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Abstract— Real-time train scheduling is essential for passenger
satisfaction in urban rail transit networks. This paper focuses on
real-time train scheduling for urban rail transit networks con-
sidering uncertain time-dependent passenger origin-destination
demands. First, a macroscopic passenger flow model we proposed
before is extended to include rolling stock availability. Then,
a distributed-knowledgeable-reduced-horizon (DKRH) algorithm
is developed to deal with the computational burden and the
communication restrictions of the train scheduling problem in
urban rail transit networks. For the DKRH algorithm, a cost-
to-go function is designed to reduce the prediction horizon of
the original model predictive control approach while taking
into account the control performance. By applying a scenario
reduction approach, a scenario-based distributed-knowledgeable-
reduced-horizon (S-DKRH) algorithm is proposed to handle
the uncertain passenger flows with an acceptable increase in
computation time. Numerical experiments are conducted to
evaluate the effectiveness of the developed DKRH and S-DKRH
algorithms based on real-life data from the Beijing urban rail
transit network. The simulation results indicate that DKRH can
be used to achieve real-time train scheduling for the urban rail
transit network, while S-DKRH can handle the uncertainty in
the passenger flows with an acceptable sacrifice in computation
time.

Index Terms— Urban rail transit networks, time-dependent
passenger origin-destination demands, uncertain passenger flows,
distributed model predictive control, scenario approach.

I. INTRODUCTION

URBAN rail transit plays an increasingly prominent role
in public transportation of big cities due to its stability,

high transport capacity, and energy efficiency. Real-time train
scheduling is recognized as an effective way to improve pas-
senger satisfaction and to reduce the operational costs under
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the infrastructure limitations of urban rail transit networks.
With the rapid expansion of network scale and the growing
passenger demands in urban rail transit systems, it becomes
increasingly challenging to achieve real-time train scheduling
while considering uncertain time-dependent passenger origin-
destination (OD) demands and operational costs.

A. Passenger-Oriented Train Scheduling for a Single Line

Several methods are reported in the literature to optimize
arrival and departure times of trains at each platform in a
single line. One important trend is to develop more practically
implementable train scheduling strategy by including more
attributes of train operation and infrastructure restrictions,
e.g., train speed profiles [1], [2], rolling stock circulation
[3], [4], train stopping plan [5]. Wang et al. [1] explored
the train scheduling problem of a metro line while taking
train capacity and speed profiles into account, and then
an iterative convex programming approach is proposed to
solve the resulting nonlinear noncovex optimization problem.
Shi et al. [6] investigated a flexible train capacity allocation
strategy for a metro line where carriages are reserved for
different stations based on time-dependent passenger demands,
and the resulting nonlinear integer programming problem is
solved through a variable neighborhood search algorithm.
Zhou et al. [7] incorporated rolling stock circulation into the
train scheduling problem considering passenger demands on
a tidal oversaturated metro line, so that passenger demands in
different phases can be satisfied.

The above studies are limited to passenger-oriented train
scheduling problems of a single line. For an urban rail transit
network, different lines typically interact with each other
through transfer passengers. Therefore, train scheduling con-
sidering detailed passenger origin-destination (OD) demands
in urban rail transit networks is regarded as an important
direction to further improve passenger satisfaction [8].

B. Passenger-Oriented Train Scheduling for Networks

Train scheduling in urban rail transit networks with time-
dependent passenger OD demands is challenging due to the
requirement for network coordination and the scale of the
resulting problem. In order to minimize the energy con-
sumption of trains and the total travel time of passengers,
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Wang et al. [9] formulated time-dependent passenger OD
demands in an urban rail transit network by an event-driven
model, where arrival events, departure events, and passen-
ger arrival rates change events are proposed to describe the
movement of trains and passengers. Yin et al. [10] proposed
a mixed-integer linear programming (MILP) formulation to
handle the over-crowdedness of stations in an urban rail
transit network, and a decomposition-based adaptive large
neighborhood search approach was developed to improve the
computational efficiency. Luan and Corman [11] included the
train scheduling and passenger routing process in an integrated
model, and the resulting mixed-integer nonlinear programming
(MINLP) problem is reformulated as an MILP problem to
minimize passenger disutility (i.e., passenger delay, travel
time, and the number of stranded passengers) and total train
delay.

Considering the computational complexity of explicitly inte-
grating departure and arrival times in an urban rail network
with time-dependent passenger OD demands, optimizing train
departure frequencies of each line has become a promising
direction in passenger-oriented train scheduling [8], [12].
Canca et al. [8] optimized line frequencies and capacities by
solving an MINLP problem. Liu et al. [13] developed a novel
passenger flow model to determine train departure frequencies,
i.e., the number of trains per unit time in each line, where time-
dependent passenger OD demands and train capacities are
included. The resulting optimization problem can be exactly
transformed into an MILP problem, which can be solved
efficiently by state-of-the-art MILP solvers [13]. Nevertheless,
most existing studies in passenger-oriented train scheduling of
urban rail networks do not include rolling stock availability
due to the computational complexity issue, leaving an open
gap for generating a practically implementable timetable.

C. MPC for Real-Time Railway Traffic Management

The train scheduling problem is a typical constrained control
problem [14]. Model predictive control (MPC) is a method-
ology for addressing real-time constrained control problems
[15], [16]. Based on a switching max-plus-linear model,
a real-time train scheduling method was developed in [17] to
minimize train delays and operational costs. Caimi et al. [18]
dealt with train rescheduling problems for complex railway
station areas by using MPC. However, as it is an optimization-
based control approach, centralized MPC can be difficult to
implement in real-life railway networks because of its com-
putational complexity and global information requirements.
These issues become more challenging in the case of large-
scale networks.

For general large-scale systems, many researchers have been
developing non-centralized methods that coordinate subsys-
tems in a decentralized, distributed, or hierarchical manner
to achieve fast and effective solutions for the overall system
[19], [20], [21]. Non-centralized control methods have also
been used in railway train scheduling problems. Kersbergen
et al. [22] developed several distributed MPC methods for
the railway traffic management problem where the arrival
and departure times, breaking connections, and train orders

in the railway network were jointly optimized. Luan et al.
[23] applied three distributed optimization approaches, i.e.,
an alternating direction method of multipliers approach,
a priority-rule-based approach, and a cooperative distributed
robust safe but knowledgeable (CDRSBK) algorithm for real-
time traffic management of railway networks. Numerical
experiments show that the CDRSBK approach with train-
based decomposition performs best on the basis of feasibility,
optimality, and computational efficiency.

The train scheduling of urban rail transit networks
with time-dependent passenger OD demands is challenging
because of the large computational burden. The advanced
non-centralized control methods [19], [20], [21] and their
successful applications in railway [22], [23] have open oppor-
tunities to develop a new efficient distributed MPC method for
passenger-oriented train scheduling problems.

D. Train Scheduling Under Uncertainties

There are many uncertain attributes in railway networks,
e.g., uncertain passenger flows and uncertain delays, that could
influence the performance of train schedules. Cacchiani et al.
[24] developed three different MILP formulations based on
light robustness (where uncertainty is handled by inserting
different protection levels) to reduce passenger inconvenience
caused by uncertain passenger demands in a high-speed
railway line. The scenario approach [25], [26] is a general
data-driven decision-making methodology that can deal with
uncertainties of a system. The scenario approach typically cap-
tured uncertainties by a collection of representative scenarios,
and the decision is then made by considering these represen-
tative scenarios. By using different scenarios to capture the
uncertain train operation time in the network, Yang et al. [27]
developed a two-stage stochastic integer programming model
to minimize the expected passenger travel time and transfer
activities, where the potential transfer stations are found at
the first stage while the least time paths are provided at the
second stage. Gong et al. [28] formulated an MINLP problem
to optimize the operational costs on an urban rail transit
line where passenger distribution is represented via several
different scenarios. However, most research only considered
uncertain passenger demands for a single line. Passenger
demands in urban rail transit networks exhibit highly dynamic
and random characteristics because trains typically operate
with high density, and passengers can choose different routes
and different trains to reach their destinations. Therefore,
efficient approaches that can explicitly include uncertain pas-
senger demands in urban rail networks still require further
research.

E. Paper Contributions and Structure

The current paper deals with the real-time train schedul-
ing problem considering uncertain time-dependent passenger
origin-destination demands in urban rail transit networks.
By extending the passenger absorption model developed in
[13], the train scheduling problem with rolling stock avail-
ability can be addressed by using model predictive control
where the optimization problem at each time step is formulated
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as a mixed-integer linear programming problem. Considering
the computational issues, we develop a distributed model
predictive control approach where each line is regarded as
one subsystem. Furthermore, as passenger flows generally
exhibit some degree of uncertainty, a scenario-based approach
is incorporated into the distributed model predictive control
approach to deal with these uncertainties.

The main contributions of the paper are as follows:
1) A novel distributed-knowledgeable-reduced-horizon

(DKRH) algorithm is developed for the train scheduling
problem, where a new cost-to-go function is proposed
considering computational complexity, prediction
horizon, and future performance.

2) We incorporate a scenario-based distributed control
scheme into the DKRH algorithm, and a scenario-based
distributed-knowledgeable-reduced-horizon algorithm is
developed to handle uncertain passenger flows in large-
scale urban rail transit networks.

3) The passenger absorption model of [13] is extended to
include rolling stock availability by taking into account
the total number of available trains so as to generate
practically implementable control strategies.

The remaining part of the paper is organized as follows:
Section II introduces the mathematical model used in this
paper. In Section III, a distributed knowledgeable-reduced-
horizon algorithm is developed. In Section IV, we propose
a scenario-based distributed knowledgeable-reduced-horizon
algorithm. In Section V, the effectiveness of the developed
approaches is evaluated based on real-life data from a part of
the Beijing urban rail transit network. The paper is concluded
with final remarks in Section VI.

II. MATHEMATICAL MODEL

This section starts with the description of the mathematical
model proposed by the authors in [13], followed by an
extension of the model to include rolling stock availability.
Some general explanations for the research problem of this
paper are as follows:

1) This paper aims to adjust train schedules for urban rail
transit networks online based on real-time passenger
demands. We assume the routes of passengers are given
a priori. Disturbances and disruptions are not in the scope
of this paper.

2) The current paper is based on the passenger absorption
model developed in [13], which has been developed to
determine train departure frequencies (i.e., the number
of trains departing from each platform per unit time) for
urban rail transit networks.

3) After obtaining the departure frequency of each platform,
a dedicated lower-level controller [29] can determine
the detailed departure and arrival times of trains, where
the departure interval during each phase is determined
according to the corresponding departure frequency.

We start with introducing the notations for the model
formulation in Section II-A. Then, the passenger absorption
model is summarized in Section II-B. Section II-C introduces

the constraints for the model and further extends the model to
include rolling stock availability.

A. Notations

Indices and Input Parameters
o, d Index of stations, o, d ∈ S, S is the set of

stations
p Index of platforms, p ∈ P , P is the set of

platforms
k Index of phases
spla (p) Succeeding platform of platform p
ppla (p) Preceding platform of platform p
T Length of a phase
hmin

p Minimum departure-arrival headway at platform
p

τmin
p Minimum dwell time of train at platform p

rp Average running time of trains from platform p
to its succeeding platform

γp Average time for a train from the first platform
of a line to platform p

Ctrain Maximum capacity of a train
αp,d(k) Fraction of passengers absorbed by trains at

platform p with destination d during phase k
χp,q,d Proportion of passengers transferring from plat-

form p to q with station d as their destination
t transf
p,q Average time for passengers walking from plat-

form p to platform q
ρstation

o,d (k) Passenger origin-destination demands with o as
origin station and d destination station during
phase k

λo,p,d (k) Proportion of passengers at origin station
o choosing platform p for their travel to
destination d

Decision variables
f p(k) The number of trains departing from platform p

during phase k
Output variables
ρp,d (k) Passenger arrival rate at platform p with

station d as destination during phase k
n p,d (k) Number of passengers waiting at platform

p with station d as their destination at the
beginning of phase k

nabsorb
p,d (k) Number of passengers at platform p with

station d as their destination absorbed by
trains during phase k

C p (k) Total remaining capacity of trains visiting
platform p during phase k

nwant
p (k) Total number of passengers that want to

board trains at platform p during phase k
non−board

p,d (k) Number of passengers on board of trains,
when trains arrive at platform p, with des-
tination d during phase k

nalight
p,d (k) Number of passengers alighting from trains

at platform p with station d as their desti-
nation during phase k
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ntransf
p,q,d (k) Number of passengers transferring from

platform p to q with station d as their
destination during phase k

ntrans,arrive
p,d (k) Number of transfer passengers arriving at

platform p with station d as their destination
during phase k

gp (k) Total number of transfer passengers arriving
at platform p during phase k

ndepart
p,d (k) Number of passengers departing from plat-

form p with station d as destination during
phase k

m p (k) Total number of passengers departing from
platform p during phase k

B. Passenger Absorption Model

In the passenger absorption model, the number of passen-
gers n p,d (k) waiting at platform p with station d as their
destination at the start of each phase is updated by:

n p,d (k + 1) = n p,d (k)+ ρp,d (k) T

+ ntrans,arrive
p,d (k)− nabsorb

p,d (k) , (1)

where ρp,d (k) is the average passenger arrival rate at platform
p with station d as their destination during phase k; T is
the length of a phase; ntrans,arrive

p,d (k) is the number of transfer
passengers arriving at platform p with destination d during
phase k, and nabsorb

p,d (k) is the number of passengers at platform
p with destination d absorbed by trains during phase k. Then,
ρp,d (k), ntrans,arrive

p,d (k), and nabsorb
p,d (k) can be computed by

ρp,d (k) = λo,p,d (k) ρstation
o,d (k) ,∀p ∈ Psta

o , (2)

ntrans,arrive
p,d (k)=

∑
q∈cop(p)\{p}

(
T−t transf

q,p

T
ntransf

q,p,d (k)

+
t transf
q,p

T
ntransf

q,p,d (k − 1)

)
, (3)

nabsorb
p,d (k) = αp,d(k)nabsorb

p (k) , (4)

where ρstation
o,d (k) denotes passenger origin-destination demands

at phase k with o and d as the origin station and the destination
station, respectively; Psta

o defines a set of platforms at station
o; and λo,p,d (k) is the proportion1 of passengers at station
o who choose platform p for their travel to destination d;
cop(p) defines a set of platforms located at the same station
as platform p; t transf

q,p denotes the average transfer time for
passengers from platform q to platform p; ntransf

p,q,d (k) is the
number of passengers transferring from platform p to platform
q with destination d during phase k; αp,d(k) is the fraction of
passengers absorbed by trains at platform p with destination
d during phase k; nabsorb

p (k) denotes the total number of
passengers absorbed by trains at platform p during phase k.

For the variable nabsorb
p (k) in (4), we have

nabsorb
p (k) = min

(
nwant

p (k) , C p (k)
)

, (5)

1As passenger route choices observed from metro data collection systems
typically exhibit consistent patterns, we assume that the proportions of
passengers choosing each route are given a priori. Thus, λo,p,d (k) can be
estimated from historical data or obtained according to the shortest paths.

nwant
p (k) = n p (k)+ ρp (k) T + gp (k) , (6)

C p(k)= f p(k) · Ctrain−
∑
d∈S

(
non−board

p,d (k)−nalight
p,d (k)

)
,

(7)

with

n p(k) =
∑
d∈S

n p,d(k), ρp(k) =
∑
d∈S

ρp,d(k),

gp (k) =
∑
d∈S

narrive,transf
p,d (k), (8)

where nwant
p (k) is the total number of passengers that want

to board trains at platform p during phase k; C p(k) is the
total remaining capacity of trains that visit platform p during
phase k; f p(k) is the number of trains that visit platform p
during phase k; Ctrain is the maximum capacity of a train, S
denotes the set of stations in the urban rail transit network,
non−board

p,d (k) is the number of passengers on board of trains at

platform p with destination d during phase k, and nalight
p,d (k)

is the number of passengers alighting from trains at platform
p with destination d during phase k.

The number of passengers ndepart
p,d (k) departing from plat-

form p with destination d during phase k is

ndepart
p,d (k) = non−board

p,d (k)− nalight
p,d (k)+ nabsorb

p,d (k) , (9)

and we have

non−board
p,d (k)=

T−rppla(p)

T
ndepart

ppla(p),d(k)+
rppla(p)

T
ndepart

ppla(p),d(k−1) ,

(10)

nalight
p,d (k)=


∑

q∈cop(p)/{p}
ntransf

p,q,d (k) , if d ∈ S\{sta(p)},

non−board
p,d (k) , if d = sta(p),

(11)

ntransf
p,q,d(k) = χp,q,d non−board

p,d (k), ∀q ∈ cop(p)\{p},
(12)

m p(k) =
∑
d∈S

ndepart
p,d (k), (13)

where rppla(p) refers to the average running time of trains
from the preceding platform ppla(p) to platform p, and T ≫
rppla(p); sta(p) defines the station of platform p; χp,q,d is
the proportion for passengers transferring from platform p to
q ∈ cop(p) with station d as their destination; cop(p) defines
a set of platforms located at the same station as platform p;
m p(k) denotes the total number of passengers departing from
platform p during phase k.

C. Constraints for the Absorption Model

1) Departure Frequency Constraints: In this paper, we only
consider the case that each line has one depot to accommodate
trains. In general, each train at a line will visit every platform
of the line before it returns to deport or starts as a new train
service. In this context, the number of trains running on a line
can be determined by the number of trains departing from the
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depot. Therefore, the number of trains f p(k) departing from
platform p can be calculated by

f p(k)=
T−φp

T
ffst(p)

(
k−βp

)
+

φp

T
ffst(p)

(
k−βp−1

)
, (14)

βp =
⌊
γp/T

⌋
, φp = γp − βpT, (15)

where fst (p) defines the first platform of the line correspond-
ing to platform p, i.e., the platform connected with the depot of
the line, γp denotes the average time for a train from platform
fst (p) to platform p.

To ensure the safe operation of urban rail transit systems,
the number of trains departing from platform p during phase
k should be constrained by

f p(k)
(

hmin
p + τmin

p

)
≤ T, (16)

where hmin
p and τmin

p are the minimum headway and the
minimum dwell time at platform p, respectively.

2) Rolling Stock Availability Constraints: In real-life oper-
ations, the number of trains used for each line is restricted
by the total number of available trains, i.e., the total number
of trains running on the line should be smaller than or equal
to the total number of available trains. Therefore, the rolling
stock availability should be included in order to generate
a practically implementable timetable. Considering p as the
platform connected with a depot, the train departing from
platform p typically visits every platform of the line and
requires an average time interval cp to return to the depot, and
we define cp as the circulation time. Then, for the passenger
absorption model, the trains departing from a depot during the
circulation time should satisfy

f p(k)+

σp−1∑
i=1

f p(k−i)+
ωp

T
f p(k−σp) ≤ N rs

p , ∀p ∈ dep(p),

(17)

σp =
⌊

cp/T
⌋

, ωp = cp − σpT, (18)

where dep(p) is the set of platforms that use the same depot
with platform p; N rs

p is the total number of available trains
for the line corresponding to platform p.

III. DISTRIBUTED KNOWLEDGEABLE-REDUCED-HORIZON
ALGORITHM FOR TRAIN SCHEDULING

Based on the model predictive control (MPC) framework,
in this section, we first develop a knowledgeable-reduced-
horizon (KRH) approach where a novel cost-to-go function
is designed to shorten the prediction horizon. A distributed
control framework is then proposed to further reduce the com-
putational burden of solving the MPC optimization problem,
thereby achieving real-time train scheduling in the urban rail
transit network. In the distributed control framework, each
local agent generates its control decisions based on its local
information and information from its neighbor agents. Such a
framework is in accordance with the real-life situation where
global information is typically not available in large-scale
urban rail transit networks.

A. Problem Formulation in MPC Set-Up

In an urban rail transit network, passenger satisfaction is
strongly related to the total time spent in the network. Based
on the absorption model, the total travel time of passengers in
the urban rail transit network during phase k is represented by

J pass(k) =
∑
p∈P

(
n p(k)T + m p(k)rp + gp(k)t transf

p

)
, (19)

where n p(k)T represents the total waiting time at platform p
during phase k, m p(k)rp denotes the total running time until
the next platform for passengers departing from platform p
during phase k, and gp(k)t transf

p represents the total transfer
time of passengers at platform p during phase k.

The operational cost of an urban rail transit system is highly
related to the energy consumption of trains. Based on the
absorption model, the total energy consumption for trains
departing from the platform during phase k is computed by

J roll(k) =
∑
p∈P

f p(k)E p, (20)

where E p represents the average energy consumption for a
train to run from platform p to its succeeding platform.

Therefore, the MPC optimization problem PMPC
k0

for real-
time train scheduling of urban rail transit networks is
formulated as

min
f(k)

J (k0) =

k0+N0−1∑
k=k0

(
J pass(k)+ ξ J roll(k)

)
,

subject to (1)− (14), (16)− (17), (21)

where N0 is the prediction horizon, and ξ is a weight balancing
the objectives.

As explained in [13], the nonlinear optimization problem
PMPC

k0
can be transformed into a mixed-integer linear program-

ming (MILP) problem PMILP
k0

with the following form, which
is exactly equivalent to the original optimization problem:

min
x(k), f (k)
δ(k),z(k)

J (k0) =

k0+N0−1∑
k=k0

(
J pass(k)+ ξ J roll(k)

)
(22)

subject to

x(k+1) = Ak x(k)+B1,k f (k)+B2,kδ(k)+B3,k z(k), (23)
E2,kδ(k)+ E3,k z(k) ≤ E1,k f (k)+ E4,k x(k)+ E5,k, (24)

f (k) ≤ D0 +

K∑
i=1

Di f (k − i),

k = k0, . . . , k0 + N0 − 1, (25)

where x(k) and f (k) respectively concatenate the state vari-
ables (i.e., the variables related to the passengers) and decision
variables (i.e., the number of trains) of all platforms in the
network in phase k; δ(k) and z(k) respectively represent the
vector of auxiliary binary variables and auxiliary continuous
variables in phase k. The compact equation (23) represents the
linear and mixed-integer linear formulations of the equations
in (1)-(14). Constraint (24) collects all the linear and mixed-
integer linear model constraints and operational constraints
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in a matrix form. Constraint (25) collects the constraints of
decision variables, i.e., (14) and (17), in a matrix form, where
K = max

p∈P
σp.

For detailed information of transforming nonlinear terms of
the model into mixed-integer linear inequalities, we refer the
interested readers to [30], [31].

B. Knowledgeable-Reduced-Horizon Algorithm for Train
Scheduling

The computational complexity of solving MILP problem
PMILP

k0
increases rapidly with the prediction horizon N0 due

to the increasing number of variables. Solving PMILP
k0

at
every MPC step is not tractable for large prediction horizons
because of the real-time feasibility restriction. Shortening
the prediction horizon to reduce the computational burden;
however, a short prediction horizon may negatively affect the
performance of the controller as less future information can
be included in the decision-making process.

Inspired by the robust-safe-but-knowledgeable (RSBK)
algorithm proposed in [20], [32], we develop a knowledgeable-
reduced-horizon (KRH) algorithm to shorten the prediction
horizon of the original MPC controller by a customized cost-
to-go function. The optimization problem PKRH

k0
for the KRH

algorithm is defined as

min
x(k), f (k)
δ(k),z(k)

J (k0)=

k0+N−1∑
k=k0

(
J pass(k)+ ξ J roll(k)

)
+ L N (k0)

(26)

subject to

x(k+1) = Ak x(k)+B1,k f (k)+B2,kδ(k)+B3,k z(k), (27)
E2,kδ(k)+ E3,k z(k) ≤ E1,k f (k)+ E4,k x(k)+ E5,k, (28)

f (k) ≤ D0 +

K∑
i=1

Di f (k − i),

k = k0, . . . , k0 + N − 1, (29)

where L N (k0) denotes the cost-to-go function associated with
the terminal states of passengers at the end of the shortened
horizon.

As the target of the controller is to minimize the total travel
time of the passengers, the cost-to-go function is designed to
determine the cost associated with the passengers that remain
at the platforms at the end of the reduced prediction window,
i.e., a reasonable estimate of the remaining travel time for
passengers waiting at the platforms at the end of the prediction
time window.

The cost-to-go function for the remaining passengers at the
platforms is defined as:

L N (k0) =
∑
p∈P

∑
d∈S

(
n p,d(k0 + N )

∑
j∈Rp,d

ηp,d, j t total
p,d, j

)
, (30)

whereRp,d represents the set of possible routes for passengers
from platform p to their destination d (see Remark 1 below
for an example of Rp,d ), ηp,d, j is defined as the percentage of

Fig. 1. Example network.

passengers at platform p that will travel to station d through
route j , and we have

ηp,d, j =
∏

(q,q ′)∈Ppair
j

χq,q ′,d ,∀ j ∈ Rp,d , (31)

where Ppair
j represents the set of platform pairs at a transfer

station in route j , and χq,q ′,d is the proportion for passengers
transferring from platform q to q ′. As the route of passengers
can be represented by several pairs of platforms, (31) calcu-
lates the percentage of passengers that intend to travel from
p to d through route j . Since χq,q ′,d is estimated based on
historical data, ηp,d, j can be calculated offline.

Then, t total
p,d, j represents the average travel time for passengers

from platform p to their destination d through route j , and
t total
p,d, j can be calculated offline based on the average dwell

times, the average running times, and the average transfer
times related to the platforms in route j :

t total
p,d, j = tavrg

p, j +
∑

(q,q ′)∈Ppair
j

(
t transf
q,q ′ + tavrg

q ′, j

)
,∀ j ∈ Rp,d , (32)

where tavrg
p, j denotes the average time for passengers from

platform p to reach either the next transfer station or the
destination station in route j .

The construction of the sets Rp,d and Ppair
j is now illus-

trated in Remark 1 through an example.
Remark 1: An example network is shown in Fig. 1. For

passengers waiting at platform a with destination h at the end
of the prediction window, there are two possible routes in the
example network of Fig. 1. Thus, the set of possible routes
for passengers from platform a with destination h is Ra,h =
{a−b1−b2− f−g1−h, a−b1− c1− c2−g2−g1−h}. The
set of platform pairs for route a−b1−b2− f−g1−h (named
as route 1) is Ppair

1 = {(b1, b2)}, and the set of platform pairs
for route a− b1− c1− c2− g2− g1− h (named as route 2) is
Ppair

2 = {(c1, c2), (g2, g1)}. Then, the corresponding cost-to-go
function can be calculated according to (30)-(32).

Comparing PKRH
k0

and PMPC
k0

, we can find that the number of
variables and constraints in (27) and (28) are reduced as the
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prediction horizon is reduced from N0 to N . Similar to PMILP
k0

,
the optimization problem PKRH

k0
for the KRH algorithm is an

MILP problem.

C. Distributed KRH Algorithm for Train Scheduling in
Urban Rail Transit Network

For large-scale urban rail transit networks, it may not
be feasible to solve problem PKRH

k0
in a centralized manner

due to the computational burden and the communication
restrictions for collecting global information. In the urban
rail transit network, different lines typically interact with their
neighbor lines through transfer passengers as described in (3).
In this section, a distributed-knowledgeable-reduced-horizon
(DKRH) algorithm is developed for passenger-oriented real-
time train scheduling of urban rail transit networks.

In urban rail transit networks, we can regard each line
as a subsystem, where different subsystems interact with
each other through transfer passengers. The corresponding
objective functions associated with the travel time and energy
consumption of subsystem l during phase k are

J pass
l (k) =

∑
p∈P line

l

(
n p(k)T + m p(k)rp + gp(k)t transf

p

)
, (33)

J roll
l (k) =

∑
p∈P line

l

f p(k)E p, (34)

where P line
l is the set of platforms of line l. The cost-to-go

functions corresponding to the terminal states of passengers
of subsystem l is

L N ,l(k0) =
∑

p∈P line
l

∑
d∈S

(
n p,d(k0 + N )

∑
j∈Rp,d

ηp,d, j t total
p,d, j

)
.

(35)

The proposed DKRH algorithm is an iterative algorithm.
In every control step of the proposed DKRH algorithm,
different subsystems exchange information with their neighbor
several times over several iterations. In each iteration, different
subsystems solve their local problems in parallel, and then they
exchange the new computed solution for the next iteration
until the stopping criterion is met. At iteration step ϑ , the l-th
subsystem calculates its control inputs through the following
optimization problem, denoted as PD

l,k0
, by setting the variables

of other subsystems as the corresponding values of the last
iteration ϑ − 1:

min
δl (k), f l (k)
xl (k),zl (k)

Jl(k0) =

k0+N−1∑
k=k0

(
J pass

l (k)+ ξ J roll
l (k)

)
+ L N ,l(k0)

(36)

subject to

xl(k+1)= Al,k xl(k)+B1l,k f l(k)+B2l,kδl(k)+B3l,k zl(k),

(37)
E2l,kδl(k)+ E3l,k zl(k) ≤ E1l,k f l(k)+ E4l,k xl(k)+ E5l,k,

(38)

f l(k) ≤ Dl,0 +

K∑
i=1

Dl,i f l(k − i),

k = k0, . . . , k0 + N − 1. (39)

Algorithm 1 describes the DKRH algorithm, where lmax is
the total number of lines in the network; ε is a small positive
value which can be the machine precision. An initial estimate
for the decision variable can be that of the basic timetable,
i.e., the timetable with regular departure frequencies, which
is typically used in the daily operation. As each line is
independent from the other lines, i.e., they do not share track
and/or platforms with the other lines, trains in different lines
will not conflict with each other. In this context, the regular
departure frequencies are always feasible.

Algorithm 1 DKRH for Real-Time Train Scheduling
Input: kend; ϑmax; lmax; ε; initial estimate for the decision

variable: f 0
l (k), l = 1, . . . , lmax;

Output: optimal value f l(k), Jl
1: repeat
2: k ← k0
3: repeat
4: ϑ ← 1
5: for l = 1, . . . , lmax do
6: solve problem PD

l,k0
and get f ϑ

l (k) and Jϑ
l

7: update (37), (38), and (39) for l by using f ϑ
l (k)

8: end for
9: ϑ ← ϑ + 1

10: until ϑ = ϑmax or
∣∣∣Jϑ

l − Jϑ−1
l

∣∣∣ ≤ ε

11: apply control decision f l(k) to each subsystem l
12: k ← k + 1
13: until k = kend

Lemma 1: As we start with a feasible solution of the overall
system and as the initial values of the decision variables are
always feasible at every step, a feasible solution of problem
PD

k0
can always be found.

IV. SCENARIO-BASED DKRH ALGORITHM

In this section, a scenario-based distributed-knowledgeable-
reduced-horizon (S-DKRH) algorithm is developed to improve
service quality in the presence of uncertain passenger flows.

For a large-scale urban rail transit network, the uncertainties
generally consist of global uncertainties (e.g., the uncertainties
caused by different weather conditions), and local uncertainties
of each subsystems (i.e., the uncertainties due to different line
conditions). Both global uncertainties and local uncertainties
can be captured as several representative scenarios over the
prediction window, which can be defined as global scenarios
and local scenarios, respectively, based on historical data [33],
[34]. If we include all combinations of global scenarios and
local scenarios, the total number of combinations Ncom is

Ncom = Nglo

lmax∏
l=1

Nloc,l , (40)

where Nglo denotes the number of global scenarios; Nloc,l is
the number of scenarios for subsystem l; lmax is the total
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Fig. 2. Reduced scenarios for agent 2 in an example with 3 agents.

number of subsystems in the network; In this context, each
subsystem should consider the complete set of scenarios, i.e.,
Ncom scenarios, when generating its decision variables, which
would rapidly increase the computational burden.

In order to address the computational complexity issue
arising from the increasing number of scenarios for urban
rail transit networks, we adopt a scenario reduction approach
[35] into the DKRH algorithm. For subsystem l, the Nloc,l
scenarios will be directly used for subsystem l in the scenario-
based approach. However, when considering the impact from
subsystem l ′ (l ′ ̸= l) on subsystem l, we use the scenario
reduction approach to reduce the number of representative
scenarios of subsystem l ′ from Nloc,l ′ to Nl ′,l , i.e., Nl ′,l ≪

Nloc,l ′ . In this context, subsystem l only needs to consider
Ntotal,l = Nglo Nloc,l

∏
l ′ ̸=l

Nl ′,l representative scenarios, which

can be much smaller than that of original scenario approach

with Nglo
lmax∏
l=1

Nloc,l representative scenarios. For example,

Fig. 2 has three subsystems, and subsystem 2 only considers
Nglo · Nloc,2 · N1,2 · N3,2 representative scenarios instead of
Nglo · Nloc,1 · Nloc,2 · Nloc,3 representative scenarios, where
N1,2 ≪ Nloc,1, N3,2 ≪ Nloc,3. Therefore, the computational
burden of each subsystem is reduced significantly.

Based on the above scenario reduction approach, we develop
the S-DKRH algorithm. For subsystem l with scenario s, the
corresponding objective functions are

J pass
l,s (k)=

∑
p∈P line

l

(
n p,s(k)T+m p,s(k)rp+gp,s(k)t transf

p

)
,

(41)

J roll
l,s (k) =

∑
p∈P line

l

f p(k)E p,s, (42)

where n p,s(k), m p,s(k), gp,s(k), and E p,s respectively repre-
sent the values of n p(k), m p(k), gp(k), and E p under scenario
s. The corresponding cost-to-go functions is

L N ,l,s(k0)=
∑

p∈P line
l

∑
d∈S

(
n p,d,s(k0 + N )

∑
r∈Rp,d

ηp,d,r t total
p,d,r

)
,

(43)

with n p,d,s(k0+N ) denoting the variable n p,d(k0+N ) under
scenario s.

In the S-DKRH algorithm, subsystem l considers only one
representative scenario for each neighbor subsystem, and the
variables of the neighbor subsystems are set as the corre-
sponding values of the last iteration. At phase k0, the l-th
subsystem generates its control decisions by solving the fol-
lowing chance-constraint optimization problem PS

l,k0
:

min
xl (k), f l (k)
δl (k),zl (k)

Ntotal,l∑
s=1

P {s}
(k0+N−1∑

k=k0

(
J pass

l,s (k)+ξ J roll
l,s (k)

)
+L N ,l,s(k0)

)
(44)

subject to

xl,s(k+1) = Al,s,k xl,s(k)+ B1l,s,k f l(k)

+ B2l,s,kδl,s(k)+ Bs
3l,s,k zl,s(k), (45)

Ehard
2l,s,kδl,s(k)+ Ehard

3l,s,k zl,s(k)

≤ Ehard
1l,s,k f l(k)+ Ehard

4l,s,k xl,s(k)+ Ehard
5l,s,k, (46)

Ntotal∑
s=1

P{s}1
(

E soft
2l,s,kδl,s(k)+ E soft

3l,s,k zl,s(k)

≤ E soft
1l,s,k f l(k)+ E soft

4l,s,k xl,s(k)+ E soft
5l,s,k

)
≥ θ l , (47)

f l(k) ≤ Ds
l,0 +

K∑
i=1

Ds
l,i f l(k − i),

k = k0, . . . , k0 + N − 1, (48)

where P {s} denotes the probability of s, and Ntotal,l is
the total number of scenarios for agent l after scenario
reduction. Eq. (45) represents the linear and mixed-integer
linear formulations of the model explained in (1)-(14) for
subsystem l under scenario s; (46) collects the corresponding
hard constraints; (47) denotes the chance constraints, i.e., the
constraints related to operational performance, 1(·) defines the
indicator function,2 and θ l ∈ (0, 1) indicates the minimally
required probability that there is no constraint violation; (48)
collects the hard constraints of decision variables, i.e., (14)
and (17), for subsystem l with scenario s. By solving PS

l,k0
,

we minimize the expected value of objective function (44)
while including the corresponding constraint satisfaction in
(46). Problem PS

l,k0
for the S-DKRH algorithm is also an MILP

problem and can be solved efficiently by using existing MILP
solvers.

Algorithm 2 provides the process of the S-DKRH algorithm,
where Ll represents the neighboring subsystems of l, i.e., lines
connected with line l via transfer stations.

V. CASE STUDY

To evaluate the performance of the developed approaches,
numerical experiments are conducted based on real-life
data of the Beijing urban rail transit network. First, we
present the urban rail transit network and some basic settings
we use in the case study. Then, simulations are conducted to
illustrate the effectiveness of the developed KRH and DKRH
algorithms. Finally, we include uncertainty in the passenger

21(·) = 1 if the corresponding constraint is satisfied, otherwise 1(·) = 0.
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Algorithm 2 S-DKRH Algorithm for Real-Time Train
Scheduling
Input: kend; ϑmax; Nglo; Nloc,l ; Nl ′,l ; ε; initial estimate for the

decision variable: f 0
l (k), l = 1, . . . , lmax;

Output: optimal value f l(k), Jl
1: for l = 1, . . . , lmax do
2: construct Nlocal,l scenarios for local controller
3: construct 1 combined scenario for its neighbors
4: end for
5: repeat
6: k ← k0
7: repeat
8: ϑ ← 1
9: for l = 1, . . . , lmax do

10: solve problem (44) and get f ϑ
l (k) and Jϑ

l
11: update constraints in problem PS

l,k0
for l ∈ Ll

12: end for
13: ϑ ← ϑ + 1
14: until ϑ = ϑmax or

∣∣∣Jϑ
l − Jϑ−1

l

∣∣∣ ≤ ε

15: apply control decision f l(k) to each subsystem l
16: k ← k + 1
17: until k = kend

Fig. 3. Layout of the considered urban rail transit network (with 4 lines).

flows in the simulation to show the performance of the S-
DKRH algorithm.

A. Setup

The network we consider includes four bidirectional lines
of the Beijing urban rail transit network, i.e., Changping Line,
Line 8, Line 13, and Line 15 (see Fig. 3). Therefore, we have
four subsystems for the distributed control approaches. The
depot for each line is set at the beginning of down direction.
The main parameters for the case study are shown in TABLE I,
where the circulation time cp mentioned in (17) and (18) is
estimated based on the average running time and the regular
dwell time. The basic timetable is generated by implementing
the regular headway and the regular dwell time in TABLE I.

The passenger origin-destination (OD) demands are
obtained based on the real-life passenger data of the Beijing
urban rail transit network. In particular, we use the real-life

TABLE I
PARAMETERS OF THE NETWORK FOR THE CASE STUDY

data on passengers entering and exiting flows of each station
in the network of Fig. 3. The data is updated every 30 min-
utes. In the case study, we consider passenger flows from
7:00-12:00, which includes situations of both peak hours and
off-peak hours. We directly use the passenger OD demands for
the simulation of the deterministic case, while for the uncertain
case, we generate uncertain passenger OD demands using
Poisson distribution [36] based on the passenger flow data.

After generating the number of trains departing from each
platform during each phase, we generate the detailed departure
and arrival times of each train by a lower-level controller
(e.g., the controller developed in [29]). We use the passenger
absorption model as the prediction model and an elaborate
model from the literature (i.e., the model in [9] and [37])
as the simulation model to evaluate the effectiveness of the
developed approaches. In each MPC step, the resulting mixed-
integer linear programming problem is solved by the gurobi
solver called from MATLAB (R2019b). The simulations are
performed on a computer with an Intel Xeon W-2223 CPU
and 8GB RAM.

B. Real-Time Train Scheduling for the Deterministic Case

We conduct simulations for the deterministic case to show
the effectiveness of the developed knowledgeable-reduced-
horizon (KRH) algorithm and the distributed knowledgeable-
reduced-horizon (DKRH) algorithm. For comparison, we also
perform simulations for the basic timetable as well as the
original MPC approach.

According to the circulation time of each line, the prediction
horizon of all MPC approaches should be N ≥ 4 (i.e., the
length of the prediction time window satisfies t ≥ 7200 s)
to ensure that the MPC optimization problem can cover
every station in the network. The prediction horizon of the
original MPC approach is set as N = 6, while the prediction
horizon for KRH and DKRH is reduced to N = 4. For the
DKRH approach, we use three subsystems, where each line
in Fig. 3 is regarded as one subsystem. Considering the real-
time implementation, we set the maximum solution time for
each MPC step to 3600 s to meet the real-time feasibility
requirement.

The simulation results are displayed in TABLE II, where
the value of objective function and computation time of each
approach are collected. The value of objective function in
each MPC step is shown in Fig. 4. These results show that
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TABLE II
SIMULATION RESULTS FOR DIFFERENT APPROACHES UNDER

THE DETERMINISTIC CASE

Fig. 4. Value of the objective function at each time step.

MPC, KRH, and DKRH can improve the performance of the
basic timetable, with an improvement of 16.52%, 15.36%,
and 15.88%, respectively. As a real-time control approach,
the online computational burden is an essential issue for MPC,
which is significantly influenced by the prediction horizon. The
original MPC approach with prediction horizon N = 6 cannot
calculate its optimal solution within 3600 s. By using the cost-
to-go function in the developed KRH algorithm, the prediction
horizon and the solution space are reduced. Thus, the CPU
time of the KRH algorithm is reduced significantly while
ensuring an acceptable level of solution quality.

As we divide the original problem into three smaller sub-
problems in the DKRH algorithm, the computational burden of
each subproblem is further reduced. Compared with the KRH
algorithm, the average CPU time for the DKRH algorithm
is reduced from 250.7 s to 35.5 s, and the maximum CPU
time is reduced from 636.0 s to 37.8 s. The solution time of
the DKRH algorithm is further reduced while maintaining the
same level of control performance.

The total travel time of passengers is shown in Fig. 5.
To further illustrate the results, the number of trains departing
from the depot of Line 13 is given in Fig. 6. In Fig. 5 and
Fig. 6, time steps 1-3 represent the morning peak hours at
7:00-8:30. Compared with the basic timetable, more trains are
scheduled to attend the large passenger demand in the morning
peak hours. Since the maximum number of available trains
for Line 13 is 32, and the circulation time for Line 13 is
7101.9 s, which is approximately equal to the length of
4 phases, the maximum number of trains scheduled for each
phase is restricted. Compared with peak hours, fewer trains are
scheduled in off-peak hours to reduce operational costs with an
acceptable increase in the total passenger travel time. Based

Fig. 5. Total travel time of passengers at each time step.

Fig. 6. Number of trains departing from the depot of Line 13.

on the developed approaches, we can obtain the number of
trains departing from each platform during each phase, and the
corresponding timetable can be further generated. Examples of
the timetable are shown in Appendix A.

The simulation results indicate that both KRH and DKRH
can be used for real-time train scheduling for urban rail transit
networks. In particular, when there are no communication
restrictions between different lines, KRH can be used to get
a high-quality solution; otherwise, especially for large-scale
networks when centralized control for the whole network is
not possible due to the communication restrictions, DKRH can
be used to achieve real-time train scheduling for the urban rail
transit network.

C. Real-Time Train Scheduling Considering Uncertain
Passenger Flows

In general, passenger demands in urban rail transit networks
satisfy a Poisson distribution [36]. In this section, we per-
form simulations when there exists uncertainty in passenger
flows to evaluate the effectiveness of the developed scenario-
based distributed knowledgeable-reduced-horizon (S-DKRH)
algorithm.

We first start simulations for one uncertain scenario.
To have a baseline, we also conduct a simulation with perfect
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TABLE III
SIMULATION RESULTS FOR DIFFERENT APPROACHES

UNDER THE UNCERTAIN CASE

Fig. 7. Value of the objective function at each time step.

knowledge of the uncertainties, which is indicated as P-DKRH
below. It is worth noting that P-DKRH is not realistic as it is
not possible to have perfect knowledge of the uncertainties in
real life. For the DKRH algorithm, we use the expected value
of the passenger demands to calculate the timetable. Using the
simulation results in Section V-B, the prediction horizon for
P-DKRH, DKRH, and S-DKRH is set as N = 4.

TABLE III and Fig. 7 show the simulation results of dif-
ferent approaches under uncertain passenger flows. Compared
with the basic timetable, an improved performance can be
observed for both DKRH and S-DKRH, with an improve-
ment of 10.38% and 12.90%, respectively. Compared with
DKRH, the objective function value of S-DKRH is closer
to that of P-DKRH, which implies the effectiveness of the
scenario-based approach. Both DKRH and S-DKRH satisfy
the real-time feasibility requirement for the given case study.
The computational burden of S-DKRH is larger than that of
DKRH, and the average CPU time increases from 34.4 s to
347.6 s for S-DKRH. The simulation results demonstrate that a
suitable choice is required in real-life applications, i.e., when
the CPU power is sufficient, S-DKRH is a better choice to
obtain a higher-quality solution; otherwise, when the CPU
power is not sufficient, DKRH can be used to calculate a
timetable within a shorter period of time with acceptable
performance.

The number of trains departing from the depot of Line 13 in
the uncertain case is shown in Fig. 8. Time steps 1-3 are
associated with the morning peak hours at 7:00-8:30, and
it can be observed that more trains are scheduled at time
steps 1-3 to attend the large passenger demands. We can also
obtain a timetable based on the above results; the timetables

Fig. 8. Number of trains departing from the depot of Line 13 in the uncertain
case.

TABLE IV
COMPARISON OF THE OBJECTIVE FUNCTION VALUES FOR DIFFERENT

APPROACHES

of DKRH and S-DKRH for Line 13 at 7:00-8:00 are given in
Appendix B.

To further demonstrate the effectiveness of the developed S-
DKRH algorithm, simulations are carried out in 10 different
scenarios. The 10 scenarios are generated based on Poisson
distribution with the real-life passenger entering and exiting
flow data as the expected value. The average value and the
standard deviation of the objective function values for the basic
timetable, and the timetable obtained by P-DKRH, DKRH, and
S-DKRH are calculated. Compared with the average objective
function value of the basic timetable, P-DKRH, DKRH, and
S-DKRH yield an improvement of 14.01%, 11.92%, and
13.67%, respectively. Although P-DKRH outperforms DKRH
and S-DKRH with respect to both the average value and
the standard deviation, as stated before, P-DKRH is not
realizable in real life.3 It can be observed in Table IV that the
average objective function value and the standard deviation
of S-DKRH are smaller than that of DKRH. The simulation
results imply that S-DKRH can be a suitable choice to handle
uncertain passenger flows.

VI. CONCLUSION

In this paper, we have investigated the real-time train
scheduling problem for urban rail transit networks consid-
ering uncertain time-dependent passenger OD demands. The
passenger absorption model of [13] has been extended to
include the rolling stock availability to generate more prac-
tically implementable timetables by considering the total

3As we use the absorption model as the prediction model and the model
in [9] as the simulation model, there exists a model mismatch issue, which
may yield the objective function value of P-DKRH larger than that of DKRH
and S-DKRH in some scenarios.
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Fig. 9. Basic timetable for Line 13.

Fig. 10. Timetable for Line 13 generated by MPC (N=6) under the
deterministic case.

number of available trains. To reduce the prediction horizon
of the real-time train scheduling problem, a novel cost-to-go
function has been developed. By considering different lines
as different subsystems, a distributed-knowledgeable-reduced-
horizon (DKRH) algorithm has been proposed considering the
computational complexity and communication restrictions in
practical urban rail transit networks. Furthermore, a scenario-
based distributed-knowledgeable-reduced-horizon algorithm
(S-DKRH) has been developed to deal with uncertain pas-
senger flows. Numerical experiments have been conducted
to illustrate that 1) DKRH can be used for real-time train
scheduling of urban rail transit networks and 2) the S-DKRH
algorithm yields better performance than DKRH with an
acceptable increase in computation time for uncertain cases.

The results in this paper can help the operator to optimize
train schedules to handle uncertain time-dependent passen-
ger demands. Future research includes developing efficient
solution approaches for the resulting optimization problems
to further improve the real-time feasibility of the approach.
In particular, integrating learning-based strategies to learn
integer variables can be a possible choice to speed up the
optimization process. Furthermore, next to optimizing the train

Fig. 11. Timetable for Line 13 generated by KRH (N=4) under the
deterministic case.

Fig. 12. Timetable for Line 13 generated by DKRH (N=4) under the
deterministic case.

departure frequencies, adjusting train composition can also be
a choice to handle time-dependent passenger demands.

APPENDIX A
TIMETABLES OBTAINED BY DIFFERENT APPROACHES

UNDER THE DETERMINISTIC CASE

The basic timetable and the timetables generated by MPC,
KRH, and DKRH for Line 13 in 7:00-8:00 are given in
Figures 9-12, respectively. The time slot 7:00-8:00 corresponds
to time step 1-2 in Fig. 6. It can be observed from Figures 9-12
that all timetables are feasible, i.e., the departure and arrival
times of trains in each station satisfy the minimum dwell time
and headway constraints. The simulation results show that
the developed KRH and DKRH approaches can be used to
generate a feasible timetable in real time.

APPENDIX B
TIMETABLES OBTAINED BY DIFFERENT APPROACHES

UNDER THE UNCERTAIN CASE

Fig. 13 and Fig. 14 presents the timetable of Line 13 gen-
erated by DKRH and S-DKRH under the uncertain case in



LIU et al.: REAL-TIME TRAIN SCHEDULING WITH UNCERTAIN PASSENGER FLOWS 4231

Fig. 13. Timetable for Line 13 generated by DKRH under the uncertain
case.

Fig. 14. Timetable for Line 13 generated by S-DKRH the uncertain case.

Section V-C. The timetables correspond to time steps 1-2 in
Fig. 8.
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