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Thank you, Jip Classens; without your constant support and patience in answering all my questions about the
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Without my closest people, facing these challenges alone would have been very isolating. Thank you, Fariba,
John, Inez, Tejas, Aparna, Avishya, and Axin, for being there. I have many more people I met here to thank, but
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keeping on believing in me. Tej, thank you for being so supportive of me. Mom, I know there were times when
everything felt confusing, especially with us communicating over such a long distance. Without you, I would
never have been able to enjoy this privileged experience of learning. Thank you for allowing me to express myself,
especially when it was difficult to comprehend the situation.

I am grateful to TU Delft. I learned how to unlearn and learn. and how to apply myself. I have learned more than I
could ever imagine. I have become a problem solver. From a workshop at TU Delft, I love this quote: "You are a
human being, not a human doing." More than solving problems, more than being a student, I have realized that
learning makes me want to live, experience this world and its beauty, and take it all in. No one aspect defines you.
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In life, I will face many challenges, but this experience has given me the tools to navigate through them. I am
grateful I will soon be a TU Delft alumnus. Perhaps that’s the hallmark of a great education system—it teaches
you things that prepare you to live a good life. I am glad I grabbed this opportunity with both hands. Thank you,
TU Delft.

Rohan Menezes
Den Haag, December 2024
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Summary

Transport planning relies heavily on models for forecasting travel behavior, owing to the long-term impact of
policies and their resource-extensive execution. To ensure transport models are effective tools for planning, they
must not only adequately explain current travel choices but also maintain predictive accuracy over forecast horizons
while being computationally feasible for practical use. A simple approach to achieving this is by including
behavioral theories in transport models to improve the behavioral representation of models. Although these
theories may enhance the model’s ability to explain current travel choices, they do not necessarily improve their
forecasting abilities due to the risk of overfitting. Overfitted models tend to explain random noise rather than the
signal in the data (Parady et al., 2021). Thus, overfitting negatively impacts the model’s temporal transferability,
i.e., its ability to maintain predictive accuracy across forecast horizons.

One such theory is Spatial Competition and Agglomeration Effects (SC&AE). This theory examines how
opportunities present nearby influence the attractiveness of a destination. This influence can be either positive
(Agglomeration) or negative (Spatial Competition). Although SC&AE is widely recognized in the literature for
enhancing the explanatory power of computationally simple Multinomial Logit (MNL) destination choice models
for various trips, its impact on the temporal transferability of these models remains unexplored.
This study assesses the impact of SC&AE on temporal transferability of MNL destination choice models for home-
based maintenance, work, and education trips in the Metropolitan Region of Amsterdam on a 5-year short-term
forecast horizon (2018-2022). By providing quantitative evidence of the impact on temporal transferability, this
research aims to assess the validity of SC&AE in explaining destination choices and thus justify its inclusion in
MNL DCMs.

In order to assess this impact, four datasets for 2018 and 2022, such as the Dutch National travel survey (ODiN),
employment, enrollment, and travel time matrix for the MRA region, are used. Based on the findings of the
literature review and information available in the data, variables are selected, and data is processed to facilitate
the estimation of parameters for 2018 and 2022 across the three trip purposes. The impact is then assessed
by comparing the performance of an MNL DCM specification that excludes SC&AE effects with the model
specification that includes them. For the assessment, four performance indicators across three categories of
statistical(Transfer Index), predictive (%Correct Predictions) , and quality of probabilistic predictions (Fitting
Factor, Prediction Clearness) in order to gain insights into the key aspects of the destination choice model in terms
of impact. Since sampling often accompanies destination choice models, the performance on these indicators is
also compared across full, random, and a variant of stratified importance sampling to understand the impact of
SC&AE on temporal transferability varies with sampling methods.

Consistent with previous research, it finds statistically significant negative SC&AE parameters for home-based
maintenance (HBM) and work trips in 2018 and 2022, indicating a dominant spatial competition. HBM trips
exhibited more negative SC&AE parameters (-1.60 to -1.77) than work trips (-0.67 to -0.76), reflecting a stronger
influence on destination choices due to easily substitutable destinations and high ease of switching. In contrast,
work trips involve destinations with fewer alternatives nearby and longer-term commitments, resulting in a lesser
influence of spatial competition.
For secondary and above education level trips, the positive SC&AE parameter suggests that agglomeration effects
dominate spatial competition. Unlike Sá et al. (2004), who found dominating spatial competition in university
choices among high school graduates in the Netherlands by focusing solely on one post-secondary education
level, this study included both secondary and multiple higher education levels. Hence, the broader range of
nearby educational options to continue education makes areas with a higher number of institutions more attractive,
resulting in a positive value that reflects dominant agglomeration effects. For primary education trips, the SC&AE
parameter in 2018 was statistically insignificant, indicating a negligible influence on destination choices. This
could be due to young children having the highest commitment period and the lowest flexibility to switch schools.
Hence, the spatial distribution of primary school opportunities has little effect on their location choices.

Additionally, this study extends beyond evaluating the explanatory power of SC&AE in a single context by
exploring its contribution to the temporal transferability of destination choice models. The findings indicate
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that SC&AE has a positive but limited impact on temporal transferability, varying by trip purpose: highest for
home-based maintenance (HBM) trips, followed by work trips, and inconsistent for secondary & higher education
(positive on the Transfer Index but negative on rest of the indicators).

A closer examination of log-likelihoods and other performance indicators (such as fitting factor, percentage of
correct predictions, and clearness of predictions) confirms that the actual impact is limited. This exaggeration
occurs because TI relies solely on the ratio of gains in log-likelihoods (LL), which can misrepresent models with
small absolute gains. For example, a model with an LL gain ratio 1

2 and another with a gain ratio of 50
100 will

have the same TI value of 0.5. But clearly, the second model is much better and will perform positively on other
indicators, while the model with LL gain ratio 1

2 will perform poorly on other indicators
Therefore, TI values should always be presented alongside other performance measures or at least be accompanied
by a comparative analysis of the log-likelihood values used in their calculation.

Observing the trend of varying impacts of SC&AE on temporal transferability by trip purpose, the impact of
SC&AE on temporal transferability decreases with decreasing traveler autonomy and ease of switching destinations:
it is highest for HBM trips, where travelers have high autonomy and flexibility, less so for work trips due to longer
commitment periods, and inconsistent (positive on the Transfer Index but negative on rest of the indicators) for
secondary and above level education trips, where travelers are effectively committed to institutions until they
complete their education. Considering the low amount of trips for secondary and above education trips compared
to other trips, these inconsistent results for secondary and above education trips should be considered inconclusive.
However, considering autonomy and ease of switching, the impact is likely to be limited, more so than for the
HBM and work trips. For primary education trips, autonomy and flexibility are the lowest, thus explaining the
statistically insignificant estimated SC&AE parameter for primary education trips.
Moreover, the choice of sampling method affects the temporal transferability of destination choice models and,
thus, the impact of SC&AE on temporal transferability too. Models using Stratified Importance Sampling (SIS)
show higher TI values than those using Random Sampling (RS), with and without the SC&AE parameter. While
the initial performance boost from SIS reduces the absolute gain in the TI value from including SC&AE compared
to RS, SIS allows models to achieve higher overall TI values after including SC&AE.
Overall, Given the minimal effort required to include these effects in an MNL model because it reuses existing
information such as zonal size measures and travel impedance, SC&AE provides technically "free" robust
log-likelihood gains.

From a policy perspective, including SC&AE into destination choice models enhances their effectiveness as
predictive tools by improving their temporal transferability. Models that include SC&AE maintain predictive
accuracy over time, which is particularly valuable for scenarios where travelers have significant autonomy and
flexibility, such as discretionary activities such as shopping and maintenance trips. This added robustness stems
from SC&AE’s ability to address two fundamental flaws of Multinomial Logit (MNL) models that limit their
behavioral accuracy in representing travelers’ destination choices: (1) the Independence of Irrelevant Alternatives
(IIA) assumption, and (2) neglecting the influence of the spatial distribution of opportunities. By including
information about all alternative destinations, SC&AE tackles both issues, allowing MNL models to become more
behaviorally representative whilst retaining their computational simplicity.

The results of this study have broader implications for transport modeling. To overcome the limitations of MNL
models, researchers have often relied on more complex disaggregate models, which are computationally intensive
and often impractical for large datasets. However, this study demonstrates that simpler models such as MNL can
overcome their flaws by integrating theories such as SC&AE, thereby improving behavioral representation while
retaining computational efficiency. By focusing solely on whether a model explains or predicts behavior well, we
may have been asking the wrong questions. Instead, we should ask, "Is my model an accurate representation of
the system it is supposed to represent?" By addressing this fundamental question and bringing models closer to
accurately reflecting the system, we automatically enhance their explanatory and predictive capabilities.
This research shows that we do not necessarily need to rely on more complex models; there is another simpler way:
using theories to enhance simpler models. When these simple models reach their limit on how much they can be
improved using behavioral theories, which they eventually will, this approach might allow another pathway to
improve more complex models, making them more computationally feasible and data-efficient without relying
primarily on advancements in computational science. To achieve this, we need to look beyond the transport domain
and draw insights from related fields, such as psychology or other behavioral sciences. It may be time for transport
modelers to look beyond their transport domain and integrate psychological theories to make transport models a
better representation of how travelers make choices. The results of this study are certainly encouraging.
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1
Introduction

1.1. Problem Statement and Research Aim
Transport planning relies heavily on models for forecasting travel behavior, owing to the long-term impact of
policies and their resource-extensive execution. Government agencies at various levels use strategic forecasting
models to predict demand for current and planned transport infrastructure and to evaluate the effectiveness of
various policy options (Fox et al., 2014). Hence, while it is important to improve models that can better explain
current travel choices, it is far more crucial that they also increase their ability to maintain predictive accuracy
across forecast horizons.
One strategy for improving transport models involves developing theories that aid us in understanding travel
behavior better. Although these theories may enhance the model’s ability to explain current travel choices, they do
not necessarily improve their forecasting abilities. This is because of the risk of overfitting, where the model is
fitted to random noise rather than the signal in the data (Parady et al., 2021). This negatively impacts the model’s
temporal transferability i.e., its ability to maintain predictive accuracy across forecast horizons.
One such theory is Spatial Competition and Agglomeration Effects (SC&AE). This theory examines how
opportunities present nearby influence the attractiveness of a destination. This influence can be either positive
(Agglomeration) or negative (Spatial Competition). By accounting for this spatial heterogeneity, it remedies
the popular Independence of Irrelevant Alternatives (IIA) assumption of Multinomial Logit (MNL) destination
choice models (DCM). This substantially improves the model’s explanatory power for current destination choices.
Specifically, this improvement occurs when SC&AE are accounted for through accessibility measures in the utility
specification. This is well noted in transport literature across various trip purposes and geographical regions over
the years (Bernardin et al. (2009); Ho and Hensher (2016); Sá et al. (2004)).
Thus, given its long-term applicability in various contexts, these effects are potentially essential in explaining
traveler’s destination choices and thus can contribute significantly to DCM’s temporal transferability. However, the
impact of SC&AE on the temporal transferability of DCMs has remained unexplored.

Using a case study approach in the Metropolitan Region of Amsterdam (MRA), focusing on work, education, and
maintenance trips, this study compares the performance of an MNL DCM specification that excludes SC&AE
effects with the model specification that includes them. Taking into consideration ODiN travel survey data
availability, the comparison is made across statistical and predictive measures during a 5-year short-term forecasting
horizon (2018-2022). This approach sheds light on how SC&AE influences travelers’ destination choices and
how it varies by trip purpose within the MRA. This research is conducted in collaboration with TNO, the Dutch
Organization for Applied Scientific Research.

To sum up, this research assesses the validity of SC&AE in explaining destination choices to justify its inclusion in
MNL DCMs. It does so, by providing quantitative evidence of the SC&AE impact on the temporal transferability
of DCMs. This enables assessing whether SC&AE captures travel behavior that drives destination choices rather
than merely capturing behavior contextually in the travel survey data. Additionally, this evidence enables TNO
researchers to compare the effort and complexity of integrating SC&AE effects into the model development
process against the improvements in the model’s temporal transferability. Moreover, the methodology could be
extended into an experimental framework for comprehensive scenario analysis. This would help draw compar-
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isons between different model specifications, enabling TNO to develop more robust and effective DCMs in the future.

1.2. Research Scope
Since TNO intends to implement these DCMs in the Activity-Based Modelling (ABM) framework1in the future,
This research focuses on three trip purposes to align with the ABM framework and TNO’s objectives:

• Work
• Education
• Home-Based Maintenance Trips (Shopping, Personal care)

The study area for this research is the Metropolitan Region of Amsterdam (MRA). It consists of 30 municipalities
(See Appendix D). As of 2023, approximately 2.5 million individuals, accounting for over 14% of the Netherlands’
population reside in the MRA. This region is one of the country’s strongest economic areas and holds substantial
international importance (Metropoolregio Amsterdam, 2023). As a result, this study area is crucial for TNO,
and they possess extensive traffic data for further validation and conduct ongoing transport research in this area.
Additionally, they intend to use the models developed during this research, to test the model’s spatial transferability,
i.e., how well the model maintains its predictive ability when applied to different geographical regions (Parady
et al., 2021). Given the MRA’s economic and population diversity, it is an ideal study area for developing DCMs
with potentially high spatial transferability. These models can provide valuable insights applicable to MRA and
significant implications for transport planning and policy-making in urban areas throughout the Netherlands and
globally.

Furthermore, the forecasting period chosen for this study is 5-year short-term forecasting horizon (2018-2022).
This forecasting horizon period was chosen due to data availability constraints concerning the Dutch National
Travel survey data (ODiN), one of the data sources used for developing and estimating the destination choice
models for the three trip purposes.
ODiN is a continuation of the "Onderzoek Verplaatsingen in Nederland" (OViN) survey, which was carried out
by CBS from 2010 to 2017. The methodology of ODiN 2018 differs significantly from that of the earlier OViN
survey, creating a methodological break between the two. As a result, the findings from ODiN cannot be directly
compared with those from OViN analyses (DANS, 2024). ODiN surveys only individuals aged six and older,
excluding younger children, which reduces the target population by over 1 million. It uses an internet-only (cawi)
data collection method, unlike OViN’s mixed-mode approach. ODiN also integrates all domestic and international
vacation trips as regular trips, whereas OViN handles these trips separately. In addition, ODiN determines the
primary mode of transport based on distance, unlike OViN’s priority-based system. Finally, ODiN utilizes more
register-based data called Basisregistratie Personen (BRP), reducing the need for extensive survey questions
(Statistics Netherlands (CBS), 2019).

Although adjustments could improve the comparability between ODiN and OViN, some differences would likely
remain due to inherent methodological changes. Given the limited timeframe, making such modifications is
beyond the scope of this study. Therefore, considering that the earliest available ODiN data is from 2018 and the
most recent from 2022, a short-term forecasting horizon of five years (2018-2022) is selected for this analysis.

1See Appendix A for the Activity Based Modelling framework.



1.3. Research Questions 3

1.3. Research Questions
By providing quantitative evidence of the impact on temporal transferability, this research aims to assess the
validity of SC&AE in explaining destination choices and thus justify its inclusion in MNL DCMs. The main
research question that addresses this aim is as follows:

How do SC&AE affect the temporal transferability of destination choice models ?

This main question will be answered by addressing the following sequence of sub-questions:

1. What factors affect the temporal transferability of destination choice models?
2. How do existing destination choice models incorporate SC&AE and what is the significance of these effects

on destination choices?
3. How do SC&AE impact the destination choices of travelers in the study area and how do they differ across

trip purposes?
4. How do the DCMs for various trip purposes perform across statistical tests and predictive measures and

what are their policy implications for the study area?

1.4. Research Approach
Table 1.1 summarizes the methodologies used to answer the sub-research questions and the sections of the
document where they are addressed. Overall, there are three methods used to answer the sub-questions: Literature
Review, Discrete Choice Modelling, and Validation.

Table 1.1: Research Method per research question

Sub-
RQ

Method Detail Section

1 Literature
Review

Identify factors influencing the temporal transferability of trans-
portation models.
Use the factors to motivate the selection of variables to be in-
cluded in the to-be-developed destination choice models.

Section 2.4

2 Literature
Review

Evaluate existing destination choice models that consider SCAE
and other explanatory variables to motivate the structure of the
SCAE and other explanatory variables when developing the model
specification.

Section 2.3

3 Discrete choice
modelling,
Results Analy-
sis

Based on the findings of the above two sub-questions and infor-
mation in the data, use the selected variables to develop model
specifications for the three trip purposes.
Estimate the parameters of the MNL models, examine them, and
compare the parameter estimates across different trip purposes.

Section 4.6,
Chapter 5

4 Validation tests,
Results Analy-
sis

To run statistical, predictive, and quality probabilistic prediction
performance indicators and draw insights from these results.
Use the insights to reflect on SCAE’s role in increasing the
effectiveness of destination choice models and discuss
the broader implications for developing transport models as a
reliable tool for transport policy planning.

Chapter 5,
Section 5.6

1.5. Thesis Outline
This thesis is structured as follows: Chapter 2 reviews the literature to introduce the concepts of Multinomial
Logit destination choice models, temporal transferability, Spatial Competition and Agglomeration effects, and then
answers the first two research questions. Chapter 3 provides details regarding the data sources used to estimate the
models. Chapter 4 details the methodology used in this study. Chapter 5 provides the analysis and discusses the
implications of the results. Chapter 6 summarizes the answers to the research questions, details the limitations of
this thesis, and provides recommendations and possible directions for future research.



2
Literature Review

The literature review is organized into several key sections, each providing a comprehensive overview of the
theories, models, and methodologies relevant to this research.

Section 2.1 focuses on Multinomial Logit (MNL) models for destination choice. It outlines the basic structure of
these models. The section addresses key limitations of traditional MNL models, such as the Independence of
Irrelevant Alternatives (IIA) assumption, and reviews how previous research has integrated SC&AE to overcome
this IIA assumption to make destination choice predictions more realistic.

Section 2.2 introduces the concept of Spatial competition and Agglomeration effects (SC&AE). It highlights how
the proximity of opportunities can influence the attractiveness of destinations, using examples to demonstrate
these effects.

Section 2.3 examines studies that include SC&AE in destination choice models for the three trip purposes relevant
to this research. Additionally, it reviews studies on educational location choices in the Netherlands that do not
include SC&AE, to understand how other variables are used to explain these choices within the Dutch education
system.

Section 2.4 elaborates on the concept of temporal transferability, explaining its importance in transport models
and how it is assessed through external validation. Previous studies on the temporal transferability of mode
and mode-destination choice models are reviewed to identify key factors that affect a choice model’s temporal
transferability.

Lastly, Section 2.5 concludes the literature review by identifying research gaps and the aim of this research. It does
so by discussing the risks of overfitting and its negative impact on a model’s predictive power. It emphasizes the
importance of balancing explanatory and predictive accuracy, the significance of including SC&AE into DCMs,
and how this integration can improve the models’ temporal transferability.

2.1. Multinomial Logit models of Destination Choice
Trip Distribution Models are a fundamental sub-component of a larger transportation modeling framework. They
are used to predict how trips generated at one location (origin) are distributed to other locations (destinations)
within a region (de Dios Ortúzar and Willumsen, 2011). Essentially, these models estimate the flow of trips
between different zones as a function of travel impedance factors such as distance, travel cost, etc., which deter the
flow of trips, and trip type-dependent destination attractiveness factors such as employment, population, etc. that
have a positive influence on the flow of trips to the destinations.
Trip distribution models can be broadly classified as aggregate and disaggregate models. Aggregate models
distribute trips based on observed patterns for groups of travelers or average relationships at the zonal level. One
common aggregate method is the gravity model, which draws an analogy to Newton’s law of gravitation. In this
model, trip flows are proportional to the product of origin and destination attractiveness and inversely proportional
to travel impedance (de Dios Ortúzar and Willumsen, 2011). The gravity model, which is mathematically simple
and computationally efficient, became the most commonly used model for transport planning (Bernardin et al.,
2009). Disaggregate models, on the other hand, are based on observed choices at the individual traveler or
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household level. The most common type of disaggregate model is the discrete choice model based on Utility
Maximization theory. Because these disaggregate models are based on theories of individual behavior and do not
rely on physical analogies, they have a potential advantage in that they are more likely to be robust in explaining
behavior in time and space. Among the many types of discrete choice models, the Multinomial logit (MNL) model
is computationally the simplest and most practical (de Dios Ortúzar and Willumsen, 2011).

Destination choice models (DCMs) are a type of disaggregate trip distribution model that use discrete choice
models, particularly logit models (Transportation Forecasting Resource, 2024). Adapting the definition of discrete
choice models from de Dios Ortúzar and Willumsen (2011), DCMs operate on the fundamental principle that the
probability of an individual choosing a given destination is a function of their socioeconomic characteristics and
the relative attractiveness of the destination alternative.

Taking a simplified version of the example from Bernardin et al. (2009) for HBM trips, in Multinomial Logit
(MNL) models of destination choice, the probability of a traveler residing in zone ℎ, choosing a destination 𝑗 for
shopping/personal service (𝑃ℎ 𝑗 ), is as follows:

𝑃ℎ 𝑗 =
𝑒𝑊ℎ 𝑗∑
𝑗′ 𝑒

𝑊ℎ 𝑗′
(2.1)

where𝑊ℎ 𝑗 represents the traveler’s utility, which is as follows:

𝑊ℎ 𝑗 = ln 𝛾𝑆 𝑗 + 𝛽𝑐𝑐ℎ 𝑗 + 𝛽𝐻𝑐𝐻ℎ𝑐ℎ 𝑗 (2.2)

where:

• 𝑆 𝑗 : size of the destination with size parameter 𝛾
• 𝑐ℎ 𝑗 : Travel cost between home location ℎ and destination 𝑗 with cost sensitivity parameter 𝛽𝑐
• 𝐵𝐻𝑐: Parameter capturing interaction of traveler characteristic 𝐻 with travel cost

During the 1970s, researchers began applying the MNL model, initially proposed by Suppes and Luce (1961) and
rooted in utility maximization by Marschak (1974), to examine travelers’ destination choices in academic studies
(Ben-Akiva, 1974), among others (see Bernardin et al. (2009) for review). It has also been demonstrated that the
MNL model is a generalized version of the gravity model (Daly, 1982).

Since the late 1970s, researchers have focused on the two key limitations of gravity and MNL models in spatial
choice analyses. The first issue stems from the MNL model’s Independence of Irrelevant Alternatives (IIA)
property, which assumes uniform competition among all destination alternatives. According to the IIA assumption,
the relative likelihood of selecting any two choices is unaffected by the presence of other alternatives in the choice
set (Luce and Suppes, 1965). However, this contradicts the intuitive notion that all other factors being equal, nearby
destinations are more likely to be substitutes and compete more intensely than distant destinations (Bernardin
et al., 2009)

The stronger competition between nearby locations can be explained by several factors. One key reason is that it is
often easier or cheaper to switch between locations that are close to each other, such as when changing destinations
while traveling. Another reason is that, according to Tobler’s First Law of Geography, all other things being
equal, nearby places tend to be more alike than those farther apart, meaning that they have more in common. This
similarity makes them more likely to compete directly with each other (Tobler, 1970). And since because of
this, the nearby alternatives become correlated, the IIA assumption of the MNL models can result in unrealistic
predictions (de Dios Ortúzar and Willumsen, 2011).

The second limitation is that gravity and MNL models do not account for the interdependency between multiple
spatial choices made by the same individual. These models overlook the fact that a person’s choice of workplace
and other daily travel destinations are likely to be interrelated. It is reasonable to assume that people often select
groups of nearby locations that can be visited together in a single efficient trip, thus minimizing their overall travel
costs. This tendency to group destinations close to each other as part of a trip chain is an example of "economies
of agglomeration" (Coe et al., 2007).
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To address these limitations of gravity and MNL models, one solution is to enable the models to account for
SC&AE. Two general modeling techniques have been proposed for this purpose. The first approach involves
using models from the Generalized Extreme Value (GEV) family. This approach uses prior knowledge to group
alternatives into different categories, allowing for varying levels of competition among them. For instance, when
modeling work location choices, work locations can be grouped by region based on how close they are to each
other. This grouping reflects the varying levels of competition between locations; nearby locations are seen as more
competitive than distant locations. This enables GEV models to account for differences in spatial competition. This
technique can also capture agglomeration effects; however, the model must be based on tours or activities, rather
than individual trips. Following Shiftan (1998), this method of addressing agglomeration has been incorporated
into a few tour-based and activity-based models (see Bernardin et al. (2009) for a review), although its adoption has
been limited because of the high costs associated with data requirements, model development, and implementation
(Ho and Hensher, 2016).

The second approach to addressing SC&AE involves using traditional MNL models but incorporating accessibility
measures that include information about other potential destinations. By adding these accessibility measures, IIA
assumption of the MNL model no longer applies. This method was first introduced by Fotheringham (1985) and
has been adapted in many subsequent studies (see Bernardin et al. (2009) for a review) (Ho and Hensher, 2016).

2.2. Spatial Competition and Agglomeration Effects in Destination
Choices

Spatial Competition and Agglomeration Effects (SC&AE) consider how the spatial distribution of opportunities
across destination alternatives affects an individual traveler’s destination choice. Spatial competition arises when
opportunities in nearby zones decrease the attractiveness of a destination to a traveler. On the other hand, if the
opportunities increase the destination’s attractiveness to the traveler, it is called the agglomeration effect.

Figure 2.1: Agglomeration effect: Increase in
attractiveness for destination zone 1 due to

presence of other opportunities nearby

Figure 2.2: Spatial Competition: Decrease in
attractiveness for destination zone 1 due to

opportunities in nearby zones competing with it

To illustrate these effects, consider the example of home-based shopping trips adapted from Bhat et al. (1998).
Consider the destination choice of an individual in zone 𝑖 in the two spatial arrangements illustrated in Figures 2.1
and 2.2. All potential destinations (Zones 1 through 5) are equidistant from zone 𝑖 and identical in all respects i.e.,
they are the same size and equally attractive. The traditional gravity model would predict the same trip volumes
from zone 𝑖 to each destination. At the disaggregate choice level, this means that the probability of choosing any
of the Zones 1 through 5 as a destination is the same. However, the positioning of destination zones relative to one
another can influence choice probabilities and, consequently, aggregate trip interchanges.

As shown in Fig. 2.1, the presence of several closely clustered shopping opportunities might lead individuals in
zone 𝑖 to perceive a greater variety or more opportunities for comparative shopping. This makes Zone 1 more
attractive than the spatially isolated Zone 4, increasing its choice probability. This positive effect on a zone’s
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attractiveness due to the proximity of other opportunities is known as the Agglomeration effect.

Alternatively, the same clustering of opportunities might lead to more competition for Zone 1, making it less
attractive than spatially isolated Zone 4 in Figure 2.2. Individuals may also avoid congestion costs associated with
zones with many nearby shopping locations. This negative effect on a zone’s attractiveness due to the proximity of
other opportunities is known as Spatial Competition, which reduces Zone 1’s attractiveness and lowers its choice
probability.

In reality, either competition or agglomeration effects may exist, and the appropriate effect can be determined
from model estimation. One of the approaches introduced by Fotheringham (1985) of including SC&AE in MNL
models is to use a Hansen-type accessibility index to include information about other destination alternatives.
For the example illustrated in figures 2.2, and 2.1 and , for zone 1, the proximity of a destination zone to other
shopping opportunities using a Hansen-type accessibility measure can be specified as:

𝐴1 = ln
5∑︁
𝑧=2

𝑅𝑧
𝑐1𝑧

(2.3)

where:
𝐴1: Accessibility index of destination zone 1
𝑅𝑧: Sum of retail and service employment in zone 𝑧 (a proxy for shopping opportunities in zone 𝑧 )
𝑐1𝑧: Travel cost between zones 1 and 𝑧

A generalized version of this equation is as follows:

𝐴 𝑗 = ln
∑︁
𝑧≠ 𝑗

𝑅𝑧
𝑐 𝑗𝑧

(2.4)

where:
𝐴 𝑗 : Accessibility index of destination zone 𝑗
𝑅𝑧: Sum of retail and service employment in zone 𝑧.
𝑐 𝑗𝑧: Travel cost between destination zones 𝑗 and 𝑧

Large values of 𝐴 𝑗 indicate more opportunities to shop close to zone 𝑗 , whereas small values indicate that zone 𝑗
is spatially isolated from other shopping opportunities. The accessibility index can be incorporated into the MNL
form of DCMs by defining the utility function for destination zone 𝑗 as a linear function of 𝐴 𝑗 . Consider the same
utility specification described in equation 2.2, the specification can then be extended and further specified as a
linear function of 𝐴 𝑗 and its parameter estimate 𝛽𝐴 to account for SC&AE as follows:

𝑃ℎ 𝑗 =
𝑒𝑊ℎ 𝑗+𝛽𝐴𝐴 𝑗∑
𝑗′ 𝑒

𝑊ℎ 𝑗′+𝛽𝐴𝐴 𝑗′
(2.5)

where 𝛽𝐴 is the spatial structure parameter. If 𝛽𝐴 < 0, zones close to other shopping opportunities have lower
utility, indicating that the competition effects dominate. If 𝛽𝐴 > 0, zones close to other shopping opportunities
have a higher utility, indicating that agglomeration effects dominate. If 𝛽𝐴 = 0, then there are no SC&AE effects or
equally strong agglomeration and competition effects that cancel each other out. Using this accessibility measure,
which includes information about alternative destinations, the MNL model’s IIA assumption does not apply. Thus,
including SC&AE in destination choice models with accessibility measures allows for spatial effect heterogeneity
(Ho and Hensher, 2016).

A limitation of using accessibility indices focused on a single attraction is that they can only reveal the net effect of
agglomeration and spatial competition, So even though these effects can occur simultaneously in case one effects
dominates over the other, It isn’t possible to determine whether the non-dominating effect exists or not. To address
this, Bernardin et al. (2009) introduced destination choice models that separate these effects by using two different
accessibility measures: one for complements (different types of attractions) and one for substitutes (same type of
attractions ), naming them Agglomeration and Competing Destination Choice (ACDC) models. These models
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were applied to non-work trips, such as shopping or personal business, and to work location choices by Ho and
Hensher (2016).

This approach allows for a clearer understanding of the sources of competition and agglomeration effects, which
can vary depending on trip purpose. For example, Bernardin et al. (2009) found that for non-work trips, spatial
competition arises mainly from substitutes, while Ho and Hensher (2016) observed that for work trips, the same
spatial competition comes from complements. A single accessibility measure can only show the overall effect and
not the specific source. Although the numerical results might be the same as demonstrated by Bernardin et al.
(2009) and (Ho and Hensher, 2016) , using two separate accessibility measures helps identify where these effects
originate based on the type of trip. However, since this research focusses only on the impact of SC&AE on the
temporal transferability of DCMS, this refined version of including SC&AE using two accessibility measures is
not utilized in this research.
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2.3. Role of Spatial Competition and Agglomeration in explaining
destination choices across various trip purposes

SC&AE in DCMs have been a major focus of travel behavior research. As seen in table 2.1, various studies have
explored these effects in diverse contexts, such as educational choices, workplace locations, and maintenance
trip destinations in various regions globally. This sub-section focuses on research that has incorporated SC&AE
into DCMs for trip purposes relevant to this study. Additionally, studies on educational location choices in the
Netherlands that do not include SC&AE are reviewed to understand how other explanatory variables have been
used to explain educational location choices in the context of the Dutch education system.

Table 2.1: Studies explaining destination choices across various trip purposes

Paper Area Purpose Incorporation of
SCAE

DCM
Type

Comments Other Signifi-
cant Parame-
ters used

Bhat
et al.
(1998)

Boston
Metropoli-
tan Area,
USA

• Home
based
Work trips
• Home
based
shopping
trips

Only for Home
based shopping
trips using Hansen-
type accessibility
measure such that:
Attraction
factor: Log
of retail and service
employment in all
zones
Travel
Impedance: Log
of composite travel
impedance from
other zones. This
composite travel
impedance in-
cludes: In-vehicle
travel time (IVTT),
Out-vehicle travel
time (OVTT), and
travel cost and
walk.

The sum of
the above term is
divided by the total
number of zones in
the study area

MNL A highly signif-
icant negative
SCAE param-
eter indicating
dominating
competition
effects.

• Log of travel
impedance
• Log of zonal
size measure
• Total employ-
ment (for work)
• Retail +
service em-
ployment(for
shopping)
• Interaction
with travel
impedance with:
Gender, Age
groups
• Dummy vari-
able to capture
unique effects
related to the
central business
district in the
study area

Continued on next page
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Table 2.1: Studies explaining destination choices across various trip purposes (Continued)

Bernardin
et al.
(2009)

Knoxville,
Tennessee,
USA

• Home-
based
Mainte-
nance
(HBM)
• Home-
based
Others
(HBO)

Uses two accessi-
bility measures in
the Agglomerating
and Competing
Destination Choice
(ACDC) model:
• Accessibility
to employment in
the same sector
(Substitutes)
• Accessibility
to employment in
different industries
(Complements)

MNL Sources of
effects for HBM
and HBO identi-
fied:
• Agglomera-
tion effects from
complements
• Competition
effects from
substitutes
The net effect
of SCAE is
stronger for
HBO trips
compared to
HBM trips. i.e.,
For HBO trips,
people prefer
closer locations
to other destina-
tions compared
to HBM trips.

• For HBM
trips. em-
ployments
in Retail, Ser-
vice
• For HBO
trips:
Population,Enrollment,
Retail, Service
employments

Ho and
Hensher
(2016)

Sydney
Greater
Metropoli-
tan Area
(SGMA),
Australia

Workplace
Location
Choice
(WLC)

Adapted the ACDC
model introduced
by Bernardin et al.
(2009):
• Accessibility to
jobs in the same in-
dustry (Substitutes)

• Accessibil-
ity to jobs in
different industries
(Complements)

MNL Sources of
effects for WLC
identified:
• Agglomera-
tion effects from
substitutes
• Competition
effect from
complements.
when the above
two parame-
ters of are
combined, its
approximately
the same as
the net effect
estimated us-
ing a single
accessibility
parameter

• Log of jobs
relevant to the
employee
• Region spe-
cific constants
• Logsum of
mode and time
of day choice
• Region-
specific con-
stants

Continued on next page
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Table 2.1: Studies explaining destination choices across various trip purposes (Continued)

Sá et al.
(2004)

Netherlands University
Location
choice
for high
school
graduates

Uses a single
accessibility called
as the Centrality
Index variable to
capture the net
effect. such that :
Attraction
factor: Total
number of students
in the universities
Travel
Impedance: Travel
distance between
universities

Production
con-

strained
gravity
Model

Universities in
densely popu-
lated areas (e.g.,
Randstad), the
centrality index
had a negative
coefficient, indi-
cating competi-
tion effects dom-
inate and nearby
institutions com-
pete for students
rather than bene-
fit from agglom-
eration.

• Distance
• Urbanization
• Rent
• Scope of uni-
versity( Number
of study pro-
grams offered )

de Boer
and
Blijie
(2006)

Zwijndrecht,
Nether-
lands

Primary
education
school
choice

Not Applicable MNL Not Applicable Models divided
into 3 segments,
households
with:
• Greater than
modal income
neigbourhood
and western
background
• Lower than
modal income
and western
background
• Non-western
background

van
Welie
et al.
(2013)

4 major
cities in
Nether-
lands:
• Amster-
dam
• Rotter-
dam
• Utrecht
• The
Hague

Secondary
education
level:
• HAVO
• VWO
• VMBO

Not Applicable Ordinary
Least
Squares
(OLS)
regres-
sion

Not Applicable There seems to
be an interaction
effect with
the Migration
background and
Socioeconomic
Status (SES)
of student’s
residential
neighborhood.

Building on the work of Fotheringham (1985), Bhat et al. (1998) examined home-based work and shopping trips
in the Boston Metropolitan area (BMA). In this study, only for Home-based shopping trips, SC&AE is measured
using a Hansen-type accessibility index (𝑀 𝑗 ), incorporating travel impedance factors (accounting for in-vehicle
and out-of-vehicle times, and travel costs) and service and retail employment factors as an attraction factor for
different zones.

𝑀 𝑗 =
1
𝐿

𝐿∑︁
𝑙=1

log 𝑅𝑙
log𝐻 𝑗𝑙

(2.6)

where:
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• 𝑅𝑙: Represents the total retail and service employment in zone 𝑙, (a proxy for the shopping opportunities
available in that zone).

• 𝐻 𝑗𝑙: composite travel impedance between zones 𝑗 and 𝑙,
• 𝐿: Total number of zones within the BMA.

While this accessibility index could have been adapted for home-based work trips by considering total zonal
employment, it was not applied to those trips in this study. For shopping trips, the results indicated a significant
negative SC&AE parameter, reflecting dominant competition effects in shopping destination choices. The study
also explored sociodemographic interactions with travel impedance, finding that older adults and women were
more sensitive to travel impedance for work trips, while higher-income travelers were more willing to travel longer
distances for work.

However, to address the limitation of the single accessibility measure of SC&AE highlighted in Section 2.1,
Bernardin et al. (2009) proposed the Agglomerating and Competing Destination Choice (ACDC) model using
two accessibility factors, which is applied to analyze home-based maintenance (HBM) and home-based other
(HBO) trips. The two types of accessibility measures introduced are; one for substitutes (employment within
similar sectors) and another for complements (employment across different sectors). Since this research does not
explore this more refined version of including SC&AE in MNL DCMs, the equations are not elaborated further
here. However, the results are quite insightful and this method can be explored in future research. The study finds
that the competition effects, primarily from substitutes, are dominant for both trip types but stronger for HBO
trips. This suggests that for discretionary activities, individuals tend to prefer locations that offer greater access to
opportunities from different sectors more strongly, compared to maintenance trips. Ho and Hensher (2016) adapted
the ACDC model to study workplace location choices (WLC) in the Sydney Greater Metropolitan Area (SGMA).
The findings showed that, for work trips, competition effects were driven by complements, unlike the substitutes
identified in non-work trips by Bernardin et al. (2009). Other important variables in the WLC destination choice
model included the logarithm of relevant jobs (as an attraction factor), region-specific constants, and the logsum of
mode and time-of-day choices, these choice models being a sub-component of a larger passenger travel demand
model.

For educational purposes, a review of models explaining educational location choices in the Netherlands offers
further insights. In their analysis of university location choices among high school graduates, Sá et al. (2004)
incorporated SC&AE using a Hansen-type accessibility measure known as the ’Centrality Index’ (𝑐 𝑗 ) within their
production-constrained gravity model for trip distribution. The form is similar to the one used by Bhat et al. (1998)
for shopping trips, albeit with a slight variation. This index incorporated the total number of universities as the
attraction factor and the travel distance between universities as the travel impedance such that:

𝑐 𝑗 =
𝑛∑︁
𝑚=1

𝑃𝑚
𝑑𝑚𝑗

(2.7)

where:

• 𝑃𝑚: Attractiveness of university 𝑚, (Total number of students in the university ) .
• 𝑑𝑚𝑗 : Road distance from university 𝑚 to university 𝑗 .

The findings indicated that universities in densely populated areas experience competition effects, with a negative
centrality index suggesting that nearby institutions compete for students rather than benefit from agglomeration.
Other significant variables in the study included are scope (number of programs offered), travel distance,
urbanization level, and rental costs.

Regarding studies that did not consider SC&AE effects to explain education location choices, de Boer and Blijie
(2006) focuses on primary school choice in Zwijndrecht, Netherlands. The study segments the population into three
groups based on migration background and neighborhood income level to capture behavioral differences related to
socioeconomic status and ethnicity. The motivation for this segmentation was to clarify how different groups
prioritize factors like distance, school quality, and religious or alternative education, leading to more accurate
predictions and tailored insights for school location planning. The study finds a general resistance to long-distance
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travel for primary schools, but this resistance varies significantly depending on the student’s background. For
students from Western-origin households in higher-income neighborhoods, there is a strong sensitivity to travel
barriers between home and school. These families are more willing to travel greater distances for schools with
specific religious affiliations or alternative teaching methods (such as Dalton or Reformational schools). They also
place a high value on school quality, preferring schools with better ratings and fewer disadvantaged students.
In contrast, students from Western-origin households in lower-income neighborhoods exhibit similar patterns
regarding distance and school type, though to a lesser degree. For these families, traffic barriers and the number of
students with disabilities are not significant factors in their school choice.
Students from non-Western backgrounds, predominantly Moroccan and Turkish, display high sensitivity to traffic
barriers, similar to the higher income Western group. However, this group does not prioritize school characteristics
such as religious affiliation or school quality in the same way as higher income Western group.

The study by van Welie et al. (2013) focuses on school location choice and upward mobility at the secondary
education level among students in the Netherlands, specifically those in the secondary vocational track (VMBO)
and the two academic tracks (HAVO and VWO). The analysis is based on BRON data 2, examining students living
in the four major cities who were enrolled in the final grade of elementary school in 2008. To assess upward
mobility, the study concentrated on pupils who began in the first year of the lower vocational track (VMBO) and
were in their third year by the time of the research. Overall, selecting students residing in the four major Dutch
cities (see table 2.1 for the names of cities) throughout the years 2008–2011. Although the study employs a
different analytical approach, using Ordinary Least square (OLS) regression rather than choice or trip distribution
models typically applied in transport research, it provides valuable insights into the factors influencing school
location choice at the secondary level. The findings suggest an interaction effect between migration background
and the socioeconomic status (SES) of the students’ residential neighborhoods. A key factor influencing school
choice is the sense of belonging, with students generally preferring schools with a larger proportion of peers from
similar backgrounds.
Notably, native Dutch pupils are more likely to attend the nearest school when living in affluent neighborhoods,
but they are more inclined to seek schools farther away when residing in lower SES areas, in contrast to migrant
pupils from the same neighborhoods. It finds that socioeconomic indicators have a major influence on distance
to school. Specifically, nonwestern pupils are more likely to select the nearest school when that school has a
higher proportion of nonwestern students. Additionally, urbanicity, which reflects the level of human activity in
a neighborhood based on the number of addresses, plays a role in students choosing a school farther away. In
densely populated areas with more schools available, students have a wider range of options, which explains why
they may not always choose the closest school. Similarly, the greater the number of schools within a 5 km radius,
the more likely students are to consider schools beyond their immediate vicinity.

2.4. Factors affecting temporal transferability of choice models

Figure 2.3: Assessing Model’s Temporal Transferability via External Validation

2Basis Register Onderwijs (BRON): Dutch official Educational database
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In travel behavior, transferability can be defined as ”the ability of a model developed in one context to explain
behavior in another, assuming the underlying theory is equally applicable in both contexts” (Fox et al., 2014).
Thus, temporal transferability is the model’s ability to maintain its accuracy and reliability over a forecasting
horizon without the need for extensive recalibration.

Assessing temporal transferability helps to determine how well a model can adapt to changes over time, providing
confidence in its predictions for transport planning and its ability as a tool to aid well-informed decision-making.
This concept is particularly relevant in transportation planning, where models are used to predict future travel
behaviors based on past data (Fox et al. (2014); Parady et al. (2021)).

Temporal transferability is a type of external validation. External validation tests the generalizability and accuracy
of a model beyond the conditions or population for which it was originally developed. It involves applying the
model to a new, independent dataset unused during the model’s development. This process helps verify whether
the model can maintain its prediction accuracy when subjected to new data. When this new data is from a different
time period, external validation assesses the model’s temporal transferability, providing insights into its reliability
over that forecasting horizon (Parady et al., 2021).

Figure 3 shows how external validation is used to assess the temporal transferability of the model. First, a sample
from the population is used for model estimation. Once the parameters are estimated using the base year sample,
these same parameters are then applied to predict choices observed in the population collected from the same
study area in a subsequent time period.
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Table 2.2 and 2.3 outline the factors that influence the temporal transferability of transport choice models. There
is limited research focusing exclusively on the temporal transferability of destination choice models. Hence,
much of the existing literature reviewed here pertains to mode choice and mode-destination choice models. It is
well recognized that what may initially appear to be separate decisions, selecting a destination and choosing a
mode of transportation are joint decisions involving combinations of mode and destination options (Castiglione
et al., 2014). Owing to the interdependence of these two aspects of travel decisions, In ABMs, destination
choice, and mode choice are linked sequentially because the selection of a destination influences the choice of
transportation mode (Castiglione et al. (2014); Clifton et al. (2016); Jonnalagadda et al. (2001)). The destination
choice model determines where an individual chooses to travel, considering factors such as trip purpose, distance,
and accessibility, whereas the mode choice model predicts the transportation mode based on the chosen destination
and other relevant factors (Clifton et al. (2016); Lekshmi et al. (2016)).

Table 2.2: Factors Affecting Temporal Transferability of Mode and Mode-Destination Choice Models

Factors Effect Note Study Choice
Model and
Purpose

Area Time
Frame

Regional
character-
istics such
as Infras-
tructure,
Population
growth,
land use etc

Significant
change in the
forecasting
year compared
to the based year
can negatively
impact the
transferability of
the choice

Sanko and
Morikawa

(2010)

Mode Choice
for:

• Com-
muter trip
• Business
Trip

Chukyo
metropoli-
tan area,
Japan

20 years
(1971,1991)

Past travel
behavior
(Inertia)

Higher the in-
ertia, better the
temporal trans-
ferability

Changes in travel
behavior are:
• Path dependent:
Depends on the
direction of change
of Level of service
• Anti-symmetric:
The degree of
behavior change to
LoS change varies
by transport mode.

Sanko and
Morikawa
(2010)

Forecasting
Horizon

Transferability
declines as hori-
zon increases

No consistent pat-
tern seen in the re-
sults. Therefore
no conclusive evi-
dence.

Fox et al.
(2014)

Commuter
Mode-
destination
choice

Greater
Toronto
and
Hamiton
Area

20 years
(1986-
2006);
tested
across
1986,
1996,
2001, and
2006

Overfitting Higher tendency
to overfit reduces
temporal trans-
ferability

Fox et al.
(2014),
Parady
et al.
(2021)
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Table 2.3: Factors Affecting Temporal Transferability of Mode and Mode-Destination Choice Models (Continued)

Factors Effect Note Study Choice
Model and
Purpose

Area Time
Frame

Model spec-
ification

Improved
specification
improves trans-
ferability

Improvement in
specification by
adding behavioral
parameters (socioe-
conomic) rather
than constants
improves temporal
transferability.

Fox et al.
(2014)
Parody
(1977)

Commute,
Mode choice

Univ. of
Amherst,
Mass.,
U.S.

4 phases:
1972 Au-
tumn, ’73
Spring,
’73 Au-
tumn, ’74
Spring

Type of pa-
rameters:
• Level-
of-service
parameters
(LoS)

LoS parameters
are more trans-
ferable/stable,
therefore poten-
tially improve
transferability.

Fox et al.
(2014)

• Cost pa-
rameters

Cost parameters
less transferable,
possibly limiting
improvements in
transferability

Fox et al.
(2014)

IIA assump-
tion

Addressing the
IIA assumption
of MNL logit
models could
improve transfer-
ability.

Train
(1978)

Commute,
Mode choice

San
Fran-
cisco,
U.S.

Pre
BART6sample
(before
1973)
compared
to post-
BART
sample
(before
1976)

As shown in Table 2.2 and 2.3, several factors affect the temporal transferability of mode and mode-destination
choice models. One key factor is regional characteristics and past travel behavior also termed ’inertia’ (Sanko and
Morikawa, 2010). Significant changes in regional characteristics during the transfer year can substantially alter
model parameters compared to the base year, potentially undermining transferability by introducing behaviors
not accounted for in the original model. Fox et al. (2014) finds that improving the model specification enhances
transferability, which aligns with empirical findings from previous studies on mode choice models (see Fox and
Hess (2010) and Fox et al. (2014) for a detailed review). This improvement stems from including behavioral
parameters such as socioeconomic variables in the model specification, which reduces the reliance on constants
to explain behavior in choice models. Here, Fox et al. (2014) finds that the constants are the least stable model
parameters, and as the influence of these constants diminishes with the addition of behavioral parameters, the
transferability of the model improves. One of the previous studies by Parody (1977), conducted a before and
after methodology to understand to validate how well disaggregate logit models predict the changes. In the study,
the research focused on how mode choice among travelers changes by introducing a free bus service and then
subsequently increasing parking fees and implementing stricter parking regulations. Conducted in the University
of Massachusetts at Amherst, it focused on travel behavior changes and compared the model predictions by a
disaggregate mode choice logit model across four key periods: Fall 1972 (baseline, before any transportation
changes), Spring 1973 (after implementing an expanded free bus service), Fall 1973 (following increased parking
fees and stricter parking regulations), and Spring 1974 (during the energy crisis with increased gasoline prices).
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The study finds that Disaggregate modal-choice models, particularly those incorporating detailed socioeconomic
(such as gender, and occupational status of the traveler) and transportation service variables (Frequency of service,
Walk time to the bus stop), demonstrated much better predictive accuracy in forecasting shifts in travel modes
resulting from transportation system changes. It also observed that across the 4 periods, travel time had the most
stable coeffiecient.
Although Fox et al. (2014) initially hypothesized that transferability would decrease as the forecasting horizon
lengthens, the study did not find a consistent pattern across different years to conclusively support this hypothesis.
Nevertheless, it is reasonable to expect that over longer forecasting horizons, substantial changes in regional
characteristics such as demographic shifts, land use, effects of policy implementations, and technological
developments such as new transport services and improved accessibility would lead to changes in travel behavior.
In terms of parameter stability, Fox et al. (2014) also found that level-of-service parameters are generally more
transferable than cost parameters, which may be related to the past travel behavior or ’inertia’ factors discussed by
Sanko and Morikawa (2010).
Using a similar before and after approach as done by Parody (1977), Train (1978) examined the predictive accuracy
of a mode choice model focusing on the Bay Area Rapid Transit (BART) system opened in San Francisco. By
analyzing data from workers surveyed both before and after BART’s launch, the study validated the model using
two approaches: comparing post-BART actual mode shares to those predicted by the pre-BART model and
assessing the stability of parameters across pre- and post-BART models. The findings indicate that the model
tends to overestimate transit use, particularly for BART with walk access. To assess whether the IIA assumption is
a potential reason for the over-prediction of transit usage, the study tested alternative models that did not depend
on IIA, such as the Maximum and Log-sum models. These non-IIA models also overestimated transit usage,
indicating that the IIA assumption failure was not the main source of error. Ultimately, the study found that
although the IIA assumption might slightly contribute to overprediction, other issues, like unique BART-specific
attributes and inaccurate walk time data, were the primary contributors to the overprediction.
Finally, multiple studies have cautioned against the risk of overfitting models to current data, as this can negatively
affect forecasting accuracy. This risk of overfitting means it is dangerous for modelers to believe that an improvement
in model fit automatically translates into better predictive power across different forecasting horizons, which is not
necessarily the case (Fox and Hess (2010); Fox et al. (2014); Parady et al. (2021)).

2.5. Discussion
Parady et al. (2021) discusses in detail why evaluating the performance of transport models based solely on
improvements in goodness-of-fit criteria undermines their credibility as predictive tools and effective decision-
making instruments for transport planning. The primary concern is the risk of overfitting. A model that can
accurately explain current travel behavior does not mean that it will be equally effective at predicting future travel
patterns. This is why improvements in model specification should not be justified or rejected solely based on their
contribution to explanatory power.

Overfitting occurs when a model is heavily dependent on the context to explain travel behavior. The more
overfitting the model is, the more it will lose its explanatory power with variation in the context, making the model
less reliable. This means that the model explains travel behavior that is highly specific to the current context,
rather than the fundamental drivers of travel decisions. Consequently, even if new theories enable the model to
explain current behavior more precisely or estimate parameters more accurately, they may undermine the model’s
predictive ability over the desired forecasting horizon. These improvements could negatively impact the model’s
temporal transferability, meaning that it may not perform well in future scenarios. Thus, relying on a model’s
explanatory power as a measure of its predictive capability and using it to make policy recommendations for future
travel behavior is both dangerous and irresponsible.
However, this does not mean that theories that enhance a model’s ability to explain behavior are redundant. Instead,
the above arguments are a caution against assuming or assessing their contribution to a model’s predictive power
based on tests designed to evaluate their contribution to explanatory power. It is crucial to determine whether the
model is intended as an explanatory tool or a predictive one. When improving model specifications, it is important
to understand the purpose of these enhancements. Moreover, the contribution of theories to a model’s performance
should not be viewed in binary terms, either enhancing explanatory or predictive power, but rather on a spectrum.
If we consider this spectrum only in two aspects; Explanatory and Predictive power, incorporating theories and
improving model specifications can:

1. Improve explanatory power but reduce transferability (by capturing highly contextual behavior, tending to
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overfit).
2. Enhance transferability with little impact on explanatory power (by capturing fundamental drivers of

behavior that are applicable across different contexts).
3. Significantly improve both explanatory power and transferability.
4. Limited impact on both aspects.

Therefore, when refining model specifications with a mix of theories and parameters, transport modelers need
to assess where the needs of the user or stakeholder in transport planning stand on this spectrum and decide
accordingly.

Continuing with this argument, it is inappropriate to judge the significance of a theory or improvement based
solely on one criterion, such as its contribution to explanatory power, using Goodness of fit statistics as observed
as a common trend in current transport research by Parady et al. (2021). Doing so creates a myopic perspective in
our already limited understanding of human travel decision-making. We need a multifaceted evaluation approach
because these choice models attempt to represent a highly complex travel decision-making process. Justifying or
excluding a theory based on only one aspect of model performance is overly restrictive because it fails to account
for the multidimensional nature of the travel decision-making process that it is designed to represent. When we
assess only one aspect, we implicitly assume that only this aspect matters for the multidimensional system the
model is supposed to represent. Travel behavior is influenced by multiple factors, both of which are known and
yet to be discovered. Hence, focusing on only one aspect could lead to misguided conclusions regarding the
importance of the theory in our quest to understand travel behavior better. To capture this complexity requires a
holistic approach. Assessing the theory’s impact on temporal transferability in addition to the explanatory power is
just one of the many aspects of model performance and, hence, a step towards a more holistic approach.

Returning to the theory of SC&AE, it has been proven in the transport research literature that these effects
significantly explain various types of destination choices, such as university destinations in the Netherlands (Sá
et al., 2004), work locations in Sydney (Ho and Hensher, 2016), home-based maintenance trips (shopping, personal
errands), and home-based other trips in Knoxville and Tennessee (Bernardin et al., 2009). Developed in 1985 by
Fotheringham (1985), this theory has stood the test of time, with these recent studies demonstrating its significant
explanatory power for travelers’ destination choices in different regions across the globe. Given its long-lasting
relevance and application in various contexts, it seems that the theory captures a fundamental human behavior that
drives how travelers choose destinations. Previous research on temporal transferability indicates that explaining
travelers’ choices using behavioral parameters improves the temporal transferability of the model (See section 2.4).

Another advantage of incorporating SC&AE, as noted in the previous section 2.1, is that it relieves the MNL form
of destination choice models from their popular IIA assumption. This IIA assumption can lead to unrealistic
predictions in cases where alternatives are similar or share unobserved attributes i.e., correlated alternatives
(de Dios Ortúzar and Willumsen, 2011). Thus, SC&AE enables retaining the simplicity of MNL models, which
makes them computationally less intensive and easier to use for large frameworks, such as activity-based modeling
or trip-based models. This simplicity is especially advantageous as DCMs are a subcomponent for trip distribution
in these large frameworks.
All these arguments highlight SC&AE’s high potential to positively improve the temporal transferability of
destination choice models. Yet, no research has investigated the impact of its inclusion on the temporal
transferability of destination choice models. By providing quantitative evidence of this theory’s contribution to
such a crucial and reliable feature of transport models, this study aims to justify its inclusion comprehensively.



3
Data

This chapter provides an overview of the data sources and assumptions regarding travel time used in this study to
develop destination choice models in Chapter 4 for the Metropolitan Region of Amsterdam (MRA). The datasets
used include the Dutch National Travel Survey, employment data, educational enrollment, and travel time matrix.

This chapter also discusses how the centroid for the destination zones is determined, the assumptions made for
estimating intrazonal travel times, and how the mode-specific travel time matrix for each trip purpose was selected.

3.1. Dutch National Travel Survey Data (ODiN)
Onderweg in Nederland7(ODiN) is a travel survey that tracks the travel behavior of the Dutch population. The
participants are required to record their daily travel details, including destinations, purposes, modes of transport,
and travel duration, for one specific day each year. In addition, they provide information on general personal
and household characteristics and details about driving licenses and available modes of transport (DANS, 2024).
Appendix B lists the potential variables from this survey that can be added to the utility specification as traveler
characteristics for various trip purposes. The trips are filtered to include only those arriving in the municipalities
included in the MRA. The MRA region consists of 30 municipalities. The arrival points of the trips are available
at the municipality level and the 4-digit postal code (PC4) level. The rest of the data below are processed at the
PC4 level to match the minimum resolution of the travel survey (see Section 4.3).

(skip this paragraph, if you already have read the scope in Section 1.2)
ODiN is a continuation of the "Onderzoek Verplaatsingen in Nederland" (OViN) survey, which was carried out
by CBS from 2010 to 2017. The methodology of ODiN 2018 differs significantly from that of the earlier OViN
survey, creating a methodological break between the two. As a result, the findings from ODiN cannot be directly
compared with those from OViN analyses (DANS, 2024). ODiN surveys only individuals aged six and older,
excluding younger children, which reduces the target population by over 1 million. It uses an internet-only (cawi)
data collection method, unlike OViN’s mixed-mode approach. ODiN also integrates all domestic and international
vacation trips as regular trips, whereas OViN handles these trips separately. In addition, ODiN determines the
primary mode of transport based on distance, unlike OViN’s priority-based system. Finally, ODiN utilizes more
register-based data called Basisregistratie Personen (BRP), reducing the need for extensive survey questions
(Statistics Netherlands (CBS), 2019).
Although adjustments could improve the comparability between ODiN and OViN, some differences would likely
remain due to inherent methodological changes. Given the limited timeframe, making such modifications is
beyond the scope of this study. Therefore, considering that the earliest available ODiN data is from 2018 and the
most recent from 2022, a short-term forecasting horizon of five years (2018-2022) is selected for this analysis.

3.2. Employment data
This data represents the number of jobs in the MRA, with the highest resolution available at the municipal level and
the lowest available at the PC4 level.It is provided by Research and Statistics, Amsterdam (O&S). The data structure

7English translation: The Survey on the Road in the Netherlands
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is detailed in Table B.5 in Appendix B. This includes the total number of jobs in each of the 30 municipalities.
This information is used as a zonal size measure in the utility function for work location choice. Additionally,
the data categorizes jobs into wholesale, retail, and other services, which are summed and then used as a zonal
size measure for HBM trips as per the utility functions defined for the trip purpose in the design phase of the
methodology.

3.3. Education Enrollment data
This dataset provided by Dutch Ministry of Education, Culture, and Science (DUO) contains the locations of
educational institutions across the Netherlands and the number of enrolled students in them. It covers the primary,
secondary, vocational, and higher education levels corresponding to the Dutch education system (See Appendix E).
Because the number of students is provided at the institution level, postal codes are determined with the help of
location information (see Sections 4.3 and 4.3.3), enabling the number of enrollments to be aggregated at the PC4
level. This information is then used as an attraction factor for educational trips in the MRA. The data structure is
presented in Appendix B and in Table B.6.

3.4. Travel time matrix
The travel time matrix between all the PC4 zones in the Netherlands for various private transport modes (walking,
bicycle, and car) and public transport modes is calculated using the GeoDMS software developed by ObjectVision.
The software is continuously developing and actively used by organizations such as the Netherlands Environmental
Assessment Agency, Joint Research Centre of the European Commission, Vrije Universiteit Amsterdam, and
various Dutch municipalities (Object Vision, 2024). Appendix C details the input parameters used for calculating
the travel time matrix for various modes in the GeoDMS software. The source data for this calculation are as
follows:

Road Network Data
OpenStreetMap provides detailed data for each road and path segment, including information on road type, name,
and whether a street is one-way (ObjectVision, 2023). Network data from parts of neighboring countries such
as Belgium and parts of Germany (Niedersachsen and Nordrhein-Westfalen) are also included, as some of the
shortest paths between PC4 zones in the Netherlands pass through these areas.

Geolocation of Buildings and Addresses (BAG)
The BAG (Basisregistratie Adressen en Gebouwen)8is the registry containing geolocation information about all
buildings and addresses across municipalities in the Netherlands. This data is used to determine the centroids of
the PC4 zones.

Public transport Data
The General Transit Feed Specification (GTFS), Google’s publicly available feeds, is used to build routes between
the origin and destinations (these points are defined using BAG data) using the PT Mode. It comprises all forms
of public transportation, including trains, metros, trams, buses, and ferries. It provides details on all stops and
departure and arrival schedules and covers all designated transport routes.

3.4.1. Determining PC4 Centroids
In accessibility studies, when calculating travel impedance (such as travel time), the geometric center of a
region is often used as its representative point. This geometric center is calculated based on the geographical
shape or boundaries of the area. However, the geometric center may not always accurately reflect where the
population intends to travel or where points of interest in a region are concentrated. It may fall in an isolated or
uninhabited part of the region. To address this, instead of using the geometric center, the address-weighted center
of gravity approach considers the locations of all the addresses within the area. This approach provides a more ac-
curate representation of where people and opportunities are concentrated, thus better reflecting actual travel patterns.

Figure 3.1 illustrates the differences between these two approaches, highlighting how the address-weighted center
of gravity based on BAG addresses differs from the geometric center based solely on geographical boundaries. In
many cases, these two points may be close; however, the difference can be substantial in regions where buildings

8English translation: Key Register of Addresses and Buildings
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are clustered toward a specific part of the area. The geometric center of each zone is represented by a grey triangle,
calculated based on the geographical boundaries of the area (blue lines). However, the black dots indicate the
address-weighted center of gravity, which accounts for the region’s distribution of all buildings and addresses,
as derived from the BAG (Basisregistratie Adressen en Gebouwen) dataset. The positions of the black dots
differ from those of the gray triangles, demonstrating the influence of building density on determining a more
population-relevant center point. In areas where buildings are clustered, the address-weighted center of gravity is
noticeably shifted compared to the geometric center. (ObjectVision, 2023).

Figure 3.1: Difference in the geometric center (grey triangle) and the center of gravity based on buildings (black dots) for a region
(ObjectVision, 2023)

3.4.2. Assumptions for Intrazonal and trip-specific travel times
Because the travel time matrix is only available at the PC4 level, travel times for intrazonal trips, i.e., trips occurring
within the same PC4 zone, are not directly provided and must be assumed. Following a standard rule of thumb, the
travel time for intrazonal trips is assumed to be half the travel time to the nearest neighboring zone (Cats, 2022).

Travel time matrices for different modes, such as car, public transport (PT), bike, and walking, are calculated using
GeoDMS. Ideally, the travel times for all modes should be incorporated into the travel time matrix to account for
the availability of various transportation options. One approach to achieve this is to examine the frequency of each
mode used in the travel survey, grouping them into four main categories: car, PT, bike, and walk, and then creating
a combined travel time matrix. This matrix would reflect the weighted average travel times based on mode usage
frequencies. Table 3.1 illustrates how various modes used for HBM trips (fig 3.2) are grouped.
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Figure 3.2: Frequency of Modes Used for HBM trips in ODiN 2018

Table 3.1: Grouping of Modes used for HBM trips, ODiN 2018

Car PT Bike Walk
Car Train Non-electric Bicycle Walk

Touring car Bus Electric Bicycle
Delivery Van Tram Mobility Scooter with Motor
Taxi/Minibus Metro Mobility Scooter without Motor
Motorcycle

Moped
Scooter

As per this grouping, the following percentages of the four categories are illustrated in fig 3.3
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Figure 3.3: Percentage share of modes used for HBM trips, ODiN 2018

However, applying weighted mode share percentages to incorporate all modes results in unrealistically high travel
times between zones, particularly for distant zones. This is likely due to the significant contribution of walking
times, which constitute 22% of the total, inflating travel times considerably. Additionally, combining travel times
for all modes leads to exaggerated travel durations. In some cases, the calculated travel time between zones can
reach up to 10 hours.

A simpler approach was adopted to address this issue. Instead of including all modes, this study uses the travel
time for the mode with the highest frequency for each trip type. Under this assumption, the mode-specific travel
time matrices listed in Table 3.2 are selected for each trip category.

Table 3.2: Mode with highest frequency per trip type

Year HBM Work Primary Education Secondary and above trips
2018

Car Car Bicycle Bicycle
2022

The frequency count per mode for each year per trip type is listed in their respective sections in Appendix F. HBM
(fig F.8), Work ( fig F.5), Primary Education (fig F.11) and Secondary and above (fig F.13)



4
Methodology

This chapter elaborates on the research methodology used in this thesis. The chapter begins with an overview
(Section 4.1). Here, it gives an overall gist of the various phases of the methodology used in this thesis to answer
the research question and how they are connected.

After this overview, this chapter is structured into several key sections. Section 4.2 discusses the selection of
variables based on the findings from the previous chapter Literature Review. Variables are chosen based on trip
purpose, available data, and factors affecting temporal transferability. The variables include zonal size measures
(such as employment and education enrollment), travel impedance, sociodemographic interactions with impedance,
and SC&AE.

Section 4.3 details the steps taken to prepare the datasets for the model estimation. This includes processing the
ODiN travel survey data employment data, and education enrollment data for 2018 and 2022. The ODiN data
is filtered to include relevant trips within the MRA for work, home-based maintenance (HBM), and education
purposes. Issues such as duplicate trips, missing values, and aggregation to the PC4 zone level are addressed.
Employment and education data are aggregated at the PC4 level and merged to create a master dataset for model
estimation.

In Section 4.6, utility functions for different trip purposes are formulated. For work and HBM trips, the utility
includes relevant zonal size measures (employment), travel time, and interactions between sociodemographic
variables and travel time. For education trips, utility functions are specified separately for primary and secondary
& higher education, using enrollment numbers and relevant sociodemographic interactions. SC&AE is included
using a Hansen-type accessibility index to capture the influence of the spatial distribution of opportunities.

Addressing the need for computational efficiency and realistic behavioral representation in forming a choice set,
Section 4.7 elaborates on a variant of Stratified Importance Sampling (SIS) used in this thesis, which considers
both proximity and oppportunies present in the destinations.

Section 4.8 discusses the steps for assessing the impact of SC&AE on the temporal transferability of the destination
choice model across trip purposes. Further, the selection of the performance indicators based on which the
assessment of impact will be performed is discussed, along with how the same steps will be applied to Full (no
sampling), random sampling along with SIS to understand the impact of SC&AE on temporal transferability varies
with sampling methods.
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4.1. Overview
Figure 4.1 presents an overview of the methodology used to address the research questions outlined in Section
1.3. The methodology is organized into three distinct phases: Exploration, Design, and Validation. Each phase
sequentially addresses the sub-questions (SQ) that collectively contribute to answering the main research question
(RQ).

Figure 4.1: Methodology overview

The Exploration Phase begins with a literature review to identify the factors influencing the temporal transferability
of mode and destination-mode choice models (Section 2.4) and to examine how previous studies have accounted for
Spatial Competition and Agglomeration Effects (SC&AE) across different trip purposes. In addition to SC&AE,
the review examines other variables included in these studies, exploring how they were specified to explain
travelers’ destination choices (Section 2.3). The next step is to determine which of these variables, along with
SC&AE, are available within the four datasets mentioned in Chapter 3 and how they can be incorporated to explain
destination choices across trip purposes. Hence, the structure and available information for the four datasets
are reviewed. Together, the literature and data review forms the basis for variable selection (Section 4.2) and
data processing. This phase establishes a robust theoretical foundation for designing Destination Choice Models
(DCMs) that account for SC&AE in the study area across the three trip purposes.

The Design Phase builds on the findings of the exploration phase to develop utility specifications for Multinomial
Logit (MNL) destination choice models designed for each trip purpose.

During the Validation Phase, the parameters of the trip-specific MNL models are estimated using the open-source
Python package, Pandas Biogeme. First, the parameters are estimated separately for the 2018 and 2022 datasets.
Then the 2018 estimated parameters are used on the 2022 dataset to assess the impact of SC&AE on temporal
transferability. Four performances across three categories of indicators are selected to evaluate the models. These
indicators are chosen to complement one another, addressing distinct aspects of discrete choice model performance.
This approach provides a comprehensive evaluation of SC&AE’s impact on temporal transferability across various
trip purposes.

Finally, the thesis concludes by drawing policy inferences from insights gained during the validation phase. This
involves reflecting on SC&AE’s role in increasing the effectiveness of destination choice models and discussing
the broader implications for developing transport models as a reliable tool for transport policy planning.
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4.2. Selection of Explanatory Variables
To assess the impact of SC&AE on the temporal transferability of destination choice models, a utility specification
for each trip purpose needs to be formulated. Hence, we must select the variables to include in the specification.
The selection of explanatory variables differs with the trip purpose. The selection also depends on available data
and factors affecting temporal transferability. Because the highest common resolution across all four datasets
mentioned in the Data Section is at the PC4 level, PC4 zones in the MRA region are considered as destination
alternatives.
For including explanatory variables, in addition to the SC&AE parameter, three sets of explanatory variables
are considered to be included in the MNL choice models: (a) Zonal size measures, (b) Travel impedance, (c)
Interaction of sociodemographic variables with impedance, and (d) SC&AE

Zonal size measures
Zonal size measures vary according to the trip purpose. Typically, for work, total employment is considered; hence,
total employment in the PC4 destination zone is considered in this thesis. For HBM, employment across relevant
sectors is considered. These include six sectors: Wholesale & Retail, Financial Institutions, Utilities, Government,
Health & welfare, and Other services. Lastly, for education trips, total enrollment at the relevant education level
is considered. The size term is always included in the utility function in a logarithmic form. This ensures that
the probability of selecting a destination is directly proportional to the number of opportunities available in the
destination zone (Bernardin et al., 2018).

Travel Impedance
For travel impedance across all trip purposes, typically, the logarithmic transformation of travel time has been
used for explaining destination choices in the studies reviewed in Section 2.3. Hence, the logarithm of travel time
between PC4 zones is considered here as well. This is equivalent to the power function of the impedance function
of the gravity model (Daly, 1982). Travelers often are more sensitive to changes in travel time when the time is
short compared to when it is long. As seen in figure 4.2, the power function captures this diminishing sensitivity.

Figure 4.2: Different types of travel impedance functions (Cats, 2022)

Interaction of sociodemographic variables with travel impedance
As reviewed in Section 2.4, adding the sociodemographic characteristics of travelers in the specification improves
the temporal transferability of destination choice models. The interaction of sociodemographic variables with
impedance varies with the trip purpose. These interactions are included based on findings from previous studies
related to the three trips within the scope of this study. Bhat et al. (1998) finds that older adults and women are
more sensitive to travel impedance for work trips, while higher-income travelers are more willing to travel longer
distances for work. Hence, the interactions of gender, age, and disposable household income level of travelers with
travel time are included for work and HBM trips.
For education trips, previous research focusing on Dutch education, such as de Boer and Blijie (2006) (primary
education) and van Welie et al. (2013) (One level after secondary education), finds highly significant interaction of
socioeconomic status and migration groups of students with travel impedance. Hence, the interactions of migration
and disposable household income levels of travelers with travel time are included in education trips.
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Spatial Competition and Agglomeration Effects
Finally, to evaluate the impact of SC&AE on the temporal transferability of destination choice models and how
it varies by trip purpose, these effects are included using a single Hansen-type accessibility index, as shown in
equation 2.4.

4.3. Data Processing
This section details the data processing steps necessary for model estimation using Pandas Biogeme. It covers
the processing of ODiN travel survey data (subsection 4.3.1), employment data (subsection 4.3.2), and education
enrollment data (subsection 4.3.3).

For the ODiN data, trips from 2018 and 2022 are filtered to focus on trips to the 30 municipalities within the MRA,
specifically for Work, Home-based Maintenance, and Education purposes using SQL. Subsequently, the data is
processed in Python to address issues such as duplicate trips, missing values, and aggregation to the PC4 zone
level.

The employment and education data for the 364 common PC4 zones from 2018 and 2022 are combined with the
processed ODiN data to create a master dataset. This master dataset is then used for DCM estimation for the trip
purposes in Pandas Biogeme.

4.3.1. ODiN data processing
This subsection outlines the step-by-step data-processing workflow for the ODiN survey data for 2018 and 2022.
As noted earlier, The ODiN data is filtered only to include arrivals in the 30 municipalities inside the MRA region
as shown in Appendix D. To do so, the below filters in Table 4.1 are applied for the three trip purposes. i.e., Work,
Home-based Maintenance and Education to the ODiN data stored as an SQL database in TNO’s repository.

Table 4.1: SQL filters for processing ODiN Data

Variable
explanation

Variables Type of trips Notes

Home based
Work Shopping Service Education

To Include
New move verpl 1: Yes 1: Yes 1: Yes 1: Yes

Motive
Classification

kmotiefv 1: To and
from work

4: Shop-
ping/-
grocery
shopping

3: Ser-
vices/Per-
sonal
care

5: Edu-
cation/-
course

Purpose doel 2: To Work ≠ 1 1: Going Home
Departed
from

vertloc — 1: Home —

Arrival
Gemeente
(Municpality)

aankgem

358,34,362,363,375,376,377,384,
385,1942, These are the

numbers of the 30
gemeente in the
MRA region (see
Appendix D)

392,394,396,397,402,406,
415,417,995,431,
437,439,450,451,

453,852,1696,880,479,473

To exclude

Continued on next page
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Table 4.1: SQL filters for processing ODiN Data (Continued)

Number of
passenger
cars in the
household

hhauto 10, Null — 10: Unknown

Traveler’s
paid work
status

betwerk 4, Null — 4: Unknown

Traveler’s car
license status

oprijbewijsau 2, Null — 2: Unknown

Student OV
chip card sta-
tus

ovstkaart — 3, Null 3: Unknown

Arrival PC4
zone code

aankpc 0, Null

Departure
PC4 zone
code

vertpc 0, Null

Standardized
household
disposable in-
come (Decile
Groups)

hhgestinkg 11, Null 11: Unknown

Migration
Background

herkomst 4, Null 4: Unknown

Number of
regular trips

in
Netherlands

aantvpl 1

Highest com-
pleted educa-
tion

opleiding 5, 6 5: Other training,
6: Unknown

Number of
movements

by OP

weggeweest 0: No
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Figure 4.3: ODiN Data processing workflow

Figure 4.3 provides an overview of the steps involved in processing the 2018 and 2022 ODiN data. After using
SQL queries to apply filters, as shown in Table 4.1, the filtered MRA region trip data is then processed further in
Python by importing it as a CSV file using the following steps:

1. Removing duplicated trips: Generally, people have only one primary location for work and education,
where they spend a significant part of their day. Hence, to determine the primary arrival destination, it is
assumed that the primary destination is where the person has the maximum activity duration. Following this
assumption, for each traveler, only the trip with the maximum duration is retained in the case of multiple
trips for trip purposes.

2. Minimum age limit (Work Trips): In the Netherlands, including part-time work, the minimum age
requirement is 15 years for 2018 and 2022. Consequently, travelers younger than 15 years are excluded
from the dataset, in line with the Netherlands minimum working age (Business.gov.nl, 2024). This step
ensures that only relevant trips are considered, adhering to the legal working age for the years in focus of
this research.

3. Categorisation of Variables The age data for travelers recorded in the survey is a continuous variable.
Interaction effects for age are included by creating dummy variables for different age, which will then be
used to include interaction with the travel impedance (travel time). This approach avoids assuming a linear
or monotonic relationship, and simplifies forecasting by allowing predictions based on categories rather than
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continuous age values (Bhat et al., 1998). To convert the continuous age variable into categorical variables,
appropriate groupings for age are needed to prevent the loss of information. Five categories are defined for
age groups using the same ranges used by the Centraal Bureau voor de Statistiek (CBS) in the Netherlands.
CBS reports key demographic, household, income, housing, and accessibility statistics by postal code and
grid size (e.g., 100m x 100m, 500m x 500m) across the Netherlands (Centraal Bureau voor de Statistiek
(CBS), 2023). Given that ODiN data includes only travelers aged 6 years and older, the following age groups
are selected: (a) 6–14 years, (b) 15–25 years, (c) 25–44 years, (d) 45–64 years, and (e) 65 years and above.

For income groups, the ODiN data categorizes travelers by deciles of standard household disposable income.
To make the model more parsimonious, these ten groups need to be regrouped into fewer groups while
ensuring minimal loss of information owing to aggregation into fewer groups. Standardized household
income, initially provided in deciles, is re-categorized into five broader groups (table 4.2).
Regrouping is guided by annual median standardized household disposable income levels for 2018 and 2022
in the Netherlands, as reported by the OECD Organisation for Economic Co-operation and Development
(OECD) (2023), and further refined with CBS’s reported median standardized household disposable income
data for each decile group (Centraal Bureau voor de Statistiek (CBS), 2024). CBS labels the 1st decile as
’Low’ and the 10th decile as ’High,’ so these labels are preserved to minimize loss of information due to
regrouping. Based on these considerations, Table 4.2 presents the restructured income groups aligned with
OECD’s reported standardized household disposable median income for the Netherlands for 2018 and 2022.
The value in the bracket below the years indicates the standardized household disposable median income for
the Netherlands for the respective years.

Table 4.2: Criteria for regrouping Decile Income groups

New
Groups

Decile
Groups

% of Median Annual Standard
Disposable Income Level

Income range per year
In Euros

2018
(27,000)

2022
(32,000)

Low 1st ≤50% 13,500 16,000
Lower
Middle

2nd and 3rd 50% upto 90% 13,500
to 24,300

16,000 to
28,800

Middle 4th and 5th 90% upto 125% 24,300 to
33,750

28,800 to
40,000

Upper
Middle

6th to 9th 125% to 250% 33,750 to
67,500

40,000 to
80,000

High 10th ≥250% 67,500 80,000
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4.3.2. Employment data processing

Figure 4.4: Employment Data processing workflow

The raw data, provided by O&S Amsterdam, includes all jobs and jobs per sector from 2018 to 2023. For this
research, only data from 2018 and 2022 are within scope. This data is recorded annually on April 1st. For instance,
the 2018 data corresponds to April 1, 2018. Given that the ODiN survey can occur at any time during the year, it is
more accurate to choose the April 1, 2019, employment data to correspond with the ODiN survey data for 2018. A
similar approach is applied for selecting data from 2023 to correspond with 2022 ODiN Survey data. Two separate
dataframes are created; one for 2018 and another for 2022, each filtered for the relevant years.

As seen in Figure 4.4, the Jobs/sector data is summed up across all sectors and aggregated on a PC4 zone level and
verified with the PC4 level Total number of Jobs data to ensure the data is processed correctly. Owing to GDPR
regulations, very low numbers (<5) are converted to zero by the O&S team at Amsterdam. Therefore, the numbers
would not exactly match but would be in close proximity to each other.
One issue identified with postal codes, where new codes are added to municipalities within the MRA region in
2023, leading to a discrepancy in the number of postal code zones (PC4) between 2018 and 2022. Specifically,
there were 364 PC4 zones in 2018, which increased to 371 zones in 2022. Upon examining the data, it was noted
that the number of jobs in these newly added PC4 zones in 2023 is very low. These zones exist only in the 2023
data and have negligible job numbers; hence, they are excluded. To ensure consistency, only the 364 PC4 zones
common between 2018 and 2022 are considered.



4.3. Data Processing 32

4.3.3. Education data processing

Figure 4.5: Education data Processing

Figure 4.5 provides an overview of the workflow of educational data processing. As observed, these are different
datasets pertaining to different levels of education, as defined in the Dutch education system and shown in figure
E.1 in Appendix E. They have different data structures and are processed differently according to the requirements
for estimating destination choice models for education trip purpose. All student numbers for an academic year
corresponded to the number of students in November. For example, the 2018 data would contain the total number
of students at the institution as of November 2018.

Primary Education enrollments
For the relevant years (2018 and 2022), the data initially provided at the more granular PC6 postal code level is
aggregated to the PC4 level. The number of students is grouped and summed up according to the PC4 postal codes.

Secondary enrollments
1. Data Source and Location Matching: Unlike primary education, secondary education enrollment data does

not contain PC4 or PC6 location codes. To resolve this, an additional location file from the DUO website
is used to determine the geographic location of secondary schools. The data is then matched using the
Vestigings code (institution code) or Vestigings Nummer (institution number).

2. Handling Missing Location Data: This matching process may result in some missing (NaN) PC4 codes due
to the absence of corresponding location data. To address this, institutions with NaN values in PC4 codes are
filtered to retain only those located within the Metropolitan Region Amsterdam (MRA). For the remaining
institutions without PC4 codes but located in the MRA region, the PC4 code is manually retrieved using
Web Search based on the institution name and municipality information provided in the data.

The final step of aggregating the data at the PC4 level is similar to that of the primary education data.
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Vocational enrollments
Vocational education data is processed in a manner similar to secondary education. Enrollment data is matched
using the Instellings Code (institution code). Student counts of less than five are reported as "<5" due to the GDPR.
In such cases, these values are set to "1".

HBO enrollments
The HBO education data is processed similarly to that of vocational education. However, because of the possibility
of multiple branches of the same institution sharing the same Instellings Code, enrolment and location data are
matched not only by the Instellings Code but also by the Gemeente (municipality) number and name to ensure that
student enrollments are correctly assigned to the appropriate PC4 code.

WO (University Education):
WO education data is processed similarly to HBO education data, with the BRIN Nummer (a unique identifier for
institutions) used as the matching key.

After processing and aggregating the educational data at the PC4 level for each educational category, they are
merged with the employment data processed previously at the PC4 level. This creates a master dataset for 2018
and 2022, allowing for all job and education enrolment data for each of the 364 PC4 zones in the MRA region.

4.4. Availability of Destinations
Table 4.3: Number of available destination alternatives and observed trips after data processing

Trip Purpose
2018 2022

Available PC4 zone
destinations

No. of Trips Available PC4 zone
destinations

No. of Trips

Home-Based
Maintenance

350 1,874 355 1,851

Work 363 2,680 363 1,903
Secondary and above
Education

125 364 129 276

Primary Education 278 693 282 395

Table 4.3 presents the number of available destination zones for each trip purpose out of the total 364 PC4 zones
and the number of observed trips arriving in these available MRA PC4 zones for 2018 and 2022, after processing
all four data sources.

In transport modeling, particularly in destination choice models, it is common practice to apply a feasibility
criterion to reduce the size of the choice set. This can be achieved by considering the compatibility between trip
types and land-use characteristics to ensure that only realistic and relevant alternatives are included in the model
(Bernardin et al., 2018). Travelers are unlikely to consider destinations that do not offer opportunities relevant to
their trip purpose. This prevents misrepresentation of destination attractiveness. In addition, choice set reduction
reduces the computational resources required for model estimation. Hence, in this study, the number of destination
PC4 zones available to travelers depends on the availability of opportunities for the trip type. This means excluding
zones with no retail employment for HBM trips, zones with no employment as possible work locations, and zones
with no enrollment at the relevant education level as possible locations for education trips. Consequently, the
observed trips in the ODiN data is further filtered to include only arrivals in these available PC4 zones.

4.5. Implications of Modelling Assumptions during Data process-
ing

The assumptions made in the modeling process have significant implications for estimating destination choice
models for work, education, and home-based maintenance (HBM) trips. First, converting continuous variables,
such as age and income, into categorical variables simplifies the models and avoids assuming linear relationships;
however, this can obscure subtle variations within categories. This aggregation may lead to a loss of important
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behavioral insights, as travelers within the same age or income category might have different preferences or
constraints that affect their destination choices. Second, the assumption for intrazonal travel times, assuming them
to be half the travel time to the nearest neighboring zone for each destination zone, is a rough approximation
that may not accurately reflect actual travel times within zones. This can lead to inaccuracies in modeling travel
impedance, particularly for HBM activities where intrazonal trips are dominant.

Finally, for work and education trips, it is essential to determine the traveler’s actual workplace or educational
institution. However, the ODiN travel survey data does not explicitly specify whether the recorded destination zone
is the traveler’s place of work or education. To address this issue, certain assumptions must be made. Generally,
individuals have only one primary location for work or education, where they spend a significant portion of their
day. Therefore, in this study, it was assumed that the destination with the maximum activity duration represents the
primary work or education location. Accordingly, for each traveler with multiple trips to different destinations for
the same trip purpose, only the trip with the longest duration was retained. However, it is possible that this location
might not actually be the workplace or the primary place of education. Travelers may spend significant time at
locations that are not their workplace or educational institution such as client sites, training centers, conferences,
cafes or other long-duration activities unrelated to their primary work or education location and record them as
work or education trip purpose. As a result, this could lead to misclassification of destinations, potentially affecting
the accuracy of destination choice models. The model might incorrectly estimate the attractiveness of certain
zones or fail to capture the true patterns of work and education trips 9

4.6. Utility Specification
This section presents the utility specification formulated for the three trip purpose: HBM, Work, and education
(Primary and secondary & above education level choices)

Table 4.4 summarizes the motivation for including the variables in each specification based on the findings from
the literature.

Additionally, for each trip purpose, the zonal size parameter was estimated here. In transport modeling, it is
common practice to fix the zonal size parameter to 1. However, in this study, the parameter is estimated as it is
used later in determining the choice set size for sampling alternatives. This is because the approach is based on the
stability of the parameter, as described later in Section 4.7.1

9While the assumption of retaining only the trip with the maximum activity duration is appropriate for work and education trips, as
individuals generally have one primary location for these purposes, it does not hold true for home-based maintenance trips, where multiple
destinations may be visited within a single day. Initially, due to oversight, I filtered the data under the assumption that only one observation per
traveler per trip purpose was needed for HBM trips as well, overlooking Pandas Biogeme’s capability to handle multiple observations per
traveler using PanelObs = True. Unfortunately, I identified this mistake late in the process, and because of time constraints, it was not possible to
perform all validation steps with the correct data structure at the time of submission of the final version of this document. However, I conducted
a quick informal parameter estimation, which showed that the parameter estimates and t-test values for most significant parameters, especially
SC&AE, and model performance in both years, did not differ significantly from the results presented in the Results chapter. Therefore, the
general storyline remains the same.
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Table 4.4: Motivation of including interaction effects of various traveler characteristics for each trip purpose.

Trip Type Interaction
effects with
travel time
included

Motivation

Work

Gender, Age
Group and

income groups

Bhat et al. (1998) explored sociodemographic interactions with travel
impedance for HBM and Home based Work trips in the Boston Metropolitan
Area, USA, finding that older adults and women were more sensitive to travel
impedance for work trips, while higher-income travelers were more willing
to travel longer distances for work.

HBM
Education
Trips

Migration
Background,

Income
Groups

Previous studies such as de Boer and Blijie (2006) in Zwijndrecht,
Netherlands, found that for primary school choice, sensitivity to travel time
for school trips varies by income and migration background. Higher-income
families are sensitive to travel barriers but willing to travel further for
specific school attributes, while lower-income families are less affected
by distance. Non-Western families are sensitive to travel barriers but less
focused on school type or quality. In secondary education, affluent Native
Dutch students prefer nearby schools, while those in lower socioeconomic
areas travel farther. Non-Western students prefer local schools with peers
from similar backgrounds (van Welie et al., 2013) .
In the present model, income groups are used in place of socioeconomic
status, and only the interaction effect for the migration background of
students is considered, as there is no available data on the distribution of
migration backgrounds within the schools in PC4 zones.

Home-Based Maintenance Trips
𝑇𝑖 𝑗 represents the utility of traveler living in PC4 zone 𝑖 from choosing PC4 𝑗 to perform maintenance trips. It is
as follows:

𝑇𝑖 𝑗 = 𝛽𝑚 ln(𝑀 𝑗 ) + 𝛽𝑐 ln(𝑐𝑖 𝑗 ) +
4∑︁
𝑛=1

𝛽𝑛 · 𝐴𝑛 · ln(𝑐𝑖 𝑗 ) + 𝛽 𝑓𝐺 𝑓 · ln(𝑐𝑖 𝑗 ) +
4∑︁
𝑖=1

𝛽𝑖 · 𝐼𝑖 · ln(𝑐𝑖 𝑗 ) + 𝛽𝐴 𝑗 ln(
∑︁
𝑘≠ 𝑗

𝑀𝑘

𝑐 𝑗𝑘
) (4.1)

Here, 𝑀 𝑗 is the number of relevant employments in PC4 zone 𝑗 . The sectors from which job counts are considered
relevant are Wholesale & Retail, Financial Institutions, Utilities, Government, Health & welfare, and Other services
(6 sectors in total). 𝑐𝑖 𝑗 is the Travel cost between zones 𝑖 and 𝑗 with cost sensitivity parameter 𝛽𝑐
𝐴𝑛 is the age group 𝑛 interacting with travel cost 𝑐𝑖 𝑗 with 𝛽𝑛 capturing the interaction effect. Four age groups
starting from 6-14 are included, with the 65+ age group as the reference level for dummy coding. Next, for gender
interactions with travel time, 𝐺 𝑓 is the Gender Binary variable. A value of 1 indicates that the traveler is female.
𝛽 𝑓 is the female gender parameter, with male as the reference level.
For the income interaction with travel time, 𝐼𝑖 is the income group 𝑖 interacting with travel cost 𝑐𝑖 𝑗 . 𝛽𝑖 captures
the interaction effect. The income groups are based on the five income groups presented in Table 4.2 with the
middle-income group as the reference level for dummy coding.

Lastly, for including SC&AE, 𝑐 𝑗𝑘 is the travel time between zones 𝑗 and 𝑘 with spatial structural parameters 𝛽𝐴 𝑗

accounting for SC&AE for destination zone 𝑗 .
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Work Location choice
𝑊𝑖 𝑗 represents the utility of travelers living in PC4 zone 𝑖 who choose to work in PC4 𝑗 . It is as follows:

𝑊𝑖 𝑗 = 𝛽 𝑗 ln(𝐽 𝑗 ) + 𝛽𝑐 ln(𝑐𝑖 𝑗 ) +
3∑︁
𝑛=1

𝛽𝑛 · 𝐴𝑛 · ln(𝑐𝑖 𝑗 ) + 𝛽 𝑓𝐺 𝑓 · ln(𝑐𝑖 𝑗 ) +
4∑︁
𝑖=1

𝛽𝑖 · 𝐼𝑖 · ln(𝑐𝑖 𝑗 ) + 𝛽𝐴 𝑗 ln(
∑︁
𝑘≠ 𝑗

𝐽𝑘
𝑐 𝑗𝑘

) (4.2)

In this utility specification, 𝐽 𝑗 is the total number of jobs in PC4 zone 𝑗 . For age groups, with 15 years being the
minimum age for working (including part-time) in the Netherlands (Business.gov.nl, 2024), the age group 6-14 is
excluded.
Apart from these differences, the remaining variables used to explain destination choices for work trips are the
same as for HBM trips (Eq. 4.1).

Education location choice
None of the studies reviewed in Section 2.3 considered age as an explanatory variable to explain destination
choices for education trips. Moreover, Primary education is compulsory in The Netherlands (Nuffic, 2024). Hence,
in this thesis, age is not considered to play a significant role in explaining destination choices for primary education.
For secondary and above education level trips, in this study, age is not considered to play a significant role, as it is
more likely that the education level available and the courses offered at the institutions attract trips to the zones.

• Primary School location choice

For this trip purpose, the ODiN survey data is filtered to consist of travelers below 15 years of age
Hence, they have Opleiding (Attained Education Level) as ‘Not Requested’ as per the survey protocol
for ODiN. Therefore, it is assumed that these travelers with trip ’Motive’ as Education and ’Purpose’ as
Educational course in ODiN data are performing trips for Primary education.

𝑆𝑝𝑖 𝑗 represents the utility of traveler living in PC4 zone 𝑖 from choosing PC4 𝑗 to perform primary education
level trips. It is as follows:

𝑆𝑝𝑖 𝑗 = 𝛽𝑝 ln(𝑃 𝑗 ) + 𝛽𝑐 ln(𝑐𝑖 𝑗 ) +
2∑︁
𝑚=1

𝛽𝑚 · 𝑀𝑚 · ln(𝑐𝑖 𝑗 ) +
4∑︁
𝑖=1

𝛽𝑖 · 𝐼𝑖 · ln(𝑐𝑖 𝑗 ) + 𝛽𝐴 𝑗 ln(
∑︁
𝑘≠ 𝑗

𝑃𝑘
𝑐 𝑗𝑘

) (4.3)

Here, 𝑃 𝑗 is the number of primary education enrollments in PC4 zone 𝑗 . 𝑀𝑚 is the Migration background 𝑚
interacting with travel cost 𝑐𝑖 𝑗 . 𝛽𝑚 captures the interaction effects. Travelers are divided into three groups:
Dutch (reference level), Western, and Non-Western Migration. These three groups are dummy-coded into
two levels.
The rest of the variables are similar to the ones in HBM trips (eq. 4.1)

• Secondary and Above Education Level location choice

It consists of travelers who completed ‘Basic education’ (primary) and above in the Opleiding column of
the ODiN data column.

For education trips, the number of trips available for each education level after the primary level was very
low compared to the rest of the trips (table 4.3). Hence, these trips were combined to form the purpose
of ’Secondary education and above.’ In these trips, travelers with attained education levels (Opleiding) in
ODiN data at secondary (VMBO, HAVO, VWO), vocational (MBO), and higher education (HBO, WO).

𝑆𝑠𝑖 𝑗 represents the utility of traveler living in PC4 zone 𝑖 from choosing PC4 𝑗 to perform secondary education
level trips. It is as follows:

𝑆𝑠𝑖 𝑗 = 𝛽𝑠 ln(𝑆 𝑗 ) + 𝛽𝑐 ln(𝑐𝑖 𝑗 ) +
2∑︁
𝑚=1

𝛽𝑚 · 𝑀𝑚 · ln(𝑐𝑖 𝑗 ) +
4∑︁
𝑖=1

𝛽𝑖 · 𝐼𝑖 · ln(𝑐𝑖 𝑗 ) + 𝛽𝐴 𝑗 ln(
∑︁
𝑘≠ 𝑗

𝑆𝑘
𝑐 𝑗𝑘

) (4.4)
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Here, the utility specification is the same as that for primary education trips, except for 𝑆 𝑗 as the zone size
measure to ensure that only enrollments at the relevant education level are considered for this trip purpose.
𝑆 𝑗 is the number of secondary and higher education enrollments in PC4 zone 𝑗 . These include Secondary
Education (VMBO, HAVO, and VWO), vocational education (MBO), and higher education (HBO and WO).
Figure E.1 in Appendix E provides an overview of how these levels are related.

4.7. Sampling of Destination alternatives
Including all zones in the study area in the choice set is neither a realistic representation of how travelers choose
destinations nor practical, in terms of computational efficiency. It is widely understood that travelers do not
evaluate such a large number of alternatives when selecting a destination. They tend to automatically eliminate
destinations that are too far from their origin zone (Bernardin et al., 2018). Hence, the sampling of destinations is
required. Sampling alternatives requires making two key decisions. First, determining the appropriate choice set
size, and second, selecting an adequate sampling method.

4.7.1. Determination of Choice set size
Regarding the appropriate choice set size, Guevara et al. (2016) presented a method based on a Monte Carlo
experiment to determine the set size based on the stability of parameter estimates, both the average and standard
deviation, suitable for various models, including the RRM, MEV logit mixture, and logit models. Specifically,
Guevara et al. (2016) varied the choice set sizes (𝐽) and for each 𝐽, sampled K times. They then estimated the
mean parameter values ( ¯̂𝛽) and their standard deviations as follows:

¯̂𝛽 =
1
𝐾

𝐾∑︁
𝑘=1

𝛽𝑘 (𝐽) and �̂�𝛽 =

√√√
1

𝐾 − 1

𝐾∑︁
𝑘=1

(
𝛽𝑘 − ¯̂𝛽

)2

This approach helps identify an appropriate choice set size for the given travel survey data based on the stability
of the parameter estimates. This was also applied by Mauad and Isler (2024) in a destination choice model for
home-based work trips in São Paulo, Brazil. Both Guevara et al. (2016) and Mauad and Isler (2024) use 30
iterations (K = 30) for each sample size. This research too adopts the same methodology.
In this study, the choice set size is varied from 5 to 50 destination alternatives. For each choice set size, the mean
beta values and standard deviations are calculated across 30 iterations for the model specifications enlisted in
Section 4.6. Although both statistically significant and non-significant parameters are included in the 30 iterations
(using different random seeds), only the statistically significant parameters from the full choice set are plotted in
the results analysis (Chapter 5).

4.7.2. Stratified Importance Sampling
Concerning the second decision on the sampling method, this study uses a variant of the Stratified Importance
Sampling (SIS) method adapted from Bradley et al. (1998). As illustrated in figure 4.6, for each origin zone,
destinations are chosen based on their distance from the origin PC4 zone and the destination’s attraction size
relevant to the trip purpose.
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Figure 4.6: Stratified Importance sampling for a given origin PC4 zone representing the actual distribution of trip destinations based on both
distance and ’size’ of destinations

In this stratified sampling method, adapted from Bradley et al. (1998), destinations are chosen based on their
distance from an origin PC4 zone and their attraction size, such as employment or enrollment, depending on the
trip purpose. The sampling approach is divided into distinct distance thresholds: the 20th percentile distance,
labeled D1, and the 60th percentile distance, labeled D2. D1 represents closer destinations, whereas D2 represents
an intermediate range. Zones beyond D2 are considered to be the farthest destinations.
Attraction size further stratifies the destinations within these distance ranges. Median employment levels, referred
to as S1 and S2, are calculated separately for destination zones between D1 and D2, and for those beyond
D2. Attraction size categories vary by trip purpose, using total employment for work, relevant education level
enrollments for education purposes, and retail & service employment for HBM trips. S1 represents the median
employment size within the D1 to D2 distance band, whereas S2 is the median size for zones farther than D2.
For each sample size, samples are drawn from different strata to mirror the actual distribution of tour destinations
in terms of distance and size. Specifically, 20% of the destinations are chosen from zones closer than D1, 20%
from zones between D1 and D2 with employment less than S1, 20% from the same distance band with employment
greater than S1, 20% from zones beyond D2 with employment less than S2, and 20% from the farthest zones with
employment exceeding S2. By reflecting proximity and attractiveness, this variant of SIS ensures one possible
realistic representation of destination choice sampling.
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4.8. Assessing Impact of SC&AE on temporal transferability

Figure 4.7: Methodology Overview of Validation Phase (SQ4)

Figure 4.7 illustrates the core methodology used to assess the impact of SC&AE on the temporal transferability of
destination choice models. The base utility specification designed in section 4.6 by using all the variables selected
in Section 4.2 , except for the SC&AE parameter. Two models (one with base utility and the other inclusive of
SC&AE) are estimated using data from 2018 (base year) and 2022 (forecast year) for each trip purpose. The
2018 model parameters are then applied to 2022 data and compared with models re-estimated on 2022 data.
The comparison involves four measures across three categories: (1) Transfer Index, (2) Percentage of correct
predictions and other measures, (3) Discriminative ability, and (4) Fitting Factor.

4.8.1. Selection of Performance Indicators
The parameter estimation of discrete choice models is based on the Maximum likelihood principle, which is a
statistical method to estimate model parameters by finding values that maximize the likelihood of observing the
given data (Bunch, 1987). Hence, log-likelihoods are commonly used to assess the explanatory power of discrete
choice models. Therefore, the first transferability test is a statistical test (Transfer Index), whose calculation is also
based on the log-likelihoods of the models estimated across the forecast horizon.
Because these models are used as predictive tools, it is important to quantify or translate how statistical test
performance translates into performance in terms of the model’s practical use. Therefore, the second category to
assess the impact is Predictive measures such as % Correct predictions.
However, discrete choice models are probabilistic models, not deterministic. Discrete choice models, such as the
Multinomial Logit, predict the probability of choosing an alternative, not the actual choice itself (Hauser, 1978).
Hence, other measures, such as the Fitting factor and Prediction clarity, are required to assess the quality of the
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probabilistic predictions.

Transfer Index (TI)
Statistical tests in the early literature were used to test the extent of the model transferability (Fox et al., 2014).
This includes the Transfer Index (TI). Developed by Koppelman and Wilmot (1982), this index measures the
predictive accuracy of a transferred model compared to a locally estimated model. In the context of this research,
the 2018 ODiN Data is the Base year sample, and the 2022 ODiN Data is the Transfer year sample and disaggregate
equivalent of a gravity model is the simple reference model. In this study, the disaggregate equivalent of a gravity
model was chosen as a reference model because destination choice models are often considered a more realistic
alternative to traditional aggregate approaches such as the gravity model because they are based on theories of
individual behavior and do not rely on physical analogies and MNL is the simplest form of the destination choice
model (de Dios Ortúzar and Willumsen, 2011). The utility specification of the disaggregate equivalent of a gravity
model consists of only the travel impedance and zonal size measure. Hereafter, 2018 is used to reference the base
year sample and 2022 for the transfer year sample.

A transferred model, estimated using the 2018 sample data, is then applied to the 2022 sample data. The index
quantifies the extent to which the transferred model (using parameters estimated from the 2018 sample) outperforms
the locally estimated simple reference model (using parameters estimated from the 2022 sample) for the choices
observed in 2022. The upper limit of TI is one, indicating that the accuracy of the transferred model matches that
of the 2022 locally estimated model. If the index shows negative values, the transferred model performs worse than
the 2022 estimated simple reference model (Parady et al., 2021). Although this index does not strictly determine a
pass/fail outcome, it offers a comparative measure of the model’s transferability (Fox et al., 2014). The index is
calculated as follows:

𝑇 𝐼22 (𝑀18) =
𝐿𝐿22 (𝑀18) − 𝐿𝐿22 (𝑀ref

22 )
𝐿𝐿22 (𝑀22) − 𝐿𝐿22 (𝑀ref

22 )
(4.5)

where:
𝐿𝐿22 (𝑀ref

22 ): Log-likelihood of the simplistic reference model for the 2022, in this case, A disaggregate equivalent
of a gravity model in this study

𝐿𝐿22 (𝑀18): Log-likelihood for the model (using parameters estimated on the 2018 ODiN sample) estimated on
the 2022 ODiN data

𝐿𝐿22 (𝑀22): Log-likelihood for the model estimated directly on the 2022 ODiN data.

% Correct Predictions
This measure evaluates the accuracy of the model by calculating the ratio of correct predictions to the total number
of observations, expressed as a percentage. The alternative to which the model assigns the highest probability
among all alternatives in the choice set is the predicted choice (Parady et al., 2021).

Number of correct predictions
Total number of observations

× 100 (4.6)

∑𝑁𝑡

𝑛𝑡=1 �̂� = 𝑦

𝑁𝑡
× 100 (4.7)

where:
𝑦 is the observed choice in 2022 ODiN data (validation sample)
�̂� is the predicted choice. i.e., the choice to which the model assigns the highest probability in the choice set
𝑁𝑡 is the total number of observations
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Prediction Clearness
One of the key limitations of the above % Correct Predictions is its inability to account for the model’s discriminative
ability in its evaluation (De Luca and Cantarella, 2009). For example, in a four-choice set scenario, where the
second choice is the observed choice in the data, two models giving fractions of (15%, 35%, 25%, 25%) or
(5% 85%, 5%, 5%) are considered the same on this indicator. However, it is clear that the 2nd model is much
better at distinguishing the right choice. Therefore, this study includes this indicator to overcome this limitation.
Considering a threshold for assigned probability, this indicator has three measures based on binary logic: (a) %
Clearly right (%CR), where the observed choice is assigned a probability above the threshold. (b) % Clearly wrong
(%CW), where any other alternative in the choice set, other than the observed choice, is assigned a probability
above the threshold. (c) % Unclear (%UC), counting the choices assigned neither clearly right nor clearly wrong
(De Luca and Cantarella, 2009). These three indicators are given as follows:

%𝐶𝑅 =
100
𝑁𝑡

𝑁𝑡∑︁
𝑛𝑡=1

𝐶𝑅𝑛𝑡 (4.8)

where:

𝐶𝑅𝑛𝑡 =

{
1 if �̂�(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) > 𝑡
0 otherwise

(4.9)

%𝐶𝑅 =
100
𝑁𝑡

𝑁𝑡∑︁
𝑛𝑡=1

𝐶𝑊𝑛𝑡 (4.10)

where:

𝐶𝑊𝑛𝑡 =

{
1 if �̂�(!𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) > 𝑡
0 otherwise

(4.11)

%𝑈𝐶 = 100 − (%𝐶𝑅 + %𝐶𝑊) (4.12)

Setting the threshold 𝑡 for the clearness of prediction is a modelling decision. In research, the general thumb of the
rule is to keep the threshold "considerably" larger than 𝑐−1, 𝑐 being the choice set size. However, there is no clear
consensus on a threshold that is "considerably larger" (Parady et al., 2021). It seems logical that the idea behind
setting a threshold sufficiently high for a model is that not more than one choice should be assigned a probability
above the threshold. A general recommendation by Parady et al. (2021), in case there is no clear consensus on a
definite threshold, is to plot the results over a range of threshold values, as done by De Luca and Cantarella (2009).
In this study, a threshold range of 40% to 90% is used.

Fitting Factor (FF)
Considering the sample size, FF measures the probability that a model assigns to the observed choice on average.
It has an upper bound of 1, indicating that, on average, the model assigns a probability of 1 to the observed choice,
hence perfectly forecasting all choices in the sample (De Luca and Cantarella, 2009). If �̂�(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) is the
assigned estimated probability of the observed choice 𝑦 for observation 𝑛𝑡 then:

𝐹𝐹 =
100
𝑁𝑡

𝑁𝑡∑︁
𝑛𝑡=1

�̂�(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) (4.13)

4.8.2. Comparision of Impact Across Full and Sampled Choice set (Random and
Stratified Importance Sampling)

As noted in Section 4.7, sampling in destination choice modelling is essential for a realistic behavioral representation
and computational feasibility. Consequently, sampling errors are inevitable. To thoroughly understand the impact
of SC&AE), this study also applies the framework illustrated in Figure 4.7 not only to models estimated using SIS,
but also to models estimated with the same choice set size using random sampling. Random sampling is one of the
most commonly used methods in destination choice modelling, in addition to various variants of SIS (Kim and
Lee, 2017). This approach provides insight into how the impact of SC&AE on temporal transferability varies
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with the sampling method. Moreover, because random sampling is known to be an unrealistic method (assigning
equal probability to all possible destination alternatives in the study area), it allows us to explore how selecting
an incorrect sampling method affects the temporal transferability of DCMs, a factor not previously explored in
research.
In addition to sampled models, a full-choice estimation is performed for the three trip purposes, considering
all available alternatives without any sampling. This is done to establish an unbiased benchmark, free from
sampling-induced errors, against which the performance of sampled models could be compared. By eliminating
sampling biases, the full-choice estimation offers a clearer view of the true effects of SC&AE. It provides a baseline
for assessing how different sampling methods influence parameter estimates and temporal transferability.



5
Results

This chapter presents the results of the impact of SC&AE on the temporal transferability of destination choice
models across different trip purposes, including home-based maintenance (HBM), work locations, and education
locations. The analysis uses multiple performance indicators, such as the Transfer Index, Fitting Factor, Percent
Correct Predictions, and Clarity Analysis graphs, to evaluate the impact. Each trip purpose has a separate section,
each with two subsections each. These include (a) Parameter estimates and (b) Results for the four indicators to
evaluate the impact of SC&AE on temporal transferability. Comparisons are made between Full and sampled
choice sets (Random and stratified Importance sampling).

Additionally, at the start of each section, before elaborating on these two aspects for each trip purpose, the variation
in the average beta values and standard deviation to determine the choice set size is illustrated. The below table 5.1
summarizes the chosen choice set size for each trip purpose from the available destinations

Table 5.1: Number of available destination alternative and choice set size across trip purpose

Trip Purpose Number of available PC4 zone destinations Choice
set size

2018 2022
HBM 350 355 40
Work 363 363 45
Secondary
and above
Education

125 129 45

Primary Edu-
cation

278 282 278

Table 5.1 presents the number of available PC4 destination zones with nonzero zonal size measures and the
corresponding choice set chosen for each trip purpose. Initially, for trips, the model was estimated on the full
choice set (including all available destinations), before estimating the parameters for the corresponding choice
set size determined for sampling. As the full choice set would include all destinations, this was done to check
whether the parameter estimate was statistically significant for each trip purpose. Moreover, the SC&AE parameter
remained relatively the same, with similar statistical significance across the full and sampled choice sets. Hence,
this approach helped save time by avoiding determining the choice set size for sampling when the SC&AE
parameter was found to be statistically insignificant for the full choice set.
For primary education, the SC&AE parameter was found to be statistically insignificant in the 2018 data for the
full choice set. Hence, the method of determining the choice set size was not used for primary education trips.

In addition, the results reveal several noteworthy findings, which are elaborated in section 5.5. This section
provides an analysis on why the Transfer Index metric exaggerates the impact of SC&AE (Section 5.5.1), how

43
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accounting for SC&AE helps mitigate the loss in the Transfer Index value caused by parameter estimation errors
introduced through sampling (Section 5.5.3) and the reasons behind the inconsistent performance of SC&AE for
secondary and higher education level trip purpose (Section 5.5.2)

Finally, Section 5.6 concludes by discussing the implications of these results and their implications for destination
choice models as predictive tools for policymaking.

5.1. Home Based Maintenance
The choice set size is determined based on the stability of the parameter estimates, both the average and the
standard deviation, as described in Section 4.7.1. Figure 5.1 illustrates the variation in average beta values for
Stratified Importance Sampling (SIS).

Figure 5.1: Mean Beta variation for Base Utility+SCAE (30 iterations/ choice set, HBM 2018, Stratified Importance Sampling)

As shown in Figures 5.1, Jobs, SC&AE, and the interaction between the upper-middle income group and travel
time are stable across all choice set sizes. The Travel Time parameter stabilizes after a choice set size of 20, as
indicated by the decreasing slope. By the choice set of size 30, SIS starts achieving values closer to -2.3, the
parameter estimate for the full choice set.

Another important criterion for determining the appropriate choice set size is the stability of parameter standard
deviations. By examining the standard deviations across different choice set sizes, we can identify the point at
which stability is achieved. Because not all parameters will behave the same, Guevara et al. (2016) recommend
prioritizing the stability of the least stable (or "worst behaving") parameters when determining the optimal choice
set size. Figure 5.2 illustrates the standard deviations of each parameter across 30 iterations for various choice set
sizes in the Base Utility+SC&AE model. By focusing on the parameters with the highest variability, the most
appropriate choice set size can be identified based on when these parameters stabilize.
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Figure 5.2: Standard Deviation variation for Base Utility + SCAE specification (30 iterations/ choice set, HBM 2018, Stratified Importance
Sampling)

As shown in Figure 5.2, there is a significant reduction in the standard deviations of the Travel Time, the Income
groups, and SC&AE parameters after the choice set size reaches 20, indicating a greater stability beyond this
point. This trend aligns with the observations from the earlier plot of the average parameter values (Figure 5.1).
Additionally, the standard deviations for the least stable parameter, travel time, decreased further after the choice
set size reached 30. For the second least stable parameter, the income group interaction with travel time drops
further for 40 alternatives. Considering the behavior of the second least stable parameter, the interaction of the
Upper Middle-income group with travel time, a choice set size of 40 alternatives seems most appropriate for
home-based maintenance trips
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5.1.1. Parameter Estimates
Table 5.2 presents the parameter estimates for the full and sampled choice sets.

Table 5.2: Estimated Betas, HBM (2018, 2022 ODiN), Full vs. 40 Sampled Choice sets (RS and SIS)

Estimated Betas, HBM (2018, 2022 ODiN), Full vs 40 Alt Choice set (RS and SIS)
2018 2022

Full 40 RS 40 SIS Full 40 RS 40 SIS
Note Name Parameter Values

(t-test values)
Parameter Values

(t-test values)

Parameters for
logarithmic values

Jobs 0.98
(26.42)

1.08
(22.92)

1.11
(23.24)

0.94
(24.91)

1.02
(19.73)

1.01
(21.75)

SCAE -1.40
(-10.46)

-1.35
(-7.17)

-1.60
(-8.56)

-1.69
(-13.70)

-1.66
(-9.19)

-1.77
(-10.55)

Travel time -2.30
(-34.37)

-3.10
(-17.36)

-2.74
(-16.61)

-2.41
(-38.32)

-2.95
(-18.39)

-2.75
(-18.85)

Income Groups

Middle Income
Group as

reference level

Lower Middle In-
come x Travel time

-0.138
(-1.757)

0.052
(0.22)

-0.33
(-1.38)

-0.137
(-1.72)

-0.73
(-3.05)

-0.91
(-3.72)

Upper Middle In-
come x Travel time

-0.197
(-2.99)

0.088
(0.486)

-0.120
(-0.76)

-0.153
(-2.39)

-0.566
(-3.29)

-0.53
(-3.45)

rho square (null) 0.508 0.698 0.677 0.512 0.711 0.685

As shown in Table 5.2, all the estimates have the expected signs. Only the parameters for Jobs, Travel Time,
upper-middle income group, and SC&AE are statistically significant at the 5% level.

For SC&AE, the negative parameter value suggests that spatial competition is the dominant factor, which is
consistent with the findings of Bhat et al. (1998) for home-based shopping trips and Bernardin et al. (2009), who
used single parameters to capture the net effect of SC&AE on destination attractiveness in similar contexts. Among
the income groups, only the interaction between the upper-middle income group and travel time is significant,
yielding a negative parameter. This suggests that, relative to the middle-income group, the upper-middle-income
group exhibits a higher sensitivity to travel time for maintenance trips from home.

Comparing the parameter estimate values across the full and sampled choice sets, the SC&AE parameter value
is relatively stable across the full and two sampling methods. It is likely due to its intrinsic structure, which
includes information on Retail & service employment and Travel Time across all alternatives (equation 4.1), which
does not vary much across full and different sampling destination methods to form the choice set. Considering
the full choice set parameter value as the ground truth, as it contains all possible destinations and hence has no
sampling bias, compared to RS, the SC&AE values for SIS seem to deviate more. It has a % change of 14% in
2018 compared to RS’s 3.57%, and 4.73% in 2022 compared to RS’s 1.77%.

Comparing the rest of the parameters, in contrast to the stability of SC&AE, the Travel Time parameter experiences
a substantial increase. However, when compared to RS, SIS yields values for the Travel Time parameter that are
closer to the full choice set in both years, with an increase of only approximately 19% (versus RS’s 34%) in 2018,
and 14% (versus RS’s 22%) in 2022. The interaction parameter for the Upper-Middle Income groups with Travel
Time also exhibits a significant change, increasing from -0.153 to -0.566, an increase of approximately 270%.
Although SIS presents a slightly lower increase, it remains high at approximately 246%.

Regarding discrepancies in parameter estimates between the full and sampled choice sets, in 2018, one interaction
term between the upper-middle-income group and Travel Time, which was statistically significant at the 5%
confidence level (t-test > 1.96), becomes insignificant for both sampling methods. Conversely, in 2022, the
interaction term for the lower-income group becomes statistically significant in both sampling methods despite
being insignificant in the full choice set model. These discrepancies in terms of statistical significance suggest
possible errors in parameter estimates due to sampling
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Moreover, using sampling, the model’s rho-squared value increased by 34-39% for both years, likely reflecting
enhanced discriminatory power when limited to 40 alternatives.

5.1.2. Impact of SC&AE on temporal transferability

Transfer Index, Fitting Factor, and % Correct Predictions

Table 5.3: HBM trips: Performance Comparision on various indicators Full vs Sampled choice sets (RS and SIS)

HBM 2022 (using 2018 estimated parameters)
Full Choice Set

Indicators Base Utility Base Utility + SCAE %
Improved

Absolute gain
in TI value

TI -0.44 0.82 286.36% 1.26
Fitting Factor 0.2016 0.2068 2.59% -
%
Correct
Prediction

36.09% 36.14% 0.14% -

40 Alt Randomly Sampled
TI -1.21 0.32 126.45% 1.53
Fitting Factor 0.575 0.580 1% -
%
Correct
Prediction

70.50% 71.20% 0.99% -

40 Alt SIS
TI 0.04 0.63 * 0.59
Fitting Factor 0.538 0.545 1.39% -
%
Correct
Prediction

66.7% 66.6% -0.15% -

*This figure was unrealistically high due to the low denominator (0.04). Hence, it was not reported.

Table 5.3 compares the performance of the full choice set with that of the 40 randomly and stratified importance-
sampled alternatives. The analysis focused on the Base Utility model with and without the SC&AE parameter
using the parameters estimated from the 2018 data applied to the 2022 data.

The Transfer Index (TI) revealed a significant impact of including the SC&AE parameter. For example, in the case
of the randomly sampled choice set, the TI value without SC&AE was -1.21. This negative value indicates that the
model performed worse than the locally estimated gravity model ( simple reference model) when applied to the
2022 ODiN data. However, after including the SC&AE parameter, the TI improved to a positive value of 0.32.
This improvement suggests that the model retained 32% of the performance gain that would have been achieved by
re-estimating the Base Utility + SC&AE model using 2022 data.

Despite the significant improvement in the TI metric, improvements in other performance indicators are limited.
The Fitting Factor increased by only 1%, and the percentage of correct predictions improved by only 0.99%. A
similar pattern was observed when using the SIS and full choice sets. This discrepancy suggests that the high
impact of the SC&AE parameter on the TI may be exaggerated. This limited impact is also observed in the
prediction clearness analysis performed next for SIS (Figure 5.4).

This persistent trend of an exaggerated impact on the Transfer Index (TI) but a limited impact on other indicators is
observed across all trip purposes. To explore the source of this exaggerated impact, Section 5.5.1 presents an
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analysis of the differences in log-likelihood (LL) values among the models used in the TI calculation using HBM
trips with Random Sampling (RS) as an example.

Coming back to table 5.3, When using SIS, the TI value without the SC&AE parameter was already positive at
0.04, unlike the negative values observed with the full choice set and randomly sampled choice sets. This indicates
that, with SIS, the model using the 2018 parameters performed better in 2022 than the gravity model estimated on
the 2022 data, even without including the SC&AE parameter.

Interestingly, the percentage of correct predictions decreased slightly when using SIS. However, this metric has
limitations because it does not account for the discriminatory ability of the model. Therefore, a small decrease in
the percentage of correct predictions does not necessarily imply a negative impact on the model’s performance.
This is proven by the prediction clarity analysis, which consistently showed a positive impact below (Table 5.4).

Prediction Clearness
As the overall trend across the full and the two different sampling methods is the same, only the prediction clearness
for SIS is analyzed in this section. Figure 5.3 illustrates the effect of SC&AE on the model’s discriminative ability
across thresholds that range from 40% to 90%. With the 40 alternatives chosen through stratified sampling, the
impact of SC&AE remained consistently positive, but more limited in terms of % improvement, especially at
thresholds below 80%. This is also evident in the zoomed-in version of the clarity analysis graph, which focuses
on the "Clearly Right" predictions in figure 5.4, plotting the values in table 5.4

Figure 5.3: Clarity analysis graph for HBM Trips in 2022 Using 2018 Estimated Parameters (Stratified Importance Sampling)
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Figure 5.4: % Clearly Right for HBM Trips in 2022 Using 2018 Estimated Parameters (Stratified Importance Sampling)

Table 5.4: % Clearly Right values across thresholds for HBM (Base Utility vs Base Utility with SCAE, 40 alternatives (Stratified Importance
Sampling)

% Clearly Right (HBM 2022), y18 parameters [40 SIS]
Threshold Base Utility Base Utility+SCAE % Improvement

40% 58.02% 59.37% 2.33%
50% 53.97% 55.11% 2.10%
60% 48.89% 49.86% 1.99%
70% 44.30% 45.27% 2.20%
80% 38.14% 39.55% 3.68%
90% 28.58% 29.55% 3.40%

5.2. Work Location Choice
A sampled choice set size of 45 destinations is used to perform the model estimation and then assess the impact
of SC&AE on the temporal transferability of the destination choice model for work trips. Figures 5.5 and 5.6
illustrate the behavior of the statistically significant average beta values and their standard deviations across 30
iterations for stratified importance-sampled alternatives.
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Figure 5.5: Mean Beta variation for Base Utility + SCAE with the choice set size (30 iterations/ choice set, Work 2018, Stratified Importance
Sampling)

Figure 5.6: Standard Deviation of various parameters of Base Utility+SCAE with choice set size (30 iterations/ choice set, Work 2018,
Stratified Importance Sampling )

As shown in Figures 5.5 and 5.6, in terms of standard deviations, the travel time is the least stable parameter.
Hence, based on its stabilization, a choice set of 45 alternatives is identified as appropriate. Most other parameters
exhibit their lowest standard deviations at 45 alternatives too.
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5.2.1. Parameter Estimates
Table 5.5 presents the parameter estimates for both the full choice set and the sampled 45-alternative choice sets.

Table 5.5: Estimated Betas, Work (2018, 2022 ODiN), Full vs 45 Alt Choice set (Random and Stratified Importance Sampling)

Estimated Betas, Work (2018, 2022 ODiN), Full vs 45 Alt Choice set (RS and SIS)
2018 2022

Full 45 RS 45 SIS Full 45 RS 45 SIS
Note Name Parameter Values

(t-test values)
Parameter Values

(t-test values)
Male as reference level Female Gender x

Travel Time
-0.18
(-4.24)

-0.32
(-4.39)

-0.25
(-3.55)

-0.13
(-2.71)

-0.32
(-3.69)

-0.156
(-1.87)

Parameters for
logarithmic values

Jobs 1.14
(45.4)

1.16
(42.4)

1.16
(42.66)

1.09
(36.3)

1.12
(34.1)

1.10
(34.27)

SCAE -0.68
(-6.79)

-0.52
(-5.48)

-0.67
(-7.09)

-0.71
(-7.14)

-0.68
(-6.29)

-0.767
(-7.15)

Travel time -2.01
(-20.6)

-2.21
(-11.5)

-2.35
(-12.1)

-1.99
(-19.2)

-2.60
(-12.2)

-2.317
(-12)

Age Groups

Age group 65+ as refer-
ence level

Age 25 - 44 x Travel
time

0.57
(6.09)

0.74
(3.87)

0.68
(3.97)

0.46
(4.76)

0.90
(4.39)

0.69
(3.82)

Age 45-65 x Travel
time

0.38
(4.08)

0.55
(2.85)

0.48
(2.81)

0.30
(3.16)

0.73
(3.52)

0.45
(2.44)

Income Groups

Middle Income Group
as reference level

Low Income x Travel
time

0.323
(2.82)

0.10
(0.53)

0.428
(2.26)

0.299
(2.3)

0.49
(2.41)

0.39
(2.11)

Upper Middle Income
x Travel time

0.156
(2.62)

0.07
(0.67)

0.33
(2.98)

0.117
(1.74)

0.192
(1.60)

0.13
(1.07)

High Income x Travel
time

0.26
(3.66)

0.25
(2.01)

0.44
(3.46)

0.23
(2.73)

0.195
(1.24)

0.197
(1.37)

rho square (null) 0.215 0.32 0.31 0.211 0.319 0.304

As shown in Table 5.5, more parameters are statistically significant at the 5% confidence level than those for HBM
trips. Most parameters have the expected signs, except for the interaction between the low-income group and travel
time.

Similar to HBM, we find a negative SC&AE parameter for Work, suggesting that spatial competition dominates
the agglomeration effect in 2018 and 2022. These results are consistent with those of previous studies (Ho and
Hensher, 2016).
Comparing the value of SC&AE parameter estimates for HBM and Work (SIS), HBM trips had a more negative
parameter (-1.60 to -1.77) than Work (-0.67 to -0.76), indicating that SC&AE has a stronger influence on destination
choices for HBM trips than for work trips. This seems reasonable from the perspective of ease of switching to
alternative destinations. HBM trips, which include shopping and personal errands, often involve destinations
that are closer substitutes (e.g., multiple grocery stores or service centers within a short distance), intensifying
competition. On the other hand, work trips generally involve more specialized destinations (e.g., offices or job
locations), where alternatives are more limited, resulting in weaker spatial competition. Additionally, travelers
performing HBM trips have a high level of ease of switching because they have no mandate or commitment to
stick to a specific shopping or service destination to perform maintenance activities. However, employment is a
long-term decision with a longer commitment period, and switching jobs is not as easy as switching destinations to
perform maintenance activities. Hence, the spatial distribution of opportunities has a lower influence on destination
choices for work trips than for HBM trips.
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Analyzing the interaction parameters reveals that the signs for income groups higher than middle income (upper-
middle and high income) are as expected. Typically, as income increases, individuals tend to be less sensitive to
travel time and are more willing to travel further; this trend was also observed by Bhat et al. (1998) for home-based
work trips in the Boston Metropolitan Area, USA.

Given this reasoning, the positive sign and relatively high value for the low-income group is unexpected. This
suggests that in the MRA, travelers in low-income groups are more willing to travel further than those in higher-
income groups. Two factors may have played a role in this unexpected finding. One is the MRA’s transportation
system and the second is the spatial distribution of relevant employment opportunities.

First, unlike car-oriented developed urban areas, a typical feature of American cities such as the Boston Metropolitan
Area, the MRA has a public transport-oriented infrastructure. This accessibility reduces reliance on private
vehicles. In contrast, in car-oriented cities, the cost of owning and operating a vehicle may limit low-income
travelers to shorter distances.
Second, the concentration and specialization of employment opportunities in the MRA may require greater travel
distances for low-income workers. Jobs in specialized sectors or lower-income occupations are often located in
areas distant from residential neighborhoods. Consequently, low-income individuals may need to travel further to
access employment opportunities, even if this involves long commutes.

Comparing the values and statistical significance of the income parameters across both years reveals that while the
high-income group parameter remains statistically significant in both years for the full choice set, the parameter
for the upper-middle income group becomes statistically insignificant in 2022. This shift may indicate changing
dynamics in travel behavior between 2018 and 2022.

Similar to HBM, the rho-null squared value in sampling increases here as well, over 48–50% in both years for
work location choice, likely reflecting increased discriminatory power due to the limited choice alternatives in the
sampled choice set.
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5.2.2. Impact of SC&AE on temporal transferability

Transfer Index, Fitting Factor, and % Correct Predictions

Table 5.6: Work trips: Performance Comparison on various indicators Full vs. Sampled choice sets (RS and SIS)

Work 2022 (using 2018 estimated parameters)
Full Choice Set

Indicators Base Utility Base Utility + SCAE %
Improved

Absolute gain
in TI value

TI 0.54 0.73 35.2% 0.19
Fitting Factor 0.0263 0.0272 3.42% -
%
Correct
Prediction

7.93% 7.99% 0.75% -

45 Alt Randomly Sampled
TI 0.437 0.662 52.01% 0.22
Fitting Factor 0.147 0.152 3.61% -
%
Correct
Prediction

26.06% 26.59% 2.03% -

45 Alt SIS
TI 0.48 0.71 47.91% 0.23
Fitting Factor 0.138 0.143 3.62% -
%
Correct
Prediction

25.28% 25.59% 1.23% -

Table 5.6 presents the results for 2022 work trips using the 2018 estimated parameters across full-choice, random
sampling (RS), and stratified importance sampling (SIS) methods. Compared to HBM trips, including SC&AE
in work trips exhibits smaller improvements in the Transfer Index (TI) and other indicators, reflecting weaker
SC&AE impacts on temporal transferability for this trip purpose.
For the full-choice set, including SC&AE improves the TI from 0.54 to 0.73, representing a 35.2% increase. While
this demonstrates a positive impact of SC&AE, the improvement is less dramatic than the jump observed for
HBM trips (-0.44 to 0.82). Other indicators, such as the Fitting Factor and Percentage of Correct Predictions, also
showed limited improvements (3.42% and 0.75%, respectively), further supporting the limited impact of SC&AE
on the temporal transferability for work trips.
In the random sampling approach, TI increased from 0.437 to 0.662 with SC&AE, showing better transferability
than that observed for HBM trips, where TI remained highly negative (-1.21 to 0.32).
With SIS sampling, the TI improves from 0.48 to 0.71, a 0.23 increase in absolute value, less than that for HBM
using SIS (0.59). Notably, the Percentage of Correct Predictions shows a gain of 1.23% with SC&AE, in contrast
to the slight decline (-0.15%) for HBM trips.
Interestingly, although a similar trend of exaggerated impact by TI and limited impact on other indicators is also
observed here, unlike HBM trips where SC&AE had the most significant impact on TI, the improvements for work
trips were more balanced across TI, Fitting Factor, and Correct Predictions. This suggests that, while SC&AE
enhances transferability for work trips, its influence is less dominant than that of HBM trips. This is also reflected
in the improvements due to SC&AE in % Clarity analysis presented next.
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Prediction Clearness
in figure 5.8. For HBM trips (figure 5.4), the gap between the Base Utility and Base Utility + SC&AE specifications
is more noticeable for HBM trips, indicating a stronger impact of SC&AE on HBM trips. By contrast, for work
trips, the two curves become closer as the threshold increases.

Figure 5.7: Clarity analysis graph for Work Trips in 2022 Using 2018 Estimated Parameters (Stratified Importance Sampling)

Figure 5.8: % Clearly Right graph, for Work Trips in 2022 Using 2018 Estimated Parameters (Stratified Importance Sampling)
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Table 5.7: % Clearly Right values across thresholds, for Work Trips in 2022 Using 2018 Estimated Parameters (Stratified Importance
Sampling)

% Clearly Right (Work 2022), y18 parameters [45 SIS]
Threshold Base Utility Base Utility + SCAE % Improvement

40% 8.88% 9.83% 10.65%
50% 6.52% 7.04% 8.06%
60% 4.52% 4.89% 8.14%
70% 3.00% 3.15% 5.26%
80% 1.94% 2.00% 2.70%
90% 0.58% 0.74% 27.27%

The values of %Clearly Right for Work across thresholds (0.74% to 9.83%) are far lower than those for HBM
(29.55% to 59.37%), as shown in Table 5.4. This is because the work destination choice model has much lower
range of rho-square values (0.301–0.304) than HBM trips (0.685–0.698). Naturally, the % improvement becomes
higher due to the low values in % Clearly Right across thresholds. However, in terms of absolute change, the
change in values due to SC&AE for Work is lower than that for HBM trips.

5.3. Secondary and higher education
For destination choices related to secondary and higher education trips, the results are presented using a 45-
alternative choice set. Figures 5.9 and 5.10 illustrate the behavior of statistically significant average beta values
and their standard deviations over 30 iterations for the Base Utility + SC&AE model specifications.

Figure 5.9: Mean Beta variation for Base Utility + SCAE with the choice set size (30 iterations/ choice set, Secondary+ 2018, Stratified
Importance Sampling)
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Figure 5.10: Standard Deviation variation of various parameters for Base Utility + SCAE with choice set size (30 iterations/ choice set,
Secondary+ 2018 Stratified Importance Sampling)

As shown in Figures5.9 and 5.10, in terms of standard deviations, travel time is the least stable parameter. Ideally,
40 should have been the choice set size, but the standard deviation rose again for 45 alternatives. Hence, a choice
set of 45 alternatives is identified as appropriate, as the standard deviation decreases from that point on.

5.3.1. Parameter Estimates
Table 5.8: Estimated Betas, Secondary and above (2018, 2022 ODiN), Full vs 45 Alt Choice set (Random and Stratified Importance Sampling)

Estimated Betas, Secondary and above (2018, 2022 ODiN), Full vs 45 Alt Choice set (RS and SIS)
2018 2022

Full 45 RS 45 SIS Full 45 RS 45 SIS
Note Name Parameter Values

(t-test values)
Parameter Values

(t-test values)

Parameters for
logarithmic values

Secondary+ Enroll-
ments

0.42
(7.14)

0.397
(6.6)

0.399
(6.822)

0.49
(6.08)

0.46
(5.6)

0.49
(6.28)

SCAE 0.62
(4.33)

0.67
(4.55)

0.72
(4.61)

0.40
(2.07)

0.535
(2.73)

0.48
(2.51)

Travel time -1.70
(-13.8)

-1.74
(-8.44)

-1.97
(-7.77)

-1.78
(-11.7)

-1.94
(-8.71)

-1.89
(-7.13)

Migration Background Groups
Dutch as reference level Non Western x Travel

time
0.25

(2.11)
0.36

(2.07)
0.488
(2.68)

0.13
(0.79)

0.02
(0.08)

-0.12
(-0.46)

Income Groups
Middle Income Group

as reference level
Low Income x Travel
time

0.273
(1.62)

-0.01
(-0.03)

0.38
(1.31)

0.645
(3.35)

0.74
(2.73)

0.902
(2.94)

rho square (null) 0.227 0.277 0.273 0.222 0.28 0.276
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As shown in Table 5.8, only two interaction parameters related to traveler characteristics are statistically significant
at the 5% confidence level. All parameters except SC&AE have expected signs.
Unlike the negative SC&AE parameter observed for the HBM and work trips, which indicates dominant spatial
competition, SC&AE shows a positive parameter, signaling the dominance of agglomeration effects. This result
contrasts with the findings of Sá et al. (2004), who reported a negative SC&AE parameter in their production-
constrained gravity model for university choices among secondary school graduates. However, their model focused
solely on one level post-secondary education choices, in which spatial competition may play a larger role. This
study included trips for both secondary and multiple levels of higher education levels, Thus, students have a
broader range of options for continuing education nearby in the choice set. This proximity to further educational
opportunities can make zones with abundant secondary and post-secondary institutions more attractive, hence a
positive value for dominating agglomeration effect.
Similar to work trips, the SC&AE and travel time parameters remain stable across both the full choice set and the
45-alternative sampled choice set. However, the interaction terms with travel time increase notably, with a 44
to 95% increase for the non-Western background group and a 14 to 40% increase for the low-income group by
sampling methods.

As seen in the Work and HBM models, the rho-null squared value for the sampled choice set increases as well,
rising by 22% to 27% in this case, indicating an enhanced model performance owing to the limited choice set.

5.3.2. Impact of SC&AE on temporal transferability

Transfer Index, Fitting Factor, and % Correct Predictions

Table 5.9: Secondary and Above Education trips: Performance Comparison on various indicators Full vs Sampled choice sets (RS and SIS)

Secondary and Above Education 2022 (using 2018 estimated parameters)
Full Choice Set

Indicators Base Utility Base Utility + SCAE %
Improved

Absolute gain
in TI value

TI 0.30 0.43 43.33% 0.13
Fitting Factor 0.0657 0.0632 -3.81% -
%
Correct
Prediction

14.86% 12.68% -14.67% -

45 Alt Randomly Sampled
TI -0.56 -0.05 91.07% 0.51
Fitting Factor 0.143 0.139 -2.88% -
%
Correct
Prediction

33.70% 28.26% -16.14% -

45 Alt SIS
TI -0.02 0.28 * 0.30
Fitting Factor 0.144 0.141 -1.81% -
%
Correct
Prediction

32.25% 28.62% -11.3% -

*This figure was unrealistically high due to the low denominator (0.02). Hence, it was not reported.

Table 5.9 presents the results for secondary and above education trips in 2022 using the 2018 estimated parameters
across the full-choice, random sampling (RS), and stratified importance sampling (SIS) methods. Overall, the



5.3. Secondary and higher education 58

results on the performance indicators are inconsistent; positive on the TI metric but negative on the rest of the
performance indicators. The source of this inconsistent performance is analyzed in section 5.5.2
Compared to the HBM and work trips, the improvements due to SC&AE for education trips are smaller on the TI
metric and negative on other metrics. For the full-choice set, the inclusion of SC&AE improves TI from 0.3 to
0.43, a 43.3% increase, similar to work trips. However, the absolute gains are even lower. This reflects a weaker
impact of SC&AE for secondary and above education trips. For random sampling, the TI improvement increases
from -0.56 to -0.05, a good absolute increase of 0.51, yet it is still in the negative. It shows notable declines in the
Fitting Factor (-2.88%) and the Percentage of Correct Predictions (-16.14%). This indicates that with random
sampling, including SC&AE, the model performs poorly for secondary and above education trips. These results
suggest that SC&AE has negligible relevance for secondary and above education trips.

With SIS sampling, including SC&AE, TI improves significantly from -0.02 to 0.28. This suggests that the impact
of SC&AE on temporal transferability improves with a better sampling method, a trend observed in HBM and
Work trips. This is also observed when comparing the performance on the % Clearly Right plot of Random
Sampling (figure 5.11) and SIS (figure 5.12).

Prediction Clearness
To highlight the effect of sampling methods on the temporal transferability of destination choice models and,
consequently, the impact of SC&AE on temporal transferability, this section compares the performance on the %
Clearly Right plot of Random Sampling (figure 5.11) and SIS (figure 5.12).

Figure 5.11: % Clearly Right graph, y18 parameters in 2022 (Base Utility vs Base Utility with SCAE, 45 alternatives, Random Sampling)

Table 5.10: % Clearly Right graph, for Secondary and above education trips in 2022 Using 2018 Estimated Parameters (Random Sampling)

% Clearly Right (Secondary+ 2022), y18 parameters [45 RS]
Threshold Base

Utility
Base

Utility+SCAE
% Improvement

40% 8.70% 8.33% -4.17%
50% 6.88% 6.16% -10.53%
60% 5.80% 5.07% -12.50%
70% 3.99% 4.35% 9.09%
80% 3.26% 2.90% -11.11%
90% 1.09% 0.72% -33.33%
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Figure 5.12: % Clearly Right graph, for Secondary and above education trips in 2022 Using 2018 Estimated Parameters (Stratified Importance
Sampling)

Table 5.11: % Clearly Right performance comparison (Base Utility vs Base Utility with SCAE, 45 alternatives Stratified Importance Sampling)

% Clearly Right (Secondary+ 2022), y18 parameters [45 SIS]
Threshold Base Utility Base Utility+SCAE % Improvement

40% 8.33% 9.06% 8.70%
50% 6.88% 6.88% 0.00%
60% 5.43% 5.07% -6.67%
70% 4.35% 4.71% 8.33%
80% 3.62% 3.26% -10.00%
90% 2.17% 2.17% 0.00%

A comparison of the figures and tables above indicates that, with RS, the inclusion of SC&AE leads to a decrease in
the Percentage of Clearly Right predictions across almost all thresholds. This suggests that RS may not effectively
capture the benefits of accounting for SC&AE in destination choice models for secondary and above education
level trips.
In contrast, SIS shows a relatively better performance with the inclusion of SC&AE, although the improvement is
not particularly convincing. Several factors may explain this persistent underwhelming performance.

One, as mentioned when comparing performance on the rest of the indicators in the previous section, SC&AE
might have negligible relevance for secondary and higher education trips.

Second, due to the low amount of observed data for each education level after primary education, this study
combined travelers across different education stages into a single destination choice model for secondary and
higher education trips. Such low numbers and aggregating travelers from various educational backgrounds fail
to capture the essential differences in travel behavior among students at various stages of their education. Each
educational stage comes with specific travel patterns. For example, the factors influencing destination choices
for secondary school students can differ significantly from those affecting university students, because university
students would have more autonomy and flexibility. Hence, betas will not be able to generalize well, leading to
poor model performance in explaining destination choices. This limitation is reflected in the low rho-square values
in Table 5.8 and consequently low percentages of observations assigned clearly right on the above % Clearly right
table 5.11 across all thresholds.
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While SIS demonstrates a better ability to capture the effects of SC&AE than RS, the underlying data limited in
both quality and quantity hampers the model’s performance. Consequently, it is not possible to draw definitive
conclusions about the impact of SC&AE on the temporal transferability of the destination choice model for
secondary and above education trips.

5.4. Primary education
5.4.1. Parameter Estimates

Table 5.12: Estimated Betas, Primary education (2018 ODiN), Full choice set

Estimated Betas, Primary education (2018 ODiN), Full choice set
2018

Note Name Parameter value
(robust t-test value)

Parameters for logarithmic values

Primary enrolments 0.59
(7.97)

SCAE -0.22
(-1.23)

Travel time -1.85
(-20.81)

Income Groups
Middle Income group as reference level Upper Middle Income x TT -0.206

(-2.117)
rho square (null) 0.565

Table 5.12 presents the parameter estimates for primary education trips using the full choice set with the Base
Utility + SC&AE specification. The three significant parameters have expected signs.
In the base year 2018, the parameter estimate for SC&AE is statistically insignificant, with a t-test value below the
1.96 threshold. Hence, the parameter estimation for 2022 and the rest of the analysis performed for the above trips
are not performed. Although several parameters, including the SC&AE parameter in the Base Utility + SC&AE
specification, were statistically insignificant, the model’s rho square for 2018 remains notably high, at 0.565. This
is the highest rho square achieved among all trip purposes considered in this study for the full choice set, with
HBM trips as the next highest at 0.508, followed by secondary and higher education level trips at 0.227, and work
trips at 0.215.
These results suggest that traditional modeling methods, which only incorporate travel time parameters and
interaction effects, may effectively capture location choice behavior for primary education trips and that adding
more nuanced parameters, such as SC&AE, might not be necessary.



5.5. Key Insights from Transfer Index performance Analysis 61

5.5. Key Insights from Transfer Index performance Analysis
5.5.1. Source of Transfer Index’s Exaggerated Impact

Table 5.13: TI Comparative analysis: Source of exaggerated Impact (HBM, Randomly Sampled)

GM Base Utility Base Utility + SCAE
2022

Final LL -2016.42 -2003.18 -1970.48
Gain over GM(2022) — 13.24 45.94

2022 (using 2018 parameters)
Final LL -2032.40 -2001.62
Gain over GM(2022) — -15.98 14.81
% Change in gain -220.65% -67.77%
TI -1.21 0.32
Null LL:-6828.12

Table 5.13 shows the log-likelihoods of the models used in the Transfer Index calculation of the randomly sampled
choice set for HBM. In the 2022 local estimation, the Base Utility specification shows only a modest gain of 13.24
in log-likelihood (LL) over the GM model. This limited gain likely stems from several traveler-related parameters
being statistically insignificant at the 5% confidence level (t-test value < 1.96), as detailed in Table 5.3. In contrast,
adding the SC&AE parameter yields a much larger gain of approximately 45.94 LL.

When using the 2018 estimated parameters, the Base Utility+SC&AE model still shows a gain of 14.81 LL,
reflecting a 67.77% loss compared to what could have been achieved by re-estimating the model in 2022 (45.94).
This explains the TI value of 0.32 i.e., it retains 32% of 45.94 LL, the gain over gravity model from re-estimation.
Conversely, the Base Utility model, with 2018 parameters, performs slightly worse than the GM model, but the
difference is small, only -15.98 LL. Although this difference is minor, it appears exaggerated compared to the
minimal 13.24 LL gain achieved by re-estimating the Base Utility model, leading to a percentage change in the gain
of -220.65%. This reflects how TI is calculated by comparing the loss in gains due to using base year parameter
estimates to the potential gains from re-estimation (-15.98/13.24). Because the difference in LL between the Base
Utility and GM models is small, focusing solely on TI performance can exaggerate the impact of the SC&AE
parameter.

5.5.2. Source of Inconsistent Performance of SC&AE’s impact for Secondary and
above education level

Table 5.14: TI Comparative analysis: Source of Inconsistent Impact (Secondary and Above Education Location Choice, SIS)

GM Base Utility Base Utility +SCAE
2022

Final LL -770.79 -763.82 -760.24
Gain over GM(2022) — 6.98 10.56

2022 (Using 2018 parameters)
Final LL -770.91 -767.83
Gain over GM(2022) — -0.11 2.97
% Change in gain -101.62% -71.89%
TI -0.02 0.28
Null LL: -1050.64



5.5. Key Insights from Transfer Index performance Analysis 62

To explain why the inclusion of SC&AE has a positive impact on TI for secondary and above education trips, but
fails to improve other performance measures, we need to compare the LLs of models used in the TI metric for
HBM trips (Random Sampling) presented in the previous section 5.5.1 (Table 5.13) with those for secondary and
above education trips (Table 5.14). For HBM trips, including SC&AE, achieves a TI value of 0.32, with absolute
LL gains of 45.94 for re-estimation in 2022 and 14.81 using 2018 parameters over the reference GM model. In
contrast, as seen in Table 5.14, for secondary education trips, the achievable TI value with SC&AE is similar at
0.28, but the absolute LL gains are much smaller: 10.56 from re-estimation and 2.97 using 2018 parameters over
the GM model.

Clearly, the SC&AE parameter has a much stronger impact on improving model performance for HBM trips,
as evidenced by the larger LL gains. However, because TI compares the ratios of these gains rather than their
absolute values, it presents the maximum achievable transferability for SC&AE in both cases at similar levels.
This explains why SC&AE had a positive impact on all indicators for HBM trips, yet showed a negative impact on
these same indicators for secondary and above education trips, despite demonstrating a positive effect on the TI
metric. The key issue lies in the relatively low absolute gains in the LL for secondary education trips and TI’s
reliance on the gain ratio to evaluate transferability.

5.5.3. Mitigation against parameter estimates errors due to sampling
Analyzing TI values for RS using Table 5.13 reveals that both the Base Utility and Base Utility+SC&AE
specifications experience substantial losses in log-likelihood, resulting in lower TI values compared with the
full choice set. The reason for this decline in TI performance can be better understood through a comparative
analysis of the Base Utility and Base Utility+SC&AE parameter estimates presented in Tables 5.15 and 5.16.
This comparison highlights the underlying cause of the decrease in the TI percentage and how including SC&AE
mitigates the loss in TI value.

Table 5.15: HBM: Base utility parameter estimates in 2018 and 2022, Random Sampling

Base utility: 40 RS
LogLiklihoods Parameters LL22

(y18)
TI

2018

-2032.40 -1.21

LL Null LL Final Jobs Travel
Time

Lower Mid Income
x TT

Upper Mid Income x
TT

-6912.96 -2111.45 0.92
(24.82)

-3.20
(-17.84)

0.11
(0.48)

0.09
(0.48)

2022
LLNull LL Final Jobs Travel

Time
Lower Mid Income
x TT

Upper Mid Income x
TT

-6828.12 -2003.18 0.82
(20.30)

-3.02
(-18.36)

-0.67
(-2.83)

-0.60
(-3.42)
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Table 5.16: HBM: Base utility + SCAE parameter estimates in 2018 and 2022, Random Sampling

Base utility+SCAE: 40 RS
LogLiklihoods Parameters LL22

(y18)
TI

2018

-2001.62 0.32

LL Null LL Final Jobs Travel
Time

Lower Mid
Income x TT

Upper Mid
Income x TT

SC&AE

-6912.96 -2089.28 1.09
(22.92)

-3.10
(-17.36)

0.05
(0.22)

0.09
(0.49)

-1.35
(-7.17)

2022
LLNull LL Final Jobs Travel

Time
Lower Mid In-
come x TT

Upper Mid In-
come x TT

SC&AE

-6828.12 -1970.49 1.02
(19.73)

-2.96
(-18.40)

-0.73
(-3.05)

-0.57
(-3.30)

-1.67
( -9.20)

As shown in Tables 5.15 and 5.16, the interaction between income groups and travel time for lower and upper
middle income groups in the base utility specification, which was statistically insignificant in 2018 at the 5%
confidence level, becomes significant in 2022. This results in a high loss of explanatory power when the 2018
parameters are applied to the 2022 ODiN data. In the full choice set, the model only experienced a loss of 3.13
LL, but in this case, it lost more than five times by approximately 16 LL. Compared to the potential gain from
re-estimating the model (13.24 LL), the losses increase by approximately 77% (from 143.74% in the full choice
set to 220.65%).
The base utility+SC&AE specification faces the same problem. However, the losses increase by only approximately
50% (from 18.25% to 67.77%). This instability in the statistical significance of the income group interaction
parameters may be due to sampling errors, as the Upper Middle-income parameter was statistically significant.
The lower-income parameters were insignificant for 2018 and 2022 in the full choice set, as shown in Table 5.3.
However, including the SC&AE parameter reduces the loss in the percentage change in gain by approximately
27%.

5.6. Discussion
This study is the first to validate the theory of Spatial Competition and Agglomeration Effects (SC&AE) beyond
goodness-of-fit measures typically performed for a single period. Previous studies have demonstrated that including
SC&AE parameter in destination choice models improves model fit and explanatory power, typically finding a
negative sign for the SC&AE parameter, indicating a dominant spatial competition effect. The findings of this
study are consistent with previous research, showing negative SC&AE parameters for home-based maintenance
(HBM) and work trips in both 2018 and 2022.

First, regarding the findings from the Results chapter which are consistent with previous research, HBM trips have
a more negative SC&AE parameter (-1.60 to -1.77) than Work trips (-0.67 to -0.76), indicating a stronger influence
on destination choices for HBM trips. This is because HBM trips, such as shopping and errands, involve easily
substitutable destinations with high ease of switching (e.g., multiple nearby stores) and no mandate/commitment
for travelers towards a destination, intensifying spatial competition. By contrast, work trips involve specialized
destinations with fewer alternatives and longer-term commitments, making switching less feasible. Therefore, the
spatial distribution of opportunities has a greater impact on HBM trip destinations than on Work trips.

For secondary and higher education trips, the positive SC&AE parameter suggests that agglomeration effects
dominate spatial competition. Unlike Sá et al. (2004), who found dominating spatial competition in university
choices among high school graduates in the Netherlands by focusing solely on one post-secondary education level,
this study included both secondary and multiple higher education levels. This broader range of nearby educational
options to continue education makes areas with a higher number of institutions more attractive, resulting in a
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positive value that reflects dominant agglomeration effects. For primary education trips, the SC&AE parameter in
2018 was statistically insignificant, indicating a negligible influence on destination choices. This could be due to
young children having the highest commitment period and the lowest flexibility to switch schools. Hence, the
spatial distribution of primary school opportunities has little effect on their location choices.

Addtionally, this research extends beyond evaluating SC&AE’s statistical significance in a single context by
exploring its contribution to the temporal transferability of destination choice models, i.e., their ability to maintain
predictive accuracy in subsequent forecasting years.
The findings indicate that SC&AE has a positive but limited impact on the temporal transferability of destination
choice models. This impact varies by trip purpose, being highest for HBM trips, followed by work trips, and
inconsistent for secondary and higher education trips (positive on the Transfer Index but negative on rest of the
indicators).

There are some interesting findings from these results. Notably, the Transfer Index (TI) performance metric
tends to exaggerate SC&AE’s positive impact when viewed in isolation; a closer examination of log-likelihoods
and other performance indicators (such as Fitting factor, % of correct predictions, and Clearness of predictions)
confirms that the actual impact is limited. This exaggeration occurs because TI relies solely on the ratio of gains in
log-likelihoods (LL), which can misrepresent models with small absolute gains. For example, a model with an LL
gain ratio 1

2 and another with a gain ratio of 50
100 will have the same TI value of 0.5. But clearly, the second model

is much better and will perform positively on other indicators, while the model with LL gain ratio 1
2 will perform

poorly on other indicators. Such a case was also discussed in Section 5.5.2.
Therefore, TI values should always be presented alongside other performance measures or at least be accompanied
by a comparative analysis of the log-likelihood values used in their calculation.

Observing the trend of varying impacts of SC&AE on temporal transferability by trip purpose, the impact of
SC&AE decreases with decreasing autonomy and ease of switching. For HBM trips, travelers have the highest
autonomy and ease of switching. Shoppers have no mandate or commitment to stick to a specific shopping or
service destination to perform maintenance activities. Work trips come second in terms of the ease of switching
to alternate destinations. While travelers have a high level of autonomy because only travelers of legal working
age are considered (excluding the 6–14 age group), the ease of switching destinations is lower than for HBM
trips. Employment is a long-term decision with a higher commitment period, and switching jobs is not as easy as
switching destinations to perform maintenance activities. However, there is still some flexibility as individuals can
choose their commitment period based on personal preferences and job market conditions.

For education trips, the number of trips post-filtering is relatively low compared to work and HBM trips.
Consequently, the parameters have less room for statistical significance (i.e., t-test values above 1.96). Moreover,
because of the relatively low number of observations for each attained education level for travelers, travelers
with different attained education levels were combined for secondary and higher education trips. Hence, the
destination choice model developed for this trip purpose fails to capture the important differences in travel behavior
among students at various stages, undermining the results. Therefore, the impact of SC&AE on the temporal
transferability of education trips should be considered inconclusive. However, considering autonomy and ease of
switching, the impact is likely to be limited, more so than for the HBM and work trips. This is because travelers
(mostly likely students) must continue attending the same educational institution until they complete the required
years or criteria for attaining a certain degree, effectively "locking them in" for a fixed period, irrespective of their
preference, unless in exceptional circumstances.
Lastly, for primary education trips, autonomy and flexibility are the lowest, as all travelers are young children and
primary education is mandatory. Therefore, they are committed to a fixed educational path that is even longer
than secondary education. Hence, the spatial distribution of primary school opportunities has little effect on their
location choices, resulting in insignificant SC&AE parameter.

Additionally, the choice of sampling method affects the impact of SC&AE on temporal transferability. Models
using Stratified Importance Sampling (SIS) show higher TI values than those using Random Sampling (RS), with
and without the SC&AE parameter. While the initial performance boost from SIS reduces the absolute gain in the
TI value from including SC&AE compared to RS, SIS allows models to achieve higher overall TI values after
including SC&AE.
Moreover, SC&AE offers protection against errors in parameter estimates due to sampling, as seen in section 5.5.3,
where when randomly sampled, income group parameters turned insignificant in 2022 for HBM and cause a high
loss in TI at a % change in log-likelihood gain of -220.65%. Even though the same phenomenon occurred even
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after including SC&AE, the% change in the log-likelihood gain was limited to only -67.77%. Since sampling is
almost necessary when dealing with a high number of destinations, this feature of SC&AE is particularly valuable,
and it might not have been revealed if only its impact on explanatory power in a single year had been studied.

Overall, SC&AE had a limited but positive impact on the model’s temporal transferability. Given the minimal
effort required to include these effects in an MNL model because it reuses existing information such as zonal size
measure and travel impedance, SC&AE provides technically "free" robust log-likelihood gains, especially for trips
where travelers have high autonomy and low cost of switching destinations.

(Implications due to methodological choices in data processing are discussed in Section 4.5 in order to keep this
section concise. Additionally, there is an error in ODiN Data Processing assumption for HBM trips. Please refer
to the footnote at the end of that section)

From a policy perspective, the results suggest that including SC&AE in destination choice models enhances their
effectiveness as predictive tools by improving temporal transferability. Models that include SC&AE maintain
predictive accuracy over time and are particularly valuable for scenarios in which travelers have significant
autonomy and flexibility, such as discretionary activities such as shopping and maintenance trips. This added
robustness stems from SC&AE’s ability to address two fundamental flaws of Multinomial Logit (MNL) models that
limit their behavioral accuracy in representing travelers’ destination choices: (1) the Independence of Irrelevant
Alternatives (IIA) assumption, and (2) neglecting the influence of the spatial distribution of opportunities. By
including information about all alternative destinations, SC&AE attempts to tackle both issues, allowing MNL
models to become more behaviorally representative while retaining computational simplicity.

The results of this study have broader implications for transport modeling. Traditionally, to overcome the limitations
of Multinomial Logit (MNL) models, researchers have relied on more complex disaggregate models that are
computationally intensive and often impractical for large datasets. However, this study demonstrates that simpler
models such as MNL can overcome their flaws by including behavioral theories such as Spatial Competition and
Agglomeration Effects (SC&AE), thereby improving behavioral representation while retaining computational
efficiency.

By focusing solely on whether a model explains or predicts behavior well, we may have been asking the wrong
questions. Instead, we should ask, "Is my model an accurate representation of the system it is supposed to
represent?". In transport modelling, this usually pertains to an accurate behavioral representation. By addressing
this fundamental question and bringing models closer to accurately reflecting the system, we automatically enhance
their explanatory and predictive capabilities applicable to the context. For example, Stratified Importance Sampling
(SIS) in destination choice models improved the temporal transferability for all trips in this study, even without
SC&AE, when compared to Random Sampling (RS). This is likely because SIS better represents how travelers
might form their choice sets than RS does.

The findings from this study show that we do not necessarily need to rely solely on more complex models; there is
another way: using theories to enhance simpler models. To achieve this, we need to look beyond the transport
domain and draw insights from related fields, such as psychology or other behavioral sciences. It may be time
for transport modelers to use relevant psychological theories to make transport models better representations of
how travelers make choices. This approach does not mean we should focus only on simple models; at a certain
point, these models will reach their limit in how much they can be improved using behavioral theories. Rather, this
approach offers another pathway to improve transport models, allowing us as transport modelers to make complex
models computationally feasible and use data more efficiently rather than relying primarily on advancements in
computational science. The results from this study are certainly encouraging.
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Conclusion, Limitations, and

Recommendations

6.1. Conclusion
This study aimed to assess the validity of SC&AE in explaining destination choices more holistically, thereby
justifying its inclusion in destination choice models (DCMs). It uses a case study of the Metropolitan Region
of Amsterdam (MRA), focusing on work, education, and home-based maintenance trips arriving in the MRA
in 2018 and 2022. To achieve this, the study goes beyond traditional goodness-of-fit statistics by evaluating the
contribution of SC&AE to temporal transferability, thus taking a step toward a more comprehensive approach for
validating SC&AE. Specifically, it compares the performance of a model specification excluding SC&AE effects
with one that includes them, using various performance indicators such as the Transfer Index, Fitting Factor, %
Correct predictions, and Prediction Clearness to assess the models.

Accordingly, the main research question was formulated as follows:

How do SC&AE affect the temporal transferability of destination choice models ?

As analyzed in Chapter 5 Results and subsequently discussed in Section 5.6, SC&AE has a positive but limited
impact on the temporal transferability of destination choice models. This impact varies by trip purpose, with the
highest being for HBM trips, followed by work, and inconsistent for secondary and above education levels. For
primary education, the SC&AE parameter was found to be statistically insignificant in 2018; thus, the analysis was
cut short at this point for primary education trips.
Observing this trend of varying impacts of SC&AE on temporal transferability by trip purpose, when considering
autonomy and the ease of switching to alternative destinations, the impact of SC&AE on temporal transferability
decreases with decreasing traveler autonomy and ease of switching destinations; it is highest for HBM trips,
where travellers have high autonomy and flexibility, less so for work trips due to longer commitment periods, and
inconsistent (positive on the Transfer Index but negative on rest of the indicators) for secondary and above level
education trips, where travellers are effectively committed to institutions until they complete their education. For
primary education trips, autonomy and flexibility are the lowest, thus explaining the statistically insignificant
estimated SC&AE parameter.

Four sub-questions were formulated to answer the main research question. The methodology outlined in Figure 4.1
consists of phases of Exploration, Design, and Validation, which are applied to address the sub-questions in a
structured manner. The sub-questions and their respective answers are as follows:

1. What factors affect the temporal transferability of destination choice models? (Section 2.4, Chapter 5)

From previous research, the key factors affecting the temporal transferability of destination choice models
include Regional characteristics (e.g., infrastructure changes and population growth) that introduce new
behaviors not present in the previous context and, hence, not captured in the original model, Past travel
behavior (inertia), where stable patterns maintain the model’s relevance over time. Forecasting horizon is

66
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also expected to impact transferability, as longer horizons increase exposure to significant behavior changes,
though the evidence is inconclusive. Overfitting reduces transferability, as models overly reliant on specific
contexts lose predictive power with changing conditions. Model specification improves stability when
using more socioeconomic characteristics of travellers to explain choices, the IIA assumption of MNL
models potentially reduces transferability by leading to unrealistic predictions in the presence of correlated
alternatives, although the findings were inconclusive.

Moreover, the findings from this study (Chapter 5) suggest that the Choice of Sampling Method also
affects the temporal transferability of the destination choice models. Models using Stratified Importance
Sampling (SIS) show higher TI values than those using Random Sampling (RS) with and without the SC&AE
parameter. Overall, the findings indicate that improving the Behavioral representation of destination
choice models positively impacts their temporal transferability.

2. How do existing destination choice models incorporate Spatial Competition & Agglomeration Effects (SC&AE),
and what is the significance of these effects on destination choices? (Section 2.3)

Existing destination choice models include SC&AE primarily through the Hansen-type accessibility index
which includes travel impedance and varies the attraction factor based on the trip purpose. For example,
total jobs for work trips, service and retail employment for home-based maintenance (HBM) trips, and
total student enrollment for educational trips. A negative estimated value of the index indicates that spatial
competition dominates, whereas a positive value suggests that agglomeration effects are more dominant.
If the parameter value is zero, it indicates that both are equally strong or that both are absent. Some
studies segregate this net effect-capturing single index into two separate accessibility factors: one for
complements (different industries/sectors) and another for substitutes (similar industries/sectors). This
approach helps identify the sources of spatial competition and agglomeration, which vary according to the
trip purpose. Previous research finds that competition forces arise from complements for work purposes and
from substitutes for HBM and HBO purposes.
Across all trip purposes, including SC&AE improves model fit, with spatial competition effects (indicated
by negative parameters) generally dominating, although the intensity varies; for instance, spatial competition
is stronger for Home-based other (HBO) trips than for HBM trips. For all trip purposes, spatial competition
effects dominate (negative parameter), albeit varying in intensity and source. For example, in one study,
spatial competition was stronger for HBO trips than for HBM trips. Overall, all studies show a significant
SC&AE parameter and improvement in goodness of fit owing to the relaxation of the IIA assumption.

After developing the utility functions (Section 4.6) for each trip purpose by selecting variables (Section
4.2) based on the findings from the Exploration phase, the results in the validation phase answers the third
subquestion:

3. How do SC&AE impact the destination choices of travellers in the study area, and how do they differ across trip purposes?
(Chapter 5 Results, Section 5.6)

SC&AE influences destination choices differently depending on the trip purpose within the study area. For
home-based maintenance (HBM) and work trips, the SC&AE parameter is negative, indicating that spatial
competition dominates. This effect is stronger for HBM trips (with values between -1.6 and -1.77) than for
work trips (-0.67 to -0.76). This difference likely arises because work trips involve long-term commitments,
which reduce destination flexibility.
For secondary and above education level trips, agglomeration effects dominate (positive parameters). This
study included both secondary and above education levels. Hence, the broad range of nearby educational
options to continue education makes areas with a higher number of institutions more attractive. For primary
education trips, the estimated SC&AE parameter was statistically insignificant in 2018; therefore, no further
analysis was conducted. The statistically insignificant parameter indicates the negligible influence of
SC&AE on destination choices. This could be because young children have the highest commitment period
and the lowest flexibility to switch schools. Hence, the spatial distribution of primary school opportunities
has little effect on their destination choices.

4. How do the DCMs for various trip purposes perform across statistical tests and predictive measures,
and what are their policy implications for the study area? (Chapter 5 Results, section 5.6)

The findings indicate that including SC&AE in destination choice models has a positive but limited impact on
their temporal transferability, varying by trip purpose, with the highest impact for home-based maintenance
(HBM) trips, followed by work trips, inconsistent for secondary and higher education trips, and a statistically
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insignificant parameter for primary education trips in 2018. Thus, the impact of SC&AE on temporal
transferability decreases with decreasing traveler autonomy and ease of switching destinations, higher
autonomy and flexibility (as in HBM trips) lead to a higher SC&AE impact, while lower autonomy and
flexibility (as in primary education trips) results in statistically insignificant parameter. However, due to the
low amount of observed data for each education level after primary education, this study combined travellers
across different education stages into a single destination choice model for secondary and higher education
trips. Thus, these factors undermined the results of education trips. Therefore, the impact of SC&AE on
the temporal transferability of education trips should be considered inconclusive. However, considering
autonomy and ease of switching, the impact is likely to be limited, more so than for the HBM and work trips.

Regarding the performance on various indicators, the Transfer Index metric exaggerates SC&AE’s positive
impact when viewed in isolation. The log-likelihoods of the models used in the TI calculation and other
indicators such as Fitting factor, % Correct prediction, and Discriminative ability show its actual, limited
effect. This exaggeration occurs because TI relies solely on the ratio of gains in log-likelihoods (LL), which
can misrepresent models with small absolute gains.
Thus, TI values should always be presented with additional performance measures or at least the log
likelihood of models in the TI calculation.

Moreover, the choice of sampling method affects the temporal transferability of destination choice models,
and thus, the impact of SC&AE on temporal transferability. Models using Stratified Importance Sampling
(SIS) show higher TI values than those using Random Sampling (RS) with and without the SC&AE
parameter. While the initial performance boost from SIS reduces the absolute gain in the TI value from
including SC&AE compared with RS, SIS allows models to achieve higher overall TI values after including
SC&AE. Thus, including SC&AE in Multinomial Logit (MNL) models provides "free" robust log-likelihood
gains with minimal effort (especially for trips where travellers have high autonomy and low destination
switching costs), as it reuses existing data like zonal size measures and travel impedance.

From a policy perspective, including SC&AE enhances the temporal transferability of destination choice
models, maintaining predictive accuracy over time, particularly valuable for discretionary activities, such
as shopping and maintenance trips. By including information about all alternative destinations, SC&AE
addresses two fundamental flaws of MNL destination choice models: the Independence of Irrelevant
Alternatives (IIA) assumption and negligence of the influence of the spatial distribution of opportunities.
This allows MNL models to become more behaviorally representative without sacrificing their computational
simplicity.
From a broader perspective, to improve transport models in general, we need to focus on improving their
behavioral representation. To do so, we need not rely solely on complex models; we can enhance simpler
models using theories. Transport modelers can better represent how travellers make choices using insights
from other related fields, such as psychology, to develop their own theories. When these simple models
reach their limit on how much they can be improved using behavioral theories, which they eventually
will, this approach might allow another pathway to improve more complex models, making them more
computationally feasible and data-efficient without relying primarily on advancements in computational
science.

6.2. Limitations
This study’s forecasting horizon is limited to five years (2018-2022) due to data availability constraints
with the ODiN travel survey. Destination choices tend to evolve gradually and hence, policymakers are
often interested in long-term forecasts (seven to ten years or more) to plan infrastructure, develop policies,
and effectively anticipate future transportation needs. Without longer forecasting horizons, this study may
miss gradual shifts in travel behavior, such as changes in residential patterns, employment locations, or the
development of new urban centers. These shifts are crucial for understanding the actual impact of SC&AE
on destination choice models as predictive tools. A longer forecasting horizon would have allowed for a
more robust analysis of how SC&AE parameters perform over time, and how this theory could enhance the
model’s applicability as a predictive tool for long-term planning.

The chosen study period overlapped with the COVID-19 pandemic, a high-impact global event that
significantly disrupted travel behaviors due to lockdowns, social distancing measures, and shifts toward
remote work and online education. The findings may pertain to potentially altered behaviors due to the
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pandemic, and not patterns that would have emerged under a business-as-usual scenario not marked by such
a rare and significant event. As a result, the findings could reflect temporary behavioral changes rather than
stable trends, limiting the generalizability of the results to business-as-usual contexts. The absence of a
scenario analysis comparing business-as-usual and pandemic-affected scenarios leads to the inability to
isolate the effects of SC&AE from those induced by the pandemic, thus limiting our understanding of the
true impact of SC&AE in various circumstances.

Furthermore, the travel time matrix in this study was based on the mode most frequently used in the survey
for each trip purpose, which, while practical, overlooks the impact of other available modes. Although
a weighted average approach was tested to account for mode availability (Section 3.4.2), it resulted in
unrealistically high travel times. Relying on a single mode for travel time estimation overlooks the influence
of other available modes on the destination choice. This simplification can lead to inaccuracies in modeling
travel impedance, which is a key determinant of travellers’ destination decisions. The model fails to capture
the actual accessibility of destinations by not adequately accounting for the availability of various modes.
Hence, this limitation should be considered when interpreting the results, as SC&AE and other model
parameters interact with travel time for all trip purposes.

Due to the low amount of observed data for each education level after primary education, this study
combined travellers across different education stages into a single destination choice model for secondary
and higher education trips. Ideally, richer data regarding traveler trip observations and information on the
institutions, such as education level and course offered, should be used, as these factors play a major role in
explaining destination choices for education trips, as seen in previous research. Consequently, using this
richer data, separate models for each education level should have been developed to capture the unique
factors influencing destination choices specific to education levels. This limitation fails to capture the
essential differences in travel behavior among students at various stages, thereby undermining the results.
Each educational stage comes with specific travel patterns. For example, the factors influencing destination
choices for secondary school students can differ significantly from those affecting university students
because university students would have more autonomy and flexibility. These factors, i.e., low number of
observations, absence of information regarding the quality of opportunity, and aggregating travellers that
might showcase different patterns for education trips, render findings on the impact of SC&AE on temporal
transferability as inconclusive for secondary and above education trips.

Finally, the weighting factor was not considered in this study for the ODiN travel survey data due
to time constraints. The weighting factor in the ODiN survey is an adjustment made to the survey
data to ensure that the sample accurately represents the broader population in the Netherlands aged six
and above by compensating for the response bias, especially among survey respondents who are on
holidays, and adjusting for sample selectivity (Statistics Netherlands (CBS), 2024). Underrepresented or
overrepresented demographic groups in the unweighted sample may disproportionately influence the findings,
leading to inaccurate population-level inferences. Thus, not applying ODiN’s weighting factors limits the
representativeness of the study, as it excludes adjustments for demographic, seasonal, and holiday-related
biases. This omission may skew the results, making population-level inferences less accurate because the
findings may reflect only sample-level trends rather than accurate estimates for the entire population.

6.3. Recommendations and Future research:
The findings suggest that including SC&AE into an MNL destination choice model requires minimal effort,
as it leverages existing information such as zonal size measures and travel times, providing technically
"free" robust log-likelihood gains. Therefore, the main recommendation is to first account for the limitations
mentioned above and perform the required calibrations. and then include SC&AE parameters in destination
choice models, especially for trips where travellers have significant autonomy and flexibility in choosing
destinations, such as shopping and maintenance activities.

Although not directly related to SC&AE, an interesting finding is the method for comparing different
sampling techniques and their effectiveness in parameter estimation. In this study, it was computationally
feasible to include all zones in the analysis and to compare the estimates from different sampling methods
with the full choice set. In situations where the total number of zones is too high for computational feasibility,
researchers can aggregate these zones into smaller numbers, allowing for parameter estimation across all
aggregated zones. They can then compare this aggregated full-choice set with different sampling methods in
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terms of parameter estimation, similar to the approach used in this study. This method serves as a proxy
for identifying a better sampling technique, at least in terms of its proximity to the full choice set results.
However, caution is needed, as some parameter values may be distorted or vary significantly, given that
specific effects can depend on the zonal size. Hence, this method is a modeling choice, and modelers must
consider this, along with other influencing factors, when using aggregated zones to compare sampling
methods.
The validation phase methodology to provide quantitative evidence of the impact of SC&AE on the temporal
transferability of DCMs can be further adapted into a more comprehensive experimental scenario analysis
framework to test any other theory, enhancement, or comparison of the different choice models as described
in the example below using Table 6.1

Table 6.1: Example of Experimental framework for comprehensive scenario analysis

Scenarios
Business As Usual Global

Impact Event
Other Scenarios

Short term
(Upto 5
years)

Medium
(7 to 15
years)

Long
(15 to 20

years)

Various Forecast
horizons

Various Forecast
horizons

Base Utility
Base Utility +

SC&AE
Base Utility +

Theory A
:
:

N Specifications

Should a high-impact pandemic-like event occur in the future, the insights gained from this study enable
researchers to make better-educated guesses about the model’s performance in such scenarios. They can
experiment with different specifications, integrate theories beyond the SC&AE in the utility function, and
assess the performance of these alternative specifications during short-term, high-impact global events.
This flexibility allows them to identify the most robust specification for building an effective destination
choice model. Furthermore, as additional ODiN data becomes available in subsequent years, for example,
until 2030, researchers can adjust the forecasting horizon to examine the model’s transferability over
different forecasting horizons. For instance, using the earliest available data from 2018, they can project
medium-term scenarios (5-10 years) using data from 2028, and perform a thorough comparative analysis of
various specifications. In the absence of significant disruptive events in these subsequent years, the model’s
performance in a normal scenario can also be tested, enabling a comprehensive scenario analysis to build
confidence in the model’s forecasting capabilities among transport planners and other stakeholders.

For future research, it is recommended to address mode assumptions by using travel times that include
all available transportation modes. Exploring the use of the mode log sum appears promising in large
transport models, where mode choice is assumed after destination choices, as it captures the combined
accessibility effects of different modes and reflects travellers’ mode choices more accurately. Adapting the
SC&AE formulation to integrate the mode log sum could enhance the model’s representation of accessibility,
providing a more comprehensive understanding of how various transportation options influence destination
choice.
Additionally, this framework can be utilized to assess the impacts of various enhancements on subsequent
choice models within a comprehensive transport modeling system, which often includes multiple intercon-
nected models such as route choice, mode choice, and route assignment. By examining how improvements
in the destination choice model, such as including SC&AE, influence other components, we can better
understand the cascading effects throughout the modeling framework and how they contribute to overall
predictive performance.
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Further research could also investigate more complex formulations of SC&AE, such as defining them using
two accessibility factors as introduced by Bernardin et al. (2009). Although this approach may require
significantly more effort in terms of data collection and processing, potentially diminishing the appealing
trade-off of minimal effort for log-likelihood gains, it could offer enhanced benefits that extend to subsequent
choice models. Combining this advanced formulation with previous suggestions may provide a deeper
understanding of how such enhancements affect the entire transport modeling framework, ultimately leading
to more accurate and robust models for policy analysis and decision making.

In the long term, to improve predictive performance, research should focus on ensuring that models
accurately represent the decision-making systems they are trying to represent, rather than solely focusing on
improving explanatory or predictive abilities. This can be achieved by developing and including theories to
address fundamental flaws. Drawing from relevant fields, such as psychology or other behavioral science,
to further refine models, making them more representative of actual decision-making processes. Such an
approach would help use simple models and data more efficiently to build robust models. This approach may
even provide insight into how to make complex models more computationally feasible and data-efficient.
By prioritizing behavioral representativeness, models naturally achieve better explanatory and predictive
performance.

.
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ABM Framework

Figure A.1: Activity Based Modelling Framework (Castiglione et al., 2014)
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B
Data Structure

B.0.1. Relevant ODiN variables
Table B.1: Numerical and Binary Variables

ODiN Variable Meaning Value Range Category Variable Type
leeftijd Age 1-99 Person Numerical
hhpers No. of people in household 1-9 Household Numerical

10: ≥ 10
11: Unknown

oprijbewijs Car Driving License Availability 0: No
1: Yes
2: Unknown

Person Binary

iii



iv

Table B.2: Nominal Variables

ODiN
Variable

Meaning Value Category Note

geslacht Gender 1: Male Person Could be converted
into a binary variable
for 0: Male 1: Fe-
male

2: Female
maatspart Social Participation 1: Employed 12-30 hrs/week Person Could be used instead

of Paid work or vice
versa;

2: Employed 30+ hrs/week
3: Own Household
4: Scholar/student
5: Unemployed

herkomst Migration Back-
ground

1: Dutch Person

2: Western
3: Non-western
4: Unknown

ovstkaart Possession of Stu-
dent OV Chipcard

0: No Person

1: Weekly Pass
2: Weekend Pass
3: Unknown
4: NA/OP 15 years or 40 years

hhsam Household Composi-
tion

1:Single Household Useful for Mainte-
nance trips

2:Pair/Couple
3:Couple+Children
4:Couple+Children+Others
5:Pair+Others
6:Single parent+Children
7:Single parent+Children+
Others
8:Other Household

Table B.3: Ordinal Variables

ODiN
Variable

Meaning Value Category Note

Continued on next page
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Table B.3: Ordinal Variables (Continued)

opbezitvm Owned Transport
Means

0: No Means of transport Person This could be con-
verted into a bi-
nary variable has_car
where:

1: ≥3 Cars if value in 1,2,3
has_car = 1 else 0

2: ≥ 2 Cars
3: ≥1 Car Alternatively, there

is another variable
called ’HHBezitVm’
for Household trans-
port ownership which
could be used instead
of this

4: ≥ 1 Motored Vehicle

5: ≥ 1 Moped
6: ≥ 1 Light Moped
7: Unknown

betwerk Paid Work 0: No gainful employment Person
1: 12 hrs/week
2: 12-30 hrs/week
3: ≥30 hours/week
4: Unknown
5: Not requested/OP below 15
years of age

hhgestinkg Household Standard-
ised Disposal In-
come level

1 First 10% Group Household

2: Second 10%
3-10 Groups of 10%
11 Unknown

fqnefiets Bike Usage Fre-
quency

1:Daily/Almost daily Person This could be con-
verted into a binary
variable has_bike
where:
if value in 1,2,3
has_bike = 1 else 0

2: Several times a week

3: Several times a month
4: Several time a year Similarly there are

variable for e-bikes
and mopeds

5: Never/Rarely
sted Urbanization level of

Residence Munici-
pality

1: Very High Urban Person

2: Strongly Urban

Continued on next page
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Table B.3: Ordinal Variables (Continued)

3: Moderately Urban
4: Less Urban
5: Non- Urban

opleiding Education Level 0: No training completed Person
1: Basic education
2: Lower vocational education
3: Secondary vocational educa-
tion
4: Higher vocational education
or University
5: Other Training
6: Unknown
7: Not requested/OP below 15
years of age

Table B.4: ODiN Variables for filtering trips

ODiN Variable Meaning Value Range Category Variable Type
kmotiefv Travel Motive 1: To and From work Person Nominal

3: Services/Personal Care
4: Shopping
5: Education

doel Purpose 1: Going home
2: Work
7:Educational course

B.0.2. Employment data (Onderzoek en Statistiek Amsterdam, 2024)
Table B.5: Employment data for the MRA region

Column
Name Sector gebiedsniveau gebiedscode gebiedsnaam jaar aantal

Meaning Sector Area level Area code Area name Year Number

Values

• Total
• Wholesale and Retail
• Horeca
• Financial Institutions
• Utilities
• Government
• Health and welfare
• Other services

Gemeenten Gemeente Code Name of Munci-
pality

2018-
2023

No. of
Jobs10

Corresponds to the codes used
in ODiN data.

The number of jobs is also
available at the PC4 level.

10The number of jobs refers to the total number of full-time, part-time, and, temporary workers
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B.0.3. Education enrollment data (Dienst Uitvoering Onderwijs, 2024)
Table B.6: Enrollment data for Primary education

Column
Name

Peildatum Postcode
vestiging

Gemeentenummer Gemeentenaam Soort_po Totaal

Meaning Reference data Postal
code of
school

Municipality num-
ber.

Municipality
name

type primary
education

Total
enroll-
ments

Values The moment
to which the
data relates. A
reference date
in 2013 refers to
the 2013-2014
school year.
Reference date
in 2014 refers to
the 2014-2015
school year, etc

PC6
codes

Municipality codes
corresponding to the
ones in ODiN data

Names of Mu-
nicipality

The type of
primary edu-
cation:
• bo: pri-
mary educa-
tion
• sbo: spe-
cial primary
• vso: sec-
ondary spe-
cial
• so: spe-
cial educa-
tion

Total
number
of stu-
dents
enrolled
at the
school

Table B.7: Enrollment data for Secondary education

Column
Name

Instellingsnaam
Vestiging

Gemeentenummer Gemeentenaam Totaal Aantal Leerling

Meaning Institution Name Municipality num-
ber.

Municipality
name

Total enrollments

Values Name of the educational in-
stitute. It can be used to get
the PC4 codes

Municipality codes
corresponding to the
ones in ODiN data

Names of Mu-
nicipality

Students enrolled for
VMBO, HAVO, VWO
with VAVO counts as sep-
arate at the institute
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Table B.8: Enrollment data for Vocational and Higher education

Vocational Education
Column
Name

Instellingsnaam
Vestiging

Gemeentenummer Gemeentenaam Aantal Leerling

Meaning Institution Name Municipality num-
ber.

Municipality
name

Enrollments

Values Name of the educational in-
stitute. It can be used to get
the PC4 codes

Municipality codes
corresponding to the
ones in ODiN data

Names of Mu-
nicipality

Students enrolled for
various types of MBOs. It
can be summed to calcu-
late total enrollments.

Data available from
2019 to 2023

Higher education
Same as above Same as above Same as above Students enrolled for

HBOs and WOs distin-
guished by course and
gender at the institute.
It can be summed to
calculate total enrollments

Data available from
2019 to 2023
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GeoDMS Input Parameters

Parameter Value Units Description

OngelijkvloersPenalty 2[min_f] min_f Time penalty when changing at a
stop with a lot of vertical distance

WalkingSpeed_kmhr 4.5[km_hr] km_hr
BikingSpeed_kmhr 14[km_hr] km_hr
WalkingSpeed WalkingSpeed_kmhr /

3600[s_f / hr_f] * 1000[m /
km]

m_s

BikingSpeed BikingSpeed_kmhr / 3600[s_f
/ hr_f] * 1000[m / km]

m_s

MaxCarSpeed 130[km_hr] km_hr
MaxCarSpeed_limit 100[km_hr] km_hr
PedestrianDefaultSpeed WalkingSpeed_kmhr km_hr
BikeDefaultSpeed BikingSpeed_kmhr km_hr
CarDefaultSpeed 50[km_hr] km_hr
CarDefaultSpeed_low 30[km_hr] km_hr
Ferry_Speed 25[km_hr] km_hr
TransferEffectiveSpeed value(4[km_hr] / 1.2f, m_s) m_s The transfer walking speed: X

km/hour / 1.2 (correction for Man-
hattan distances) and then converted
to meter/sec

ix
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Metropolitan Region of Amsterdam

Figure D.1: Metropolitan region of Amsterdam: 30 Municipalities across 7 sub-regions
(Metropoolregio Amsterdam, 2023)

The MRA is subdivided into 7 sub-regions. The 30 municipalities along with their Gemeente Number in each of
the sub-regions are as follows:

x
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Amstelland-Meerlanden
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Almere-Lelystad
• 34: Almere
• 995: Lelystad
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• 376: Blaricum
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• 363: Amsterdam
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Trip
Purpose

2018 2022

%
Intrazonal Trips

Average
travel time (mins)

%
Intrazonal Trips

Average
travel time (mins)

Work 5% 21.83 6.36% 23.27
HBM 37.35% 7.80 36.52% 7.81
Secondary
Education
and above

6.59% 17.18 5.43% 18.92

Primary
Education

41.85% 16.37 45.82% 18.91
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Dutch Education System

Figure E.1: Education system in the Netherlands (Nuffic, 2024)
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Impact of Spatial Competition and Agglomeration Effects on the Temporal
Transferability of Destination Choice Models
A Case Study on the Metropolitan Region of Amsterdam

Rohan Menezes

Abstract
To ensure transport models are effective tools for planning, they must not only adequately explain current travel
choices but also maintain predictive accuracy over forecast horizons while being computationally feasible for
practical use. One simple approach to achieving this is by including behavioral theories in transport models to
improve the behavioral representation of models. One such theory is Spatial Competition and Agglomeration
Effects (SC&AE). This theory examines how opportunities present nearby influence the attractiveness of a
destination. This influence can be either positive (Agglomeration) or negative (Spatial Competition). Although
SC&AE is widely recognized in the literature for enhancing the explanatory power of computationally simple
Multinomial Logit (MNL) destination choice models, its impact on the temporal transferability of these models
remains unexplored.
This study assesses the impact of SC&AE on MNL destination choice models for home-based maintenance, work,
and education trips in the Metropolitan Region of Amsterdam on a 5-year short-term forecast horizon (2018-2022)
using Dutch National Travel Survey Data (ODiN). The findings indicate that SC&AE has a positive but limited
effect on the temporal transferability of these models. This impact decreases with decreasing traveler autonomy
and ease of switching to alternate destinations. In terms of percentage improvement, Transfer index metric shows
an exaggerated impact (35.2% - 286.36%) while the other performance indicators, such as Fitting Factor (1.1% -
3.6%) and % Correct predictions (0.14%-2.05%) confirm that the impact is limited.

Keywords: Destination Choice models, Spatial Competition, Agglomeration, Temporal Transferability

1. Introduction
Transport planning relies heavily on models for fore-
casting travel behavior, owing to the long-term impact
of policies and their resource-extensive execution. To
ensure transport models are effective tools for planning,
they must not only adequately explain current travel
choices but also maintain predictive accuracy over fore-
cast horizons while being computationally feasible for
practical use. A simple approach to achieving this is
by including behavioral theories in transport models to
improve the behavioral representation of models.

Although these theories may enhance the model’s ability
to explain current travel choices, they do not necessarily
improve their forecasting abilities due to the risk of over-
fitting. Overfitted models tend to explain random noise
rather than the signal in the data (Parady et al., 2021).
Thus, overfitting negatively impacts the model’s tempo-
ral transferability, i.e., its ability to maintain predictive
accuracy across forecast horizons.

One such theory is Spatial Competition and Agglom-
eration Effects (SC&AE). This theory examines how
opportunities present nearby influence the attractive-
ness of a destination. This influence can be positive
(Agglomeration) or negative (Spatial Competition). Ac-
counting for this spatial heterogeneity remedies the

popular Independence of Irrelevant Alternatives (IIA)
assumption of Multinomial Logit (MNL) destination
choice models (DCM). Relaxing the IIA assumption
improves the model’s explanatory power for destination
choices. Specifically, this improvement occurs when
SC&AE are accounted for through accessibility mea-
sures in the utility specification and is well noted in
transport literature across various trip purposes and geo-
graphical regions over the years (Bernardin et al. (2009);
Ho and Hensher (2016); Sá et al. (2004)).
Thus, given its long-term applicability in various con-
texts, these effects are potentially essential in explaining
travelers’ destination choices and, therefore, can con-
tribute significantly to MNL DCM’s temporal transfer-
ability. Yet, its impact on the temporal transferability of
these models remains unexplored.

This research seeks to provide quantitative evidence of
the SC&AE impact on the temporal transferability of
MNL DCMs. Thus, it assesses the validity of SC&AE
in explaining destination choices to justify its inclusion
in MNL DCMs. Such a step towards a more holistic
validation enables assessing whether SC&AE captures
travel behavior that drives destination choices rather
than merely capturing behavior contextually in the travel
data.
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2. Literature Overview
2.1. Multinomial Logit Models for Desti-
nation Choices
Trip Distribution models estimate the flow of trips be-
tween origin and destination (OD) pairs as a function of
travel impedance and size. They can broadly classified
into aggregate and disaggregate models.
Aggregate models distribute trips based on observed
patterns for groups of travelers or average relationships
at the zonal level. A common aggregate method is the
gravity model. Drawing an analogy to Newton’s law of
gravitation, it estimates the trip flows proportional to
the product of origin and destination attractiveness and
inversely proportional to travel impedance (de Dios Or-
túzar and Willumsen, 2011).
Disaggregate models, on the other hand, are based on
observed choices at the individual traveler or household
level. The discrete choice model based on the utility
maximization theory is the most commonly used type
of disaggregate model. Because these disaggregated
models are based on theories of individual behavior
and do not rely on physical analogies, they have the
potential advantage of modeling behavior more realis-
tically and are more likely to be robust in explaining
behavior in time and space. Among the many types of
discrete choice models, the multinomial logit (MNL)
model is computationally the simplest and most practical
(de Dios Ortúzar and Willumsen, 2011).
However, previous research highlights a key limitation
of MNL and gravity models: their popular unrealistic
Independence of Irrelevant Alternatives (IIA), which
assumes uniform, equal competition among all desti-
nation alternatives. Because this assumption does not
hold for correlated alternatives, which is usually the
case for nearby destinations (Tobler, 1970), it results in
unrealistic predictions, as nearby destinations are more
likely to be similar and compete more strongly with
each other than distant ones. To address this limitation,
one solution proposed by previous researchers is to en-
able MNL models to account for Spatial Competition
and Agglomeration Effects (SC&AE) (Bernardin et al.,
2009).

2.2. Spatial Competition and Agglomer-
ation Effects in Destination Choices
Spatial Competition and Agglomeration Effects
(SC&AE) consider how the spatial distribution of oppor-
tunities across destination alternatives affects an individ-
ual traveller’s destination choice. Spatial competition
arises when opportunities in nearby zones decrease the
attractiveness of a destination to a traveler. On the other
hand, if the opportunities increase the destination’s at-
tractiveness to the traveler, it is called the agglomeration
effect.

One of the approaches introduced by Fotheringham
(1985) of including SC&AE in MNL models is to use a
Hansen-type accessibility index to include information
about other destination alternatives. This accessibility
index for destination zone 𝑗 (𝐴 𝑗 ) captures the net effect
of SC&AE, using a attraction size variable (𝑅𝑧), such as
employment in other destinations 𝑧 and travel impedance
between the zone 𝑗 and other destinations 𝑧 in the study
area:

𝐴 𝑗 = ln
∑︁
𝑧≠ 𝑗

𝑅𝑧
𝑐 𝑗𝑧

(1)

The utility function for destination 𝑗 for a traveler with
origin zone 𝑖 can then be extended and further specified
as a linear function of 𝐴 𝑗 and its parameter estimate 𝛽𝐴
to account for SC&AE, as follows:

𝑃𝑖 𝑗 =
𝑒𝑣𝑖 𝑗+𝛽𝐴𝐴 𝑗∑
𝑗′ 𝑒

𝑉𝑖 𝑗′+𝛽𝐴𝐴 𝑗′
(2)

If 𝛽𝐴 < 0, zones close to other opportunities have lower
utility, indicating that competition effects dominate. If
𝛽𝐴 > 0, zones close to other opportunities have a higher
utility, indicating that agglomeration effects dominate.
If 𝛽𝐴 = 0, then there are no SC&AE or equally strong
agglomeration and competition effects that cancel each
other. Using this accessibility measure, which includes
information about alternative destinations, the MNL
model’s IIA assumption does not apply. (Ho and Hen-
sher, 2016).

SC&AE in DCMs has been a major focus of travel behav-
ior research. Various studies have explored these effects
in diverse contexts such as educational choices, work-
place locations, and maintenance trip destinations in
various regions globally. Building on the work of Fother-
ingham (1985), Bhat et al. (1998) included SC&AE as a
single accessibility variable capturing the net effect to ex-
plain destination choices for home-based shopping trips
in the Boston Metropolitan area (BMA). They found a
highly significant negative parameter, indicating domi-
nant spatial competition effects. The study also explored
sociodemographic interactions with travel impedance
and found that older adults and women were more sen-
sitive to travel impedance for work trips. At the same
time, higher-income travelers were more willing to travel
longer distances for work. However, using a single acces-
sibility index reveals net agglomeration and competition
effects but cannot identify the source of these effects
or the presence of non-dominating effects. To address
this, Bernardin et al. (2009) introduced Agglomeration
and Competing Destination Choice (ACDC) models,
separating the effects using accessibility measures for
complements and substitutes to analyze home-based
maintenance (HBM) and home-based other (HBO) trips.
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The study compares the results with the single accessible
index estimated parameter and finds that numerically,
they highlight a dominating spatial competition effect.
In addition, the ACDC model finds that spatial compe-
tition for HBM and HBO trips arises from substitutes
(employment within similar sectors) and agglomeration
from complements (employment across different sec-
tors) Ho and Hensher (2016) adapted the ACDC model
to study workplace location choices (WLC) in the Syd-
ney Greater Metropolitan Area (SGMA). The findings
showed that for work trips, competition effects were
driven by complements, unlike the substitutes identified
in non-work trips by Bernardin et al. (2009). Similar to
Bernardin et al. (2009), Ho and Hensher (2016) finds
that the results from the ACDC and a single accessible
index are numerically the same.

For educational choices, Sá et al. (2004) included
SC&AE as a single accessibility index, naming it as
"Centrality Index" within their production-constrained
gravity model for trip distribution, to explain university
location choices among high school graduates. The find-
ings indicate that universities in densely populated areas
experience competition effects, with a negative centrality
index suggesting that nearby institutions compete for
students, rather than benefit from agglomeration.

2.3. Factors affecting Temporal Trans-
ferability of Choice models
In travel behavior, transferability can be defined as " The
ability of a model developed in one context to explain
behavior in another, assuming the underlying theory is
equally applicable in both contexts" (Fox et al., 2014).
Thus, temporal transferability is the model’s ability to
maintain its accuracy and reliability over a forecasting
horizon without requiring extensive recalibration. As-
sessing temporal transferability helps determine how
well a model can adapt to changes over time, providing
confidence in its predictions for transport planning and
its ability as a tool to aid well-informed decision-making.
This concept is particularly relevant in transportation
planning, where models are used to predict future travel
behaviors based on past data (Fox et al. (2014); Parady
et al. (2021)).
Several factors affect the temporal transferability of
choice models. Focusing on mode-destination choice,
Fox et al. (2014) finds that improving the model spec-
ification using socioeconomic variables in the model
specification improves temporal transferability, as doing
so reduces the reliance on constants to explain behavior.
Here, Fox et al. (2014) found that constants are the least
stable model parameters. As the influence of constants
diminishes with the addition of behavioral parameters,
the transferability of the model improves. One of the
previous studies by Parody (1977) used a before and after
methodology to understand and validate how well dis-

aggregate logit models predict the changes. This study
focused on how mode choice among travelers changes by
introducing a free bus service, subsequently increasing
parking fees, and implementing stricter parking regula-
tions. The study finds that disaggregate modal-choice
models, particularly those using detailed socioeconomic
(such as gender and occupational status of the traveler)
and transportation service variables (Frequency of ser-
vice, Walk time to the bus stop), demonstrated much
better predictive accuracy in forecasting shifts in travel
modes resulting from transportation system changes.
Using a similar before and after approach by Parody
(1977), Train (1978) examined the predictive accuracy
of a mode choice model focusing on the Bay Area Rapid
Transit (BART) system opened in San Francisco. The
study compared actual post-BART mode shares with pre-
BART predictions and analyzed parameter stability. It
found that transit use, especially BART with walk access,
was overestimated. The study tested non-IIA models
(Maximum, Log-sum) to evaluate whether IIA assump-
tion failure caused this transit overprediction. These
models also overestimated transit use; the study con-
cluded that although the IIA assumption might slightly
contribute to overprediction, other issues, like unique
BART-specific attributes and inaccurate walk time data,
were the primary contributors to the overprediction.

3. Data
The study area for this research is the Metropolitan
Region of Amsterdam (MRA), with a focus on three
trip purposes: (a) Work, (b) Education, and (c) Home-
Based Maintenance (HBM) trips. Considering the data
availability for the MRA region, the forecast horizon
is a 5-year short-term forecasting horizon (2018-2022).
Hence, the four datasets mentioned below are for 2018
and 2022.

Dutch National travel survey data (ODiN)
ODiN is a travel survey that tracks the travel behavior of
the Dutch population provided by Statistics Netherlands
(CBS). Participants are required to record their daily
travel details, including destinations, purposes, sociode-
mographic characteristics, activity duration, and other
trip details, for one specific day each year (DANS, 2024).
The arrival points of the trips are available at the 4-digit
postal code (PC4) level.

Employment data
This data represents the number of jobs available in the
MRA at the PC4 level, provided by Research and Statis-
tics, Amsterdam (O&S). It includes the total number of
jobs in each PC4 zone municipality. Additionally, the
data further categorizes jobs into various sectors, such
as wholesale, retail, and other services.

Education Enrollment data
This dataset from the Dutch Ministry of Education, Cul-
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ture, and Science (DUO) contains the locations of educa-
tional institutions across the Netherlands and the number
of enrolled students. It covers primary, secondary, voca-
tional, and higher education levels, corresponding to the
Dutch education system.

Travel time matrix data
The travel time matrix for all PC4 zones in the Nether-
lands, covering private (walking, bicycle, car) and pub-
lic transport modes, is calculated using the GeoDMS
software by ObjectVision. Data sources include Open-
StreetMap for road network details (e.g., road type,
names, one-way streets) and General Transit Feed Spec-
ification (GTFS) for public transit details. Additionally,
in the software, the PC4 centroids are determined using
an address-weighted approach with the help of the Key
Register of Addresses and Buildings (BAG) dataset con-
taining the geolocation of all buildings and addresses in
the Netherlands.

4. Methodology
4.1. Variable selection
In order to assess the impact of SC&AE on the tem-
poral transferability of destination choice models, a
utility specification for the model needs to be formu-
lated. Hence we need to select variables to be included
in the specification. The selection of the explanatory
variables differs with the trip purpose. Additionally,
the selection also depends on factors affecting temporal
transferability and the available data. Because the high-
est common resolution across all four datasets mentioned
in the Data Section is at the PC4 level, PC4 zones in the
MRA region are considered as destination alternatives.

For including explanatory variables, in addition to the
SC&AE parameter, three sets of explanatory variables
are considered to be included in the MNL choice models:
(a) Zonal size measures, (b) Travel impedance (c) Inter-
action of sociodemographic variables with impedance,
and (d) SC&AE

Zonal size measures
Zonal size measures vary according to trip purpose.
Typically, for work, total employment is considered,
and hence here, total employment in the PC4 desti-
nation zone is considered. For HBM, employment
across relevant sectors is considered. These include
six sectors: Wholesale & Retail, Financial Institutions,
Utilities, Government, Health & welfare, and Other ser-
vices. Lastly, for education trips, total enrollment at the
relevant education level is considered.

Travel Impedance
For travel impedance, across all trip purposes, log trans-
formation of travel time between the PC4 zone is con-
sidered as it is equivalent to the power function of the

impedance function of a gravity model Daly (1982).

Interaction of sociodemographic variables
with impedance
As reviewed in section 2.3, adding sociodemographic
characteristics of travelers in the specification improves
the temporal transferability of destination choice mod-
els. The interaction of sociodemographic variables with
impedance varies with the trip purpose. These inter-
actions are included based on findings from previous
studies related to the three trips within the scope of
this study. Bhat et al. (1998) finds that older adults
and women were more sensitive to travel impedance
for work trips, while higher-income travelers were more
willing to travel longer distances for work. Hence, the
interactions of gender, age, and disposable household
income level of travelers with travel time are included
for work and HBM trips.
For education trips, previous research focusing on Dutch
education, such as de Boer and Blijie (2006) (Primary
education) and van Welie et al. (2013) (After Secondary
education), finds highly significant interaction of socioe-
conomic status and migration groups of students with
travel impedance. Hence, the interactions of migration
and disposable household income levels of travelers with
travel time are included for education trips.

SC&AE
Finally, to evaluate the impact of SC&AE on the tem-
poral transferability of destination choice models and
how it varies by trip purpose, these effects are included
using a single Hansen-type accessibility index as shown
in equation 1.

4.2. Data processing and Modelling As-
sumptions
After the selection of the variables, four datasets are pro-
cessed to facilitate the estimation of the models. During
the data processing, certain assumptions are made.

In the ODiN Data, trips for the relevant purposes in both
years are filtered for arrivals in the 30 municipalities
inside the MRA region. However, the number of PC4
zones increased in 2022 compared to 2018 as new PC4
zones were included in 2022 by the MRA administrative
authorities. However, in the Employment data, the num-
ber of jobs in these newly added PC4 zones in 2022 is
negligible. These zones exist only in the 2022 data and
have negligible job numbers; hence, they are excluded.
To ensure consistency, only the PC4 zones common
between 2018 and 2022 are considered. Consequently,
the data was further filtered to only include arrivals in
these common PC4s.
Generally, people have only one primary location for
work and education, where they spend a significant part
of their day. Hence, to determine the primary arrival
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destination, it is assumed that the primary destination
is where the person has the maximum activity duration.
Following this assumption, for each traveler, only the
trip with the maximum duration is retained in the case
of multiple trips for trip purposes1

The travel time for each trip purpose is selected based on
the highest used mode in the filtered trips in the ODiN
data. Following this, car travel time is used for Work
and HBM. For education trips, bike travel time is used.
Intrazonal travel time data for various modes is unavail-
able in the travel time matrix. Therefore, the travel time
for intrazonal trips in a destination zone is assumed to
be half the travel time to the nearest neighboring zone.

The age of the traveler in the ODiN data is a continuous
variable. It is converted to a categorical variable for
different age groups, to include the interaction of age
with the travel impedance (travel time). It includes
five age groups as per the age groups used by CBS to
report PC4-level statistics, removing the 0-6 age group,
as ODiN data only consists of travelers aged 6 years
and above. This approach avoids assuming a linear or
monotonic relationship and simplifies forecasting by
allowing predictions based on categories rather than
continuous age values (Bhat et al., 1998). Similarly, the
standard household disposable income level of travelers
is recorded in the ODiN travel survey as decile groups.
These decile groups are re-categorized into 5 groups
to estimate the model parsimoniously. The groupings
are performed by combining the median levels for each
decile group reported by the CBS (Centraal Bureau
voor de Statistiek (CBS), 2024) and the annual Dutch
national median income reported by the OECD for 2018
and 2022 (Organisation for Economic Co-operation and
Development (OECD), 2023).

Finally, the number of destination PC4 zones available
to travelers depends on the availability of opportunities
for the trip type, considering the compatibility between
trip type and land use characteristics (Bernardin et al.,
2018). This means excluding zones with no retail em-
ployment for HBM trips, zones with no employment as
possible work locations, and zones with no enrollment
at the relevant education level as possible locations for
education trips. Consequently, the observed trips in
ODiN data were further filtered to only include arrivals
in these available PC4 zones.

For education trips, the number of trips available for
each education level after the primary level was very low
compared with the rest of the trips. Hence, these trips

were combined to form the trip purpose ’Secondary edu-
cation and above.’ In these trips, travelers with attained
education level at Secondary (VMBO, HAVO, VWO),
vocational (MBO), and higher education (HBO, WO).
After processing the ODiN data and filtering further for
trips arriving only in the 364 zones in the MRA region
common for both years, the final number of trips for
each purpose is as follows:

Table 1: Number of trips for base and transfer year, post-processing
ODiN data

Trip Purpose 2018 2022
HBM 1,874 1,851
Work 2,680 1,903
Secondary education and above 364 276
Primary education 693 395

4.3.Sampling
Including all zones in the study area in the choice set is
neither a realistic representation of how travelers choose
destinations nor practical in terms of computational ef-
ficiency. It is widely understood that travelers do not
evaluate such a large number of alternatives when select-
ing a destination. They tend to automatically eliminate
destinations that are too far from their origin zones.
Hence, sampling of destinations is required. Sampling
alternatives requires making two key decisions. First,
determining the appropriate choice set size, and second,
selecting an adequate sampling method.

4.3.1. Determining Choice set size
Regarding the appropriate choice set size, Guevara et al.
(2016) presented a method based on a Monte Carlo exper-
iment to determine the stability of parameter estimates
by their average and standard deviation. This method is
suitable for various models, including the RRM, MEV
logit mixture, and logit models. Specifically, Guevara
et al. (2016) varied the choice set sizes (𝐽) and for each
𝐽, sampled K times. They then estimated the mean
parameter values ( ¯̂𝛽) and their standard deviations as
follows:

¯̂𝛽 =
1
𝐾

𝐾∑︁
𝑘=1

𝛽𝑘 (𝐽) and �̂�𝛽 =

√√√
1

𝐾 − 1

𝐾∑︁
𝑘=1

(
𝛽𝑘 − ¯̂𝛽

)2

1While retaining only the trip with the maximum activity duration is valid for work and education trips, it is unsuitable for home-based
maintenance (HBM) trips, where multiple destinations are possible. Initially, the HBM data was mistakenly filtered under this assumption,
overlooking Pandas Biogeme’s capability to handle multiple observations per traveler (PanelObs=True). This error was identified late, and it
was not possible to perform all validation steps with the correct data structure at the time of submission of the final version of this paper.
However, a quick informal parameter estimation showed that the parameter estimates and t-test values for most significant parameters, especially
SC&AE, and model performance in both years did not differ significantly from the results presented in the Results chapter. Therefore, the
general storyline remains the same.



6

This approach helps identify an appropriate choice set
size for the given travel survey data based on the stability
of the parameter estimates. In this study, the choice set
size is varied from 5 to 50 destination alternatives. For
each choice set size, the mean beta values are calculated
across 30 iterations of the base utility specification, in-
clusive of SC&AE. The choice set size determined for
2018 for each trip purpose is also used when estimating
the model on 2022 Data.

4.3.2. Stratified Importance Sampling
This study uses a variant of the Stratified Importance
Sampling (SIS) method adapted from Bradley et al.
(1998). For each origin zone, destinations are chosen
based on their distance from the origin PC4 zone and the
destination’s attraction size relevant to the trip purpose.
In this sampling method, first, destinations are arranged
in terms of proximity and then two thresholds are created,
D1 (20th percentile) and D2 (60th percentile). Then

destinations for each origin zone are categorized into
three distance bands: closer than the 20th percentile
(D1), between the 20th and 60th percentiles (D2), and
beyond D2. Within these distance bands, destinations
are further stratified based on the median attraction size:
S1 for zones between D1 and D2, and S2 for zones
beyond D2. This creates a total of five strata. The
destination’s attraction size is varied by the trip purpose,
such as total employment for work trips or retail/service
employment for HBM trips. Then, for a given sample
size, destinations are proportionally sampled from these
five strata: 20% each from (1) zones closer than D1,
then from zones lying between D1 and D2 with (2)
having attraction sizes below S1 and (3) above S1. Then,
in the distance band beyond D2, zones with (4) size
above S2 and (5) below S2. By reflecting proximity and
attractiveness, this variant of SIS ensures one possible
realistic representation of destination choice sampling.

4.4. Assessing Impact of SC&AE on
temporal transferability

Figure 1: Methodology for Assessing Impact of SC&AE on
Temporal Transferability on MNL DCMs

Figure 1 illustrates the core methodology used to assess
the impact of SC&AE on the temporal transferability of
destination choice models. The base utility specification
includes all the variables selected in Section 4.1, except
for the SC&AE parameter. Two models (one with base
utility and the other inclusive of SC&AE) are estimated

using data from 2018 (base year) and 2022 (forecast
year) for each trip purpose. The 2018 model parameters
are then applied to 2022 data and compared with models
re-estimated on 2022 data. The comparison involves four
measures across three categories: (1) Transfer Index, (2)
Percentage of correct predictions and other measures,
(3) Fitting Factor, and (4) Discriminative ability of the
model.

As noted in Section 4.1, sampling in destination choice
modelling is essential for a realistic behavioral repre-
sentation and computational feasibility. Consequently,
sampling errors are inevitable. To thoroughly under-
stand the impact of SC&AE), this study also applies the
framework illustrated in Figure 1 not only to models es-
timated using SIS, but also to models estimated with the
same choice set size using random sampling. Random
sampling is one of the most commonly used methods
in destination choice modeling, in addition to various
variants of SIS (Kim and Lee, 2017). This approach
provides insight into how the impact of SC&AE on tem-
poral transferability varies with the sampling method.
Moreover, because random sampling is known to be an
unrealistic method (assigning equal probability to all
possible destination alternatives in the study area), it
allows us to explore how selecting an incorrect sampling
method affects the temporal transferability of DCMs, a
factor not previously explored in research.
In addition to sampled models, a full-choice estimation
was performed for the three trip purposes, considering
all available alternatives without any sampling. This
was done to establish an unbiased benchmark, free from
sampling-induced errors, against which the performance
of sampled models could be compared. By eliminat-
ing sampling biases, the full-choice estimation offers
a clearer view of the true effects of SC&AE and pro-
vides a baseline for assessing how different sampling
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methods influence parameter estimates and temporal
transferability.

Selected Performance Indicators:
The parameter estimation of discrete choice models is
based on the Maximum likelihood principle, which is
a statistical method to estimate model parameters by
finding values that maximize the likelihood of observing
the given data (Bunch, 1987). Hence, log-likelihoods
are commonly used to assess the explanatory power of
a specified discrete choice model. Therefore, the first
test of transferability is a statistical test (Transfer Index),
whose calculation is also based on the log-likelihoods of
models estimated across the forecast horizon. However,
because these models are used as predictive tools, it is
important to quantify or translate how performances on
statistical tests translate to the practical use of the model.
Therefore, the second category chosen to assess the im-
pact is Predictive measure such as % Correct predictions.
However, discrete choice models are probabilistic mod-
els, not deterministic (Hauser, 1978). Discrete choice
models, such as the Multinomial Logit, predict the prob-
ability of choosing an alternative, not the actual choice
itself. Hence, other measures, such as the Fitting factor
and Prediction clarity, are required to assess the quality
of probability predictions.

Transfer Index (TI)
Developed by Koppelman and Wilmot (1982), the Trans-
fer Index (TI) is a statistical test that tests the extent of
model transferability (Fox et al., 2014). It quantifies the
temporal transferability of a model by comparing the
predictive accuracy of a transferred model (using base
year parameters) with that of a locally estimated model
(re-estimated using transfer year data). It is calculated as
the ratio of the log-likelihood (LL) improvement gained
by re-estimation to the loss in LL when using transferred
parameters, both relative to a simplistic reference model.
A TI of 1 indicates perfect transferability, whereas values
below 1 reflect reduced performance, with negative val-
ues indicating that the transferred model performs worse
than the reference model. In this study’s context, the
2018 ODiN Data is the base year sample, and the 2022
ODiN Data is the transfer year sample. The disaggre-
gate equivalent of a gravity model is used as a simplistic
reference model, with its destination utility specification
having only travel impedance and size measure.

% Correct Predictions:
As a predictive test, it evaluates the accuracy of the
model by calculating the ratio of correct predictions to
the total number of observations expressed as a percent-
age. The alternative to which the model assigns the
highest probability among all alternatives in the choice
set is the predicted choice (Parady et al., 2021).

Prediction Clearness:
One of the key limitations of the above % Correct

Predictions is its inability to account for the model’s dis-
criminative ability in its evaluation. Precision Clearness
addresses the limitations of percentage correct predic-
tions by evaluating the model’s ability to distinguish
the observed choice clearly. It includes three measures
based on a probability threshold: % Clearly Right (CR),
where the model assigns the observed choice a prob-
ability above the threshold; % Clearly Wrong (CW),
where the model assigns any alternative other than the
observed choice above the threshold; and % Unclear
(UC), where no choice is assigned a probability above
the threshold (De Luca and Cantarella, 2009).

Fitting Factor (FF):
Considering the sample size, the FF measures the av-
erage probability that a model assigns to the observed
choice. It has an upper bound of one, indicating that on
average, the model assigns a probability of one to the
observed choice; hence, it perfectly forecasts all choices
in the sample (De Luca and Cantarella, 2009).

5. Results
Table 2: Number of available destination alternative and choice set

size across trip purpose

Trip Purpose Number of available
PC4 zone destinations

Choice
set size

2018 2022
HBM 350 355 40
Work 363 363 45
Secondary
and above
Education

125 129 45

Primary Edu-
cation

278 282 278

Table 2 presents the number of available PC4 destina-
tion zones with nonzero zonal size measures and the
corresponding choice set chosen for each trip purpose.
Initially, for trips, the model was estimated on the full
choice set (including all available destinations), before
estimating the parameters for the corresponding choice
set size determined for sampling. As the full choice
set would include all destinations, this was done to
check whether the parameter estimate was statistically
significant for each trip purpose. Moreover, the SC&AE
parameter remained relatively the same, with similar
statistical significance across the full and sampled choice
sets. Hence, this approach helped save time by avoiding
determining the choice set size for sampling when the
SC&AE parameter was found to be statistically insignif-
icant for the full choice set.
For primary education, the SC&AE parameter was found
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to be statistically insignificant in the 2018 data for the
full choice set. Hence, the method of determining the
choice set size was not used for primary education trips.

The open-source Python package Pandas Biogeme is
used for parameter estimation.

5.1. SC&AE Parameter estimates across
trip purposes
Table 3: SC&AE Parameter estimates for 2018 and 2022 across trip

purposes

Trip Purpose SC&AE Parameter
estimates

(Robust t-test values)
2018 2022

HBM -1.60
(-8.56)

-1.77
(-10.55)

Work -0.67
(-7.09)

-0.76
(-7.15)

Secondary and above
Education

0.72
(4.61)

0.48
(2.51)

Primary Education -0.22
(-1.23)

NA

Table 3 presents the SC&AE parameter estimates for
various trip purposes, for the corresponding choice set
sizes shown in Table 2. Except for primary education,
the SC&AE parameter for all trip purposes is statistically
significant at the standard 5% level. Given the negative
SC&AE parameters for HBM and Work, the results
suggest that spatial competition dominates the agglom-
eration effect for both these trip purposes in 2018 and
2022. These results are consistent with the findings of
previous studies for HBM (Bhat et al. (1998); Bernardin
et al. (2009)) and for work Ho and Hensher (2016).
On the other hand, for secondary and above education
trips, the estimated SC&AE parameter has a positive
sign, suggesting that agglomeration effects dominate
spatial competition. These results contradict the find-
ings of a previous study explaining university location
choices among high school graduates in the Netherlands
by Sá et al. (2004), where they found a dominating
competition effect (negative parameter). However, their
model focused solely on choices for destination choices
for one level immediately after secondary education,

where spatial competition may play a more significant
role since only one education level is included. This
study included trips for both secondary and multiple
higher education levels, thus including destinations with
opportunities for students to have a broader range of
options to continue education nearby. This proximity
to further educational opportunities can make zones
with more secondary and post-secondary institutions
attractive, hence a positive value for the dominating
agglomeration effect. Finally, for primary education
trips, the estimated SC&AE parameter in 2018 is statis-
tically insignificant at the 5% confidence interval. This
suggests that SC&AE do not play a significant role in
explaining destination choices for primary education
trips. Given the statistical insignificance in 2018, it does
not allow for analyzing the impact of SC&AE on the
temporal transferability for this trip purpose. Thus, the
analysis was cut short at this point without estimating
the parameters for 2022.
Comparing the value of SC&AE parameter estimates
for HBM and Work, HBM trips had a more negative
parameter (-1.60 to -1.77) than Work (-0.67 to -0.76),
indicating that SC&AE has a stronger influence on des-
tination choices for HBM trips than for work trips. This
seems reasonable from the perspective of the ease of
switching to alternative destinations. HBM trips, which
include shopping and personal errands, often involve
destinations that are closer substitutes (e.g., multiple
grocery stores or service centers within a short distance),
intensifying competition. On the other hand, work trips
generally involve more specialized destinations (e.g.,
offices or job locations), where alternatives are more
limited, resulting in weaker spatial competition. Addi-
tionally, travelers performing HBM trips have a very
high level of ease of switching, as they have no mandate
or commitment to stick to a specific shopping or service
destination to perform maintenance activities. On the
other hand, employment is a long-term decision with a
longer commitment period, and switching jobs is not as
easy as switching destinations to perform maintenance
activities. Hence, it makes sense that the spatial distribu-
tion of opportunities has a lower influence on destination
choices for work trips than for HBM trips.
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5.2.Impact of SC&AE on temporal trans-
ferability across trip purposes
5.2.1. Home-based Maintenance trips
Table 4: HBM trips: Performance Comparison on various indicators

Full vs. Sampled choice sets (RS and SIS)

HBM 2022 (using 2018 estimated parameters)
Full Choice Set

Indicators Base
Utility

Base
Utility

+
SCAE

%
Improved

Absolute
gain
in TI value

TI -0.44 0.82 286.36% 1.26
Fitting
Factor

0.2016 0.2068 2.59% -

%
Correct
Prediction

36.09% 36.14% 0.14% -

40 Alt Randomly Sampled
TI -1.21 0.32 126.45% 1.53
Fitting
Factor

0.575 0.580 1% -

%
Correct
Prediction

70.50% 71.20% 0.99% -

40 Alt SIS
TI 0.04 0.63 * 0.59
Fitting
Factor

0.538 0.545 1.39% -

%
Correct
Prediction

66.7% 66.6% -0.15% -

*This figure was unrealistically high due to the low denominator
(0.04). Hence it was not reported.

Table 4 compares the performance of full-choice sets
with models using 40 randomly sampled and stratified
importance sampled (SIS) alternatives for HBM trips
in 2022. The models, estimated on 2022 data using
2018 parameters, are evaluated across multiple perfor-
mance indicators: Transfer Index (TI), Fitting Factor,
and Percentage of Correct Predictions. This comparison
highlights the impact of the SC&AE parameter and the
differences between the sampling methods.

For the full-choice set, including SC&AE significantly
improves the TI value from -0.44 (Base Utility) to 0.82.
This suggests that without the SC&AE parameter, the
model performs worse than the simple disaggregate
equivalent of a gravity model estimated on 2022 data
indicated by the negative sign. But when the SC&AE

parameter is included, the model retains 82% of the
performance gain achieved by re-estimating parameters
on 2022 data. This demonstrates a significant positive
impact of SC&AE. However, other metrics, such as
Fitting Factor (2.59% improvement) and Percentage of
Correct Predictions (0.14% improvement), show much
smaller gains, suggesting that the TI may exaggerate the
impact of SC&AE.
Using random sampling, for the base utility specification,
the TI value (-1.21) is highly negative and nearly three
times lower than the base utility specification of the full
choice set (-0.44). This highlights that random sampling
leads to reduced temporal transferability.
Interestingly, with SIS, the base Utility model achieves
a positive TI value (0.04), unlike full-choice or random
sampling, where the TI for base utility is negative. This
indicates that SIS minimizes sampling biases, enabling
the model estimated on 2018 parameters to outperform
the 2022 disaggregate equivalent gravity model (ref-
erence model), even without SC&AE. This increased
initial performance by the base utility specification also
means that the impact of SC&AE on temporal transfer-
ability in terms of absolute gain in TI value (0.59) is
reduced compared with Random sampling (1.53) and the
full choice set (1.26). However, in terms of the achieved
TI value after including SC&AE, compared with ran-
dom sampling (0.32), SIS allows the model to reach a
much higher TI value (0.63). The Percentage of Cor-
rect Predictions slightly decreases (-0.15%), However,
this metric does not account for model’s discriminative
ability in its evaluation. Observing the % Clearly Right
across thresholds 40% to 90% in figure 2 confirms the
consistent positive but limited impact of SC&AE.

Figure 2: % Clearly Right for HBM Trips in 2022 Using 2018
Estimated Parameters (Stratified Importance Sampling)
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5.2.2. Work

Table 5: Work trips: Performance Comparison on various indicators
Full vs. Sampled choice sets (RS and SIS)

Work 2022 (using 2018 estimated parameters)
Full Choice Set

Indicators Base
Utility

Base
Utility

+
SCAE

%
Improved

Absolute
gain
in TI
value

TI 0.54 0.73 35.2% 0.19
Fitting
Factor

0.0263 0.0272 3.42% -

%
Correct
Prediction

7.93% 7.99% 0.75% -

45 Alt Randomly Sampled
TI 0.437 0.662 52.01% 0.22
Fitting
Factor

0.147 0.152 3.61% -

%
Correct
Prediction

26.06% 26.59% 2.03% -

45 Alt SIS
TI 0.48 0.71 47.91% 0.23
Fitting
Factor

0.138 0.143 3.62% -

%
Correct
Prediction

25.28% 25.59% 1.23% -

Table 5 presents the results for work trips in 2022 using
the 2018 estimated parameters, across full-choice, ran-
dom sampling (RS), and stratified importance sampling
(SIS) methods. Compared to HBM trips, including
SC&AE in work trips exhibits smaller improvements in
the Transfer Index (TI) and other indicators, reflecting
weaker SC&AE impacts on temporal transferability for
this trip purpose.
For the full-choice set, including SC&AE improves the

TI from 0.54 to 0.73, representing a 35.2% increase.
While this demonstrates a positive impact of SC&AE,
the improvement is less dramatic than the jump observed
for HBM trips (-0.44 to 0.82). Other indicators, such as
the Fitting Factor and Percentage of Correct Predictions,
also showed limited improvements (3.42% and 0.75%,
respectively), further supporting the limited impact of
SC&AE on the temporal transferability for work trips.
In the random sampling approach, TI increased from
0.437 to 0.662 with SC&AE, showing better transferabil-
ity than that observed for HBM trips, where TI remained
highly negative (-1.21 to 0.32).
With SIS sampling, the TI improves from 0.48 to 0.71, a
0.23 increase in absolute value, less than that for HBM
using SIS (0.59). Notably, the Percentage of Correct
Predictions shows a gain of 1.23% with SC&AE, in
contrast to the slight decline (-0.15%) for HBM trips.
Interestingly, although a similar trend of exaggerated
impact by TI and limited impact on other indicators is
also observed here, unlike HBM trips where SC&AE
had the most significant impact on TI, the improvements
for work trips were more balanced across TI, Fitting
Factor, and Correct Predictions. This suggests that while
SC&AE enhances transferability for work trips, its in-
fluence is less dominant than that of HBM trips. This
is also reflected in the improvements due to SC&AE in
% Clearly Right predictions in figure 3. For HBM trips
(Figure 2), the gap between the Base Utility and Base
Utility + SC&AE specifications is more noticeable for
HBM trips, indicating a stronger impact of SC&AE for
HBM trips. In contrast, for work trips, the two curves
get closer with the increase in the thresholds.

Figure 3: % Clearly Right for Work Trips in 2022 Using 2018
Estimated Parameters (Stratified Importance Sampling)
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5.2.3. Secondary and Above Education
Table 6: Secondary and Above Education trips: Performance

Comparison on various indicators Full vs Sampled choice sets (RS
and SIS)

Secondary and Above Education 2022 (using
2018 estimated parameters)

Full Choice Set
Indicators Base

Utility
Base

Utility
+

SCAE

%
Improved

Absolute
gain
in TI value

TI 0.30 0.43 43.33% 0.13
Fitting
Factor

0.0657 0.0632 -3.81% -

%
Correct
Prediction

14.86% 12.68% -14.7% -

45 Alt Randomly Sampled
TI -0.56 -0.05 91.07% 0.51
Fitting
Factor

0.143 0.139 -2.88% -

%
Correct
Prediction

33.70% 28.26% -16.1% -

45 Alt SIS
TI -0.02 0.28 * 0.30
Fitting
Factor

0.144 0.141 -1.81% -

%
Correct
Prediction

32.25% 28.62% -11.3% -

*This figure was unrealistically high due to the low denominator
(0.02). Hence, it was not reported.

Table 6 presents the results for secondary and above
education trips in 2022 using the 2018 estimated pa-
rameters across full-choice, random sampling (RS), and
stratified importance sampling (SIS) methods. Com-
pared to HBM and work trips, the improvements due to
SC&AE for education trips are smaller on the TI metric
and negative on other metrics. For the full-choice set,
the inclusion of SC&AE improves the TI from 0.3 to
0.43, a 43.33% increase, similar to work trips. However,
the absolute gains are even lower. This reflects a weaker
impact of SC&AE for secondary and above education
trips. For random sampling, the TI improvement in-
creases from -0.56 to -0.05, a good absolute increase of
0.51, yet it is still in the negative. and shows notable
declines in the Fitting Factor (-2.88%) and Percentage
of Correct Predictions (-16.14%), indicating that with

random sampling, including SC&AE leads to the model
performing poorly for secondary and above education
trips. These results suggest that SC&AE has negligible
relevance for secondary and above education trips.

With SIS sampling, including SC&AE, the TI improves
significantly from -0.02 to 0.28. This suggests that the
impact of SC&AE on temporal transferability improves
with a better sampling method, a trend observed in HBM
and Work trips too. This is also observed when compar-
ing the performance on % Clearly Right plot of Random
Sampling (figure 4) and SIS (figure 5).

Figure 4: % Clearly Right for Secondary and Above Education Trips
in 2022 Using 2018 Estimated Parameters (Random Sampling)

Figure 5: % Clearly Right for Secondary and Above Education Trips
in 2022 Using 2018 Estimated Parameters (Stratified Importance

Sampling)

Overall, unlike HBM and work trips, secondary and
above education trips show declines in key metrics like
Fitting Factor, % Correct Predictions and Clarity Analy-
sis. with the inclusion of SC&AE, especially for sampled
sets. This suggests that the SC&AE parameter may be
less relevant for secondary and above education trips.

5.3.Source of Transfer Index’s Exagger-
ated Impact
The results presented in section 5.2 suggest that the
Transfer Index generally tends to exaggerate the impact
of SC&AE on the temporal transferability of models
across all three trip purposes. This section provides
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insights into the source of this exaggeration through a
comparative analysis of the LLs of the models used in
the TI calculation for randomly sampled HBM trips, as
presented in Table 7. Additionally, in this section, we
also provide insight into why, for secondary and above
education trips, the inclusion of SC&AE shows a posi-
tive impact on TI, but fails to translate into consistent
improvements across other performance measures.

Table 7: TI Comparative analysis: Source of exaggerated Impact
(HBM, Randomly Sampled)

GM Base
Utility

Base
Utility +
SCAE

2022
Final LL -

2016.42
-

2003.18
-1970.48

Gain over
GM(2022)

— 13.24 45.94

2022 (using 2018 parameters)
Final LL -

2032.40
-2001.62

Gain over
GM(2022)

— -15.98 14.81

% Change
in gain

-
220.65%

-67.77%

TI -1.21 0.32
Null LL:
-6828.12

As shown in Table 7, adding the SC&AE parameter for
HBM trips results in a significant LL gain of 45.94 over
the GM model when re-estimated for 2022. Using the
2018 parameters, the SC&AE model still achieved a
gain of 14.81 LL, representing only a 67.77% reduction
from the maximum achievable gain of 45.94. This ex-
plains the relatively high TI value of 0.32, indicating
that the model using 2018 parameters retains 32% of
the performance achieved by the re-estimated model.

Conversely, the base utility specified model, with 2018
parameters, performs slightly worse than the GM model,
but the difference is small, only -15.98 LL. Although this
difference is minor, it appears exaggerated compared to
the minimal 13.24 LL gain achieved by re-estimating the
Base Utility model, leading to a percentage change in
the gain of -220.65%. This reflects how TI is similarly
calculated by comparing the loss in gains to the potential
gains from re-estimation (-15.98/13.24). Hence, focus-
ing solely on TI performance can exaggerate the impact
of the SC&AE parameter.

Table 8: TI Comparative analysis: Source of Inconsistent Impact
(Secondary and Above Education Location Choice, SIS)

GM Base
Utility

Base Util-
ity +SCAE

2022
Final LL -770.79 -763.82 -760.24
Gain over
GM(2022)

— 6.98 10.56

2022 (Using 2018 parameters)
Final LL -770.91 -767.83
Gain over
GM(2022)

— -0.11 2.97

% Change
in gain

-
101.62%

-71.89%

TI -0.02 0.28
Null LL:
-1050.64

To explain why the inclusion of SC&AE has a positive
impact on TI for secondary and above education trips
but fails to improve other performance measures, we
need to compare the LLs of models used in the TI metric
for HBM trips (Random Sampling) presented in Table
7 with that for secondary and above education trips
(table 8) . For HBM trips, including SC&AE, achieves
a TI value of 0.32, with absolute LL gains of 45.94 for
re-estimation in 2022 and 14.81 using 2018 parameters,
over the reference GM model. In contrast, as seen in
Table 8, for secondary education trips, the achievable TI
value with SC&AE is similar at 0.28, but the absolute
LL gains are much smaller: 10.56 from re-estimation
and 2.97 using 2018 parameters over the GM model.

Clearly, the SC&AE parameter has a much stronger
impact on improving model performance for HBM trips,
as evidenced by the larger LL gains. However, because
TI compares the ratio of these gains rather than their
absolute values, it presents the maximum achievable
transferability for SC&AE in both cases at similar levels.
This explains why SC&AE had a positive impact on all
indicators for HBM trips, yet showed a negative impact
on these same indicators for secondary and above edu-
cation trips, despite demonstrating a positive effect on
the TI metric. The key issue lies in the relatively low
absolute gains in the LL for secondary education trips.

6. Discussions
This study is the first to validate the theory of Spa-
tial Competition and Agglomeration Effects (SC&AE)
beyond the single-period goodness-of-fit measures. Con-
sistent with previous research, it finds statistically sig-
nificant negative SC&AE parameters for home-based
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maintenance (HBM) and work trips in 2018 and 2022,
indicating a dominant spatial competition. HBM trips
exhibited more negative SC&AE parameters (-1.60 to -
1.77) than work trips (-0.67 to -0.76), reflecting a stronger
influence on destination choices due to easily substi-
tutable destinations and high ease of switching. In
contrast, work trips involve destinations with fewer alter-
natives nearby and longer-term commitments, resulting
in a lesser influence of spatial competition.
For secondary and higher education trips, the positive
SC&AE parameter suggests that agglomeration effects
dominate spatial competition. Unlike Sá et al. (2004),
who found dominating spatial competition in university
choices among high school graduates in the Netherlands
by focusing solely on one post-secondary education
level, this study included both secondary and multiple
higher education levels. Hence, the broader range of
nearby educational options to continue education makes
areas with a higher number of institutions more attrac-
tive, resulting in a positive value that reflects dominant
agglomeration effects. For primary education trips, the
SC&AE parameter in 2018 was statistically insignifi-
cant, indicating a negligible influence on destination
choices. This could be due to young children having
the highest commitment period and the lowest flexibility
to switch schools. Hence, the spatial distribution of
primary school opportunities has little effect on their
location choices.
Additionally, this study extends beyond evaluating the
explanatory power of SC&AE in a single context by
exploring its contribution to the temporal transferability
of destination choice models. The findings indicate
that SC&AE has a positive but limited impact on tem-
poral transferability, varying by trip purpose: highest
for home-based maintenance (HBM) trips, followed by
work trips, and inconsistent for secondary & higher
education (positive on the Transfer Index but negative
on rest of the indicators) .
Notably, the Transfer Index (TI) performance metric
tends to exaggerate SC&AE’s positive impact when
viewed in isolation; a closer examination of log-
likelihoods and other performance indicators (such as
fitting factor, percentage of correct predictions, and
clearness of predictions) confirms that the actual impact
is limited. This exaggeration occurs because TI relies
solely on the ratio of gains in log-likelihoods (LL), which
can misrepresent models with small absolute gains. For
example, a model with an LL gain ratio 1

2 and another
with a gain ratio of 50

100 will have the same TI value of
0.5. But clearly, the second model is much better and
will perform positively on other indicators, while the
model with LL gain ratio 1

2 will perform poorly on other
indicators. Such a case was also discussed in Section
5.3.
Therefore, TI values should always be presented along-
side other performance measures or at least be accom-

panied by a comparative analysis of the log-likelihood
values used in their calculation.
Observing the trend of varying impacts of SC&AE
on temporal transferability by trip purpose, the impact
of SC&AE on temporal transferability decreases with
decreasing traveler autonomy and ease of switching des-
tinations: it is highest for HBM trips, where travelers
have high autonomy and flexibility, less so for work trips
due to longer commitment periods, and inconsistent
(positive on the Transfer Index but negative on rest of the
indicators) for secondary and above level education trips,
where travelers are effectively committed to institutions
until they complete their education. Considering the
low amount of trips for secondary and above education
trips compared to other trips, these inconsistent results
for secondary and above education trips should be con-
sidered inconclusive. However, considering autonomy
and ease of switching, the impact is likely to be limited,
more so than for the HBM and work trips.

For primary education trips, autonomy and flexibility
are the lowest, thus explaining the statistically insignifi-
cant estimated SC&AE parameter for primary education
trips.
Moreover, the choice of sampling method affects the tem-
poral transferability of destination choice models and,
thus, the impact of SC&AE on temporal transferabil-
ity too. Models using Stratified Importance Sampling
(SIS) show higher TI values than those using Random
Sampling (RS), with and without the SC&AE parameter.
While the initial performance boost from SIS reduces
the absolute gain in the TI value from including SC&AE
compared to RS, SIS allows models to achieve higher
overall TI values after including SC&AE.

7. Limitations
This study’s five-year forecasting horizon (2018–2022)
was limited by data availability from the ODiN travel sur-
vey. A longer period (7–10 years) would better capture
SC&AE’s long-term effects as destination choices evolve
gradually, and policymakers prefer extended forecast
horizons. Additionally, the overlap with the COVID-19
pandemic likely altered travel behaviors, so the findings
may reflect pandemic-influenced patterns rather than
ones in normal conditions. Without comparing normal
and pandemic-like rare conditions, our understanding
of SC&AE’s impact on temporal transferability under
different scenarios is limited.
The travel time used for each trip is based on the high-
est used mode by travelers for each trip, which, while
practical, overlooks the availability of other modes. A
weighted average approach was tested, resulting in un-
realistically high travel times, so the highest-frequency
mode was used. This limitation affects interpretation
because SC&AE and other model parameters interact
with travel time across all trip purposes.



14

Due to the low amount of observed data for each educa-
tion level after primary education, this study combined
travelers across different education stages into a single
destination choice model for secondary and higher edu-
cation trips. Ideally, separate models for each education
level should have been developed to capture the unique
factors influencing destination choices specific to educa-
tion levels. This limitation fails to capture the important
differences in travel behavior among students at various
stages, undermining the results. For example, the factors
influencing destination choices for secondary school
students can differ significantly from those affecting
university students. Moreover, the low amount of ob-
served data renders the impact of SC&AE on temporal
transferability as inconclusive for secondary and above
education trips. These two factors limit our understand-
ing of how SC&AE impacts the temporal transferability
of destination choice models for education trips. To
overcome this, richer data regarding traveler trip ob-
servations and information on the institutions, such as
education level and course offered, should be used. As
these factors play a major role in explaining destination
choices for education trips, as seen in previous research.
Consequently, using this richer data, separate models for
each education level should be developed to capture the
unique factors influencing destination choices specific
to education levels.
Finally, due to time constraints, this study did not apply
the ODiN survey’s weighting factors, which adjust the
data to represent the broader Dutch population by com-
pensating for response bias and sample selectivity. Not
using these weights limits the study’s representativeness
and may skew the results, making population-level in-
ferences less accurate by reflecting sample-level trends
rather than on a population level.

8. Conclusions
Overall, SC&AE has a limited but positive impact on
the temporal transferability of the MNL destination-
choice models. This impact decreases with decreasing
traveler autonomy and ease of switching to alternate
destinations. Given the minimal effort required to in-
clude these effects in an MNL model because it reuses
existing information such as zonal size measures and
travel impedance, SC&AE provides technically "free"
robust log-likelihood gains.
From a policy perspective, including SC&AE into des-
tination choice models enhances their effectiveness as
predictive tools by improving their temporal transferabil-
ity. Models that include SC&AE maintain predictive
accuracy over time, which is particularly valuable for
scenarios where travelers have significant autonomy and
flexibility, such as discretionary activities such as shop-
ping and maintenance trips. This added robustness stems
from SC&AE’s ability to address two fundamental flaws

of Multinomial Logit (MNL) models that limit their be-
havioral accuracy in representing travelers’ destination
choices: (1) the Independence of Irrelevant Alternatives
(IIA) assumption, and (2) neglecting the influence of
the spatial distribution of opportunities. By including
information about all alternative destinations, SC&AE
tackles both issues, allowing MNL models to become
more behaviorally representative whilst retaining their
computational simplicity.
The results of this study have broader implications for
transport modeling. To overcome the limitations of
MNL models, researchers have often relied on more
complex disaggregate models, which are computation-
ally intensive and often impractical for large datasets.
However, this study demonstrates that simpler models
such as MNL can overcome their flaws by integrating
theories such as SC&AE, thereby improving behavioral
representation while retaining computational efficiency.
By focusing solely on whether a model explains or pre-
dicts behavior well, we may have been asking the wrong
questions. Instead, we should ask, "Is my model an
accurate representation of the system it is supposed to
represent?" By addressing this fundamental question
and bringing models closer to accurately reflecting the
system, we automatically enhance their explanatory and
predictive capabilities. This research shows that we do
not necessarily need to rely on more complex models;
there is another simpler way: using theories to enhance
simpler models. When these simple models reach their
limit on how much they can be improved using behav-
ioral theories, which they eventually will, this approach
might allow another pathway to improve more complex
models, making them more computationally feasible
and data-efficient without relying primarily on advance-
ments in computational science.
To achieve this, we need to look beyond the transport
domain and draw insights from related fields, such as
psychology or other behavioral sciences. It may be time
for transport modelers to look beyond their transport
domain and integrate psychological theories to make
transport models a better representation of how travelers
make choices. The results of this study are certainly
encouraging.

9. Recommendations and Future
Research
The findings suggest that including SC&AE in destina-
tion choice models requires minimal effort and leverages
existing data, such as zonal size measures and travel
impedance, providing "free" robust log-likelihood gains.
Therefore, the main recommendation is to first account
for the limitations mentioned above and perform the
required calibrations. and then include SC&AE param-
eters in destination choice models, especially for trips
where travellers have significant autonomy and flexi-



bility in choosing destinations, such as shopping and
maintenance activities.
The validation methodology used in this study can be
adapted into a comprehensive experimental scenario
analysis framework to test other theories or model en-
hancements. Should future high-impact event like pan-
demic occur, the insights from this study will enable
researchers to better assess model performance under
such conditions by experimenting with different spec-
ifications and theories. As more ODiN data becomes
available, researchers can adjust the forecasting horizon
to examine model transferability over different periods,
allowing for thorough comparative analyses and building
confidence among transport planners and stakeholders.

For future research, it is necessary to address mode
assumptions by using travel times inclusive of all avail-
able transportation modes. Exploring the use of the
mode log sum is promising, as it captures the combined
accessibility effects and reflects travelers’ mode choices
more accurately. Adapting the SC&AE formulation to
integrate the mode log sum could enhance the model’s
representation of accessibility.
Additionally, this framework can be utilized to assess
the impacts of various enhancements on subsequent
choice models within a comprehensive transport model-
ing system, which often includes multiple interconnected
models, such as route choice, mode choice, and route
assignment. By examining how improvements in the
destination choice model influence other components,
we can better understand the cascading effects through-
out the modeling framework and how they contribute to
overall predictive performance.
Further research could also investigate more complex
formulations of SC&AE, such as defining them using
two accessibility factors as introduced by Bernardin
et al. (2009). Although this approach may require more
effort in data collection and processing, potentially di-

minishing the appealing trade-off of minimal effort for
log-likelihood gains, it could offer enhanced benefits that
extend to subsequent choice models. Combining this
advanced formulation with previous suggestions may
provide a deeper understanding of how such enhance-
ments affect the entire transport modeling framework,
ultimately leading to more accurate and robust models
for policy analysis and decision-making.

In the longer term, to improve predictive performance,
research should focus on ensuring that models accurately
represent the decision-making systems they are trying
to represent, rather than solely focusing on improving
explanatory or predictive abilities. This can be achieved
by developing and including theories to address fun-
damental flaws. Drawing from relevant fields, such as
psychology or other behavioral science, to further re-
fine models, making them more representative of actual
decision-making processes. Such an approach would
help use simple models and data more efficiently to build
robust models. This approach may even provide insight
into how to make complex models more computationally
feasible. By prioritizing behavioral representativeness,
models naturally achieve better explanatory and predic-
tive performance.
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Appendix

Table 9: Estimated Betas, HBM (2018, 2022 ODiN), Full vs 40 Sampled Choicesets (RS and SIS)

Estimated Betas, HBM (2018, 2022 ODiN), Full vs 40 Alt Choice set (RS and SIS)
2018 2022

Full 40 RS 40 SIS Full 40 RS 40 SIS
Note Name Parameter Values

(t-test values)
Parameter Values

(t-test values)

Parameters for
logarithmic values

Jobs 0.98
(26.42)

1.08
(22.92)

1.11
(23.24)

0.94
(24.91)

1.02
(19.73)

1.01
(21.75)

SCAE -1.40
(-10.46)

-1.35
(-7.17)

-1.60
(-8.56)

-1.69
(-13.70)

-1.66
(-9.19)

-1.77
(-10.55)

Travel time -2.30
(-34.37)

-3.10
(-17.36)

-2.74
(-16.61)

-2.41
(-38.32)

-2.95
(-18.39)

-2.75
(-18.85)

Income Groups

Middle Income
Group as

reference level

Lower Middle In-
come x Travel time

-0.138
(-1.757)

0.052
(0.22)

-0.33
(-1.38)

-0.137
(-1.72)

-0.73
(-3.05)

-0.91
(-3.72)

Upper Middle In-
come x Travel time

-0.197
(-2.99)

0.088
(0.486)

-0.120
(-0.76)

-0.153
(-2.39)

-0.566
(-3.29)

-0.53
(-3.45)

rho square (null) 0.508 0.698 0.677 0.512 0.711 0.685
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Table 10: Estimated Betas, Work (2018, 2022 ODiN), Full vs 45 Alt Choice set (Random and Stratified Importance Sampling))

Estimated Betas, Work (2018, 2022 ODiN), Full vs 45 Alt Choice set (RS and SIS)
2018 2022

Full 45 RS 45 SIS Full 45 RS 45 SIS
Note Name Parameter Values

(t-test values)
Parameter Values

(t-test values)
Male as reference level Female Gender x

Travel Time
-0.18
(-4.24)

-0.32
(-4.39)

-0.25
(-3.55)

-0.13
(-2.71)

-0.32
(-3.69)

-0.156
(-1.87)

Parameters for
logarithmic values

Jobs 1.14
(45.4)

1.16
(42.4)

1.16
(42.66)

1.09
(36.3)

1.12
(34.1)

1.10
(34.27)

SCAE -0.68
(-6.79)

-0.52
(-5.48)

-0.67
(-7.09)

-0.71
(-7.14)

-0.68
(-6.29)

-0.767
(-7.15)

Travel time -2.01
(-20.6)

-2.21
(-11.5)

-2.35
(-12.1)

-1.99
(-19.2)

-2.60
(-12.2)

-2.317
(-12)

Age Groups

Age group 65+ as refer-
ence level

Age 25 - 44 x Travel
time

0.57
(6.09)

0.74
(3.87)

0.68
(3.97)

0.46
(4.76)

0.90
(4.39)

0.69
(3.82)

Age 45-65 x Travel
time

0.38
(4.08)

0.55
(2.85)

0.48
(2.81)

0.30
(3.16)

0.73
(3.52)

0.45
(2.44)

Income Groups

Middle Income Group
as reference level

Low Income x Travel
time

0.323
(2.82)

0.10
(0.53)

0.428
(2.26)

0.299
(2.3)

0.49
(2.41)

0.39
(2.11)

Upper Middle Income
x Travel time

0.156
(2.62)

0.07
(0.67)

0.33
(2.98)

0.117
(1.74)

0.192
(1.60)

0.13
(1.07)

High Income x Travel
time

0.26
(3.66)

0.25
(2.01)

0.44
(3.46)

0.23
(2.73)

0.195
(1.24)

0.197
(1.37)

rho square (null) 0.215 0.32 0.31 0.211 0.319 0.304

Table 11: Estimated Betas, Primary education (2018 ODiN), Full choice set

Estimated Betas, Primary education (2018 ODiN), Full choice set
2018

Note Name Parameter value
(robust t-test value)

Parameters for logarithmic values

Primary enrolments 0.59
(7.97)

SCAE -0.22
(-1.23)

Travel time -1.85
(-20.81)

Income Groups
Middle Income group as reference level Upper Middle Income x TT -0.206

(-2.117)
rho square (null) 0.565



18

Table 12: Estimated Betas, Secondary+ (2018, 2022 ODiN), Full vs 45 Alt Choice set (Random and Stratified Importance Sampling)

Estimated Betas, Secondary+ (2018, 2022 ODiN), Full vs 45 Alt Choice set (RS and SIS)
2018 2022

Full 45 RS 45 SIS Full 45 RS 45 SIS
Note Name Parameter Values

(t-test values)
Parameter Values

(t-test values)

Parameters for
logarithmic values

Secondary+ Enroll-
ments

0.42
(7.14)

0.397
(6.6)

0.399
(6.822)

0.49
(6.08)

0.46
(5.6)

0.49
(6.28)

SCAE 0.62
(4.33)

0.67
(4.55)

0.72
(4.61)

0.40
(2.07)

0.535
(2.73)

0.48
(2.51)

Travel time -1.70
(-13.8)

-1.74
(-8.44)

-1.97
(-7.77)

-1.78
(-11.7)

-1.94
(-8.71)

-1.89
(-7.13)

Migration Background Groups
Dutch as reference level Non Western x Travel

time
0.25

(2.11)
0.36

(2.07)
0.488
(2.68)

0.13
(0.79)

0.02
(0.08)

-0.12
(-0.46)

Income Groups
Middle Income Group

as reference level
Low Income x Travel
time

0.273
(1.62)

-0.01
(-0.03)

0.38
(1.31)

0.645
(3.35)

0.74
(2.73)

0.902
(2.94)

rho square (null) 0.227 0.277 0.273 0.222 0.28 0.276
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