert vector drawings into interactive, data-driven web applications, a.k.a.
datagraphics. In our view both content and form are equally important in datagraphics, which
is why infographic designers are preeminently suited to create them. Traditionally, the Adobe
Flash platform was a popular choice since it did not require extensive technical knowledge
or programming skills. Although quite suited for animations and interaction, implementing
data-driven graphics in Flash is still very hard to do. In general, it is not very adequate for
content. In recent years there has been a clear shift towards new technologies, which mostly
can be shared under the umbrella of HTML5 [14]. These technologies have great potential.
They offer flexibility, performance, compatibility and have the support of industry leaders like
Google and Apple. Unfortunately though, these new techniques are even less accessible for non-
programmers. Our goal is to create an application that will bridge the gap between infographic
designers and state-of-the-art technologies, specifically in service of creating datagraphics.

The research was carried out by means of developing a proof of concept. This document
describes our analyses, solutions and results of this process. First we will analyze and describe
the problem in Chapter 3. Then, in Chapter 4 we introduce concepts and solutions at the basis
of our application. Chapter 5 describes our software architecture from different viewpoints.
This chapter is especially of value for future developers who want to continue the work. Next
we describe our methods and reflect briefly on the process as a whole in Chapter 7. In Chapter 6
we put forth our recommendations on how to proceed. Finally, in Chapter 8 we present the
conclusions of this project.

1Information graphics or infographics are graphic visual representations of information, data or knowledge
intended to present complex information quickly and clearly. [9]

5

3. Problem analysis

We are going to describe the problem space in terms of user stories. These are used to get a
better sense of the desired capabilities of the product. But first we will clarify the assignment
and look at competing products.

3.1. Assignment

The original assignment, as defined in collaboration with the client, can be found in the Ap-
pendix A.1. In short it describes a prototype enabling infographic designers to turn their vector
drawings into interactive, data-driven web applications or datagraphics. In this section we will
elaborate further on what this means and how we intend to provide for this need.

3.1.1. Datagraphics

In order to get a better feeling for the term datagraphic, it might help to understand better the
circumstances in which the demand has arisen. Schwandt Infographics (target of the product to
be developed) states on its website: ”We specialize in providing insight into complex information
and abstract processes. Form and content are thereby equally important.” Until recent
years they realized this mainly in the form of static graphics. However, new opportunities arise
when designing for the internet. Graphics no longer need to be static:

• Information can be displayed in different views and layers;

• Users can interact with it;

• Simple animations can be added both in service of form and content;

• Aspects of the graphic change in real-time as data changes. A bar in a bar chart would
be the simplest example. But there are multiple ways that visual representation of data
in the graphic could be bound to a data point. This concept is called data binding.

Datagraphics should provide in all these things (and thus not only, nor particularly the last
point). We mention this because we want our application to be in service of both content AND
form equally, since there is no reason to assume Schwandt Infographics would suddenly change
its values.

3.2. State-of-the-art

To get a better understanding of why Schwandt Infographics’ needs are not being met by current
offerings, we will look at what similar/competing products exist in the market today.

On april 12, 2012, Adobe discontinued a product called Flash Catalyst, which is the closest
we’ve seen to what we’re proposing. It allowed a designer to import graphics from Adobe
Illustrator and add interactivity and transitions to elements. However, for data binding, the
user needs to switch to another Adobe product called Flash builder, which required the user to
write code in ActionScript and Adobe Flex. Aside from it only outputting in the Flash format,
this is a work flow we find unacceptable for straightforward data graphics.

6

More recently Adobe also seems to embrace HTML5/JavaScript in favor of Flash and released
a set of tools called Adobe Edge. Since this is a new environment for Adobe these tools are
still pretty limited, but one product that jumps out is Edge Animate. It is an animation tool
for HTML elements, although it does not support SVG. The animations itself are created using
CSS and jQuery and programming skills are still required. An interesting choice by Adobe,
since much richer animations can be achieved by the SVG and Canvas web standards.

There is also Adobe Muse, a tool geared towards designer’s that want to create a website.
Although closer to our intended audience, the limited transitions and lack of data binding render
this product inadequate.

Some startups are also venturing into the space. Easel.io provides an editor to arrange
standard HTML elements and create mockups / web applications. Visual.ly has the same goals
as this project, but has so far only released a social network for static infographics. Their
progress remains unknown.

To us, it is clear the decline of Flash has left a void in the way designers can build interactive
content. Moreover, no other product on the market seems to focus on providing a user friendly
way to create data bindings.

3.3. User stories

In this chapter we’ll look at the different aspects of the product. Each section will list some
relevant user stories after which we will discuss the possibilities and difficulties associated with
those stories. Not all stories have come to fruition during the course of this project due to its
limited timespan. Bolded stories are part of the intended minimum viable product (MVP). The
rest are non-essential, or, nice-to-haves.

3.3.1. SVG Graphics

An important aspect of this project is the way in which vector graphics make their way from
the designers pen (tool) to a point where they can be easily manipulated to add interactions,
transitions and data bindings. An important focus for us was to strongly keep in mind the
current workflow for static infographics and try to be as least invasive as possible.

User stories

As a designer of the datagraphic

1. I want to keep using the vector editing product I’ve built my skills for (Adobe
Illustrator).

Adobe Illustrator is the leading vector editing product that has been crafted for more than
a decade by a large team. It seems ambitious to say the least to replicate even a small part
of what Illustrator can do. What this means is that this prototype is not a vector graphics
editor but a vector graphics interpreter. This has important implications. We need to parse
vector graphics so we can identify individual elements, which can than be manipulated later
on. What this also implies is that we are giving away control over a big part of the datagraphic
creation process to another software product. On the plus side, this means we can streamline
the prototype to be just an editor for transitions, interactions and data binding.

3.3.2. Data binding

The difficulties associated with data binding are hinged upon the complexity of the data. We
will need to constrain the types of data the prototype can handle in order to finish the project
in a timely manner.

7

User stories

As a designer of the datagraphic

1. I want to bind certain attributes of a graphical element, like size, color and
position, to an external data point.

2. I want to manage the (dummy) data myself, so I can play around with dif-
ferent values.

3. I want to be able to work with a programmer on more complex data visualizations.

As a software developer working on a datagraphic

1. I want a well documented API to develop against, so I can work together with the designer
on more complex data visualizations.

The high level concept here is that we have a data model that should have a visual representation
in the graphic. The domain of the data model needs to be mapped to a range of states of the
graphical element. This can be both in a discrete and a continuous space. A continuous example
would again be a bar in a bar chart that adjusts its height to a number. A discrete case would
be where you want to visualize the state of a real world object which possible states are known.
For example, a data center could have an overview of all its servers in a datagraphic and the
representation of each server could change based on the status of the server (running, shut
down, crashed etc.).

The designers third story and the developers first, reference the widget API as originally
described in the assignment. Providing a safe API requires quite some effort and interferes with
streamlining the proof of concept and keeping it as simple as possible, while still producing
relevant insights. However, a widget API would be a tremendous addition to the usefulness of
the product and should definitely be researched.

3.3.3. Interaction

In our definition, datagraphics can be interactive.

User stories

As a designer of the datagraphic

1. I want to allow the user to navigate to different views of the datagraphic.

2. I want to allow the user to activate sub views like ’tooltips’ and additional
information panels.

3. I want to allow the user to select different views on the same data.

4. I want to allow the user to select different data for the same view.

There are varying degrees of complexity here. The difficulty here is not so much the UI-controls
themselves, but letting the designer define what happens when they are activated.

3.3.4. Transitions

An integral aspect of these interactive datagraphics is some sort of animated transition.

8

User stories

As an end-user of the datagraphic

1. I want transitions to take place when I interact with the datagraphic.

2. I want transitions to take place when data and its corresponding view changes.

As a designer of the datagraphic

1. I want to manage the timing properties of all transitions, such as delay, duration and
easing function.

2. I want to be able to define a custom transition for when en element gets added to or
removed from a scene. For example: fade in/out, slide in/out etc..

3. I want to manage the transition when an element changes its form from one scene to the
next.

4. I want to manage the transition for any element that changes state, like a button.

5. I want to manage positional transitions, such that the element moves along a path I can
define.

Doing all these things will mean a significant time investment, so we’ll need to need a subset
that adequately proves these things are possible. For the MVP, having a default transition goes
a long way, but it would be preferable to be able to configure at least the duration and delay
of transitions. We also need at least one custom transition for when elements are added to or
removed from the scene.

3.3.5. Platform

Since the employer left the choice of platform to us, we will discuss the environment of the
application, be it on the web, desktop or perhaps mobile.

User stories

As an end-user of the datagraphic

1. I want to explore the datagraphic in a browser.

2. I want to explore the datagraphic on a mobile device.

As a designer of the datagraphic

1. I want to edit the datagraphic offline.

2. I want to be able to collaborate with other designers in real-time.

As the developer maintaining the software

1. I want to be able to easily push bug fixes and upgrades to the server.

Since the end-product (the datagraphic) will run in a web browser, it seems a logical choice
to have the editor run there as well. The only interesting story here is the ability to work offline.
As mentioned earlier, static graphic files will need to be parsed and the elements in it persisted.
Because the browser is sand-boxed, this is a big challenge, but not impossible. Having an online
requirement will be much easier for the prototype however, as we can parse and persist on the
server. As a bonus, all application state can be relatively easily synced to all clients working on
the same project.

9

4. Concepts and solutions

This chapter introduces core concepts and solutions that provide the basis for interactive and
data-driven visualizations in the web environment.

4.1. Scalable Vector Graphics

One of the main reasons we originally thought creating datagraphics in the browser might be
feasible was the fact that HTML5 specifies native support for Scalable Vector Graphics [14].
The same format [15] most vector applications like Adobe Illustrator can export to. This also
influenced the decision not to develop any vector editing capabilities. Instead SVG files are
created externally and uploaded to the server. In order to understand the process of converting
SVG files to datagraphics it is essential to have some insight into the SVG file format.

SVG is an XML-based file format. Listing 4.1 shows the simplest possible SVG file containing
just a rectangle. Figure 4.1 shows the same graphic when rendered.

Listing 4.1: A very simple SVG file

<?xml version="1.0" encoding="UTF-8" ?>

<svg xmlns="http://www.w3.org/2000/svg">

<rect width="75" height="75" />

</svg>

Figure 4.1.: Rendered graphics from Listing 4.1

As a result of being XML-based, SVG has some principled properties. The most significant
being:

• Elements are defined only by their type and attributes;

• Documents have a tree-like structure.

The first is used to determine the differences between two elements, which is crucial for doing
transitions as shall be explained in Section 4.2. The second is essential for the way we render
elements as described in Section 5.2.4.

Listing 4.2 gives a better impression of these properties. It is a drawing of a house made up
of two separate shapes or sub elements; the building and the roof. The tree structure therefore
could be displayed like this:

SVG

house

building roof

10

Listing 4.2 also shows that both the roof and the building are path elements only different
in their attributes. In this case just a d attribute containing the path data. This is a very
typical example, because it turns out most drawings are to a large extend, made up of paths.
As a result it is very hard to understand the graphic without rendering it. For this reason we
ask the designer to define id attributes for elements they want to give certain behavior in our
application. Similar to the way the building and the roof are identified in the house example.

Listing 4.2: A simple drawing of a house

<?xml version="1.0" encoding="UTF-8" ?>

<svg xmlns="http://www.w3.org/2000/svg" >

<g id="house" >

<path id="building" d="m 27.224831,72.958694 c 31.531036,0 63.062072,0 94.593109,0

0,24.962072 0,49.924146 0,74.886216 -31.531037,0 -63.062073,0 -94.593109,0

0,-24.96207 0,-49.924144 0,-74.886216 z" />

<path id="roof" d="M 2.2040278,73.509396 C 25.915674,49.797749 49.627321,26.086103

73.338967,2.3744558 97.050618,26.086103 120.76227,49.797749

144.47392,73.509396" />

</g>

</svg>

Figure 4.2.: Rendered graphics from Listing 4.2

4.2. Transitions

Transitions are a core concept of a datagraphic. They constitute one of the essential differences
between infographics and datagraphics. An infographic can be defined as a static graphic pro-
viding information, while a datagraphic is dynamic and able to show many views on potentially
changing information. To change from one view to another, some kind of transition is required.

In our application, a predefined view of the datagraphic is called a scene. Scenes can be seen
as the equivalent of a slide of a presentation. When navigating from one scene to the next a
transition takes place. Some elements might appear and others disappear. More interestingly,
some elements might change. Figure 4.3 shows two scenes containing the same element; a red
circle, c1. When navigating from scene1 to scene2, the differences between these scenes are used
to provide a smooth transition. In this case the only difference is the position of c1 and as a
result it would animate from the top left corner to the bottom right.

Scenes are in essence top level states of the datagraphic. Certain elements within a scene can
be stateful too. For example a button has a standard state and a hover state (with a different
appearance). The hover state is visible when the mouse cursor is hovered over the button. More
on this in Section 4.3. As will become clear shortly, the same mechanisms apply to the changing
of scenes as to the changing of states of stateful elements. Every element has a context. This

11

scene1 scene2

c1

c1

Figure 4.3.: When navigating from scene1 to scene2, c1 transitions from the top left to the
bottom right corner.

can be either a scene or a state of a container element. When an element is stateful, its children
have this element as their context.

This means that the same element can have a different appearance in a different context.
Lets call these different appearances, instances. This is where transitions come in, to provide
for the change from one context to another. And thus to transform the instances in the first
context to the instances in the second.

4.2.1. Modifiers

To have a transition between 2 instances take place, the differences should be known. A modifier
is basically a function that can eliminate one difference between two instances. All modifiers
together can perform the complete transformation from one instance to another. Since instances
differ per context, modifiers are associated with the context of the new instance. This being
the context in which those modifiers are active.

In Section 4.1 we explained SVG elements are defined only by their type and their attributes.
Different instances of elements always have the same type but can have different attributes. As
a result the persisted data of a modifier simply is an attribute name and its value. When the
modifier is applied an interpolator is created that can calculate any value for the given attribute
between the old and the new one. This interpolator is used to animate from one value to the
next.

It is possible to apply more than one modifier at a time on an element. This way, a smooth,
animated transition from one instance to another is made possible. 1

4.3. Interaction

In order to enable the designer to provide interaction for users, user interface controls are
required. The most obvious example of an UI-control is a simple button.

4.3.1. UI-control states

Most UI-controls have different states, in the case of a button the standard state and the hover
state. The standard state is visible when no interaction is taking place and the hover state is
visible when the user is moving the mouse cursor over the button. Since this is just a transition

1For the interpolation and animation the D3.js library is used [2].

12

as with the scene example of Figure 4.3, the same mechanism applies. This is illustrated in
Figure 4.4. In this example the rectangle r1 is enlarged when ”hovering”.

button1
state: standard

button1
state: hovered

r1 r1

Figure 4.4.: Button state transitions

4.3.2. Actions

Most UI-controls set a certain process in motion when a particular interaction has occurred.
Therefore the designer can add actions to user events. Events that can occur are dependent on
the exact type of UI-control, but in the case of a button these would be hover and click.

The actions currently supported are:

• navigate to a scene;

• change state (of a stateful element);

• change data model (of a data bound element).

4.4. Data-binding

Data binding is needed when the appearance of an element depends on data. If an element is
bound to a certain data model it is adjusted when the value of the model changes. To realize
this, the domain of the data model needs to be mapped to a range of states of the graphical
element. This can be both in a discrete and a continuous space. This way we can simply
transition from state to state when the data changes. In the discrete case there is simply a
one-to-one mapping from (data) values to (graphical) states and transitions happen in the same
way we saw in the scene and button examples (Figure 4.3 and Figure 4.4). In this section we
want to illustrate how a transition would work with a continues mapping.

In this example we have an arrow which length depends on a data model. The data model
has a numerical value between a minimum and maximum. To accommodate the mapping from
data to states, the designer defined two states for the arrow element; min and max. Obviously
the minimum value of the data model can be mapped to the min state of the graphic and
the maximum value to the max state. Our application however can use interpolation both of
the data and the graphics to calculate any mapping in between. This process is illustrated in
Figure 4.5.

13

databinding1
state: min

databinding1
state: max

a1

a1

databinding1
data binding: dp1

a1

data point

name: dp1
type: number
min: 0
max: 100
value: 50

Figure 4.5.: Data binding to a number. A continues mapping between the data and the graphics
is interpolated.

4.5. Data models

Obviously, in order to bind data to elements, there needs to be data first. For this proof of
concept we decided to implement three basic data types:

• number;

• enumeration;

• plain text.

A number always lies between a predefined minimum and maximum value. An enumeration
is one of a discrete amount predefined values. This could be either numbers, strings or a
combination of those. Plain text is just that. These are three data types that were simple
enough to implement in the limited time available and still are very useful. It becomes more
complicated with data sets, where the visual representation is not a one-to-one mapping. There
is a drop-off point where the data (binding) becomes too complex for a graphic designer to
manage. Therefore, the goal is to provide simple data binding support and pawn off more
complex ones to a programmer via the widget API.

14

5. Architecture

This chapter describes the software architecture from an information, functional, concurrency
and development viewpoint. It is especially of value for future developers who want to continue
the work.

5.1. Information viewpoint

Information management en flows were already discussed in the Functional viewpoint. However,
the actual data models are not touched upon yet. Without going too much into implementation
details, we do feel that providing some insights into the main data models improves general
understanding of the application.

As shown in Figure 5.1 Projects consists of Scenes which in turn consists of Elements.
An Element can potentially have a DataModel. Furthermore there are Stateful elements and
UIControls.

Project
- name
- dimensions

Scene
- name
- eventHandlers

Element
- svg
- modifiers
- addModifier
- removeModifier
- children
- contexts

Stateful
- states
- eventHandlers

UIControl
- events

DataModel
- name
- datatype
- possibleValues
- value
- source
- pollingInterval

Figure 5.1.: Shows the data models, their most important attributes and their mutual relations.

5.1.1. Projects

Projects contain global information about the project. Currently just a name and canvas
dimensions.

5.1.2. Scenes

Scenes are predefined views of the datagraphic and as such consist of Elements. For those
elements the scene functions as context. As introduced in Chapter 4, the active context defines,

15

among other things, which interactions are available. The mapping from events to event handlers
is therefore saved in the eventHandlers attribute of the context, in this case the scene.

5.1.3. Elements

First and foremost elements contain the SVG data necessary to display the graphic. Since
SVG’s have a nested structure, the direct children of this element are saved within the element
as well. The modifiers attribute contains the element’s modifiers as well as the contexts in
which they are active. In addition to the default modifiers there also are addModifier and
removeModifier attributes which define how the element is added to or removed from the
canvas when this occurs. And lastly, the contexts attribute contains all contexts in which some
instance of this element is visible (by definition a union of all contexts of all modifiers).

Stateful elements and UI-controls

Some elements can be in different states. In these cases they provide a context for their children.
So when the state changes the children’s context changes and (among other things) different
modifiers might be applied. Stateful elements are just an extension of normal elements. They
store the different states in the states attribute. Since they function as a context they must
also save mappings from events to event handlers.

UI-controls are a special kind of elements that apart from being stateful (see Section 4.3) can
also emit events. These are saved in the events attribute of the UIControl object. They can be
mapped to event handlers within this element or other parts of the datagraphic.

5.1.4. DataModels

The obvious attributes of a DataModel are name, datatype (currently: number, enumeration or
text) and value. There also is an attribute possibleV alues, which in the case of an enumeration
is a list of exactly that; all possible values. For numbers it contains the minimum and maximum
value and for text it is not defined.

Since data often comes from other sources, a DataModel optionally stores an http address
in source. The polling interval stored in pollingInterval determines the amount of seconds
between each request to the source for an updated value.

5.2. Functional viewpoint

Figure 5.2 gives an overview of the application. It consists of six major components; the
Backend, Parser and DataPoller on the server, the Editor, Viewer and ViewerState on the
client.

5.2.1. Parser

The most important tasks of the parser are to identify the different elements, their instances,
and the differences between these instances. The parser can read and interpret vector drawings
in the .svg file format [15]. Every uploaded file represents a scene containing graphical elements.
For every element the parser encounters it checks whether it already exists in the database. New
elements are saved as is. For existing elements the differences between the original instance and
the new one are determined and saved in the form of modifiers, see Section 4.2.1.

In order to check whether an element already exists, it needs to be identified. Since elements
can have totally different instances, this task proved to be impossible without some guidance
of the designer. This is the main reason why elements that have a purpose beyond just being
displayed as a static graphic must be given a unique id by the designer.

16

Editor

Backend

- Projects
- Scenes
- Elements
- Data

Parser

- Creates scenes and
elements
- Adds 'modifiers' to
elements (to provide
for certain transitions)

ViewerState

Collections:
- Scenes
- Elements
- Data models

has a

Database

Two-way sync
with all clients

Uploads scene
(svg file)

elements and scenes

Client

Server

SVG Uploader

Uploads svg files
representing scenes
containing elements

Data Manager

Manages data models

Element Manager

- Manages data bindings
- Manages interactions

has a

Viewer

Renderer:
- Creates element views
- Applies modifiers
- Binds events
- Binds to data

creates / alters

DataPoller

Retreives data
from external
servers

data

sources

Figure 5.2.: Architecture

Another task of the parser is to identify special kind of elements like user controls or data
bindings. Currently, the parser can recognize these elements by a special naming convention
of the element ids, provided by the designer. Its implementation is left out as the approach is
somewhat debatable. More on this discussion in Chapter 6.

5.2.2. Backend and ViewerState

The Backend is responsible for data persistence and communicating with the clients. In the
client the communication is managed by the ViewerState. The ViewerState contains all relevant
data in three collections; scenes, elements and data models. The ViewerState acts in the context
of the currently active project. When it is first initialized it creates a connection with the
Backend on the server and receives the right data. The Backend keeps connections open with

17

all clients. When the data on the server changes, for instance because the Parser just finished
processing a scene, the Backend pushes the new data to all clients currently working on the
respective project. And vice versa, when the data in the client changes, for instance when the
user has created a new data model, the ViewerState pushes this to the Backend on the server.
Because the data on the server now changed all other clients working on the same project will
be sent the newly created data model as well. This way the Backend and all the clients are
always in sync with each other.

5.2.3. DataPoller

The DataPoller is in charge of collecting data. Data models can have values that are determined
by external sources. In these models a polling rate is defined as well. The DataPoller maintains
a list of currently active data models (currently in use by at least one client) and polls their
values from the external sources at the given rate. These values are passed to the Backend
which in turn syncs it with the clients.

5.2.4. Viewer

The main task of the viewer is rendering the datagraphic given a certain ViewerState. Rendering
consists of four steps.

• Creating element views;

• Applying modifiers;

• Binding events;

• Binding data.

The whole render process happens by traversing the element tree depth first. This essentially
means that elements tell their children to render before they render themselves. This is impor-
tant since modifiers should effect the children of an element as well. Each render call is given
the current context as a parameter. When an element is stateful, its children are passed this
element as the current context. Otherwise the context remains the same.

When an element is rendered for the first time, an element view is created and placed on the
canvas. At this point just the original instance of the element is created. This instance now
needs to be transformed to the instance active in the current context. This is done by applying
all modifiers of the element associated with this context. In the case the element was already
rendered before, a view already existed and whichever instance represented by that view is
transformed in the same way to the instance of the current context. The transforming of one
instance to the other can happens via a smooth transition. In the future it will be possible to
influence these animations as was described in Chapter 3

Since some elements, like buttons, allow user interaction, the right events to make this possible
are registered during tree traversal.

When an element is bound to a data model, an event is registered such that the element is
re-rendered when data model changes. Databindings were explained earlier in Section 4.4.

5.2.5. Editor

The main task of the Editor is to enable the user to convert .svg files into datagraphics. It has a
Viewer to display the datagraphic along the way and a ViewerState which contains all relevant
persistent data of the datagraphic. Since the collections in the ViewerState are all that defines a
datagraphic it is not surprising that the task of the editor can be divided into the management
of these three collections; scenes, elements and data.

18

Manage Scenes

A scene can be created by uploading a .svg file. Atypically, this doesn’t happen via the Viewer-
State. This is because at this point it is just a file, not the scene and its elements, and therefore
not part of the datagraphic yet. The file instead is uploaded by the editor to an upload han-
dler on the server which sends the contents directly to the parser. The Parser then hands the
newly created scene and elements off to the Backend which in turn notifies all connected clients
including the one that uploaded the graphics in the first place.

Apart from creating scenes, they can be deleted to by altering the ViewerState in the regular
way.

Manage Elements

Elements are defined externally in the vector application. In our editor, currently only two
things can be managed about an element:

• Events
When an element is of a type that fires certain events, actions can be registered to these
events. A limited set of actions is currently supported as described in Section 4.3.2

• Databindings
Elements can be bound to data models. This only entails selecting the right data point.

Both these things are saved inside the element itself and synced to the server via the ViewerState.

Manage Data

Data points can be created, edited and deleted in the data manager. In this prototype only a
limited set of data types is supported which are described in Section 4.5.

Data points are saved via the ViewerState.

5.3. Concurrency viewpoint

In this section we briefly touch upon the concurrency in the system. Since it concerns a proof
of concept, concurrency was not in particular a point of attention. However, a general overview
of concurrent processes would be instructive for future developers and testers. We would also
like to point out where we experienced difficulties already and where we expect problems might
arise in the future concerning this matter.

«process»
Database

«process»
Server side app

«process»
Client side app

Figure 5.3.: Three main processes run concurrently; the client side application, the server side
application and the database.

19

Both the server side and client side code run in a single-threaded JavaScript environment in
which all I/O is non-blocking and event driven. All in all, there are only three processes running
concurrently as displayed in Figure 5.3. When for instance a function on the server needs a
value from the database, a read event is send to the database and without waiting for an answer
execution is continued (non-blocking). When the database is done reading, an event is emitted
and if the application has an event handler in place for that particular event, it is executed and
passed the requested value. One could say each process exists only of an event loop and event
handlers. Since these processes are single-threaded only one event handler can be executed at
a time. As a direct result of this platform not much concurrency problems arise. The downside
of this asynchronous approach is that it requires a very typical event driven implementation in
which it can be hard to keep track of execution flow.

5.3.1. Pitfalls

When inexperienced with asynchronous I/O a mistake is easily made and moreover erroneous
behavior doesn’t always immediately show. For instance, when we started writing the first
versions of the parser we produced some code that did two consecutive database calls and
expected the first to finish before the second would be executed. This always seemed to be the
case but obviously is not ensured in any way. In fact, much later in the process we discovered
that seemingly new errors could be explained by this race condition. The only way to make sure
the first call finishes before the second is to execute the second in the success event handler of
the first. This can become quite inconvenient when nested several levels deep, but fortunately
there are great frameworks 1 which considerably ease the pain.

5.3.2. Future considerations

The interprocess communication between the client and the server is an area in which future
developers should be wary of concurrency issues. Currently the only feedback loops in place
are message acknowledgements. In most cases it is not communicated whether the message
was handled successfully or not. This is a problem especially since the communication happens
asynchronous and the program continuous execution as if everything is in order. The compli-
cations might become even bigger when multiple clients try to edit the same data. In practice
we have not encountered any problems in this area yet. Since this is only a proof of concept
(of which concurrency is not a focal point) we have not given these issues priority. This is,
however, without prejudice to the necessity of a watertight policy when taken into more serious
development. Relatively quick progress is expected using more feedback loops in combination
with timeouts.

5.4. Development viewpoint

At the beginning of this project we spent a great deal of time and effort to research a set of
tools that allow us to maintain solid software engineering principles like testing, continuous
integration, encapsulation and dependency management while also having a comfortable devel-
opment environment. Seeing as how the browser environment is relatively immature and is only
recently starting to be used for more complex applications, this was quite a painful process.
Nevertheless, we managed to craft a stack that fulfilled most of our requirements and we’ll
describe it here.

1In particular we used Async.js [1]

20

5.4.1. Development environment

Platform

The client side of the application runs in the web browser. Since we are developing a prototype
for a future product, we decided it is acceptable to make use of the latest techniques, even if
not all browsers support it yet. We are however only using open standards that are eventually
expected to be adapted by all major browsers. In practice, all relevant techniques we use, are
part of the HTML5 [14] specification. Google’s Chrome is currently one of the leading browsers
when it comes to HTML5 support. Therefore we used Chrome to test the application during
development.

JavaScript and Coffeescript

A browser environment means having to program in JavaScript, but apart from its functional
prowess, there is no denying that Javascript has some shortcomings as a language. Its verbose
and sometimes confusing syntax has led to the creation of some languages that compile to
JavaScript. One example is Coffeescript[5], a whitespace significant language heavily inspired
by Python and Ruby. Even JavaScript’s creator and co-founder of Mozilla Brendan Eich has
said the following [16]:

”CoffeeScript is smart and fun new clothing for JavaScript. Clothes are important,
and I’d be the first to proclaim that JavaScript needs wardrobe help.”

Seeing as our backend also uses JavaScript and we both come from a Python background,
this syntax upgrade helped us write cleaner code, faster. Although an extra compile step can
be a hassle, we feel that it was worth our while.

Backbone.js, Redis, Node.js and Backbone.io

A necessity for an application like this is a solid MVC framework. We used Backbone, which is
the most popular (which means a lot of documentation) and the most flexible. That last part
can be a blessing and a curse. To use Backbone effectively a strong knowledge of the DOM
model and the jQuery library is required. It doesn’t hold your hand and there are multiple
ways to do things. Particularly, the event-driven architecture that Backbone encourages can be
confusing to fresh eyes. To resolve this we tried to be consistent in our approach and provide
solid documentation.

For persistence we used Redis, an in-memory key-value store, that provided us with a speedy
way to store our JSON data. Its support for sorted sets was useful for keeping elements in the
correct rendering order.

One important aspect of the application is a two-way sync of all project data, between the
server and all clients editing or viewing that project. We use Node.js as a server, precisely
because it is well suited for this type of real-time application. One other advantage of Backbone
comes into play here, since we can use a library called Backbone.IO to sync Backbone models
and collections using WebSockets.

Although the async environment can be problematic (as discussed earlier) this type of state
syncing can be incredibly powerful and we were very pleased with this setup.

SVG and D3.js

One of the most important aspects of this project is the ability to manipulate SVG elements.
The SVG standard[15] has reached widespread adoption among current browsers [4]. The ex-
cellent DOM manipulation library D3.js [2]has become a central part of this application. With
its focus on data-driven visualizations it is perfectly aligned with our objectives. Extensive

21

documentation is available and very accessible. We feel we have only scratched the surface of
what we can let the datagraphics designer do with this application and D3.js. More on this in
Chapter 6

Modularity, package and dependency management

A particular pain point of JavaScript is a lack of a standardized way to create modules. The
next version of JavaScript will include module support, but it can take quite some time before
it reaches widespread adoption [7]. In the meantime, efforts are being made to provide module
support through a 3rd party standard called AMD (Asynchronous Module Definition)[10]. The
AMD spec allows for easy dependency management while maintaining asynchronous script
loading that is inherent to the web.

We are of the opinion that any complex app should have a way to encapsulate components
and define dependencies as to minimize coupling. That’s why we used AMD and the Require.js
library to achieve these things[17]. While conceptually AMD feels natural, one has to keep
in mind that, currently, in a browser environment many HTTP requests are expensive. That’s
why Require.js provides an optimization build step that compiles the source into one production
script, that follows the dependency tree specified[12].

Build tool and package management.

One other important requirement was keeping our build environment consistent. To achieve
that on the client side we used package manager that keeps our dependencies on external
libraries consistent. A package manager targeted at the browser has been lacking until recently.
Engineers at Twitter released Bower[3], a package manager that allows you to specify on which
libraries (and versions) your app depends in a component.json file. On the server side NPM
(Node package manager) makes defining dependencies easy with the package.json file.

To tie it together we used a build tool called Grunt. It’s a very bare bones and transparent
way to define tasks that should be part of a custom build. It also has a wide variety of tasks
provided by the community such as: compiling to Coffeescript, running tests, optimizing and
minifying sourcefiles etc. We have defined several custom builds, but our main build step
currently does the following:

1. fetch all external server-side dependencies with NPM as defined in the package.json

2. fetch all external client-side dependencies with Bower as defined in the component.json

3. compile Coffeescript and copy the .js files to a mirrored directory structure

4. compile Hogan.js templates and copy the .js files to the appropriate folder

5. generate documentation from comments in the code using YUIdoc

It’s mostly compiling and keeping the environment consistent, because we’re not too concerned
with optimizations like the ones mentioned earlier just yet. Adding these steps to the build
process is a no-brainer, though.

5.4.2. Testing and developer workflow

Developer workflow

For a version control system (VCS) we used GitHub, which uses git and provides an intuitive
web interface that allows developers to discuss their code. Our workflow was facilitated by
GitHubs ”pull request” interface. We made sure our master branch was always stable, at least
as stable as a prototype can be, with all tests passing. Whenever one of us was starting work on

22

a new feature we branched from master, named the branch after the feature and started working
on it. When the feature was completed we issued a pull request, telling the other we would like
to merge this feature into master and it needs review. The other could ask for improvements
by commenting on certain lines of code or merge it in. This workflow was a pleasant way to
keep the master branch sane and keep tabs on what the other was working on.

Testplan

Since this is a prototype, getting 100% test coverage didn’t get the highest priority. We are,
however, charmed by the test driven development (TDD) workflow and strived to implement
it in this project. We firmly believe tests can aid development in numerous ways. However,
the problem we faced time and time again during the course of this project is lack of time.
And there is no denying that writing meaningful tests can be a huge time sink. We quickly
found that for every test, there is a judgment call that has to be made: ”Is it worth the time
investment (stubbing, defining test cases) to properly test this, so that I can save time later
on”. You’ll notice there is no mention of robustness or stability there, and if this project were
to leave the prototype phase that focus would obviously have to shift. Of course, we made sure
crucial parts get a 100% coverage with all edge cases covered.

Test tools and continuous integration

Our test framework of choice is Mocha[8], which has support for asynchronous tests and also
provides a BDD (Behavior Drive Development) syntax. The BDD way of writing tests gives a
useful overview of what each test does and we would recommend to keep using it. For mocking
and stubbing we used a library called SinonJS[13]. Having to stub or mock certain objects,
made us think about applying the ”dependency injection” pattern [6] more, which resulted in
more flexible code.

From the outset we intended to have some sort of continuous integration (CI) setup. We
managed to get one up and running with the help of the most popular CI server called Jenkins.
Our main objective was getting to a point where, whenever we pushed to one of our branches,
Jenkins would do a build, run the tests and show test/coverage reports and documentation in
one place.

Getting test coverage up and running was a very hairy process, since coverage reporting
doesn’t seem like a commonplace practice yet in the JavaScript world. We had to use a poorly
maintained library called JScoverage to instrument our code, then run the tests in a headless
browser called Phantom. To get the report, however, we had to jump through some hoops
to get our JScoverage output to work with a Jenkins plugin intended for Java coverage called
Cobertura (we had to rewrite an adapter for another test framework).

After getting it all up and running these are the steps Jenkins executes on each push:

1. execute Grunt build

2. run tests in PhantomJs

3. generate test and coverage reports with Cobertura

In practice, we noticed that with a 2-man team, consistent build environments and a lacking
focus on coverage, the Jenkins server added very little value since we could do all these things
locally. We don’t believe our efforts have been a waste, however, because now that the basic
plumbing is in place, the server can be extended more towards Continuous Deployment by
adding more build steps. If the project gets out of prototype phase and/or gets a bigger team,
this CI setup will provide useful indeed.

23

6. Recommendations

Now that we have made the first serious attempt to develop a datagraphics application, we
would like to make some recommendations on how to proceed from here on. Although the
general concept seems feasible (see Chapter 8) there still are some serious practical issues that
need to be addressed.

First of all, we have not been able to come up with a convincing work flow integrating
the creation of vector graphics and datagraphics. Creating datagraphics inherently involves
adding meta data to the vector graphics. For example, stating that a certain rectangle is a
button. But also, since an element can have many different instances throughout the datagraphic
(Section 4.2), these instances need to be identified as the same element. The challenge lies in
providing an acceptable way to add this meta data. Since we cannot influence the capabilities of
current programs we first explored the possibilities of doing this in the datagraphic application.
Unfortunately, this proved quite complex and not user friendly. We then realized designers
already need to have a clear understanding of these abstract notions in the datagraphic while
creating the static graphics. In other words, they already know a certain rectangle is going to
be a button when drawing the rectangle. This further convinced us that the necessary meta
data is best inputted at that moment. Unfortunately, the only capability graphic programs
provide to add extra information to an element is through its id. Using a specific format, this
is how all meta data currently needs to be inputted. Essentially misusing the id of elements.
Clearly, this solution is far from ideal. Before any further efforts are made in this project, we
recommend investigating this issue. To the best of our understanding, there are at least the
following scenarios:

• Although not ideal, the target audience finds the current solution acceptable.
In this case a lot of improvements are still required. In particular the user needs to receive
detailed feedback when uploading a SVG file. Are there syntax errors? Are all required
states provided for the special elements?

• The current solution is unacceptable and users insist on adding meta data in the graphic
environment.
In this case there are two ways forward:

– Incorporate a vector graphic editor in the datagraphics application;

– Enter into a partnership so that current vector graphic programs allow for easy meta
data input.

• The current solution is unacceptable, but it there is a way to manage all complexity in
the datagraphic application.
Earlier efforts to achieve this failed, but it might be worth while to look into again. The
biggest problem we ran into was the identification of different instances of the same ele-
ment. This seems impossible without the guidance of the user due to the SVG properties.
See also Section 5.2.4. It might be conceivable to have a work flow in which the user can
visually select all instances and map them to the same element that way.

• The current solution is not user friendly enough for most infographic designers, but there
is a different or smaller target audiance still interested in the product.
This could for example be the case if one or two people from Schwandt Infographics accept

24

the steeper learning curve and make the most of it. It is also imaginable programmers
already capable of creating datagraphics like to use it to get around some of the heavy
lifting. The improvements suggested in the first scenario apply here as well.

To find out which of these scenarios is most plausible, further investigation is required.
Another thing we recommend investigating is how programmers can be integrated into the

work flow. In many real world use-cases, some visualizations are too complex for designers to
implement and a software developer is required to step in. This could be realized using a widget
API as we originally planned to implement, but had to forego due to time constraints. However,
it would be indispensable when the application gets taken into production if we want to deliver
a more versatile product.

25

7. Process

This was our first time completing a project using agile development principles for an actual
client. We will describe the process and reflect on it here.

7.1. Scrum

As discussed in the orientation report we decided against the traditional waterfall model of ex-
tensive requirements gathering and have a dynamic, constantly updating user story/feature list
instead. We picked the Scrum methodology because it aligned very well with the experimental
nature of the project.

We used a web application called Planbox [11] to track our progress. We filled our backlog
with the user stories as defined in Chapter 3 and decided on using 2-week sprints. In what some
would call non-agile fashion we made a rough planning of what user stories we would implement
in what sprint. Then, at the beginning of each sprint we would start defining the user stories in
a much higher level of granularity. We could then define tangible tasks, determine an estimate
for the time required for each task and plan the coming sprint accordingly.

Each sprint we met with Dr. Pinzger, our TU supervisor, to discuss our process and he would
give us new insights into the agile way of doing things. Each week we would meet up with Mr.
Akkerman, our supervisor from Attingo, to discuss our progress and/or setbacks, so we could
adjust our expectations and planning. We tried to always have a new version of the prototype
to demo at each meeting.

Especially in earlier sprints we noticed this project was very much evolving as we gained new
insights about different aspects of the application. As a result, our non-agile rough planning
turned out to be quite inaccurate. It quickly dawned on us the prototype would have to be
streamlined and some features cut. What you see outlined in this report is that streamlined
product and we feel it delivers as a proof of concept, since many insights about the subject
matter were gained as discussed in the previous chapter.

Overall, we made an utmost effort to deliver on what we promised and communicate our
setbacks to the client.

7.2. Reflection

By far, the most challenging aspect of this project was making an accurate prediction of the
time required for a certain task. Since this is relatively unfamiliar territory for the both of us,
there were many unscheduled holdups. Getting to know new libraries and tools, fixing bugs,
discussions about software architecture, discussions about UI and product philosophy; it all
takes more time than we anticipated. We learned that adapting to a new environment results
in lots of uncertainty, so one should plan accordingly. To say we bit off more than we could
chew, while true, would be easy. We prefer to believe this was an excellent learning experience
in time management, and we hope we will gradually get better at it.

This project, besides a great experience in terms of the process, also was a perfect opportunity
to improve our programming and software design skills. We had to start from scratch on all
fronts. From requirement gathering to selecting the right technologies, to designing a sound
architecture and finally implementing the prototype. There were no stepping stones whatsoever.
This proved to be a big challenge and in the end both very instructional and satisfactory.

26

8. Conclusion

The proof of concept developed during this project has convincingly demonstrated the web
environment (without plugins) is very well suited for interactive, data-driven visualizations.
The concepts and solutions described in Chapter 4 form a sound basis for it. By reducing
the complexities of a datagraphic to a state and event based web application, we were able to
create a path from static vector graphics to a datagraphic. The challenge lies in providing a
user friendly work flow to tread this path. This is what we belief to be the Achilles heel of the
project and as described in Chapter 6, we recommend investigating different scenarios in this
matter before proceeding on other fronts.

All in all, it can be concluded a datagraphics application in and for the modern web environ-
ment is feasible and deserves to be invested into further.

27

Bibliography

[1] Async.js. url: https://github.com/caolan/async.

[2] Michael Bostock. Data-Driven Documents. 2012. url: http://d3js.org.

[3] Bower. url: http://twitter.github.com/bower/.

[4] Can I use? url: http://caniuse.com/svg.

[5] CoffeeScript. url: http://coffeescript.org/.

[6] Dependency injection. url: http://en.wikipedia.org/wiki/Dependency_injection.

[7] Harmony. url: http://wiki.ecmascript.org/doku.php?id=harmony:modules.

[8] Mocha. url: http://visionmedia.github.com/mocha/.

[9] Doug Newsom and Jim Haynes. Public Relations Writing: Form and Style. 2004.

[10] Addy Osmani. Writing Modular JavaScript With AMD, CommonJS and ES Harmony.
url: http://addyosmani.com/writing-modular-js/.

[11] Planbox. url: http://planbox.com.

[12] REQUIREJS OPTIMIZER. url: http://requirejs.org/docs/optimization.html.

[13] Sinon.JS. url: http://sinonjs.org/docs/.

[14] W3C. HTML5. Oct. 2012. url: http://www.w3.org/TR/html5/.

[15] W3C. Scalable Vector Graphics (SVG) 1.1 (Second Edition). Aug. 2011. url: http://
www.w3.org/TR/SVG11/.

[16] What are disadvantages of using CoffeeScript. url: http://www.quora.com/CoffeeScript/
What-are-disadvantages-of-using-CoffeeScript.

[17] WHY AMD? url: http://requirejs.org/docs/whyamd.html.

28

https://github.com/caolan/async
http://d3js.org
http://twitter.github.com/bower/
http://caniuse.com/svg
http://coffeescript.org/
http://en.wikipedia.org/wiki/Dependency_injection
http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://visionmedia.github.com/mocha/
http://addyosmani.com/writing-modular-js/
http://planbox.com
http://requirejs.org/docs/optimization.html
http://sinonjs.org/docs/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.quora.com/CoffeeScript/What-are-disadvantages-of-using-CoffeeScript
http://www.quora.com/CoffeeScript/What-are-disadvantages-of-using-CoffeeScript
http://requirejs.org/docs/whyamd.html

A. Original assignment (in Dutch)

A.1. Project voorstel

A.1.1. Opdrachtgever

Attingo Holding BV is een bedrijf dat onder meer andere bedrijven financiert, ermee samenwerkt
of er in deelneemt. Ook het geven van adviezen, het voeren van beheer en bestuur behoort tot
de werkzaamheden.

Een van de bedrijven waar Attingo Holding in investeert en advies aan geeft is Schwandt
Infographics. Dit bedrijf heeft onder andere door de economische crisis ervaren dat het een
kwetsbaar business model heeft dat alleen omzet kan genereren uit declarabele uren. Het bedrijf
wil naast haar traditionele model een activiteit ontwikkelen waarmee constantere omzetstromen
te realiseren zijn in de vorm van een service model. Schwandt infographics heeft hiervoor een
concept bedacht dat past binnen de core business van het bedrijf en voorziet in een steeds
toenemende vraag uit de markt. Echter om dit concept te gelde te kunnen maken is een
omvangrijke IT investering nodig waar het bedrijf de middelen niet voor heeft.

Attingo Services BV, een werkmaatschappij van Attingo Holding BV heeft van laatstge-
noemde opdracht gekregen een prototype te ontwikkelen waarmee de technische haalbaarheid
van bovengenoemd concept te toetsen is.

A.1.2. Opdracht

Infographics waren tot voor kort hoofdzakelijk statische weergaven in een fysieke wereld. Echter,
Interactieve en data driven infographics in de virtuele wereld (datagraphics) zijn sterk in op-
komst. Helaas beschikken grafisch ontwerpers niet over de juiste tools om deze datagraphics
te maken. Er zijn altijd IT-ers nodig om het eindproduct te realiseren. Initieel gebeurde dat
vooral m.b.v. Adobe Flash, maar door de snelle ontwikkeling van browsers is een groter publiek
te bereiken door gebruik te maken van HTML5 en Javascript, echter deze technologien staan
nog verder af van de grafisch ontwerper.

Wij zoeken een partij die een werkend prototype kan ontwikkelen dat ontwerpers, met min-
imale tussenkomst van IT-ers, in staat stelt datagraphics te ontwikkelen. Een tool die de
ontwerper in staat stelt zijn/haar ontwerp (vector graphics, doorgaans gemaakt in Adobe Il-
lustrator) om te zetten in een interactieve, data driven webapplicatie. Met data driven wordt
bedoeld dat de exacte weergave (grootte, kleur, positie, etc) van graphics (elementen) afhangt
van data. Zodra op een later moment de data wijzigt zal de weergave dus automatisch ook
wijzigen. Het afhankelijk maken van data noemen we data binding.

De te onwikkelen software zal in ieder geval de volgende functionaliteit moeten bezitten:

Vector graphics Importeren, weergeven, data binding.

UI elementen Er moeten basis control elementen (knoppen e.d.) kunnen worden toegevoegd.
Deze moeten ook aan te passen zijn.

Scenes Er moeten verschillende scenes gemaakt kunnen worden. Binnen een scene bestaan
bepaalde objecten. In het eindproduct is steeds n scene actief. Het moet dan mogelijk
zijn te switchen van scene naar scene en op die manier dus andere informatie in beeld te
brengen.

29

Transities Daar waar eigenschappen van objecten veranderen, moeten korte simpele animaties
(transities) kunnen worden toegevoegd. Hetzelfde geldt voor overgangen van scene naar
scene.

Widget API (application programming interface) Een widget is bedoeld voor complexere ob-
jecten die een ontwerper niet middels de standaard functionaliteit kan realiseren. Een
software ontwikkelaar moet betrekkelijk snel een widget kunnen maken die de ontwerper
vervolgens kan configureren en als standaard object kan gebruiken. Dit kan bijvoorbeeld
een bepaalde herbruikbare grafiek of andere data visualisatie zijn. De ontwerper moet de
widges wel zelfstandig kunnen binden aan data en hun eigenschappen (kleuren, afmetin-
gen, titel etc) kunnen aanpassen.

A.1.3. Use case

Een groot en drukbezocht themapark wil middels een mobiele app of website haar publiek real-
time informeren over de wachtijden bij de verschillende attracties. Daarnaast moeten bezoekers
ook kunnen ’inzoomen’ op een attractie om extra informatie te kunnen lezen. Het park stelt de
benodigde realtime data beschikbaar via een webbased API.

Hierin willen we voorzien door een aantrekkelijke vector tekening van het park te tonen waarop
de attracties zichtbaar zijn. Bij iedere attractie is een staafje afgebeeld dat in hoogte en kleur
verschilt afhankelijk van de wachtijd. Als op een atractie wordt geklikt wordt extra informatie
getoond. Transities van de ene naar de andere weergave moeten via korte simpele animaties
verlopen.

Alhoewel we op zoek zijn naar een product dat daadwerkelijk voor simpele projecten ingezet
kan worden, zal het ook fungeren als een ’proof of concept’ voor complexere projecten. De focus
zal daarbij voornamelijk moeten liggen op het visualisatie aspect (en bijvoorbeeld niet op het
beheer van data).

30

	Preface
	Introduction
	Problem analysis
	Assignment
	Datagraphics

	State-of-the-art
	User stories
	SVG Graphics
	Data binding
	Interaction
	Transitions
	Platform

	Concepts and solutions
	Scalable Vector Graphics
	Transitions
	Modifiers

	Interaction
	UI-control states
	Actions

	Data-binding
	Data models

	Architecture
	Information viewpoint
	Projects
	Scenes
	Elements
	DataModels

	Functional viewpoint
	Parser
	Backend and ViewerState
	DataPoller
	Viewer
	Editor

	Concurrency viewpoint
	Pitfalls
	Future considerations

	Development viewpoint
	Development environment
	Testing and developer workflow

	Recommendations
	Process
	Scrum
	Reflection

	Conclusion
	Original assignment (in Dutch)
	Project voorstel
	Opdrachtgever
	Opdracht
	Use case

