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A B S T R A C T

This master thesis presents the computation of free-surface flow phenomena with
emphasis on ship hydromechanics. We perform a simulation of the heave and the
pitch motion of the DTMB 5415M ship moving in head sea. To this purpose we
employ an existing Arbitrary-Lagrangian-Eulerian residual-based variational mul-
tiscale method (ALE-RBVMS) to discretize the incompressible Navier-Stokes equa-
tions and use the level-set method to capture the interface. We validate the numer-
ical results obtained from the ALE-RBVMS computation with experimental data.
We show that these results significantly improve upon those acquired from other
CFD codes. This demonstrates the viability of the framework for simulations in
ship hydromechanics.
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1
I N T R O D U C T I O N

The first numerical simulation was made by Richardson in 1922 for weather predic-
tion. However, it is made by hand rather than computers. Although the result of
this first try diverged, it is still a mile stone in the CFD history. Several years later,
computers are applied in CFD simulations which leads to a break through.

To discretize the Navier-Stokes equations, many methods have been proposed.
At the beginning, Direct Numerical Simulation (DNS) is chosen based on people’s
tuition. It proved impossible to simulate high Reynolds number problems, since
the mesh size is scaled with 1/Re4 for unsteady flow. Here Re is the symbol of
the Reynolds Number. To solve this problem, many solutions are created including
the two main branches, Reynolds Averaged Navier-Stokes (RANS) and Large Eddy
Simulation (LES). This is because the turbulence occurs cascade and the smaller
class turbulence behave isotropic, which can be expressed by models based on the
understanding of turbulence behavior. Although the formulations are quite similar
in these two branches, the physical meanings are different. For RANS, it consumes
less computational resources than LES, however it wipes many details out of the
fluid through time average method. Since it is faster than LES, the engineers prefer
to use it. Some famous models such as k − ε model (Jones & Launder 1972) and
k−ω (Wilcox 1988) are developed to fulfill the need of the industry. LES nowadays
are mainly used in the academic domain, which gives more accurate results but
consume more resources. The first LES simulation was made by Smagorinsky 1963

[19] with an eddy viscosity model.

1.1 rbvms and fem

RBVMS was first introduced in [11]. Comparing to those traditional LES methods,
projectors are used in RBVMS to substitute LES filters and this approach saved a
lot of troubles at the same time. The concept is to separate the governing equa-
tions into two scales through a projector. Only the coarse-scale is solved while the
fine scale will be used to solve the residual based variables. In this way, it retains
numerical consistency in the coarse-scale equations and thus permits full rate-of-
convergence comparing to the usual method.

In this thesis and also in our code, the discrete algorithm is Finite Element
Method (FEM). FEM is one of the most prominent numerical simulation techniques
in continuum mechanics. It has successfully been applied in many engineering
problems, especially in solid mechanics. For fluid problems, Finite Volume Method
(FVM) is mostly used in the previous history. However, in this thesis, since a ship
will be studied, which means extremely complicated geometry, FEM becomes our

1



2 introduction

Figure 1.1: US Navy Combatant, DTMB 5415M

first choice based on its advantage of the description of geometry.

1.2 dtmb

In this thesis, benchmark DTMB 5415M is used to for our validation. DTMB 5415M
is a famous standard US Navy combatant. Its geometry and public data can be
downloaded from website 1. Figure 1.1 is the picture from its website and it is clear
to find that DTMB 5415M has a bulb bow, which means a very complex geometry.
This is the reason that we choose FEM. The experimental data and some famous
hydrodynamic and CFD software results are reported in [21] and [22].

1.3 software

Usually people would like to use some commercial software to do a CFD simula-
tion. However, there is no such commercial software using RBVMS theory in the
market now. And also it is quite expensive to use an LES method in an engineer-
ing problem. Therefore, we decided to use the RBVMS code which was built by
University of California, San Diego (UCSD) several years ago. It allows large MPI
separation which hugely decreases the time consuming in simulations. The code is
compiled with the Fortran language. And there are other options such as Phython
and C++.

Besides the RBVMS code, many other software are used to accomplish this the-
sis. The geometry is recorded in a Rhino file with a .igs format. A software called
Gmsh is used for generating the mesh and another software named Metis is used
to partition our mesh. Paraview is applied in this thesis as the post-processing soft-
ware.

1.4 challenges in rbvms

In traditional LES methods, an eddy viscosity is applied in the resolved fine scales
to represent turbulent dissipation, which introduces a consistency error. This makes
the consistency in the coarse scales not fully retained. Additionally, the energy
transfer to unresolved modes is too small when the discretization is very coarse. To

1 US Navy Combatant, DTMB 5415:
http://www.simman2008.dk/5415/5415_geometry.htm

http://www.simman2008.dk/5415/5415_geometry.htm


1.5 objective and outline 3

overcome these two mainly shortcomings, this RBVMS method is created to cap-
ture all scales consistently and to avoid use of any ad hoc devices, such as eddy
viscosity.

However, some other challenges appear in the process of derivation. The only
approximation is made in the expression of the fine scale solution when the de-
composition is performed in time and space. To make the fine scale approximation
analyzed in a framework, an assumption of infinite perturbation series expansion
is proposed to treat the fine scale nonlinear term in the fine scale equation. Ac-
cording to this assumption, with the smaller of fine scales, the expansion should
converge rapidly. With combining a matrix Green’s function[8], this theory is ex-
pected to to give an exact formal solution of the fine scale Navier Stokes equations.
Nevertheless, it is not easy to solve NS equations analytically in a such way. Some
approximations will be employed in practical problem solving. Reader can consult
this content in [3] for more detail.

1.5 objective and outline

The final objective of this master thesis is performing the validation of a DTMB
5415M ship in vertical motion in a real scale using the RBVMS code. Before this, a
wave simulation should be done to decide the grid size and the parameters in the
input file. Based on these parameters, many optimization method will be tested to
speed up our simulation time and ensure a good simulation result.

There are three parts with seven chapters in total and the work of this master
thesis will be introduced step by step.

In the first part Chapter 2, the governing equations of free-surface air-water mod-
eling will be introduced. At the beginning, the derivation will start with Navier-
Stokes equations in section 2.1. Then the Arbitrary Lagrangian-Eulerian method is
applied to our governing equations to make the ship move in a fix domain. In sec-
tion 2.3, the continuous level set method is discussed to separate the whole domain
into two parts, the air and the water, and create a surface flow. Till now, the whole
chapter is in a continuous state which means our governing equations are continu-
ous. In Chapter 3, the governing equations will be discretized in space. Therefore,
in section 3.1 the RBVMS method will be introduced and some assumptions are
made here to approximate the exact solution. In section 3.2, after discretizing the
Navier-Stokes equations, level set function will also be discretized in the same way.
In section 3.3, to make smooth the change from the water to the air, a regularized
Heaviside function will be introduced. Later, in section 3.4, a technology call re-
distancing is presented to optimize the level set method. In section 3.5, with the
above derivation, the mass is not balanced because of the re-distancing method.
Therefore, another formulation is added to correct the mass balance. In section 3.6,
an additional term called discontinuity capturing term will be added in our gov-
erning equation to avoid the appearance of wiggles. At the end, in section 3.7, the
ship motion equation will be written to close our formulation group. After spacial
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discretization, our time integration method will be introduced in Chapter 4. Here,
General-α method is chosen in section 4.1. In section 4.2 the level set time integra-
tion method will be introduced.

Part 2 is about the simulation results calculated by our code in comparison with
the benchmark DTMB 5415M ship. In Chapter 5, a wave simulation is demon-
strated first to give the feeling of parameter set and test our code. In section 5.1,
an introduction of the wave simulation will be given. In section 5.2, The boundary
conditions and test method will be introduced. In section 5.3 some methods are
used to optimize the simulation and improve our results. Based on this simulation,
it is much easier to forward to ship simulation and save a lot of computational
time. In section 5.4, the final parameter setting will be given to end this chapter.
In chapter 6, the simulation of DTMB 5415M ship is performed. At the beginning
in section 6.1, some detail information of our study case is introduced. In section
6.2, the mesh will be decided based on wave simulation. Later in section 6.3, the
simulation results of the DTMB 5415M ship are shown. The results will be com-
pared with experimental results and another CFD software results in heave and
pitch motion. To make our simulation more reliable, in section 6.4, the mesh con-
vergence will be studied. In section 6.5, the error estimation will be shown based
on the study of section 6.4. For Chapter 7, an conclusion will be made according
to our simulation results and some recommendations are given for the future study.

Part 3 is the appendix about some concepts, formulations and technologies used
in our code. Appendix A gives the shape function of our code and a small introduc-
tion of IGA will be given as additional background knowledge which is considered
good for future study. Appendix B and appendix C will introduce GMRES technol-
ogy and Newton iteration separately.



Part I

N U M E R I C A L M E T H O D O L O G Y

This part is divided into three chapters. Chapter 2 is about the govern-
ing equations in this thesis in a continuous form. The Navier-Stokes
equations are introduced in the beginning and then the ALE method
is applied to the NS equations. At the end, the level set method is dis-
cussed to capture the free surface. The formulas in this chapter are all in
a continuous form. In Chapter 3, the spatial discrete formulations of the
governing equations are performed using the RBVMS method. Chapter
4 presents the time integration method for which the Generalized-α is
employed.





2
G O V E R N I N G E Q U AT I O N S O F F R E E - S U R FA C E F L O W

In this chapter, three sections will be introduced step by step. At the very begin-
ning, the derivation of Navier-Stokes is written to give readers our initial governing
equations of this thesis. Although many books have already shown the process of
derivation, section 2.1 just gives its definition based on author’s physical under-
standing. In section 2.2, ALE approach is written to make the ship moves in a fixed
domain. In section 2.3 a method of tracking free surface, called Level Set method,
is illustrated. One thing should be mentioned is that all of the equations in this
chapter is in a continuous form. No assumptions and discrete technology is used
here.

2.1 navier-stokes equation

To derive Navier-Stokes equation, material derivative should be introduced first :

D

Dt
=
∂

∂t
+u · ∇. (2.1)

Here D
Dt is the material derivative and u is fluid velocity. The blue color indicates

that it is convective velocity. ∇ represents gradient operator and t means time.

For structure study, Lagrangian description method is often chosen based on its
convenience for study. However, in fluid mechanics, people usually do not concern
each particles movement and meanwhile it is not convenient to track the material
in fluid experiments. Therefore, people normally use Eulerian description to study
fluid. The material derivative can transfer the coordinate system from Lagrangian
description to Eulerian description.

The NS equations are derived from conservation principles. For incompressible
flow, mass conservation and momentum conservation rules are used. While for
compressible flow, the energy conservation equation will be considered, where the
density is not a constant. One more unknown variable means the need of one more
equation. The formula below is the Reynolds Transport Theorem. From a physical
understanding, it means the sum of changes of some extensive property equals the
lost or gained through boundaries plus source or sink,

d

dt

∫
Ω

LdV = −

∫
∂Ω

Lu ·ndA−

∫
Ω

QdV . (2.2)

Here L is some extensive property defined over a control volume Ω and Q repre-
sents sources and sinks. ∂Ω represents domain boundary. n is the normal vector
that is outside oriented.

7



8 governing equations of free-surface flow

Applying divergence theorem to the first term on the right side of Equation 2.2,
then,

d

dt

∫
Ω

LdV = −

∫
Ω

∇ · (Lu)dV −

∫
Ω

QdV ,∫
Ω

(
∂L

∂t
+∇ · (Lu) +Q)dV = 0,

∂L

∂t
+∇ · (Lu) +Q = 0.

From the first equation to the second equation , Leibniz’s rule is used to shift total
derivative to partial derivative.

For mass conservation, L will be substituted by ρ and Q will be zero since there
is no source or sink term,

∂ρ

∂t
+∇ · (ρu) = ∂ρ

∂t
+ ρ∇ ·u+u · ∇ρ = 0. (2.3)

In incompressible flow, the density is a constant, which means its time derivative is
zero, then the mass conservation formulation (also known as continuity equation)
will be,

∇ ·u = 0. (2.4)

Momentum conservation equation is much more complicated, where force will be
calculated as sorce term. Then, L will be substituted by ρu, and this u represent
momentum velocity.

∂ρu

∂t
+∇ · (ρuu) + (−∇ · σ− ρg) = 0. (2.5)

Here, σ is Cauchy stress tensor and g is gravity vector. For the first two terms, it
can be expressed in another way since it is incompressible flow:

∂ρu

∂t
+∇ · (ρuu) = ρ∂u

∂t
+u

∂ρ

∂t
+ ρu∇ ·u+ ρu · ∇u+uu · ∇ρ

= u(
∂ρ

∂t
+ ρ∇ ·u+u · ∇ρ) + ρ(∂u

∂t
+u · ∇u).

The first term on the right hand side equals to zero according to mass conservation
Equation 2.3. For the force term it can be express in another way:

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 = −

p 0 0

0 p 0

0 0 p

+

σxx + p τxy τxz

τyx σyy + p τyz

τzx τzy σzz + p


= −pI+ T .

Here I is identity matrix, and T is the deviatoric stress tensor, p is the mean normal
strss. The stress tensor can be expressed as the sum of two stress tensors, namely:
the hydrostatic stress tensor and the deviatoric stress tensor.

p = −
1

3
(σxx + σyy + σzz).
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Then it becomes,

ρ(
∂u

∂t
+u · ∇u) = ρDu

Dt
= −∇p+∇ · T + ρg. (2.6)

Here, readers may notice that material derivative is used here. If Newton second
law is used here to derive momentum equation, this material derivative is just the
right hand side of equation F = ma in an Eulerian form. For Newtonian fluid, A fluid normally

can be defined as a
Newtonian fluid or a
non-Newtonian
fluid. The difference
is that in the
Newtonian fluid, the
viscous stresses are
linearly proportional
to the local strain
rate, τ = µdudy .
Which means if µ is
a constant, the fluid
is a Newtonian fluid.
However, no real
fluid fits the
definition perfectly,
many common
liquids and gases,
such as water and
air, can be assumed
to be Newtonian for
practical
calculations under
ordinary conditions.

τ ∝ ∂u
∂y . There are three assumptions made here: 1) The stress tensor is a linear

function of the strain rates. 2) The fluid is isotropic. 3) For a fuild at rest, ∇ · T = 0.
This results in,

Tij = µ(
∂ui
∂xj

+
∂uj

∂xi
) + δijλ

∂u

∂xk
.

Here δij is the Kronecker delta, when i = j δij = 1, otherwise if i 6= j δij = 0. µ and
λ are proportionality constants associated with the assumption that stress depends
on strain linearly, known as viscosity. And λ is called bulk viscosity, which most
common approximation is λ ≈ −2/3µ. For incompressibe flow, the last term equals
to zero. Then the Navier-Stokes equation will be written as below,

ρ(
∂u

∂t
+u · ∇u) = −∇p+∇ · µ(∇u+ (∇u)T ) + ρg, (2.7)

or,

∂u

∂t
+∇ · (u⊗u) = −∇P+∇ · ν(∇u+ (∇u)T ) +g, (2.8)

where ⊗ is the dyadic product symbol, and P = p/ρ.

This is non-conservation format of Navier-Stokes equation. In some other Navier-
Stokes equation derivation, conservation form is used. If your solution is expected
to be smooth, then non-conservative may work. For fluids, this is shock-free flows.
If you have shocks, or chemical reactions, or any other sharp interfaces, then the
conservative form can be used. It shows at below:

∂ρu

∂t
+∇ · (ρu⊗u) = −∇p+∇ · µ(∇u+ (∇u)T ) + ρg.

Here ν is kinetic viscosity and ν = µ/ρ. In this thesis, non-conservation form is
used to derive our formulation, and also the same in the code. It is quite similar in
conservation derivation, reader can derive it by yourself. In Equation 2.7, which is
used in our code, although ρ is a constant in single fluid study, it will be still kept in
the governing equation. Because this is a two phase flow with a free surface which
means the density will change from water to air through this surface. Without this
density, the whole equation is not correct.

2.2 arbitrary lagrangian-eulerian (ale) method

Although Eulerian description usually used in a fluid study, it has its own weak-
ness to present the flow in our problem. For purely Eulerian description, precise



10 governing equations of free-surface flow

Figure 2.1: Eulerian domian, Lagrangian domian and ALE domian

interface definition and high resolution of flow details are not possible. However,
this method can handle large distortion problems easily. This is totally the oppo-
site of purely Lagrangian description. It is quite easy to track the free surfaces and
interfaces between different materials for Lagrangian description. And "It also fa-
cilitates the treatment of materials with history-dependent constitutive relations",
quote from [7]. However, for large distortion problems, Lagrangian description is
not powerful anymore.

Therefore, people created a new method to describe the flow, namely Arbitrary
Lagrangian Eulerian method. It combines the best features of both the Lagrangian
and the Eulerian approaches. Using this ALE method can solve large distortions
problems while allowing for a clear delineation of free surfaces and fluid-fluid in-
terfaces easily. The formula below is introduced in paper [7].

Here a short introduction is written to give readers a basic feeling of ALE. Three
symbols (ϕ, Φ and Ψ) are used to express the applications among three different
coordinate systems, ϕ is the application function from material domain (Eulerian
domain) to spatial domain (Lagrangian domain),Φ is the application function from
referential domain (ALE domain) to material domain and Ψ is the application func-
tion from referential domain to spatial domain. This is illustrated by Figure 2.1.
Their expressions are shown below,

∂ϕ

∂(X, t)
=

(
∂x
∂X u

0T 1

)
,

∂Φ

∂(χ, t)
=

(
∂x
∂χ û

0T 1

)
,
∂Ψ−1

∂(X, t)
=

(
∂χ
∂X w

0T 1

)
. (2.9)
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The velocity in each domain can be expressed as,

u(X, t) =
∂x

∂t

∣∣∣∣
x

,

û(χ, t) =
∂x

∂t

∣∣∣∣
χ

,

w =
∂χ

∂t

∣∣∣∣
X

.

(2.10)

The relation among velocities u, û and w can be obtained by differentiation ϕ =

Φ ·Ψ−1, therefore,

u = û+
∂x

∂χ
·w. (2.11)

Hence, convective velocity is

c = u− û =
∂x

∂χ
·w. (2.12)

This will be the new convective velocity of fluid. At the beginning, the fluid con-
vective velocity is expressed as u, now it can be substitute by this c or u− û. After
applying ALE, Equation 2.7 becomes:

ρ(
∂u

∂t
+ (u− û) · ∇u) = −∇p+∇ · µ(∇u+ (∇u)T ) + ρg. (2.13)

In the above equation, û is the domain velocity. For example, in our simulation, the
Froude number is 0.248, which means ship velocity is 9.256m/s. Then the domain
velocity is also 9.256m/s, and ship will move in the domain and it will not step out
of the domain gradually.

2.3 continuous level set method

For simulating a free surface flow, a scalar, named φ, is added into the governing
equation. For this part, reader can refer paper [1], [2] and [17]. It is assumed that
the air-water interface is moving with the fluid material particles, which gives us
an additional convection equation for the level set φ:

∂φ

∂t
+ (u− û) · ∇φ = 0. (2.14)

Reader should notice that in Equation 2.14, ALE method is applied into the equa-
tion.

The scalar φ is used to separate the water domain and air domain. Let’s set the
domain to Ω ∈ R, and ∂Ω denotes its boundary, ∂Ωd denotes essential boundary
condition, also known as Dirichlet boundary condition, and ∂Ωn denotes natural
boundary condition. u : Ω ∈ R3 is the flow velocity, and let’s define the inflow and
outflow parts at boundary as below,

∂Ω− = {x ∈ ∂Ω|u ·n < 0},
∂Ω+ = {x ∈ ∂Ω|u ·n > 0}.

(2.15)
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Here n is the normal vector pointed outside. And p : Ω ∈ R. As we discussed
before, for a free surface flow studied in this thesis, a scalar φ is built to define air
domain and water domain, φ : Ω ∈ R moving with the fluid, and also define its
surface as below,

Ωw = {x|φ(x, t) > 0},

Ωa = {x|φ(x, t) < 0},

Γaw = {x|φ(x, t) = 0}.

For the air and the water, the density and viscosity function can be expressed in
the following way separately,

ρ = ρwH(φ) + ρw(1−H(φ)),

µ = µaH(φ) + µa(1−H(φ)),

where,

H(φ) =


0 if φ > 0
1
2 if φ = 0

1 if φ < 0

 . (2.16)

Equation 2.16 describes the Heaviside function.

Some reader may find that the above function has a problem, when the code
simulates the free surface, there is a jump value of density and viscosity from the
water to the air, which makes the solution discontinuous and it is not able to solve.
To fix this problem, a regularized Heaviside function is developed to avoid this
problem. It will be introduced in Chapter 3. Therefore, our governing equations
become,

ρ(
∂u

∂t
+ (u− û) · ∇u) +∇p−∇ · µ(∇u+ (∇u)T ) = ρg,

∇ ·u = 0,
∂φ

∂t
+ (u− û) · ∇φ = 0.

(2.17)

This is the final form of our continuous governing equations, however, it is not the
final form of our discrete governing equations. After applying RBVMS method to
discrete our governing equation, it will become much more longer, because of the
existence of additional terms generated by RBVMS. Furthermore, additional dis-
continuity capturing terms will be added into the governing equations to prevent
the appearance of wiggles. Therefore, there is still a long way to get the end.



3
S PAT I A L D I S C R E T E F O R M U L AT I O N

This chapter is the main chapter of our first part. It consists of 7 different sections
which will present the spatial discritization of our governing equation. In section
3.1, RBVMS method is introduced through 3 subsections. The weak form of our
governing equation is introduced first, then the VMS method and its assumptions
are followed. In section 3.2, the VMS form of level set function is written. In section
3.3, to solve the problem in section 2.3, regularized Heaviside function is intro-
duced here to smooth the free surface. Then, in section 3.4, re-distancing method is
introduced to re-define the free surface. And a penalty term is added to maintain
the free surface. Since the re-distancing method is used here, a new problem will
come up. The mass conservation equation will not be balanced. Therefore, in sec-
tion 3.5 a new equation is added to re-balance our mass conservation equation. In
section 3.6, the concept of discontinuity capturing will be introduced, the reason of
creating this term in equation is to avoid wiggles in the results. At last, in section
3.7, since a ship is simulated in waves, the ship motion equation will be shown to
close our equation group.

3.1 rbvms

RBVMS is proposed by Hughes, Thomas JR and Mazzei, Luca and Jansen, Kenneth E in
year 2000 [11], and other important papers are Hughes, Thomas JR 1995 [9], Hughes,
Thomas JR et al 1998 [14] and Y Bazilevs 2007 [3]. It is a kind of large eddy simula-
tion but using a projector not a filter. Furthermore, it does not employ any ad hoc
devices, such as eddy viscosity. After many experts’ tests, it appears that it has an
advantage of approximating advective and diffusive process than the other meth-
ods.

Traditionally, spatial filtering has been used to separate the scales in a turbu-
lent simulation. The VMS method has several advantages over classical large-eddy
simulation.The variational projection and a priori scale separation provide a solid
mathematical framework for the development of sub grid-scale models. Further-
more, the method can be used to apply different modeling assumptions to differ-
ent scales in the simulation. In this section, a detailed derivation process will be
introduced.

3.1.1 Weak Form Equation

Before changing our equations into a weak form formulation, let’s define solution
space and weighting function space first. Let V denotes the discrete solution space
for the velocity-pressure-level set {u,p,φ}, and let M denotes the discrete weighting

13



14 spatial discrete formulation

function space for linear momentum, continuity and level set equations {w,q,η}.

For simplification of the formulation, the governing formulation will be express
in a variational form, like (A,B)Ω =

∫
ΩABdΩ, which means it can be square

integral, then the governing equations in a integral format can be written as below,

(
w, ρ

∂u

∂t

)
Ω

+ (w, ρ(u− û) · ∇u)Ω + (w,∇p)Ω −
(
w,∇ · µ

(
∇u+ (∇u)T

))
Ω

= (w, ρg)Ω ,

(q,∇ ·u)Ω = 0.

(3.1)

Here, level set function is not considered. It will be introduced later. To simplify
the diffusion term,

(
∇u+ (∇u)T

)
/2 will be substituted by ∇su, then it becomes,(

w, ρ
∂u

∂t

)
Ω

+ (w, ρ(u− û) · ∇u)Ω + (w,∇p)Ω − (w,∇ · 2µ∇su)Ω = (w, ρg)Ω ,

(q,∇ ·u)Ω = 0.
(3.2)

After using integration by parts,
∫
Ω f(∇ ·g)dΩ =

∫
Γ (fg) ·ndΓ −

∫
Ω∇f ·gdΩ, Equa-

tion 3.2 becomes,(
w, ρ

∂u

∂t

)
Ω

+ (w, ρ(u− û) · ∇u)Ω − (∇ ·w,p)Ω + (∇sw, 2µ∇su)Ω

− (w, ρg)Ω − (w, 2µ∇su ·n)Γ + (w,p ·n)Γ = 0,

(q,∇ ·u)Ω = 0.

(3.3)

Here, only diffusion term and pressure term used integration by parts. This is be-
cause the unknown variable p is a constant, which does not have C1 continuity.1

And the unknown variable velocity is linear, according to our linear shape function,
which means it does not have C2 continuity. Through this integration by parts, the
continuity of these two terms are decreased.

In the weak form of FEM, there are many branches. Normally people use the
classical method called Garlerkin method, which means the shape function of un-
known variables and weighting functions are the same. For more information of
our shape function, reader can refer Appendix A. For the other methods, like least
square method, is frequently used in energy calculation. Garlerkin method is very
successful in symmetric matrix simulation. However, for asymmetric matrix, it is
not so powerful, therefore SUPG method is invited as the "upwind scheme" in FEM
analysis, which will be introduced in the next section.

1 The smoothness of a function can be expressed by the symbol C, their meanings are shown below:
C0: Curves are continuous.
C1: First derivatives are continuous.
C2: First and second derivatives are continuous.
Cn: First through nth derivatives are continuous
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3.1.2 Variational Multiscale Method

For saving the formulation hand writing, the equation will be changed to another
format. B1(·, ·) express a bilinear form and B2(·, ·, ·) represent a trilinear form, and
the continuity equation and momentum equation can be written into one equation,
as it shows below,

B(W,U) = B1(W,U) +B2(W,U,U) = L(W). (3.4)

Where,

B1(W,U) =

(
w, ρ

∂u

∂t

)
Ω

+ (q,∇ ·u)Ω − (∇ ·w,p)Ω + (∇sw, 2µ∇su)Ω

B2(W,U,U) = (w, ρ(u− û) · ∇u)Ω ,

L(W) = (w, ρg)Ω .

Here we put the continuity equation and momentum equation into one equation
for simplification. To simplify the derivation, in this thesis we assume u = 0 on
the boundary, which means essential boundary condition ∂Ωd and for pressure∫
Ω p(t)dΩ = 0. Therefore the boundary terms are disappeared. However, in the

wave simulation and ship simulation, the velocity has its value on boundaries, for
example at inflow boundary condition, the velocity equals wave x-direction veloc-
ity and for back and forth domain boundary, the velocity equal to domain velocity
in y direction. This will be introduced in Part 2.

Then projector P : V → V will be introduced , for more detail of projector
please refer [12]. Usually there are two types of projector, H and P, H is good for
nonlinear and P is good for this thesis. Then the mesh can be separated into two
parts, coarse mesh and fine mesh by using this projector:

U = PU, U = U+U
′
, (3.5)

B(W,U+U
′
) = L(W) −−−−coarse scale,

B(W
′
,U+U

′
) = L(W

′
) −−−−fine scale.

(3.6)

In the code only the coarse mesh will be solved, while the fine mesh formulation
will be used to calculate U

′
and then substitute the U

′
in the coarse mesh to solve

the whole equation. The detailed functions of these two meshes will be shown
below,

B(W,U+U
′
) =B1(W,U) +B1(W,U

′
) +B2(W,U,U) +B2(W,U,U

′
)+

B2(W,U
′
,U) +B2(W,U

′
,U

′
) = L(W),

B(W
′
,U+U

′
) =B1(W

′
,U) +B1(W

′
,U

′
) +B2(W

′
,U,U) +B2(W

′
,U,U

′
)+

B2(W
′
,U

′
,U) +B2(W

′
,U

′
,U

′
) = L(W

′
).

(3.7)

For the fine mesh it can be rewritten as below,

BU(W
′
,U

′
) +B2(W

′
,U

′
,U

′
) =
{
W
′
,Res(U)

}
V
′ ,V ′∗

, (3.8)
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whereas,

BU(W
′
,U

′
) = B1(W

′
,U

′
) +B2(W

′
,U,U

′
) +B2(W

′
,U

′
,U),{

W
′
,Res(U)

}
V
′ ,V ′∗

= L(W
′
) −B1(W

′
,U) −B2(W

′
,U,U).

Res(U) ∈ V
′∗.

3.1.3 Residual Based Assumption

For this part, reader can find detail in [3]. Physically, it seems reasonable to give an
assumption that the larger the space V , the better the approximation of the fine
scale solution, and the smaller the coarse scale residual Res(U) ∈ V

′∗. However,
it is quite difficult to give a rigorous mathematical justification. Here, based on
this consideration, people suggest a perturbation series expansion to describe the
approximation:

U
′
= εU

′
1 + ε

2U
′
2 + ε

3U
′
3 + · · · =

n∑
k=1

εkU
′
k. (3.9)

Here ε represent the residual, ε = ||Res(U)||V ′∗ . After test, it is satisfied to work
on the most simple and basic end of the approximation spectrum. The idea is
to compute τ, the element-wise stabilization operators. This is why it is called
Residual based simulation, the approximation is based on the residual.

U
′
≈ Ũ

′

=

{
ũ
′

p̃
′

}
≈ −τRes(U

h
), (3.10)

τ =

[
τMI3×3 0

0 τC

]
, Res(Uh) =

{
rM(uh,ph)

rC(u
h)

}
,

ũ
′
= τMrM(uh,ph),

p̃
′
= τCrC(u

h),

rM(uh,ph) = ρ
∂uh

∂t
+ ρ(uh − ûh) · ∇uh +∇ph −∇ · 2µ∇suh − ρg,

rC(u
h) = ∇ ·uh,

τM =

(
4

4t2
+ (uh − ûh) ·G(uh − ûh) +CIν

2G : G

)−1/2

,

τC = (τMg ·g)−1.

U
h

is an assumption of U, where h is related to the mesh size. For the coarse mesh,
the unknown variables U will be approximated by shape functions. In this thesis,
linear shape function is only considered. The derivation of FEM shape function can
be found in Appendix A. The higher order we use, the higher convergence speed
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will be, however, it also costs much more time to compute. In this thesis it is be-
lieved that the linear basic function is enough2.

In above equations, G is a second rank metric tensor, defined as G = ∂ξT

∂x
∂ξ
∂x , and

ξ is reference coordinate. Since the mesh is built by different shape of tetrahedron
and they need to be mapped into the standard tetrahedron to make the simulation
simpler, and this standard tetrahedron is demonstrated in a reference coordinate
system using ξ to express. ThisG formulation express the shift between two coordi-
nates. This will be specified more clearly in the Appendix A. g ·g =

∑3
i=1 gigi and

gi =
∑3
j=1

∂ξj
∂x . CI is a constant, in the code it equals to 144. For the coarse mesh, it

is assumed that term
(
wh, ∂u

′

∂t

)
Ω

and term
(
∇swh, 2µ∇su ′

)
Ω

are neglected. The
last assumption follows from the orthogonality conditions induced by the projec-
tor emanating from the bilinear form describing the viscous term. Therefore, the
equation becomes,

B(W,U+U
′
) ≈ Bh1 (W

h
,U
h
) + B̃h1 (W

h
,U

′
) +Bh2 (W

h
,U
h

,U
h
)+

Bh2 (W
h

,U
h

,U
′
) +Bh2 (W

h
,U

′
,U
h
) +Bh2 (W

h
,U

′
,U

′
) = L(W

h
).

(3.11)

B̃h1 (W
h

,U
′
) applied above assumptions. When the equation is expended, it be-

comes,(
wh, ρ

∂uh

∂t

)
Ω

+
(
wh, ρ(uh − ûh) · ∇uh

)
Ω

−
(
∇ ·wh,ph

)
Ω

+
(
∇swh, 2µ∇suh

)
Ω
+(

qh,∇ ·uh
)
Ω

−
(
∇ ·wh,p

′
)
Ω

+
(
qh,∇ ·u ′

)
Ω

+
(
wh, ρ(u

′
− ûh) · ∇uh

)
Ω
+(

wh, ρ(uh − ûh) · ∇u ′
)
Ω

+
(
wh, ρ(u

′
− ûh) · ∇u ′

)
Ω

=
(
wh, ρg

)
Ω

.

Then, put the residual equation into above function, it becomes,(
wh, ρ

∂uh

∂t

)
Ω

+
(
wh, ρ(uh − ûh) · ∇uh

)
Ω

−
(
∇ ·wh,ph

)
Ω

+
(
∇swh, 2µ∇suh

)
Ω

+
(
qh,∇ ·uh

)
Ω

+
(
∇ ·wh, τCrC(uh)

)
Ω

−
(
qh,∇ · τMrM(uh,ph)

)
Ω

−
(
wh, ρ(τMrM(uh,ph) + ûh) · ∇uh

)
Ω

−
(
wh, ρ(uh − ûh) · ∇τMrM(uh,ph)

)
Ω

+
(
wh, ρ(τMrM(uh,ph) + ûh) · ∇τMrM(uh,ph)

)
Ω

=
(
wh, ρg

)
Ω

.

Now, we are quite close to our final discrete form of governing equation. The level
set function in a VMS form will be introduced in the next section. And also, when
the above equation is applied, there appears wiggles in the results in some sharp
layers. Then some other artificial terms should be added into the equation to wipe
the wiggles from the solution. In section 3.6, discontinuity capturing terms are in-
troduced.

2 One more thing, there is a new technology called IGA, which is developed several years ago. It has
many kinds and NURBS is frequently used in CAE. It is quite similar with FEM, however, it can save
a lot of time from CAD to CAE with respect to refinement. The basic and simple derivation is also
given in Appendix A
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3.2 level set in vms form

For level set function, there is no diffusion term in the equation. It is only a con-
vection equation, therefore, its VMS form is the same as SUPG form. However, in
Navier-Stokes equations, the VMS form is not the same as its SUPG form. VMS
form is "bigger" than the SUPG form normally. Reader should notice this.

∂φ

∂t
+ (u− û) · ∇φ = 0. (3.12)

Equation 3.12 is known from Chapter 2. After applying VMS, it becomes,(
ηh,

∂φh

∂t
+ (uh − ûh)∇φh

)
Ω

+

(
τφ(u

h − ûh)∇ηh,
∂φh

∂t̃
+ (uh − ûh)∇φh

)
Ω

.

(3.13)

For this part readers can consult [4]. The second term on the left-hand side results
from the VMS method (which is here an SUPG method). The VMS formulation
parameter τφ in Equation 3.13 is defined as,

τφ =

(
4

4t̃2
+ (u− û) ·G(u− û)

)−1/2

.

After discretizing the level set function, the majority job of our spacial discretiza-
tion is done. However, we still can not use above equations into our computer code
since other problems will occur. In the next section, we will modify the original
Heaviside function to adapt our free surface problem by creating a regularized
Heaviside function. Our level set factor φ will be used to separate the domain
smoothly.

3.3 regularized heaviside function

In Chapter 2, the density and viscosity are given by:

ρ = ρwH(φ) + ρw(1−H(φ)),

µ = µaH(φ) + µa(1−H(φ)),
(3.14)

We now approximate Equation 3.14 by regularizing the Heaviside function.

ρ = ρwHε(φ) + ρw(1−Hε(φ)),

µ = µaHε(φ) + µa(1−Hε(φ)).
(3.15)

Here, Hε is the regularized Heaviside function. The reason for using such a func-
tion is to change the density smoothly near the surface. ε is a small value depend-
ing on the mesh size. Figure 3.1 shows the detail with a random ε = 0.5 and the
function shows below,

Hε(φ) =


0 ifφ 6 −ε
1
2(1+

φ
ε + 1

πsin(
φπ
ε )) if|φ| < ε

1 ifφ > ε

 ,

ε = α

(
∇φh

||∇φh||
·G ∇φ

h

||∇φh||

)−1/2

.

(3.16)
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Figure 3.1: Heaviside function plot and regularized Heaviside function plot

The bold character G is introduced before as a sencond order rank metric tensor.
From above equation it is easy to find that ε is inversely proportional to the magni-
tude of the gradient of level set.

3.4 re-distancing

In this section, a new numerical technology will be introduced to overcome the
shortcoming associated with the direct application of the above discrete procedures,
namely, excessive interface distortion. In order to maintain long-time integration
accuracy and overall stability of the formulation, it needs to insist that the level
set function satisfies the signed-distance property, which controls the width of the
interface layer. To prevent excessive motions of the air-water interface during the
re-distancing procedure, it is recommended to add a penalty term, which will be
introduced in subsection 3.4.2.

3.4.1 Re-distancing Method

For this part, reader can consult paper [1], [2] and [16]. To ensure the level set
function satisfies the signed-distance property, it is needed to make use of the
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Eikonal partial differential equation3 in the air and the water sub-domains subject
to zero boundary conditions at the air-water interface, that is,

||∇φd|| = 1 inΩa,

||∇φd|| = 1 inΩw,

φd = 0 on Γ .

In the water domain, the distance has a positive value, while in the air domain the
distance has a negative value. In another word, if ||∇φ|| = 1, then it means it is in
the fluid domain, ∇φd = φ, nothing will be changed. If ||∇φ|| 6= 1, which means
it is on the free surface, then ∇φd 6= φ. Before discretizing in space, we need to
introduce a "pseudo-time" variable t̃ to re-state the above problem and find φd:

∂φd

∂t̃
+ sign(φ)(||∇φd||− 1) = 0,

φd(x, 0) = φ(x, t).
(3.17)

Whereas,

sign(φ) = Sε(φd) = 2Hε(φd) − 1. (3.18)

From above equation, readers can find our sign function is built by Heaviside func-
tion. It is just some small modifications applied on Heaviside function.

When it is written in a SUPG form, it becomes,(
ηhd,

∂φhd
∂t̃

+ Sε(φ
h
d)(||∇φhd||− 1)

)
Ω

+

(
τφda · ∇η

h
d,
∂φhd
∂t̃

+ Sε(φ
h
d)(||∇φhd||− 1)

)
Ω

.

(3.19)

This is semi-discrete, which means only spatial discrete and no time discrete. It is
assumed time derivative of φ is zero. Then its residual and τφ will becomes,

τφd =

(
4

4t̃2
+a ·Ga

)−1/2

.

In the above equation, a is expressed by the following equation:

a = Sε(φ)
∇φhd
||∇φhd||

.

Now the discretized governing equation becomes,(
wh, ρ

∂uh

∂t

)
Ω

+
(
wh, ρ(uh − ûh) · ∇uh

)
Ω

−
(
∇ ·wh,ph

)
Ω

+
(
∇swh, 2µ∇suh

)
Ω
+(

qh,∇ ·uh
)
Ω

−
(
∇ ·wh,p

′
)
Ω

+
(
qh,∇ ·u ′

)
Ω

+
(
wh, ρ(u

′
− ûh) · ∇uh

)
Ω
+(

wh, ρ(uh − ûh) · ∇u ′
)
Ω

+
(
wh, ρ(u

′
− ûh) · ∇u ′

)
Ω

+

(
ηhd,

∂φhd
∂t̃

+ Sε(φ
h
d)(||∇φhd||− 1)

)
Ω

+

(
τφda · ∇η

h
d,
∂φhd
∂t̃

+ Sε(φ
h
d)(||∇φhd||− 1)

)
Ω

=
(
wh, ρg

)
Ω

.

3 The eikonal equation is ||∇φd|| = 1, a non-linear partial differential equation subject to the interior
constraint given by φd = 0. For more information, readers can consult paper [24].
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This re-distancing approach is first proposed in [20] to solve incompressible two
phase flow problem. Then this technology is used in many applications of simula-
tion. After the introduction of re-distancing method, another term call penalty will
be added to maintain the interface in the next section.

3.4.2 Penalty Term

After applying re-distancing method, there is till one term, namely penalty term,
should be added in the equation to prevent excessive motions of the air-water
interface. This penalty term formula, in paper [2] and also the same in the code,
shows below,

+(ηhd, λpenH
′
ε(φ

h)(φhd −φh))Ω. (3.20)

In Equation 3.20, λpen is a constant which will be changed in our parameter file.
H
′
ε(φ

h) is our regularized Heaviside function scales as 1/h in the interface layer
and it equals to zero outside of the interface. Hence the term is only active where
it is necessary.

Then, finally our governing equations become:(
wh, ρ

∂uh

∂t

)
Ω

+
(
wh, ρ(uh − ûh) · ∇uh

)
Ω

−
(
∇ ·wh,ph

)
Ω

+
(
∇swh, 2µ∇suh

)
Ω

+
(
qh,∇ ·uh

)
Ω

+
(
∇ ·wh, τCrC(uh)

)
Ω

−
(
qh,∇ · τMrM(uh,ph)

)
Ω

−
(
wh, ρ(τMrM(uh,ph) + ûh) · ∇uh

)
Ω

−
(
wh, ρ(uh − ûh) · ∇τMrM(uh,ph)

)
Ω

+
(
wh, ρ(τMrM(uh,ph) + ûh) · ∇τMrM(uh,ph)

)
Ω

+

(
ηhd,

∂φhd
∂t̃

+ Sε(φ
h
d)(||∇φhd||− 1)

)
Ω

+

(
τφda · ∇η

h
d,
∂φhd
∂t̃

+ Sε(φ
h
d)(||∇φhd||− 1)

)
Ω

+ (ηhd, λpenH
′
ε(φ

h)(φhd −φh))Ω

=
(
wh, ρg

)
Ω

.

This re-distancing method somehow will cause another problem, the unbalance of
mass conservation equation. Although the deficit of mass is quite small, after many
iterations it can not be ignored. And if the mesh is too coarse, the mass loss will
be a serious problem. Therefore, a correction of mass should be considered which
will be introduced in the next section.

3.5 mass balance

There are mainly two reasons to cause the mass loss. One reason is may be caused
by both convection and re-distancing of the level set. The amount of mass loss de-
pends on many factors. If the mesh is too coarse, then there will be large amount
of mass loss. The other reason is that when the discrete governing equations are
integrated for a long time period. Minor mass loss for each time step will accumu-
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lated for a large mass error. Therefore, a mass correction procedure is necessary.
The global mass conservation for a moving domain is:

d

dt

∫
Ωt

ρdΩ+

∫
Γt

ρ(u− û) ·ndΓ = 0. (3.21)

For the boundary integral approximation, the midpoint rule is used rule which
yields:∫
Ωn+1

ρn+1dΩ−

∫
Ωn

ρndΩ+4tn
∫
Γn+1/2

ρn+1/2(un+1/2− ûn+1/2) ·nn+1/2dΓ = 0.

(3.22)

This procedure ensures the global mass balance at every time step and for more
information readers can consult [2]. After this section, the governing equations
should be applicable for numerical simulation. However, the wiggles appear along
sharp layers which makes the solution not perfect. In the next section, we will find
a way to fix the problem by using discontinuity capturing terms.

3.6 discontinuity capturing

The wiggles in the solution of a simulation are found many years ago with FVM es-
pecially in convection dominated problem. People usually use the Upwind scheme
with adding an artificial diffusion term to solve such a problem. However, there
is no "Upwind scheme" in FEM until streamline upwind/Petrov-Galerkin (SUPG)
method is developed by Brooks and Hughes [4]. This method gives robust results
of a classical Upwind method. "Unfortunately, the SUPG method does not preclude
spurious oscillations localized in narrow regions along sharp layers and hence vari-
ous terms introducing artificial crosswind diffusion in the neighbourhood of layers
have been proposed to be added to the SUPG formulation." quoted in [15]. In this
paper, it introduced different kinds of discontinuity capturing methods. In this mas-
ter thesis, the RBVMS method also uses the SUPG method. Then in the same case,
two additional discontinuity-capturing terms, in the air and the water separately,
should be added into our governing equations to prevent the appearance of the
wiggles:

+

∫
Ω

∇whκns∇suhdΩ,

+

∫
Ω

∇ηhκls∇φhdΩ.
(3.23)

where κns and κls are tensor-valued, residual-based, discontinuity-capturing vis-
cosities. The derivation of these two terms can be found in paper [6], which gives
another way to derive these discontinuity capturing terms.
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More specifically,

κns = Cns
||rM(uh,ph)||
uref
√
G : G

I,

κls = Cls
||∂φ∂t + (uh − ûh) · ∇φh||√

∇φh ·G∇φh
I.

(3.24)

However, in the code, there is a small difference. There is no uref in κns and an
extremely small number is added in κns denominator to avoid NaN,

κns = Cns
||rM(uh,ph)||√

G : G
I,

κls = Cls
||∂φ∂t + (uh − ûh) · ∇φh||√
∇φh ·G∇φh + 1× 10−15

I.
(3.25)

Whereas,

Cns = Hε(φ)Cns_w + (1−Hε(φ))Cns_a.

Cns_w and Cns_a are the parameters in our input file which represent the air and
water constant separately. In the level set function, after applying SUPG, a discon-
tinuity capturing term is also added. In the code it shows that its discontinuity
capturing term looks like below,

+

∫
Ω

∇ηhdκLSRD∇φhddΩ

κLSRD = CLSRD
|sign(φ)(||∇φd||− 1)|√
∇φ ·G∇φ+ 1× 10−15

.

These constants above, like Cns_w and Cns_a and CLSRD, are the parameters in
our parameter input file. Their value will be studied in Chapter 5.

3.7 ship motion equation

Firstly, let’s define Ω0 as the reference configuration. Let Ωt denote its current
configuration. Let Z denote the reference configuration coordinates of the rigid
body and let z denote the current configuration coordinates of the rigid body. d
is the displacement. The rigid body kinematics is composed of translation and
rotational motions and can be summarized as,

z = Q(Z−Z0) +Z0 +d0. (3.26)

For more reference and how to get Q reader can consult paper [13]. The displace-
ment can be written as,

d = z−Z = Q(Z−Z0) +Z0 −Z+d0 = (Q− I)(Z−Z0) +d0. (3.27)

Then its velocity can be written as,

ḋ = Q̇(Z−Z0) + ḋ0. (3.28)
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Let’s take the first equation into this equation, then it becomes,

ḋ = Q̇
(
Q−1(z−Z0 −d0)

)
+ ḋ0. (3.29)

Here another symbol z0 will be used to substitute Z0 +d0, therefore,

ḋ = Q̇Q−1(z− z0) + ḋ0 = Ω(z− z0) + ḋ0,

Ω = Q̇Q−1 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
(3.30)

Therefore, Q̇ = ΩQ. Then a vector ω = [ω1,ω2,ω3]T can be used to express the
velocity,

ḋ =ω× (z− z0) + ḋ0. (3.31)

These variables represent the translation velocity and rotational velocity of the ship,
which means the 6 DOF (degree of freedom) of the ship. The dynamics of the
rigid body is governed by the equations of balance of global linear and angular
momentum, they are,

d

dt

∫
Ω

ρḋdΩ = F,

d

dt

∫
Ω

(z− z0)× ρḋdΩ =M.
(3.32)

In Equation 3.32, F and M are the global force and moment vectors acting on a
rigid body. They can be expressed by:

F = mg+

∫
Γi

hdΓ

M =

∫
Γi

(z− z0)×hdΓ
(3.33)

Here, m is the mass of object and h is the traction vector. In our problem, h is
the fluid traction. Introducing the rigid body kinematics into the linear and angu-
lar momentum balance equations, we obtain the following system of six ordinary
differential equations,

d

dt
(mḋ0) = F

d

dt
(Jtω) =M

(3.34)

Whereas,

Jt = QJ0Q
T

J0 =

∫
Ω0

ρ(Z−Z0) · (Z−Z0)IdΩ−

∫
Ω0

ρ(Z−Z0)⊗ (Z−Z0)IdΩ
(3.35)

After introducing the ship motion equations, the whole process is clear now. Solv-
ing the governing equations is the first step, then the output results of velocity and
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pressure are used to calculate the force and momentum exerted on the ship. Based
on these outside force and momentum, the displacement of mesh for each node is
known. Using the new mesh information, another iteration step can be simulated.
However, these formulations will not be illustrated in this thesis, reader can find it
in [2].

Finally, the spacial discretization of the governing equations is finished. In the
next chapter, time integration method will be introduced. The Generalized-α, a
implicit and explicit mixed method is chosen.





4
T I M E I N T E G R AT I O N O F T H E F R E E - S U R FA C E F L O W

After spatial discretization, the time discretization method should be introduced
next. Here, the Generalized-α method is applied in this master thesis. In this chap-
ter there are 2 sections in total. In section 4.1 the generalized-αmethod is discussed.
The detail of derivation will be written in two stages. In section 4.2 the time inte-
gration method of re-distancing method will be introduced.

In CFD simulation, there are two categories of methods to do time discretization,
namely explicit methods and implicit methods. An explicit solution results from a
method that is independent of other values (for the same level), a single equation
is used to evaluate new nodal variables for a single time step. An implicit solution
contains information obtained from solving simultaneous equations for the full
grid for each time step. This is computationally more demanding but allows for
larger time steps and better stability. Generalized-α method is the method which
combines these two methods.

4.1 generalized-α method

Generalized-αmethod is unconditionally stable. At each time step, a method called
Newton iteration is used to solve the nonlinear algebraic-equation. And at each
Newton iteration step, another technology called GMRES is used for solving the lin-
ear system. In Appendix B and Appendix C, the reader can find two methods GM-
RES and Newton Iteration separately. For many years, it is really hard to solve non-
linear algebraic-equation. Only Newton iteration can solve such problems. With
the creation of GMRES, it saves a lot of time to solve non-linear algebraic-equation
when using Newton Iteration. Therefore, these two methods are introduced in Ap-
pendix B and Appendix C. Now come back to our governing equation, it is needed
to use Vn and V̇n Pn to calculate Vn+1,V̇n+1,Vn+αf ,V̇n+αm ,Pn+1. Vn is the same
with vector u and n denotes the time step. Although V̇n is the time derivative of
Vn, it is still be treated as a unknown variable. At the beginning, the following five
equations are known,

RM
(
V̇n+αm ,Vn+αf ,Pn+1

)
= 0,

RC
(
V̇n+αm ,Vn+αf ,Pn+1

)
= 0,

Vn+1 = Vn +4tV̇n + γ4 t(V̇n+1 − V̇n),
V̇n+αm = V̇n +αm(V̇n+1 − V̇n),

Vn+αf = Vn +αf(Vn+1 − Vn).

(4.1)

To get second order accuracy and stability, Equation 4.2 condition should be satis-
fied. To find the reason of this reader can consult paper [5] and [23],

γ =
1

2
+αm −αf. (4.2)

27
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While unconditional stability is attained if ,

αm > αf >
1

2
. (4.3)

Whereas,

αm =
1

2

(
3− ρ∞
1+ ρ∞

)
and αf =

1

1+ ρ∞ . (4.4)

In our simulation, the ρ∞ is equal to 0.5 and it is the spectral radius of the amplifi-
cation matrix as 4t → ∞. Therefore, αm is 0.83 and αf is 0.67. And there are two
stages to do the time integration.

4.1.1 Predictor Stage

In this stage, some initial value will be decided through the following equations:

Vn+1,(0) = Vn

V̇n+1,(0) =
γ− 1

γ
V̇n

Pn+1,(0) = Pn

(4.5)

Here 0 indicates the iteration number. With this initial guess, the calculation can be
started.

4.1.2 Multi-corrector Stage

1) Calculate Vn+αf ,V̇n+αm ,Pn+1,

V̇n+αm,(l) = V̇n +αm(V̇n+1,(l−1) − V̇n),

Vn+αf,(l) = Vn +αf(Vn+1,(l−1) − Vn),

Pn+1,(l) = Pn +αf(Pn+1,(l−1) − Pn).

(4.6)

2) After the first step, the following equations should be used,

RM
(
V̇n+αm ,Vn+αf ,Pn+αf

)
= 0,

RC
(
V̇n+αm ,Vn+αf ,Pn+αf

)
= 0.

(4.7)

To get 4V̇n+1,(l)) and 4Pn+1,(l)) Newton’s iteration should be used now. It is a
very famous method to solve non-linear equation. Here we will apply Newton it-
eration method to Equation 4.1. For the process, the reader can consult Appendix C.

Then the above equation will be written as following,

∂Rmom

∂u̇n+1
4 u̇+

∂Rmom

∂pn+1
4 p = −Rmom(l) ,

∂Rcon

∂u̇n+1
4 u̇+

∂Rcon

∂pn+1
4 p = −Rcon(l) .

(4.8)
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If there is level set function, the above function will be changed as,

∂Rmom

∂u̇n+1
4 u̇+

∂Rmom

∂pn+1
4 p+ ∂R

mom

∂φ̇n+1
4 φ̇ = −Rmom(l) ,

∂Rcon

∂u̇n+1
4 u̇+

∂Rcon

∂pn+1
4 p+ ∂Rcon

∂φ̇n+1
4 φ̇ = −Rcon(l) ,

∂Rls

∂u̇n+1
4 u̇+

∂Rls

∂φ̇n+1
4 φ̇ = −Rls(l).

(4.9)

Here, we only give the steps of time discretization with the absence of level set
function. Our governing equations can be written as below,

K(l)4 V̇n+1 +G(l)4 Pn+1 = −RM(l),

D(l)4 V̇n+1 + L(l)4 Pn+1 = −RC(l).
(4.10)

In above equations, the matrices K(l),G(l),D(l) and L(l) are shown below.

K(l) =
∂RM

(
V̇n+αm ,Vn+αf ,Pn+αf

)
∂V̇n+αm

· ∂V̇n+αm
∂V̇n+1

+
∂RM

(
V̇n+αm ,Vn+αf ,Pn+αf

)
∂Vn+αf

· ∂Vn+αf
∂V̇n+1

,

G(l) =
∂RM

(
V̇n+αm ,Vn+αf ,Pn+αf

)
∂Pn+αf

· ∂Pn+αf
∂Ṗn+1

,

D(l) =
∂RC

(
V̇n+αm ,Vn+αf ,Pn+αf

)
∂V̇n+αm

· ∂V̇n+αm
∂V̇n+1

+
∂RC

(
V̇n+αm ,Vn+αf ,Pn+αf

)
∂Vn+αf

· ∂Vn+αf
∂V̇n+1

,

L(l) =
∂RC

(
V̇n+αm ,Vn+αf ,Pn+αf

)
∂Pn+αf

· ∂Pn+αf
∂Ṗn+1

.

(4.11)

Update the fluid unknown variables:

u̇n+1,(l) = u̇n+1,(l) +4u̇,

un+1,(l) = un+1,(l) + γ4 t4 u̇,

ṗn+1,(l) = ṗn+1,(l) +4ṗ,

pn+1,(l) = pn+1,(l) + γ4 t4 ṗ,

φ̇n+1,(l) = φ̇n+1,(l) +4φ̇,

φn+1,(l) = φn+1,(l) + γ4 t4 φ̇.

(4.12)

Since the ship is moving in head seas, the mesh should also move with the ship.
Therefore, there will be more equations to solve the mesh dynamics equations.
And these equations should be similar as above derivation. Hence, for the rigid
body and mesh movement, it will not be introduced here. If the reader is inter-
ested please read [2].

4.2 re-distancing time integration

The formulation of the pseudo time in our code is given here in a bilinear form:

4t̃ =
(
ηhd,

∂φhd
∂t̃

)
Ω

. (4.13)
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This ∂φ
h
d

∂t̃
is the input parameter which is set in our input file. The pseudo-time step

is increased with a decreasing nonlinear residual of the re-distancing equations.
And because of the penalty terms present, we are able to take large pseudo-time
steps without loosing the interface position predicted by the convection step. The
level set is then re-distanced in pseudo-time using the backward Euler method. The
level set is re-distanced at every physical time step using a small fixed number of
pseudo-time steps. The choice of the pseudo-time step can also be based on the
convective CFL for the Eikonal equation, and is computed as,

4t̃ = 2γmin
(
S(φ)

∇φh

||∇φh||
·GS(φ) ∇φ

h

||∇φh||

)−1/2

. (4.14)

The parameter γ = 1 corresponds to the CFL of unity. In the computations, usually
it is computed as γ = 6. Based on this equation, the pseudo time step can be de-
cided.

Here, the first part of this master thesis is finished. In the next part, the real
numerical simulation is introduced. The simulation results will be compared with
a paper which is published in International Shipbuilding Progress journal. The
experiment is taken in MARIN, a Dutch institution.



Part II

N U M E R I C A L R E S U LT S A N D VA L I D AT I O N

In this part, two results of simulations will be presented. For the wave
simulation, in Chapter 5, it is used to decide the parameter setting
which will be used in the ship simulation. Then, Chapter 6 is the main
part of this master thesis, the validation of DTMB 5415M heave and
pitch motion in head sea. In Chapter 7, an conclusion will be made to
end this thesis and some recommendations will be given for the future
study.





5
WAV E S I M U L AT I O N

Before doing the validation of DTMB 5415M, a simulation of wave will be per-
formed to find out how fine of the mesh should be and meanwhile find the right
parameter setting for the following DTMB case. In this regard, we systematically
determine the domain size, time step, and input parameters linked to the RBVMS
method.

5.1 problem description

In this chapter, a single harmonic wave will be simulated in a box shape domain.
The wave comes from domain left to domain right which is the same condition
in the future ship case. Then compare our results to the airy wave theory with
checking the wave amplitude. Since Generalized-α method is converged anyway,
the time step selection will be important for saving our simulation time.

5.1.1 Domain Set

The original idea is to use the same size of the domain of the DTMB 5415M ship
to simulate the wave. However, to save the simulation time, the domain of wave is
a little bit different with DTMB 5415M ship. In DTMB 5415M, the domain is box
shaped extending from −0.5L < x < 1.8L,−1.1L < y < 1.1L,−1.0L < z < 0.25L.
Here L is the length of ship, 142m. In the wave simulation, the width of domain
shrinks to −0.1L < y < 0.1L. The mesh image shows in Figure 5.1 gives the left and
the front mesh image of wave domain in the software Gmsh.

From the mesh image it can be found that the surface area of waves is more
dense than the other area. This is because the wave motion will effect only the
surface area, as for the deep water, the fluid rarely moves and therefore no turbu-
lence will appear in the bottom of domain. In our case, it is a deep water condition,
therefore the grid of the domain bottom can be coarser to save the computational
time.

5.1.2 Wave Condition

The wave amplitude and some other constants in the code are recorded in Table 5.1.
This is the same wave condition in DTMB 5415M case.

33
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Figure 5.1: The mesh of the wave simulation

Constants in the RBVMS code

Wave amplitude:A 1.03m Water density: ρw 1000kg/m3

Wave length:λ 1.206L Air density: ρa 1kg/m3

Wave frequency:f 0.6rad/s Water viscosity: µw 2e-5N · s/m
Wave slope:Ak 0.0378 Air viscosity: µa 1e-3N · s/m
Gravity acceleration:g 9.81m/s2

Table 5.1: Constants in the RBVMS code
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5.2 boundary conditions and test method

The inflow boundary condition is set as Direcret boundary condition with an inflow
velocity:

ux = ωa
cosh(k(d+ z))

sinh(kd)
cos(ωt− kx) +Uin. (5.1)

Here, d is the depth of the domain and z is the location of the wave. And ω is the
wave frequency and k is the wave number. Uin is the ship velocity calculated by
the Froude number. The wave x-direction velocity is 0.62 m/s and the ship velocity
is 9.26 m/s, which means the ship velocity is faster than the wave. Hence, there is
no reflection happened on the right boundary of the domain. This inflow velocity
is based on the airy wave theory using the information of our wave condition. No Traction free

boundary condition
(also known as no
traction B.C.)means
that the the surface
is free from external
stress. It can be
mathematically
expressed as
t = σ ·n = 0 where,
t is the surface
traction; σ is the
Cauchy stress
tensor; n is the
vector normal to the
deformed surface.

traction boundary condition is set for out flow. As for the back and forth, top and
bottom, no slip boundary conditions are set. The bottom of fluid is not moved
therefore u = 0. For back and forth, y direction velocity is the same with domain,
for top domain, x direction velocity is the same with domain.

uy = ωa
cosh(k(d+ z))

sinh(kd)
sin(ωt− kx),

uz = ωa
sinh(k(d+ z))

sinh(kd)
.

(5.2)

Two single points are picked as test points. The first point is located at (−66, 0),
and the other one is located at (155.6, 0). Through their x and y coordinate, its free
surface location should be found (where φ = 0). To get the output file, a subroutine
is written in the code to plot the wave height and write the information into a file
with each time step. To keep the same condition as the validation paper, here 100
seconds is decided as our simulation time length.

We decide to use 0.1 for all discontinuity capturing terms, Cns_a, Cns_w, Cls and
CLSRD, as our first try. This is because there is no large sharp layers exist in a wave
simulation, and usually the code creator will make these coefficients of kdc in the
same order. For example from 0.1 to 1. Therefore, our initial guess is 0.1. As for the
penalty term λpen, 800 is used to maintain the free surface and 0.1 is set for pseudo
time. For the CFL number, we try to keep it below 1 at first (0.3 is tried at the be-
ginning), although it will also be stable above 1. The residual tolerance is set to be
1e− 3, reader should notice this residual value is not the absolute value of residual,
it means the proportional reduce of initial residual. The author has already tested,
it gives the same results with either 1e− 3 or 1e− 8.

One thing should be illustrated clearly again at the beginning. There is a mesh
factor called scale will be used in generating the mesh, reader will see this in the
following chapter. This scale factor does not mean the size of the geometry. It de-
cides how fine the mesh is and how many element nodes of each mesh are created.
The smaller of this scale factor, the finer of the mesh will be.
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Figure 5.2: Wave velocity simulation result

5.3 results and optimization

To quantify how fine the mesh is, a factor will be used to express this as we in-
troduced. For example, wave 0.1 is much finer than wave 0.2. Wave 0.1 has 585474

element nodes and wave 0.2 has 83055 element nodes, which means nearly seven
times larger. If wave 0.4 is used, then the same order of element nodes should be
decreased and in our simulation wave 0.4 has 13255 element nodes.

5.3.1 Wave Results

Figure 5.2 gives a snapshot of our wave velocity simulation results. Three different
meshes are tested in the simulation of wave. The numbers of nodes for each mesh
are 13255, 83055 and 585474, and the factor changes from 0.4 to 0.2 to 0.1. For sim-
plification, we can define them as course mesh, middle mesh and fine mesh. Their
results are shown in the first plot of Figure 5.3. With the finer of the mesh, the wave
amplitude will be closer to the set value 1.03m. The test point in the first figure is
(155.6, 0). In the second plot of Figure 5.3, it shows the amplitude of the inflow
point and out flow point in the very fine mesh. After traveling 221.6m, the ampli-
tude of this wave does not decrease in this simulation, which is nicely coincident
with Airy wave theory.

For the fine mesh, comparing to the default amplitude value 1.03m, the ampli-
tude lose less than 5% and this error is acceptable. For wave 0.2, the amplitude
error is about 8%. From this result, it is assured that wave simulation with factor
0.2 is acceptable but factor 0.1 is the best. And we should use at least factor 0.2 in
ship simulation.
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Figure 5.3: Wave mesh comparison

Since wave 0.2 gives a close result and with much less element nodes. Then in
the next section, wave mesh with factor 0.2 will be used at least to optimize our
grid and improve the results. This will save a lot of time and get a reasonable result.

5.3.2 CFL number Check

The Courant–Friedrichs–Lewy (CFL) condition is a necessary condition for conver-
gence while solving certain partial differential equations (usually hyperbolic PDEs)
numerically. It arises in the numerical analysis of explicit time integration schemes,
when these are used for the numerical solution. As a consequence, the time step
must be less than a certain time in many explicit time-marching computer simula-
tions, otherwise the simulation produces incorrect results.

CFL =
u4 t
4x

6 CFLmax. (5.3)

Whereas, u is the magnitude of the velocity (m/s), and 4t is the time step (s), and
4x is the length interval (m). The value of CFLmax changes with the method used
to solve the discretised equation, especially depending on whether the method
is explicit or implicit. If an explicit (time-marching) solver is used then typically
CFLmax = 1. Implicit (matrix) solvers are usually less sensitive to numerical insta-
bility and so larger values of CFLmax may be tolerated.

The General-α time integration, implicit and explicit combined method, is uncon-
ditionally converged based on our previous introduction in Chapter 4. It is useful
to decide which CFL number is applied in the simulation. If increasing the CFL
value does not effect the result, then it will save a lot of simulation time. In our
code the CFL formulation looks like below,

CFL = 4t
√

(u− û)G(u− û). (5.4)
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Figure 5.4: Wave height change with CFL number

Figure 5.5: Wave height comparison among different parameter settings.

This equation is the same as usual CFL number but in a different form. G is metric
tensor with unit 1/m2, then it is the same unit as normal. In Figure 5.4 the wave
heights with different CFL number are shown.

From the results it can be found that the CFL definition will affect the output
obviously. The reason of this is quite complicated. Comparing to CFL 0.3 case, CFL
0.9 lose 10% amplitude, which is quit large. However, this could be the reason of
unsuitable setting of other parameter values. With some parameters increasing, the
wave amplitude will decrease. For the other parameters, decreasing the value of
parameter will cause an increment of the amplitude. Therefore, the amplitude er-
ror is a combination of these parameter results.

In Figure 5.5, it shows the difference between two different parameter setting.
The yellow line shows our new parameter results with pseudo time equals to 0.2,
penalty number equals to 50 and discontinuity capturing term for LSRD equals
to 0.05. Although after changing the LSRD parameter, our simulation results with
CFL 0.9 is closer original value. There is still a big gap between them. Therefore, the
discontinuity capturing term of level set is tuned to see the change. In Figure 5.6, it
shows the wave height with new parameter change with κls. The new parameter
with κls = 0.3 gives a very close result to the original simulation. For higher κls,
the result is even better, but the simulation does not converge. Therefore, κls = 0.3
is decided as our new parameter.

For higher CFL number, larger than 1, the wave height will still decrease a lot no
matter how to change the parameter. Therefore, 0.9 will be our final CFL number.
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Figure 5.6: Wave height comparison among different κls.

Figure 5.7: A snapshot of the wave velocity simulation result in enlarged domain

5.3.3 Enlarged Domain Check

After CFL number check, it is still needed to check domain effect. Since we shrink
the domain width at the beginning, now we need to use the same domain as used
in ship simulation and check if there is any difference of effect from boundary. In
Figure 5.7, it gives a snapshot of enlarged domain wave simulation. And Figure 5.8
gives the comparison of two wave amplitude results.

From these results, it is assured that the domain width does not influence the
wave amplitude. However, since the width is larger, the wave movement becomes
more complicated, some non-linear effect could appear. This is why there are some
disturbances in the wave amplitude

5.4 parameter setting

The decision of final parameter setting is half based on mathematical formulations
and half based on intuitions. In the end with the new parameter setting, our CFL
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Figure 5.8: Results between enlarged domain and shrink domain

Original and new parameter setting comparison

Original parameter setting comparison New parameter setting comparison

Cns_a 0.1 Cns_a 0.1

Cns_w 0.1 Cns_w 0.1

Cls 0.1 Cls 0.3

CLSRD 0.1 CLSRD 0.05

λpen 800 λpen 50

4t̃ 0.1 4t̃ 0.2

4t
√

(u− û) ·G(u− û) 0.3 4t
√
(u− û) ·G(u− û) 0.9

Table 5.2: Original and new parameter setting comparison

number expressed as 4t
√
(u− û) ·G(u− û) is increased to 0.9 which is three

times larger than before. This also means it will save three times shorter of the
simulation time. Meanwhile, the wave amplitude result is almost the same as be-
fore which is believed good enough for the following simulation.

Table 5.2 gives the comparison between original parameter setting and new pa-
rameter setting. This new parameter setting will be used in the DTMB 5415M ship
simulation in Chapter 6.
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D T M B VA L I D AT I O N

6.1 case description

In this chapter, a DTMB 5415M ship will be simulated. The ship will move in head-
ing sea with the same condition in Chapter 5. The heave motion and pitch motion
of the ship will be recorded for the validation.

As it is introduced before, the simulation domain is box shaped extending from
−0.5L < x < 1.8L,−1.1L < y < 1.1L,−1.0L < z < 0.25L. Here L is the length of ship,
142m. We will use the same boundary condition for ship simulation. The geometry
of DTMB 5415M is shown in Figure 6.1. It is a benchmark in the ship simulation
and many experimental tests are performed using this ship. It is a U.S. surface
combatant. The main particular parameters are shown in Table 6.1. For more detail
about fins, rudder, propeller and more experimental information, the reader can
consult [18].

The six ship motions in the steadily translating system are defined by 3 transla-
tions, surge in the longitudinal x-direction with positive forwards, sway in lateral
y-direction with positive to port side and heave in the vertical z-direction with
positive upwards, and 3 rotations, roll about the x-axis with positive right turning,
pitch about the y-axis with positive right turning and yaw about the z-axis with
positive right turning. This is shown in Figure 6.2. The geometry of DTMB 5415M
in Gmsh software is shown in Figure 6.3 Since our ship forward direction is head-
ing to the negative x-direction, which means the longitudinal coordinate of gravity
is changed to 0.683%L, which is equal to 71.48493m. The wave angle is set to be 0.

Figure 6.4 shows a snapshot of our ship simulation results. Here, the result of
velocity field is shown. The dark blue means high speed and the light blue means
low speed, and with the color fated until white, the velocity will decrease to zero.

Figure 6.1: DTMB 5415M plan

41
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DTMB 5415M main particulars

Length:L 142.0m Natural period of roll 11.50s

Breadth:B 19.06m Roll radii of gyration: kxx 0.4B

Draft:T 6.15m Pitch and yaw radius of gyration: kyy,kyy 0.25L

Volume of displacement:∇ 8432m3 Propeller diameter:Dp 6.15m

Transverse metacentric height:GM 1.95m Vertical position of CG:zCG 7.51m

Block coefficient:Cb 0.507 Expanded blade area ratio:AE/A0 0.58

Longitudinal centre of gravity:xCG −0.683%L Wetted surface area (bare hull) 2972.6m2

Table 6.1: DTMB 5415M main particulars

Figure 6.2: Six degree freedom

Figure 6.3: Gmsh geometry
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Figure 6.4: DTMB snapshot

6.2 mesh generation

In the wave simulation, factor 0.1 gives the most accurate result and theoretically
the same factor should be used for the whole domain. However, in ship simulation,
the domain is enlarged and the number of element nodes is also increased, which
means more time will be taken to simulate. To save the time, only the middle of the
domain is set to be scale 0.1. As for the rest, the factor is set to be 0.2. The reason
to do this is because in head wave simulation, the far field area will not effect the
middle domain too much. For the rear of the ship, since there is no need to study
the detail of flow far behind of the ship, then there is no need to refine the mesh
in the far rear. To generate such a mesh, two x-direction surface should be built
and two y-direction surface should be built comparing to the wave simulation. It
is shown in Figure 6.5. Therefore, there will be 36 domains divided in the entire
domain comparing to 4 sub-domains in the wave simulation.

Meanwhile, since our problem is a deep water problem and no superstructure
build in our geometry, the influence from the bottom and the influence from the
top area of the air will not be important in the simulation. Therefore, these two
area can be coarser than wave 0.1. In Figure 6.5, it shows the top view and front
view of ship domain, the number in this figure means the factor with the same
condition of wave simulation. This will give the reader more feeling of our domain
mesh condition.

To get more accurate result, some specific area is refined again to capture the
turbulence flow accurately. The bow area is refined. The second area is the rear
of ship, there is a fold corner of the geometry and this area will occur turbulence.
And the waterline area of the ship is also refined.

Figure 6.6 shows the ship mesh information from software CFDShip-Iowa, which
is used in the validation paper. Figure 6.7 gives the detail of our mesh file in soft-
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(a) Top view of DTMB 5415M geometry with scale factor 0.5

(b) Front view of mid-section of DTMB 5415M geometry with scale factor 0.5

Figure 6.5: DTMB 5415M mesh set.
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Figure 6.6: The mesh used in the software CFDShip-Iowa

Figure 6.7: The mesh used in our RBVMS code
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Figure 6.8: DTMB specific refine area

FFT of ship motions and rudder and fin angles for regular head waves

Value EFD CFD Ship-Iowa RBVMS

a1 a2/a1 a1 a2/a1 a1 a2/a1

E%D E%D

z/A 0.753 0.008 -1.3 0 0.1 0.007

θ/Ak 0.808 0.008 -7.6 0 -0.38 0.003

Table 6.2: Results comparison among the experiment and CFD simulations

ware Gmsh. Some specific area mentioned before is also presented in Figure 6.8.

6.3 numerical results

The results of the experiment and another CFD software are shown in Table 6.2.
EFD stands for experiments results and CFDShip-Iowa is the CFD software used in
the validation paper. The last column is our RBVMS code results. For simplification,
only heave motion and pitch motion are checked. The surge motion is not easy to
check because of the absence of rudder in our geometry. In the table, a1 and a2 are
the Fast Fourier Transform results. a1 is the first harmonic wave amplitude result
from FFT and a2 is the second harmonic wave amplitude result from FFT. In the
second harmonic wave, the wave frequency is twice larger than the first harmonic
wave frequency. Since the phase value does not give any useful information for
validation, we will not check it. The comparison error E between the experimental
data D and the simulation value S is reported in a percentage form through the
formulation: E%D = 100 · (D− S)/D.

There is one thing should be mentioned, in CFD Ship-Iowa the model is build
with fin and rudder and also the same as experiment. However, for studying the
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Figure 6.9: The results of heave and pitch motion of DTMB 5415M ship in the RBVMS code

heave motion and the pitch motion there is not too much effect from the existence
of fin and rudder. Therefore, in our simulation, there is no fin and other appendix
in our geometry.

Our results are shown in Figure 6.9. The first graph is the result of heave motion
amplitude of the ship changing with time. The second graph is about the pitch
motion amplitude. Comparing to the experimental data in the validation paper,
our results are very close with only 0.1% error. Moreover, the software CFDShip-
Iowa using a mesh with 18.6 million, our simulation with less element nodes 1.6
million. In the following contents, we will demonstrate the heave and pitch motion
results together. To use FFT to get accurate value, we delete the first wave and
calculate the rest entire waves. This is because the ship does not follow the wave
motion at the beginning. Readers can imagine that the ship is set upright at the
beginning without the consideration of the existence of the wave. The water level
does not affect the result. Through a software called WebPlotDigitizer, the results
in the validation paper are re-digitized. The comparison between the validation
paper results and our code results are shown in Figure 6.10.

After applying FFT, our results looks like below in Figure 6.11 and Figure 6.12.
In Table 6.2, the value of a2 is not equal to zero after applying FFT. In the heave

motion, a2 equals to 0.00529, which means a2/a1 equals to 0.007. In the pitch mo-
tion, a2 equals to 9.2e− 5, which means a2/a1 equals to 0.003. Our results are quit
close to the experiment value, which means this RBVMS code can capture the non-
linear phenomena quite well. However, in the validation paper, no matter which
method is used, there is no a2 value available from the simulation, therefore, all
a2/a1 equals to 0.
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Figure 6.10: Ship simulation results comparison

Figure 6.11: Heave motion FFT results
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Figure 6.12: Pitch motion FFT results

FFT of ship motions for regular head waves

Value EFD Very fine mesh Fine mesh Middle mesh

a1 a2/a1 a1 a2/a1 a1 a2/a1 a1 a2/a1

E%D E%D E%D

z/A 0.753 0.008 0.1 0.007 2.35 0.008 5.23 0.009

θ/Ak 0.808 0.008 -0.38 0.003 3.82 0.003 6.54 0.004

Table 6.3: Mesh convergence results for DTMB 5415M ship

6.4 ship mesh convergence study

To do the mesh convergence study, here we will use reverse convergence method.
Three meshes will be applied. The most fine mesh is the mesh we used in the last
section with 1585100 element nodes. The fine mesh has 820939 element nodes. And
the middle mesh has 416573 element nodes. This middle mesh is the coarsest mesh
in the ship simulation. If there is a mesh with less element nodes than the middle
mesh, it will give an incorrect result.

The results of the mesh convergence study is given in Table 6.3. According to this
table we can find that our simulation results are reliable. The coarser of the mesh,
the lower wave amplitude will be. And with the decrease of wave amplitude, the
ship motion amplitude is also decreased. This is nicely coincide with the physical
sense.

Moreover, there is an interesting phenomenon in Table 6.3. With decreasing the
finite elements of the mesh, the value of a2/a1 is increasing. The reason could be
the expression of U

′
. In the RBVMS theory, we only use the simplest assumption

and basic end of the approximation spectrum. To get more accurate results of a2, a
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Figure 6.13: Mesh convergence

fully perturbation series expansion should be used. Reader can consult [3] for this
part. Here, we believe the basic assumption is enough for the ship motion study
since the value of a2 is quite small comparing to a1. And a conclusion can be made
is that the VMS theory can capture the non-linear phenomenon very well.

6.5 error estimation

In this section, Richard exploration method will be used to estimate the error
and the uncertainty of our simulation results. Since our shape function is linear,
a quadrature explanation should be used to calculate the error. The procedure is
shown below.

φ−φh = Ch2 (6.1)

In Equation 6.1, the exact value is expressed as φ. The approximate value, also
known as the simulation result, is expressed as φh. Whereas h is related to the
size of grid. C is a constant. The estimation of exact solution will use the following
equation,

φ ≈
φ2 −

h2
h1
φ1

1− h2
h1

. (6.2)

The approximation of the exact heave motion amplitude is 0.758 and the approx-
imation of the exact pitch motion amplitude is 0.824. These two exact value are
drawn as a black line in Figure 6.14 and Figure 6.15 separately. To calculate the
uncertainty, Equation 6.3 is applied,

4δ = ||φ−φ2||

||φ2||
. (6.3)
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Figure 6.14: Heave amplitude error exploration

Figure 6.15: Pitch amplitude error exploration

The uncertainty, which is expressed by 4δ, of the heave amplitude is about 0.82%.
And the uncertainty of pitch amplitude is about 1.54%. The final error exploration
plot of heave and pitch amplitude shows below in Figure 6.14 and Figure 6.15.

Until here, everything is done for this master thesis and this Richard error and
uncertainty estimation gives us more confidence to our RBVMS code. The coarser
of the mesh, the more divergence will be given. In the next chapter, our conclusions
and recommendations will be given based on the whole thesis.
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C O N C L U S I O N S A N D R E C O M M E N D AT I O N S

Although RBVMS is developed for many years ago, few people use it. However,
it is quite a solid numerical way for convection dominated problem based on this
master thesis work. The conclusions and recommendations will be given in the
following sections and some suggestions will be given for the future work.

7.1 conclusions and recommendations

This master thesis starts with the introduction of RBVMS theory and gives the basic
derivation of the governing equations. Then the spatial numerical discretizaion and
time discretizaion method are presented. Based on above theory and techniques, a
wave simulation is performed to test the RBVMS code and decide the parameter
setting and the mesh grid size. Comparing to the airy wave theory, the wave am-
plitude is checked in this step and the results coincide with the theory very well.
Afterwards, the real validation for this master thesis, DTMB 5415M ship, is per-
formed using the information from the wave simulation. A very nice simulation
result is obtained through this RBVMS code. Comparing to the experimental data,
a 0.1% error with a 0.82% uncertainty is gotten at the end for the heave motion
amplitude. For the pitch motion, a −0.38% error with a 1.54% uncertainty is ob-
tained. Moreover, the second harmonic motion amplitude is captured using this
code which gives us confidence for the simulation.

7.1.1 Conclusions

We can not get a conclusion that our RBVMS code is the best CFD code than the
others since we could not make sure that the experiment gives 100% exact solu-
tion. However, comparing to the software CFDShip-Iowa the difference of between
the heave motion error and the pitch motion error is much smaller. Then it gives
us confidence to say that this RBVMS method is a good method to simulate ship
motion in head sea. And the results are reliable with a small error comparing to
the experimental results. Although some appendages are not meshed in our simu-
lation, it does not give an obvious effect of the results.

Furthermore, this RBVMS code can capture the second harmonic motion ampli-
tude very well comparing to the other methods. Although we only input a har-
monic wave and the non-linear system does not play a major role in our simulation
results, still a small value of a2 is captured and very close to the experiment results.
This gives us confidence to say that this RBVMS code can capture the non-linear
system very well for the ship motion.

53
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As we tested in Chapter 5, the CFL number should be lower than 1. Although
General-α method is unconditionally converged, it is still needed to make sure the
time step is not too large for the sake of accuracy. Another conclusion of this thesis
is that the error is caused by different parameters setting. Changing some parame-
ters sometimes will compensate the error which hides the real problem. Therefore,
for a quick and accurate result, testing is needed before the real simulation.

It gives the author feeling that there is a lower limit requirement for the number
of the mesh element nodes. When we were doing the wave simulation, if the mesh
is coarser than wave0.4, the wave amplitude is not correct any more. As for the
ship simulation, if the mesh is coarser than the middle mesh, the output will give a
negative error percentage for the heave motion. These two phenomena suggest the
number of element nodes should not be too small.

7.1.2 Recommendations

In this master thesis, linear shape function is used to approximate the exact solu-
tion. According to the results, it is enough accurate for a ship motion simulation
using the linear shape functions. However, it is still quite interesting to use quadra-
ture shape functions to see if a more accurate result could be attained. Furthermore,
how much time will be spend for the quadrature shape function is also an inter-
esting question. If it will consume double time with little accuracy, then it is not
needed to do that for the future study.

Since the computer resources in my faculty is limited, a finer mesh is not tested
in this master thesis. If it is possible, a finer mesh should be calculated to see if
there is much more difference than the current mesh. This mesh is acceptable for
the ship motion simulation, however, in the other tests, like ship rolling decay and
wave added resistance test, the mesh should be different.

7.2 future work

It is mentioned many times in this master thesis, a new technology called IGA is
developed, which will exactly describe the profile of a ship and even more com-
plex geometry. Then it is quite interesting to study if a better result will get using
this technology. The IGA has already been tested in many other people’s work and
their results seem quite good. However, an application in a real scale ship is not
performed. Therefore, it is a quite interesting topic for the future study.

As for a scientific research, more parameters existed in a code means more uncer-
tainty. Therefore, using only one single parameter to express all the other parame-
ters is an interesting topic for the future study. This parameter should be decided
based on the mesh information. However, this job is not easy to be done since it
requires the student a strong mathematical background. One more thing, since few
people are using this code, only a few types of boundary conditions are written in
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it. Therefore, more typed of boundary conditions can be added into this code, such
as periodical boundary condition.





Part III

A P P E N D I X





A
S H A P E F U N C T I O N A N D I G A I N T R O D U C T I O N

a.1 finite element methods

To approximate uh and ph, shape function should be introduced. For the Garlerkin
method, which is used in this code, the weighting function use the same shape
function as unknown variables,

uh =

4∑
i=1

Ni(x)ui, wh =

4∑
i=1

Ni(x). (A.1)

In this thesis, linear interpolation will be used to express shape function and tetra-
hedron is chosen as element shape, therefore i counts to four, which means four
nodes for each element. This Ni(x) must satisfied two properties: 1)

∑n
k=1Nk = 1

2) Ni(xk) = δik. The second requirement is called Kronecker-delta property. The
shape function shows below,

Ni(x) = ai + bix+ ciy+ diz. (A.2)

Here, x, y and z are global coordinate, we need to transform it into a local coordi-
nate system {ξ,η, ζ} which is shown in Figure A.1.

The calculations can be significantly simplified by carrying out a coordinate
transformation. Each point (x,y, z) of the tetrahedron in the original coordinate
system can be mapped to a corresponding point (ξ,η, ζ) in the transformed coordi-
nate system uding the following equation group:

x = x1 + (x2 − x1)ξ+ (x3 − x1)η+ (x4 − x1)ζ,

y = y1 + (y2 − y1)ξ+ (y3 − y1)η+ (y4 − y1)ζ,

z = z1 + (z2 − z1)ξ+ (z3 − z1)η+ (z4 − z1)ζ.

Figure A.1: Element coordinate transformation
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Which in matrix form it leads to the Jacobian matrix :

J =

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1.


In this way, the nodal basis functions for the tetrahedron in the transformed coor-
dinate system are given by ,

Nt1(ξ,η, ζ) = 1− ξ− η− ζ,

Nt2(ξ,η, ζ) = ξ,

Nt3(ξ,η, ζ) = η,

Nt4(ξ,η, ζ) = ζ.

(A.3)

And its gradient formulation becomes,

∇N(ξ,η, ζ) = JT∇N(x,y, z). (A.4)

a.2 iga introduction

A new technology called isogeometric analysis is introduced here, which is NURBS
based. The reason to develop it is trying to eliminate the gap between FEA and
CAD. People found there are many similarities between finite element analysis
and isogeometric analysis. Both of them have similar basic functions and h- and
p- refinement characteristics. However, the IGA still has many difference with FEA
and some important advantages. A key feature is to represent geometry exactly by
NURBS elements and then invoke the isoparametric concept to define field vari-
ables, such as displacement, temperature, etc. The coarsest mesh encapsulates the
exact geometry. This means that mesh refinement is simply accomplished by rein-
dexing the parametric space. The refinement process can proceed without interac-
tion with the CAD system, a distinct advantage over finite element procedures. In
this part, the basic function of IGA (NURBS based) will be written, for more infor-
mation, reader can reference [1] and [10].

In one dimension, a knot vector is a set of coordinates in the parametric space,
O = {ξ1, ξ2, · · · , ξn+p+1}. p is the ploy-nominal order, and n is basics functions
number which comprise the B-spline. For p = 0, B-spline basis functions shows
below,

Ni,0(ξ) =

{
0 if ξi 6 ξ 6i+1,

1 otherwise,
(A.5)

for p=1,2,3...

Ni,p(ξ) =
ξ− ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (A.6)

NURBS is the short of non uniform rational B spline. The above functions are
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Figure A.2: NURBS basic functions of order 0, 1, 2

uniform. Therefore the weights should be consideration into our basis functions:

R
p
i (ξ) =

Ni,p(ξ)wi
W(ξ)

=
Ni,p(ξ)wi∑n
i=1Ni,p(ξ)wi

,

W(ξ) =

n∑
i=1

Ni,p(ξ)wi.
(A.7)

NURBS curve then can be represented as below:

C(ξ) =

n∑
i=1

R
p
i (ξ)Bi. (A.8)

Bi are the control points (NURBS object). Surface is two dimensional, and its
NURBS-spline surface function is,

S(ξ,η) =
∑
i

∑
j

Ni,p(ξ)Rj,q(η)Bi,j. (A.9)

The pictures in Figure A.3 and Figure A.4 show the basic functions of NURBS and
FEM. Which give more feelings to the reader.
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Figure A.3: NURBS one dimensional basic functions

Figure A.4: Finite element basic functions



B
G M R E S

Direct methods based on Gaussian elimination can be used to solve A=bx, usually
people do it like x = A−1b. However, these methods quickly become too memory
and CPU intensive to be of practical interest, especially in three dimensions. Con-
sequently, the finite element community has turned towards iterative solvers based
on the generation of Krylov spaces. A Krylov Space looks like below,

Kn = Kn(A,b) = span{b,Ab,A2b, · · · ,Am−1b}. (B.1)

And, we can substitute A−1 as following,

A−1b ≈
m−1∑
i=0

βiA
ib = β0b+β1Ab+β2A

2b+ · · ·+βm−1A
m−1b. (B.2)

m smaller than the dimension of matrix of A, βi is unknown vector, therefore if we
know βi, the equation will be solved.

However, the vectors b,Ab,A2b, · · · ,Am−1b might be close to linearly depen-
dent, and they are ill-defined for general non-symmetric systems may not result in
robust algorithms. Therefore it is needed to use Arnoldi iteration to find orthogo-
nal vectors q1,q2, · · · ,qn which from a basis of Kn.

The Arnoldi method is to start with an arbitrary vector q1 with norm 1, and then
use qk = qk−1A to do iteration. Then use a loop to project the vector into each direc-
tion, after deduction each projection, a new vector h is found, now qk = qk/hk,k−1.
These h vectors consist upper Hessenberg matrix, Hn = Q∗nAQn, where,

Hn =



h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n
...

. . . . . . . . .
...

0 . . . 0 hn−1,n hn,n


. (B.3)

The matrix Hn can be characterized by the following optimally condition. The char-
acteristic polynomial of Hn minimizes ||p(A)q1||2 among all monic polynomials of
degree n. This optimally problem has a unique solution if and only if the Arnoldi
iteration does not break down.
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The relation between the Q matrices in subsequent iterations is given by AQn =

Qn+1H̃, where,

H̃n =



h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n
...

. . . . . . . . .
...

... 0 hn−1,n hn,n

0 . . . . . . 0 hn+1,n


. (B.4)

Because of Qn is orthogonal, we have,

||Axn − b|| = ||H̃nyn −QTn+1b|| = ||H̃nyn −βe1||. (B.5)

Where, e1 = (1, 0, 0, · · · , 0)T and β = ||b−Ax0||, therefore, xn can be found by min-
imizing the Euclidean norm of the residual rn = H̃nyn −βe1 and xn = Qnyn.

In the code, GMRES part reference paper [18] which gives the detail of Fortran
code.



C
N E W T O N I T E R AT I O N

The idea is to start with an initial guess which is reasonably close to the true root,
then to approximate the function by its tangent line using calculus, and finally to
compute the x-intercept of this tangent line by elementary algebra. This x-intercept
will typically be a better approximation to the original function’s root than the first
guess, and the method can be iterated,

y = f
′
(xn)(x− xn) + f(xn).

This is the tangent line function, xn is a initial guess. Which means initial condition
where f

′
denotes the derivative. The x-intercept of this line (the value of x which

makes y = 0) is taken as the next approximation, xn+1, to the root, so that the
equation of the tangent line is satisfied when (x,y) = (xn+1, 0),

0 = f
′
(xn)(xn+1 − xn) + f(xn).

Solving for xn+1 gives :

xn+1 = xn −
f(xn)

f
′
(xn)

.

This method is used in time derivation, which will be introduced in the next section.
Here, a short introduction is shown to give the reader a basic idea.
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