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Abstract. A three-dimensional computational aeroacoustics code has been developed for
the simulation of tone noise generated by turbofan engine inlets. The code is based on
the linearized Euler equations, rewritten in terms of acoustic potential and solved in the
frequency domain. Spatial discretization is performed using a spectral element method.

Solution of the linear system of equations is based on the Schur complement method,
which is solved using a matriz-free iterative method on multi-processors. A new precon-
ditioner, which acts locally on individual subdomains, has been introduced to accelerate
the convergence. Moreover, mathematical formulations are presented for implementation
of geometric symmetry conditions for general, nonsymmetric wave propagation to further
reduce computational cost associated with these types of problems.

Numerical results include acoustic propagation from a uniform cylinder as a validation
test case and a generic scarfed inlet with close to 2 million grid points, both solved using
from 8-48 processors. The code is demonstrated to be robust and efficient in simulating
ducted acoustic propagation.

1 INTRODUCTION

In modern turbofan engines with a large bypass ratio, fan noise dominates the engine
noise signature during take-off and landing. The noise, which is caused by the rotor-stator
interaction, propagates with the blade-passage frequency (BPF) or its harmonics.

Generally, two different approaches are used in numerically analyzing fan noise prob-
lem. One is based on computational aeroacoustics (CAA), where the computational
domain covers the fan face, inlet duct, and a truncated region in front of the duct’s
exit, representing the far-field. Noise generation at the rotor is modeled using either
the Tyler & Sofrin theory?, or by directly calculating pressure variations using first



Farzad Taghaddosi and Wagdi G. Habashi

principles®!?. To avoid any dissipation or dispersion associated with numerical modeling
of the governing equations, high-order schemes must be used for both spatial and tem-
poral discretizations®!”. The second approach is based on the acoustic analogy, where the
near-field (encompassing the acoustic source and duct interior) is resolved using the Euler
or Navier-Stokes equations, and linear acoustic theory in the form of an integral solution
is applied at the far-field!%:12,

2 PROBLEM FORMULATION

The work presented in this paper is based on a full flow-field CAA analysis. The
governing equations are the continuity and momentum equations, in the presence of a
mean flow, which are further simplified by introducing a potential, ®*, such that V=
V&*. Using this assumption, the governing equations become

a * * *

LV (V) =0, &
. 9d* V. ver — M2 \VOY
p=i-o-n (G + ) )

in which p* is the density, M, is the freestream Mach number, and + is the ratio of specific
heats. The equations are non-dimensionalized using the freestream speed of sound, c.,
density, po, and fan radius, R, as reference variables. Equations (1) and (2) are further
simplified using a small perturbation assumption, where flow variables are considered to
be superposition of an acoustic perturbation on the mean value, i.e., p* = py + p and
®* = @y + ®. Incorporating these assumptions in the above leads to the linearized form
of the continuity and momentum equations, respectively,

0
o+ (VD + pV D) =0, 3)
_ (0% .

in which subscript ‘0’ denotes mean values.
For the purpose of discretization, the weak form is built using the method of weighted
residuals applied to the continuity equation

9]

/ {a—f + V- (pVP + pV@O)} UdQ =0, (5)
Q

with W being the test function. Applying the divergence theorem and the proper vector

identity, the weak form becomes

/ {\If% — VU - (pVO + pV@O)} Q) = — / U(pgVO + pV ) - 7 dl, (6)
0 r
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in which I' indicates the boundary of the computational domain, €2. Due to time-harmonic
nature of the fan noise problem, the acoustic potential is assumed to be of the form

¢ = ¢($, Y, Z) e—i®t7 (7>

were, w is the reduced frequency, @ = wR/c., and i = y/—1. This means that the
solution to the acoustic problem will be sought in the frequency domain. Similarly, the
test function is defined as

v :w(mvyvz) ezwt’ (8)

consistent with the definition of the dot product in the complex Hilbert space. Using
these definitions and equation (4), the weak form reduces to

/Q B | @200 + (W = &) b + (0 — &) b1, + (wd — ) 600, + 9)
0

UpVo (Cbz@by + be"va) + uowo (¢I¢Z + ¢z77b:c) + vowg (¢y¢z + Cbz"vby) +

ity (90a — B10) + i (61, — DY) -+ iDwo (G152 — 6:0)] dQ =

— / U(pgVP + pVdy) - 71 dT,
r

in which V=(0,,dy,0,), and (ug, vy, wp) = VPy are mean flow velocity components.

Spatial discretization of the weak form is based on subdivision of the computational
domain into hexahedral elements over which a spectral approximation based on a tensor
product of N'*'-degree shape functions is used!®. The shape functions or interpolating
polynomials, h;(§), are collocated at Gauss-Chebyshev-Lobatto points, defined as & =
—cosmi/N,i = 0,...,N. Using the discrete orthogonality properties of the Chebyshev
polynomials, T;,(§) = cos(n cos™! €), the shape functions are®,

N

2 1
hm (&) = — T (&m) Th(8), 10
(©) = §o ; — Tl T() (10)
where ¢y = ¢y = 2 and ¢, = 1 otherwise. Hexahedral elements in the physical space
are transformed into the bicuboid reference element, Q = [—1,+1]3, using the affine
transformation

X610 =30 S0 D hl€) () n0) (w9, 2)i (1)

Similarly, for the acoustic potential, ¢(x,y, 2)¢, using an isoparametric formulation, we
have
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N

SEM ) =D Y > hi() hi(n) ha(C) 5 (12)

i=0 j=0 k=0
with the test function defined as

Using the above spectral approximation, the integrals in (9) can be evaluated either nu-
merically or analytically, resulting in a system of linear equations in terms of the acoustic
potential, A¢p = f. The solution to this system, which provides the acoustic field, is
discussed later.

3 BOUNDARY CONDITIONS

In the acoustic problem, three different types of boundaries exist: solid surfaces, acous-
tic source, and the far-field.

For a typical turbofan engine, solid surfaces include the inner duct, possibly a cen-
terbody, and the nacelle. Since the flow is considered inviscid, only a no-penetration
condition is applied on all solid surfaces. That is,

{ ggo nﬁ :OO on I'y, (14)
where 77 is the outward normal vector to the solid boundary, I';,. This boundary condition
is applied by simply discarding the contour integral on the right-hand side of equation (9)
because it will be identically zero at such boundaries.

At the acoustic source, which is considered to be at a uniform section of the fan inlet
with a circular cross section, the boundary conditions are imposed by specifying the
acoustic potential,

O(x,7r,0) Z Ay (st ) @ihaztmd), (15)

in which m and s are the order of circumferential and radial modes, respectively, J,, is
the Bessel function of the first kind and of order m, k,,, is the eigenvalue corresponding
to (m, s) mode, A, is the amplitude of the s radial mode, r is the radial distance, and
0 is the azimuthal angle'®. For an annular acoustic source, i.e., when the centerbody is
present, the potential at the source is specified as follows

O(2,7,0) = > [AcTm(kmsr) + Yo (ksr)] /B2 70 (16)

s

in which Y,, is the Bessel function of the second kind and of order m.
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The boundary conditions at the far-field, where the domain is truncated, are imple-
mented through a damping region near the outflow boundary to avoid reflection of out-
going waves back into the computational domain. This is achieved by adding a term of
the form —v(z)p to the right-hand side of Eq. (3), in which v(z) simulates exponential
damping

v(@) = (@ — 1)/ DI". (17)

Here, vy is the damping amplitude, x; the coordinate of the inner-edge of the damping
layer, D is the thickness of the layer, and n the damping exponent.

The far-field boundary conditions are applied by modifying the weak form in the damp-
ing layer, where integrals of the form

— [[wnvan = [ T (o0 + uod + 00y -+ ) (18)

Q G

are evaluated along each coordinate direction and their contribution are added to the
element matrices. It should be pointed out that due to strong damping effects at the
far-field boundaries, the contour integral in equation (9) will have negligible contribution
to the solution at the far-field and therefore is neglected in all computations.

4 Geometric Symmetry

It is not uncommon for the nacelle or inlet duct to have a geometric symmetry, whether
with respect to the zy-plane, xz-plane, or both (axisymmetry). So, one can properly take
advantage of the symmetry conditions and perform calculations for only one-half or a
quarter of the domain. This means a reduction of computational cost associated with
building coefficient matrices by nearly a factor of 2 or 4, respectively. The cost associated
with solving the system of equations will reduce even further because operation counts
are nonlinear (exponential) functions of the number of equations, whether a direct or an
iterative solver is used.

Removing part of the computational domain due to symmetry will expose the plane of
symmetry as an exterior boundary, along which one should evaluate the boundary integral

—/lIf(PoV(P + pV ) - 7idr, (19)
r

according to the weak form (6). Figure 1 shows the front view of a circular duct symmetric
with respect to the xy-plane, in which half the computational domain, e.g. z < 0, has been
removed. Referring to this figure, details of implementation for this case are discussed
below. Generalization to other cases of geometrical symmetry, e.g. with respect to the
xrz-plane, is straightforward.

Given that on a symmetry boundary the normal component of mean flow velocity is
zero, the boundary integral in (19) reduces to
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Exterior boundary

e
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Figure 1: Front view of a duct in a symmetric domain.

Loym = — / Upo(VD - i) dT'. (20)
I

The integral in (20) is separated into two, one covering the area above the z-axis and

the other the area below it, Isym = Lsym)y>0 + Lsym)y<o = I;;m + 15, The case of y =0

may not always be present and is discussed later. We discuss the evaluation of 1 sJ?er only,

with a similar procedure to follow for I .. In the derivations, the cylindrical form of the

gradient operator is used along the plane of symmetry

0 1o, 0

V=—é+-=é+——é, 21
or ro0 " ox (21)
where the polar angle # is measured counter clockwise and relative to the y-axis®.
» Case: y > 0. Along the positive side of the xy-plane, the normal vector is, 7 = —éj.
Therefore, VO - 17 = —%g—?. Using the cylindrical form of acoustic potential along the
plane of symmetry, ® = ¢(z,r) e™?e~*! one obtains

VO 7= —— ¢(x,r) e ™", (22)

T

Since, on the plane of symmetry and for y > 0, # = 0 and r = y, then,

Vo .1 = —% P(x,y) e ™" (23)

Similarly, defining the test function along the plane of symmetry to be ¥ = 1 (z,y) e™*,
the boundary integral (20) becomes

!Note that this convention must match the one used for variation of # when boundary conditions are
applied on the acoustic source.
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It =im (@)W dr. (24)
r+ Y

This integral can be easily evaluated on the symmetry plane with its contribution added

to corresponding nodes in the element coefficient matrix.

Note that the integral will be identically zero, if no azimuthal modes are propagated,

i.e., m = 0. This is due to the fact that both plane wave or purely radial modes have
radial symmetry.
» Case: y = 0. In evaluation of the integral (24), it was assumed that y # 0. That is,
the possibility of having any points on the z-axis, which would make the integral singular
was excluded. To resolve the singularity, numerical integration of boundary integrals
involving such singular points can be performed at the points of a staggered grid based
on Gauss-Chebyshev (GC) points instead of Gauss-Chebyshev-Lobatto (GCL) points.

The set of N Gauss-Chebyshev points are defined as

(20 + 1)7T:|’

5N i=0,...,N—1, (25)

0; = — COS [
where N is the number of GCL points used in the spectral grid, and the corresponding
interpolation function collocated at N Gauss-Chebyshev points is®

(o) = % 3 - Tulom) Tulo), (26)

where ¢y = 2 and ¢,, = 1. Therefore, the boundary integral for faces with singular points
can be evaluated as before, except that variables py and y, and the Jacobian |J| will be
evaluated at the GC points.

It should be noted that any face on the plane of symmetry that intersects the z-axis
may not necessarily have a GCL point on the axis itself. So, the singularity of integral
in (24) (or I;,,) will depend on the shape of the grid on the plane of symmetry and the

number of GCL points used.

5 SOLUTION METHOD

The system of equations obtained through discretization of the weak form, A¢ = f, is
complex-valued, non-symmetric, and indefinite. Further, the coefficient matrix is known
to be very ill-conditioned, a well-known characteristic of spectral methods. Given the
large size of practical applications, which are of the order of O(10%) and more, iterative
methods are the method of choice due to their reduced cost, especially that coefficient
matrices are extremely sparse.

However, it is well-known that classical iterative methods and also more advanced ac-
celeration techniques (Krylov subspace methods) generally fail to converge for problems
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based on spectral discretization, unless a very good preconditioner is used. Finding suit-
able preconditioners, however, is still an active research area with progress made mostly
in the area of elliptic PDE’s!®.

In the current paper, a non-overlapping domain decomposition technique, known as
the Schur complement method, is used for the solution of the acoustic problem. This
reduces solution of the original system of equations to that of the Schur system, which
is usually more than one order of magnitude smaller and therefore easier and faster to
solve. A parallel environment is used to perform all computations with the extensive use
of MPI and PETSc libraries!.

To build the Schur system, the computational domain is first divided into ‘p’ subdo-
mains using ParMETIS?, where ‘p’ is the number of processors. In each subdomain ‘i’
the elemental equations A® ¢ = £ are partitioned into a block form

. AW 4@ . ¢ . fi
A(Z) = (I§ (I)B ) ¢(Z) - ) f(Z) - ) (27)
Apr App ¢B IB

where Ang) is the submatrix containing contribution of interior nodes on each other, A%
the submatrix containing contribution of interior nodes on boundary nodes, and so on.
Using the block matrices, one can obtain the Schur system for global boundary points,
vp: Sep = g, in which the Schur matrix and the right-hand side are given by

p p
S = Z RIS, R;, 9= Z R;TFQ(Z)' (28)
i=1

=1

. . N—1 . .

Here, S; = A%)B - Ag)l A?I) Ag% is the Schur complement for subdomain ‘", and gt =
. . NZ1 4.

f](;) — Ag)l A?I) fI(Z),z' = 1,...,p, is the associated right-hand side vector. The matrix

R; is a Boolean operator which maps global boundary points at domain interfaces to
boundary points on subdomain ‘4’. Once the solution to the Schur system is obtained,
i.e., unknowns at interface boundaries are evaluated, the solution within each subdomain
can be calculated independently!6.

The Schur matrix, S, defined above is not usually constructed explicitly due to the

high cost involving calculation of A?}_l. Instead, the system is solved using a matrix-free
approach. Since any iterative method requires only multiplication of S by a vector in their
algorithm, this can be accomplished using Schur complement of individual subdomains
using gather/scatter operations applied to the global vector.

5.1 Solver Analysis

Among different Krylov subspace methods, four different methods were tested for the
solution of the Schur matrix: CGS, GMRES, TFQMR and Bi-CGSTAB. Other methods
could not be used because they involve multiplication by the transpose of the Schur
matrix, which in this case is not available since S is not formed explicitly.
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| Method | CGS GMRES TFQMR Bi-CGSTAB |
Solution Time (min:sec) | 15:07 9:29 13:54 15:47
No. of Iterations 190 173 142 139

Table 1: Solution time and number of iterations for different algorithms.

For a typical test case (solution of the plane wave propagation from an unflanged
cylinder) convergence history of the above four methods is compared in Figure 2. Table 1
gives the solution time and the corresponding iteration count for each method. The CGS,
TFQMR, and Bi-CGSTAB take much longer to converge compared to the GMRES, since
their algorithm involves 2 matrix-vector multiplications per iteration, as opposed to only
one such operation for the GMRES. Also, it was found that the convergence history of
both TFQMR and Bi-CGSTAB were very sensitive to round-off errors, producing different
residual histories at different runs. So, given the monotonic convergence of the GMRES
method and its lower solution time, it was considered to be the most suitable algorithm
for solution of the acoustic problem and used for all calculations.

Theoretically, the full GMRES is guaranteed to converge in n iterations, n being the
size of the coefficient matrix. However, due to cost considerations, the restarted ver-
sion GMRES(m) is commonly used, with m = generally having a value of 20-35. For
non-positive definite problems (such as the acoustic problem), restarted GMRES could
stagnate or lead to a very slow convergence!®. This is shown in Figure 3 for the scarfed
inlet test case.

As a result, the restart parameter was set to a large value (m = 400-600) to assure
optimal convergence. Using such a large value would obviously increase memory usage,
but given the poor convergence rate associated with the smaller values, it would be a
logical trade-off. Moreover, extra memory usage would not be extraordinarily high given
that the size of the Schur matrix is of the order of O(10°) for the largest test problem.
Also, by comparison, the Schur complement method would require a much larger amount
of memory.

5.2 Preconditioning

To speed up the convergence, a preconditioner is proposed for the solution of the Schur
matrix, which is a modified version of the Neumann-Neumann preconditioner!'. The
modification is based on the observation that one can approximate S;, which is expensive
to evaluate, with the local matrix of interface boundary points, A%)B. The proposed
preconditioner, therefore, becomes

p
M =S RTD, AY, DR, (29)
i=1

where D, is a diagonal weighting matrix whose components are the inverse of the number
of subdomains the corresponding node in the matrix belongs to. The above preconditioner
is easy to evaluate since it only involves a solution using Ag)B, which is a relatively small

9
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matrix, the size of the number of boundary points belonging to subdomain ‘2’. Moreover,
it is a local preconditioner applied on individual subdomains. As a result, interprocessor
communications are minimized during the bulk of the preconditioning step.

For a sample problem, propagation of plane wave from a circular cylinder, tests were
performed to demonstrate the performance of different preconditioners. The problem
involved close to 220 000 unknowns, with the size of the Schur matrix about 16 000.
The preconditioners tested were all using the global matrix of boundary points, Agp =

b }?Z-TA%,)BE, its approximation, M5'=Agp~', a Jacobi variant M ;' =[Diag(Azp)] !,
and a diagonal probing preconditioner?® involving Agp. Figure 4 shows the convergence
history. As expected, using the global boundary matrix (Agpg) provides the fastest conver-
gence, followed by its less accurate approximations, M, D and MJ_l, respectively. However,
referring to Table 2, it is clear that the proposed preconditioner is the best choice in terms
of the solution time. It is also a good compromise between the simple Jacobi method M J_l
and the more expensive M, ! preconditioner.

6 RESULTS AND DISCUSSION

The first test concerns radiation of the first azimuthal (spinning) mode, (m,s) = (1,0)
from a cylinder of zero thickness. This test also serves to demonstrate the validity of
the theoretical development for the symmetry boundary conditions, as presented in § 4.
Figure 5 shows the computational domain with dimensions of 7x14x10. The duct radius,
R, is chosen to be one and the duct length is 2.5R. The frequency at the source is 320.075
Hz, which is equivalent to a reduced (non-dimensional) frequency of @ = 5.91. The yellow
surface indicates the plane of symmetry. Damping is applied on all external boundaries,
except on the symmetry plane, with damping parameters set to (D, vy, n) = (2, 8, 2).
There are a total of 2004 elements in the domain. Within each element, a fifth-order
spectral approximation is used (N = 5), giving rise to a spectral grid with 263 816 nodes
and a resolution of 6.4 points per wavelength (PPW) on average. Details of generating
the spectral grid can be found in Reference?.

The acoustic energy of the azimuthal modes peaks off the axis. This is shown in
Figure 6, where far-field directivity is compared with analytical results and the boundary
integral calculations of Lidoine et al.'°, showing a very good agreement both qualitatively
and quantitatively. The test case was solved using 8 processors on an SGI Origin 3400
machine with 400MHz MIPS R12000 CPU’s. Using the preconditioned Schur complement
method and with a Schur matrix of size 18 685, it took about 14 minutes and 230 iterations
to converge the residual below 1071°. Due to the relatively high order of approximation
used, the assembly time was relatively and about 33 minutes.

| Preconditioner | None M;' M;" My’
Solution Time (min:sec) | 10:55 9:39  9:29  14:58
No. of Iterations 261 223 173 129

Table 2: Solution time and iteration count for different preconditioners.

10
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The next test represents a practical example, where a generic scarfed inlet has been
considered. Figure 7 shows the geometry of the scarfed inlet in which the lips have
elliptical profiles. For numerical calculations, the exterior boundary is moved by one
meter behind the fan face to create enough thickness for damping to be applied. The size
of the computational domain is therefore 4.7x7.4x7.4 m, with a total of 15 328 elements.
A close-up of the spectral grid on the inlet is shown in Figure 8.

The non-dimensional frequency is w =17, which is relatively high. Propagation of
the (13,0) mode in the absence of the mean flow is considered. For this frequency and
azimuthal mode, the cut-off ratio is 30 = 1.138 >1, which indicates a propagating
mode. A fifth-order approximation is used within each element (N = 5) equivalent to an
approximate number of 7.77 points per wavelength. Given the relatively high frequency,
a larger damping layer is used with damping parameters set to (D, vy, n) = (3, 10, 2).
Figure 9 shows the acoustic pressure contours at the inlet (fan face), inside the nacelle
and on its walls, and at a distance from the duct exit. Given the shape of the Bessel
functions, for higher azimuthal modes the acoustic energy is convected closer to the walls.
This is clearly visible by the shape of contour lines on the inlet face.

Directivity of the SPL has been measured at a distance of 5\ from the nacelle exit
plane and plotted against the numerical results of Hamilton and Astley® in Figure 10.
The method used in [6] is a hybrid approach, where quadratic finite elements are used
in the near-field and 5% -order infinite elements in the far-field. Referring to Figure 10,
numerical values near the duct axis (—20° < # < 20°) are meaningless and would diminish
if a higher order of approximation was used. Outside this region, however, there is little
match between our results and those presented in [6]. To gain a better insight and to better
judge the quality of results for the two numerical methods, analytical results corresponding
to propagation from a zero-thickness uniform duct at the same frequency and azimuthal
mode are plotted in the same figure. By comparison, the spectral method provides very
smooth curves and “qualitatively” exhibits a similar trend as the exact solution. The
results presented by Hamilton and Astley, on the other hand, are very oscillatory and
only weakly resemble the exact data or the present calculation. However, it seems that
both numerical methods predict the location of maximum SPL closely. Given the above
argument, the accuracy of the method presented in [6] is questionable.

The effect of finite lip thickness is a reduction in the far-field SPL directivity, especially
at large angles away from the duct axis. This explains the deviation in our results from
the exact solution for |#| > 70°. Due to the extended lower lip, which shields part of
the acoustic energy directed in that direction, there is an asymmetry in directivity curve,
causing the maximum SPL to be about 4.5 dB less in the downward direction.

Computations for this test case were performed on 48 processors using the resources
of the CLUMEQ Supercomputer Center. An SGI Origin 3800 machine with 400 MHz
MIPS R12000 processors was used. The acoustic field contains a total of 1 969 746)
equations. The time required for building the system of equations was about 44 minutes,
while solution of the Schur matrix required 65 minutes to converge. The performance

11
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of the proposed preconditioner is shown in Figure 11 for different number of partitions.
The number of iterations range between 200 and 600, which is relatively low, given the
ill-conditioning of the Schur system. The good convergence rate is indicative of the
robustness and efficiency of the proposed method for such a large problem.

Finally, to show the parallel efficiency of the code, computation time for building and
assembling the matrix vs. the number of processors is plotted in Figure 12. Given the
extremely large size of the problem, it was not possible to run the test on a single CPU,
as required in the definition of speedup formula. Instead, the 8-processor results were
used as the reference data. The parallel performance is clearly very satisfactory, showing
a superlinear speedup for the majority of the calculations. Such an excellent scaling is
attributed to many factors, among which is the optimality of the algorithms used in the
code and also an efficient memory management.

7 CONCLUSIONS

A parallel 3D code has been developed using the spectral element method for the
simulation of noise generated by turbofan engine inlets. The applicability of the code,
however, is not restricted to fan noise problems. The 3D formulation allows prediction of
far-field acoustic radiation from a duct of an arbitrary (asymmetric) shape and geometry.

Solution of the linear system of equations is known to be very challenging due to the
ill-conditioning of the coefficient matrix. Here, a non-overlapping domain decomposition
technique, known as the Schur complement method, was used to solve the system of
equations. The reason for adopting this approach was two fold: first, the Schur matrix is
known to be better conditioned and denser than the original matrix, and second, its size
is generally (depending on the number of domains) an order of magnitude less than the
original system.

The reduced Schur system, however, was still difficult to solve and preconditioning was
definitely an important requirement. The preconditioning proposed in this paper was
constructed using local matrix of domain boundary points and was shown to yield very
satisfactory results.

Given that Schur complement method is inherently an expensive method, both in terms
of memory usage and the computational cost, a better preconditioning, or one built for
the original system of equations would be desirable. Our work is currently focused on
achieving this goal.

It should, however, be noted that for the foreseeable future a full CAA analysis for large
domains remains a remote possibility. For such applications, hybrid techniques provide a
suitable alternative.
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Figure 2: Convergence behavior of the Schur matrix using different iterative solvers.
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Figure 3: Effect of the restart parameter on convergence rate of the GMRES algorithm.
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Figure 4: Effect of different preconditioners on convergence history of the Schur matrix using the GMRES
solver.
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Figure 5: Computational domain and spectral grid outline for the first azimuthal mode calculations.
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Figure 6: Directivity at the far-field for the first azimuthal mode.
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Figure 11: Effect of the number of partitions on the convergence rate of the Schur matrix.
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