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Code Verification of
Non-Newtonian Fluid Solvers
for Single- and Two-Phase
Laminar Flows

The presence of complex fluids in nature and industrial applications combined with the
rapid growth of computer power over the past decades has led to an increasing number
of numerical studies of non-Newtonian flows. In most cases, non-Newtonian models can
be implemented in existing Newtonian solvers by relatively simple modifications of the
viscosity. However, due to the scarcity of analytical solutions for non-Newtonian fluid
flows and the widespread use of regularization methods, performing rigorous code verifi-
cation is a challenging task. The method of manufactured solutions (MMS) is a powerful
tool to generate analytical solutions for code verification. In this article, we present and
discuss the results of three verification exercises based on MMS: (i) steady single-phase
flow; (ii) unsteady two-phase flow with a smooth interface; (iii) unsteady two-phase flow
with a free surface. The first and second exercises showed that rigorous verification of
non-Newtonian fluid solvers is possible both on single- and two-phase flows. The third
exercise revealed that “spurious velocities” typical of free-surface calculations with the
Volume-of-Fluid model lead to “spurious viscosities” in the non-Newtonian fluid. The
procedure is illustrated herein on a second-order finite volume flow solver, using the
regularized Herschel-Bulkley fluid model as an example. The same methodology is how-
ever applicable to any flow solver and to all the rheological models falling under the
class of generalized Newtonian fluid models. [DOI: 10.1115/1.4050131]

WavEC—Offshore Renewables,
Lisbon 1350-352, Portugal
e-mail: guilherme.vaz@wavec.org

1 Introduction

Non-Newtonian fluids are frequently encountered in nature and
in industrial applications. Examples of non-Newtonian fluids are
blood in capillaries, volcanic lava, paints, cosmetics, drilling
muds [1]. The ability of numerical methods to study complex
flows that cannot be modeled analytically and the rapid growth of
computational power over the past decades have led to an increas-
ing number of numerical studies of non-Newtonian fluid flows.
Evidently, carrying out such numerical studies requires computa-
tional fluid dynamics (CFD) software equipped with non-
Newtonian fluid models. These models can be rather complex,
sometimes requiring solving additional partial differential equa-
tions. However, a broad class of non-Newtonian models called
generalized Newtonian fluid (GNF) models can be implemented
in existing Newtonian fluid solvers by simply modifying the vis-
cosity of the fluid (examples of GNF models are given, e.g., in
Refs. [1] and [2]). The governing equations for these non-
Newtonian fluids can thus be solved using the same solution meth-
ods adopted for Newtonian fluids. This article focuses on these
types of non-Newtonian models.

It is important that the implementation of new features is fol-
lowed by code verification [3,4] to ensure that the code is free of
mistakes and numerical algorithm deficiencies. The most rigorous
code verification exercise is the order-of-accuracy test, which con-
sists of demonstrating that the rate of convergence of the discreti-
zation error tends to the theoretical/expected order of accuracy
with grid/time-step refinement.

!Corresponding author.
Manuscript received September 15, 2020; final manuscript received February 1,
2021; published online March 15, 2021. Assoc. Editor: Luis Eca.
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However, due to the scarcity of analytical solutions for non-
Newtonian fluid flow, performing code verification may be a chal-
lenging task. While some analytical solutions, such as Poiseuille
flow (see e.g., Refs. [5] and [6]), are actually available, these solu-
tions are often rather simple and thus they exercise only few terms
of the governing equations. Furthermore, non-Newtonian models
are sometimes modified by regularization methods [7], making
analytical solutions inadequate for code verification purposes.

The possibility to generate analytical solutions that can be used
for code verification of non-Newtonian fluid solvers is offered by
the method of manufactured solutions (MMS) [4,8]. The method
consists of adding source terms to the right-hand side of the gov-
erning equations in such a way that a previously chosen (manufac-
tured) solution is the exact solution of the modified equations.
Examples of code verification of Newtonian fluid solvers based on
MMS can be found in Refs. [9-15] and in the references therein.
On the other hand, in the context of non-Newtonian fluids, formal
code verification studies based on MMS have started to appear
only recently in the literature [16—19].

In this article, we present a code verification study based on
MMS of a CFD code for generalized Newtonian fluids. The pres-
ent work differs from the previous studies in a number of ways.
First, the code verification procedure and results are discussed
more in detail. The grid/time convergence properties of the vis-
cosity are also analyzed, which helps to build confidence in the
correctness of the implemented rheological models. Second, the
extrapolated error for cell size/time-step zero is examined instead
of assuming that it is zero, which is especially helpful when the
expected order of convergence is unknown [15]. Last, code verifi-
cation is performed for both single- and two-phase flows, includ-
ing a test case with a free surface. Two-phase flows are modeled
with the Volume-of-Fluid method in this study.
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The procedure is illustrated herein on three test cases of
increasing complexity using a finite volume CFD code and
Herschel-Bulkley fluids as an example. Nonetheless, the same
methodology is applicable to any CFD technique and it can be
easily extended to all rheological models falling under the class of
GNF models, which are the most common types of non-
Newtonian models.

The article is organized as follows. Section 2 illustrates the
Herschel-Bulkley constitutive equation and its regularization.
Section 3 presents the governing equations involved in the verifi-
cation while Sec. 4 outlines the verification procedure. Section 5
gives an overview of the flow solver used in this article. Section 6
to 8 present and discuss results of the three test cases, respec-
tively. The main conclusions are summarized in Sec. 9.

2 The Constitutive Equation for Herschel-Bulkley
Fluids

Any fluid displaying flow characteristics that significantly
deviate from the Newtonian constitutive equation is classified as
non-Newtonian. The present work focuses on a subclass of non-
Newtonian models, the GNF models, for which the deviatoric part
of the stress tensor can be written in the form

T=2u)D e

where D = 1(Vu+vVu') is the rate of strain tensor, u=
(uy,uy,u.) is the velocity vector in Cartesian coordinates, 7 =
24/D;Djj/2 is the shear rate and u(7) is the so-called apparent
viscosity. For Newtonian fluids, p(}) is a constant equal to the
molecular viscosity, whereas for Herschel-Bulkley fluids the vis-
cosity reads

‘L'()+k)'1n
p=—

Y
U=0o0, T < T

s T0<71 )

where 1, is the yield stress, T = /7;;7;;/2 is the second invariant
of T, n is the flow index and k is the consistency parameter, which
has dimensions of a viscosity when n=1. The infinite viscosity
means that the fluid does not deform (D = 0) when the stress level
is below the yield stress.

The issue associated with the infinite viscosity in Eq. (2) is typi-
cal of viscoplastic models and it can be avoided using regulariza-
tion methods [7,20]. These methods consist in approximating the
nondifferentiable constitutive equation with a smoother and dif-
ferentiable equation that is valid in the whole domain, regardless
of the level of shear stress. Over the years, several regularization
methods have been proposed. For this work we used the regulari-
zation proposed by Souza Mendes and Dutra [21]. Thus, the ideal
Herschel-Bulkley model given by Eq. (2) is replaced by the regu-
larized variant

0+ k P"
ﬂ:#

(1—e) 3)

where m is the regularization parameter that controls the level of
approximation of the regularized model. In the limit of m — oo,
Eq. (3) tends to Eq. (2). The effect of the regularization on the
shear stress and apparent viscosity for the Herschel-Bulkley
model is illustrated in Fig. 1 as a function of the shear rate j.
Throughout the article, the term “apparent” will be omitted.

3 Governing Equations

The isothermal flow of a GNF fluid is governed by the continu-
ity and the momentum equations:

021002-2 / Vol. 6, JUNE 2021

dp _
0 _
(g:l)+v-(puu):V~f—Vp+pg 5)

with p being the pressure, p the fluid density and g = (0,0, g) the
acceleration of gravity vector. The stress tensor T is given by
Eq. (1). If the flow is assumed incompressible, the continuity
equation reduces to the requirement of a solenoidal velocity, i.e.,
V.-u=0.

For multiphase flows, the flow of two immiscible fluids is mod-
eled with the Volume-of-Fluid (VoF) method introduced by Hirt
and Nichols [22], which considers a single continuum fluid having
density p and viscosity p defined as

p=p(1—c)+psc, pu=pm(l—c)+pe ©)

where ¢ is the volume fraction, which is equal to 0 and 1 in the
fluid region occupied by fluid 1 and 2, respectively. Note that, if
fluid 1 is an Herschel-Bulkley fluid, the viscosity g; is not simply
a constant but rather a function of the shear rate by virtue of
Eq. (3). The problem is closed by solving, in addition to the conti-
nuity and the momentum equations, the transport equation for ¢

Jdc
E+u~V670 7

which stems from the assumption that ¢ of each particle remains
constant and moves with the fluid. Note that the continuity equa-
tion Eq. (4) reduces again to V - u = 0 by virtue of Eq. (7).

4 Verification Procedure

4.1 The Method of Manufactured Solutions. The MMS is a
powerful tool to generate analytical solutions for code verification
purposes. A complete description of the MMS can be found, for
example, in Refs. [4] and [8]. In brief, an arbitrary (manufactured)
solution is chosen and substituted in the governing equations; the
remaining terms are then considered as source terms. In other
words, the manufactured solution is the solution of a new set of
equations that differs from the original one by additional source
terms. The latter can be obtained with the aid of computer algebra
systems. For the present study, the expressions of the source terms
were obtained with the free software Maxima [23]. The scripts
used to generate the source terms are reported in Appendix C.

4.2 Discretization Error and Order of Accuracy. It is gen-
erally accepted to divide numerical errors in three components: the
round-off error, the iterative error and the discretization error.> Code
verification requires the evaluation of the discretization error, there-
fore the other two components must be reduced to negligible levels.

Round-off errors are due to the finite precision of computers
and, for the calculations in this article, they can be safely
neglected using double-precision number format. On the other
hand, iterative errors arise from the use of iterative methods to
solve the nonlinear system of equations. Their contribution can be
neglected reducing the residuals to machine accuracy, although
for practical applications less strict criteria are often sufficient.
For the present work, we ensured that the convergence tolerances
adopted for the residuals were sufficiently strict to avoid contami-
nation of discretization errors by iterative errors. This was done
by systematically reducing the convergence tolerance until numer-
ical errors were no longer influenced by the choice of the conver-
gence tolerance.®> Therefore, in the remainder, it can be safely

For periodic flows, there is also the contribution of statistical errors [24], which
are out of the scope of this article.
3We also made sure that residuals did not stagnate.
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assumed that the contributions of iterative and round-off errors are both
negligible compared to the contribution of the discretization error reads.

Discretization errors stem from discretization of space and time
derivatives in the governing equations. The standard approach is to
assume that the discretization error e(¢) of any local or functional
quantity ¢ follows a truncated power-series behavior [15,25]. Thus,
for steady calculations, the discretization error reads

i\’
e(¢i) - ¢i - ¢exact =eo + a(a) (8)

where ¢, 18 the exact solution of the mathematical model, ¢; is
the computed solution on a grid having cell size 4; (i=1 corre-
sponds to the finest grid), o is a constant, ey is the extrapolated
error for cell size zero (h; =0) and p is the observed order of grid
convergence. The three constants ey, o and p can be determined
knowing the error on at least three grids. In this article, the three
selected grids cover a refinement ratio of about 2.

In Eq. (8) it is implicitly assumed that the grid refinement is
constant for the whole grid, allowing the use of one parameter
(cell size in this case) as representative of the grid resolution. In
other words, the grids are assumed to be geometrically similar.
The consequences of using unsimilar grids in code verification are
discussed in Ref. [15].

For unsteady calculations, the error is a function of both the
grid size h; and the time-step 7; = At;

N\ Px . '
e(dn):¢,-—¢em:eo+ax(ﬁ) +ocf(3)p ©)

hy Ty

where 7, is the smallest time-step. By writing the grid refinement
as a function of the time-step or vice versa

h,‘ T; I,;_l\ Ti h,' I’%
—=(— — ) =1— 10
(hl) (Tl) o (Tl) (h1> (10
the form of Eq. (8) is retrieved

W\
e(¢i) = ¢i - ¢exacl =eo + a(ﬂ_l) (11)

where
)v,‘ o /’l,‘ - T; ;)7_: (12)
).1 o h1 o T1
and e, o, and p have the same meaning as in Eq. (8). In this work,
Egs. (8) and (11) are used to estimate ey, o and p for steady and

unsteady simulations, respectively. The use of Eq. (9) is discussed
in Ref. [24].

While errors are evaluated at every grid cell, the convergence
properties of ¢ will be evaluated based on the L, L,, and L, error
norms

Neelis

Z|¢i¢>exaa|"> with ¢=1,2 (13)

1
cells

Lq[e(‘f’)] = <N

Lole(d)] = max|¢; — Pexae] for 1 <i < Nees (14)

with N.e;s being the total number of grid cells.

The goal of code verification is to demonstrate the correctness
of the code by showing that ¢p = 0 and that the observed rate of
convergence p matches the theoretical order of accuracy. How-
ever, some remarks should be made:

e Correct application of Eqgs. (8) and (11) requires sufficiently
fine grids/time steps to have the numerical solution in the
asymptotic range, i.e. in the range of space/time discretiza-
tion such that the observed order p is nearly constant.

e ¢, includes the contribution of high order terms that were
neglected in Egs. (8) and (11). Thus, at best, we can expect e,
to decrease with refinement (if the code is correct) but, in any
case, it cannot drop below round-off and iterative errors [15].

e The theoretical order for velocity and pressure is unknown
due to the nonlinearity of the system [26], therefore it is com-
mon practice to replace the theoretical order with the
expected order of the discretization techniques adopted. For
the present solver, we expect second-order accuracy for
velocity, pressure and volume fraction, unless stated
otherwise.

e In code verification one usually examines the grid/time con-
vergence of only dependent variables. The dependent varia-
bles for the present work are velocity, pressure and volume
fraction. However, as the implementation of GNF models is
done by modifying the viscosity (which is a derived quantity
and not a dependent variable) it is intuitive that the examina-
tion of the grid/time convergence properties of the viscosity
also plays an important role for code verification of non-
Newtonian fluid solvers. Unfortunately, neither the theoreti-
cal nor the expected order of accuracy of viscosity is known,
thus the correctness of the viscosity will be verified by ensur-
ing that discretization and extrapolated errors decrease with
grid/time step refinement.

5 Flow Solver

The CFD code used for this work is ReFRESCO [27], a
viscous-flow code currently being developed and verified for mar-
itime purposes by the Maritime Research Institute of the Nether-
lands (MARIN) in collaboration with several nonprofit
organizations around the world. The code solves multiphase

1
,/ | —— Newtonian
// \ —-— Herschel-Bulkley
// \ ---- regularised
o = \\\
./ ;// = \\;\
T0 ( /I N
’II ‘\\\
I’ \~_‘_~____
I
0 - 0 -
Y Y

Fig. 1 Shear stress 7 = pu(y) 7 and apparent viscosity as a function of the shear rate for
Newtonian and Herschel-Bulkley models (n<1). The dashed lines show the effect of the
regularization on the Herschel-Bulkley model. The axes are in linear scales.
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(unsteady) incompressible flows using momentum, continuity and
volume-fraction transport equations. A number of other features
such as turbulence and cavitation models are also included, how-
ever they are not considered for the present verification.

Equations are discretized in strong-conservation form with the
finite volume method for unstructured meshes with cell-centred
colocated variables. Spurious pressure oscillations arising from
the colocated arrangment are prevented using the pressure-
weighted interpolation method [28]. Mass conservation is ensured
with a pressure-correction equation based on the SIMPLE algo-
rithm [29]. The convective flux in the momentum equation is line-
arized with the Picard’s method and it is discretized with the total
variation diminishing (TVD) Harmonic scheme [30].

After each SIMPLE (outer) iteration, the computed velocity is
used to evaluate first the shear rate ) and then the apparent viscos-
ity u(7), by virtue of Eq. (3). The viscosity is then updated in the
momentum equation for the next SIMPLE iteration.

For the unsteady two-phase flow simulations, time integration
is performed implicitly with the second-order backward scheme
(BDF2). At each implicit time-step, the linearized system for
velocity and pressure is solved using the SIMPLE algorithm. After
each outer iteration, the calculated velocity is then used to solve
the volume-fraction equation and to calculate the apparent
viscosity.

We anticipate that for case 3 (Sec. 8), where the chosen manu-
factured solution yields a sharp (discontinuous) interface between
the fluids, the convective flux of the volume-fraction equation is
discretized with an interface-capturing scheme [31], a blend of
compressive and high-resolution interpolation schemes. This
scheme prevents both the smearing of the interface due to the
numerical diffusion and the appearance of spurious oscillations of
the volume fraction. However, for case 2 (Sec. 7), where the inter-
face between the fluids is not sharp, the interface-capturing
scheme is not suitable. In this case the interface-capturing scheme
would tend to sharpen the interface, causing large numerical
errors in the volume fraction. For this reason, the convective flux
of the volume-fraction equation for case 2 is discretized with the
TVD Harmonic scheme.

Details about the above mentioned numerical techinques can be
found in a number of textbooks (e.g., Ref. [32]), hence they are
not further discussed.

In the following sections, ReFRESCO is used to illustrate three
verification exercises that can be used to demonstrate the correct
implementation of the Herschel-Bulkley model and, more in gen-
eral, GNF models.

6 Case 1: Steady Single-Phase Flow

6.1 Test Case Set-Up. The first code verification exercise
assesses the correctness of the implementation of the Herschel-
Bulkley model for laminar single-phase flows using the manufac-
tured solution from [10,15,33]

ue(x,y) = sin(x* +y*) + €
uy(x,y) = cos(x2 +y2) + € (15)
p(x,y) =sin(x* +y%) + ¢

where € = 0.001 is a small constant added to avoid symmetry in
the solution. Note that the manufactured solution is not
divergence-free, therefore the term —2/3(V -u)d; must be
included in the stress tensor, with d;; being the Kronecker delta.
With this manufactured solution, pressure is expected to be first-
order accurate at the boundaries for the reasons explained in Ref.
[15].

To obtain asymptotic grid convergence without excessive grid
resolution, large viscosity gradients should be avoided. This is
achieved (a) by selecting low values for both the yield stress and
the regularization parameter (thus limiting the maximum

021002-4 / Vol. 6, JUNE 2021
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Fig. 2 Exact viscosity pu(x,y) (Pa's) of the regularized
Herschel-Bulkley model for case 1

viscosity) and (b) by moving the computational domain away
from the axes origin. The latter stems from the fact that $(0,0) =
0 and so the viscosity variation is steeper around the origin (see
also Fig. 1 to recognize the stronger variation of u(}) near 7 = 0).
This results in a relatively small variation of the viscosity within
the domain (Fig. 2), especially when compared with realistic flow
conditions in which the viscosity in low-deformation regions can
be thousands/millions times larger than the viscosity in high-
deformation regions (e.g., in boundary-layer flows). We recall
however that physical realism is not a requirement for code verifi-
cation as the latter is purely a mathematical exercise [8].

On the other hand, a convenient choice of the fluid density
should ensure a dominant contribution of the viscous term in the
momentum equations. By doing so, there are more chances that
anomalies in the viscous term will be detected from the conver-
gence properties of velocity and pressure. With the current choice
of fluid properties, convective and pressure terms in the momen-
tum equations have about the same order of magnitude, whereas
the diffusive term is about one order of magnitude larger* (Fig. 3).

The domain is discretized with 21 two-dimensional uniform
Cartesian grids, the finest grid having 640 x 640 cells. Dirichlet
conditions based on the manufactured velocity are applied to all
boundaries together with Neumann conditions for pressure. Since
no pressure boundaries are used, a reference pressure is imposed
in one point using the exact pressure. Furthermore, pressure and
viscosity are both linearly extrapolated to the boundaries using the
gradient from the previous outer iteration. The parameters used
for the calculations are given in Table 6 in Appendix B.

6.2 Results and Discussion. The L, and L., error norms and
the observed order of convergence p are reported in Table 1 as
function of grid refinement.

All quantities appear to be in the asymptotic range for about
hi/hy < 4, where p is nearly constant. Velocity matches the
expected second-order both for the L, and the L., error norms,
whereas the pressure coefficient C, exhibits first-order accuracy in
the L, error norm. The largest errors were found near the bounda-
ries, with the maximum error on the top left corner. This confirms
that pressure is first-order accurate at the boundaries, as we
expected. As a result of the first-order behavior at the boundaries
and second-order on interior cells, the L, error norm of C}, con-
verges with an order about 1.9. It is also remarkable that, with the
chosen fluid properties and regularization parameter, the grid con-
vergence properties of velocity and pressure with the Herschel-
Bulkley model are very similar to those of the verification

“For a thorough code verification, different combinations of the fluid properties
should be considered to give more relevance also to other terms in the governing
equations. However, in this article, the focus is on the diffusive term.
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Fig. 3 Magnitude of convection, pressure and diffusion terms (N m~3) corresponding to the manufactured

solution of case 1

exercise in Ref. [15] with the same manufactured solution and
Newtonian fluids.

The grid convergence properties of p are very similar to Cp,
with a rate of convergence about 1.9 for the L, norm and with
first-order for the L., norm. The maximum error was found on the
top boundary, where also the maximum error of the tangential
velocity derivative is located. It was observed that velocity deriva-
tives converged with first-order accuracy at the boundaries.’ Thus,
it appears that the first-order accuracy of velocity derivatives leads
to first-order accuracy of the viscosity, as a result of their depend-
ency (Eq. (3)).

The examination of the extrapolated error for cell size zero e is
convenient when p does not match the theoretical (expected) order
of grid convergence or when the asymptotic order of convergence
is hard to determine [15]. For the present exercise, this is the case
of viscosity and pressure. Nonetheless, e, decreases upon grid
refinement for all quantities and for both norms (Fig. 4), providing
convincing evidence about the correctness of the code.

Larger values of the yield stress and regularization parameter
were also tested, and results were virtually identical to those
reported in Table 1, except for marginally larger discretization
errors for all quantities. Larger errors are in fact expected for
larger yield stress and regularization parameters because of the
increased viscosity gradient [35]. We mention, however, that
increasing the regularization parameter to very large values, as
normally required by practical applications, is neither necessary
nor convenient for code verification. In fact, using large regulari-
zation parameters will likely cause stagnation of residuals® and
consequent contamination of numerical errors by iterative errors.
Moreover, even when residuals converge, asymptotic grid conver-
gence may be difficult to achieve. In any case, it is shown in
Appendix A that with the adopted choice of yield stress and regu-
larization parameter the exercise is very sensitive to coding mis-
takes in the rheological model.

In conclusion, for all quantities, the observed orders matched
the expected orders, and the extrapolated errors e tend to zero
upon grid/time-step refinement. Furthermore, the grid conver-
gence properties of velocity and pressure are analogous to the ver-
ification with Newtonian fluids in Ref. [15]. The code can thus be
considered verified for laminar single-phase flow of Herschel-
Bulkley fluids.

7 Case 2: Unsteady Two-Phase Flow With a Continu-
ous Interface

7.1 Test Case Set-Up. This exercise verifies that laminar
flows of Herschel-Bulkley fluids are correctly solved also for two-

SThis is because the velocity derivatives are computed with the Gauss’s theorem,
which is a second-order method but it reduces to first order at the boundary, even on
Cartesian grids [34].

“Stagnation of residuals for large regularization parameters is a known issue for
SIMPLE-type solvers [35]. The robustness of the code should be addressed by
performing solution verification on benchmark/realistic flow problems.
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phase flows. The manufactured solution is taken from Ref. [31]
and it represents a sinusoidal wave on deep water from potential
flow theory [36]

uy(x,z,t) = %Aexp(%)cos(‘i—f—gg) (16)
u;(x,z,t) :§Aexp(§)sin(%—g?t) 17)

P(x7 Zy [) - pg(C(X,Z, l) - Z)) (18)
c(x,z,t):%(l—l—erf(b(z—é(x,z,t)))) (19)

where ( is the wave elevation

8z gx gt
{(x,z,t) = Aexp (6—2> cos (c—z - 7) (20)

c

The pressure is assumed to be zero at the free surface, i.e., at
z = {. We recall that the above solution describes the circular
motion of fluid particles for z < {. However, for code verification
purposes, the above solution is applied also for z > (.

The parameter b in the error function erf in Eq. (19) determines
how steeply the volume fraction (and fluid properties) varies
around z = (. The error function assumes values from 0 to 1 over
a distance of about 2/b. Thus, if 2/b is less than the cell size, the
volume fraction is discontinuous at the discrete level. Verification
with a discontinuous solution is more challenging because the
asymptotic grid/time convergence is extremely hard to achieve,
thus we postpone it to Sec. 8. For the present test case we consid-
ered h=12, which produces a smooth variation of the volume
fraction from one fluid to the other (Fig. 5). Note that the viscosity
of fluid 1 (right plot in Fig. 5) varies in space not only because of
the volume fraction but also because fluid 1 is non-Newtonian.

Considering a smooth interface increases the chances of achiev-
ing asymptotic grid/time convergence with reasonable grid/time
resolution. The drawback is that special treatments for discontinu-
ities may not be fully exercised by the verification. Therefore, a
successful outcome from this exercise can be seen as a necessary
but not sufficient condition to ensure that the code works correctly
for free-surface calculations with Herschel-Bulkley fluids. On the
other hand, this test case well represents those applications where
the interface between two liquids (e.g., between water and mud
suspensions) is not as sharp as a gas—liquid interface. For such
applications, one might avoid the use of interface-capturing
schemes, thus allowing smearing of the interface by numerical
diffusion. In light of the above considerations, liquid-like proper-
ties are assigned to both fluids to justify the use of a smooth inter-
face between the fluids.
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Table 1

L, and L.. error norms and observerd order of convergence p for velocity, pressure coefficient and viscosity for case 1

hi/h Ly[e(u)] p Ly[e(Cp)] p Loe(w)] p Log[e(u)] p Loole(Cy)] p Log[e(w)] p

1600 123x107° 200 527x10% 1.8 806x10° 177 1.03x10* 199 471x10% 070 7.16x10° 098
1333 855x10°° 200 378x107* 178 576x107° 179 720x107° 199 399x10> 078 597x10 098
1123 606 x10°° 200 278x10% 1.81 419x107° 1.81 512x10° 199 339x1072 081 503x10° 098
9.28 414%107° 200 196x10* 1.8 293x10° 1.82 350x107° 198 284x10% 081 4.16x10° 099
8.00 308 x10°° 200 149x107* 177 223x107° 183 261x107° 198 247x1072 088 359x107° 0.99

6.53 205%x 107 2,00 1.03x107* 177 152x107°
5.47 144 x107° 200 740x107° 183 1.09x107°

4.60 1.02x107® 200 538x10° 183 7.88x10°
400 769 %1077 200 415x107° 1.84 6.04x10°°
3.23 502x 1077 200 279x10° 1.84 4.03x10°
271 354 x 1077 200 20lx10° 1.84 289x10°°
2.28 249 x 1077 2,00 145x107° 1.85 2.07x10°°

2.00 192x 1077 200 1.14x107° 185 162x10°°
1.61 124x 1077 200 754x10° 18 1.07x10°°

1.35 880 x 107 200 545x10° 1.86 7.68x 1077
1.14 621 x107% 200 392x10° 187 551x1077
100 481 x10% 200 3.08x10° 187 431x1077

1.84 1.74x107° 198
185 1.22x107° 199 171 x1072  0.90
1.86 871x107° 1.99
187 659%x107° 199 127x107% 093
187 432x10° 198 1.03x102 094
1.88  3.05x107° 1.98
188 2.15x10°° 1.98
189  1.66 x 107°  1.98
189  1.08x10°° 198
190 7.64x 1077  1.99
190 540x 1077  1.99
190 418 x 1077  1.99

293 x107°  0.99
246 x 107°  0.99
207 x 107°  0.99
1.80 x 107%  0.99
145 x 107°  1.00
122 x 107 1.00
1.03 x 107%  1.00
9.01 x 107 1.00
724 x107* 100
6.10 x 10 1.00
512%x 107 1.00
451 x107* 100

2.03 x 1072 0.90

145%x 1072 092

8.66 x 107> 0.95
729 x 107 0.96
6.42x107°  0.96
517x 107 097
436 x 107> 097
3.67x107° 098
323%x107°  0.98

The computational domain is a square with sides of 1.0 (m),
discretized with 21 two-dimensional uniform Cartesian grids, the
finest grid having 640 x 640 cells. Dirichlet boundary conditions
based on the manufactured velocity and volume fraction are
applied to all boundaries together with Neumann conditions for
pressure. As for case 1, pressure and viscosity are both linearly
extrapolated to the boundaries using their gradients from the pre-
vious outer iteration.

Calculations are initialized with the manufactured solution and
are carried out for one wave period 7. The time steps are chosen
such that the CFL numbers are less than 1/6 to ensure that the
BDEF2 scheme is TVD [31,37], and the time-step for the finest grid
is Ty = T/4800. Time steps are refined using the same ratio as the
grid refinement, i.e., h;/hy = 1;/t1 = 2;/21. The parameters used
for the computations are summarized in Table 6 in Appendix B.

7.2 Results and Discussion. The order of convergence p and
the L; and L, error norms are given in Table 2. It is immediately
evident that errors in the velocity, pressure coefficient and volume
fraction converge asymptotically with the expected second-order
accuracy. The first goal of code verification is thus fulfilled for the
dependent variables.

The convergence of the viscosity does not appear asymptotic,
with rates of convergence ranging between 1 and 2. The largest
viscosity errors were found on the side and bottom boundaries,
where also the largest errors of velocity derivatives are located.
This suggests that local grid refinement at the boundaries is
needed to reduce such errors and to achieve asymptotic
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convergence for the viscosity without a significant increase of the
computational costs. However, local refinement, which requires
the use of unstructured/nonuniform grids, is out of the scope of
this work and it should be investigated in future studies. Another
option may be to improve the discretization of the gradients at the
boundaries, but for solvers that use unstructured grid assumptions
this option is not straightforward and therefore outside of the
scope of the present study. At least, the present exercise proves its
usefulness by demonstrating the expected convergence behavior
for the dependent variables, while also detecting inconsistencies
in the solution that went unnoticed in case 1.

In any case, the extrapolated error ¢ for cell size/time-step zero
clearly decreases upon grid/time-step refinement for all quantities
(Fig. 6). This, combined with the second-order accuracy of the
dependent variables and with the results of case 1, provides com-
pelling evidence that the code performs correctly also for two-
phase laminar flows of Herschel-Bulkley fluids with a smooth
interface.

8 Case 3: Unsteady Two-Phase Flow With a Free
Surface

8.1 Test Case Set-Up. In the previous test case we have
shown that by considering a smooth interface between the fluids
rigorous code verification is possible also for two-phase flows.
However, for applications in which the top fluid is a gas, one usu-
ally wants to keep the interface as sharp as possible to accurately
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Fig. 4 Extrapolated error for cell size zero e, for the L, and L.. error norms as function of grid refinement for

case 1
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0.25

fluid 2 - Newtonian

Exact VF Exact Visc.
l.e-2
0.00 S g:z ol PP
0.7 8.e-3
0.6 7.e-3
z 0.5 6.e-3
0.4 5.e-3
fluid 1 - Herschel-Bulkley . 403
P1, p1 0.2 3.e-3
0.1 2.e-3
0.0
-0.75
0.00 0.50 1.00

X

Fig. 5 Exact volume fraction (left) and viscosity (Pa-s) (right) for case 2 with steepening parameter b=12. The

black isoline corresponds to ¢ = 0.5.

capture the free surface. It can be the case, for example, of mud
slurries in an open channel or dip-coating processes [38].

In this case study we test the code on free-surface calculations
by increasing the steepening parameter in the manufactured vol-
ume fraction (Eq. (19)) from 12 to 1200. Now the volume fraction
varies between 0 and 1 over a distance about the cell size of our
finest grid, hence the volume fraction is discontinuous at the dis-
crete level, as shown in Fig. 7. Moreover, the convective fluxes of
the volume-fraction equation are now discretized with an
interface-capturing scheme, as was anticipated in Sec. 5. The grids
and all the other parameters are the same as case 2, except for
fluid 2, which now has the density and viscosity of air (see Table 6
in Appendix B).

8.2 Results and Discussion. The oscillatory convergence due
to the presence of a discontinuity (free surface) is clearly noticea-
ble from the convergence of the L; and L, error norms in Fig. 8,
with discretization errors that sometimes increase upon grid/time-
step refinement. For this reason we have estimated o, g and p in
the least-square sense by fitting Eq. (11) to the data on the 10 fin-
est grids. The observed order of accuracy is thus indicated in
Fig. 8 with pys.

A close look at the velocity errors in Fig. 9 reveals the presence
of the well-known “spurious velocities” [31] for free-surface cal-
culations with the VoF model. These are caused by the density-
weighted interpolation scheme for pressure [28], which assumes
that the free surface coincides with the cell boundaries. When the
free surface is not aligned with the cells boundaries, an imbalance
occurs in the discretization of the pressure gradient, which acts as
a source/sink of momentum. Since pu is conserved across the free
surface, errors in the velocity are amplified in the low-density
fluid (Fig. 9). For this reason they are often called “spurious air
velocities.” This explains the oscillatory convergence of pressure
and velocity, and it is reassuring that, overall, there is a clear
decreasing trend as the grid/time-step is refined.

We remark that artifacts in the velocity have nothing to do with
the use of non-Newtonian fluids. However, when non-Newtonian
fluids are used, additional artifacts are generated. In fact, spurious
velocities cause large errors in the shear rate ), as shown in the
top panel of Fig. 10. In turn, such large errors in the shear rate pro-
duce “spurious viscosities” in the non-Newtonian fluid near the
free surface (bottom panel in Fig. 10), hence explaining the oscil-
latory convergence of the viscosity.

On the other hand, the convergence of the volume fraction is
monotonic and exhibits a rate of convergence pjs for the L; error

Table2 L, and L, error norms and observerd order of convergence p for case 2

A Life(u)] p o Life(C)] p Life(c)] P

Life(w] P

Lofe@] — p  LleC)]  p L]  p Ll p

1600 1.12 x 1073 2.08 132x 1072 2.15 4.18 x 107 242 3.00 x 1072 2.00 1.70 x 107> 2.08 2.09 x 107> 2.18 8.41 x 107> 2.35 3.87 x 1072 1.92
1333 773 x 107 2.04 898 x 1072 2.08 2.66 x 107> 259 2.09 x 1072 2.00 1.16 x 107> 2,13 1.41 x 1072 2.17 544 x 107> 249 274 x 1072 1.92
1123 544 x 107* 2.03 6.55x 107 2.05 1.79 x 107 2.68 153 x 1072 2.00 8.12x107* 212 1.01 x 107> 2.14 3.71 x 107> 2.58 2.04 x 107> 1.90
928 370 x 107* 2.05 467 x107° 204 1.16 x 107> 270 1.10 x 1072 2.00 546 x 107* 2,12 7.12x 1073 2.12 245x 107> 261 150 x 107> 1.88
8.00 2.74x107* 2.04 3.16x 1072 2.05 699 x 107* 2.69 7.52x 107% 2.00 4.02x 107* 2,10 4.75x 107 2.13 150 x 107> 259 1.05x 107> 1.86
653 1.82x107* 2.04 218 x 1077 204 434 x107* 2.64 523 x 1077 200 2.65x107* 2.09 323 x 107> 2.12 9.49 x 10°* 2.53 7.50 x 107* 1.85
547 128 x107* 2.03 153 x 107° 2.03 280 x 107* 256 371 x 107° 1.99 1.84 x 107* 2.09 225x 107 2.09 622x 107* 246 548 x 107 1.85
460 9.03x107° 202 1.04x 107 2.03 174 x 107* 246 254 x 1077 198 129 x 107 2.08 151 x 107> 2.08 3.94x 107 237 387 x 107° 184
400 681 x107° 202 7.72x107% 203 1.22x 107 239 1.90x 107> 1.98 9.70 x 107° 2.07 1.11 x 107> 2.08 2.80 x 10°* 231 296 x 107> 1.84
323 444 x107° 201 512x 107 203 7.63 x107° 230 127 x 107° 1.97 628 x 107> 2.06 7.33 x 107* 2.08 1.77 x 107 223 2.05x 107> 1.84
271 313 x107° 201 357 x107% 202 5.12x107° 224 897 x 10°* 1.97 439 x 107> 206 508 x 10°* 2.06 1.20x 10°* 2.18 1.50 x 107 1.84
228 220x107° 201 252x107* 202 3.52x107° 218 640 x 107* 1.97 3.08 x 107> 2.05 3.57 x 107* 2.05 833 x 107> 2.13 1.11 x 107* 1.81
200 170 x 107> 2.00 1.90 x 107* 2.02 2.60 x 107> 2.13 4.86 x 107 1.97 237 x 107> 2.04 2.68 x 107* 2.05 6.19x 107 210 870 x 10°* 1.78
161  1.10 x 107 2.00 123 x 107* 2.02 1.66 x 107> 2.08 321 x 107* 1.96 1.52x 107> 2.04 1.73 x 10~* 2.04 3.98 x 10> 2.06 6.08 x 107* 1.72
135 7.77x107° 200 8.66x 107> 202 1.15x107° 2.06 228 x 10°* 1.94 1.07 x 107> 2.03 121 x 107* 2.03 278 x 107> 2.05 4.56 x 107* 1.65
1.14 548 x107° 200 6.09x 107> 2.01 808 x 107° 206 1.62x10™* 1.92 7.56 x 10°® 2.03 851 x 10> 2.03 1.95x 107> 2.04 3.46 x 10°* 1.56
1.00 424 x107° 2.00 4.69x 107 201 620 x107° 2.04 126 x 107 1.92 584 x 107® 2.03 6.55x 107> 2.02 1.50 x 107> 2.03 2.83 x 10~* 1.50

Journal of Verification, Validation and Uncertainty Quantification

JUNE 2021, Vol. 6 / 021002-7

) bnAA/Z0S7999/200120/2/9/3Pd-81o1 e /Uil LIaA/BI0 B WSE UONOS||00[e)BIpaWSsE//:d]Y WOl papeojumoq

20 900

1202 YoIelN G U0 Jasn yja@ n1 yeayioarg Aq jpd'z00120



]0—3.

5
O
S— o
= 1075/ 38388 8ev
R vy vvvyZXg ogonoo
\Qi/ v v <><>8O8
~ — 7 v @ﬁmgo .
s g0% o
< Y5, ©
ool — 2 : : :
1 2 4 8 16
i/ A1

1073, .
v o
gv VY vvvvv<v> .
— vV OQOB§©O
= 107" o o
S vV @@ go?©
2 g B8c0°
Si —7] gg o
§10 %@8 o u e
o Cp v
10794— " ; " "
1 2 4 8 16
i/ A1

Fig. 6 Extrapolated error for grid size/time-step zero e, for the L, and L, error norms as a function of the refine-

ment factor for case 2

fluid 2 - Newtonian
P2, U2

fluid 1 - Herschel-Bulkley
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Exact Visc.
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I 9.e-3
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2.e-3

l.e-3
. 2.e-5

Fig. 7 Exact volume fraction (left) and viscosity (Pa-s) (right) for case 3 with steepening
parameter b =1200. The black isoline corresponds to ¢ = 0.5.

norm close to 1.0, whereas for the L, error norm pj is roughly
halved. These results agree with the verification of the stand-alone
volume-fraction equation with a discontinuous initial solution in
Ref. [31].

A common practice in code verification is to assume ey = 0 in
Egs. (8) and (11) (see e.g., Refs. [12], [13], [31], and [33]). The
implications of making such assumption are discussed in detail in
Ref. [15]. The main advantage is that the observed order can be
simply determined from data on grid doublets as

ple(o)] === (e(f:;%e(qs")) @)

where, in this case, the selected grids cover a refinement ratio
of 2.

For the present exercise we assumed ey = 0 for two reasons.
First, solving a nonlinear system of three equations to determine
ep, o and p was not possible because of the oscillatory grid/time

et =030
o Cp Vo p
_____ on =134 ———p, =075
5 4 & %
Ai/ M

Fig. 8 L, error norms as function of the refinement factor. p;s is obtained from the best weighted least-square

fitting of Eq. (11) to data on the 10 finest grids.
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Table 3 L, and L, error norms and observerd order of convergence p* (Eq. (21)) for case 3

Zifi Lile@]  pt Lile(Gy)l pt Lile(e)]  pt o Life(u)]

Pt Lle(w)]  pt o Lle(C)]  pt Lie(o)]  pt o Lafe(w)]  p*

320 264x10% - 837x102 - 192x10% - 123x10°!
191 x 1072 046 2.12x 1072 198 134x 1072 0.53 7.24 x 1072
840 x 107 1.19 1.63 x 1072 0.38 6.97 x 107> 0.94 3.35 x 1072
3.60 x 1077 122 460 x 107° 1.82 340 x 107> 1.04 1.57 x 1072
131 x107° 146 218 x 107 1.08 149 x 1073 1.19 9.03 x 1073
371 x107% 1.82 4.63 x 107* 223 563 x107* 140 3.87 x 107>

[=2)

— N s 0 =

- 478x 1072 - 154x107' - 613x10% - 230x10°' -

0.76 440 x 1072 0.12 455x 1072 176 6.14x 1072 0.00 1.71 x 10~' 043

1.11 2.09 x 1072 1.08 270 x 1072 0.75 4.45x 1072 047 9.77 x 107> 0.80
1.10 1.00 x 1072 1.06 829 x 107> 1.71 290 x 1072 0.62 6.74 x 107 0.54

0.79 4.80x 1077 1.06 422x107° 097 1.68x 1072 0.79 4.26 x 1072 0.66
122 1.65x107% 154 1.14x 1077 1.89 835x107° 1.01 3.00 x 1072 0.51

Error U
0.10

M 0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Fig.9 Velocity errors on the grid with 1602 cells. The black iso-
line corresponds to ¢ =0.5.

convergence caused by the above-mentioned spurious velocities.
Second, the present results can be more easily compared with the
work of Klaij et al. [31], where the order of convergence was also
determined assuming ep = 0. With this in mind, the discretization
error and order of convergence p* are reported in Table 3.

The convergence of the L, error of pressure and volume frac-
tion is similar to Ref. [31]: pressure errors converge with order
oscillating between 1 and 2, whereas the volume fraction is well-
behaved and its order of convergence reaches 1.4. On the other
hand, our velocity errors appear to be reaching second-order accu-
racy, in contrast with the order close to 2/3 in Ref. [31]. Such dif-
ference is due to the different boundary conditions applied on the
bottom boundary. In Ref. [31], a Dirichlet condition for pressure
was imposed on the bottom using the exact pressure at =0,
whereas in the present work we imposed a Dirichlet condition for
velocity using the exact velocity at each time-step. This, com-
bined with the slightly finer grids of the present work, produced a
better convergence of the velocity error compared to Ref. [31].

To summarize, while results of this code verification exercise
are less conclusive than case 2, errors of all quantities have a clear
decreasing trend upon grid/time-step refinement, and the order p*
compares favorably with an earlier verification exercise per-
formed with only Newtonian fluids [31]. We have also shown that
the oscillatory convergence is due to the presence of spurious
velocities, a known issue for many free-surface calculations

y(x,z,T)

12.00
11.00
10.00

9.00
8.00

ux,z,T)

l.e-2
9.e-3
8.e-3
7.e-3

6.e-3
5.e-3
4.e-3
3.e-3
2.e-3
l.e-3
2.e-5

Neenis = 1602 Neeus = 3202 Neeus = 6402

Fig. 10 Contour plots of the shear rate j (s~ ') (top panel) and the viscosity u(7) (Pa-s) (bottom panel) for differ-
ent refinement levels at computational time t= T. The artifacts caused by spurious velocities are cleary visible
near the free surface on the grid with 1602 cells.
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Fig. 12 Extrapolated error g, for case 2 with err =0.01%

performed using the VOF method and the density-weighted inter-
polation scheme.

Finally, the exercise revealed that spurious velocities produce
artifacts in the viscosity of the non-Newtonian fluid, but it was
just shown that such artifacts tend to disappear with grid/time-step
refinement. For practical applications where high grid resolution
around the free surface is too expensive, spurious viscosities in
the non-Newtonian fluid might be even visible to the naked eye.
Fortunately, spurious velocities mainly occur in low density flu-
ids, which are typically Newtonian, thus the viscosity of the non-
Newtonian fluid is only moderately affected. Furthermore, the
impact of these spurious viscosities on the flow field depends on
how large the viscous forces are in comparison with other forces,
and this varies from application to application.

9 Conclusions

In this study, code verification of an Herschel-Bulkley fluid
solver for laminar flows has been performed and discussed
through three exercises with increasing complexity: steady single-
phase flow (case 1), unsteady two-phase flow with a smooth inter-
face (case 2) and with a free surface (case 3).

For cases 1 and 2, the two goals of code verification are
achieved: the observed order of convergence matches the
expected order and the extrapolated error to cell size/time-step
zero tends to zero with grid/time-step refinement. Therefore, the
code performs as intended for both single- and two-phase laminar
flows of Herschel-Bulkley fluids. Code verification in case 3 is
less conclusive due to the lack of asymptotic grid/time conver-
gence. Nevertheless, this test case can be used as an extension of
case 2 to check that, in presence of a free surface, errors of all
quantities have at least an overall decreasing trend with grid/time-
step refinement. Furthermore, the exercise revealed that the well-
known “spurious velocities” typical of free-surface calculations
with the VoF model induce “spurious viscosities” in the non-
Newtonian fluid. We have however demonstrated that these arti-
facts disappear with grid/time-step refinement.

Additionally, it is shown in Appendix A that examining the
convergence properties of the viscosity is a valuable tool for
detecting coding mistakes in the rheological model, especially for

021002-10 / Vol. 6, JUNE 2021

2 4 8 16 32

Fig. 13 L, error norms as function of the refinement factor
with err =1%. Lines are obtained from the best weighted least-
square fitting of Eq. (11) to data on the 10 finest grids.

case 2 and case 3, where viscous effects have little influence on
the convergence properties of the dependent variables.

Finally, it should be noted that the procedure illustrated here on a
finite volume code for Herschel-Bulkley fluids can also be used to
verify and demonstrate the correct implementation of other GNF
models and in any type of CFD code. Further research is required
to extend this work to more complex rheological models, such as
viscoelastic models, and to nonuniform/unstructured grids.
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Appendix A: Sensitivity to Coding Mistakes in the
Rheological Model

This exercise illustrates the sensitivity of the three test cases to
coding errors in the implementation of the apparent viscosity. For
this purpose, we have simulated the presence of bugs in the vis-
cosity by inserting the following command right below the line of
code where the apparent viscosity is calculated:

mu(:)=mu(:) * (1.0+err/100.0)

where err represents the (small) coding error in percentage.
This error mimics the presence of coding mistakes in the apparent
viscosity that produce a uniform viscosity error equal to err.

For case 1, the presence of a coding error is clearly visible from
both the observed order of accuracy p (Table 4) and the conver-
gence of ¢, (Fig. 11) of all quantities.

Table 4 Observed order p for the five finest grids of case 1
with err=0.01%

hi/hy p(Lae(P)]) p(Lec[e(D)])

u Cp " u Cp "
2.00 2.01 —0.11 2.32 2.05 0.96 9.21
1.61 2.01 2.02 2.24 2.03 0.97 —0.04
1.35 2.02 —0.13 2.19 2.03 0.97 —0.04
1.14 2.04 —0.10 2.14 2.07 0.97 1.05
1.00 2.08 0.73 2.11 2.11 0.98 1.03

"https://www.tudelft.nl/mudnet;.
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Table 5 Observed order p for the five finest grids of case 2
with err=0.01%

/1,'/]4 p(Ll [€(¢)])

u C

p(Lale(d)])

P c I u Cp c I

2.00 200 202 213 505 204 205 210 282
1.61 200 202 208 505 204 204 206 345
1.35 200 202 206 9.09 203 203 205 410
1.14 2.00 2.01 206 9.09 203 203 204 537
1.00 2.00 2.01 204 909 203 202 203 8.65

For case 2, the observed order of accuracy of viscosity appears
to be highly sensitive to the small coding error (Table 5), whereas
for velocity, pressure and volume fraction, p is virtually unaf-
fected. Likewise, the extrapolated error e0 (Fig. 12) shows

an alarming trend for the viscosity, whereas for the other variables
ep appears to be the same as in the exercise without the coding
error.

For case 3, the presence of an anomaly in the rheological model is
suggested by the convergence of the viscosity error, which appears
to stagnate instead of decreasing with grid refinement (Fig. 13).
However, as for case 2, the grid/time convergence properties of
the other variables appear to be unaffected by the coding error.

The insensitivity of the dependent variables to coding mistakes
in the viscosity for cases 2 and 3 is due to the fact that the diffusion
term in the momentum equations is much smaller than the other
terms. This is simply due to the nature of the manufactured solu-
tion, which represents a gravity wave. Therefore, for cases 2 and 3,
it is recommended to examine the grid/time convergence properties
of the viscosity for detection of bugs in the rheological model.

Appendix B: Parameter Values Used for the Three Test
Cases

Table 6 Parameters used for the three test cases

Parameter

Value

Case 1

Computational domain (m)

Finest grid

Density (kg m™ %)

Flow index

Consistency parameter (Pa s”)
Yield stress (Pa)

Regularization parameter (s)
Convergence tolerance for residuals

Case 2

Computational domain (m)

Finest grid and time step

Wave speed (m shH

Wave amplitude (m)

Gravity (m )

Steepening coefficient (m™")
Wavelength (m) and period (s)
Molecular viscosity fluid 2 (Pa s)
Consistency parameter fluid 1 (Pa s”)
Flow index fluid 1

Yield stress fluid 1 (Pa)
Regularization parameter fluid 1 (s)
Density (kg m )

Convergence tolerance for residuals
Convection scheme volume-fraction equation

Case 3 (other parameters are as case 2)
Steepening coefficient (m™")

Molecular viscosity fluid 2 (Pa s)

Density fluid 2 (kg m )

Convection scheme volume-fraction equation

(x,y) €[0,0.6] x [0.1,0.7]
640 x 640
p=1
n=0.8
k=0.5
T0 = 5
m=1
Lo, norm <2 x 1071

(x,2) € ]0,1] x [-0.75,0.25]
640 x 640, 1, = T/4800

c=1.25
A=0.02
g=9.81
b=12
A=1,T=0.38
u, = 0.001
k=0.002
n=0.8
70 = 0.002
m=4

py = 1200, p, = 1000
Lo norm < 1071°
TVD Harmonic [30]

h=1200

=2 x 1073
pr =1

ReFRICS [31]
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Appendix C: Scripts for Generation of the Source Terms

The source terms for the three verification exercises can be obtained by running the scripts Listings 1 and 2 with the computer algebra

system Maxima [23].
Listing 1: Maxima [23] script to generate the source terms for case 1 in Sec. 6.

/= the manufactured solution =/
u(x,y):=sin(x"2+y”2)+0.001;
vV(Xx,y):=cos(x"2+y"2)+0.001;
p(x,y):=sin(x"2+y*2)+0.001;

/= shear rate «/

S(x,y):=sqrt(2«(diff (u(x,y),x))"2+2«(diff(v(x,y),y))*2+(diff(u(x,y),y)+diff(v(x,y),x))"2);

/+ viscosity for the regularised Herschel-Bulkley model =/

mu(x,y):= (tau_0+K+S(x,y)”n )/S(x,y)«(1-exp(-m=S(x,y)));

/= body force of u-momentum equation «/

ql:diff (rho«u(x,y)~u(x,y),x)+diff (rho~u(x,y)=v(x,y),y)+diff(p(x,y),x)
—diff (mu(x,y)«(diff(u(x,y),x)+diff(u(x,y),x)\
-2.0/3.0+(diff (u(x,y),x)+diff(v(x,y),y))),x)
—diff (mu(x,y)=~(diff(u(x,y),y)+diff(v(x,y),x)),y) ;

/+ body force of v-momentum equation =/

q2:diff (rhoxv(x,y)~u(x,y),x)+diff (rho*v(x,y)*v(x,y),y)+diff (p(x,y),y)
—diff (mu(x,y)~(diff(v(x,y),x)+diff(u(x,y),y)),x)
—diff (mu(x,y)~(diff(v(x,y),y)+diff(v(x,y),y)\
-2.0/3.0+(diff (u(x,y),x)+diff(v(x,y),y))).,y) ;

/= mass source of continuity equation =/

q3:diff(u(x,y),x)+diff(v(x,y),y);

/= Export to fortran =/

fortran(q0); fortran(ql);fortran(g2);
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Listing 2: Maxima [23] script used to generate the source terms for case 2 and 3 in Secs. 7 and 8. This script is taken from Ref. [31]
and it has been modified to account for the Herschel-Bulkley model used for fluid 1.

/+ the potential flow solution =/
phi(x,z,t):=c+A~exp(g+*z/c*+2)xsin(g+x/c**2-g=t/c);
u(x,z,t):=diff (phi(x,z,t),x);

w(x,z,t):=diff (phi(x,z,t),z);

hw(x,z,t

/= shear rate =/

+(diff(u(x,z,t),z)+diff (w(x,z,t),x))"2);
muF1(x,z,t):=(tau_0+K«S(x,z,t)*n)/(S(x,z,t))=(1 —exp(-m

c(x,z,t):=(1/2)«(1+erf(b*(z-hw(x,z,t))));
rho(x,z,t):=rhoF2+c(x,z,t)+rhoF1«(1-c(x,z,t));
mu(x,z,t):=muF2«c(x,z,t)+muF1(x,z,t)~(1-c(x,z,t));
p(x,z,t):=rho(x,z,t)~g+(hw(x,z,t)-z);

/= source term of the volume fraction equation =/
ql:diff(c(x,z,t),t

/= body force of x-momentum equation =«/
q2:diff(
+diff(rho(x,z,t)~u(x,z,t)*w(x,z,t),z)
+diff (p(x,z,t),x)

—diff (mu(x,z,t)«(diff (u(x,z,t),x
—diff (mu(x,z,t)~(diff (u(x,z,t),z

Y+ diff(u(x,z,t),x

mu
mu Y+ diff (w(x,z,t)

/= body force of z-momentum equation «/

q3:diff(

+diff(rho(x,z,t)*w(x,z,t)*w(x,z,t),z)

+diff(p(x,z,t),z) + rho(x,z,t)*g

—diff (mu( (diff(w(x,z,t),x)+diff (u(x,z,t),z
(

)
mu X,z,t)x ( )
—diff (mu(x,z,t)~(diff(w(x,z,t),z)+diff(w(x,z,t),z)

) s X)
)s2)
/= Export to fortran «/
fortran(ql);fortran(g2);fortran(q3);

):i==1/g«diff (phi(x,z,t),t); /«~ wave elevation «/
S(x,z,t):=sqrt(2+(diff (u(x,z,t),x))*2+2«(diff(w(x,z,t),z))"2
/= viscosity for the regularised Herschel-Bulkley model */

*S(x,2,1)));

/+ the volume fraction, material properties and pressure field =/

y+diff (u(x,z,t)«c(x,z,t),x)+diff (w(x,z,t)+c(x,z,t),z);

rho(x,z,t)~u(x,z,t),t) +diff(rho(x,z,t)~u(x,z,t)~u(x,z,t),x)

rho(x,z,t)*w(x,z,t),t) +diff(rho(x,z,t)*w(x,z,t)~u(x,z,t),x)
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