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Abstract

Aeroelastic stability must be maintained for the entire flight duration. Of the vast phenomena
that fall under the field of aeroelasticity, flutter is the most studied and influential in terms
of driving aircraft design. As such, it is the main topic of analysis of this Masters Thesis.
For flutter analysis, it is of critical importance to accurately model the system unsteady aero-
dynamics, particularly for harmonic oscillatory motion. Therefore, the aim of this Master’s
Thesis is to study the aerodynamic accuracy of a method that uses high fidelity unsteady CFD
simulations to build a linearized aerodynamic model, applicable to flows of linear nature. The
unsteady aerodynamic loads obtained with the linearized aerodynamic CFD model are vali-
dated by comparing them to that of Theodorsen and unsteady OpenFOAM simulations of a
harmonically oscillating 2D airfoil.

The results obtained by the linearized aerodynamic CFD model are unable to predict the
unsteady air loads for oscillatory harmonic airfoil motion and therefore cannot be used to
accurately predict the flutter boundary. The underlying reason for this is the fact that the
current formulation of the model does not take into account the wake effects on the unsteady
air loads.
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Chapter 1

Introduction

1.1 Motivation

It is of critical importance for any aircraft to maintain its stability for the entire flight dura-
tion. The class of problems that effectively deal with aircraft stability and flight performance
fall under the subject of aeroelasticity. Specifically, aeroelasticity deals with the mutual inter-
action of aerodynamic loads and elastic structures. The term was first introduced by Alfred
Pugsley and Harold Roxbee Cox in the early 1930s (Weisshaar, 2017). The importance of this
engineering discipline arose in the early 20th century, when the first airplanes were starting
to be developed. Many of the catastrophic events that occurred are a result of various, today
known as, aeroelastic phenomena (Garrick and Reed III, 1981). In the most general sense,
aeroelasticity can be divided into two parts: static aeroelasticity and dynamic aeroelasticity.
The former deals with aerodynamic and elastic forces while the latter incorporates aerody-
namic, inertial and elastic forces. A more detailed breakdown of how various aeroelastic
phenomena relate to the aerodynamic, inertial and elastic forces is given by Collar’s Triangle
(Collar, 1946). The most studied and influential aeroelastic phenomena in terms of driving
aircraft design is flutter (Garrick and Reed III, 1981; Bisplinghoff et al., 2013; Schuster et al.,
2003). As such it is the main focus of this author’s Master Thesis. However, gust response
analysis is also included in the discussion.

Flutter is a neutrally stable point. At the flutter speed, an aeroelastic system, subject to
an initial perturbation, will oscillate harmonically. Hence, energy would neither be added or
extracted from the system causing the system to be conservative (Weisshaar, 2017). Above
the flutter speed any perturbation of the aeroelastic system will result in increasing oscillations
and eventual wing failure. In this case, the system extracts energy from the airflow. Below
the flutter point, the wing dissipates energy to the airflow and all oscillations damp out. The
classical type of flutter is associated with potential flow where usually, but not necessarily,
two or more degrees of freedom are coupled (Bisplinghoff et al., 2013). The non-classical type
of flutter is a dynamic instability that could involve separated regions, periodic separation
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2 Introduction

and reattachment, stalling conditions or moving shock waves. The former can be adequately
modeled linearly while the latter requires a nonlinear analysis. In this Master’s Thesis, the
classical type of flutter problem is considered.

Initially, aeroelastic problems were unanticipated (Weisshaar, 2017). Early flight speeds were
low enough such that structural stiffness was not of issue (Bisplinghoff et al., 2013; Weisshaar,
2017). The first powered flight took place on December 17, 1903 by the Wright Brothers.
Their biplane made use of a wing warping concept (Garrick and Reed III, 1981), tested by
Edson Gallaudet as early as 1898 (Weisshaar, 2017), that uses the wings structural twisting
displacement to create aerodynamic rolling moments. This implies the wing must be torsion-
ally flexible. The wing warping concept was also applied successfully to monoplanes; however,
as aircraft engines became more powerful and flight speeds increased, the wing torsional stiff-
ness was not sufficient to carry the loads produced, resulting in failure. An example of this is
the Bleriot XI monoplane that suffered from wing divergence. Also, the British Pristol Pier
aircraft suffered from structural failures in 1912 which resulted in England’s ban of all mono-
planes (Baker, 1994) and production and development turned to biplanes exclusively, only to
have monoplanes resurface towards the end of World War I (WWI). Unfortunately, biplanes
were not immune to failure. The twin-engined Handley Page 0/400 bomber suffered from
horizontal tail flutter at the beginning of WWI (Bisplinghoff et al., 2013; Weisshaar, 2017).
When monoplanes resurfaced and the wing warping concept was abandoned, new aeroelastic
instabilities occurred, such as wing aileron flutter. Experimental and theoretical investiga-
tions of Von Baumhauer and Koning in 1922 resulted in mass balancing as a solution to the
problem and is still used today (Von Baumhauer and Koning, 1923). Wing aileron flutter was
also present in biplanes. However, by the 1930s, the use of biplanes was abandoned in favour
of monoplanes due to their superior performance. In general, little unsteady aerodynamic
theory, mathematical analysis and wind tunnel testing was used when tackling aeroelastic
problems in the first two decades of the 20th century. Solutions were mostly found through
trial and error and hence there were quite a few fatal accidents. However, due to research
conducted by scientists such as Prandtl, Birnbaum, Küssner, Wagner and Perring, to name
a few, fundamentals of flutter were understood by the end of the 1920s (Frazer, 1929).

During and after World War II (WWII), USA’s efforts shifted to studying transonic and
supersonic flight. With the invention of the jet engine, aircrafts approached transonic speeds,
introducing new and challenging aeroelastic problems. To this day, transonic flutter is difficult
to analyse due to it being characterized by strong nonlinearities (Schuster et al., 2003). In
1944, the P-80 airplane suffered from ”aileron buzz”, a single degree of freedom flutter caused
by the coupling of the aileron rotation and the movement of shock waves along the wing in the
chordwise direction (Garrick and Reed III, 1981). This type of flutter involved nonlinearities
such as periodical separation and reattachment of the flow behind the moving shock waves
(Garrick and Reed III, 1981). The first supersonic flight happened in 1947, when Charles
Yeager broke the sound barrier by flying the rocket powered X-1 research airplane. Supersonic
flight suffered from a new type of flutter called panel flutter (Weisshaar, 2017). More that 70
failures of Wernher von Braun’s V-2 rocket occurred during WWII, many of which were due
to panel flutter near the nose of the rocket (Garrick and Reed III, 1981). Panel flutter was
also a problem for the Saturn V Apollo launch vehicle rocket in the 1960s.
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From historical examples it is clear that the importance of adequately analyzing aeroelastic
phenomena increased, primarily due to inadequate structural stiffness that became critical as
aircraft speed increased. If airplane structures were perfectly rigid, aeroelasticity as a disci-
pline would not exist (Bisplinghoff et al., 2013). Aeroelastic design remains an integral part
of aircraft design not only due to the fact that these vehicles operate at subsonic, transonic,
supersonic and even hypersonic conditions but also because there is a need to manufacture
lighter aircraft in order to decrease fuel consumption, which leads to a more flexible structure
(Prananta, 1999). Even though the field of aeroelasticity was driven by human flight, it is
relevant in other fields as well such as turbomachinery and wind turbines. In the ever grow-
ing need for renewable energy sources, wind energy plays a major role. In order to increase
efficiency and energy extraction the overall size and rotor diameter are continuously growing
resulting in an increasing amount of research in the field of extreme scale wind turbines (Stu-
urman, 2016). These wind turbines are more likely to be stability driven than loads-driven, as
is currently the case (Bir and Jonkman, 2007), and their main aeroelastic issues are edgewise
blade vibrations and classical blade flutter (Hansen et al., 2006).

To accurately analyze any aeroelastic phenomena, it is of major importance to adequately
model the systems inertial, structural and aerodynamic features. However, none is more im-
portant than the theoretical aerodynamics model (Weisshaar, 2017). Much of today’s research
is aimed at modeling transonic flows due to the nonlinearities of the system while subsonic/su-
personic aeroelastic analysis is considered a mature science due to its linear nature (Schuster
et al., 2003). This should, by no means, serve as discouragement when attempting to develop
higher fidelity aerodynamic models that could describe linear aeroelastic phenomena with
an increased accuracy while not significantly increasing the computational cost. Stuurman
(2016) built a linearized aerodynamic CFD model that was used to analyze classical flutter of
a wind turbine blade in incompressible flow via a modal analysis. The linearized model has
potential to be used in preliminary design phases of aircraft due to it being computationally
inexpensive. This author’s Master Thesis serves as a continuation of Mark Stuurman’s Master
Thesis. As such, the main objective is as follows

Validate the efficacy of a linearized aerodynamic CFD model in accurately predicting incom-
pressible unsteady aerodynamic loads and hence aeroelastic instabilities such as classical flut-
ter.
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4 Introduction

1.2 Literature Review

The character of aerodynamic flows treated in this Master’s Thesis is subsonic and incom-
pressible. Hence, this brief literature review is restricted to state of the art methods used for
modeling these types of flows. The problem formulation that forms the basis for aeroelastic
analysis is given in the form of generalized aeroelastic equation of motion (EOM) (Schuster
et al., 2003) as follows

[Ms]{q̈(t)}+ [Ds]{q̇(t)}+ [Ks]{q(t)} = {F (t)}, (1.1)

{w(x, y, z, t)} =

Nmodes∑
i=1

qi(t){φi(x, y, z)}, (1.2)

where {w(x, y, z, t)} is the structural displacement at any position and time on the flight
vehicle. The vector {qi(t)} is the amplitude function, describing the time history of all the
modes of vibration. They are also called the generalized coordinates. The vector φi represents
the normal modes of the structure. The generalized structural mass, damping and stiffness
matrices are [Ms], [Ds] and [Ks], respectively. These matrices result from the properties of the
structure, contain the system structural dynamics and are typically obtained by using Finite
Element (FEM) techniques. Generally, when dealing with the aeroelasticity of aircraft, it is
assumed that the structural dynamics are of linear nature (Prananta, 1999). On the other
hand, this does not hold for the aerodynamics where the forces and moments that compose the
generalized forcing term {F (t)} of the aeroelastic EOM are modeled linearly or nonlinearly,
depending on the flow regime and the type of aeroelastic phenomena that is to be predicted.
For example, limit cycle oscillations cannot be predicted with a fully linear model. The
generalized forcing term {F (t)} couples the unsteady aerodynamics and inertial loads with
the structural dynamics.

Classical aerodynamic models for aeroelastic analysis of a 2D airfoil in incompressible flow
(Bisplinghoff et al., 2013) include the Wagner function that describes the response for a unit
step change in angle of attack (Wagner, 1925), Küssner’s function which gives the response to
a sharp edged gust (Küssner, 1935), Theodorsen’s function that gives a frequency response to
sinusoidal oscillations (Theodorsen, 1935) and the Sear’s function which gives the frequency
response to a sinusoidal gust (Giesing et al., 1970). Theodorsen’s expression for unsteady
lift and moment responses due to a sinusoidally oscillating airfoil were a breakthrough in
terms of allowing a full understanding of the mechanisms of flutter. Experimental validation
was carried out and confirmed that these expressions accurately predicted the lift and mo-
ment response over a wide range of frequencies (Halfman, 1952) but are also limited to small
oscillatory amplitudes (Cordes et al., 2017) due to the assumptions made prior to deriving
Theodorsen’s expressions (Dimitradis, 2018). Theodorsen’s expressions are still used for con-
ceptual and preliminary design purposes in the industry today (Murua et al., 2012). However,
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these analytical response expressions are impractical for more complex configurations such
as wings or full scale aircraft (Lucia et al., 2004; Silva and Bartels, 2004). Due to this and
the rise of computing power, numerical analysis of linear unsteady aerodynamic responses
became the method of choice (Giesing and Kalman, 1971). Specifically, the Doublet Lattice
Method (Albano and Rodden, 1969) became the industry standard in the preliminary design
phase (Murua et al., 2012; Yurkovich et al., 2001; Burt, 1993; Försching, 1995) and is used
for accurate aeroelastic analysis in the subsonic regime (Prananta, 1999; Yurkovich et al.,
2001). On the other hand, Stuurman (2016) used a linearized aerodynamic CFD model for
modeling the unsteady aerodynamic air loads. Gust response analysis is carried out by adding
an additional forcing term to the generalized force term of Equation 1.1. For a gust response
analysis, multiple unsteady aerodynamic models can be utilized. Kier (2005) carried out a
comparison of different aerodynamic models for a gust response analysis. The models that
he compared are the quasi-steady vortex lattice method (VLM), Roger’s method for rational
function approximation of the doublet lattice method, and strip theory where unsteady effects
are modeled with indicial functions such as the Wagner or Küssner Function.

Assuming linear modeling of the structural dynamics, the aerodynamics can be modeled lin-
early or nonlinearly and depending upon the choice, the solution to the problem is found either
using the frequency domain approach or time domain methods, respectively (Bergami, 2008;
Prananta, 1999). Since the frequency domain approach assumes a set of linearized EOM,
the formulation becomes an eigenvalue problem that can be solved by finding the eigenvalues
of system where each eigenvalue is associated with a specific frequency and damping of a
particular eigenmode and hence allows for the flutter speed to be determined (Dimitradis,
2018). This is done for a large number of flight speeds and altitudes. Classical methods for
solving the eigenvalue problem are the V-g (i.e. k) method (Smilg and Wasserman, 1942) and
the p-k method (Hassig, 1971). If the linear aerodynamic model is frequency dependent (e.g.
Theodorsen), it can still be solved in the time domain with numerical integration, as long as
the frequency dependent terms are transferred into the time domain using rational function
approximation such as Roger’s approximation (Roger, 1977). Stuurman (2016)’s linearized
aerodynamic CFD model produces a linear EOM system that is already only time depen-
dent and can hence be solved either numerically or as an eigenvalue problem. For nonlinear
aerodynamic models this cannot be done and they can only be integrated numerically in time.

The coupling of FEM techniques to model the structural dynamics and linearized potential
flow equations for modeling aerodynamic terms is the standard industrial approach. However,
as high fidelity CFD techniques emerged, it became possible to use nonlinear aerodynamic
analysis and transiently simulate aeroelastic phenomena. This allows for the most accurate
analysis of the aerodynamics of an aeroelastic system up to date and is particularly useful
where nonlinearities dominate or in subsonic/supersonic regime with large angles of attack,
where linearized potential flow methods cannot sufficiently describe the aerodynamic response.
While computational requirements limit the use of such a method and prevent it from being
applied in preliminary design phases (Lucia et al., 2004; Silva and Bartels, 2004), computations
have been done on simpler geometries such as 3D wings subjected to a transonic flow regime
(Schuster et al., 2003). In the past two decades there have been advances in utilizing reduced-
order modeling (ROM) for aeroelastic applications (Schuster et al., 2003). These methods
use high fidelity simulations for building ROM models that can then analyze aeroelastic
phenomena at a reduced computational cost (Lucia et al., 2004; Silva and Bartels, 2004).
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1.3 Research Objective/Question and Plan

Stuurman (2016) used a linearized aerodynamic CFD model to model the aerodynamic forces
of a wind turbine blade. These forces will compose the RHS of the EOM given by Equation
1.1. The system stability is then analyzed in order to compute for flutter. The underlying
assumption is that this model is valid for any type of airfoil motion, as long as the pertur-
bations are small, such that flow linearity is preserved. The main research objective of this
author’s Master Thesis is to investigate the efficacy of this linearized aerodynamic CFD model
for computing aeroelastic instabilities such as flutter. The complete analysis is carried out on
a 2D airfoil subject to the incompressible flow regime. The main research question is

Can linearized aerodynamic CFD models, used to model the aerodynamics of an aeroelastic
system, be utilized to accurately predict flutter?

Flutter is a neutrally stable point. At the flutter boundary, the airfoil oscillates harmonically.
Therefore, in order to be able to accurately compute the flutter boundary, the unsteady
aerodynamic model must be capable of accurately computing the unsteady air loads of a
harmonically oscillating airfoil. As such, the unsteady lift and moment loads obtained by
the linearized aerodynamic CFD model are compared with that of Theodorsen Theory and
unsteady OpenFOAM simulations of a harmonically oscillating 2D airfoil. In order to analyze
a gust response, a gust forcing term must be added to the RHS of the EOM. Furthermore, the
linearized aerodynamic CFD model must be able to predict arbitrary airfoil motion, since an
airfoil subject to a specific gust will have an arbitrary-like response. This is not the main focus
of this author’s Master Thesis and as such is not thoroughly investigated. Nevertheless, some
preliminary conclusions are made from the analyses that were carried out when validating
the linearized model for harmonic oscillatory motion.

1.4 Thesis Outline

In this section, the structure of the Master Thesis is explained. Chapter 2 deals with dynamic
aeroelasticity. The aeroelastic system of a 2D airfoil is introduced. The Theodorsen Aero-
dynamics are discussed and as well as the flutter computation method (i.e. k method). The
linearized aerodynamic CFD model (Stuurman, 2016) is introduced. Finally, flutter predic-
tion and gust response in terms of modal coordinates with the use of the linearized model are
explained. Chapter 3 gives an overview of the fundamental concepts of Computational Fluid
Dynamics. Chapter 4 explains the reasoning behind the type of 2D airfoil and the magnitude
of the Reynolds Number that is chosen for further analysis. In addition, the meshing strategy
is explained, boundary conditions and the numerical setup of the unsteady simulations are
given, as well as the results of the mesh convergence tests. Chapter 5 compares the unsteady
lift and moment coefficients obtained via Theodorsen Aerodynamics and unsteady CFD sim-
ulations for various reduced frequencies. Chapter 6 compares the results of the linearized
aerodynamic CFD model with the results obtained in Chapter 5. Finally, Chapter 7 gives a
thorough conclusion of the linearized model, identifying its advantages and drawbacks.
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Chapter 2

Dynamic Aeroelasticity

2.1 Introduction

In this chapter, a thorough description of a dynamic aeroelastic analysis for a 2DOF (Degree
of Freedom) airfoil in rigid body motion is given. The airfoil is allowed to only pitch and
plunge. The complete aeroelastic system is introduced, composed of the structural dynamics
and unsteady aerodynamics (i.e. Theodorsen Theory). Such a system can be then used for
flutter analysis, as is shown in Section 2.3. While Theodorsen aerodynamics was considered
a breakthrough and allowed for an accurate mathematical analysis of flutter, it is impractical
for use in more complex configurations such as wings or full scale aircraft (Lucia et al., 2004;
Silva and Bartels, 2004). Therefore, different methods that could deal with such configu-
rations became the industry standard, such as the doublet lattice method. In this Master
Thesis, the proposed linearized aerodynamic model obtained from unsteady CFD simula-
tions is analyzed. Its derivation and potential use for computing flutter and gust response is
thoroughly explained in Section 2.4.

2.2 Aeroelastic Systems

In this section, the structural dynamics and unsteady aerodynamics that compose the aeroe-
lastic system are explained. This aeroelastic system describes the sinusoidal oscillatory motion
of a 2DOF airfoil shown in Figure 2.1. This airfoil is allowed to pitch and plunge and is sub-
ject to a constant inflow velocity U . The spring stiffness that opposes the pitching motion
is Kα, while the spring stiffness that opposes the plunging motion is Kh. These springs are
modeling the actual wing stiffness. The lift and moment act about the elastic axis positioned
ba from the airfoil midchord and bxα from the airfoils center of gravity. The variable a is
the dimensionless distance, nondimensionalized by the midchord length b. A positive value
indicates the elastic axis is aft of the airfoil midchord and a negative value means its located
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8 Dynamic Aeroelasticity

prior to the airfoil midchord. The variable xα is the dimensionless distance, also nondimen-
sionalized by the midchord length b. A positive value of xα indicates that the airfoils center
of gravity is aft of the elastic axis, while a negative value indicates its prior to the elastic axis.

Figure 2.1: 2DOF Aeroelastic System (Bisplinghoff et al., 2013)

2.2.1 Structural Dynamics

The structural dynamics simply define the equations of motion for the 2DOF airfoil. The
equations of motion are composed of two equations: the plunge equation and the pitch equa-
tion. These two equations can be put in matrix form and are given by Equation 2.1 below.
Note that the positive direction of airfoil plunging is downward, while the pitch is positive in
the clockwise direction. Furthermore, the lift is defined as positive in the upwards direction
while the moment is positive when it acts clockwise about the elastic axis. Note that the
motion in pitch is described by the variable θ instead of α, since α will be used to denote the
steady state angle of attack when necessary.

[
m Sθ
Sθ Iθ

]{
ḧ

θ̈

}
+

[
Kh 0
0 KT

]{
h
θ

}
=

{
−L
MEA

}
, (2.1)

where m is the mass of the airfoil section, Sθ = mbxθ is the static unbalance about the elastic
axis and Iθ = mb2r2

θ is the moment of inertia about the elastic axis. Note that rθ is the
dimensionless radius of gyration (dimensionalized by the midchord length b). Equation 2.1
can be derived using Lagrange’s equations or Newton’s Second Law (Inman and Singh, 1994).
The LHS represents the structural dynamics that are linearly modeled and hence are valid only
for small perturbations in pitch and plunge from the airfoils equilibrium position. Linearity
implies that the two structural matrices are not a function of the airfoil displacement in pitch
and plunge. The RHS symbolically represents the lift and moment that contribute to the
plunge and pitch, respectively. A more detailed analysis of these terms and their restrictions
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are given in the next section. This system is dynamically coupled due to the non-diagonal
term Sθ and is usually written in the following form

[Ms]{ẍ}+ [Ks]{x} = {Faero}, (2.2)

where [Ms] is the structural mass matrix and [Ks] is the structural stiffness matrix. {x} =
[h, θ]T is a vector that contains the degrees of freedom of the system. Finally, {Faero} is a
vector of forces, in this case aerodynamic forces, that act on each of the degrees of freedom.
Such a system of equations, as is shown by Equation 2.2, could represent a 3D wing where
the mass and stiffness matrices would be derived using the Finite-Element Method.

2.2.2 Unsteady Aerodynamics

In this section, an accurate model of unsteady aerodynamics (i.e. Theodorsen Theory) is
presented and explained. Theodorsen used a linearized potential flow model to obtain a
solution for the unsteady lift and moment on a 2D harmonically oscillating thin airfoil in
inviscid, incompressible flow (Theodorsen, 1935). The mathematical representation of the
model is given in Figure 2.2 below. The airfoil and wake are represented by a vortex sheet
γb and γw, respectively. The shed circulation is equal and opposite in sign to the change
in the total circulation of the airfoil, hence satisfying Kelvin’s Theorem (De Breuker, 2018).
The wake is considered planar, which is a valid assumption for small perturbation angles and
across it the net pressure jump must be zero (Leishman, 2006). The flow is assumed to be
attached, which is ensured by enforcing the Kutta condition to be satisfied at the trailing
edge of the airfoil (Leishman, 2006; Dimitradis, 2018) .

Figure 2.2: Theodorsen Model (Leishman, 2006)

Theodorsen Theory gives the unsteady lift and moment for a harmonically oscillating airfoil
(pitch + plunge) in the following form

cl =
πb

U2

[
ḧ+ Uθ̇ − baθ̈

]
+
cl,αC(k)

U

[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇

]
, (2.3)
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10 Dynamic Aeroelasticity

cm =
π

2U2

[
baḧ− Ub

(
1

2
− a
)
θ̇ − b2

(
1

8
+ a2

)
θ̈

]
+

+
cl,αC(k)

2U

(
a+

1

2

)[
ḣ+ Uθ + b

(
1

2
− a
)
θ̇

]
,

(2.4)

where cl,α is the steady state lift curve slope. Note that a is the previously introduced dimen-
sionless distance of the elastic axis from the midchord, nondimensionalized by the midchord
length b. Furthermore, U is the constant inflow velocity, the pitch θ is defined positive in the
clockwise direction while the plunge h is defined positive in the downwards direction. Finally,
C(k) is Theodorsen’s function. The unsteady lift and moment expressions are composed of the
non-circulatory and circulatory terms. The first term in both expressions represents the non-
circulatory term that take into account the force and moment required to accelerate the flow
in the vicinity of the airfoil (Wright and Cooper, 2008). The second term in both equations is
the circulatory term. The circulatory term contains the complex Theodorsen’s function C(k)
that accounts for the effects of the shed wake on the unsteady circulatory lift and moment
(Leishman, 2006). The shed wake creates pressure disturbances that propagate upstream and
affect the flowfield around the airfoil and hence the circulation, therefore causing a delay in
the buildup of the aerodynamic forces and moments (De Breuker, 2018). Note that the terms
in the brackets of the second term in the unsteady lift and moment equations is the apparent
angle of attack, comprised of the downwash due to plunging, the actual angle of attack and
the downwash due to pitching (Leishman, 2006; De Breuker, 2018). Theodorsen’s function,
as well as the unsteady lift and moment are only a function of the reduced frequency k

k = ωradb/U, (2.5)

where ωrad is the oscillation frequency in radians. The reduced frequency defines the unsteadi-
ness of the problem, i.e. the importance of vorticity dynamics. As k → 0, C(k) → 1 and
the unsteady lift and moment equations reduce to the result of the quasi-steady aerodynamic
model. Here the effects of the shed wake are not considered. If the non-circulatory aero-
dynamic terms are not included, since at such low reduced frequencies they are practically
negligible, the standard quasi-steady thin-airfoil results is obtained. This model is valid for
reduced frequencies of k ≤ 0.05 (Leishman, 2006).
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2.3 Flutter Computation Methods: k Method 11

2.3 Flutter Computation Methods: k Method

Flutter is a neutrally stable point. At the flutter speed, an aeroelastic system, subject to
an initial perturbation, will oscillate harmonically. Hence energy would neither be added or
extracted from the system causing the system to be conservative (Weisshaar, 2017). Above
the flutter speed any perturbation of the aeroelastic system will result in increasing oscillations
and eventual wing failure. In this case, the system extracts energy from the airflow. Below
the flutter point, the wing dissipates energy to the airflow and all oscillations damp out.

There are multiple flutter computation methods: Theodorsen’s method (Fung, 2008), k
method (i.e. V-g method) (Smilg and Wasserman, 1942), p method and the p − k method
(Hassig, 1971). Theodorsen’s method, the k method and the p − k method all compute the
flutter speed exactly (Weisshaar, 2017; De Breuker, 2018). However, only the p − k method
gives a true value of modal damping (given that the damping is relatively small), for velocities
below and above the flutter boundary (Weisshaar, 2017; De Breuker, 2018). The p method
gives correct damping values but is only able to approximate the flutter speed (De Breuker,
2018). The k method is the simplest and least computationally expensive method that can
exactly compute the flutter speed and is explained in this section. The aeroelastic EOM of
the system given by Figure 2.1 is of the following form

[Ms]

{
ḧ

θ̈

}
+ [Ks]

{
h
θ

}
= q∞[Qa(k)]

{
h
θ

}
, (2.6)

where q∞ is the freestream dynamic pressure. The matrix [Qa(k)], given by Equation 2.7
below, is a matrix containing the aerodynamic forces and moments due to harmonically
pitching and plunging motions. It is only a function of the reduced frequency k.

[Q(k)] = cl,αk
2

[
Lh b[Lθ − Lh(1

2 + a)]
b[Mh − Lh(1

2 + a)] b2[Mθ − (Lθ + 1
2)(1

2 + a) + Lh(1
2 + a)2]

]
. (2.7)

Note that cl,α is the steady state lift curve slope, b is the midchord length and Lh, Lθ, Mh, Mθ

are dimensionless functions of the reduced frequency k (Bisplinghoff et al., 2013). Weisshaar,
2017 provides the expressions for these functions as is shown by the relations below

Lh = 1− i2C(k)

k
; Lθ =

1

2
− i [1 + 2C(k)]

k
− 2C(k)

k2
;

Mh =
1

2
; Mθ =

3

8
− i1

k
.

(2.8)
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12 Dynamic Aeroelasticity

Note that Mh = 1/2 is only true for the incompressible case. The k method assumes that
the response of the aeroelastic system given by Equation 2.6 is purely harmonic (i.e. the
eigenvalues are purely imaginary). Therefore, the assumed solution is of the following form

{
h
θ

}
=

{
h̄
θ̄

}
eiωt, (2.9)

and when substituted into Equation 2.6, the following system is obtained

[
− ω2[Ms] + [Ks]

]{
h̄
θ̄

}
= q∞[Qa(k)]

{
h̄
θ̄

}
. (2.10)

At the flutter speed (i.e. flutter boundary), the aeroelastic system will harmonically oscil-
late. At other airspeeds, due to aerodynamic damping contained in the aerodynamic matrix
[Qa(k)], the response of the system will not be harmonic; however, the aerodynamics are only
valid for a harmonically oscillating airfoil. Therefore, to ensure that the response of the sys-
tem will always be harmonic, artificial structural damping is added to the system that cancels
the aerodynamic damping that is present. The airspeed at which the artificial damping is
zero is the flutter speed (De Breuker, 2018). The artificial damping is added to the pitching
and plunging components of the stiffness matrix in the following way

[
− ω2[Ms] + (1 + ig)[Ks]− q∞[Qa(k)]

]{
h̄
θ̄

}
= {0}. (2.11)

Note that a negative value of artificial damping g means that the aeroelastic system is damped
out in time. It indicates the amount of artificial damping that must be extracted from
the system for it to oscillate harmonically. A positive value of artificial damping g means
that the aeroelastic systems vibrations are amplified in time. It indicates the amount of
artificial damping that must be added to the system for it to oscillate harmonically. The
concept of artificial damping is a mathematical tool introduced to ensure that the response
of the aeroelastic EOM is always purely harmonic since the equations are only valid for a
harmonically oscillating system. The artificial damping values should not be interpreted as
the actual damping values of the aeroelastic system (Weisshaar, 2017; De Breuker, 2018).
Therefore, the k method only provides physical results at the flutter boundary, where the
artificial damping is zero and the response is actually purely harmonic. Finally, Equation
2.11 is rearranged and the eigenvalue analysis is done on the following system of equations

[Ks]
−1

[
[Ms] +

1

2
ρ

(
b

k

)2

[Qa(k)]

]{
h̄
θ̄

}
=

1 + ig

ω2

{
h̄
θ̄

}
, (2.12)
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where for a fixed air density ρ, the LHS of Equation 2.12 and its eigenvalues λ are a function
of the reduced frequency k. The eigenvalues will be of the form

λRe + iλIm =
1

ω2
+ i

g

ω2
. (2.13)

The eigenvalue analysis is carried for various values of the reduced frequency k until the
damping term (i.e. λIm) becomes zero. At this point the velocity is backcalculated from the
corresponding reduced frequency k (see step 5 of the procedure shown below). The procedure
for carrying out the k method is given below

1. Choose a value of the air density ρ. This will model the altitude.

2. Choose a value of the reduced frequency k.

3. Compute the eigenvalues of the LHS of Equation 2.12 for the corresponding value of k.

4. Compute the frequency of each mode with the following formula

ω =

√
1

λRe
. (2.14)

5. Compute the velocity and artificial damping from the following formulas, respectively

U =
ωb

k
, (2.15)

g = ω2λIm. (2.16)

6. Repeat steps 2-5 for various values of k until the damping term g is zero. Backcalculate
the speed for the corresponding k and this will be the flutter speed.
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14 Dynamic Aeroelasticity

2.4 Modal Analysis

In this section, the modal analysis method is explained, where the forces are obtained using
a linearized CFD model. Consider the following system of equations of motion

[Ms]{ẍ}+ [Cs]{ẋ}+ [Ks]{x} = {F(x, ẋ, ẍ)}, (2.17)

where the number of equations in the system above is equal to the number of degrees of
freedom n of the model. The system of equations formulation given by Equation 2.17 can
serve as a starting point for an analysis of any type of vibration system, such as a building
subject to an earthquake or strong winds. For easier conceptualization, the application of
the EOM will be limited to a 3D airplane wing further on. As such, the degrees of freedom
can symbolize rigid body motion and/or structural deformation. [Ms] is the structural mass
matrix, [Cs] is the structural damping matrix and [Ks] is the structural stiffness matrix. The
structural mass, damping and stiffness matrices are all n× nmatrices. If structural linearity is
assumed, these matrices will be constant and are not a function of the structural displacement.
For complex structures such as 3D airplane wings or even full aircraft configurations, the finite
element method is used to discretize the equation describing the structural dynamics in order
to obtain the mass, damping and stiffness matrices characterizing the system at the static
steady state. The static steady state is defined as the final deformed position of the wing due
to steady state aerodynamic loads. The equation describing the structural dynamics could
be the linearized beam model, for example. The forcing vector on the RHS of Equation 2.17
is an aerodynamic forcing vector that is dependent on the structural deformation

{F(x, ẋ, ẍ)} = {F1(x, ẋ, ẍ), F2(x, ẋ, ẍ), F3(x, ẋ, ẍ), ..., Fn(x, ẋ, ẍ)}T . (2.18)

The aerodynamic forcing vector is composed of n forcing terms, each acting on a specific degree
of freedom. While the structural dynamics are of linear nature, the aerodynamic forcing can
be nonlinear or linear. Modeling the aerodynamic forcing as nonlinear would require a fully
transient FSI simulation where the structure is deformed each time step adequately with
regards to the present aerodynamic forces. Perhaps even sub-iterations would be required
for each time step. Such a methodology is too computationally expensive. Therefore, the
aerodynamic forcing term is linearized around the static deformed solution {x0}. The absolute
displacement vector is written as

{x} = {x0}+ {x′}, (2.19)

where {x0} is the static deformed state and {x’} is the displacement perturbation around
the static deformed state. Using this relation, the scalar aerodynamic forcing functions can
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2.4 Modal Analysis 15

be linearized by a Taylor expansion and neglecting higher order terms. For example, the
linearized forcing function F1 is given by the following expression

F1(x, ẋ, ẍ)− F1(x0) ≈∂F1

∂x1

∣∣∣∣
s

x′1 +
∂F1

∂x2

∣∣∣∣
s

x′2 +
∂F1

∂x3

∣∣∣∣
s

x′3 + ...+
∂F1

∂xn

∣∣∣∣
s

x′n+

+
∂F1

∂ẋ1

∣∣∣∣
s

ẋ′1 +
∂F1

∂ẋ2

∣∣∣∣
s

ẋ′2 +
∂F1

∂ẋ3

∣∣∣∣
s

ẋ′3 + ...+
∂F1

∂ẋn

∣∣∣∣
s

ẋ′n+

+
∂F1

∂ẍ1

∣∣∣∣
s

ẍ′1 +
∂F1

∂ẍ2

∣∣∣∣
s

ẍ′2 +
∂F1

∂ẍ3

∣∣∣∣
s

ẍ′3 + ...+
∂F1

∂ẍn

∣∣∣∣
s

ẍ′n.

(2.20)

The partial derivatives, also referred to as linearized coefficients, are evaluated at the steady
state solution (i.e. the static deformed solution). They represent a change of the force on
the 1st degree of freedom as a result of the individual change in displacement, velocity and
acceleration of all the degrees of freedom. In the same way, all the forcing functions can be
linearized. Substituting the linearized expressions of all the forcing terms in the expression
for the aerodynamic forcing given by Equation 2.18, the RHS of Equation 2.17 can be written
as follows

{F(x, ẋ, ẍ)} ≈{F(x0)}+


∂F1
∂x1

∣∣
s

. . . ∂F1
∂xn

∣∣
s

...
. . .

...
∂Fn
∂x1

∣∣
s

. . . ∂Fn
∂xn

∣∣
s


︸ ︷︷ ︸

[Ka]


x′1
...
x′n

+

+


∂F1
∂ẋ1

∣∣
s

. . . ∂F1
∂ẋn

∣∣
s

...
. . .

...
∂Fn
∂ẋ1

∣∣
s

. . . ∂Fn
∂ẋn

∣∣
s


︸ ︷︷ ︸

[Ca]


ẋ′1
...
ẋ′n

+


∂F1
∂ẍ1

∣∣
s

. . . ∂F1
∂ẍn

∣∣
s

...
. . .

...
∂Fn
∂ẍ1

∣∣
s

. . . ∂Fn
∂ẍn

∣∣
s


︸ ︷︷ ︸

[Ma]


ẍ′1
...
ẍ′n

 ,

(2.21)

where [Ma], [Ca] and [Ka] are the aerodynamic mass, damping and stiffness matrices, respec-
tively. {F(x0)} is the resultant force vector at the static steady state of the 3D wing composed
of gravity and the steady state aerodynamic forces and moments. Substituting Equation 2.19
into the LHS of Equation 2.17 and substituting Equation 2.21 into the RHS of Equation 2.17
results in the following

[Ms]{ẍ0 + ẍ′}+ [Cs]{ẋ0 + ẋ′}+ [Ks]{x0 + x′} =

={F(x0)}+ [Ma]{ẍ′}+ [Ca]{ẋ′}+ [Ka]{x′}.
(2.22)
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16 Dynamic Aeroelasticity

Note that the velocity and acceleration of the initial statically deformed wing (i.e. {ẋ0} and
{ẍ0}) is zero. Furthermore, term [Ks]{x0} is equal to {F(x0)} at the initial steady state. As
such, Equation 2.22 reduces to

[Ms]{ẍ′}+ [Cs]{ẋ′}+ [Ks]{x′} = [Ma]{ẍ′}+ [Ca]{ẋ′}+ [Ka]{x′}. (2.23)

In Equation 2.23, only the linearized coefficients (i.e. partial derivatives) of the aerodynamic
mass, damping and stiffness matrices remain unknown. However, to determine all the coef-
ficients would be impractical due to the large number of degrees of freedom n. Therefore,
modal analysis is used to rewrite the EOM given by Equation 2.23 as a set of modal equa-
tions in which only the first k eigenmodes are taken into account, where k � n. As such,
the aerodynamic (and structural) matrices will reduce from n× n matrices to k× k matrices
(as is shown below), resulting in a significant reduction of partial derivatives that need to be
computed in order to build the linearized aerodynamic model. To derive the modal equation,
first the displacement {x′}, velocity {ẋ′} and acceleration {ẍ′} are written as the sum of
eigenvectors in the following form

{x′} = [Φ]{a}; {ẋ′} = [Φ]{ȧ}; {ẍ′} = [Φ]{ä}, (2.24)

where {a} is the amplitude function and is purely a function of time. [Φ] is a matrix of
orthonormal eigenvectors of the system. There are as many eigenmodes (and hence eigenvec-
tors & eigenfrequencies) as there are degrees of freedom. Usually the number of degrees of
freedom (i.e. eigenmodes) range into the thousands, but for an adequate analysis using the
modal system of equation a set of the first 10 or 20 eigenmodes will suffice (Weisshaar, 2017).
The resulting eigenmodes have higher eigenfrequencies that would damp out quickly in reality
and as a result would not significantly influence the vibration motion. Therefore, instead of
the matrix [Φ] consisting of n eigenvectors it will contain only k eigenvectors, resulting in
a n × k matrix. The set of n eigenvectors are found by using the free vibration version of
Equation 2.23 shown below

[Ms]{ẍ′}+ [Ks]{x′} = {0}; {x′} =

n∑
i=1

{Φi}eiωit, (2.25)

where the solution is defined by the second relation (Inman and Singh, 1994). Note that
the exclusion of the structural damping term will not change the system eigenfrequencies
and eigenvectors. Substituting the solution into the free vibration system and after some
mathematical manipulation, an asymmetric eigenvalue problem is obtained

ω2{Φ} = [Ms]
−1[Ks]{Φ}, (2.26)
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2.4 Modal Analysis 17

where the eigenfrequencies and eigenvectors stem from the matrix [Ms]
−1[Ks]. Each eigenvec-

tor {Φi} needs to be normalized by scaling it with its corresponding αi=1/
√
{Φi}T [Ms]{Φi}.

As such, an orthonormal set of n eigenvectors with respect to the structural mass matrix
is obtained (Inman and Singh, 1994). However, only a set of k orthonormal eigenvectors is
considered and form the matrix of eigenvectors in the relations given by Equation 2.24. The
displacement, velocity and acceleration vectors of Equation 2.24 are then substituted in the
EOM given by Equation 2.23. Finally, this system of EOM is multiplied by [Φ]T to obtain
the following system of equations

[Φ]T [Ms][Φ]{ä}+ [Φ]T [Cs][Φ]{ȧ}+ [Φ]T [Ks][Φ]{a} =

=[Φ]T [Ma][Φ]{ä}+ [Φ]T [Ca][Φ]{ȧ}+ [Φ]T [Ka][Φ]{a}.
(2.27)

This is a system of k modal equations. It can be written in its final form as

[M̃s]{ä}+ [C̃s]{ȧ}+ [K̃s]{a} = [M̃a]{ä}+ [C̃a]{ȧ}+ [K̃a]{a}, (2.28)

where the structural modal matrices [M̃s], [C̃s] and [K̃s] and the aerodynamic modal matrices
[M̃a], [C̃a] and [K̃a] are

[M̃s] = [Φ]T [Ms][Φ] = diag(1); [M̃a] = [Φ]T [Ma][Φ] =


∂F1
∂ä1

∣∣
s

. . . ∂F1
∂äk

∣∣
s

...
. . .

...
∂Fk
∂ä1

∣∣
s

. . . ∂Fk
∂äk

∣∣
s

 ;

[C̃s] = [Φ]T [Cs][Φ] = diag(ck); [C̃a] = [Φ]T [Ca][Φ] =


∂F1
∂ȧ1

∣∣
s

. . . ∂F1
∂ȧk

∣∣
s

...
. . .

...
∂Fk
∂ȧ1

∣∣
s

. . . ∂Fk
∂ȧk

∣∣
s

 ;

[K̃s] = [Φ]T [Ks][Φ] = diag(ω2
k); [K̃a] = [Φ]T [Ka][Φ] =


∂F1
∂a1

∣∣
s

. . . ∂F1
∂ak

∣∣
s

...
. . .

...
∂Fk
∂a1

∣∣
s

. . . ∂Fk
∂ak

∣∣
s

 .

(2.29)

The property of eigenvectors are that they are orthonormal with respect to the mass matrix.
This results in the diagonalization of the structural modal matrices, where the structural mass
matrix is an identity matrix, the structural damping matrix is a diagonal matrix containing the
modal damping coefficients and the structural stiffness matrix is a diagonal matrix containing
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18 Dynamic Aeroelasticity

the square of the modal eigenfrequencies. Usually the modal damping coefficients, obtained
from experience or measurements (Inman and Singh, 1994), are fed direct into the modal
damping matrix.

The modal aerodynamic matrices are rarely diagonal, and as a result they prevent the EOM
given by Equation 2.28 to fully decouple. The full derivations of the modal aerodynamic
matrices are shown in Appendix A. The interpretation of the coefficients are slightly different
than those seen in Equation 2.21. For example, each column in the aerodynamic modal
mass matrix represent the change in the force on a specific mode as result of the change in
acceleration of all the considered modes. So, ∂F1

∂ä1

∣∣
s

represents a change of the force on mode 1

as a result of the change in acceleration of mode 1, while ∂F1
∂äk

∣∣
s

represents a change of the force
on mode 1 as a result of the change in acceleration of mode k (i.e. the last mode considered).
The second column would represent the change of the force on mode 2 as a result of the
change in acceleration of all the considered modes, and so on. Finally, the columns in the
modal damping and stiffness matrix represent the change of the force on a specific mode as
a result of the change in velocity and displacement of all the considered modes, respectively.
Note that the perturbations of the acceleration, velocity and displacement are from the steady
state condition.

In order to clearly underline the advantage of modal analysis, note that Equation 2.28 is a
modal system of k equations where as Equation 2.23 is a system of n equations (k � n).
Carrying out computations with the modal system, the unknown coefficients present in the
aerodynamic modal matrices decrease from 3n2 to 3k2.

Once the linearized coefficients (i.e. partial derivatives) are found, the aerodynamic forcing
term should be able to model arbitrary perturbations of the system about the linearized
steady state, as long as the perturbations are small such that the flow is of linear nature.

2.4.1 Coefficient Extraction Method: Theory

In order to be able to carry out a modal analysis, the coefficients that compose the aerody-
namic matrices in Equation 2.28 must be computed. Note that the RHS of Equation 2.28 is
obtained by substituting the relations given by Equation 2.24 into Equation 2.21 and then
multiplying the same equation with [Φ]T , where [Φ]T is an n × k matrix. Therefore, the
following relation holds true

[Φ]T {F(x, ẋ, ẍ)} − {F(x0)} ≈ [M̃a]{ä}+ [C̃a]{ȧ}+ [K̃a]{a}. (2.30)

Multiplying the force vector with the transpose of the eigenvector matrix maps the resultant
force vector on each considered mode. This results in a k×1 vector. This equation represents
the linearized force vector in terms of modal variables, while in Equation 2.21 it represented
in terms of degrees of freedom.
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2.4 Modal Analysis 19

In order to extract the unknown coefficients, unsteady CFD simulations are used. Each mode
is perturbed from the steady state with a specific amplitude function a(t) for a specific number
of time steps. Three time steps is the minimum required. For example, a perturbation only
in the first mode of the structure reduces Equation 2.30 to

{F(a, ȧ, ä)} − {F(a0)} ≈


∂F1
∂ä1

∣∣
s

...
∂Fk
∂ä1

∣∣
s

 ä1(t) +


∂F1
∂ȧ1

∣∣
s

...
∂Fk
∂ȧ1

∣∣
s

 ȧ1(t) +


∂F1
∂a1

∣∣
s

...
∂Fk
∂a1

∣∣
s

 a1(t), (2.31)

where the LHS represents the modal forces computed at a specific perturbed state at time t
from the unsteady CFD simulations. At time t = t1, only the coefficients remain unknown.
Hence Equation 2.31 gives a system of k modal equations, but with 3k coefficients, 3 for each
modal equation. To provide enough equations to solve for the unknown coefficients, at least
two more time steps are needed. Typically, at least 10 are taken. If there are more equations
than unknowns, the least squares method is used to obtain the coefficients. Having said this,
the coefficients that make up the first column of the aerodynamic mass, damping and stiffness
matrix can be computed. Perturbing the structure in mode 2 will give the coefficients of the
second column and so on until all the coefficients are found.

In principle, the amplitude function a can be any function of t as long as its first and second
derivatives are non-zero. This will ensure that the displacement, velocity and acceleration
effects are considered when extracting the coefficients for the linearized model.

Finally, a detailed procedure of this theory is shown in Chapter 6, where the unsteady aero-
dynamic results that the linearized model gives are evaluated.

2.4.2 Flutter Prediction

Once the coefficients comprising the aerodynamic matrices are found, the system of k modal
equations, given by Equation 2.28, is fully defined. Note that the aerodynamic coefficients are
found for a specific Reynolds and Mach number and are valid only at these flow parameters.
Therefore, using Equation 2.28, an eigenvalue analysis or a numerical transient simulation
can be carried out in order to monitor the response and see whether flutter occurs. In order
to carry out such an analysis, Equation 2.28 has to be re-written in the space state form
(Inman and Singh, 1994). First, Equation 2.28 is written in the following form

{ä} = −[M̃ ]−1[C̃]{ȧ} − [M̃ ]−1[K̃]{a}, (2.32)

where [M̃ ] = [M̃s]− [M̃a], [C̃] = [C̃s]− [C̃a] and [K̃] = [K̃s]− [K̃a].
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20 Dynamic Aeroelasticity

To transform 2.32 into a first order vector differential equation, the following relations are
assumed

{y1} = {a}; {y2} = {ȧ}. (2.33)

In Equation 2.33 {y1} and {y2}, like {a}, are only a function of time. Differentiating the two
vectors with respect to time results in

{ẏ1} = {ȧ} = {y2}; {ẏ2} = {ä} = −[M̃ ]−1[C̃]{y2} − [M̃ ]−1[K̃]{y1}. (2.34)

The coupled system given by the relations above is written in its final space state form as

{
ẏ1

ẏ2

}
=

[
[0] [I]

−[M̃ ]−1[K̃] −[M̃ ]−1[C̃]

]{
y1

y2

}
or {ẏ} = [A]{y}, (2.35)

where the state [A] matrix is a 2k × 2k matrix. The four matrices that compose the [A]
matrix are all k × k matrices. The vector {y} is a 2k × 1 state vector. Assuming the solution
{y} = {z}eλt and substituting it into Equation 2.35 results in

[Iλ− [A]]{z}eλt = {0} or [A]{z} = λ{z}, (2.36)

The relations given by Equation 2.36 represent the standard algebraic eigenvalue problem
(Inman and Singh, 1994; Wright and Cooper, 2008). For an oscillatory system, there are 2k
eigenvalues λ of the state matrix [A] which occur in complex conjugate pairs (Frazer et al.,
1938; Collar and Simpson, 1987; Inman and Singh, 1994) as is shown below

λj = −ζjωj ± iωj
√

1− ζ2, j = 1, 2, ..., k (2.37)

where i =
√
−1 and k is the number of modes. Note that even though there are 2k eigen-

values, since they occur in complex conjugate pairs, there will be only k natural frequencies
ωj corresponding to each mode. Furthermore, there are also only k damping ratios ζj , corre-
sponding to each mode. If the damping ratio ζj > 0, the system oscillations are damped. For
ζj < 0, the system oscillations are amplified (i.e. flutter occurs). The formulae for computing
the damping ratios and natural frequencies are given below

ωj =
√

Re(λj)2 + Im(λj)2; ζj = − Re(λj)√
Re(λj)2 + Im(λj)2

. (2.38)
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2.4 Modal Analysis 21

Note for this eigenvalue analysis, initial boundary conditions are irrelevant when determining
whether the system is stable or not. If the actual response due to a specific set of boundary
conditions is of interest, the system of equations given by Equation 2.35 must be numerically
integrated with respect to time using, for example, the Runge-Kutta 4th order method.

2.4.3 Gust Response Analysis

In order to conduct a gust response analysis, a modal gust forcing term is added to the RHS
of Equation 2.32. The resulting system of modal equations are given below

{ä} = −[M̃ ]−1[C̃]{ȧ} − [M̃ ]−1[K̃]{a}+ [M̃ ]−1[Φ]T {fgust}, (2.39)

where {fgust} is a n × 1 vector containing the force magnitude on all n degrees of freedom
at a specific time t. Obviously, this gust vector will change each time step. The gust forcing
term is computed using unsteady CFD simulations in the following way: first, the structure
is submerged to freestream flow. At a certain time, the boundary conditions are changed
such that a vertical gust of a certain profile type is introduced. After a certain amount of
time, the boundary conditions are changed to those of the original case and the simulation
continues further for a certain number of time steps. During each time step, the force on
each degree of freedom of the structure is computed and in that way, the gust forcing term
{fgust} at each time step is known. Note that during the simulation, the structure does not
deform due to the forces that stem from the applied vertical gust. Assuming linearity of the
problem, the gust forcing term can then be added to the system of equations as is shown in
Equation 2.39. In order to obtain the gust forcing term acting on each mode (rather than
degree of freedom), {fgust} is multiplied by [Φ]T , a k × n matrix consisting of k eigenvectors.
Finally, the product [Φ]T {fgust} becomes a k × 1 vector. Converting Equation 2.39 into the
space state form results in the following system

{ẏ} = [A]{y}+ {f}, where {f} =

{
{0}

[M̃ ]−1[Φ]T {fgust}

}
. (2.40)

The vector {f} is a 2k × 1 vector consisting of a k × 1 zero vector and a k × 1 modal gust
forcing term [Φ]T {fgust} multiplied by a k × k matrix denoted as [M̃ ]−1. The state matrix
[A] is identical to that given by Equation 2.35. Equation 2.40 can be numerically integrated
with respect to time in order to monitor the structures response due to a vertical gust.
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2.5 Concluding Remarks

In this chapter, the aeroelastic system of a 2DOF airfoil and the corresponding EOM are
introduced and explained. The expressions of the unsteady aerodynamic forces obtained via
Theodorsen are explained and how they can be used to compute the flutter boundary via
the classical k method. Furthermore, the linearized aerodynamic model in terms of degrees
of freedom n and modal coordinates k is derived. The procedure for computing the partial
derivatives, i.e. the linearized coefficients, of the model via unsteady CFD simulations is
thoroughly explained. Finally, how the linearized aerodynamic model can be used to compute
the flutter boundary and gust response analysis is shown.

The main objective of this author’s Master Thesis is to investigate the efficacy of the linearized
aerodynamic model for accurately predicting flutter. As such, the model must be able to
model unsteady aerodynamic loads for a harmonically oscillating structure. The theoretical
basis is laid out in this chapter, while the evaluation of the linearized aerodynamic model
is carried out for a 2D airfoil subject to incompressible flow and the results are shown and
discussed in Chapter 6.
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Chapter 3

Computational Fluid Dynamics (CFD)

3.1 Introduction

Computational Fluid Dynamics (CFD) deals with numerically solving the discretized govern-
ing fluid dynamics equations. The governing equations can be spatially discretized using the
Finite Difference Method (FDM), Finite Element Method (FEM) or Finite Volume Method
(FVM). Of these methods, the Finite Volume Method is the most popular industrial method
today. It is the basis of the OpenFOAM software that is used in this Master Thesis. In FVM,
the integral form of the governing equations are applied to discrete computational cells (i.e.
control volumes) within a computational domain and are spatially discretized. This ensures
conservative discretization, which is one of the main advantages of the Finite Volume Method
(Hirsch, 2007; Ferziger and Peric, 2012). In addition, FVM is easy to implement and can
be applied to arbitrary grids. Temporal discretization, for engineering purposes, is typically
carried out with an implicit second order accurate numerical scheme, such as BDF2. More
information on discretization schemes and solving the discretized system of equations are not
presented here but can be found in Hirsch (2007) and Ferziger and Peric (2012).

The focus of this chapter is to introduce the governing fluid dynamics equations and the
concept of turbulence modeling. The discretized form of these equations are used for compu-
tational analysis. Finally, mesh deformation techniques are discussed since they are needed
when motion is imposed upon the 2D airfoil.
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3.2 Governing Equations

Typically, the governing equations that describe the fluid dynamics consist of equations for
the conservation of mass, conservation of momentum and conservation of energy. In incom-
pressible flows, such as those considered in this Master Thesis, the conservation of mass and
momentum equations become independent of the energy equation, i.e. the energy equation
decouples. The velocity and pressure field can be solved for by only considering the conser-
vation of mass and momentum equations. The conservation of mass and momentum for an
incompressible Newtonian fluid in differential form and written in the Eulerian framework is
given by the following two equations

Conservation of Mass :
∂ui
∂xi

= 0, (3.1)

Conservation of Momentum :
∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi. (3.2)

Note that the conservation of momentum equation consists of three scalar equations, i.e. the
x, y and z component of the momentum equation. These equations are also referred to as
the Navier-Stokes equations. A derivation and detailed explanation of Equations 3.1 & 3.2
can be found in any university textbook on fluid dynamics, e.g. Anderson Jr (2010).

3.3 Turbulence Modeling

Theoretically, the Navier-Stokes equations along with the continuity equation can be solved
numerically and directly, without an appropriate turbulence model. This approach is called
Direct Numerical Simulation (DNS). DNS resolves all the turbulent length and time scales
which implies that the mesh size and time step would need to be sufficiently small. This tech-
nique is extremely computationally expensive and is not useful as an engineering approach.
However, it is used in research for understanding the fundamental mechanisms of turbulence
(Hirsch, 2007). A less computationally expensive approach is the Large Eddy Simulations
(LES) that resolves the largest turbulent length scales and models the smallest ones. The
least computationally expensive turbulent modeling approach is Reynolds Averaged Navier-
Stokes (RANS) simulations. This is also the least accurate of the methods mentioned, but
is still an industrial standard as it provides sufficient accuracy for engineering purposes at a
reasonable computational cost. RANS models all the turbulent length scales. This method
is used in this Master Thesis and is discussed briefly in the subsequent sections.
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3.3.1 Reynolds Averaged Navier-Stokes (RANS)

In order to obtain the governing equations to carry out RANS simulations, the incompressible
Navier-Stokes equations as well as the conservation of mass equation are averaged by ensemble
such that only the mean component of the physical property in the equations is considered.
This process is explained in this section. Any physical property can be decomposed into a
mean and fluctuating component about the mean, as is shown by the expression below

φ(x, t) = φ̄(x, t) + φ′(x, t). (3.3)

This is also referred to as Reynolds decomposition. The physical property can represent
components of the velocity vector or the pressure, for example. The mean component φ̄(x, t)
is defined by ensemble averaging

φ̄(x, t) = lim
N→∞

1

N

N∑
i=1

φi(x, t), (3.4)

where N is the number of ensembles, i.e. identically performed experiments (Ferziger and
Peric, 2012; Jasak, 1996). Figure 3.1 demonstrates the concept of ensemble averaging. For a
specific experiment (e.g. sample 1 ), at a specific location x, the physical property will change
in time, but can be represented as a mean change in time and a fluctuation about the mean
value. For another identical experiment (e.g. sample 2 ), the mean change in time will be
the same, but the fluctuation will be different and so on. However, averaging over multiple
ensembles will cause the fluctuations components to cancel out and the change in the mean
value of a physical property to remain, as long as the number of ensembles N is high enough
(Ferziger and Peric, 2012). This is also called Reynolds averaging.

Figure 3.1: Ensemble Averaging of Velocity at a Point in Turbulent Flow (Recktenwald, 2009)
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The velocity and pressure are decomposed in the form of Equation 3.3 and substituted in
the continuity and Navier-Stokes equations. Reynolds averaging is applied and the resulting
equations in terms of means physical quantities are

Averaged Conservation of Mass :
∂ui
∂xi

= 0, (3.5)

Averaged Navier− Stokes :
∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂u′iu

′
j

∂xj
+ fi. (3.6)

From Equation 3.6 it can be seen that there is in fact a fluctuating component in the RANS
equations. This is known as the Reynolds or turbulent stress. The averaging process cre-
ates more unknowns but without creating additional governing equations. This results in a
closure problem. Turbulence models are used to apply closure to the problem. Similarly to
how viscous stresses are proportional to molecular viscosity, Boussinesq provides a approxi-
mation for the turbulent shear stress that is proportional to the eddy or turbulent viscosity
νt (Boussinesque, 1877), as is shown below

−u′iu′j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δijk, (3.7)

where k is the turbulent kinetic energy u′iu
′
i/2. Unlike molecular viscosity, turbulent viscosity

is not a property of the fluid but of the flow. Turbulent flow leads to chaotic mixing that
increases the diffusion of the flow physical properties, which is modeled by the eddy viscosity.

Typically, the eddy viscosity is modeled as a function of the turbulent kinetic energy k and
the turbulence dissipation rate ε. Instead of ε, the specific turbulence dissipation rate ω can
be used, where ω = ε/k. Popular turbulence models for modeling the turbulent viscosity are
Spalart-Allmaras, standard k-ε, RNG k-ε, standard Wilcox k-ω, k-ω SST and k-kl-ω. Of all
the turbulence models mentioned, the most popular model in the industry is Menter’s k-ω
SST (Menter, 1994). The k-ω SST is used in this Master Thesis and is briefly outlined in the
following subsection.

3.3.2 Turbulence Models: k-ω SST

The k-ω SST is a blend of the standard k-ω turbulence model and the standard k-ε turbulence
model as is briefly explained in this section. The k-ε model is robust, reasonably accurate and
insensitive to freestream parameters. However, it does not provide accurate results for flows
with high adverse pressure gradients and separated flows. On the other hand, the standard
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k-ω model shows superior performance for wall-bounded flows and flows with high adverse
pressure gradient and/or separation. However, the model is overly sensitive to the freestream
value of ω (Menter, 1993). Therefore, Menter (1993) suggested to combine the two models
such that the advantages of both are utilized. In the first 50% of the boundary layer, the
standard k-ω model of Wilcox is used, after which the model changes gradually to that of the
standard k-ε towards the boundary layer edge. Note that a k-ω formulation of the k-ε model
is used. Furthermore, based on the success of the Johnson-King model (Johnson and King,
1985), the eddy viscosity formulations of the k-ω SST model takes into account the principal
turbulent shear stress in the adverse pressure gradient regions (Menter, 1993, 1994). This
further increases the ability of the model to accurately predict flows with adverse pressure
gradients and separation. For more in depth description of the model, see Menter (1994).

3.4 Mesh Deformation Methods

In Fluid-Structure Interaction (FSI) problems, as the structure deforms, the fluid mesh must
change. In this Master Thesis, the structure (i.e. airfoil) moves as a result of imposed motion
and not as a result of the forces acting on it. One approach is to completely regenerate the
computational fluid grid in each time step. However, this has large computational require-
ments and requires user interaction. Since the mesh would have to be regenerated every
time step, a method that can solve this problem automatically is required. Furthermore, the
physical conservation laws are not satisfied when a new mesh is generated because physical
quantities have to be interpolated from the old mesh to the new mesh (van Zuijlen, 2008).
Instead of regenerating the mesh each time step, deforming the mesh is used as a better
approach. There are various mesh deformation techniques found in literature, some of which
will be discussed in this section.

Mesh deformation based on springs can be used for handling moderate deformations
and for structured & unstructured meshes (van Zuijlen, 2008). One such method is the
lineal spring analogy method that connects the internal grid point with fictitious springs of a
specific stiffness. An equilibrium state is found by performing a force balance on the system
of spring elements, where the equilibrium length is equal to the initial length of the spring
segments. This mesh deformation method can be improved by additional torsional springs
at the mesh vertices. This prevents neighbouring triangles or tetrahedrons from intersecting
each other (van Zuijlen, 2008). This is called the torsional spring analogy method (Farhat
et al., 1998; Degand and Farhat, 2002). Finally, there exists a semi-torsional spring analogy
model similar to the lineal method but with angle information included when computing the
spring stiffness (Blom, 2000; Zeng and Ethier, 2005). This model requires less computational
effort than the torsional spring analogy method. Furthermore, all these models mentioned
suffer from the appearance of hanging nodes that must be removed (van Zuijlen, 2008).
Other mesh deformation methods include the least squares method (Wick, 2001), the solid
body elasticity approach (Lynch and O’Neill, 1980), laplacian smoothing (Helenbrook, 2003)
and the biharmonic operator (Helenbrook, 2003). Finally, a popular method for deforming a
computational fluid grid involves the use of radial basis functions which is discussed in more
detail in the following subsection.
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3.4.1 Radial Basis Function (RBF) Interpolation as a Mesh Deformation
Method

RBF is used to interpolate the deformation of the fluid mesh internal nodes given the dis-
placement of the structural nodes on the interface (van Zuijlen, 2008). The interpolation
function, used to compute the displacement of the computational mesh, is approximated as
the sum of basis functions as is shown below

s(x) =

nb∑
j=1

γjφ(||x− xbj ||) + p(x), (3.8)

where xbj = [xbj , ybj , zbj ] are the centers in which the displacements are known. The number
of boundary nodes present is equal to nb, the radial basis function used is defined by φ
and p(x) is a polynomial. The following interpolation conditions are used to determine the
coefficients γj and the polynomial p (De Boer et al., 2007b)

s(xbj ) = dbj , (3.9)

where dbj is a vector of displacement for each boundary point. The second requirement is
that the following relation is satisfied

nb∑
j=1

γjq(xbj ) = 0, (3.10)

where q is a polynomial with a degree less than or equal to that of polynomial p. The radial
basis function defines the minimal degree of the polynomial p (van Zuijlen, 2008). If the
radial basis functions are positive definite and have a degree of less than or equal to 2, linear
polynomials for p and hence q can be used (Beckert and Wendland, 2001). All the RBF’s
mentioned in this section satisfy this criterion. The two aforementioned requirements are put
in matrix form as follows

{
db
0

}
=

[
[φb,b]nb×nb [Pb]nb×4

[P Tb ]4×nb [0]4×4

]{
γ
β

}
, (3.11)

where γ is a vector of coefficients γj and β is a vector of coefficients of the linear polynomial
p. The matrix [φb,b] is the evaluation of the basis function φbibj = φ(||xbi − xbj ||) and [Pb] is
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a matrix with each row j given by [1 xbj ybj zbj ]. From Equation 3.11, three sets of γ and
β coefficients are computed, a set for the displacements db in the x direction (i.e. db,x), a
set for the displacements db in the y direction (i.e. db,y) and a set for the displacements db
in the z direction (i.e. db,z). With each set of γ and β coefficients, the displacement in the
x, y, and z direction of the internal nodes can be computed by evaluating the interpolation
function give by Equation 3.8 at the internal nodes xinj = [xinj , yinj , zinj ], as is shown below

dinj = s(xinj ). (3.12)

This expression in matrix form is the following

db =
[
[φin,b]nin×nb [Pin]nin×4

]{γ
β

}
, (3.13)

where nin is the number of internal nodes. The matrix [φin,b] is the evaluation of the basis
function φinibj = φ(||xini − xbj ||) and [Pin] is a matrix with each row j given by [1 xinj yinj
zinj ].

The radial basis function that can be used are either those of compact support or functions
with global support. Compact support functions have a support radius r that defines the area
in which the internal points are influenced by the structural deformation. Outside that area,
the internal points stay at their initial position regardless of the severity of the structural
deformation. Furthermore, when functions with global support are used, each internal grid
point in the fluid computational domain is affected by the deformation of the structure. The
two functions that give the best quality deformed meshes are the C2 continuous basis function
with compact support (CP C2) and the Thin Plate Spline (TPS, global support) function
shown below respectively,

φ

(
x

r

)
=

[
1−

(
x

r

)4][
4

(
x

r

)
+ 1

]
and φ(x) = x2ln(x). (3.14)

In this Master Thesis, the global radial basis function IMQB (inverse multiquadratic bihar-
monics) is utilized since it is available in the foam-extend 3.2 framework. The IMQB radial
basis function is given by the following formula

φ(x) =
1

a2 + x2
. (3.15)

Note that a is a parameter that controls the shape of the radial basis function (van Zuijlen,
2008). Typically, the values chosen for this parameter are in the range 10−5 to 10−3 (De Boer
et al., 2007b).
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3.5 Concluding Remarks

In this chapter, the fundamental tools used in CFD were introduced. The governing equations,
i.e. the mass continuity and conservation of momentum, for incompressible flow were given.
Furthermore, the averaging of these conservation laws was explained as well as the need
for the turbulence modeling of the fluctuating term that arises in the Reynolds Averaged
Navier Stokes Equations. The k-ω SST turbulence model used in this Master Thesis was
briefly introduced. Finally, mesh deformation methods based on radial basis functions were
explained, since they are used for deforming the mesh during unsteady CFD simulations
where motion of the 2D airfoil is imposed.
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Chapter 4

Computational Setup

4.1 Introduction

This chapter presents the computational setup for carrying out the steady and unsteady CFD
simulations of this Master Thesis. The mesh strategy is discussed and the mesh convergence
tests are shown. The pressure, velocity and turbulent boundary conditions of the utilized k-ω
SST model are given. In addition, the numerical schemes and the solver used are presented.
Furthermore, the CFD simulations carried out during this Master Thesis are done on a NACA
0009 airfoil submerged in incompressible flow at a freestream Reynolds number of 106. The
reasoning behind choosing the NACA 0009 airfoil and the specific freestream flow parameters
is also explained in this chapter.

4.2 NACA 0009 Airfoil

The main aim of this Master Thesis is to validate the use of a linearized aerodynamic CFD
model in predicting unsteady aerodynamic characteristics of harmonically oscillating airfoils.
Its accuracy is analyzed partly by comparing the results with Theodorsen’s unsteady aerody-
namic coefficients (Theodorsen, 1935). Since these expressions were derived for a flat plate
(Dimitradis, 2018), where the flow is attached and thus linear, it would be logical to use a
flat plate as a geometry upon which the CFD simulations are carried out. However, the flat
plate has a blunt leading and trailing edge. The blunt leading edge would cause convergence
issues and if it converged at all, flow separation in the vicinity of the leading edge would occur
for small angles of attack, causing it to deviate from the linear regime. Hence, the idea is to
choose an airfoil which displays the same aerodynamic behaviour as the flat plate but does
not trigger separation due to its curved leading edge. Therefore, the NACA 0009 airfoil is
chosen. As such, like the flat plate, it gives zero lift for a zero angle of attack and its moment
coefficient is zero at the aerodynamic center. Its ∂cl/∂α is approximately the 2π value as cal-
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culated by Thin Airfoil Theory (Katz and Plotkin, 2001) for a flat plate. Figure 4.2 depicts
the lift-curve slope per degree for different types of NACA airfoils and for different thickness.
In addition, a smooth and rough airfoil surface is considered. The Reynolds number is 6·106

and the lift-curve slope is measured about the design lift coefficient value of wing sections
(Abbott and Von Doenhoff, 1959). This lift coefficient is approximately in the center of the
NACA 6-series low-drag range. It is clear that for a NACA 0009 airfoil, the slope is ≈ 0.1097
(i.e. 2π ). The coordinates of the NACA 0009 airfoil of unit length are taken from Airfoil
Tools Database (airfoiltools.com, 2018) and the profile shape is shown in Figure 4.1 below.

Figure 4.1: NACA 0009 Airfoil (airfoiltools.com, 2018)

Figure 4.2: ∂cl/∂α for Different NACA Airfoil Thickness/Type (Abbott and Von Doenhoff, 1959)

4.3 Flow Parameters: The Reynolds Number

The resultant aerodynamic force on a given airfoil of chord c can be written in functional
form as (Leishman, 2006)

F

ρV 2c2
= f(Re,Ma, k). (4.1)
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Within the scope of this Master Thesis only incompressible flow is considered. Since the
solvers used in OpenFOAM are incompressible it implies that Ma ≡ 0. It is important that
the aerodynamic steady state lift polars of the NACA 0009 exhibit the same behaviour as that
of a flat plate, meaning that its lift-curve slope should be ≈ 2π. For steady state flows, the
lift depends only on the Reynolds Number (since k = 0). Therefore, a high enough Reynolds
number must be chosen such that the airfoil displays linear behaviour for smaller angles of
attack but not too high such that the computational mesh for the airfoil becomes so large that
the CFD simulations become computationally expensive, particularly for unsteady scenarios.

Reynolds Number Effects

For lower Reynolds numbers, the airfoil deviates from its linear regime and displays nonlin-
earities in lift that are called low Reynolds number effects. This can be seen in Figure 4.3
below, where lift polars for Reynolds numbers of 100,000, 1,000,000 and 10,000,000. The
polars were computed using XFOIL (Drela, 1989) without tripping the boundary layer and
thus letting its boundary layer naturally transition from laminar to turbulent. Clearly, the
lift polar of Re = 100,000 is most effected by the Reynolds number effects. The Reynolds
number effects are a result of the laminar boundary layer which is very sensitive to adverse
pressure gradients and hence prone to transition and separation (Schlichting and Gersten,
2016). For example, for α = 1◦, the boundary layer is fully laminar; however, separation on
the suction side occurs at ≈ 0.65, resulting in a lower lift value. Increasing the angle of attack
results in a laminar separation bubble, where the flow manages to reattach and transition is
triggered. Furthermore the LSB changes in length and moves towards to leading edge of the
airfoil. These effects result in a nonlinear lift polar. For Re = 1,000,000 and α > 4.5◦ a small
LSB forms near the leading edge, which is why the lift polar does not deviate for the linear
regime substantially. For Re = 10,000,000, the boundary layer transition before a LSB forms
and the low Reynolds number effects are completely eliminated.

Figure 4.3: XFOIL Lift Polars, Natural
Transition

Figure 4.4: XFOIL Lift Polars, Forced
Transition

For CFD simulations using turbulence models that are capable of predicting boundary layer
transition, the Reynolds number should be at least 1,000,000, but preferably even higher. Due
to the fact that the chosen k-ω SST turbulence model in foam-extend 3.2 cannot compute
laminar to turbulent boundary layer transition, the boundary layer is assumed turbulent
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throughout the airfoil. A fully turbulent boundary layer eliminates the nonlinear low Reynolds
number effects, as can be seen in Figure 4.4 above. Here the boundary layer is tripped at the
leading edge and any deviation from the thin airfoil theory is due to trailing edge separation.
Assuming fully turbulent boundary layer significantly increases the error computed in drag,
but not for lift. Fortunately, for airfoil flutter computations, the drag forces are of minor
significance and the use of a fully turbulent boundary layer will not alter the results. A
Reynolds number of 1,000,000 is chosen as the flow parameter for all steady and unsteady
CFD simulations carried out in this Master Thesis. Its lift polar is of linear nature for a large
enough range of angles of attack and the mesh size is sufficiently small.

4.4 Meshing Strategy

The ANSYS ICEM CFD meshing software is used for creating a computational mesh
around the NACA 0009 airfoil. The coordinates taken from the Airfoil Tools Database
(airfoiltools.com, 2018) are imported into the meshing software. The airfoil coordinates result
in a NACA 0009 airfoil of unit length with a sharp trailing edge. Since blunt trailing edge
allows for a better mesh quality and numerical convergence (Fehrs et al., 2014), the NACA
0009 airfoil geometry was altered to have a blunt trailing edge thickness t/c = 0.00114 at x/c
= 0.99572. Such an alteration will not have an affect on the numerical accuracy. The mesh
shown in Figures 4.5, 4.6 & 4.7, is the final mesh chosen after a mesh convergence study (see
Section 4.4.1), upon which all the steady and unsteady CFD simulations are carried out.

The meshing technique that is used is similar to that of Fehrs et al. (2014). In the
near vicinity of the airfoil a structured O-grid type mesh is utilized and enclosed with
a structured C-grid that includes a structured wake region (see Figure 4.6 & 4.7). The
remaining part of the flowfield is an unstructured all-quad domain (see Figure 4.5). The
origin of the mesh is at the airfoils leading edge and the farfield has a radius of 100c. A large
farfield minimizes the influence of the farfield boundary conditions on the lift and drag results,
which can be significant particularly for larger angles of attack (http://www.nasa.gov, 2018).

The unstructured mesh is denser in the wake region than in other areas in order to
resolve the flow dynamics that have an influence on the airfoils aerodynamic forces. Its the
finest near the airfoil and becomes courser further downstream of the airfoil. The structured
region extends to ≈ 0.5c above and below the airfoil with a structured wake length of ≈ 1c.
In the vicinity of the airfoil, the wake is chosen to be structured for better convergence and
accuracy in an area with significant gradients. It has been shown that larger structured wake
regions do not improve the accuracy of the results (see Section 4.4.1).

The final mesh has a total of 101,184 cells. It is a 2D mesh with a unit length in the
z direction. The number of divisions on the suction and pressure sides is 230. Near the
leading and trailing edges the distribution of the divisions is finer than around the mid-chord.
The number of divisions on the blunt trailing edge is 19. Furthermore, the structured wake
region has a total of 119 divisions in the x direction. In the direction normal to the airfoils
pressure and suction surfaces, the number of divisions are 117 with an expansion ratio of 1.1.
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The mesh is used to simulate flows of a Reynolds number of 1,000,000. The low Re k-ω SST
turbulence model used for the CFD simulations resolves the boundary layer to the viscous
sub-layer and hence requires the y+ in the first cell to be less than 1 for accurate results,
although meshes with y+ < 3 have given good results (Menter, 1993, 1994). The height of
the first cell is made to be 0.00001m, which corresponds to a y+ value of ≈ 0.425. Table
4.1 summarizes the most important mesh topology parameters that ensure convergence and
numerical accuracy.

Table 4.1: Mesh Topology Parameters

No. of Cells Max. Non-Ortho Average Non-Ortho Max. Skewness y+

101,184 42.361 6.329 1.076 0.425

Figure 4.5: Farfield
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4.4.1 Mesh Convergence Tests

The mesh convergence tests were carried out by comparing the steady state lift and drag
polars for four different meshes, whose topology parameters are given in Table 4.2. The
boundary conditions and numerical schemes used are given in Section 4.5 & 4.6. Mesh 3
represents the mesh chosen for all further CFD computations and was shown in Figures 4.5,
4.6 & 4.7.

Table 4.2: Mesh Topology Parameters for Different Meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4

No. of Cells 270,151 132,494 101,184 70,717

Max. Non-Ortho 42.322 42.361 42.361 42.361

Average Non-Ortho 5.293 5.715 6.329 7.093

Max Skewness 1.052 1.075 1.076 1.161

No. of Divisions Top / Bottom 230 / 230 230 / 230 230 / 230 150 / 150

All meshes have a y+ of ≈ 0.425 and the number of divisions on the trailing edge are 19.
Mesh 2 differs from Mesh 3 in that the number of divisions in the structured region in the
direction normal to the airfoil is greater. Furthermore, Mesh 1 differs from Mesh 2 in that
the wake length is now ≈ 5c rather than ≈ 1c. Also, the farfield is much finer both upstream
and downstream of the airfoil. Finally, Mesh 4 differs from Mesh 3 in that it has a smaller
number of division on the top and bottom (i.e. suction and pressure) side of the airfoil. Its
mesh is also coarser in the structured region in the direction normal to the airfoil.

From Figure 4.8 it is clear that the lift polars deviate for the coarsest mesh (i.e. Mesh 4).
The same conclusion can be made for the drag polar (see Figure 4.9). Mesh 3 is the coarsest
mesh that does not significantly deviate from the finest mesh (i.e. Mesh 1) lift and drag
polars. As such, it is chosen as the mesh upon which all further CFD simulations are done.

Figure 4.8: Lift Polars, Re = 1,000,000 Figure 4.9: Drag Polars, Re = 1,000,000
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4.5 Boundary Conditions

In this section, the choice of boundary conditions for the pressure p, velocity U , turbulent ki-
netic energy k, turbulent viscosity νt and the turbulent specific dissipation rate ω is explained.
These will be used for steady & unsteady CFD simulations. The boundary conditions are
prescribed on a total of four boundary patches. The boundary patch named "farfield" rep-
resents the boundary encompassing the whole computational domain. The boundary patch
named "top" represents the suction side of the NACA 0009 airfoil, while the boundary patch
named "bottom" represents the pressure side. Finally, the boundary patch named "te" rep-
resents the blunt trailing edge of the NACA 0009 airfoil.

4.5.1 Pressure & Velocity Boundary Conditions

At the inlet boundary, the velocity field is prescribed while the pressure is taken to be zero gra-
dient (Hirsch, 2007). At the outlet, the boundary conditions are specified such that the overall
mass balance for the computational domain is ensured (Jasak, 1996). This results in prescrib-
ing the pressure and having a zero gradient velocity boundary condition. In OpenFOAM, the
boundary patch "farfield" will incorporate the inlet and outlet boundary conditions in the
following way:

Pressure

For the pressure, the "farfield" boundary condition is specified as "outletInlet". This
implies that if the computed flux is leaving the computational domain, a fixed value pressure
boundary condition is prescribed. The fixed value of pressure is taken as 0. If the computed
flux is entering the computational domain, a zero gradient boundary condition for pressure
is prescribed.

Note that at the wall (i.e. at the "top", "bottom" & "te"), a zero-gradient boundary
condition for pressure is prescribed.

Velocity

For the velocity, the "farfield" boundary condition is specified as "inletOutlet". This
implies that if the computed flux is entering the computational domain, a fixed value velocity
boundary condition is prescribed. A freestream velocity of 50 m/s is used. If the computed
flux is leaving the computational domain, a zero gradient boundary condition for velocity is
prescribed.

Note that at the wall (i.e. at the "top", "bottom" & "te"), the velocity of the fluid is equal
to the velocity of the wall. For a fixed airfoil, a fixed value boundary condition of zero is
prescribed for the velocity in the steady and unsteady simulations. However, for unsteady
simulations with a moving airfoil, a movingWallVelocity boundary condition is used.
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4.5.2 Turbulent Boundary Conditions

For the k − ω SST turbulence model, the turbulent kinetic energy, turbulent viscosity and
specific rate of dissipation must be computed and appropriately assigned at the inlet, outlet
and wall.

Turbulent Kinetic Energy

The turbulent kinetic energy is prescribed at the inlet and taken as zero-gradient at the outlet
(Jasak, 1996). Hence, the same "inletOutlet" boundary condition for the "farfield" is
used as described for the velocity. The turbulent kinetic energy is a function of the freestream
turbulent intensity and the freestream velocity as follows

kinlet =
3

2

[
U

(
I

100

)]2

, (4.2)

where I (in %) is the turbulent intensity. Flow over an aircraft airfoil corresponds to a low
turbulence case where the turbulence intensity is well below 1% (cfd online.com, 2018). A
turbulence intensity of 0.1% is chosen. With a freestream velocity of 50 m/s, the turbulence
kinetic energy k is 0.00375 m2/s2 at the inlet.

At the wall, the turbulent kinetic energy is zero (Menter, 1993, 1994). The low Re k−ω SST
turbulence model resolves the boundary layer to the viscous sublayer where y+ < 5. In this
region, the turbulence is damped out and the boundary layer is dominated by viscous forces
(White and Corfield, 2006), resulting in a turbulent kinetic energy of zero.

Specific Rate of Dissipation

Similar to the velocity and turbulent kinetic energy, the specific rate of dissipation is pre-
scribed at the inlet and taken as zero gradient at the outlet (Jasak, 1996). The value of ω at
the inlet is (Menter, 1993, 1994)

ωinlet =
kinlet
νt

, (4.3)

where k is computed from Equation 4.2. The turbulent viscosity is chosen such that it
is between one and ten times the value of the molecular kinematic viscosity. In this Master
Thesis, the turbulent viscosity is chosen to be equal to the kinematic viscosity, i.e. 0.000049786
m2/s. This results in a specific dissipation rate of 75.3224 s−1.
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At the wall, ω is computed from the following formula given in Menter (1993, 1994)

ωwall = 10
6ν

β1(∆y)2
, (4.4)

where β1 is a constant equal to 0.075 and ∆y is the distance (in meters) to the first compu-
tational node away from the wall, i.e. half the height of the first computational cell. For the
airfoil mesh used in this Master Thesis, the height of the first cell away from the wall (i.e.
airfoil) is 0.00001m. This results in ωwall to be 1593152000 s−1.

Turbulent Viscosity

At the inlet and outlet, the turbulent viscosity is computed using the turbulent kinetic
energy and the specific rate of dissipation. Therefore, for the boundary patch "farfield",
the boundary condition of type "calculated" is used.

Similarly to the turbulent kinetic energy, the turbulent viscosity is zero at the wall
(Menter, 1993, 1994).

4.6 Finite Volume Schemes & Solution Algorithm

The finite volume schemes used in the steady state CFD simulations are given in Table 4.3.
For steady state cases, the consistentSimpleFoam algorithm is used.

Table 4.3: Finite Volume Schemes for Steady State Cases

General Specific
Discretization Term Discretization Term Scheme

ddtSchemes default steadyState

gradSchemes default Gauss linear

divSchemes default none
div(phi,U) Gauss linearUpwind Gauss linear
div(phi,k) Gauss upwind

div(phi,omega) Gauss upwind
div((nuEff*dev(grad(U).T()))) Gauss linear
div((nuEff*dev(T(grad(U))))) Gauss linear

laplacianSchemes default Gauss linear corrected

interpolationSchemes default linear

snGradSchemes default corrected
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Table 4.4 below show the finite volumes schemes used for unsteady simulations. For the
unsteady cases where mesh motion is included, the consistentPimpleDyMFoam solver is used.
The RBF used for mesh deformation is IMQB.

Table 4.4: Finite Volume Schemes for Unsteady State Cases

General Specific
Discretization Term Discretization Term Scheme

ddtSchemes default bdf2
ddt(k) boundedBackward

ddt(omega) boundedBackward

gradSchemes default Gauss linear

divSchemes default none
div(phi,U) Gauss linearUpwind Gauss linear
div(phi,k) Gauss upwind

div(phi,omega) Gauss upwind
div((nuEff*dev(grad(U).T()))) Gauss linear

laplacianSchemes default Gauss linear corrected

interpolationSchemes default linear

snGradSchemes default corrected

4.7 Concluding Remarks

In this chapter the reasoning behind choosing the NACA 0009 airfoil as well as a Reynolds
number of 106 is thoroughly explained. The computational setup for all steady & unsteady
CFD simulations that are to be carried out is presented. Specifically, the meshing strategy
as well as the mesh used for all steady & unsteady CFD simulations is shown. The results
of a mesh convergence study were also given. The boundary conditions for the pressure p,
velocity U , turbulent kinetic energy k, specific dissipation rate ω and turbulent viscosity νt
are explained. Finally, the numerical schemes and solvers used for the steady and unsteady
CFD simulations are given.
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Chapter 5

Validation of OpenFOAM Unsteady
Aerodynamic Modeling

5.1 Introduction

In this chapter, the OpenFOAM unsteady lift and moment for an oscillating NACA 0009
airfoil at reduced frequencies 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 & 1 are compared with the results
obtained by Theodorsen Theory, a benchmark result that has been validated experimentally
(Halfman, 1952). The NACA 0009 airfoil undergoes imposed oscillatory pitching motion
about its midchord and is subject to a steady flow velocity of 50 m/s (i.e. Re = 106). The
airfoil oscillates ± 1◦ about the steady state angle of attack in the following way

θ(t) = αss − θ̄sin(2πft), (5.1)

where θ̄ is the oscillation amplitude of 1◦, αss is the steady state angle of attack of 1◦ and
f is the oscillation frequency in Hertz. The mesh deformation technique used to the deform
the mesh each time step is the RBF IMQB (De Boer et al., 2007a). Only pitching motion is
considered for validation, rather than pitching & plunging, because it constitutes the majority
of the unsteady lift and moment.

5.2 Comparison of Unsteady Lift for Different Reduced Fre-
quencies with Theodorsen Theory

In this section, only the OpenFOAM unsteady lift computations are compared with
Theodorsen theory. The Theodorsen lift expression for a pitching airfoil is derived and the
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formulae for computing the normalized amplitude and phase angle with Theodorsen theory
and OpenFoam are shown. Finally, the results are compared with each other.

5.2.1 Theodorsen Lift for a Harmonically Pitching Airfoil

For a purely pitching airfoil about its midchord, h = ḣ = ḧ = 0. Furthermore, a = 0 (the
elastic axis is at the airfoil midchord). Taking this into consideration, the Theodorsen lift
expression given by Equation 2.3 reduces to the following

cl =
πb

U2

[
Uθ̇

]
+
cl,αC(k)

U

[
Uθ +

b

2
θ̇

]
, (5.2)

where the first term is the non-circulatory part (i.e. the apparent mass) and the second and
third terms are the circulatory part of the lift equation. The lag effect of the circulatory part
due to the wake is introduced via Theodorsen’s Function C(k). In order to obtain the final
expression of lift for harmonic motion, the following relations representing oscillatory pitching
motion must be substituted into Equation 5.2.

θ = θ̄eiωt; θ̇ = iωθ̄eiωt; θ̇ = −ω2θ̄eiωt. (5.3)

These relations describe a purely harmonically oscillating airfoil in pitch, where ω is the
oscillation frequency (in radians) and θ̄ is the oscillation amplitude (i.e. 1◦) about the steady
state angle of attack αss. The real part of θ, θ̇ and θ̈ describe the actual pitching displacement,
velocity and acceleration, respectively. The expression for θ̈ is not used here since it is not
present in Equation 5.2, but will be needed for the Theodorsen moment expression given in
the next section. The steady state lift value is also added to Equation 5.2 such that the final
expression for the Theodorsen lift is

cl = cl,ss +

[{
iπk + cl,αC(k) +

cl,αC(k)

2
ik

}
θ̄

]
eiωt, (5.4)

where the reduced frequency k is ωb/U . Furthermore, the cl,ss corresponds to the steady
state lift of the angle of attack about which the airfoil is oscillating (i.e. 1◦). The actual
Theodorsen lift is computed with the real part Equation 5.4 which is then used for evaluating
the OpenFOAM results. Thin Airfoil Theory (Katz and Plotkin, 2001) suggests that the
value of 2π is used for cl,α and hence the steady state lift value cl,ss will be 2πα. These values
will be slightly different than those obtained via CFD. In order to eliminate the differences
caused by the use of different constants, those obtained by CFD are used for the Theodorsen
model as well. Hence, the steady state value cl,ss is 0.108 at 1◦ and cl,α is 1.9697π.
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Theodorsen Normalized Amplitude (for Unsteady Lift)

The expression for lift given by Equation 5.4 gives a specific hysteresis loop for a given value
of the reduced frequency k. As k → 0, the hysteresis loop collapses to a linear curve that is
identical to the steady state polar. This means that the oscillation frequency is so small that
the unsteady lift expression actually correspond to those computed by the steady state. The
normalized amplitude (Leishman, 2006) shown below is the ratio of the maximum lift of the
purely oscillating part (the term in the square brackets in Equation 5.4) and the maximum
lift as k → 0 (i.e. the steady state lift obtained by Thin Airfoil Theory)

σcl,theo =
|cl − cl,ss|
cl,α|θ̄|

, (5.5)

where the cl,α is taken from CFD computations. Substituting Equation 5.4 into Equation 5.5,
the final expression for computing the normalized amplitude becomes

σcl,theo =
1

cl,α

∣∣∣∣iπk + cl,αC(k) +
cl,αC(k)

2
ik

∣∣∣∣. (5.6)

Theodorsen Phase Angle (for Unsteady Lift)

The phase angle gives information on how much the maximum unsteady lift leads or lags the
maximum steady state lift, where the steady state lift is in phase with the angle of attack.
Hence, if the phase angle is positive, the unsteady lift will lead the steady state lift. If the
phase angle is negative, the unsteady lift will lag the steady state lift. The phase angle is
defined by the term in the square brackets of Equation 5.4, which is generally a complex
number for a certain value of k. However, for example for k → 0, the complex number
becomes real and there will be no phase lag. Therefore, the unsteady lift will be in phase
with the angle of attack (i.e. it will be identical to the steady state lift for a given angle of
attack). The phase angle is computed by the following formula

φcl,theo = tan−1

[ imag[{iπk + cl,αC(k) +
cl,αC(k)

2 ik

}
θ̄

]
real

[{
iπk + cl,αC(k) +

cl,αC(k)
2 ik

}
θ̄

] ]. (5.7)

OpenFOAM Normalized Amplitude (for Unsteady Lift)

The OpenFOAM normalized amplitude is computed in the exact same manner as for the
Theodorsen normalized amplitude. The only difference is that the cl in Equation 5.5 is taken
from the unsteady CFD simulations.
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OpenFOAM Phase Angle (for Unsteady Lift)

The OpenFOAM phase angle is computed in a different manner than for Theodorsen, since an
analytical expression like for the unsteady Theodorsen lift (see Equation 5.7) does not exist.
The CFD simulations give a discrete set of cl values, each corresponding to a specific time
tn. Furthermore, the angle of attack at tn can be calculated because the imposed (sinusoidal)
motion is known. Both θ(t) and cl(t) will reach there maximum (or minimum) value at
a certain time. The phase angle will characterize the difference in time for reaching this
maximum value. Taking this into account, the formula used to calculate the phase angle for
the results obtained via OpenFOAM is

φcl,OpenFOAM =
tθ,max − tcl,max

T
· 360◦, (5.8)

where T is the period. The formula also takes into account the sign of the phase angle. So, if
cl reaches its maximum value after θ, the phase angle is negative. If cl reaches its maximum
value before θ, the phase angle is positive. Of course, the phase angle is zero if cl and θ reach
their maximum at the same time and cl is in phase with the steady state lift.

5.2.2 Convergence Criterion for Unsteady OpenFOAM Simulations

The unsteady CFD simulations are carried out for a certain number of periods that are needed
for the unsteady lift to become truly periodic. The number of periods required depends on
the reduced frequency, but usually at least 2 are needed. Figure 5.1 shows the unsteady
cl and θ change in time for a reduced frequency of 0.8. However, it is hard to see from
this figure whether the unsteady lift is truly harmonic. The cl vs. θ (see Figure 5.2) is a
better representation for deciding whether the unsteady lift converged to its periodic solution.
Therefore, as the CFD simulations are being done, this plot is repeatedly constructed until it
becomes clear that the results have converged to a periodic solution.

Figure 5.1: cl vs. time, k = 0.8 Figure 5.2: cl vs. θ, k = 0.8
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5.2.3 Unsteady Lift Results

The Figures 5.3 to 5.8 below show the OpenFOAM/Theodorsen cl vs. time and cl vs. θ plots
for reduced frequencies 0.2, 0.6 & 1. For the Theodorsen cl vs. time plots, the real part of
the Theodorsen lift (see Equation 5.4) is plotted with respect to time. For the Theodorsen
cl vs. θ plots, the real part of the Theodorsen lift is plotted with respect to the real part of
harmonic angle of attack θ (the first expression in Equation 5.3). It is clear that the results
compare well. Such good agreement is also seen in the plots for reduced frequencies of 0.1,
0.3, 0.4 & 0.8 (see Appendix B).

Figure 5.3: cl vs. time, k = 0.2 Figure 5.4: cl vs. θ, k = 0.2

Figure 5.5: cl vs. time, k = 0.6 Figure 5.6: cl vs. θ, k = 0.6

Figure 5.7: cl vs. time, k = 1 Figure 5.8: cl vs. θ, k = 1

Comparing the normalized amplitudes and phase angle will give further indication on how
well the OpenFOAM results compare with Theodorsen. Figures 5.9 and 5.10 below depict
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the normalized amplitude and phase angle of the lift obtained by unsteady CFD simulations
and Theodorsen Theory. The results for all reduced frequencies are shown in these plots.
The normalized lift amplitude shows the ratio of the maximum unsteady lift amplitude and
the maximum steady state lift amplitude. The difference in OpenFOAM and Theodorsen
Theory grows for an increasing reduced frequency. However, for reduced frequencies smaller
than 0.4, the difference is only 5%. The maximum deviation is at k = 1 and is ≈ 11%. The
phase angle describes the phase shift between the unsteady lift and the steady state angle of
attack (i.e. the steady state lift). The difference in the computed phase angle of OpenFOAM
and Theodorsen Theory seems to be independent of the reduced frequencies and is only a few
degrees. If the difference in the phase angle between OpenFOAM and Theodorsen for the
worst case scenario would be considered 180◦, meaning that the two results are completely
out of phase, a few degrees difference seems to indicate a perfect correlation.

Figure 5.9: σcl vs. k (for unsteady lift) Figure 5.10: φcl vs. k (for unsteady lift)

5.3 Comparison of Unsteady Moment for Different Reduced
Frequencies with Theodorsen Theory

In this section, only the OpenFOAM unsteady moment computations are compared with
Theodorsen Theory. The Theodorsen moment expression for a pitching airfoil is derived
and the formulae for computing the normalized amplitude and phase angle with Theodorsen
Theory and OpenFOAM is shown. Finally, the results are compared with each other. Note
that the convergence criterion used to determine whether the unsteady moment has reached
its periodic solution is identical to that explained for the lift (see Section 5.2.2).

5.3.1 Theodorsen Moment for a Harmonically Pitching Airfoil

In this section the Theodorsen moment about the airfoil midchord for a harmonically pitching
airfoil is derived. The assumptions made in the Theodorsen lift derivations at the beginning
of Section 5.2.1 still hold here as well. Therefore, the Theodorsen moment expression given
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by Equation 2.4 reduces to

cm =
π

2U2

[
− Ub

2
θ̇ − b2

8
θ̈

]
+
cl,αC(k)

4U

[
Uθ +

b

2
θ̇

]
, (5.9)

where the first two terms represent the non-circulatory part and the last two the circulatory
part. In order to obtain the Theodorsen moment for harmonic airfoil motion, the expressions
given by Equation 5.3 are substituted in Equation 5.9. Furthermore, as in the case for the
Theodorsen lift, a steady state moment is added corresponding to the angle of attack about
which the airfoil is oscillating (i.e. 1◦). The final moment expression is as follows

cm = cm,ss +

[{
− iπk

4
+
πk2

16
+
cl,αC(k)

4
+
ik

8
cl,αC(k)

}
θ̄

]
eiωt, (5.10)

where the steady state moment is about the airfoil midchord. Thin Airfoil Theory computes
this value as cm,AC+cl,ss/4 (i.e. 0.25cl,αα, because cm,AC=0). Typically 2π is used for the
value of cl,α. However, the cl,α computed by OpenFOAM is slightly different. In addition,
cm,AC is a small non-zero value for an angle of attack of 1◦. As was done for the steady state
lift cl,ss (see the end of Section 5.2.1), the OpenFOAM value of 0.00046 for cm,AC is used and
1.9697π for cl,α. Hence cm,ss = 0.02746. Even though these are differences in value of a few
percent, it will eliminate errors arising due to the use of different constants.

Theodorsen Normalized Amplitude (for Unsteady Moment)

The normalized amplitude for the moment is computed in a similar manner as for the lift

σcm,theo =
|cm − cm,ss|
0.25cl,α|θ̄|

, (5.11)

where the denominator represents the maximum moment about the airfoil midchord for k →
0. Note that the denominator term stems from Thin Airfoil Theory. Substituting Equation
5.10 into Equation 5.11, the final expression of the normalized amplitude for the Theodorsen
moment becomes

σcm,theo =
1

cl,α

∣∣∣∣− iπk +
πk2

4
+ cl,αC(k) +

ik

2
cl,αC(k)

∣∣∣∣. (5.12)
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Theodorsen Phase Angle (for Unsteady Moment)

The Theodorsen moment phase angle is computed in exactly the same manner as for the
Theodorsen lift phase angle given by Equation 5.7. The only difference will be the argument
of the equation

φcm,theo = tan−1

[ imag[{− iπk
4 + πk2

16 +
cl,αC(k)

4 + ik
8 cl,αC(k)

}
θ̄

]
real

[{
− iπk

4 + πk2

16 +
cl,αC(k)

4 + ik
8 cl,αC(k)

}
θ̄

] ]. (5.13)

As was the case for the Theodorsen lift phase angle, a negative phase angle means the moment
is lagging the steady state solution while a positive angle means the moment is leading the
steady state solution.

OpenFOAM Normalized Amplitude (for Unsteady Moment)

The normalized amplitude computed using the OpenFOAM results is done using Equation
5.11. However, now the values for cm come from the unsteady CFD simulations.

OpenFOAM Phase Angle (for Unsteady Moment)

The phase angle for OpenFOAM moment is computed using the following formula (similar
to Equation 5.8)

φcm,OpenFOAM =
tθ,max − tcm,max

T
· 360◦. (5.14)
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5.3.2 Unsteady Moment Results

The Figures 5.11 to 5.16 below show the OpenFOAM/Theodorsen cm vs. time and cm vs.
θ plots for reduced frequencies 0.2, 0.6 & 1. For the Theodorsen cm vs. time plots, the real
part of the Theodorsen moment (see Equation 5.10) is plotted with respect to time. For the
Theodorsen cm vs. θ plots, the real part of the Theodorsen moment is plotted with respect
to the real part of harmonic angle of attack θ (the first expression in Equation 5.3). It is
clear that the results compare well. Such good agreement is also seen in the plots for reduced
frequencies of 0.1, 0.3, 0.4 & 0.8 (see Appendix C).

Figure 5.11: cm vs. time, k = 0.2 Figure 5.12: cm vs. θ, k = 0.2

Figure 5.13: cm vs. time, k = 0.6 Figure 5.14: cm vs. θ, k = 0.6

Figure 5.15: cm vs. time, k = 1 Figure 5.16: cm vs. θ, k = 1

Comparing the normalized amplitudes and phase angle will give further indication on how
well the OpenFOAM results compare with Theodorsen. Figures 5.17 and 5.18 below depict
the normalized amplitude and phase angle of the unsteady moment obtained by OpenFOAM
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and Theodorsen Theory. The results for all reduced frequencies are shown in these plots.
For the normalized moment amplitude, the maximum deviation between OpenFOAM and
Theodorsen is ≈ 4%. These results match even better than those obtained for the normalized
lift amplitude. For the phase angle, the difference between OpenFOAM and Theodorsen for
smaller reduced frequencies is a few degrees, but tends to grow as the reduced frequency
increases. The maximum deviation is ≈7◦ for a reduced frequency of 0.8. Again, if a phase
difference of 180◦ between OpenFOAM and Theodorsen is considered the worst case scenario,
the matching in these results can be considered good. When compared with the OpenFOAM
and Theodorsen correlation for the lift phase angle, it seems that this correlation is slightly
better for lower reduced frequencies and slightly worse for higher reduced frequencies.

Figure 5.17: σcm vs. k (for unsteady mo-
ment)

Figure 5.18: φcm vs. k (for unsteady mo-
ment)

5.4 Concluding Remarks

The aim of this chapter was to validate OpenFOAMs capability in predicting the unsteady
lift and moment for different reduced frequencies. This was done for a harmonically pitching
(1 DOF) NACA 0009 airfoil about its midchord and the steady state angle of αss=1◦. The
oscillation amplitude was θ̄=1◦ and the airfoil was subject to a constant inflow velocity of 50
m/s (i.e. Re = 106). The results were compared with the benchmark Theodorsen Theory.

The results, for the most part, are excellent. Only the normalized lift amplitude has a
slightly higher deviance from Theodorsen Theory for reduced frequencies close to 1 than
is the case for lower reduced frequencies. The same trend is apparent in the phase angle
of the unsteady moment. Even though Theodorsen Theory is a benchmark result that has
been validated experimentally, it is still a low fidelity model and the results obtained by
the high fidelity simulations carry significance. Therefore, it might be possible that the
OpenFOAM simulations provide more accurate results than Theodorsen Theory for higher
reduced frequencies. The results of both models will serve as reference data when validating
the unsteady lift and moment computed by the linearized aerodynamic models shown in the
next chapter.
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The effort was made to conduct such an analysis because, in an aeroelastic system, it is of
major importance to predict the unsteady air loads in order to accurately calculate aeroelastic
phenomena such as flutter (Weisshaar, 2017). Small changes in phase shift, for example, could
be the difference in whether the structure dissipates or extracts energy into the airstream
(Bisplinghoff et al., 2013). A good agreement between Theodorsen Theory and OpenFOAM
allows OpenFOAM to be used in a transient FSI simulation for flutter computation and even
gust analysis.

In addition, validating that OpenFOAM can accurately predict unsteady forces due to per-
turbed motion will imply that it can be used to build the linearized aerodynamic lift and
moment models shown in the next chapter. Had the agreement of the results been unsatisfac-
tory, there would be no justification for using unsteady OpenFOAM simulations in building
these linearized aerodynamic lift and moment models.
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Chapter 6

Validation of Linearized Aerodynamic CFD
Modeling

6.1 Introduction

In this chapter the aerodynamic forces of a 1 DOF pitching airfoil about its midchord, subject
to an inflow velocity of 50 m/s (i.e. Re = 106), are linearized about the steady state angle of
attack αss=1◦. The linearized coefficients are constant and are computed using the results of
unsteady CFD simulations. Note that these parameters are identical to those chosen in the
previous chapter, where the nonlinear unsteady CFD results were compared to Theodorsen
Theory. The constructed linearized CFD model should be able to predict the unsteady lift and
moment for any type of perturbation θ′(t) about the steady state angle of attack αss, as long
as the perturbations are small enough, such that the flow linearity is preserved. Therefore,
the unsteady lift and moment response obtained by the linearized model for a sinusoidally
pitching airfoil about the steady state angle of attack αss = 1◦ and an oscillation amplitude
of ± 1◦ is compared with the nonlinear CFD results and Theodorsen Theory. In such a way,
the linearized aerodynamic model can be validated, at least for oscillatory motion. Good
agreement with nonlinear CFD results and Theodorsen Theory implies that the linearized
aerodynamic CFD model could be used to accurately compute the flutter boundary. The
linearization method can be applied to the aerodynamic forces that act on a n degree of
freedom system, such as a 3D wing, for example. These linearized forces will compose the
RHS of the EOM (see Section 2.4).

6.2 The Linearization Technique

For an airfoil restricted to pure pitching motion, the unsteady lift cl and moment cm is a
function of the angle of attack θ, the angular velocity θ̇ and the angular acceleration θ̈. In
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this case, the linearization process is done in terms of the degrees of freedom rather than in
modal coordinates, because there is only one degree of freedom and there is no advantage
to tackle the problem in terms of modal analysis. Therefore, the linear equations for the
unsteady lift and moment about the steady state can be written as the following

cl(θ, θ̇, θ̈) ≈ cl,ss +
∂cl
∂θ

∣∣∣∣
s

θ′ +
∂cl

∂θ̇

∣∣∣∣
s

θ̇′ +
∂cl

∂θ̈

∣∣∣∣
s

θ̈′, (6.1)

cm(θ, θ̇, θ̈) ≈ cm,ss +
∂cm
∂θ

∣∣∣∣
s

θ′ +
∂cm

∂θ̇

∣∣∣∣
s

θ̇′ +
∂cm

∂θ̈

∣∣∣∣
s

θ̈′, (6.2)

where θ′, θ̇′ and θ̈′ are the perturbation pitch displacement, velocity and acceleration, re-
spectively from the steady state. These variables are purely a function of time. The partial
derivatives in Equations 6.1 & 6.2 represent the linearized lift and moment coefficients, re-
spectively. Once they are found, the linearized model is complete. An accurate unsteady lift
and moment response should be able to be obtained for any θ′(t) about the steady state angle
of attack αss, as long as the perturbations are small enough such that the flow remains of
linear nature.

6.2.1 Coefficient Extraction Method

In order to find the coefficients, the airfoil is perturbed with a function θ′(t), and hence θ̇′(t)
& θ̈′(t), for a finite number of time steps. The state from which the perturbations take place
is the computed steady state solution at αss = 1◦. At each time t, the unsteady lift and
moment that compose the LHS of Equations 6.1 & 6.2 are computed with unsteady CFD
simulations and the perturbation displacement, velocity and acceleration on the RHS can be
calculated, leaving the coefficients as the unknowns. The number of equations for the lift
and moment is equal to the number of time steps taken. Note that at least three time steps
are needed, because there are three unknown coefficients in both the linearized unsteady lift
and moment models. In this Master Thesis, 20 time steps were chosen. As was stated in
Section 2.4, in principle, any θ′(t) can be chosen as long as θ̇′(t) & θ̈′(t) are non zero and the
perturbed displacement, velocity and acceleration are not linearly dependent on each other.
In this Master Thesis, the perturbation functions θ′(t), θ̇′(t) and θ̈′(t) are

θ′ = θ̄t3; θ̇′ = 3θ̄t2; θ̈′ = 6θ̄t, (6.3)

where θ̄ is the perturbation rate. Perturbing the airfoil for 20 time steps will give 20 lift
equations of the form of Equation 6.1 and 20 moment equations of the form of Equation 6.2,
with three unknown coefficients for the linearized lift model and for the linearized moment
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model. The system of equation for the linearized lift are written in the form of {f} = [A]{b}
as is shown below


∆cl,t4
∆cl,t5

...
∆cl,t20

 =


θ̄t34 3θ̄t24 6θ̄t4
θ̄t35 3θ̄t25 6θ̄t5
...

...
...

θ̄t320 3θ̄t220 6θ̄t20



∂cl
∂θ

∣∣
s

∂cl
∂θ̇

∣∣
s

∂cl
∂θ̈

∣∣
s

 , (6.4)

where ∆cl,t4 = cl(t4) - cl,ss(t4), ∆cl,t5 = cl(t5) - cl,ss(t5), ..., ∆cl,t20 = cl(t20) - cl,ss(t20). Note
that the first 3 time steps are omitted, because the CFD solver cannot accurately calculate
the airfoil boundary velocity and acceleration terms (see Appendix D for a more detailed
clarification). ∆cl represents the change in lift due to the perturbed motion relative to the
steady state. The steady state lift is calculated at each specific time t for a unperturbed
airfoil using the consistentPimpleFoam solver because, if the steady state lift solution of the
consistentSimpleFoam solver is used, the computed ∆cl will be inaccurate, as is explained
later in the paragraph. This is of particular importance if the perturbed motion is small.
The reasoning behind this is the following: the initial steady state solution from which the
airfoil is perturbed is obtained by the solver consistentSimpleFoam and the convergence
criterion for the pressure, momentum, k and ω equations is 10−5. This convergence crite-
rion is low enough to provide accurate lift results; however, if a transient simulation using
consistentPimpleFoam for the fixed airfoil is carried out using the steady state solution as
an initial condition, the lift value will change slightly after each time step. The difference in
lift will increase the longer the transient simulation runs but will reach a finite value after
a certain amount of time. If significant, this change in lift could have a large influence on
the computed linearized coefficients and is explained on the following page. Decreasing the
convergence criterion would certainly give a better estimate of the steady state lift and hence
decrease these changes in lift (but a true steady state may never be attainable because the
flow is not 100% steady); however, it was seen that it caused convergence issues. So, when
the airfoil is perturbed its change in lift will consist of a change in total lift due to the per-
turbation and a significant change in total lift due to the fact that the initial conditions was
not the converged enough steady state solution (due to a too high convergence criterion).

Figure 6.1: Case 1.6: cl vs. time Figure 6.2: Case 1.6: cm vs. time
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This is clear from the Figure 6.1 & 6.2 above. Figure 6.1/6.2 shows the lift/moment response
due to the perturbed airfoil and the lift/moment response due to the unperturbed airfoil for
20 time steps. The perturbation parameters are those of Case 1.6 and are given in Table
6.1. Here it is clearly visible that the lift response for the unperturbed airfoil changes, due
to the fact that the initial solution was not the converged enough steady state solution. This
can be seen for the moment as well. For a transient simulation of 20 time steps, the lift &
moment for the unperturbed airfoil scenario will change less than 1%. However, this change
can be significant because the LHS of Equation 6.4 represents the difference in the total lift
of the perturbed and unperturbed state. So if the perturbed motion is very small for each
time step, the order of magnitude of the change in perturbed cl can be similar to the order
of magnitude of the change in the steady state lift. Therefore, not taking into account the
steady state lift at each time t, the values of the LHS can change drastically, resulting in an
inaccurate computations of the linearized coefficients. Finally, in matrix form, Equation 6.4
can be written as

[A]{b} = {f}. (6.5)

Since Equation 6.5 is an over-determined system because more than 3 time steps are included,
the least squares method is used to obtain the linearized lift coefficients given by vector {b}

{b} =
[
[A]T [A]

]−1
[A]T {f}. (6.6)

The exact same methodology is used to obtain the linearized moment coefficients.

6.3 Results

In this section, the constant coefficients for the linearized lift and moment models are found.
The unsteady lift and moment, computed with the linearized coefficients, is compared to
Theodorsen Theory and the nonlinear unsteady CFD results shown in Section 5. The per-
turbation defined by Equation 6.3 is imposed and the method mentioned in the previous
section for determining the coefficients is used. In order to define the perturbation motion
θ′(t) (and hence θ̇′(t) & θ̈′(t)), the perturbation rate θ̄, the time step ∆t and the number of
time steps must be specified. The extracted coefficients should be constant and independent
of the linearization parameters chosen. However, preliminary results showed that this is not
the case. Therefore, a more thorough analysis of the linearization method is carried out by
computing the lift & moment coefficients for various linearization parameters.

The number of time steps chosen is 20. A larger amount of time steps can be taken but this
would increase the simulation time and make the parametrization study inefficient. Further-
more, increasing the number of time steps should not influence the values of the obtained
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coefficients. In order to fully define the perturbation equation, the perturbation rate θ̄ and
time step ∆t must be defined. However, to the author, it is hard to physically interpret the
value of the perturbation rate θ̄ and it is unclear as to what time step ∆t should be cho-
sen. Instead, the final perturbation angle θfinal and the final perturbation angular velocity
θ̇′final are prescribed and the perturbation rate θ̄, the final time tfinal and time step ∆t are
calculated from the following relations

tfinal =
3θ′final

θ̇′final
; ∆tfinal =

3θ′final

20θ̇′final
; θ̄ =

θ̇′
3
final

27θ′2final
. (6.7)

These relations are derived from the first two relations given by Equation 6.3 and evaluated
at the final time. For θ′final = 0.005◦ and a θ̇′final of 100◦/s, 50◦/s, 25◦/s, 12.5◦/s, 6.25◦/s,

3.125◦/s and 1.5625◦/s, the perturbation rate θ̄ and time step ∆t is computed (see Table 6.1)
and the transient CFD simulations are carried out in order to obtain the lift and moment
coefficients. The same is done for θ′final = 0.05◦ and a θ̇′final of 100◦/s, 50◦/s, 25◦/s and
12.5◦/s (see Table 6.4).

Since the linearized coefficients are computed by perturbing the airfoil about its midchord
from the steady state angle of attack αss = 1◦ and an inflow velocity of 50 m/s (i.e. Re
= 106), the unsteady linearized lift and moment expressions are valid only for a perturbed
airfoil with these parameters, as long as the perturbations are small. This includes sinusoidal
perturbations as well. So, in order to analyze the validity of the coefficients in computing un-
steady aerodynamic forces, the normalized amplitude and phase angle for the lift & moment
is compared with Theodorsen Theory and the nonlinear unsteady CFD results. The expres-
sions below describe the formulae for computing the linearized unsteady lift and moment of
a sinusoidally pitching airfoil. They are obtained by substituting θ′ = θ̄eiωt, θ̇′ = iωθ̄eiωt &
θ̈′ = −ω2θ̄eiωt into Equation 6.1 and 6.2

cl ≈ cl,ss +

[{
∂cl
∂θ

∣∣∣∣
s

+ iω
∂cl

∂θ̇

∣∣∣∣
s

− ω2∂cl

∂θ̈

∣∣∣∣
s

}
θ̄

]
eiωt, (6.8)

cm ≈ cm,ss +

[{
∂cm
∂θ

∣∣∣∣
s

+ iω
∂cm

∂θ̇

∣∣∣∣
s

− ω2∂cm

∂θ̈

∣∣∣∣
s

}
θ̄

]
eiωt. (6.9)

Note that here θ̄ represents the oscillation amplitude. The expression for the reduced fre-
quency k = ωb/U is used to obtain the final form of the unsteady linearized lift and moment
equations

cl ≈ cl,ss +

[{
∂cl
∂θ

∣∣∣∣
s

+ i
Uk

b

∂cl

∂θ̇

∣∣∣∣
s

−
(
Uk

b

)2∂cl

∂θ̈

∣∣∣∣
s

}
θ̄

]
eiωt, (6.10)
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cm ≈ cm,ss +

[{
∂cm
∂θ

∣∣∣∣
s

+ i
Uk

b

∂cm

∂θ̇

∣∣∣∣
s

−
(
Uk

b

)2∂cm

∂θ̈

∣∣∣∣
s

}
θ̄

]
eiωt. (6.11)

For a given set of constant linearized lift and moment coefficients, the normalized amplitude
and phase angles of the lift and moment can be computed as a function of the reduced
frequency k. The linearized aerodynamic forces are not only dependent on k as is seen in
Theodorsen Theory, but on the Reynolds Number as well, because that is the flow parameter
about which the linearized models were built.

Note that the linearized unsteady lift and moment expressions given by Equations 6.10 and
6.11 are similar to the Theodorsen lift and moment equations (see Equation 5.4 and 5.10).
The difference is the argument in the curly brackets.

Normalized Lift & Moment Amplitude: Linearized CFD Model

The linearized lift and moment normalized amplitudes are calculated in the same manner as
for Theodorsen Theory, with the formulae shown below

σcl,linearized =
1

cl,α

∣∣∣∣∂cl∂θ
∣∣∣∣
s

+ i
Uk

b

∂cl

∂θ̇

∣∣∣∣
s

−
(
Uk

b

)2∂cl

∂θ̈

∣∣∣∣
s

∣∣∣∣, (6.12)

σcm,linearized =
1

0.25cl,α

∣∣∣∣∂cm∂θ
∣∣∣∣
s

+ i
Uk

b

∂cm

∂θ̇

∣∣∣∣
s

−
(
Uk

b

)2∂cm

∂θ̈

∣∣∣∣
s

∣∣∣∣. (6.13)

Lift & Moment Phase Angle: Linearized CFD Model

Equations 6.14 and 6.15 below give the linearized lift and moment phase angle. They are
calculated also in the same manner as for Theodorsen Theory and are shown below

φcl,linearized = tan−1

[ imag[{∂cl
∂θ

∣∣∣∣
s

+ iUkb
∂cl
∂θ̇

∣∣∣∣
s

−
(
Uk
b

)2
∂cl
∂θ̈

∣∣∣∣
s

}
θ̄

]
real

[{
∂cl
∂θ

∣∣∣∣
s

+ iUkb
∂cl
∂θ̇

∣∣∣∣
s

−
(
Uk
b

)2
∂cl
∂θ̈

∣∣∣∣
s

}
θ̄

] ], (6.14)

φcm,linearized = tan−1

[ imag[{∂cm
∂θ

∣∣∣∣
s

+ iUkb
∂cm
∂θ̇

∣∣∣∣
s

−
(
Uk
b

)2
∂cm
∂θ̈

∣∣∣∣
s

}
θ̄

]
real

[{
∂cm
∂θ

∣∣∣∣
s

+ iUkb
∂cm
∂θ̇

∣∣∣∣
s

−
(
Uk
b

)2
∂cm
∂θ̈

∣∣∣∣
s

}
θ̄

] ]. (6.15)
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6.3.1 Case 1

In this section, a detailed analysis of the results obtained for Case 1 is provided. For this
case, the final perturbed angle of attack θ′final is 0.005◦ and the final angular velocity θ̇′final
is 100◦/s, 50◦/s, 25◦/s, 12.5◦/s, 6.25◦/s, 3.125◦/s and 1.5625◦/s. For each combination, the
perturbation rate θ̄ and time step ∆t is computed from the expressions given by Equation
6.7. The values computed are shown in Table 6.1 below. Various perturbations rates are
considered to analyze whether the linearized lift and moment coefficients are independent of
the perturbation rate. The final perturbed angle of attack is kept at a small value of 0.005◦

to ensure flow linearity. Note that for a given subcase, changing the time step (and hence
number of time steps in order for θ′final and tfinal to remain the same value) will not influence
the linearized lift and moment coefficients as is shown in the end of this section (A Comment
on the CFL Number paragraph). With these parameters, the transient CFD simulations
are carried out and the linearized lift and moment coefficients obtained are shown in Table 6.2
and 6.3, respectively. The CFLmax corresponding to the time step ∆t is also given in Table
6.1 as well as the final angular acceleration (computed with last expression from Equation
6.3). Note that within this section θ′final, θ̇

′
final and θ̈′final are discussed in terms of degrees

rather than radians. However, the perturbation rate θ̄ is discussed in radians.

Note that while the linearized lift and moment coefficients were computed for the whole range
of θ̇′final, the coefficients for a θ̇′final of 100◦/s, 50◦/s and 25◦/s provide normalized amplitudes

and phase angles that significantly differ from those obtained for a θ̇′final of 12.5◦/s, 6.25◦/s,
3.125◦/s and 1.5625◦/s. Therefore, these cases are not included in the plots shown in this
section but are presented in Appendix E.

Table 6.1: Case 1: Linearization Parameters, θ′final= 0.005◦

Case θ̇′final (◦/s) tfinal (s) ∆t (s) CFLmax (−) θ̄ (rad/s3) θ̈′final (◦/ss)

1.1 100 1.5e-4 7.5e-6 1.59 25,856,729.659 1,333,333.333

1.2 50 3e-4 1.5e-5 3.19 3,232,091.207 333,333.333

1.3 25 6e-4 3e-5 6.37 404,011.401 83,333.333

1.4 12.5 1.2e-3 6e-5 12.74 50,501.425 20,833.333

1.5 6.25 2.4e-3 1.2e-4 25.49 6,312.678 5,208.333

1.6 3.125 4.8e-3 2.4e-4 50.97 789.085 1,302.083

1.7 1.5625 9.6e-3 4.8e-4 101.95 98.636 325.521

As can be seen from Table 6.1 above, the values of θ̇′final decrease by a factor of 2. This causes

the tfinal, ∆t and hence CFLmax to increase by a factor of 2. At a certain θ̇′final, the value
of ∆t and hence CFLmax will be too large for stable transient simulations to be possible.
Therefore, the minimum final angular velocity considered is 1.5625◦/s. As θ̇′final decreases by a

factor of 2, the perturbation rate θ̄ decreases by a factor of 8 and the final angular acceleration
θ̈′final will decrease by a factor of 4. These relationships can be seen from the expressions
given by Equations 6.3 and 6.7. A decreasing perturbation rate indicates that a longer time
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is needed for the perturbed airfoil to reach 0.005◦. This is why the time step increases. The
time step could potentially remain the same, but then the total number of time steps must be
increased from the current value of 20. Figure 6.3 below shows the perturbed motion θ′ as a
function of time for Cases 1.4 through 1.7. Indeed, as the perturbation rate θ̄ decreases, the
severity of the unsteadiness decreases, i.e. it take a longer time for the perturbed airfoil to
reach a θ′final of 0.005◦. A decreasing perturbation rate also results in a lower angular velocity
as can be seen from Figure 6.4 below. Note that the angular acceleration is not shown. This
is because the magnitude varies by a factor of 8 from case to case (see Table 6.1) and as such
the plot would be inconvenient for visualization.

Figure 6.3: Case 1: θ′ vs. time Figure 6.4: Case 1: θ̇′ vs. time

Figures 6.5 and 6.6 below show the change in lift and moment relative to the steady state
as the airfoil is perturbed with a specific perturbation rate. The curves of different colors
represent the ∆cl and ∆cm for various perturbation rates obtained by the transient CFD
simulations. Note that these values represent the RHS (i.e. {f}) of Equation 6.5. From
Equation 6.6, the lift and moment coefficients are calculated. They are then multiplied by
the [A] matrix and plotted as stars to see how well they model the lift and moment response.
Note that since the coefficients are obtained from an over-determined system, multiplying
them by the [A] matrix will not give an {f} vector identical to that obtained by the CFD
simulations. However, the resemblance should be good, as is the case.

Figure 6.5: Case 1: ∆cl vs. time Figure 6.6: Case 1: ∆cm vs. time

A lower perturbation rate results in a slower perturbation motion and smaller change in the
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lift and moment response. This is clear from Figure 6.5 and 6.6 above, where the highest
change in lift and moment is for Case 1.4: θ̄ = 50, 501.425.

The computed linearized lift coefficients are shown in Table 6.2 below. Note that from now
onwards, the linearized coefficients will be referred to without the |s for convenience. For
example, ∂cl

∂θ̈
|s becomes ∂cl

∂θ̈
. Furthermore, the relative change between the coefficients of each

subcase is also shown. For example, ∆(∂cl/∂θ) for Case 1.2 denotes the change in ∂cl/∂θ in
relation to the value computed for Case 1.1. ∆(∂cl/∂θ) for Case 1.3 denotes the change in
∂cl/∂θ in relation to the value computed for Case 1.2 and so on. Clearly, the coefficients are
not constant and the change is drastic for ∂cl/∂θ and ∂cl/∂θ̈. The change in ∂cl/∂θ̇ is in the
acceptable range.

Table 6.2: Case 1: Linearized Lift Coefficients, θ′final= 0.005◦

Case ∂cl/∂θ ∆(∂cl/∂θ) (%) ∂cl/∂θ̇ ∆(∂cl/∂θ̇) (%) ∂cl/∂θ̈ ∆(∂cl/∂θ̈) (%)

1.1 38.041 - 3.117e-2 - -5.496e-7 -

1.2 28.884 -24.071 3.168e-2 1.637 -5.852e-7 -6.467

1.3 16.320 -43.498 3.408e-2 7.597 -7.818e-7 -33.601

1.4 6.867 -57.921 3.729e-2 9.407 -1.220e-6 -56.031

1.5 4.208 -38.728 3.955e-2 6.066 -2.020e-6 -65.589

1.6 3.300 -21.583 4.097e-2 3.593 -3.208e-6 -58.810

1.7 4.093 24.043 3.969e-2 -3.135 -4.623e-6 -44.098

The computed linearized moment coefficients and their relative change are shown in Table
6.3 below. Clearly, even for the linearized moment, the coefficients are not constant and the
change is drastic for ∂cm/∂θ and ∂cm/∂θ̇. The change in ∂cm/∂θ̈ is minimal. Note how
∂cl/∂θ̇ was relatively constant (see Table 6.2) while for the moment coefficients ∂cm/∂θ̈ is
almost completely constant.

Table 6.3: Case 1: Linearized Moment Coefficients, θ′final= 0.005◦

Case ∂cm/∂θ ∆(∂cm/∂θ) ∂cm/∂θ̇ ∆(∂cm/∂θ̇) ∂cm/∂θ̈ ∆(∂cm/∂θ̈)
(%) (%) (%)

1.1 -36.207 - 1.691e-3 - -1.922e-5 -

1.2 -12.829 64.566 5.722e-4 -66.160 -1.922e-5 0

1.3 -4.331 66.239 -5.166e-4 -190.270 -1.919e-5 0.187

1.4 -0.487 88.759 -1.530e-3 -196.174 -1.913e-5 0.315

1.5 0.267 154.914 -1.987e-3 -29.859 -1.904e-5 0.429

1.6 0.767 186.803 -2.455e-3 -23.543 -1.925e-5 -1.105

1.7 0.873 13.945 -2.885e-3 -17.536 -1.815e-5 5.721
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Using the computed linearized lift and moment coefficients given in Table 6.2 and 6.3, the
normalized amplitudes and phase angles are computed as a function of reduced frequency k
for each case using Equation 6.12 - 6.15 and compared to the nonlinear unsteady CFD results
and Theodorsen Theory. As a reminder to the reader, the results for Case 1.1 - 1.3 are not
shown because the normalized amplitudes drastically vary from those of the remaining cases.
Therefore, the normalized amplitudes along with the phase angles is included in Appendix E
(see Figures E.5-E.8).

Figures 6.7 and 6.8 show the normalized amplitudes and phase angles of the linearized lift
for Cases 1.4 - 1.7. The general trend is: as the perturbation rate decreases, the normalized
amplitude decreases. Case 1.7 is an exception, where the normalized amplitude increases in
relation to Case 1.6. For the phase angle, as the perturbation rate decreases, the phase angle
increases. Again, Case 1.7 is an exception.

Figure 6.7: Case 1: σcl vs. k (for linearized
lift)

Figure 6.8: Case 1: φcl vs. k (for linearized
lift)

The best result for the normalized amplitude is obtained with a perturbation rate θ̄ = 789.085
(i.e. Case 1.6). While the result is satisfactory for reduced frequencies larger than 0.4, the
difference from the unsteady CFD results for lower reduced frequencies is too large. For k ≈
0.4, the difference is ≈ 5%, but grows to ≈ 45% as k → 0. On the other hand, a perturbation
rate of θ̄ = 6, 312.678 (i.e. Case 1.5) and θ̄ = 98.636 (i.e. Case 1.7) provide better results for
lower reduced frequencies. For the phase angle, Case 1.6 does not give as good of results as
Case 1.5 & 1.7. Case 1.5 & 1.7 provide good results for a higher reduced frequency. However
for lower reduced frequencies, none of the cases (not even Case 1.5 & 1.7) are able to predict
a negative phase lag. This is due to the ∂cl/∂θ̇ coefficient being positive (see Table 6.2).

Figure 6.9 and 6.10 below show normalized amplitudes and phase angles for the linearized
moment for Cases 1.4 - 1.7. However, note that the phase angle of Case 1.4 is not plotted
in Figure 6.10. This is because the phase angle varies from ≈ -180◦ at k ≈ 0 and rises to ≈
-150◦ as k as → 1 and as such varies drastically from the remaining cases. Nevertheless, the
linearized moment phase angle of Case 1.4 is shown in Appendix E (see Figure E.8).

The normalized amplitude increases as the perturbation rate decreases. This is opposite from
what can be seen in the normalized amplitude for the linearized lift (see Figure 6.7). The best
result is obtained for a perturbation rate of θ̄ = 98.636 (i.e. Case 1.7). However, the results
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for this case are not satisfactory. For reduced frequencies of 0.8 and lower, the difference
between Case 1.7 and the unsteady CFD results is 10% and grows as k → 0. At k = 0, the
difference is ≈ 44%. Surprisingly, Case 1.5 gives the best phase angle in comparison to the
unsteady CFD and Theodorsen Results, while the normalized amplitude is completely off.
Case 1.6 & 1.7 give reasonable results for the phase angle.

Figure 6.9: Case 1: σcm vs. k (for lin-
earized moment)

Figure 6.10: Case 1: φcm vs. k (for lin-
earized moment)

A comment on the CFL Number

Due to the fact that the number of time steps and the final perturbed angle of attack is kept
constant, a lower perturbation rate results in increasing the time step ∆t (i.e. CFLmax). If
the perturbation rate is too low thus resulting in a too high CFL number, numerical wiggles
can appear in the unsteady lift and moment results. This can be seen from Figures 6.11 and
6.12 below.

Figure 6.11: Case 1.7: ∆cl vs. time Figure 6.12: Case 1.7: ∆cm vs. time

Case 1.7 with 20 time steps is shown in Figure 6.11 & 6.12 as the cyan curve. The cyan
stars are the computed linearized lift and moment coefficients for this case. Clearly, there
are numerical wiggles. This is due to the fact that the number of time steps is limited to 20
and the perturbation rate is small which results in a time step ∆t of 4.8e-4s and a CFLmax
of 101.95. To ensure that these numerical wiggles are due to a large CFLmax, Case 1.7 is
simulated with 500 time steps and shown as the red curve in Figures 6.11 & 6.12. Here ∆t
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is 1.92e-5s and CFLmax is 4.08. Clearly, a smaller CFL number eliminates the numerical
wiggles. Furthermore, the fact that the results match well with the coefficients calculated
from Case 1.7 with just 20 time steps imply that the time step (i.e. CFL number) or number
of time steps will not affect the solution, as was expected. Hence the only true parameter that
causes the linearized lift and moment coefficients to change is the change of the perturbation
rate.

Summary of Case 1 Results

The results of Case 1 show that the coefficients are not independent of the linearization
parameters (i.e. the perturbation rate), because all the coefficients except for ∂cl/∂θ̇ &
∂cm/∂θ̈ vary drastically. This implies that all of the perturbed cubic motions cannot be
predicted with a single set of coefficients. Furthermore, it was also shown that no set of
linearized lift and moment coefficients could be used to accurately predict oscillatory airfoil
motion, i.e. the lift/moment normalized amplitudes and phase angles. Evidence of this is
given in the normalized amplitude and phase angles plots for the lift and moment (see Figures
6.7 - 6.10). However, it was noticed that lower perturbation rates θ̄ give the better results.
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6.3.2 Case 2

In this section, an analysis of the results obtained for Case 2 is provided. For this case,
θ′final of Case 1 is increased by a factor of 10 and is 0.05◦ in order to see whether the results
obtained for the linearized lift and moment coefficients might improve. Similar to Case 1, the
final angular velocity θ̇′final is 100◦/s, 50◦/s, 25◦/s, 12.5◦/s. Values lower than 12.5◦/s are
not considered because it would result in a too high CFLmax number for stable computations
to be possible. For each combination of θ′final and θ̇′final, the perturbation rate θ̄ and time
step ∆t is computed using the expressions given by Equation 6.7. The values computed are
shown in Table 6.4 below. With these parameters, the transient CFD simulations are carried
out and the linearized lift and moment coefficients obtained are shown in Table 6.5 and 6.6,
respectively. Furthermore, note that Table 6.4 shows the final angular acceleration θ̈′final,
computed with the last expression of Equation 6.3, as well as the final time and CFLmax
number. Note that for the same θ̇′final as in Case 1, the perturbation rate will be smaller by a
factor of 100 (see Equation 6.7). Previously, it was shown that the linearized coefficients are
dependent only of the perturbation rate. Therefore, in Case 2 a θ̇′final of 100◦/s, 50◦/s and
25◦/s should give much better results for the lift & moment normalized amplitudes and phase
angles than for the same θ̇′final in Case 1, because the perturbation rate is much smaller.

Table 6.4: Case 2: Linearization Parameters, θ′final= 0.05◦

Case θ̇′final (◦/s) tfinal (s) ∆t (s) CFLmax (−) θ̄ (rad/s3) θ̈′final (◦/ss)

2.1 100 1.5e-3 7.5e-5 15.93 258,567.297 133,333.333

2.2 50 3e-3 1.5e-4 31.86 32,320.912 33,333.333

2.3 25 6e-3 3e-4 63.72 4,040.114 8,333.333

2.4 12.5 1.2e-2 6e-4 127.43 505.014 2,083.333

Figures 6.13 & 6.14 below show the perturbed motion and angular velocity for all cases. As
the perturbation rate decreases, the perturbation motion becomes slower and it takes a larger
time to reach θ′final of 0.05◦. This also results in a smaller angular velocity at a specific time.

Figure 6.13: Case 2: θ′ vs. time Figure 6.14: Case 2: θ̇′ vs. time
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Figures 6.15 and 6.16 below show the change in lift and moment relative to the steady state
as the airfoil is perturbed with a specific perturbation rate. As in Case 1, the curves of
different colors represent the ∆cl and ∆cm for various amplitudes obtained by the transient
CFD simulations. Note that these values represent the RHS (i.e. {f}) of Equation 6.5. From
Equation 6.6, the lift and moment coefficients are calculated. They are then multiplied by
the [A] matrix and plotted as stars to see how well they model the lift and moment response.
Note that since the coefficients are obtained from an over-determined system, multiplying
them by the [A] matrix will not give an {f} vector identical to that obtained by the CFD
simulations. However, the resemblance should be good, as is the case.

Figure 6.15: Case 2: ∆cl vs. time Figure 6.16: Case 2: ∆cm vs. time

In general, it can be seen from the figures above that the change in lift ∆cl and moment ∆cm
is larger than for Case 1. This is due to the fact that the final perturbation angle is an order
of magnitude larger (θ′final is 0.005◦ for Case 1 and 0.05◦ for Case 2).

Table 6.5 below shows the linearized lift coefficients for the different linearization parameters
(i.e. Cases 2.1-2.4). The relative change between the coefficients of each subcase is also shown.
For example, ∆(∂cl/∂θ) for Case 2.2 denotes the change in ∂cl/∂θ in relation to the value
computed for Case 2.1. ∆(∂cl/∂θ) for Case 2.3 denotes the change in ∂cl/∂θ in relation to the
value computed for Case 2.2 and so on. Note that this is the same for the moment coefficients
shown in Table 6.6. Finally, similarly to Case 1, ∂cl/∂θ̇ remains relatively constant while the
other two coefficients change drastically.

Table 6.5: Case 2: Linearized Lift Coefficients, θ′final= 0.05◦

Case ∂cl/∂θ ∆(∂cl/∂θ) (%) ∂cl/∂θ̇ ∆(∂cl/∂θ̇) (%) ∂cl/∂θ̈ ∆(∂cl/∂θ̈) (%)

2.1 6.111 - 3.789e-2 - -1.414e-6 -

2.2 4.004 -34.469 3.982e-2 5.087 -2.260e-6 -59.751

2.3 3.426 -14.446 4.112e-2 3.270 -3.777e-6 -67.136

2.4 3.207 -6.402 4.259e-2 3.571 -8.008e-6 -112.028
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Table 6.6 below shows the linearized moment coefficients for the different linearization pa-
rameters (i.e. Cases 2.1-2.4). Here ∂cm/∂θ̈ remains relatively constant while the other two
coefficients change drastically. The same trend was observed for the linearized moment coef-
ficients of Case 1.

Table 6.6: Case 2: Linearized Moment Coefficients, θ′final= 0.05◦

Case ∂cm/∂θ ∆(∂cm/∂θ) ∂cm/∂θ̇ ∆(∂cm/∂θ̇) ∂cm/∂θ̈ ∆(∂cm/∂θ̈)
(%) (%) (%)

2.1 -0.138 - -1.770e-3 - -1.906e-5 -

2.2 0.553 501.989 -2.224e-3 -25.682 -1.896e-5 0.540

2.3 0.834 50.810 -2.615e-3 -17.594 -1.874-5 1.153

2.4 1.011 21.275 -3.246e-3 -24.132 -1.784e-5 4.793

Using the computed linearized lift and moment coefficients given in Table 6.5 and 6.6, the
lift & moment normalized amplitudes and phase angles as a function of reduced frequency
are computed for each case using Equation 6.12 - 6.15 and compared to the nonlinear un-
steady CFD results and Theodorsen Theory. In this way, the unsteady loads that each set of
linearized coefficient give can be validated for different oscillation frequencies.

Figures 6.17 and 6.18 show the normalized amplitudes and phase angles of the linearized lift
for Cases 2.1 - 2.4. The general trend is: as the perturbation rate decreases, the normal-
ized amplitude decreases. For the phase angle, as the amplitude decreases, the phase angle
increases.

Figure 6.17: Case 2: σcl vs. k (for lin-
earized lift)

Figure 6.18: Case 2: φcl vs. k (for lin-
earized lift)

The best results for the normalized amplitude is obtained with a perturbation rate of θ̄ =
4, 041.114 (i.e. Case 2.3) and θ̄ = 505.014 (i.e. Case 2.4). While the results are satisfactory
for reduced frequencies larger than 0.4, the difference from the unsteady CFD results for
lower reduced frequencies is too large. For the phase angle, the best results are obtained by
θ̄ = 32, 320.912 (i.e. Case 2.2), particularly for higher reduced frequencies. However for lower

MSc. Thesis Niko Tatomir



70 Validation of Linearized Aerodynamic CFD Modeling

reduced frequencies, none of the cases (not even Case 2.2) are able to predict a negative phase
lag. This is due to the ∂cl/∂θ̇ coefficient being positive (see Table 6.5).

Figure 6.19 and 6.20 below show normalized amplitudes and phase angles for the linearized
moment for Cases 2.1 - 2.4. However, note that the phase angle of Case 2.1 is not plotted in
Figure 6.20. This is because the phase angle varies from ≈ -180◦ at k ≈ 0 and rises to ≈ -70◦

as k as → 1 and as such drastically varies from the remaining cases. However, it is shown in
Figure E.9 of Appendix E.

Figure 6.19: Case 2: σcm vs. k (for lin-
earized moment)

Figure 6.20: Case 2: φcm vs. k (for lin-
earized moment)

The normalized amplitude increases as the perturbation rate decreases. This is opposite from
what can be seen in the normalized amplitude for the linearized lift (see Figure 6.17). The
best result is obtained for a perturbation rate of θ̄ = 505.014 (i.e. Case 2.4). For this case,
the results are excellent for reduced frequencies higher than 0.4. However, as k → 0 the error
increases to ≈ 35%. Case 2.2, 2.3 & 2.4 all gives similar phase angles. Their agreement with
Theodorsen Theory and the nonlinear CFD simulations is relatively good.

Summary of Case 2 Results

In general, the same conclusions can be drawn as from the Case 1 results. Clearly, the
linearized lift and moment coefficients change as the linearization parameters change (apart
for ∂cl/∂θ̇ & ∂cm/∂θ̈). This again implies that a cubic perturbation of different perturbation
rates cannot be predicted with the same linearized coefficients. Furthermore, the lift &
moment normalized amplitudes and phase angles were computed for each set of linearized
lift & moment coefficients. The general trend was that the lower the perturbation rate, the
better the results, but that is not to say the lowest perturbation rate provided the best result.
It was noticed that there is no single subcase of Case 2 that provides the best results for both
the lift & moment normalized amplitudes and phase angles. Finally, it is important to note
that the overall agreement between the linearized results and the Theodorsen/nonlinear CFD
results are unsatisfactory.
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6.3.3 Evaluation of the Linearized Aerodynamic CFD Model

Both Case 1 and Case 2 consist of a variety of subcases. Each subcase has a different pertur-
bation rate and time step, while the number of time steps is kept at 20. The premise was that
the linearized lift and moment coefficients would be independent of the linearization parame-
ters chosen and that once a set of lift and moment coefficients were computed, they could be
used to compute the unsteady lift and moment of any type of motion θ′(t) using Equation 6.1
and 6.2. The only restrictions were that the airfoil is subject to an inflow of 50 m/s (i.e. Re
= 106) and pitches about its midchord and a steady state angle of attack of 1◦ with relatively
small angles, such that flow linearity is preserved. The reason for this restriction is because
these are the parameters around which the linearized aerodynamic lift and moment models
were constructed. Since the linearized aerodynamic models should provide accurate results
for any type of perturbed motion, they should be able to model oscillatory airfoil motion. The
linearized lift and moment that describes the unsteady forces for oscillatory motion is given
by Equations 6.10 and 6.11. Their normalized amplitudes and phase angles are computed as
a function of the reduced frequency with Equations 6.12 - 6.15.

First, it was shown that the coefficients of the linearized lift and moment were not constant
and were not independent of the linearization parameters, i.e. the perturbation rate. Second,
it was shown that no set of constant lift and moment coefficients could adequately model the
unsteady lift and moment of oscillatory airfoil motion. Evidence of this is depicted in the
normalized amplitude and phase angle plots (see Figures 6.7 - 6.10 and 6.17 - 6.20).

Therefore, the question arises whether the linearized lift and moment models (given by Equa-
tions 6.1 and 6.2) with constant coefficients can actually accurately model at least oscillatory
motion. The results shown for Case 1 and Case 2 argue that this is not possible. However,
in order to be able to come to a conclusion with confidence, an additional analysis is carried
out. Instead of computing the coefficients of the linearized lift and moment models using a
cubic perturbation shown in Equation 6.3, the coefficients are found by perturbing the airfoil
about its midchord and the steady state angle of attack αss = 1◦ with the following function

θ′ = θ̄cos(ωt); θ̇′ = −ωθ̄sin(ωt); θ̈′ = −ω2θ̄cos(ωt) (6.16)

where ω is in radians and is related to the reduced frequency as ω = Uk/b. U is the freestream
velocity of 50 m/s and b is the half chord length of 0.4976m. θ̄ is the oscillation amplitude
in radians and is taken as the equivalent of 1◦. Note that the expressions in Equation 6.16
are just the real part of θ′ = θ̄eiωt, θ̇′ = iωθ̄eiωt & θ̈′ = −ω2θ̄eiωt, respectively. For such a
perturbation, a solution for the unsteady lift and moment exists, i.e. Theodorsen Theory.
Therefore, a system of equations for lift, similar to that shown in Section 6.2.1 can be created
for a specific ω. Then the coefficients can be computed for a range of ω (i.e. k) and this
will give insight to whether the coefficients can truly be constant. Perturbing the airfoil for
n time steps in order to compute the linearized lift coefficients results in n equations of the
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form of Equation 6.1. This can be re-written as the following system of equations


∆cl(ki, t1)
∆cl(ki, t2)

...
∆cl(ki, tn)

 =


θ̄cos(Ub kit1) −U

b kiθ̄sin(Ub kit1) −
(
U
b ki
)2
θ̄cos(Ub kit1)

θ̄cos(Ub kit2) −U
b kiθ̄sin(Ub kit2) −

(
U
b ki
)2
θ̄cos(Ub kit2)

...
...

...

θ̄cos(Ub kitn) −U
b kiθ̄sin(Ub kitn) −

(
U
b ki
)2
θ̄cos(Ub kitn)



∂cl
∂θ

∣∣
s

∂cl
∂θ̇

∣∣
s

∂cl
∂θ̈

∣∣
s


(6.17)

where in matrix form this is {f} = [A]{b}. The number of time steps is defined by n and ki
is the reduced frequency of the imposed motion. Notice how the relation ω = Uk/b is used
when constructing the [A] matrix from the expressions given by Equation 6.16. Furthermore,
∆cl(ki, t1) = cl(ki, t1) - cl,ss and so on. cl(ki, tj) is computed by calculating the real part of the
Theodorsen lift (see Equation 5.4) for a specific ki and tj . If the linearized moment coefficients
are to be computed, cm(ki, tj) in {f} is defined by the real part of the Theodorsen moment
(see Equation 5.10) for a specific ki and tj . Furthermore, then vector {b} is constructed
of linearized moment coefficients ∂cm/∂θ, ∂cm/∂θ̇ and ∂cm/∂θ̈. The [A] matrix remains
identical.

The vector {b} of the overdetermined system is computed with the least squares method
and {b} = [[A]T [A]]−1[AT ]{f}. This is identical to what was done in Section 6.2.1. However,
column 1 and column 3 of the [A] matrix are linearly dependent. This implies that the inverse
of [A]T [A] does not exist because [A]T [A] is singular. In order to overcome this problem, the
following is proposed: it is unsure whether the linearized lift and moment coefficients are
constant for any reduced frequency ki; however, it can be assumed that the coefficients will
be constant for reduced frequencies close to a specific ki. For example, for k = [0.0999, 0.1,
0.1001] it assumed that the computed linearized coefficients are constant. Therefore, the
system [A]{b} = {f} can be constructed of multiple reduced frequencies such that it results
in the system of equation given on the next page.

In the system of equations given by Equation 6.18, the first n equations are for the imposed
frequency ki−1 = ki − 0.0001. The second n equations are for the imposed frequency ki and
the third n equations are for the imposed frequency ki+1 = ki + 0.0001. A time step of n =
1000 is chosen. The actual time step corresponding to each reduced frequency ki−1, ki and
ki+1 are calculated in the following manner: For example, from the relation k = ωb/U , ωi
can be calculated. From ωi, the period Ti is computed. Dividing the period by 1000 will
result is the time step ∆tki . In the same manner ∆tki−1

and ∆tki+1
can be computed. Having

said this, the system of equation given by Equation 6.18 is built for each ki in the range of
[0.01:0.01:1]. For each ki, the linearized lift coefficients given by {b} can be found. The same
procedure is carried out for computing the linearized moment coefficients.
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The computed linearized lift and moment coefficients are depicted in Figures 6.21 - 6.26. It
is clear that these coefficients are not constant. Both ∂cl/∂θ and ∂cm/∂θ vary ≈ 40% from k
≈ 0 to k = 1. ∂cl/∂θ̇ varies more than 100% even changes its sign. ∂cm/∂θ̇ also varies almost
100%. Furthermore, ∂cl/∂θ̈ varies ≈ 100% between k ≈ 0 and k ≈ 0.4. After k ≈ 0.4, ∂cl/∂θ̈
is a small non-zero value and is relatively constant compared to the values of ∂cl/∂θ̈ for k <
0.4. A similar trend is observed for ∂cm/∂θ̈. However, here the value of ∂cm/∂θ̈ for k > 0.6
becomes negative.

Figure 6.21: ∂cl/∂θ vs. k Figure 6.22: ∂cm/∂θ vs. k

Figure 6.23: ∂cl/∂θ̇ vs. k Figure 6.24: ∂cm/∂θ̇ vs. k

Figure 6.25: ∂cl/∂θ̈ vs. k Figure 6.26: ∂cl/∂θ̈ vs. k
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6.4 Concluding Remarks and Discussion

The aim of this chapter was to validate the ability for the linearized lift and moment equations
to predict harmonic oscillatory motion. Predicting harmonic oscillatory motion accurately
is essential for an accurate prediction of the flutter boundary. This was done for an airfoil
free to pitch about its midchord and a steady state angle of attack αss=1◦, with an inflow
velocity of 50 m/s (Re = 106). The linearized lift and moment coefficients were computed
by perturbing the airfoil with a cubic perturbation function about the steady state. The
lift/moment from the unsteady CFD results were used to compute the linearized coefficients.
This was carried out in the foam-extend 3.2 framework. As a reminder for the reader, the
assumption is that these coefficients are independent of the linearization parameters and that
the linearized model with a set of constant coefficients is valid for any type of motion, as
long as the perturbations are small such that flow linearity is ensured. In order to verify the
results obtained by the linearized aerodynamic CFD model for harmonic oscillatory motion,
the lift/moment normalized amplitude and phase angles as a function of reduced frequency k
were computed with the linearized lift/moment coefficients and compared with Theodorsen
Theory and the nonlinear unsteady CFD results presented in Chapter 5.

Preliminary analysis showed that the linearized coefficients were in fact not independent of
the linearization parameters. Therefore, various linearization parameters were chosen with
which the linearized coefficients were computed, in order to see whether the coefficients are
truly independent of the linearization parameters. For Case 1, the final perturbation angle
is θ′final = 0.005◦. The airfoil is perturbed for 20 time steps. For each final angular velocity

θ̇′final of the range [100, 50, 25, 12.5, 6.25, 3.125, 1.5625], the corresponding perturbation rate

θ̄ and time step ∆t is calculated. These values are documented in Table 6.1. Tables 6.2 & 6.3
document the linearized lift and moment coefficients for different linearization parameters (i.e.
cases), respectively. For Case 2, the difference lays in the final perturbation angle which is
taken to be an order of magnitude larger than for Case 1, i.e. θ′final = 0.05◦. In addition, only

a final angular velocity θ̇′final of the range [100, 50, 25, 12.5] was considered. The linearization
parameters are documented in Table 6.4. Tables 6.5 & 6.6 document the linearized lift and
moment coefficients for different linearization parameters (i.e. cases), respectively.

It was shown that for both cases, the linearized lift/moment coefficients are largely dependent
on the linearization parameters, specifically the perturbation rate. Only the coefficient ∂cl/∂θ̇
and ∂cm/∂θ̈ remained relatively constant for both cases. The fact that the linearized coeffi-
cients vary drastically implies that the lift/moment of perturbed cubic motion with different
perturbation rates cannot be accurately predicted with a single set of linearized lift/mo-
ment coefficients. Furthermore, it was expected that the steady state lift/moment coefficients
∂cl/∂θ and ∂cm/∂θ would be close to the value obtained by Thin Airfoil Theory: cl,α (i.e.
2π or 6.283) and 0.25cl,α (i.e. 0.5π or 1.571), respectively. This would imply that once the
perturbations are stopped, the lift and moment at the current angle of attack are those of a
steady state case. However, both the coefficients for almost all subcases of Case 1 & 2 were
not close to the Thin Airfoil Theory values. Case 1.4 and 2.1 gave values of ∂cl/∂θ within
10% of Thin Airfoil Theory but the ∂cm/∂θ for both cases was negative.
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It was shown that no set of linearized lift/moment coefficients could accurately predict the
lift/moment normalized amplitudes and phase angles as a function of reduced frequency k.
Essentially, this means that they cannot predict harmonic oscillatory motion. Case 1.1 - 1.3
provided results so inaccurate, that they were not included in this Chapter, but rather in
Appendix E. It was seen that as the perturbation rate decreased, the results became better,
but were still unsatisfactory; however, this does not imply that the lowest perturbation rate
provides the best result. The better results seemed to approximate higher reduced frequencies
better than the lower ones, which was unexpected. Furthermore, no single subcase gave the
best result for both the lift and moment normalized amplitudes and phase angles.

Taking the aforementioned information into account, it seems that the a set of constant
linearized lift and moment coefficients cannot predict harmonically oscillating airfoil motion.
In order to confirm this, an additional study was carried out. The airfoil was perturbed
with a sinusoidal motion at different frequencies ω (i.e. k). The lift and moment for these
perturbations were obtained from Theodorsen Theory and for each ω (i.e. k) the linearized
lift/moment coefficients were computed. It was shown that the coefficients were not constant
for any value of k which supports the conclusion that a set of linearized lift and moment
coefficients cannot be constant and at the same time accurately predict the unsteady loads
of a harmonically oscillating airfoil.

From the results presented in this chapter, some preliminary conclusions can be made on the
topic of whether a linearized aerodynamic CFD model can be used to conduct a gust response
analysis. The response of the airfoil to a gust will depend on the gust profile. Therefore,
the linearized aerodynamic CFD model should be able to predict arbitrary airfoil motion
accurately in order to adequately predict a gust response. Unfortunately, it was seen that
cubic motions with different perturbation rates yielded different sets of lift/moment linearized
coefficients. This indicates that unsteady lift/moment of different types of cubic motions
cannot be predicted with the same set of linearized coefficients. Furthermore, it was shown
that harmonic oscillatory motion of different reduced frequencies cannot be predicted with
the same set of linearized lift/moment coefficients. These facts indicate that the linearized
aerodynamic CFD model will not be able to predict arbitrary motion accurately. However,
in order to be able to say this with certainty, additional research should be done in this area.

The remaining parts of the conclusion are dedicated to explaining, from a theoretical stand-
point, why the proposed linearized aerodynamic CFD model should not be able to accurately
predict unsteady air loads for a perturbed airfoil, regardless of whether the perturbation is
harmonic or arbitrary. For this discussion, Theodorsen’s expressions for the lift and moment
of a harmonically pitching airfoil about the steady state are reintroduced

cl = cl,ss +
πb

U2

[
Uθ̇ − baθ̈

]
+
cl,αC(k)

U

[
Uθ + b

(
1

2
− a
)
θ̇

]
, (6.19)
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The elastic axis about which the lift and moment are computed is defined as a semi chords
from the airfoil midchord, where a is positive aft of the midchord. The terms in the first
square bracket of the lift/moment expressions are the non-circulatory terms that develop
immediately, while the terms in the second bracket are the circulatory terms. Its reduction
in amplitude and change of phase is due to the effect of the shed vortices, accounted for by
Theodorsen’s function C(k), where k is the reduced frequency. The reduced frequency k is
related to the oscillation frequency ωrad by the following expression: k = ωradb/U . So for a
given airfoil subject to an inflow velocity of U , k is defined by ωrad. For different oscillation
frequencies, a different k and hence C(k) can be computed emphasizing how Theodorsen’s
function accounts for the wake effect that are dependent on the frequency of the motion. If
the effects of the shed wake are to be neglected, C(k) is equal to 1 and the circulatory forces
also develop immediately. As such the quasi-steady model is obtained.

The implication that aerodynamic forces develop immediately means that the they depend
only on the current motion θ, θ̇ and θ̈ of the airfoil and not the history of the motion (i.e.
the shed wake) since the beginning of airfoil motion. For example, consider an airfoil free to
only pitch. At time t0 it is at rest. The airfoil then starts to move in pitch and has a pitching
displacement, velocity and acceleration. The motion can be harmonic or arbitrary. After a
certain amount of time at time t1, the airfoil pitch displacement, velocity and acceleration is
θ1, θ̇1 and θ̈1. Regardless of how the airfoil reached the specific values of the pitch displace-
ment, velocity and acceleration, the lift and moment computed will always be the same. For
harmonic motion, the history of the motion is taken care of by Theodorsen’s function. Note
that here, the wake is assumed to be fully developed and periodic since the beginning of the
airfoil motion. However, for arbitrary changes in the angle of attack, a closed form solution
like that of Theodorsen does not exist. The lift and moment forces can be found numerically
with a superposition of small step changes in angle of attack, where a single step change in
angle of attack is defined by the Wagner function (Wagner, 1925), which takes into account
the wake effects. Now reconsider the proposed linearized aerodynamic CFD model for the lift
and moment about the steady state, as is shown below

cl ≈ cl,ss +
∂cl
∂θ

∣∣∣∣
s

θ +
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∂θ̇
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s
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θ̈. (6.22)
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Note that the coefficients are found from unsteady CFD simulations and are considered con-
stant. Again, the underlying assumption is that this model can compute the unsteady air
loads for any type of motion as long as the perturbations are small, such that flow linearity
is ensured. Clearly, due to the fact that the coefficients are constant, these expressions re-
semble a quasi-steady model, where the lift and moment depend only on the current pitch
displacement θ, velocity θ̇ and acceleration θ̈ and hence develop immediately. This implies
that the effect of the shed wake is neglected. As such, it is understandable that this linearized
model cannot accurately compute the unsteady lift and moment coefficients of a harmonically
oscillating airfoil. Due to the fact that the wake history is neglected, it is also expected that
arbitrary motion cannot be accurately computed.
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Chapter 7

Conclusion

The main objective of this Master Thesis was to validate the efficacy of a linearized aerody-
namic CFD model for accurately predicting flutter. The analysis was carried out on a 2D
airfoil free to pitch, subject to incompressible flow and a Reynolds number of 1 million. The
linearized model is constructed by perturbing the airfoil with a cubic perturbation function
θ′ = θ̄t3 from the steady state for a number of time steps and using the results of the un-
steady CFD simulation to solve for the linearized lift and moment coefficients. Note that θ̄
represents the perturbation rate. A larger value implies higher velocity and accelerations of
the perturbed airfoil. The coefficients are assumed to be constant and independent of the
perturbation rate. The constructed linearized lift and moment models are assumed to be
valid for any type of perturbations, as along as the perturbations are small such that flow
linearity is preserved. A more in depth explanation of the model was given in Section 2.4 &
6.2. It was shown that the coefficients are largely dependent on the perturbation rate θ̄ of
the cubic perturbation function, as is documented in Tables 6.2, 6.3, 6.5 & 6.6.

For accurately predicting flutter, the linearized model must be able to accurately predict
unsteady aerodynamic loads due to a harmonically oscillating airfoil. This is due to the fact
that flutter is a neutral stability point and at the flutter boundary the airfoil oscillates har-
monically. Note that below the flutter boundary, the oscillations are damped, while above
the flutter boundary the oscillations are amplified. Therefore, the unsteady lift and moment
computed by the linearized model was compared with that of Theodorsen and OpenFOAM
simulations for an harmonically oscillating airfoil. Specifically, the lift/moment normalized
amplitudes and phase angles were compared as a function of reduced frequency. This com-
parison was carried out for various sets of linearized lift/moment coefficients (i.e. subcases
of Case 1 & 2). No set of linearized coefficients could accurately predict the unsteady air
loads of a harmonically oscillating airfoil. This implies that carrying out flutter computations
with such a method would result in an inaccurate flutter boundary prediction. An additional
analysis was carried out in order to see whether it is actually possible for a set of constant
linearized lift/moment coefficients to predict harmonic motion of different reduced frequen-
cies. The airfoil was perturbed with a sinusoidal perturbation function that was dependant
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on the reduced frequency. The lift and moment due to the perturbation were calculated from
Theodorsen Theory. The coefficients were extracted for each reduced frequency and it was
shown that the linearized lift/moment coefficients were largely dependent on the reduced fre-
quency, implying that a set of constant coefficients cannot accurately predict the unsteady air
loads of harmonically oscillating airfoils of different frequencies. Taking the aforementioned
points into account the research question of this author’s Master Thesis, given below, can be
answered.

Can linearized aerodynamic CFD models, used to model the aerodynamics of an aeroelastic
system, be utilized to accurately predict flutter?

The answer is, no they cannot, because in order to accurately predict flutter, the aerody-
namic model must accurately predict the unsteady air loads of a harmonically oscillating
airfoil. From the analysis carried out in this Master Thesis, it was shown that the linearized
aerodynamic CFD model is incapable of that.

Some preliminary conclusions can be made on whether the linearized aerodynamic CFD model
can be used for gust response analysis. The response of an airfoil to an arbitrary gust will
also be arbitrary. In other words, different gusts will result in different responses. Therefore,
the linearized aerodynamic CFD model should be able to predict arbitrary responses. The
fact that the linearized lift/moment coefficients significantly depend on the perturbation rate
of the cubic perturbation function implies that different types of cubic motion also cannot be
predicted with the same set of linearized lift/moment coefficients. Taking this into account,
as well as the fact that a set of constant linearized lift/moment coefficients cannot predict
the unsteady air loads of a harmonically oscillating airfoil, means that it is unlikely that a
linearized aerodynamic CFD model with constant coefficients can be used to predict air loads
of arbitrary airfoil motions. However, more research should be done in this area to come to
a stronger conclusion.

Finally, from the theoretical discussion of Section 6.4, it was explained that the proposed
linearized aerodynamic CFD model should not be able to accurately predict the unsteady air
loads due to oscillatory or arbitrary motion because it does not take into account the effects
of the shed wake. As such it cannot be used to accurately carry out gust response analyses or
flutter computations. From this conclusion arises the recommendation for future work which
is to incorporate the wake effects into the linearized aerodynamic CFD model.
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Appendix A

Derivation of Modal Aerodynamic Matrices

In this appendix, the derivation of the modal matrices [M̃a], [C̃a] and [K̃a] is explained. The
modal matrices appear on the RHS of Equation 2.27, where the RHS is reintroduced below

RHS = [Φ]T [Ma][Φ]{ä}+ [Φ]T [Ca][Φ]{ȧ}+ [Φ]T [Ka][Φ]{a}. (A.1)

Note that [M̃a] = [Φ]T [Ma][Φ], [C̃a] = [Φ]T [Ca][Φ] and [K̃a] = [Φ]T [Ka][Φ]. The derivation
of the modal matrices is done for [K̃a], but the same approach is used for deriving [M̃a] and
[C̃a]. As a reminder, [Ka] is a n × n matrix and is given by Equation 2.21, where n is the
degrees of freedom of the system. [Φ] is a matrix with a set of k orthonormal eigenvectors
(with respect to the structural mass matrix) of a n × 1 dimension. The final [K̃a] matrix is a
k × k matrix, as is shown by the derivation below. For easier understanding, the derivation is
carried out with an arbitrarily chosen finite value of n and k, rather than using the symbols n
and k themselves. So, for this purpose, the number of degrees of freedom chosen is n = 5. The
number of eigenmodes, and hence eigenvectors chosen, is k = 3. Therefore, the aerodynamic
stiffness matrix [Ka] is written as

[Ka] =



∂F1
∂x1

∂F1
∂x2

∂F1
∂x3

∂F1
∂x4

∂F1
∂x5

∂F2
∂x1

∂F2
∂x2

∂F2
∂x3

∂F2
∂x4

∂F2
∂x5

∂F3
∂x1

∂F3
∂x2

∂F3
∂x3

∂F3
∂x4

∂F3
∂x5

∂F4
∂x1

∂F4
∂x2

∂F4
∂x3

∂F4
∂x4

∂F4
∂x5

∂F5
∂x1

∂F5
∂x2

∂F5
∂x3

∂F5
∂x4

∂F5
∂x5


, (A.2)

where ∂F1
∂x1

represents the change in force on the first degree of freedom as a result of the

change in displacement of the first degree of freedom, while ∂F1
∂x2

represents the change in force
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on the first degree of freedom as a result of the change in displacement of the second degree
of freedom and so on. ∂F2

∂x1
represents the change in force on the second degree of freedom

as a result of the change in displacement of the first degree of freedom, while ∂F2
∂x2

represents
the change in force on the second degree of freedom as a result of the change in displacement
of the second degree of freedom and so on. The physical interpretation of the terms in rows
3-5 can be analogously explained. Note that these partial derivatives are evaluated at the
steady state |s; however, this was omitted from the terms for convenience. Moving on, the
displacement can be written as {x} = [Φ]{a} from Equation 2.24, where [Φ] is a matrix with
a set of k orthonormal eigenvectors (with respect to the structural mass matrix) of a n × 1
dimension. For n = 5 and k = 3, the displacement equation becomes the following



x1

x2

x3

x4

x5


=



Φ1,1 Φ1,2 Φ1,3

Φ2,1 Φ2,2 Φ2,3

Φ3,1 Φ3,2 Φ3,3

Φ4,1 Φ4,2 Φ4,3

Φ5,1 Φ5,2 Φ5,3




a1

a2

a3

 , (A.3)

where each column in Equation A.3 is an eigenvector. Derivating the LHS of Equation A.3
with respect to a1, a2 and a3 results in the following



∂x1
∂a1

∂x2
∂a1

∂x3
∂a1

∂x4
∂a1

∂x5
∂a1


=



Φ1,1

Φ2,1

Φ3,1

Φ4,1

Φ5,1


;



∂x1
∂a2

∂x2
∂a2

∂x3
∂a2

∂x4
∂a2

∂x5
∂a2


=



Φ1,2

Φ2,2

Φ3,2

Φ4,2

Φ5,2


;



∂x1
∂a3

∂x2
∂a3

∂x3
∂a3

∂x4
∂a3

∂x5
∂a3


=



Φ1,3

Φ2,3

Φ3,3

Φ4,3

Φ5,3


. (A.4)

Taking into account the expression given in Equation A.4, the matrix of eigenvectors [Φ] can
be alternatively expressed as

[Φ] =



∂x1
∂a1

∂x1
∂a2

∂x1
∂a3

∂x2
∂a1

∂x2
∂a2

∂x2
∂a3

∂x3
∂a1

∂x3
∂a2

∂x3
∂a3

∂x4
∂a1

∂x4
∂a2

∂x4
∂a3

∂x5
∂a1

∂x5
∂a2

∂x5
∂a3


. (A.5)

Niko Tatomir M.Sc. Thesis



89

In order to obtain [K̃a], the matrix [Ka] is first multiplied by [Φ]

[Ka][Φ] =



∂F1
∂x1

∂F1
∂x2

∂F1
∂x3

∂F1
∂x4

∂F1
∂x5

∂F2
∂x1

∂F2
∂x2

∂F2
∂x3

∂F2
∂x4

∂F2
∂x5

∂F3
∂x1

∂F3
∂x2

∂F3
∂x3

∂F3
∂x4

∂F3
∂x5

∂F4
∂x1

∂F4
∂x2

∂F4
∂x3

∂F4
∂x4

∂F4
∂x5

∂F5
∂x1

∂F5
∂x2

∂F5
∂x3

∂F5
∂x4

∂F5
∂x5





∂x1
∂a1

∂x1
∂a2

∂x1
∂a3

∂x2
∂a1

∂x2
∂a2

∂x2
∂a3

∂x3
∂a1

∂x3
∂a2

∂x3
∂a3

∂x4
∂a1

∂x4
∂a2

∂x4
∂a3

∂x5
∂a1

∂x5
∂a2

∂x5
∂a3


. (A.6)

Note that when carrying out the matrix multiplication, the first row of matrix [Ka] times the
first column of matrix [Φ] is equal to ∂F1/∂a1 as is shown below

∂F1

∂a1
=
∂F1

∂x1

∂x1

∂a1
+
∂F1

∂x2

∂x2

∂a1
+
∂F1

∂x3

∂x3

∂a1
+
∂F1

∂x4

∂x4

∂a1
+
∂F1

∂x5

∂x5

∂a1
. (A.7)

In order to equate the RHS with ∂F1/∂a1 the chain rule is employed, because F is a function
of x, ẋ and ẍ which in turn are a function of a, ȧ and ä . For the variable x, this is clearly
visible from Equation A.3. Therefore, to derivate F with respect to a, i.e. a1, the chain rule
must be employed. The product of all the rows and columns of Equation A.6 can be expressed
analogously as is shown in Equation A.8 below

[Ka][Φ] =



∂F1
∂a1

∂F1
∂a2

∂F1
∂a3

∂F2
∂a1

∂F2
∂a2

∂F2
∂a3

∂F3
∂a1

∂F3
∂a2

∂F3
∂a3

∂F4
∂a1

∂F4
∂a2

∂F4
∂a3

∂F5
∂a1

∂F5
∂a2

∂F5
∂a3


or [Ka][Φ] =

[
∂{F}
∂a1

∂{F}
∂a2

∂{F}
∂a3

]
. (A.8)

In the first expression of the Equation above, ∂F1
∂a1

represents the change in force on the
first degree of freedom as a result of the change in displacement of the first mode, while
∂F1
∂a2

represents the change in force on the first degree of freedom as a result of the change

in displacement of the second mode and so on. ∂F2
∂a1

represents the change in force on the
second degree of freedom as a result of the change in displacement of the first mode, while
∂F2
∂a2

represents the change in force on the second degree of freedom as a result of the change in
displacement of the second mode and so on. The physical interpretation of the terms in rows
3-5 can be analogously explained. Of course, these derivatives are evaluated at the steady
state |s. Note that the second expression in Equation A.8 above is a more convenient way of
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writing the product [Ka][Φ] and will be used in the next step. Multiplying the left-hand side
of [Ka][Φ] by [Φ]T results in the following system

[Φ]T [Ka][Φ] =


{Φ1}T

{Φ2}T

{Φ3}T

[∂{F}∂a1

∂{F}
∂a2

∂{F}
∂a3

]
. (A.9)

Taking into account that the eigenvectors {Φ1}, {Φ2} and {Φ3} are constant, multiplying
matrices of Equation A.9 gives the following system

[Φ]T [Ka][Φ] =


∂{Φ1}T {F}

∂a1

∂{Φ1}T {F}
∂a2

∂{Φ1}T {F}
∂a3

∂{Φ2}T {F}
∂a1

∂{Φ2}T {F}
∂a2

∂{Φ2}T {F}
∂a3

∂{Φ3}T {F}
∂a1

∂{Φ3}T {F}
∂a2

∂{Φ3}T {F}
∂a3

 . (A.10)

In Equation A.10 above, the product {Φ1}T {F} maps the vector of forces {F} of each degree
of freedom onto mode 1 and will be denoted by F1. The product {Φ2}T {F} maps the vector
of forces {F} of each degree of freedom onto mode 2 (i.e. F2) and so on. Therefore, for a
n = 5 degree of freedom system, where only k = 3 eigenvectors are considered, the modal
stiffness matrix [K̃a] becomes

[K̃a] = [Φ]T [Ka][Φ] =


∂F1
∂a1

∂F1
∂a2

∂F1
∂a3

∂F2
∂a1

∂F2
∂a2

∂F2
∂a3

∂F3
∂a1

∂F3
∂a2

∂F3
∂a3

 . (A.11)

Now, ∂F1
∂a1

represents the change in force on the first mode as a result of the change in dis-

placement of the first mode, while ∂F1
∂a2

represents the change in force on the first mode as a

result of the change in displacement of the second mode and so on. ∂F2
∂a1

represents the change
in force on the second mode as a result of the change in displacement of the first mode, while
∂F2
∂a2

represents the change in force on the second mode as a result of the change in displace-
ment of the second mode and so on. The physical interpretation of the terms in row 3 can
be analogously explained. Clearly the size of the matrices reduce from a n × n [Ka] matrix
to a k × k [K̃a] matrix and as such a smaller number of coefficients, i.e. partial derivatives
must be computed. Knowing, from Equation 2.24, that {ẋ} = [Φ]{ȧ} and {ẍ} = [Φ]{ä}, the
modal aerodynamic damping [C̃a] and mass [M̃a] matrices can be easily derived.
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Appendix B

Unsteady Lift for k = 0.1, 0.3, 0.4 & 0.8

Figure B.1: cl vs. time, k = 0.1 Figure B.2: cl vs. θ, k = 0.1

Figure B.3: cl vs. time, k = 0.3 Figure B.4: cl vs. θ, k = 0.3
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Figure B.5: cl vs. time, k = 0.4 Figure B.6: cl vs. θ, k = 0.4

Figure B.7: cl vs. time, k = 0.8 Figure B.8: cl vs. θ, k = 0.8
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Appendix C

Unsteady Moment for k = 0.1, 0.3, 0.4 & 0.8

Figure C.1: cm vs. time, k = 0.1 Figure C.2: cm vs. θ, k = 0.1

Figure C.3: cm vs. time, k = 0.3 Figure C.4: cm vs. θ, k = 0.3
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94 Unsteady Moment for k = 0.1, 0.3, 0.4 & 0.8

Figure C.5: cm vs. time, k = 0.4 Figure C.6: cm vs. θ, k = 0.4

Figure C.7: cm vs. time, k = 0.8 Figure C.8: cm vs. θ, k = 0.8
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Appendix D

A Comment on the A Matrix

Within this appendix, the reason for omitting the first 3 time steps in matrix [A] of Section
6.2.1 is explained. Consider that the [A] matrix is built of all 20 time steps as is shown below

[A] =


θ′1,ana θ̇′1,ana θ̈′1,ana
θ′2,ana θ̇′2,ana θ̈′2,ana

...
...

...

θ′20,ana θ̇′20,ana θ̈′20,ana

 , (D.1)

where the subscript ana denotes that the displacement, velocity and acceleration terms are
calculated from the analytical functions θ′ana=θ̄t

3, θ̇′ana=3θ̄t2, θ̈′ana=6θ̄t at each discrete time
t respectively, as was introduced by the expressions of Equation 6.3. In OpenFOAM, only the
perturbation displacement θ′ana=θ̄t

3 is imposed from the analytical function at each discrete
time step t. So in order to compute the the velocity and acceleration at each discrete time,
finite difference schemes are used. Assume the following finite difference expressions for the
velocity θ̇′n+1,num and acceleration θ̈′n+1,num at the new time level tn+1 are

θ̇′n+1,num =
3
2θ
′
n+1,ana − 2θ′n,ana + 1

2θ
′
n−1,ana

∆t
, (D.2)

θ̈′n+1,num =
θ′n+1,ana − 2θ′n,ana + θ′n−1,ana

∆t2
, (D.3)

where n = 0,1,...,19 and represents the time steps taken. Note that n = 0 marks the first time
step, n = 1 marks the second time step and so on. Furthermore, for the first time step (i.e.
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96 A Comment on the A Matrix

n=0), θ′n−1,ana from Equations D.2 & D.3 are unknown. Therefore, to compute the velocity
and acceleration for the first time step t1, the following finite difference expressions are used

θ̇′n+1,num =
θ′n+1,ana − θ′n,ana

∆t
, (D.4)

θ̈′n+1,num =
θ′n+1,ana − 2θ′n,ana

∆t2
. (D.5)

Again, for the remaining time steps, the expressions given by Equations D.2 & D.3 are used.
Keeping this in mind, another version of the [A] matrix in which the displacement, velocity
and acceleration as is computed by OpenFOAM is included, can be constructed as follows

[A] =


θ′1,ana θ̇′1,num θ̈′1,num
θ′2,ana θ̇′2,num θ̈′2,num

...
...

...

θ′20,ana θ̇′20,num θ̈′20,num

 . (D.6)

Note that the first column consists of the imposed displacement in OpenFOAM that is identi-
cal to the analytical function θ′ana=θ̄t

3 at each discrete time t. The velocity and acceleration
are computed numerically with Equations D.2-D.5. As is shown in the remainder of this
appendix, the velocity and accelerations obtained by analytical functions for the first few
time steps are not equal to those obtained by OpenFOAM. To make the [A] matrix com-
puted by analytical function similar to that computed by OpenFOAM, the first few steps are
omitted when computing for the linearized coefficients. Figure D.1 & D.2 shows the ratio of
the analytically computed velocity and numerically computed velocity (i.e. θ̇′ana/θ̇

′
num) and

ratio of the analytically computed acceleration and numerically computed acceleration (i.e.
θ̈′ana/θ̈

′
num) for 20 time steps, respectively.
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Figure D.1: θ̇′ana/θ̇
′
num vs. time step Figure D.2: θ̈′ana/θ̈

′
num vs. time step

Note that on the x-axis, the time step number is plotted rather than the time value, because
the ratios are independent of the magnitude of the time and only depends on the number of
time steps taken. So for example, after one time step, the ratio of the velocity is 3, regardless
of the size of the time step ∆t and hence time t. Note that the ratio of the displacements are
not shown because it is equal to 1. After 3 time steps, the ratios becomes close to 1, meaning
that the numerically computed velocity and acceleration are similar to that computed by
the analytical functions. Therefore, only the remaining time steps are used to build the [A]
matrix with analytical functions as is given by Equation 6.3 of Section 6.2.1. The derivations
for the expressions of the velocity/acceleration ratios plotted in the figures above are given
below. It is also shown that these expressions depend solely on the number of time steps,
rather then the time value.

Keeping in mind that θ′n+1,ana, θ′n,ana and θ′n−1,ana can be expressed as θ̄[(n + 1)∆t]3,

θ̄[n∆t]3 and θ̄[(n−1)∆t]3 respectively, Equations D.2-D.5 are rewritten in the form as follows

θ̇′n+1,num =
3
2 θ̄[(n+ 1)∆t]3 − 2θ̄[n∆t]3 + 1

2 θ̄[(n− 1)∆t]3

∆t
, (D.7)

θ̈′n+1,num =
θ̄[(n+ 1)∆t]3 − 2θ̄[n∆t]3 + θ̄[(n− 1)∆t]3

∆t2
, (D.8)

θ̇′n+1,num =
θ̄[(n+ 1)∆t]3 − θ̄[n∆t]3

∆t
, (D.9)

θ̈′n+1,num =
θ̄[(n+ 1)∆t]3 − 2θ̄[n∆t]3

∆t2
. (D.10)
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98 A Comment on the A Matrix

The velocity ratio is obtained by computing the fraction θ̇′n+1,ana/θ̇
′
n+1,num, where θ̇′n+1,num

stems for Equation D.7. Similarly to what was shown in the previous paragraph θ̇′n+1,ana is

equal to 3θ̄[(n+ 1)∆t]2. The velocity ratio is shown below

θ̇′n+1,ana

θ̇′n+1,num

=
3(n+ 1)2

3
2(n+ 1)3 − 2n3 + 1

2(n− 1)3
. (D.11)

This expression is used to computed the velocity ratio for all time steps, expect for the first
one, where n=0. For this special case, since tn−1 is not known, the velocity ratio is obtained
by computing the fraction θ̇′n+1,ana/θ̇

′
n+1,num, where θ̇′n+1,num now stems for Equation D.9.

The velocity ratio is shown below

θ̇′n+1,ana

θ̇′n+1,num

=
3(n+ 1)2

(n+ 1)3 − n3
. (D.12)

The acceleration ratio is obtained by computing the fraction θ̈′n+1,ana/θ̈
′
n+1,num, where

θ̈′n+1,num stems for Equation D.8. Similarly, θ̈′n+1,ana is equal to 6θ̄[(n + 1)∆t].The accel-
eration ratio is shown below

θ̈′n+1,ana

θ̈′n+1,num

=
6(n+ 1)

(n+ 1)3 − 2n3 + (n− 1)3
. (D.13)

This expression is used to computed the acceleration ratio for all time steps, expect for
the first one, where n=0. For this special case, since tn−1 is not known, the acceleration
ratio is obtained by computing the fraction θ̈′n+1,ana/θ̈

′
n+1,num, where θ̈′n+1,num now stems for

Equation D.10. The acceleration ratio is shown below

θ̈′n+1,ana

θ̈′n+1,num

=
6(n+ 1)

(n+ 1)3 − 2n3
. (D.14)

From the expressions for the velocity and accelerations ratios given by Equations D.11-D.14,
it is clear that the ratios depend only on the number of time steps taken n.
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Appendix E

Remaining Results of Case 1 & 2

Figure E.1: Remaining Results of Case 1:
θ′ vs. time

Figure E.2: Remaining Results of Case 1:
θ̇′ vs. time

Figure E.3: Remaining Results of Case 1:
∆cl vs. time

Figure E.4: Remaining Results of Case 1:
∆cm vs. time
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100 Remaining Results of Case 1 & 2

Figure E.5: Remaining Results of Case 1:
σcl vs. k (for linearized lift)

Figure E.6: Remaining Results of Case 1:
φcl vs. k (for linearized lift)

Figure E.7: Remaining Results of Case 1:
σcm vs. k (for linearized moment)

Figure E.8: Remaining Results of Case 1:
φcm vs. k (for linearized moment)

Figure E.9: Remaining Results of Case 2:
φcm vs. k (for linearized moment)
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